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We argue that the f3 function for the statistics parameter in (2+ I)-dimensional electrodynamics is 
zero to all orders in perturbation theory beyond one loop. We show that there can be finite radiative 
corrections from massless charged scalar fields. 
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Gauge theories in (2+ 1) dimensions have several 
features not seen in their 0+ I)-dimensional counter
parts. These center on the possible appearance of the 
Chern-Simons three-form in the action I and are connect
ed with parity anomalies 2 and exotic charge,2 angular 
momentum, 3 and statistics. 4 Original motivation for 
their study was their resemblance to the high-tem-

perature limit of gauge theories in 0+ 1) dimensions. 
More recently, there has been interest in (2+ 1)
dimensional electrodynamics in models of certain 
condensed-matter phenomena, particularly high-Tc su
perconductors 5

-
7 and the quantized Hall effect. 8 

The Euclidean action of scalar electrodynamics with 
both Chern-Simons and Maxwell kinetic terms for the 
gauge fields is 

s= J d3X[(DIl¢0)*<D1l¢0)+m6¢6¢0+i4ao fIlVAA~avAAO+~F~vF~v], 
7r 4eo 

(I) 

where DIl = all + igoA~. This is a prototype for the 
effective field theory of the CP I model discussed in Ref. 
9 (see also Ref. 10). The Chern-Simons term gives the ¢ 
quanta fractional statistics. 4 (With the Maxwell term 
this is only true at large distances') The gauge field and 
e6 have dimension 1 and go and ao are dimensionless. 
This field theory is superrenormalizable with comput
able, finite physical parameters. There is considerable 
interest in a model with only Chern-Simons kinetic 
terms. 4

-
10 It is defined by the limit e6 --> 00 where it is 

renormalizable with dimensionless bare coupling 
go I ao I -1/2 and F~vF~v is an irrelevant operator. Since 
all physical parameters are not finite in this limit, renor
malization is required. In Ref. 9 it was argued that the 

dimensionless statistics parameter g6/ao can have an in
teresting renormalization flow. We show in this paper 
that this is not the case. When the renormalized mass 
m 2~0, the corresponding f3 function is zero to all orders 
in loop expansion. For the critical case m 2 =0 (although 
there is no symmetry which prevents radiative mass gen
eration, it is natural at a critical point for the scalar to 
be massless) we demonstrate that f3 is zero to two-loop 
order and we conjecture that it is zero to all orders. We 
also show that, when m 2 =0, g6/ao has finite renormal
ization in higher loops. With ¢o = Z 1/2¢, A~ = Z jI2 All' 
go=Z -IZ3-1/2Z2g, ao =Z3-IZaa, mJ =m 2+ 8m 2, and 
the Ward-Takahashi identity Z =Z2, the action is 

Za is fixed by the requirement that the renormalized Chern-Simons term has coefficient a/47r. The physical statistics 
parameter is g2/a=ZagJ/ao. Propagators, vertices, and counterterms are summarized in Fig. 1. We use eJ as a 
gauge-invariant cutoff to be taken to 00 at the end of computations. To see that when m 2> 0, Za receives no contribu
tions beyond one loop, II consider the irreducible Euclidean N-photon correlation function for N > 4 in the one-loop ap
proximation rlll .. IlN(PI; ... ;-Lt'-Ipk ) shown in Fig. 2. r is symmetric. Radiative corrections to Za with two or 
more loops are one-photon-irreducible graphs obtained either by sewing together all but two legs of r [see Fig. 3(a)1, 
then finding the term linear in the external momentum and antisymmetric in vector indices of the resulting two-point 
function, 
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FIG. 1. Progagators and vertices for scalar electrodynamics. 
The topological mass is If =ae6/2Jr, ed -~ co, and y is the 
gauge-fixing parameter. 

FIG. 3. How nllv is constructed from r.it depends on p 
whereas 'j{ is independent of p. 

or by sewing two l's together in all possible (one-photon irreducible) ways [Fig. 3(b)), 

lim E/lvP-!- J dl l ... dql ... lIlA (p;/I; ... )lvp (-p;q,; ... )'itA .. p . (p;/ j ; ••• ;q2; ... ). 
P'O upp 

When m 2> 0,1 is analytic at pii =0. 'it depends on p where as 'H does not. The Ward-Takahashi identity is 

O=p;"TjJl v, jJN[p';''';Pi;''';-~'Pk]' 
Taking a derivative by Pi, setting Pi =0, and using analyticity yields 

0=11'1 'Vi jJN[p,; ... ;o; ... ;_N~lpk]' 
This immediately implies that (4) vanishes. It further implies 

lim-!-ljJv (p;-p; ... )=lim [-!-ljJv(p;o; ... )--!-ljJv (O;-P; ... ») =0, 
p.oupp p~ouPp upp 

and (3) also vanishes. (This generalizes to other massive matter such as spinor and vector fields. It is also valid at 
finite temperature. There the Euclidean momentum vectors have one component the discrete Matsubara frequency 
pp =2;rk B Tni with T the temperature, nj an integer, and the other two components continuous variables. For N > 4, 
Euclidean N-photon functions have unique extensions to functions of complex momenta pP. With massive matter, these 
functions are analytic at zero frequency and momentum and the Ward-Takahashi identity also holds. The above 

2 3 2 3 

+ + ... 

N N 

FIG. 2. The N-photon correlation function at one-loop order 
is the symmetrized sum with all combinations of both three
and four-point vertices. 
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reasoning shows that no two-photon vertex with one 
power of derivatives is generated by radiative corrections 
beyond one loop at finite temperature.) Thus, given the 
known finite one-loop corrections from both scalars and 
spinors,2 their contributions to the f3 function for the 

+ 

FIG. 4. One-loop photon self-energy. 
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statistics parameter is zero. 

la) I b) 

Id) Ie) 

This leaves the possibility of a nonzero f3 function 
from massless charged fields where the N-point functions 
r cannot be assumed analytic at zero external momenta. 
The zero mass limit which defines a massless field theory 
may not commute with the zero momentum limit which 
determines the renormalization of a coupling constant. 
However, since the f3 function is independent of momen
tum, it will be zero in the massless limit as it is in mas
sive theory. This will be verified by explicit calculation 
to two-loop order in the following. We conjecture that it 
holds to all orders. This argument does not exclude 
finite renormalizations and we shall find explicit nonzero 
finite corrections at two-loop order from massless scalars. 

FIG. 5. Two-loop photon self-energy. 

The one-loop correction to the photon two-point function from charged scalars (Fig. 4) is 

{ [] 

1/2} £ 2.J;;;2 p2+4m 2 . p2 
rr~~)(p)=(p28Ilv-PIlPv) ---2-+ arcsIn 2 2 . 

SJr P p 2..Ji2 P +4m 

Ie) 

It) 

(5) 

Although the loop integral is potentially divergent and requires a cutoff at intermediate stages of calculation, the result 
is finite. Its antisymmetric part vanishes and when m 2 > ° its symmetric part has a local limit (p 2811 v - PIlPV) 

xg 2/24Jr.J;;;2 which contributes to Z 3. Figure 5 depicts two-loop self-energy diagrams. The corresponding integrals 
are finite for e& < 00 and by power counting are logarithmically divergent when e& -- 00. The contributions of Figs. 
5(b)-5(e) to (1/2p2)cllvl.rr~~)h cancel immediately upon combining the integrals. Figure 5(a) can be reduced to the 
Feynman parameter integral 

~rldxl"'dx4e(l-xl-"'-X4) 1 
SJr 2a J o [(I - X 1- X2)(X 1+ ... + X4) - (X3 + X4) 2]5/2 

(6) 

where p =ae&/2Jr and 

Figure 5 (n reduces to 

,,4 11 XIX2 
- ---'2-- dx 1 dx 2 e(l - x I - X 2) -------'--=-------;-;:-

SJr 2a 0 [(1-xl-x2)(xI+x2)-xlx2]5/2 

P 2 (I - X 1 - X 2)( I - X I ) + m 2 (I - X 1 )(x I + X 2) + P 2 ii 
xln , 

m 2 (I - X 1 )(x I + X 2 ) + P 2 ii 
(S) 

(9) 

If we keep m 2 > ° and put P 2 =0, these two contributions cancel for all values of p2 > 0, consistent with the no
renormalization argument above. On the other hand, if we first put m 2 =0 and then p2 / P 2 large (since e& -- 00), the 
divergent leading terms proportional to In (p2 / P 2) cancel. Therefore, as expected, there is no infinite contribution to Za. 
After some standard manipulations, 12 the finite parts are 

~ r l 'A1/2p 
2 Jr dpd'AdxdyeO -y-p) [ ()]5/2 

SJr a 0 I - 'A + 'Ap I - P 

xln pO -p)(I-'A)O -'Ap) = -2.74~ (10) 
[0 -'Ap)(px+y) -'Ay 2][1 -'A+'ApO -p)] - [pO -'Aph+O -'A)yF SJr 2a 

where the approximate result is obtained numerically. 
To couple spinors we add f IJIJ[ Yll (ill il - igoAJ) + M 0] lJIo to (I). Generalization of the arguments above shows that 
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there are no contributions to Za beyond one loop at ei
ther zero or finite temperature when M~O. At one loop, 
the correction is known 2 at T =0 and can be obtained at 
T~O as 

. 1 (I) -L M hm --2 fllvATII'v PI. - tanh-
k
-- . 

p ·0 2p 8n BT 

When M =0 the one-loop correction vanishes but there 
could be finite corrections from higher loops. 

Equation (5) indicates a radiatively generated 
Maxwell term at one-loop (and higher) order. We deter
mine Z 3 so that the renormalized Maxwell term has 
coefficient 1/4e 2

• Even when the bare action has only a 
Chern-Simons term, a Maxwell term is generated in the 
effective action. In that case it is possible to resume per
turbation theory using the renormalized Maxwell term in 
the Feynman rules which are then superrenormalizable. 
The present analysis also applies to the singular case 
where l/e 2 =0 which remains marginally renormaliz-
able. In summary, for scalars when m =0, 
Za=l +2.74g 4/2na 2+ ... , Z3=e6le 2 + ... ; when 

m2~0, Za=l, Z3=e?;/e 2-e?;g2/24n.,J;;;2+ .... For 
spinors when M =0, 8Za = (finite corrections from 
>- two loops), Z 3 is affected at two and higher loops; 
when M2~0, 8Za =-(gl/2a)tanh(M/kB T), 8Z 3 
= -e?;g2/12n.JM2+... from one- and higher-loop 
vacuum polarization. In the massive theories we have Za 
exactly. In both cases there are no infinite corrections to 
ao and the corresponding f3 function vanishes. However, 
there is finite renormalization from massless particles in 
higher loops and from massive spinors at one loop. 
There can be an infinite renormalization from charged 
massive vectors at one 100p.13 The latter [as well as the 
Cp I model to which (I) is approximate] is a nonrenor
malizable theory and the perturbative expansion is un
reliable. Also, our results for renormalizable theories are 
perturbative and would be improved by demonstrating 
Borel summability of the perturbation series. Finally, we 
speculate on hysteresis where we vary parameters, i.e., T, 
m 2, e 2 of scalar electrodynamics. The statistics parame
ter is unaffected if we avoid critical points. If we go to a 
critical point the statistics parameter gets finite comput
able corrections. We then leave the critical point with 
renormalized fractional statistics. 
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