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ABSTRACT 

In this research, a computerized motion planning and control system for multiple robots is 

presented. Medium scale wheeled mobile robot couriers move wireless antennas within a 

semicontrolled environment. The systems described in this work are integrated as components 

within Mobile Emulab, a wireless research testbed. This testbed is publicly available to users 

remotely via the Internet. Experimenters use a computer interface to specify desired paths and 

configurations for multiple robots. The robot control and coordination system autonomously 

creates complex movements and behaviors from high level instructions. 

Multiple trajectory types may be created by Mobile Emulab. Baseline paths are comprised of 

line segments connecting waypoints, which require robots to stop and pivot between each 

segment. Filleted circular arcs between line segments allow constant motion trajectories. To avoid 

curvature discontinuities inherent in line-arc segmented paths, higher order continuous 

polynomial spirals and splines are constructed in place of the constant radius arcs. 

Polar form nonlinear state feedback controllers executing on a computer system connected to 

the robots over a wireless network accomplish posture stabilization, path following and trajectory 

tracking control. State feedback is provided by an overhead camera based visual localization 

system integrated into the testbed. Kinematic control is used to generate velocity commands sent 

to wheel velocity servo loop controllers built into the robots. 

Obstacle avoidance in Mobile Emulab is accomplished through visibility graph methods. The 

Virtualized Phase Portrait Method is presented as an alternative. A virtual velocity field overlay is 

created from workspace obstacle zone data. Global stability to a single equilibrium point, with 

local instability in proximity to obstacle regions is designed into this system. 
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The design, implementation, integration and analysis of these systems is presented in this 

research. Experiments are completed to evaluate the performance of motion planning and control 

under real world conditions. 
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CHAPTER 1 

INTRODUCTION 

The design and implementation of a multiple robot motion control system for 

a wireless networking research testbed using medium scale robots as couriers is 

presented herein. Major aspects of this system, including trajectory generation, 

motion control, obstacle avoidance, and multiple robot coordination are discussed. 

In addition to the implementation of this system in a real world environment, the 

challenges related to localization, communications, and control are analyzed. 

It is hypothesized that remote kinematic state feedback control of multiple 

robots simultaneously, with visual localization running at 30 Hz is feasible, and 

capable of trajectory tracking with minimal error. This research aims to establish 

this, and covers all the design and engineering decisions involved in creating a 

system capable of evaluating robot motion control under these constraints. 

1.1 Mobile Emulab 
Emulab mobile [1], an extension to Emulab [2], is designed to allow remote users 

to interactively conduct wireless network experiments. Medium scale robots are 

used as couriers to position equipment such as antennas and computing hardware 

within a semicontrolled environment. 

Wireless network simulations may produce inadequate results. There exist 

effects which are difficult to model, resulting in differing results when compar­

ing simulation to experimental data. Mobile Emulab is intended to provide the 

infrastructure required to obtain data from real world experimentation, using com­

mercially available wireless networking devices. This allows research groups access 

to remotely conduct experiments, without the initial cost and effort associated with 

the implementation of a wireless network testbed. 
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Emulab and Mobile Emulab are remotely accessible to experimenters over the 

Internet. Emulab provides a web-based experimentation interface for users to cre­

ate, modify and manage network experiments. A Java applet interface is included in 

Mobile Emulab to visualize and coordinate control of multiple robots simultaneously 

while conducting experiments. 

1.2 Requirements and Goals 
Robots are chosen for Emulab mobile based on capabilities such as speed, 

battery life, and payload. Factors such as cost, maintenance, ease of use, commercial 

support, and availability are also strongly considered. Commercially available 

robots are desired, in order to speed development time, and build a complete system 

that can be reproduced by other research groups. 

The robot workspace is best described as a standard office space type envi­

ronment. It consists of a flat carpeted area of 60 square meters. Furniture such 

as chairs, tables, shelves, a couch, and other miscellanea are present around the 

perimeter of the area. The environment, termed as semicontrolled, has frequent 

foot traffic, causing transient obstacles to be present in the workspace. Robots 

capable of operating in this environment are required to fulfill courier duties in 

Mobile Emulab. 

Robots must be capable of untethered, autonomous operation. Remote usage 

is an important feature of Mobile Emulab. Minimal operator support is desired in 

order to maximize the utility of the robots as couriers. Commands delivered over 

a wireless ethernet control network are required, and the robots must be able to 

carry the hardware required to achieve this. 

It is desired that robots operate at near their rated maximum velocity of 2.0 

meters per second. Reconfiguration of multiple robots in the workspace must 

be completed as fast as possible in order to reduce the time required to run 

experiments. Path tracking error must be as low as possible, and goal positioning 

needs to be as accurate as 10 millimeters. 
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1.3 Constraints 
The systems in this research are used to augment a larger existing system. 

This integration imposes constraints which would otherwise not be present in an 

independent system. The hardware chosen for the system is determined by cost 

and commercial availability constraints. To minimize development time and costs, 

the robots used in the Mobile Emulab system are commercially available units. The 

localization system is comprised of readily available hardware, which also speeds 

development of the system. The Mobile Emulab system, and the components 

discussed in this research take advantage of a large body of existing software in 

the Emulab testbed. All communication, localization, and motion control of robots 

in the system must be closely integrated with Emulab. 

1.3.1 Robots 

Six Acroname Garcia robots [3] are used as couriers in Mobile Emulab, chosen 

for their cost and capabilities. These medium scale robots are used to move the 

equipment needed for wireless network experimentation within Mobile Emulab. 

The Garcia is a differentially steered wheeled mobile robot propelled by electric 

motors, powered by a rechargable battery. 

1.3.2 Localization 

Cost and availability constraints dictate that an overhead camera localization 

system is used on Mobile Emulab. This system consists of six overhead color 

cameras pushing data to a custom built system designed to detect fiducial markers 

placed on top of each robot. The cameras are of a type commonly used for security-

related surveilance purposes. The system provides continual localization data to 

the robot control system in the form of a global Cartesian position, and orientation 

for each robot in the workspace. To keep costs low, the cameras used are capable 

of only 30 Hz framerates, which in turn limits the availability of localization data 

to 30 Hz intervals. These localization data are used as state feedback for motion 

control. 
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1.3.3 Software Systems 

Mobile Emulab is closely tied to Emulab, which provides an established software 

base for building the robot control system. A user interface, event system, and other 

supporting software are included in the system, but are outside the scope of this 

research. Applications to coordinate communication, obtain localization data, and 

send wheel velocity commands to robots were created by researchers at the Flux 

Research Group at the University of Utah, and are discussed in this research to 

provide background information. All components of the research presented in this 

document are incorporated as part of the robot control application, termed RMCD, 

of which an overview is given in Subsection 2.5.2. 

More details about the various software components of Mobile Emulab are 

discussed in Section 2.5. These components accomplish all coordination, commu­

nication, and control of robots in the testbed system. 

1.4 Challenges 
The constraints presented in Section 1.3 create several challenges, which are 

addressed in this research. The operating environment, software environment, robot 

hardware, and cost constraints all create problems that must be solved. The system 

presented as part of the research discussed in this document addresses these issues 

and provides a working system that allows robots to effectively operate as couriers 

in a semicontrolled environment. 

1.4.1 Environment 

The environment in which robots must operate within Mobile Emulab is dif­

ferent from many of the more controlled lab environments used in other research. 

Robots must avoid interaction with static obstacles, but additionally must account 

for transient obstacles and multiple robot interaction issues. The carpeted surface 

present in the testbed area is further detrimental to localization through odometry 

due to wheel slip. 
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1.4.2 Robot Performance 

The robot cost and commercial availability constraints place challenges on the 

overall capabilities of the robots. The robots chosen for use on the testbed are 

advertised to have a maximum velocity of 2 meters per second. In practice, the 

maximum velocity observed is lower. The maximum velocity achieved in the Mobile 

Emulab workspace has been measured as 1.5 meters per second. This is attributed 

to the fact that the robots are operating on carpet, and the size of the workspace. 

There is not enough space for a robot to accelerate to maximum velocity before 

crossing a boundary or encountering an obstacle. 

1.4.3 Communications 

All localization data, user commands, and robot control commands are passed 

over an Ethernet network, with any communication between the central control 

system and the robots taking place over wireless Ethernet. In the implementation 

on Mobile Emulab, the motion controller is run within the central control system, 

with the robots receiving only wheel speed commands over the wireless link. When 

the link intermittently fails because of interference or other factors, the main control 

loop is broken. The use of this link also presents problems with latency. 

1.4.4 Trajectory Specification 

Trajectories must be specified by users who may not be familiar with the field 

of robotics. No mention of nonholonomic kinematic constraints is given within 

the user interface for Mobile Emulab. Sparse information about the performance 

capabilities is given, allowing users to focus on experiments, not robot control. 

1.4.5 Robot Control 

Motion control of multiple robots with a kinematic state feedback controller 

running at a 30 Hz sampling rate over a potentially lossy communications link 

is the biggest challenge in this research. In an effort to save vital on board 

computational resources, the main motion controller cannot be run on board the 

robots. Localization data cannot be provided at a rate any faster than 30 Hz, 
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limiting the rate at which the control loop can be executed. 

1.4.6 Multiple Robot Coordination 

The coordination and control of multiple robots simultaneously presents several 

challenges. Most significant is the prospect of robot collisions, which can cause 

severe deviation from prescribed trajectories. Deadlocking is another issue, where 

multiple robots mutually block each other from achieving their objectives. 

Communications issues exist when considering multiple robots. The effective 

sampling frequency and latency properties of state feedback for motion control 

may be degraded when the number of robots simultaneously controlled increases. 

Mobile Emulab has only six robots in operation, and scaling factors associated with 

additional robots are not researched in this work. 

1.5 Contributions 
The components of the system discussed in the following chapters are devel­

oped to augment Emulab, an integrated experimental environment for distributed 

systems and networks [2]. Emulab provides features useful for the creation of 

experiments, along with the required user interface facilities, computing and net­

working hardware, and organizational structure. The topics presented in this 

research are part of a greater contribution to provide mobile wireless networking 

experimentation capabilities to Emulab. The mobile wireless extension to Emulab 

is the first integrated autonomous motion planning and execution system on a 

wireless research testbed [1]. 

Design constraints (discussed in Section 1.3) imposed in the extension of Emulab 

create challenges in this research (Section 1.4). In response to communication con­

straints caused by networking limitations, robust kinematic state feedback control 

is designed to accomplish reliable motion control of mobile robots. A continuous 

controller is analyzed in discrete form to determine stability characteristics and 

engineer suitable parameters for desired performance. Contributions are made in 

achieving motion control with low sampling frequency and potentially high latency. 

A kinematic controller, designed to function at assumed continuous sampling 
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frequencies is adapted to function under worst-case conditions. Limited compu­

tational resources on the robots must be reserved for user applications needed to 

perform and administer experiments. This constraint requires the motion controller 

to reside on a remote system. Unlike conventional teleoperated systems, the robots 

themselves have no autonomy, and no motion control aside from low level wheel 

velocity servo loops. 

The nature of the operating environment requires that an obstacle avoidance 

system be included in Mobile Emulab. Initially, a geometric method is employed 

to coordinate obstacle avoidance. A more advanced method of obstacle avoidance, 

based on potential field methods, is designed to address the multiple robot obstacle 

avoidance problem. A proposed solution to the local minima problem, through a 

novel vector field method, is evaluated in simulation. 

1.6 Document Structure 
The remaining portions of this document are structured as follows: Chapter 2 

contains background material concerning trajectory generation, motion control, and 

obstacle avoidance, along with some background about the Mobile Emulab testbed 

system. The main research topics follow in the next few chapters, with trajectory 

generation discussed in Chapter 3, motion control in Chapter 4, and finally, obstacle 

avoidance in Chapter 5. 

The design of simulations for the above systems and associated results are pre­

sented in Chapter 6. Discussion of implementation issues for the various trajectory 

generators and motion controllers is given in Chapter 7. Experimental results 

concerning these areas are given in Chapter 8, and concluding remarks can be 

found in Chapter 10. 
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CHAPTER 2 

BACKGROUND 

Mobile robot testbeds [4, 5, 1], are used to evaluate high level coordination and 

motion planning, or to run specific experiments, such as wireless network evaluation. 

A common element in these systems is the design of a centralized control system. 

In most examples, high level motion commands are issued to autonomous robots. 

These robots may self-localize and have local autonomy. In this research, a system 

is designed in an environment where the capabilities of the individual robots are 

limited. No local autonomy is present, and all localization is handled centrally. 

Robots send velocity commands received over a network directly to wheel level 

controllers, minimizing the amount of computational resources required on each 

robot. This maximizes the amount of resources available for experimentation. 

Teleoperation over the Internet [6], pioneered in [7], involves the operation of 

robots by remote users issuing high level commands. Web-based interfaces allow 

users to coordinate robot motions [8]. For example, mobile robots may be remotely 

controlled through haptic interfaces [9]. The model presented in this research is 

similar, substituting the human-controlled haptic interface with a computer system 

running a motion controller to execute a predetermined trajectory. Teleoperation of 

mobile robots using commercially available wireless networking hardware is possible 

[10, 11]. The system presented in this research advances this to use nondedicated 

networks, with unpredictable characteristics. Control stability problems in this 

environment are also addressed. Teleoperation is extended to separate all autonomy 

from the robot. With this system, not only can a user be remote, but almost all 
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Other wireless networking research testbeds exist, but not exclusively with robot 

couriers capable of unconstrained motion within a similar area. Many testbeds 

offer mobility of devices, but only through tethered robots with small workspaces. 

Internet based control has been offered on other systems to control the motion 

of robots. Other Internet-controllable systems only accomplish high level motion 

planning remote from the robots, with lower-level motion controller implemented 

traditionally on board the robots. The Mobile Emulab testbed integrates commer­

cial hardware into a full research testbed, at minimal cost, and available to anyone 

for use from any location. 

Communication networks have disturbances from time delays and lost data, 

resulting in varying sampling rates for control loops [12, 13]. This adversely affects 

the stability of motion controllers [14, 15]. In this research, the stability criterion of 

a state feedback controller over a network is analyzed, solving issues with integrating 

this work into a complete teleoperated robot system. 

Motion control through state feedback running on remote systems is novel; 

as is the control law applied to this system to simultaneously solve the posture 

regulation, path following, and trajectory tracking problems. New research is ac­

complished into discrete stability analysis of controllers operating at slow sampling 

rates. More details about current motion control methods utilizing state feedback 

are discussed in Section 2.2. 

The usage of line and circular arc based paths is well established in the research, 

as is the generation of more continuous curvature arcs. Trajectory generation is 

discussed in detail in Section 2.1. 

A novel obstacle avoidance method similar to artificial potential field methods 

is presented in this research. Other obstacle avoidance methods are discussed in 

Section 2.3. A background of the system hardware and software architecture is 

given in Section 2.4 and Section 2.5. 

2.1 Trajectory Specification 
A feasible reference goal posture, path, or trajectory is required before a motion 

controller can move a robot. In its most basic form, a goal posture is set, and a 
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robot is turned to orient towards the goal, then driven in a straight line to the goal, 

then finally oriented to the goal posture. 

Wheeled robots are capable of more complex motions, and only a subset of 

robots is actually capable of reorienting by pivoting through a zero radius turn 

about their center. Turns of arbitrary radius are possible, and paths must be 

generated to take advantage of this. Segmented paths can be constructed. Segments 

may involve motion in a straight line, or a turn. Path specification progresses 

in complexity to the point of full parametric trajectories defining instantaneous 

posture, and its derivatives, resulting in smooth, complex, continuous motion along 

a defined path, at defined velocities and accelerations. 

Nonholonomically feasible path generation can be accomplished by smoothing 

nonfeasible paths. These generators take polygonal waypoint based paths, and 

insert curves to produce more continuous paths. This type of generator forms a 

path that is feasible considering a nonholonomic kinematic constraint [16]. 

The geometric curvature continuity of curves used in path generation is an 

important aspect of the design of feasible paths [17]. Line and circular arc based 

paths, pioneered by Reeds and Shepp, have discontinuities in curvature at the points 

between lines and arcs. The curvature of a straight line segment is zero, and the 

curvature instantaneously increases to a nonzero number when transitioning from 

a line to an arc segment. Line and circular arc segment paths can be extended to 

have more continuous curvature [18]. 

There exist two main categories of curves, closed form, such as circular arcs 

and splines, and parametric curves with curvature as a function of arc length. 

Closed form circular arcs are defined by their curvature, from which a radius 

can be calculated. To arrive at a solution for the curve, a center point, radius, 

and boundary points are needed. Parameterization of the curve can be done 

geometrically. Splines are more complex, but still may be solved with geometric 

methods and straightforward construction. 

Parametric curves specified by curvature as a function of arc length allow 

direct control over curvature continuity. They are more difficult to construct with 
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boundary constraints at each end of the curve. 

In the literature, Clothoids are well-known curves for smoothing paths [19, 20], 

and have been heavily utilized in roadway and railroad design. Two Clothoids 

are symmetrically paired, with zero curvature at the boundaries, and maximum 

curvature at the center of the arc, at the intersection of the two Clothoids. A 

major problem with Clothoids, and polynomial spirals in general is the lack of a 

closed form solution. Fresnel integrals must be solved to obtain the coefficients 

required to meet specific boundary conditions in Cartesian space. Parametric 

curves can be created from polynomial spirals of any order [21]. Cubic spiral 

curves [22] are analogous to Clothoid pairs. Optimal control theory may be used 

to solve for smooth curvature and derivatives of curvature, while minimizing the 

maximum curvature [23]. This produces a smooth curve that can be tracked by 

a nonholonomic robot with minimal wheel slippage and tracking error, allowing 

higher velocities. 

2.2 Motion Control 
Four major classes of motion control are considered in this research. As a 

baseline, point to point motion comprised of straight line motions interrupted by 

pivots, tracking polygonal waypoint based paths is considered. Posture stabilization 

may be used to execute these polygonal paths, or to stabilize a robot to a single 

final goal posture. To reduce motion time and expedite robot arrival to final goal 

points, more continuous paths are used, and more advanced motion controllers are 

needed. This class of motion controller is capable stabilizing a robot to a parametric 

path, or a parametric trajectory. 

Two forms of controllers may be used for motion control of wheeled mobile 

robots. Kinematic control involves stabilizing a kinematic system by controlling a 

robot through velocity inputs. Dynamic control includes a system model including 

dynamic and kinematic states, and generally uses torque commands as inputs to 

the robot. A hybrid form of control can be used, in which kinematic and dynamic 

control are combined through the use of a dynamic extension [24]. Feedback 
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stabilization of the nonholonomic system is used to solve the goal stabilization, 

path tracking, and trajectory tracking problems [25]. 

Motion control of mobile robots initially centered on kinematic techniques. The 

main focus during the early 1990s was on providing ideal velocity commands that 

could provide posture regulation or trajectory tracking in consideration of nonholo­

nomic constraints. Approaches were based upon time varying and discontinuous 

control laws that satisfied Brockett's theorem [25]. Polar coordinates were then 

introduced in order to provide smooth time invariant kinematic controllers that 

could provide posture regulation and possibly trajectory tracking [26, 27]. Given 

the difficulty of reproducing these velocities on actual robots, the focus shifted in 

the late 1990s to backstepping based controllers that considered kinematic control 

[28] in conjunction with dynamic controllers to provide wheel torque commands 

[29]. A variety of robust and adaptive controllers were then examined during the 

early 2000s. Subsequent research has focused on providing smooth time invariant 

kinematic controllers capable of satisfying physical constraints [30] in conjunction 

with robust dynamic controllers capable of rejecting disturbances [31, 32]. The 

Garcia robots used in this research utilize embedded velocity servo loops, however, 

and are not amenable to these more advanced dynamic controllers that typically 

require torque commands at higher sampling rates. While any kinematic motion 

controller could have been used in this research, the path-manifold kinematic con­

troller presented in [32] and described in further detail in [30] is implemented since 

it considers physical constraints and provides velocity commands suitable for the 

Garcia robots used in Mobile Emulab. 

Posture stabilization of wheeled mobile robots may be accomplished using a 

kinematic state feedback linearizing controller [26]. This controller is employed for 

posture regulation only, but can be extended to perform path following. A unicycle 

kinematics model is specified, which is applicable to a differentially-steered vehicle. 

A similar technique is applied to compliant frame robots, formed from two 

coupled differentially steered robots, also using Lyapunov analysis [30]. This ve­

hicle has additional constraints over a vehicle with unicycle kinematics, such as a 
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minimum radius of curvature. The time invariant smooth control law developed for 

this application employs a minimum radius of curvature, and also limits the vehicle 

to forward motion only. 

The Lyapunov technique can also be used for a vehicle with bicycle-like kine­

matics. [27]. Cartesian state equations are converted into polar form, and a velocity 

and curvature based control law is developed. As with the compliant frame vehicle, 

this control law limits the vehicle to forward motion only. 

An example of path planning for obstacle avoidance is the use of a sliding mode 

controller with a potential field and obstacle exclusion zones based on electrical 

charge models. [33]. In this method, sliding mode control is used to direct a path 

around known obstacles. Another sliding mode controller executes above the single 

obstacle path planner to plan paths with multiple obstacles by considering a single 

obstacle at each time increment. Various optimizations are made to eliminate large 

accelerations and tight turning radii. 

Trajectory tracking control involves stabilizing a robot to a continuously moving 

reference frame. A trajectory has both position and velocity parameters, and 

may additionally include acceleration and curvature references. Trajectory tracking 

control can be accomplished with feedback from visual data [34]. Noisy image data 

can be filtered, and used to estimate robot kinematic state data. An Extended 

Kalman Filter may be used to provide robust state estimations based on noisy data 

from imaging systems. 

Lyapunov design may be used to develop a smooth, time invariant control law 

to solve the trajectory tracking problem [28, 30]. The kinematic system must be 

modeled in Polar form, or a smooth, time invariant control law is not possible. 

2.3 Obstacle Avoidance 
The earliest example found in the literature of mobile robot obstacle avoidance 

using harmonic potential fields is the pioneering work by Khatib [35]. Utilizing 

this method, virtual attractive and repulsive forces acting upon manipulators and 

mobile robots are created by generating a dipolar field between the center of an 
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obstacle, and the goal point. A path is then created by solving the gradient of the 

potential field. 

Problems with potential field methods are well described in the literature [36]. 

The most common problem is the creation of traps due to local minima. Paths 

resulting from solving a potential field may experience lateral oscillations in the 

presence of multiple obstacles. This is especially a problem with methods that 

consider multiple obstacles by switching between single obstacles. 

To diminish oscillations of paths resulting from potential functions, path gener­

ation using a two-dimensional Gaussian function can be used [37]. Oscillations in 

potential fields can be eliminated using a modified Newton's method, instead of a 

gradient descent method [38]. 

It is analytically difficult to design potential fields restricted to have a single 

minimum coinciding with the goal. This is especially difficult when considering 

multiple obstacles concurrently. The generation of local minima may be suppressed 

with potential functions using Laplace's equation [39]. Instead of suppressing the 

generation of local minima, multiple minima can be searched with a graph search 

algorithm to achieve a final goal configuration [40]. The major drawback with this 

method is the increased computation requirements, especially when considering 

dynamic obstacle environments. 

Sliding mode control can be used to allow a nonholonomic wheeled mobile robot 

track reference paths generated through potential energy fields. A single field for 

each obstacle is modeled, while a higher level spatial controller is used to apply only 

the field from the obstacle closest to the robot. Local minima are not likely to be 

created due to the consideration of only a single obstacle at a time. An electrostatic 

field is used, guaranteeing that field lines do not escape to infinity [33]. A Coulomb 

model electrostatic potential field with harmonic Laplacian properties can be used 

to suppress local minima [41]. High path curvature can result without modifying 

the sliding surface by shrinking obstacle regions gradually when the robot comes in 

proximity. 

The problem of local minima in potential field methods can be avoided by 
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using geometric methods such as cellular decomposition, and Voronoi diagrams. 

With cellular decomposition, the free space is divided into discrete cells, which 

are heuristically searched using graph theory to obtain a partial ordering of cells 

starting from the goal point [42]. Voronoi diagrams can be applied to generate a 

safe reference path from initial to goal configurations. A major problem with this 

type of solution is that smooth continuous paths are not always created. Reference 

paths are generally polygonal when using geometric path planning methods, but 

may be smoothed to fit within the nonholonomic kinematic constraints of certain 

wheeled mobile robots. 

A novel method based on potential field methods is introduced in this research. 

Termed the Velocity field Phase Portrait Method, or VPPM, the system is based 

on velocity fields to provide obstacle avoidance in cluttered environments. VPPM 

avoids many of these issues related to potential fields by utilizing the properties of 

nonlinear system equations to control equilibrium points, and minimize oscillations. 

Potential fields may be utilized in control schemes for mobile robots [43]. Likewise, 

the VPPM field may be designed to provide a desired trajectory, with highly 

adjustable field overlay parameters. 

The obstacle field overlay can be modified in such a way that field vectors 

are directed outwards from the geometric center of a cluster of obstacles. An 

obstacle field is not constrained to act only radially outward from the center of 

its corresponding obstacle region. Given this, unidirectional obstacle fields can be 

created, allowing groups of obstacles to have custom-designed field polarities. This 

allows local minima creation to be eliminated. 

Our method allows the field in proximity to obstacle regions to be statically 

tuned for desired path curvature. The field does not need to be reactively changed 

in relation to the current position of a robot. 

2.4 Hardware 
The core components of Mobile Emulab are the robots, localization system, 

computing hardware, and wireless networking hardware. These systems are all 
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comprised of commercially available products, with no specialized hardware present 

in the system. Commercial hardware is chosen to limit costs, and to lower the 

barrier to implementation of Mobile Emulab by other research groups. An entire 

system can be bought and set up to a full working system by any moderately 

equipped group. 

2.4.1 Robots 

Six Acroname Garcia [3] robots are used as couriers by Mobile Emulab. This is 

a commercially available robotics platform. Specifications for the Garcia robot are 

found in Table 2.1. A photograph of two Garcia robots in their normal workspace 

is shown in Figure 2.1. The colored fiducials used for localization are visible in this 

photograph, as are the on board computers, and wireless antennas. 

The Garcia robots are chosen as couriers in Mobile Emulab to meet the con­

straint of using commercially available hardware. The robots are available for 

purchase as a commercial product, and include all the components preassembled. 

Furthermore, a software API is provided that allows point to point motion, along 

with the ability to command wheel velocities directly. 

The robots are of steel construction, with an electric motor powering each of the 

two wheels independently. Power is obtained from rechargable nickel metal hydride 

batteries, commonly used in hobby scale radio controlled vehicles. The robots each 

come configured with a Stargate computer system mounted within the case, at the 

top. 

Slight modifications are performed to each robot. Colored fiducials are added to 

the top to allow tracking by the visual localization system. The mounting plate for 

the Stargate computer is raised to allow the inclusion of addition equipment needed 

Table 2.1. Robot Specifications 
Length 10.980 in 0.2789 m 
Width 7.673 in 0.1949 m 
Height 3.680 in 0.0935 m 
Track Width 7.000 in 0.1778 m 
Wheel radius 3.996 in 0.1015 m 
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I Wheel radius 3.996 in 0.1015 m 
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Figure 2.1. Two Garcia robots. 

for sensor network experimentation. Finally, a long antenna extension is added, to 

place the antenna close to human hip height. This antenna height is desirable to 

model mobile devices that may be carried by persons either in a pocket, or clipped 

to a belt. 

2.4.2 Localization 

Robot localization is accomplished by an overhead camera system installed in 

the robot workspace. Downward looking cameras continually track colored fiducial 

markings on each robot. A series of cameras output localization data used for robot 

tracking and state feedback. Corrections are made for lens distortion, resulting in 

a mean position error estimate of approximately 10 millimeters. 
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2.5 System Architecture 
Mobile Emulab is divided into four distinct software systems, termed daemons. 

These applications run noninteractively, and handle all the calculation, communica­

tion, and data collection needed to control robots in the testbed environment. The 

three main master control daemons run as single instances for each experiment in 

the background on a fixed computer, while instances of the Garcia Pilot application 

run on the local computer on board the robots. The master control daemons 

communicate over an Ethernet connection, while the Robot Master Control Daemon 

communicates with instances of Garcia Pilot over a wireless Ethernet link. 

An overview of the Mobile Emulab system architecture is shown in Figure 2.2. 

The components that are part of Mobile Emulab are on the left side of the diagram, 

denoted by light gray boxes. The visual localization block is a part of VMCD, while 

the rest of the blocks belong to RMCD. 

2.5.1 Emulab Master Control Daemon 

The Emulab Master Control Daemon (EMCD) handles communication from 

Emulab, users and VMCD. Motion commands, reference waypoints, and posture 

updates from VMCD are forwarded to RMCD. Feedback from RMCD is collected, 

and passed to Emulab. 

EMCD is the primary system to manage data, communicate with Emulab, and 

coordinate robots. All high level motion commands and localization data are passed 

Reference 5 
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Figure 2.2. Mobile Emulab system architecture overview. 
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through and coordinated within EMCD. 

2.5.2 Robot Master Control Daemon 

The Robot Master Control Daemon (RMCD) coordinates motion of multiple 

robots. It builds reference trajectories from waypoint data, and sets goal points 

for robots based on user input passed from EMCD. RMCD runs the state feedback 

controllers, and sends wheel speed commands to instances of Garcia Pilot. 

2.5.3 Vision Master Control Daemon 

The Vision Master Control Daemon (VMCD) collects and processes data from 

the overhead camera localization system. When robots are undergoing point-to-

point motion, localization updates are sent to EMCD when requested. When state 

feedback control is active, localization data are continually sent to RMCD through 

EMCD. 

2.5.4 Garcia Pilot 

Instances of the Garcia Pilot application run on each robot. Under point-to-

point motion, Pilot sends line and pivot motion commands, giving feedback based 

on odometry. While under state feedback control, Pilot passes through wheel speed 

commands sent from the controller running on RMCD. Pilot also handles sending 

back telemetry data to RMCD. 

Garcia Pilot utilizes an API provided by the manufacturer of the robots. This 

API provides functions to execute movement commands, termed primitives, which 

use internal odometry to move or pivot a robot in a straight line by a prescribed 

distance or angle. Functions are also provided to set individual wheel speeds, using 

an internal PID servo loop. 

The development of new components to Mobile Emulab is discussed in the 

following three chapters. The design of motion planning and control systems is 

presented, leading to the simulation, testing, and verification of the system. 
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CHAPTER 3 

TRAJECTORY GENERATOR 

An explicit parametric robot trajectory is required for all robot motion. These 

trajectories are created using a minimum amount of interaction, relying completely 

on a series of user-specified via points. In instances where only a single goal point is 

desired for each individual robot, an iterative line segment based trajectory genera­

tor with obstacle avoidance capabilities is executed, as presented in Section 3.1. In 

other situations, where a specific trajectory is desired for each robot, user-specified 

via points are collected, and the resulting connecting line segments are filleted to 

create trajectories consisting of alternating lines and arcs. This via point model 

is discussed in Section 3.2. Different types of curves are placed in the fillets in 

accordance with the curvature continuity, velocity, and timing requirements of the 

robots. 

A number of curve types may be chosen, based on the usage of line segments 

and filleted arcs. Constant radius circular arcs, discussed in Section 3.3, are used 

as the baseline curve type for their path length optimality, and straightforward 

geometric construction. To improve continuity at segment boundary points, poly­

nomial spirals may be used in the fillets between segments. These spirals, discussed 

in Section 3.4, are described in terms of curvature versus arc length. 

Splines are used to obviate some of the problems inherent in polynomial spirals. 

Parameters are in Cartesian space, instead of functions of arc length and curvature, 

decreasing the compution required to achieve boundary conditions. Quintic splines 

are discussed in detail in Section 3.5. This class of curve is well established in the 

computer graphics and computer aided design fields. 

There exist tradeoffs with curvature constraints, for all curves. A lower curva­

ture derivative at the boundary of a segment results in higher maximum curvature. 
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A higher maximum curvature reduces the maximum allowable velocity along the 

curve, as limited by attainable traction forces and other maximum force limits. A 

higher curvature derivative at the curve boundaries increases maximum accelera­

tion, and causes tracking error when robot acceleration limits are reached. 

In this chapter, two different motion models are presented. The model in 

Section 3.1 is based upon autonomous path generation from line segments, while the 

rest of the sections in this chapter present motion models derived from Reed-Shepp 

paths. 

3.1 Iterative Goal Point Progression 
Waypoint Model 

The robot workspace is modeled as a series of rectangular zones. Areas covered 

by the localization system are considered as safe zones, while areas containing 

obstacles are exclusion zones. Using this model, a waypoint-based iterative path 

planner is employed to send robots to user selected destinations. To create a path 

for a robot, a user selects a single goal point. The robot is driven iteratively closer 

to this goal point using a modified visibility graph algorithm. 

The waypoint based motion model relies on straight line and pivot motions, 

achieved by using motion commands, termed primitives, built in to the robots. 

Primitives require only a linear distance, or angular measurement argument, and 

use odometry to complete the commands. A pivot and a linear displacement 

command are combined to form a meta command, called the goto command. The 

goto command uses an initial pivot followed by a linear move to send a robot to 

any arbitrary Cartesian relative position. 

An example path created through a sparse obstacle field is given in Figure 3.1. 

An exclusion zone exists around the obstacle, expanding 0.25 meters from the 

obstacle boundary. The width of the expansion is chosen to be greater than 

the maximum robot dimension radially drawn from the center point of the robot. 

Corner points are created on these exclusion zones, and are used as intermediate 

robot waypoints. 

Figure 3.2 illustrates the steps required for a robot to negotiate an obstacle. A 
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Figure 3.1. Path generation using iterative goal point progression method. 

robot is represented as a triangle, with dashed lines denoting the path direct to the 

goal point. The solid line in Step 2 is the resulting intermediate path created to 

the nearest obstacle exclusion zone corner point. The goal is represented as a star. 

As follows are the steps taken by the iterative path generator. 

Step 1 Create a line segment with endpoints at the current robot position and the 

final goal position chosen by the user. 

Step 2 If the current line segment does not intersect any obstacle exclusion zones, 

the intermediate goal position is set to the final goal position. 

If the current line intersects an obstacle exclusion zone, the zone corner point 

closest to both the current position, and closest to the goal point is chosen as 
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As follows are the steps taken by the iterative path generator. 

Step 1 Create a line segment with endpoints at the current robot position and the 
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Figure 3.2. Path generation steps. 

the intermediate goal position. 

Step 3 Drive the robot to the intermediate goal position. 

Step 4 If the robot is not at the final goal position, return to the first step. 

The iterative waypoint method possesses several drawbacks, the most significant 

of which is the high elapsed time between motion start and arrival at the goal point. 

The requirement that robots pivot at each waypoint wastes time, and limits the 

maximum velocity attainable. There is no support for user-specified paths, only 

singular goal points. The method itself is limited in its scope and implementation, 

and only appropriate for a workspace modeled by rectangular regions. 

To allow faster movements, and more complex trajectory specifications, an 

additional motion model is created. Users choose multiple via points to specify 

a path for a robot, instead of choosing only a single goal point. Via points are 

connected by straight line segments comprising a path from a start to a goal 

position. Instead of commanding robots to pivot at waypoints, the path segments 

are filleted, with curve segments inserted between straight line segments. Waypoints 

defined in point to point motion become via points in the extended motion model. 

The resulting path of line segments and arcs allows continuous motion to workspace 

3.2 User-specified Waypoint Model 
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destinations. Different types of arcs can be used to build a path between the filleted 

segments, with varying curvature continuity properties. 

Two solutions to calculate reference trajectories may be used. These methods 

are compared in Figure 3.3. The kinematics based method uses the Cartesian robot 

state equation, (4.1), to calculate x, y, and <j> given reference velocities v and u>. 

Discontinuities in curvature at the interfaces between line and circular arc segments 

cause drift to occur. A closed-form solution to parameterizing reference trajectories 

is desired to eliminate this drift. 

t 1 r 
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Figure 3.3. Comparison of kinematic and closed form trajectory generators. 
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3.2.1 Line Segment Filleting 

The radius of curvature is determined by specifying a reference velocity. Higher 

reference velocities require larger radius curves to prevent the loss of wheel trac­

tion. A fast, closed form geometric solution is needed to create arcs for trajectory 

generation. Presented here is a method utilizing intersecting offset line segments 

to solve for the center of a circular arc. 

Given three input via points a, b, and c, as illustrated in Figure 3.4 and 

Figure 3.5, line segments ab and be are constructed. These segments are represented 

by dotted lines. Two lines, denoted as dashed lines in these figures, represent lines 

offset by distance r from segments ab and be. The intersection of these offset lines 

corresponds with the arc center point, / . 

Two unit vectors, perpendicular to the via point line segments are calculated, 

and 

(3.2) 

where Rz(\) is a rotation about the z axis by | ; defined by 

b 
d e 

c 

Figure 3.4. Filleted arc, obtuse via point path angle. 

25 

3.2.1 Line Segment Filleting 

The radius of curvature is determined by specifying a reference velocity. Higher 

reference velocities require larger radius curves to prevent the loss of wheel trac­

tion. A fast, closed form geometric solution is needed to create arcs for trajectory 

generation. Presented here is a method utilizing intersecting offset line segments 

to solve for the center of a circular arc. 

Given three input via points a, b, and c, as illustrated in Figure 3.4 and 

Figure 3.5, line segments ab and b-; are constructed. These segments are represented 

by dotted lines. Two lines, denoted as dashed lines in these figures, represent lines 

offset by distance r from segments ab and b-;. The intersection of these offset lines 

corresponds with the arc center point, f. 
Two unit vectors, perpendicular to the via point line segments are calculated, 

Ild!11 = sign(ab x b-;) . Rz (~) . ab/llabll, (3.1) 

and 

(3.2) 

where Rz (~) is a rotation about the z axis by ~; defined by 

a 
'-

c 
'-

'-

Figure 3.4. Filleted arc, obtuse via point path angle. 



26 

Figure 3.5. Filleted arc, acute via point path angle. 

0 - 1 
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(3.3) 

Points are constructed to build line segments offset to the original line segments, 

Pi = a + M I # l l , (3-4) 

P2 = b + v\\df\\, (3.5) 

P3 = b + r-\\ef\l (3.6) 

p4 = e + f-llelll, (3.7) 

where r is the desired arc radius, corresponding to the offset distance. 

a 

~ 
P3 \ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

.\ 
\ 

\ 

\ 

\ 
\ 

\ 

b 

• 

\ I 

I 
I 

I 

I 

I 

I 

I 

I 
'1. 

I . 

I 

I 

I 

I 

I 

• I P, 

Figure 3.5. Filleted arc, acute via point path angle. 
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(3.3) 

Points are constructed to build line segments offset to the original line segments, 

PI = a + r . IIdlll, (3.4) 

p, = b + r . IIdfll, (3.5) 

P3 = b+r ·lIelll. (3.6) 

p, = c+ l' 'lIelll, (3.7) 

where r is the desired arc radius, corresponding to the offset distance. 
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The intersection of the two offset line segments is determined by calculating the 

determinants of the points, such that, 

T 

and 

a n d 

L,= 

P i 

P21 

Pz 
Pa 

T 

M = r ( p i -- P 2 ) T 1 

. (P3 --Pa)T 

If M = 0, this is a degenerate case, resulting in 

f = b. 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Otherwise, the resulting arc center point is calculated by 

L\ ( P l - P2) 
L2 (P3 - Pa) 

and 

fy = 

M 

Ll (P l - p2)y 
L2 (P3 - Pa)v 

(3.12) 

where 

M 

fx ' 
fy. 

(3.13) 

(3.14) 

The endpoints of the filleted arc, d and e, as shown in Figure 3.4 and Figure 3.5, 

are constructed by, 

d = f-r-\\df\\, (3.15) 

e = / - r - | | e / | | , (3.16) 

where r is the arc fillet radius, and and | | e / | | are defined in (3.1) and (3.2) 

respectively. 

The angle Zdef, 7 is calculated by the following: 

acos((d - f)(e - f)) 
7 l l ( d - / ) H - | | ( c - / ) i r 

The direction of the curve is needed for the closed form solution. 

(3.17) 
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d ~ f - T ' IIdf II , 

e ~ f - r . lIefll. 

(3.15) 

(3.16) 

where ,. is the arc fillet radius, and IIdfll and l!efll are defined in (3.1) and (3.2) 

respectively. 

The angle LdeJ, ; is calculated by the following: 

acos((d - f)ie - f)) 
7 ~ "'II ('7d -"-"'f)-;;-II "oi. 11-7-( e----';/"'") II 

The direction of the curve is needed for the closed form solution. 

(3.17) 
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The length of the shortened part of the two original line segments is given by, 

I = \\(P - d)\\ = \\(b - e)\\. (3.18) 

3.3 Lines and Circular Arcs 
The baseline path generation method is the use of constant radius arcs. These 

paths are C° curvature continuous. The discontinuity in the change of curvature 

between line and arc segments requires that a robot must stop at each curve 

boundary point to satisfy kinematic constraints. In practice, a robust controller 

can allow a robot to track a C° continuous path with bounded error. 

Constant radius circular arcs are desirable because of their geometric properties, 

such as endpoint tangency and the existence of straightforward closed form solutions 

for path parameterization. 

The arc radius is chosen in consideration of trajectory velocity requirements. 

As velocity is higher, arc radius must also be higher due to centripetal acceleration, 

given by, 

ac = - —, (3.19) 

where v is the linear velocity of the robot, and r is the radius of the circular arc. 

The maximum allowable lateral acceleration, a m a x is related to the wheel ground 

contact friction force of the robot, 

amax = ^-g, (3.20) 

where /j, is the friction coefficient, and g is acceleration due to gravity. Substituting 

(3.20) into (3.19) yields 

(3.21) 

For example, given a friction coefficient fj, = 0.4, and velocity v = l.Om/s, 

(1.0m/s) 2 

(3.22) 
(0.4) • (9 .8m/s 2 ) ' 

r = 0.26m. (3.23) 
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In accordance with these constraints, an arc fillet radius of 0.25 meters is chosen 

for most trajectories. Velocity can likewise be constrained by arc radius, especially 

with curves such as Cornu spirals and splines. Solving (3.21) for v yields, 

v = Vr'V9- (3-24) 

3.4 Polynomial Spirals 

Polynomial spiral arcs are chosen as replacements to constant radius circular 

arcs for greater curvature continuity. These curves are represented by curvature as 

a function of arc length, 

k(s) = a0 • s° + ai • s1 + ... + an • sn, (3.25) 

where k is the curvature in meters - 1 , a* is from a list of coefficients, and n is the 

order of the curve. 

An arbitrary order polynomial is constructed, and its coefficients are solved to 

meet boundary conditions given by the filleting of two intersecting line segments. 

The two endpoints of the curve must coincide with the endpoints of the adjoining 

trimmed line segments, and the curvature at each endpoint must be zero. The lack 

of a closed form solution increases the computational complexity. 

To create a curve in Cartesian space, the curvature from polynomial equation 

describing the spiral must be used, along with a velocity profile, to solve the robot 

kinematics, as discussed in Section 4.2. 

3.5 Quintic Splines 
Quintic splines may improve curvature continuity. Splines can take the place of 

constant radius circular arcs or polynomial spirals to build curve segments that have 

specific boundary conditions of position, velocity, acceleration, and curvature. The 

manipulation of control polygons when generating these curves allows for these 

parameters to be controlled. The design, specification, and parameterization of 

quintic splines is discussed in this section. 

An example of a filleted arc replaced with a quintic spline is given in Figure 3.6. 

The associated curvature profile is shown in Figure 3.7. The first and second 
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Figure 3.6. Example of a quintic spline. 

derivatives of this curve are continuous, resulting in C2 curvature continuity. A 

constant radius circular arc is shown for comparison. The change in curvature is 

minimized, but the maximum curvature is increased. 

Figure 3.8 and Figure 3.9 show the first and second derivatives of curvature, 

respectively. The second derivative of curvature for a quintic spline is continuous, 

therefor guaranteeing C 2 continuity in curvature. This minimizes the wheel accel­

eration required for a robot to track this type of trajectory, improving performance 

over the line-arc trajectories discussed in Section 3.3. 

Given a series of disjointed line segments, resulting from the arc filleting method 
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Figure 3.7. Curvature profile of quintic spline example. 

discussed in Section 3.2.1, quintic splines are created instead of circular arcs. A 

control polygon is created from the continuity requirements designed in to the path 

[44]. For a quintic spline, the control polygon has six points. The first and sixth 

points are the endpoints of the arc. The second point and third points control the 

first and second curvature derivatives of the arc. Both endpoints of every arc adjoin 

a straight line segment, with zero curvature and curvature derivatives. To ensure 

zero curvature and curvature derivatives at the boundaries of the arc, the first and 

second, and fourth and fifth segments of the control polygon must be colinear with 

each other. 
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Figure 3.7. Curvature profile of quintic spline example. 
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Figure 3.8. Derivative of curvature of quintic spline example. 

3.5.1 Parameterization 

Splines are parameterized for trajectories using a subdivision algorithm, such 

as DeCastlejau's [44]. With uniform sampling in parametric time, data point 

spacing in the trajectory parameteric data varies significantly. This causes reference 

trajectories to have too many data points in some areas, and too few in others. An 

iterative method may be used to parameterize a curve with uniform spacing in real 

time, as opposed to parametric time, as obtaining a closed form solution is not a 

trivial task. 

A C2 continuous spline path of chained quintic Bezier curve segments is defined 

by giving control points. Each Bezier segment is a 2D parametric curve, as given 

by 
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Figure 3.8. Derivative of curvature of quintic spline example. 
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trajectories to have too many data points in some areas, and too few in others. An 
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time, as opposed to parametric time, as obtaining a closed form solution is not a 
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Figure 3.9. Second derivative of curvature of quintic spline example. 

C(t) = [x(t),y(t)], (3-26) 

with t G [0,1] as a polynomial of P(i) where i = 1 . . . 6. 

Evaluation of position and derivatives at a given position along the curve is 

achieved by using De Casteljau's algorithm. This algorithm evaluates points in the 

interior of a Bezier curve by subdivision. 

The first and second derivatives of a quintic Bezier curve at the start point are, 

C'(0) = 5 ( P 2 - P 1 ) , (3.27) 

and 

C"(0) = 20((P! - P 2 ) + (P 3 - P 2 ) ) . (3.28) 

The symmetric construction is used at the end point. 
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Figure 3.9. Second derivative of curvature of quintic spline example. 

C(t) = [x(t), y(t)] , (3.26) 

with t E [0, 1] as a polynomial of P( i) where i = 1 ... 6. 

Evaluation of position and derivatives at a given position along the curve is 

achieved by using De Casteljau's algorithm. This algorithm evaluates points in the 

interior of a Bezier curve by subdivision. 

The first and second derivatives of a quintic Bezier curve at the start point are, 

(3.27) 

and 

(3.28) 

The symmetric construction is used at the end point. 
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The desired linear velocity v(t) of the robot is a function of the curvature at a 

specific point, described below. The parametric step in t along the curve that is 

necessary to produce that given geometric time step f~l is initially estimated from 

the length of the initial tangent vector: 

dt = /• \C'(0)\/v{t). (3.29) 

The chord length distance to the next point along the curve is computed by 

d=\C{t + dt)-C(t)\. (3.30) 

The parametric speed along the curve changes independently from the desired 

velocity. To solve this problem, dt is adaptively refined to match d to the desired 

step velocity within a close tolerance of d ~ v(t)/f. A bisection refinement 

algorithm is used, as described in This refinement is repeated for each point along 

the curve, typically needing only one or two iterations because the velocity of the 

curve changes smoothly. 

The following Cartesian states x(t), y(t) and (j){t) are calculated for each time 

t. To calculate </>, the nonholonomic constraint, (4.2), is applied. A tangential 

velocity is defined for the boundaries of each curve. The desired velocity at each 

time increment will be interpolated from these values. Two additional parameters 

are needed for trajectory specification, v(t) and co(t), which are the linear and 

angular velocities. 

Curvature at each time t is defined by 

K(t) = (x'y"-y'x")/((x'2 + y'2)^).. (3.31) 

Velocity along the curve is computed from curvature through 

1 ' 2 

where vmax is defined as the maximum desired velocity. The rotational velocity u 

is calculated through velocity and curvature by 

u{t) = v(t)-K[t). (3.33) 
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velocity is defined for the boundaries of each curve. The desired velocity at each 

time increment will be interpolated from these values. Two additional parameters 

are needed for trajectory specification, v(t) and w(t), which are the linear and 

angular velocities. 

Curvature at each time t is defined by 

Velocity along the curve is computed from curvature through 

( ) 
Vmax 

v t = 1 K,(t)2 , 
+ 2 

(3.31 ) 

(3.32) 

where Vmax is defined as the maximum desired velocity. The rotational velocity w 

is calculated through velocity and curvature by 

w(t) = v(t) . ""(t). (3.33) 
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The trajectories built by components in this chapter are sent to a controller, 

which then creates commands to be sent to the robots. In Chapter 4, various 

motion controllers are designed and discussed. 
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CHAPTER 4 

MOTION CONTROL 

Given a path plan, such as a goal point or trajectory, a controller is required 

to drive a robot towards its objective. The availability of computing hardware for 

control of the robots in Mobile Emulab allows for motion control schemes to be 

tested and implemented fully in software. Accurate localization of robots enables 

the use of state feedback control. These attributes maximize the design flexibility 

of the system, but also are partially responsible for the constaints discussed in 

Section 1.3. The use of software control in this instance detaches the motion 

controller from the robot hardware, increasing the sensitivity of the system to 

imperfect communication channels. 

The initial implementation of robot motion control in Mobile Emulab, presented 

in Section 4.1, made use of the vendor provided application programming interface 

for the Garcia robots. Motion is restricted to straight line segments and zero radius 

pivots. This works well for line segment paths with no arcs. 

A posture stabilizing controller is presented in Section 4.3. This controller 

regulates a robot to a single goal point, and uses continual state feedback from 

the localization system discussed in Subsection 2.5.3. The implementation of this 

controller was used to test feedback control on the testbed, and establish that a 

trajectory tracking controller would ultimately be feasible on the system. 

To increase robot velocities, and decrease the time in motion, more advanced 

reference trajectories are examined in Chapter 3. The robot kinematics, as associ­

ated with these trajectories, is discussed in Section 4.2. A state feedback trajectory 

tracking controller is introduced in Section 4.4, which supersedes the waypoint 

motion controller within Mobile Emulab. 
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4.1 Primitive Motion 
The initial effort into robot motion on Mobile Emulab is point to point motion, 

accomplished using vendor supplied motion commands. These commands, termed 

primitives, provide the basic elements needed to move in straight lines, pivot, and 

turn. The primitives take as input length and angle measurements, and execute 

low level motion commands using odometry as a reference. 

The robot application programming interface has methods to allow for the 

configuration of parameters related to motion primitives. For example, there are 

settings for maximum wheel velocity, wheel stall threshold, and wheel acceleration. 

These parameters are tuned depending on operating conditions and performance 

requirements. 

When motion primitives are executed, termination is triggered by set boundary 

conditions. For a move primitive, which moves a robot a set distance in a straight 

line, the motion is terminated under the following conditions: 

• Odometry idicates that the robot has traveled by the set distance 

• A wheel has stalled 

• A proximity sensor is triggered 

• A cliff sensor is triggered 

• The primitive is aborted 

The relevent motion primitives in this research are move and pivot. With these 

two motions, a robot can be sent to any single goal posture in Cartesian space. Refer 

to Section 7.1 for more information on the implementation of robot coordination 

using primitives. 

To achieve faster and more accurate goal posture attainment, state feedback 

control is used. This relies on the null primitive, which allows instantaneous 

wheel velocities to be commanded. Kinematic control may be implemented directly. 

The following sections in this chapter discuss the design of kinematic controllers 
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to accomplish posture stabilization, path following, and trajectory tracking, all 

utilizing the null primitive. 

4.2 Robot Kinematics 
The robots used for Mobile Emulab are exclusively differentially steered wheeled 

mobile robots. Each robot has two independently controlled large wheels, on sides 

opposite along the longitudinal axis of the robot, sharing the same transverse axis. 

A passive two degree of freedom roller wheel is used to statically support the rear 

of the robot. A unicycle kinematic model is used for this class of robot. This model 

may be visualized rolling disk on a flat plane. 

4.2.1 Cartesian Kinematic System 

Three robot position states, x, y, and 4> are used to denote Cartesian position 

and orientation within a known reference frame. In the case of posture regulation, 

the origin of the coordinate system coincides with the goal posture. Otherwise, the 

origin is arbitrarily chosen as a known datum point in the workspace. The robot 

state equations in Cartesian space are 

X r • cos(4>) 
y v • sin(4>) 

J . 

The system inputs, v and u) denote linear and rotational velocities respectively. 

There are three system states, but only two inputs. This class of wheeled mobile 

robot has a nonholonomic kinematic constraint given by, 

x • sin(4>) + y • cos{4>) = 0. (4.2) 

This describes the constraint that the robot may only move linearly along its 

longitudinal axis, (input v), or in rotation, (input ui). An arbitrary set of states, 

[xi2/i</>i] may not necessarily be reached from another initial arbitrary set of states, 

[xoyofo] by a single straight line motion. 
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The system inputs, v and w denote linear and rotational velocities respectively. 

There are three system states, but only two inputs. This class of wheeled mobile 

robot has a nonholonomic kinematic constraint given by, 
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longitudinal axis, (input v), or in rotation, (input w). An arbitrary set of states, 

[XIYl¢l] may not necessarily be reached from another initial arbitrary set of states, 
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4.2.2 Polar Kinematic System 

To overcome some of the drawbacks associated with the Cartesian system repre­

sentation, a Polar representation is used. A Cartesian to Polar state transformation 

is given by 
e 
9 = 
a 

\ A 2 + 2/2 

atan2(—y, —x) 
9-6 

(4.3) 

where x, y, and 6 a r e the Cartesian states, and e, 9, and a are the Polar states. 

A kinematic diagram of the Polar states e, 9, and a, Cartesian states x, y, and 

4>, and system velocity inputs v and u> is given in Figure 4.1. The axes O signify 

the goal reference frame, to which the wheeled robot is stabilized. For the posture 

stabilization problem, the polar state equations are 

e 
9 = CO 

a 

v • cos{a) 
sin(a) V 

V 
e 

sin(a) 

(4.4) 

Figure 4.1. Polar kinematic diagram for posture stabilization. 
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~] [ v . cos(o:) ] e + sm(a) = W v· . e 
r" sin (a) 
LtC v·--

e 

( 4.4) 

~~--------~-----+Xr 
o ............ e ........ 

.... ..... 

Figure 4.1. Polar kinematic diagram for posture stabilization. 
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For the trajectory tracking problem, three states for a reference trajectory in 

Cartesian coordinates are added to the system. These state equations are given by, 

vr • cos(<pr) ' xr ' 

Vr 
. <t>r _ 

vr • sin(6r) (4.5) 

which is in the same form as (4.1). With the addition of these reference posture 

states, the Polar states given in (4.3) become, 

e 
e = 
a 

^{x- xr)2 + {y-yr)2 

atan2(—(y — yr), —{x — xr)) — 6r 

9-d> + 6r 

(4.6) 

Figure 4.2 illustrates the kinematics of the trajectory tracking problem. The 

reference frame is indicated by a grey set of wheels, while the actual robot is 

indicated by the black set. The reference trajectory is given by the dashed line, and 

the actual trajectory is a solid black line. The Polar states e, 8, and a are given, 

along with their Cartesian components and system inputs (4.6). 

As presented in [32], polar state equations are defined. Differentiating (4.6) and 

substituting (4.1), (4.5) and (4.6), (4.6) becomes 

e 
6 = 
a 

v • cos(a) + vr • cos(8) 
sin(a) sin(a) 1 

e ~ Vr • e ~ <t>r 
. sin(a) _ v . sm(Q) _ 1 

(4.7) 

Robot Trajectory 

r s. Or 
)e 

Figure 4.2. Polar kinematic diagram for trajectory tracking. 
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a v . sin(a) _ V . sin(a) _ ). 
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The two polar systems defined in (4.4) and (4.7) are used for the design and 

simulation of the posture stabilizing controller and trajectory tracking controller, 

respectively. In simulation, these differential equations are solved directly, while in 

implementation the Cartesian to Polar transformations are used to directly calculate 

the Polar states. 

4.2.3 Kinematic Constraints 

The Garcia robots used in Mobile Emulab have specific kinematic constraints re­

lated to their dimensions and configurations. While a differentially steered wheeled 

mobile robot is capable of a zero radius turn (e.g., a pivot), there exist curvature 

constraints based on control and traction requirements. In this subsection, the 

dimensional constraints of the robots, and how they relate to the robot kinematics 

are discussed. 

The nonlinear controllers discussed in this chapter, as kinematic motion con­

trollers, produce commands in the form of velocities. Specifically, the control laws 

presented in this research produce the inputs v and uj for the systems described 

in the previous subsections. The low level control systems on the robot perform 

velocity tracking on a per wheel basis. This requires that wheel velocities be 

calculated for the v and uj velocities output from the motion controllers. The 

system inputs v and tu can be calculated from the individual wheel velocities by, 

V l + V r (a c \ 
^ = g ' ( 4 8 ) 

V r ~ V l I a a\ 
w = " 2 7 r - ( 4 9 ) 

By solving (4.8) and (4.9) for Vl and vr, the individual left and right wheel velocities 

are calculated by, 
r l r ,i _ But i 

(4.10) 
vL 

v - — 
v + ^ 

where R = 0.0889 meters, as given by Table 2.1. 

At maximum wheel velocity, 

v+\u\-R (4.11) 
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The two polar systems defined in (4.4) and (4.7) are used for the design and 

simulation of the posture stabilizing controller and trajectory tracking controller, 

respectively. In simulation, these differential equations are solved directly, while in 

implementation the Cartesian to Polar transformations are used to directly calculate 

the Polar states. 

4.2.3 Kinematic Constraints 

The Garcia robots used in Mobile Emulab have specific kinematic constraints re­

lated to their dimensions and configurations. While a differentially steered wheeled 

mobile robot is capable of a zero radius turn (e.g., a pivot), there exist curvature 

constraints based on control and traction requirements. In this subsection, the 

dimensional constraints of the robots, and how they relate to the robot kinematics 

are discussed. 

The nonlinear controllers discussed in this chapter, as kinematic motion con­

trollers, produce commands in the form of velocities. Specifically, the control laws 

presented in this research produce the inputs v and w for the systems described 

in the previous subsections. The low level control systems on the robot perform 

velocity tracking on a per wheel basis. This requires that wheel velocities be 

calculated for the v and w velocities output from the motion controllers. The 

system inputs v and w can be calculated from the individual wheel velocities by, 

VL +VR 
V=---

2 

VR -VL 
W=---

2·R 

(4.8) 

( 4.9) 

By solving (4.8) and (4.9) for VL and VR, the individual left and right wheel velocities 

are calculated by, 

[ ~~ ] [ ~ ~ ~ ] , (4.10) 

where R = 0.0889 meters, as given by Table 2.1. 

At maximum wheel velocity, 

Vmax = V + Iw I . R (4.11) 
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Letting v m a x = 1.0 meters per second, consider that iomax = (vmax — v) JR. This 

results in u)max ~ 5.6243 radians per second. 

The Polar state 8 as calculated by the Cartesian to Polar conversion in (4.3) 

is compared to 8 calculated by the Polar state equation (4.4). Without correction 

for discontinuities in the Cartesian to Polar conversion, 8 may be ±7 r from the 

actual state value. To prevent discontinuities, unwrapping must be performed, 

which accounts for the periodicity of the two-dimensional arctangent trigonometric 

function used to calculate 8. The discontinuity correction, termed phase angle 

unwrapping is discussed in detail in Section 7.4.3. 

4.3 Posture Stabilizing Controller 
This section presents the development of a smooth, state feedback linearizing 

controller for the purpose of posture stabilization. Using a controller developed in 

[26], a nonholonomic system is regulated to a single equilibrium point coincident 

with a goal posture. The development of this controller is undertaken as an inter­

mediate step in the development of robust motion control for Mobile Emulab. The 

ultimate goal for the motion controller is to support full trajectory tracking. The 

establishment of posture stabilization through a nonlinear state feedback controller 

is used to test the feasibility of the use of this class of motion control on the testbed. 

The controller and robot simulation are implemented using MATLAB. The 

control law developed here is implemented on Mobile Emulab, with state feedback 

coming from the visual localization system. From the polar state equations (4.4), 

a control law for a state feedback controller, 

[U,UJ]t = g(e,a,8), (4.12) 

is desired to drive states e, 8 and a to zero. A control law is designed via Lyapunov 

analysis [45]. A quadratic form Lyapunov candidate function, 

V = V1+V2 = ~Xe2 + ^ ( a 2 + h82) , (4.13) 

is chosen, where e is the error distance vector, and [a, \fh • 82]T is the alignment 

error vector, and where A > 0 and h > 0. 
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1 2 1 (2 2) V = VI + V2 = 2Ae + 2 a + he , ( 4.13) 

is chosen. where e is the error distance vector, and [a, Vh . e2F is the alignment 

error vector, and where A > 0 and h > o. 
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Taking the derivative of (4.13) results in, 

V = V1 + V2, (4.14) 

which is split into two parts: 

V1 = Xe-e, (4.15) 

V2=(aa + heey (4.16) 

The control laws 
v = ('jcos a) • e, (4-17) 

cos asin a . , ., . 
uj = ka + -f (a + M), (4.18) 

a 

are chosen, to be substituted into (4.19) and (4.23). The controller gains are 

constrained by 7 > 0 and k > 0. 

Considering V\ first, the state equations (4.3) and velocity control law (4.17) 

are substituted, resulting in, 

Vi = Xevcos(a). (4.19) 

Vi ~ Xecos(a) (>ycos(a)) e, (4.20) 

Vi = Xe2cos2(a)j. (4.21) 

Vi = -(Xsin2{a))e2 < 0. (4.22) 

The state equations (4.3) and control laws (4.17), (4.18) are also substituted 

into (4.16). 

Starting with, 

( sin(a)\ , „ / sin(a)\ , J V2 = al-uj + v—-^j+hOlv—^J, (4.23) 

results in, 
/ sin(a) (a + h0)\ JN V2 = a[-oj + v ^ J-\, 4.24 
\ a e J 

( f f / \ •> sin(a) (a + h • 9)\\ , A V2 = a{-u+\hcos{a)e)—^± }-\\ , (4.25) 

( rycos{a)sin{a) , , A , A 

V2 = a f -UJ + ^ {a + h-6)\. (4.26) 

Taking the derivative of (4.13) results in, 

which is split into two parts: 

Vi = Ae· e, 

The control laws 

v = (Icos a) . e, 

k cos as'ln a ( h()) 
W= a+, a+, 

a 
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into (4.16). 

Starting with, 

V'- ( Sin(a)) h()(Sin(a)) 
2 - a -w+v + v , 

e e 
( 4.23) 

results in, 

V· ( sin(a) (a + h())) 
2 = a -w+v , 

a e 
( 4.24) 

V2 = a ( -w + ((Icos(a)e) Sin~a) (a + eh . ())) ) , ( 4.25) 

. ( ,cos(a)sin(a) ( ())) V2 = a -w + a + h . . 
a 

(4.26) 
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V2 = -ka2 < 0. (4.27) 

The derivate of the original Lyapunov function from (4.14) is assembled in 

(4.28). This is an abuse of the terminology, as the derivative is only negative 

semidefinite, instead of negative definite. The final result is, 

V = - A (7 • cos2(a)) e2 - ka < 0. (4.28) 

The control law (4.17) and (4.18) is further altered to permit forward motion 

only, eliminating cusps in the resulting path The avoidance of cusps is desirable 

in situations where the high torques required to quickly reverse, stop, and move 

forward may reduce the battery life of the robots. Avoidance of path cusps may 

also decrease the amount of time required for posture stabilization. Furthermore, 

it is aesthetically pleasing to testbed users when robots proceed along more direct 

paths to their destinations. 

The modified control laws, 

v = vmaxtanh [ ) , (4.29) 

and 

UJ = - ^ — — . (4.30) 
e 

are developed. A hyperbolic tangent function is used to provide a smooth saturation 

of v m a x . 

Posture regulation provides a control schema that bridges the gap between the 

waypoint path controller, and the higher performance trajectory tracking controller 

in Mobile Emulab. The posture regulating controller may be used with the existing 

baseline waypoint path generator, providing faster motion and decreased transit 

time during experiments. 

4.4 Kinematic State Feedback 
Trajectory Tracker 

To support continuous robot movement in Mobile Emulab, a suitable trajectory 

tracking controller is selected from the research. The controller needs to be capable 
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tracking controller is selected from the research. The controller needs to be capable 
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of commanding a differentially steered robot to follow a specified parametric path 

at a high speed, and with minimal error. A kinematic controller is required to take 

advantage of the existing development tools and robot capabilities provided by the 

robot manufacturer. 

The design of a control law to use for trajectory tracking is presented in Sec­

tion 4.4.1. The design of a dynamic extension to this controller is discussed in 

Section 4.4.2. Parameter and gain specification of the control system is given 

in Section 7.4.2. The stability analysis of the discrete system is discussed in 

Section 6.3.4. 

4.4.1 Control Law 

A nonlinear control law to track a robot to a reference frame along a circular 

path manifold are developed using Lyapunov based techniques. This controller pre­

sented in this section is capable of solving the posture stabilization, path following, 

and trajectory tracking problems simultaneously. The controller development and 

background, along with more details about the design of the circular path manifold 

are discused in [32]. 

The control law is unaltered, and implemented directly in the motion control 

system for Mobile Emulab. The optimized control law for linear velocity is given 

as, 

ki • e • ke • tanh(e — ry/2 • ke) 4- vr • e • cos(9) • ke + vT • kr • (sin(8) + ^ • e) 
v = e • ke + kr • sin(a) 

(4.31) 

where ke is defined as 

ke = y/(-cos(26), 

kr = rV2-sin(29). 

(4.32) 

(4.33) 

The optimized control law governing rotational velocity is given by, 

u = k2 • tanh{9 + a) + 29 + 6r. (4.34) 
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background, along with more details about the design of the circular path manifold 

are discused in [32]. 

The control law is unaltered, and implemented directly in the motion control 

system for Mobile Emulab. The optimized control law for linear velocity is given 

as, 

kl . e· ke . tanh(e - rV2· ke) + Vr . e· cos(e) . ke + Vr . kr . (sin(e) + ~r • e) 
v = r 
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kr = rV2 . sin(2e). 

The optimized control law governing rotational velocity is given by, 

( 4.31) 

( 4.32) 

( 4.33) 

(4.34) 
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4.4.2 Dynamic Extension 

A dynamic extension is utilized to bound the output of the control law (4.31) 

and (4.34). The dynamic extension is defined by new states, 

v = —kv(v — vr) + vr, (4.35) 

to — — ku{uj — uor) + oJr. (4.36) 

introduced to decrease steady state error and improve boundedness. This extension 

to the system effectively acts as a low pass filter, which improves the controller 

response in the presence of noisy state feedback. 

4.4.3 Controller Parameters 

The system parameters for the trajectory tracking controller are given in Ta­

ble 4.1. These parameters are referenced in the simulations and experiments pre­

sented in Chapter 6 and Chapter 8. 

With the completion of the design of trajectory generation and motion control 

systems, one final component is required to create a complete robot coordination 

and control system for Mobile Emulab. An obstacle avoidance system is needed 

to coordinate the motion of multiple robots, and to avoid obstacles present in the 

robot workspace. The next chapter presents an obstacle avoidance system, which 

is intended for reactive motion planning. After the presentation of the obstacle 

avoidance system, the results of all robot motion components in simulation are 

presented. 

Table 4.1. Motion controller parameters 
Gain Description 
r Path manifold radius 
e Small perturbance to prevent discontinuity 

fci Controller gain, v 
k2 

Controller gain, UJ 
kv Dynamic extension gain, v 
ku> Dynamic extension gain, UJ 
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4.4.2 Dynamic Extension 

A dynamic extension is utilized to bound the output of the control law (4.31) 

and (4.34). The dynamic extension is defined by new states, 

( 4.35) 

(4.36) 

introduced to decrease steady state error and improve boundedness. This extension 

to the system effectively acts as a low pass filter, which improves the controller 

response in the presence of noisy state feedback. 

4.4.3 Controller Parameters 

The system parameters for the trajectory tracking controller are given in Ta­

ble 4.1. These parameters are referenced in the simulations and experiments pre­

sented in Chapter 6 and Chapter 8. 

With the completion of the design of trajectory generation and motion control 

systems, one final component is required to create a complete robot coordination 

and control system for Mobile Emulab. An obstacle avoidance system is needed 

to coordinate the motion of multiple robots, and to avoid obstacles present in the 

robot workspace. The next chapter presents an obstacle avoidance system, which 

is intended for reactive motion planning. After the presentation of the obstacle 

avoidance system, the results of all robot motion components in simulation are 

presented. 

Table 4.1. Motion controller parameters 
Gain Description 
r Path manifold radius 
E Small perturbance to prevent discontinuity 
kl Controller gain, v 
k2 Controller gain, W 

kv Dynamic extension gain, v 
kw Dynamic extension gain, W 



CHAPTER 5 

OBSTACLE AVOIDANCE 

In the iterative goal point progression model, obstacle avoidance is accomplished 

through a modified visibility graph method, as discussed in Section 3.1. This 

method works well for point to point motion and posture stabilization, but a better 

model is needed for path following and trajectory tracking. A method of smooth and 

continuous path generation for mobile robots maneuvering in a planar environment 

with multiple obstacles is presented in this chapter. The method is based upon 

construction of nonlinear dynamic phase portraits where key mathematical features 

of their underlying differential equations are manipulated in order to provide a 

novel trajectory generator resolving a number of known issues in the literature. 

Termed the Virtualized Phase Portrait Method (VPPM), this algorithm uses a 

planar velocity field instead of a scalar potential field. This provides trajectories 

devoid of oscillations, eliminates problems with local minima, and results in more 

direct control over bounded and smooth velocity and path curvature. 

In the VPPM, a single vector of equations is constructed to describe the goal 

point and obstacles. The goal point appears in the phase portrait differential 

equations as a globally asymptotically stable node that attracts the robot directly to 

its desired goal point along a minimum length straight line path. Obstacles appear 

in the equations in order to deflect the robot from this ideal path as the robot 

approaches the obstacles. Due to the smooth saturation nature of the goal point 

-and obstacle proximity effects, the trajectory velocity and curvature are ultimately 

smooth and bounded. Obstacle proximity effects also allow multiple obstacles to 

be considered simultaneously by one set of equations. In cases where groups of 

obstacles could trap or hinder the robot path, a bounding volume hierarchy is 
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employed to combine obstacles. This allows concave regions to be filled. 

A trajectory generated by VPPM through a workspace with moderately placed 

obstacles is shown in Figure 5.1. This illustrates key components of the velocity 

field, such as the goal sink, obstacle exclusion zones, obstacle regions, and the initial 

position. The obstacles in this example are placed manually, but could represent 

the configuration space of a circular robot in an obstacle filled workspace known a 

priori. 

101————| 1 ' i —| r • 1 • 1—• 1™—: r 

10 - •• L : I , L : : I I J ! : , I : S : ! : ' 
-10 -8 -6 -4 -2 0 2 4 6 8 10 
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Figure 5.1. Robot trajectory simulated in a cluttered environment. 
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5.1 Velocity Field Phase 
Portrait Method 

Given the size and placement of obstacles and goal point location within the 

robot workspace, a virtual velocity field, 

is generated. The field is used to create a trajectory from an initial point to the 

final goal point. For simplicity within the scope of this article, the field equations 

are restricted to 9ft2. The velocity field equation (5.1) shows the superposition of 

the goal attractor qgoai, and obstacle repulsion fields where i = 1,.. . ,n, and n 

is the number of obstacles present. 

5.1.1 Goal Sink 

In this model, a single goal sink for each robot is considered. This goal sink 

globally attracts a robot to a specific Cartesian position within the workspace. A 

globally asymptotically stable equilibrium point is placed anywhere in 3?2. The goal 

is asymptotically stable, not exponentially stable due to the usage of a saturation 

function to prevent undesirably strong velocity fields in areas distant from the sink. 

In proximity to the goal, the field strength weakens, by linearly decreasing the 

approach velocity of the robot near its objective to provide globally asymptotic 

convergence. As shown in Figure 5.2, all differential field lines are oriented towards 

the goal point. 

The goal attractor function is a saturation function creating a field with all 

vectors oriented towards a single configured goal point. The goal attractor function 

could be substituted with a reference trajectory tracked by a nonlinear controller, or 

a goal posture regulator which drives a robot to a desired position and orientation. 

A single Cartesian position, Pgoai is configured for the goal attractor. The 

saturation level fi determines the magnitude of the velocity field converging to the 

goal point. A polar form saturation function orients the differential field vectors 

towards the goal point. The usage of two Cartesian saturation functions results in 

vectors converging to the major axes in outlying areas, with trajectories traveling 

(5.1) 
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Figure 5.2. Field of a single goal sink at the origin. 

along them to reach the equilibrium point at the goal. This behavior is undesirable 

in the interests of optimizing trajectory length. 

The scalar polar distance magnitude, 

e=\\q- Pg0ai (5.2) 

and angle, 

6 = Atan2(q-Pgoal), (5.3) 
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along them to reach the equilibrium point at the goal. This behavior is undesirable 

in the interests of optimizing trajectory length. 

The scalar polar distance magnitude, 

e = II q - Pgoal II , (5.2) 

and angle, 

e = Atan2(q - Pgoal ), (5.3) 
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are assembled to form the goal attractor field, 

Qgoai = - A t • tanh(e) • Rz{9) 
1 
0 

(5.4) 

where Rz{9) is a standard two-dimensional rotation matrix given by, 

Rz{0) = 
cos(9) —sin(9) 
sin{9) cos(9) 

(5.5) 

Global asymptotic stability of the goal equilibrium point is thus guaranteed based 

upon Lyapunov techniques. 

5.1.2 Obstacle Fields 

Obstacle field overlays are created by defining a set of Cartesian center coor­

dinates. Values describing the two-dimensional size, orientation, and strength of 

the desired region of repulsion are also created. To define obstacle regions in the 

workspace, let Pi G 3?2, i = 1 , . . . , n be the center positions, and <Zj G 3ft2, % = 1, . . . , n 

be the scalar exterior dimensions of n rectangular obstacles. The orientation of each 

obstacle is given by 6. 

A local coordinate system, di, oriented by angle 6 is created. The origin for 

each coordinate system is located at the center point of its parent obstacle. 

The partial primary rolloff function, 

7i = sat(g(y/amax)), (5.6) 

establishes the shape and size of the obstacle repulsion field overlay. The term a m a x 

is used for the maximum distance projected in y, to normalize the primary rolloff 

function based on obstacle size and orientation. Examples of field functions are 

shown in Figure 5.3. The field is designed to inversely saturate in order to limit 

the influence of the obstacle field overlays to a controlled local area. 

In Figure 5.3, the two solid line plots use the field roll off function g(x) = x 2 , 

while the two dotted line trajectories use a field roll off function of g(x) = x4. The 

black lines use the saturation function given by sat(x) = 1 — tanh(x), and the gray 

lines use, sat(x) = 1 — (— J • atan(x). These functions are abbreviated as tank 
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are assembled to form the goal attractor field, 

qgoal = -/1' tanh(e) . Rz (()) . [ ~ ] , (5.4) 

where Rz( B) is a standard two-dimensional rotation matrix given by, 

R (B) = [COS(B) -sin(B)] 
z sin( B) cos (B) . (5.5) 

Global asymptotic stability of the goal equilibrium point is thus guaranteed based 
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5.1.2 Obstacle Fields 

Obstacle field overlays are created by defining a set of Cartesian center coor­

dinates. Values describing the two-dimensional size, orientation, and strength of 

the desired region of repulsion are also created. To define obstacle regions in the 

workspace, let ~ E R2, i = 1, ... ,n be the center positions, and ai E ~2, i = 1, ... ,n 

be the scalar exterior dimensions of n rectangular obstacles. The orientation of each 

obstacle is given by cp. 

A local coordinate system, di , oriented by angle cp is created. The origin for 

each coordinate system is located at the center point of its parent obstacle. 

The partial primary rolloff function, 
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establishes the shape and size of the obstacle repulsion field overlay. The term am ax 

is used for the maximum distance projected in fj, to normalize the primary rolloff 

function based on obstacle size and orientation. Examples of field functions are 

shown in Figure 5.3. The field is designed to inversely saturate in order to limit 

the influence of the obstacle field overlays to a controlled local area. 

In Figure 5.3, the two solid line plots use the field roll off function g( x) = x2
, 

while the two dotted line trajectories use a field roll off function of g(x) = X4. The 

black lines use the saturation function given by sat( x) = 1 - tanh( x), and the gray 

lines use, sat (x) = 1 - (~) . at an (x). These functions are abbreviated as tanh 



Figure 5.3. Rolloff of field functions 7$ as indicated. 

and atan respectively, with the superscript referring to one of the above roll off 

functions by its exponent. 

A saturation and roll off function pair is chosen to get the desired obstacle field 

overlay effect. For a strong, predictable obstacle region, it is best to use the tanh4 

field, (dotted black line). It has a sharp roll off, and diminishes at approximately 

150% of the obstacle region distance from the center. For a smoother trajectory 

with lower curvature, it is best to choose the atan2 field, (solid gray line). This 

field function has a large area of influence, which is desirable in regions with sparse 

obstacle disbursement. Other saturation and roll off function pairs can be chosen, 

as long as the region of local instability remains bounded. 

The secondary roll off function acts in line with a trajectory approaching the goal 

position. It controls the region in which a trajectory is deflected before encountering 

an obstacle, as well as providing a smooth trajectory after the obstacle is cleared. 

A smooth field envelope is needed to prevent discontinuities in the velocity field. 

Minimizing the occurrences of discontinuities benefits the system by keeping the 

trajectory velocity bounded, and limiting curvature. Without a secondary rolloff 

function, the obstacle field acts in an unlimited region along the local x axis, as 

shown in Figure 5.4. 

Originally, primary roll off functions acting along the adjoining major axis are 
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Minimizing the occurrences of discontinuities benefits the system by keeping the 

trajectory velocity bounded, and limiting curvature. Without a secondary rolloff 

function, the obstacle field acts in an unlimited region along the local x axis, as 

shown in Figure 5.4. 
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used as secondary rolloff functions. With the addition of support for oriented 

obstacles, a new secondary rolloff function is needed. VPPM is extended with a 

new secondary rolloff function, a. This new extension not only provides support 

for oriented obstacles, but preserves continuity of the vector field, and improves 

interactions between closely spaced obstacles. 

The secondary rolloff function, a, is a scalar value calculated by solving a 

cubic polynomial parametric trajectory envelope around the obstacle. The current 
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used as secondary rolloff functions. With the addition of support for oriented 

obstacles, a new secondary rolloff function is needed. VPPM is extended with a 

new secondary rolloff function, (J". This new extension not only provides support 

for oriented obstacles, but preserves continuity of the vector field, and improves 

interactions between closely spaced obstacles. 

The secondary roll off function, (J", is a scalar value calculated by solving a 

cubic polynomial parametric trajectory envelope around the obstacle. The current 
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configuration q is transformed into obstacle local coordinates. For a given x, a value 

in y is calculated. The magnitude of the trajectory envelope at that specific point 

is then used as the value for a. 

The obstacle local coordinate system rotation matrix is given by 

Ra = # z (0-0 + 7 r ) . (5.7) 

The obstacle region is developed as an oriented bounding box, in a local coordinate 

system with an origin coincident to its center. The angle of orientation is normalized 
TV 

to lie between 0 and —. Any other orientations can be normalized to this range by 

switching the dimensions of the obstacle region. Using this rotation matrix, and 

the dimensional parameters for each individual obstacle, the vertices of the oriented 

bounding box are calculated, 
-1 0 

Vh bottomleft Ra* 

vh 

bottomright 

Vtopleft = 

Vtopright 

Ra* 

Ra* 

= Ra* 

0 -1 

1 0 
0 1 

-1 0 -

0 1 

1 0 -

0 1 

* a;/2, 

* ai/2, 

* aj/2. 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

The term bisection line is used to denote the x axis of the local coordinate system. 

For any oriented bounding box given the above stated parameters, there can be only 

one or two vertex points above the bisection line. The bottom left vertex is always 

below the bisection line, and can be discarded from consideration for the secondary 

rolloff function. Likewise, the top right vertex is always above the bisection line, 

and is always considered in the secondary rolloff function. One of the remaining 

vertexes may lie above the bisection line, and this is algorithmically determined 

in order to get the vertexes comprising the control points of the secondary rolloff 

function envelope. 

The control points of an obstacle are determined by the one or two vertices above 

the bisection line, plus two more points along the bisection line to control the size 
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configuration q is transformed into obstacle local coordinates. For a given X, a value 

in f) is calculated. The magnitude of the trajectory envelope at that specific point 

is then used as the value for (5. 

The obstacle local coordinate system rotation matrix is given by 
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(5.10) 

(5.11) 

The term bisection line is used to denote the x axis of the local coordinate system. 

For any oriented bounding box given the above stated parameters, there can be only 

one or two vertex points above the bisection line. The bottom left vertex is always 

below the bisection line, and can be discarded from consideration for the secondary 

rolloff function. Likewise, the top right vertex is always above the bisection line, 

and is always considered in the secondary rolloff function. One of the remaining 

vertexes may lie above the bisection line, and this is algorithmically determined 

in order to get the vertexes comprising the control points of the secondary rolloff 

function envelope. 

The control points of an obstacle are determined by the one or two vertices above 

the bisection line, plus two more points along the bisection line to control the size 
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-Wi 
0 

(5.15) 

w2 

0 

of the obstacle approach and departure regions. These outlying control points are 

determined based on the velocity of the approaching trajectory, which in turn is 

influenced by the goal and local obstacle field strengths. Two scalar distance values, 

w\ and u>2 are calculated, and used to determine the secondary rolloff envelope 

function control points. The values wi and u>2 correspond to obstacle approach 

and departure distances, respectively. 

The first control point is 

(5.12) 

in the local obstacle coordinate system. If the top left obstacle vertex is above the 

bisection line, the next control point becomes, 

Gi = Vtopleft- (5.13) 

The top right vertex is always above the bisection line, which leads to its inclusion 

as a control point: 

Gi = Vtopright- (°-14) 

If the bottom right vertex is above the bisection line, 

Gi — Vbottomright-

Due to the symmetric properties of oriented bounding boxes, either the top left or 

bottom right vertex can exclusively lie above the bisection line. If the orientation 

angle is —, both vertexes will lie directly on the bisection line, and will not be 

control points. The bottom left vertex is always below the bisection line, and 

therefor never considered as a control point. The final control point is given by, 

(5.16) 

For each segment of the trajectory envelope, four parameters are given. The 

vectors Pj and Pf represent the initial and final control points, while and Vf 

denote the derivatives which control the orientation at each control point, t is 

calculated given x, which also determines the active segment. For each segment, t 
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of the obstacle approach and departure regions. These outlying control points are 

determined based on the velocity of the approaching trajectory, which in turn is 

influenced by the goal and local obstacle field strengths. Two scalar distance values, 

WI and W2 are calculated, and used to determine the secondary rolloff envelope 

function control points. The values WI and W2 correspond to obstacle approach 

and departure distances, respectively. 

The first control point is 

[
-WI] G I = 0' (5.12) 

in the local obstacle coordinate system. If the top left obstacle vertex is above the 

bisection line, the next control point becomes, 

(5.13) 

The top right vertex is always above the bisection line, which leads to its inclusion 

as a control point: 

(5.14) 

If the bottom right vertex is above the bisection line, 

Gi = Vbottomright. (5.15) 

Due to the symmetric properties of oriented bounding boxes, either the top left or 

bottom right vertex can exclusively lie above the bisection line. If the orientation 
7f 

angle is "4' both vertexes will lie directly on the bisection line, and will not be 

control points. The bottom left vertex is always below the bisection line, and 

therefor never considered as a control point. The final control point is given by, 

(5.16) 

For each segment of the trajectory envelope, four parameters are given. The 

vectors Pi and Pf represent the initial and final control points, while Vi and vf 

denote the derivatives which control the orientation at each control point. t is 

calculated given X, which also determines the active segment. For each segment, t 
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starts at zero, and ends at one. The cubic trajectory coefficients for each segment 

are given by 

h = Pu (5.17) 

k2 = vu (5.18) 

k3 = 3*{Pf-Pi)-{2*Vi + vf), (5.19) 

and 

h = - 2 * (Pf - Pi) + {Vi + vf). (5.20) 

Using these coefficients yields 

y = k4-t3 + k3-t2 + k2-t + k1. (5.21) 

An example secondary rolloff function envelope for an obstacle oriented at zero 

is given in Figure 5.5. Four control points are used, and Wi and w2 are both 

arbitrarily set to one. Note that the top curve is the calculated envelope, and that 

the bottom curve is reverse-symmetric. 
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Figure 5.5. Secondary rolloff function, obstacle angle 0 
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the bottom curve is reverse-symmetric. 
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In Figure 5.6, the same values are used, except that the obstacle is now oriented 

7r/4. In this case, we only need three control points. The reverse symmetry 

properties are more prominent in this example. 

The value for w<i is significantly decreased, and the orientation is changed to 7r /6 

in Figure 5.7. A smaller exclusion zone around the obstacle is required in regions 

where the obstacle face slants away from the bisection line. 

The partial obstacle field equation, 

p=\[i-o>i\, (5.22) 

is constructed from the primary and secondary rolloff functions, multiplied by the 

obstacle field strength parameter. Field lines are aligned perpendicular to the goal 

attractor to keep obstacle repulsion fields from influencing the approach velocity 

of a robot in proximity to an obstacle, which helps prevent local minima from 

forming. Otherwise, field lines radiating directly from the center of an obstacle 

region can create local minima on the side furthest from the goal attractor, while 

accelerating trajectories towards the goal near the side closest to the goal attractor. 
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Figure 5.6. Secondary rolloff function, obstacle angle 7r/4 
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In Figure 5.6, the same values are used, except that the obstacle is now oriented 

7r / 4. In this case, we only need three control points. The reverse symmetry 

properties are more prominent in this example. 

The value for W2 is significantly decreased, and the orientation is changed to 7r /6 

in Figure 5.7. A smaller exclusion zone around the obstacle is required in regions 

where the obstacle face slants away from the bisection line. 

The partial obstacle field equation, 

(5.22) 

is constructed from the primary and secondary rolloff functions, multiplied by the 

obstacle field strength parameter. Field lines are aligned perpendicular to the goal 

attractor to keep obstacle repulsion fields from influencing the approach velocity 

of a robot in proximity to an obstacle, which helps prevent local minima from 

forming. Otherwise, field lines radiating directly from the center of an obstacle 
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Figure 5.7. Secondary rolloff function, obstacle angle 7r /6 

The orientation of the field is determined by 

(5.23) 

dependent on whether the current point is above or below the bisection line. The 

scalar partial field and field orientation parameters are then used to calculate the 

final oriented obstacle differential field, 

cos(C) 
sin(Q 

(5.24) 
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The orientation of the field is determined by 

7r 
( = O±-

2' 
(5.23) 

dependent on whether the current point is above or below the bisection line. The 

scalar partial field and field orientation parameters are then used to calculate the 

final oriented obstacle differential field, 

. [ cos(() 1 
q, = p. sin(O . (5.24) 



CHAPTER 6 

SIMULATION 

In this chapter, the design, implementation, and results of simulations for 

trajectory generation, motion control, and obstacle avoidance are presented. The 

design of all components to be implemented into Mobile Emulab are first rigorously 

tested in simulation to verify their characteristics and performance. All simulations 

presented here use MATLAB and Simulink. 

Several simulation applications are used to evaluate the performance of the 

different aspects of motion planning and control. The simulations are used to speed 

the development of algorithms, and verify the planned features before undertaking 

the task of implementation in to the Mobile Emulab system. The simulation results 

presented in this chapter provide a baseline to establish desired behavior, which can 

be used to compare and verify results gathered through experimentation on real 

hardware. 

6.1 Trajectory Generation 
The trajectory generators discussed in Chapter 3 are evaluated in simulation in 

this section. Applications are created in the MATLAB programming language to 

test all aspects of the trajectory generators before integration within RMCD. This 

method is chosen to enable rapid development and evaluation of algorithms for 

generating segmented paths, curves, and parameterization to create final reference 

trajectories required by the motion controller. 

For simulation and verification of the segmented trajectory generators, a stan­

dard reference trajectory is needed. A series of viapoints resulting in a path with 

curves with high and low angles, plus multiple segments that must be orthoganal. 

This standard trajectory is designed to thouroughly test all generators for robust-
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curves with high and low angles, plus multiple segments that must be orthoganal. 

This standard trajectory is designed to thouroughly test all generators for robust-
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ness, and correctness. Figure 6.1 gives an example of a standard testing trajectory, 

colloquially termed the double paperclip. 

6.1.1 Line-Arc Trajectories 

Line-Arc trajectory generation by the path planning software is discussed in 

Section 3.3. Paths generated in this manner are C° continuous, with a discontinuity 

in curvature at the boundaries of lines and arcs. A closed form parametric trajectory 

is realized, given a list of via points. 

In Figure 6.2, the resulting paths from two trajectory generators are presented. 

The path created from simulation is generated from the MATLAB application. The 

Figure 6.1. Example trajectory with quintic spline curves. 
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Figure 6.2. Trajectory generation comparison, path. 

path in the plot labeled R M C D is generated from the implementation on Mobile 

Emulab, as discussed in Section 2.5. To test for conformability, the two plots are 

compared. 

The velocity profiles from the two trajectory generators are compared in Fig­

ure 6.3. A linear velocity ramp is applied at the beginning and end of the path to 

create a trajectory. A constant velocity is otherwise applied. 

Figure 6.4 gives a comparison of the angular velocities. The zero order curvature 

continuity of the path results in the abrupt changes in angular velocity. This 

path could not be followed exactly by a differentially steered mobile robot without 

stopping at each discontinuity point and executing a zero radius turn. A kinematic 

controller with first order filtering can approximately track a C° continuous path 

with a minimal amount of error. 

6.1.2 Spline Trajectories 

An example of the standard test trajectory generated using quintic splines, as 

discussed in Section 3.5 is given in Figure 6.1. The fillet radius is 0.25 meters, 

and where P 2

 — Pi = 0.05, as developed in Section 3.5.1. The radius and control 

polygon points are chosen arbitrarily in this section, for illustration purposes. 
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path in the plot labeled RMCD is generated from the implementation on Mobile 

Emulab, as discussed in Section 2.5. To test for conformability, the two plots are 

compared. 

The velocity profiles from the two trajectory generators are compared in Fig­

ure 6.3. A linear velocity ramp is applied at the beginning and end of the path to 

create a trajectory. A constant velocity is otherwise applied. 

Figure 6.4 gives a comparison of the angular velocities. The zero order curvature 

continuity of the path results in the abrupt changes in angular velocity. This 
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stopping at each discontinuity point and executing a zero radius turn. A kinematic 
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with a minimal amount of error. 

6.1.2 Spline Trajectories 

An example of the standard test trajectory generated using quintic splines, as 

discussed in Section 3.5 is given in Figure 6.1. The fillet radius is 0.25 meters, 

and where P2 - PI = 0.05, as developed in Section 3.5.1. The radius and control 

polygon points are chosen arbitrarily in this section, for illustration purposes. 
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The feasibility of using splines for parametric trajectory generation is demon­

strated, as the path shown in Figure 6.1 is similar to the path shown in Figure 6.2, 

albeit without any lower order discontinuities in curvature. The same via point 

data is used for both simulations. This demonstrates that spline-based trajectories 

can be used in Mobile Emulab, requiring minimal modification to path data input 

requirements. 

6.2 Posture Stabilization Controller 
Simulations of the posture stabilization controllers discussed in Chapter 4 are 

created to test the stability and performance of the designs. Before integration of 

these controller in to Mobile Emulab, the controllers must be verified to respond 

as desired. The results presented in this section explore the behavior of the two 

posture stabilization controllers under different initial conditions, parameters, and 

gains. The simulations presented here do not account for the sampling frequency 

of the state feedback on the real system. Noise characteristics are not modeled, 

and robot dynamics consist mainly of the saturation velocity and acceleration of 

the controller command signals. The goal of these simulations is to establish the 

feasibility of these controllers to perform as expected while being used to control 

real robots. 

6.2.1 Simulation Development 

The posture stabilizing controller discussed in Section 4.3 is shown in Figure 6.5, 

as implemented in Simulink. Logging facilities are in place to capture position, 

state, controller, and wheel velocity data from the simulation. Both Cartesian and 

polar inputs for initial conditions are accepted. 

An alternate version of the posture stabilizing controller is included in this 

simulation. This version allows only forward motion, avoiding cusps in the resulting 

paths. The block diagram for this controller is given in Figure 6.6. 
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Figure 6.6. Posture stabilizing controller, alternate version (forward motion only). Figure 6.6. Posture stabilizing controller, alternate version (forward motion only). 
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A Simulink block diagram of the main simulation application of the posture 

stabilizing controller is shown in Figure 6.7. Included in this application are blocks 

to accept initial conditions in either Polar or Cartesian coordinates, and output of 

the resulting trajectory, Polar states, and controller output velocities. Both posture 

regulators are included, and can be chosen at run time. 

The robot polar kinematics block diagram, shown in Figure 6.8, takes input from 

the controller, runs through a robot dynamics model, and then directly implements 

the polar state equations (4.3). The initial state values come from the values set in 

the main simulation. 

6.2.2 Simulation Results 

Figure 6.9 shows the paths generated by the posture stabilizing controller dis­

cussed in Section 4.3. Initial postures are located at various angles on a unit circle. 

The initial angle is zero at each instance. For initial postures with a large value 

of the polar state 6, the resultant paths include cusps, where the linear velocity 

changes directions. Two simulations are presented here, both with initial postures 

resulting in higher values of 9. These postures were chosen since they result in 

more interesting trajectories. All postures are presented in the form [xyS]. Unless 

otherwise noted, linear measurements are in meters, and angular units are radians. 

The alternate posture stabilizing controller is simulated with an initial posture of 

[x, y, </>] = [0.0, —1.0, —7r /4]. The results of this simulation are shown in Figure 6.10. 

The light gray structures represent the posture of a differentially steered robot's 

axle at constant time intervals. This posture stabilizing controll is designed to 

command forward motion only, avoiding any cusps in the resulting path. 

The polar system states of this simulation are given in Figure 6.11. As desired, 

all states are regulated to zero, with no overshoot. The controller is demonstrated 

here to be exponentially stable for this specific set of initial conditions and controller 

parameters. Figure 6.12 displays plots of the controller outputs. 
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Figure 6.9. Posture stabilizing controller simulation: paths resulting from initial 
postures on a unit circle. 
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Figure 6.10. Posture stabilizing controller, simulated trajectory. 

10 15 
time (seconds) 

25 

Figure 6.11. Posture stabilizing controller, simulated system response. 
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Figure 6.12. Posture stabilizing controller, controller output. 
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The main posture stabilizing controller is simulated with initial Cartesian states 

of [x,y,6] = [—0.6, —1.2, — 7 r / 2 ] . The resulting trajectory is given in Figure 6.13. 

These initial conditions result in a cusp in the path. The robot is initially oriented 

South in this figure. This results in the robot undergoing backward motion over 

the first section of the trajectory. 

The simulated Polar system states are plotted in Figure 6.14. All states smoothly 

progress to zero, and settle rapidly. 

Figure 6.13. Posture stabilizing controller, [—0.6 —1.2—7r/2], simulated trajectory. 
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Figure 6.14. Posture stabilizing controller, [-0.6, - 1 . 2 , —7r /2], simulated system 
response. 
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Output from the controller is given in Figure 6.15, with the resulting wheel 

speeds in Figure 6.16. The wheel velocities differ from the controller command 

because of acceleration saturation. 

The wheel accelerations are shown in Figure 6.17. These accelerations are 

saturated at 0.4 meters per second squared. 

The simulations presented in this section establish that the posture stabilizing 

controller presented in Section 4.3 is exponentially stable, and produces bounded 

and smooth output. With continuous state feedback, kinematic control may be used 

to drive a robot to a single goal posture. In the next section, a kinematic trajectory 

tracking controller is tested in simulation. The development of the posture regulator 

serves as an initial effort, and establishes the kinematics and control structure 
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Figure 6.15. Posture stabilizing controller, [—0.6, —1.2, — 7 r / 2 ] , controller output. 
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required to proceed to development of more advanced motion controllers. 

6.3 Kinematic State Feedback 
Trajectory Tracking 

Controller 
The trajectory tracking controller presented in Chapter 4 is evaluated in simula­

tion in this section. This controller requires careful simulation design, and rigorous 

testing, because of the challenges presented by the state feedback sampling rate and 

other aspects of the Mobile Emulab system. For example, the existing software 
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contstraints allow for only position information to be available to the controller. 

The simulated control system must reflect the operating environment provided by 

the real system, in order to properly evaluate the feasibility and performance of 

motion control on Mobile Emulab. The goal in this section is to obtain results that 

establish the feasibility of using this controller to control actual hardware. 

An example trajectory generated by the motion controller discussed in Sec­

tion 4.4 is shown in Figure 6.18. This simulation is an initial result from the con­

troller, with little gain adjustment, and a continuous sampling rate. The reference 

trajectory is the standard double paperclip trajectory, as presented in Section 6.1. 

The simulated trajectory initially converges slowly, but eventually manages to track 

the reference path closely for the duration of the simulation. 

5 6 7 8 9 10 11 12 
x ( m ) 

Figure 6.18. Trajectory tracking controller, continuous sampling. 
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6.3.1 Simulation Development 

A block diagram for the kinematic state feedback trajectory tracking controller 

simulation is included in Figure 6.19. This simulation is completed in MATLAB and 

Simulink. It includes input of a reference trajectory, and logging of states, gains, 

controller outputs, and trajectories to and from the MATLAB workspace. Polar 

states are calculated from Cartesian trajectories according to (4.3). The motion 

controller output is passed to a block which calculates the resulting trajectory 

using the Cartesian state equations, (4.1). 

The models in simulation are designed to account for acceleration and velocity 

saturation on the real robots. The sampling frequency is also considered by applying 

a zero order hold with a rate of 30 Hz to the dynamic extension output. Facilities 

are built into the simulation to log all state and localization data for creating plots 

for later review. 

Applications are written to noninteractively run the controller system simulation 

with varying parameters. Discrete derivatives are used to best model the RMCD 

implementation. The simulation is run at a constant sampling rate of one kilohertz. 

The sampling rate is chosen to accurately simulate the robot kinematics. 

Figure 6.19. Trajectory tracking controller simulation block diagram. 

77 

6.3.1 Simulation Development 

A block diagram for the kinematic state feedback trajectory tracking controller 

simulation is included in Figure 6.19. This simulation is completed in MATLAB and 

Simulink. It includes input of a reference trajectory, and logging of states, gains, 

controller outputs, and trajectories to and from the MATLAB workspace. Polar 

states are calculated from Cartesian trajectories according to (4.3). The motion 

controller output is passed to a block which calculates the resulting trajectory 

using the Cartesian state equations, (4.1). 

The models in simulation are designed to account for acceleration and velocity 

saturation on the real robots. The sampling frequency is also considered by applying 

a zero order hold with a rate of 30 Hz to the dynamic extension output. Facilities 

are built into the simulation to log all state and localization data for creating plots 

for later review. 

Applications are written to noninteractively run the controller system simulation 

with varying parameters. Discrete derivatives are used to best model the RMCD 

implementation. The simulation is run at a constant sampling rate of one kilohertz. 

The sampling rate is chosen to accurately simulate the robot kinematics. 

R~fet~\i¢~ 
"·~:;";"'Ory ..... 

Initial 
Conditions 

Robot 
Simulation 

Figure 6.19. Trajectory tracking controller simulation block diagram. 
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6.3.2 Initial Condi t ions 

An initial position which is ahead of the start of a reference trajectory may cause 

problems, as shown in Figure 6.20. The control law given in Subsection 4.4.1 does 

not allow backward motion. A consequence of this is that simulated trajectories will 

loop around to join the reference trajectory, instead of backing up or pausing until 

the reference trajectory has caught up. This sort of trajectory would be difficult to 

send as a command to a real robot, as the velocities and accelerations required are 

too high. 

A series of tests are performed to determine safe initial conditions for the motion 

controller. A sample of the evaluations are presented here. All postures presented 

here are in the form [x,y,6]. The initial trajectory convergence is shown, and 
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Figure 6.20. Path loop caused by initial conditions. 
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it may be assumed that the out of boundary trajectories resemble the trajecto­

ries presented in Figure 6.18. The double paperclip reference trajectory starts at 

[x,y,6}= [ 5 . 0 , - 1 1 . 0 , - f ] . 

Figure 6.21 has a favorable initial posture of [4.95, —10.95, . The simulated 

trajectory converges rapidly, with no overshoot or oscillations. The initial condi­

tions are favorable in this case because the position results in the initial absolute 

value of the polar kinematic state 9 to be less than | radians. The orientation of 

the initial posture also matches the initial orientation of the reference trajectory. 

An example of a poorly formed initial posture is given in Figure 6.22. An 

initial posture of [5.04, —10.99, — TT] is used in this simulation. The initial position 

is satisfactory, but the orientation is pointed away from the initial reference posture. 

This results in a high value of the kinematic polar state a. To converge upon the 

reference trajectory, the motion controller commands a large fast loop, which results 

in large error initially. The looping is caused by the simulated robot overruning the 
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Figure 6.21. Initial trajectory with an aligned initial posture. 
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Figure 6.22. Initial trajectory with a perpendicular initial posture. 

reference trajectory. The controller compensates by commanding a high rotational 

velocity to loop the robot back, as opposed to commanding a lower linear velocity. 

A high initial value of a does not necessarily cause problems, as evidenced in 

Figure 6.23. The initial posture is [4.99, —11.03, —f] - The trajectory converges 

rapidly, in a similar fashion to more favorable boundary conditions. 

6.3.3 Sampling Rates 

Simulating the motion controller under conditions approximating an ideal con­

tinuous sampling rate establishes the feasibility and performance of trajectory 

tracking using this design, but the implementation constraints dictate that state 

feedback will only be available at a known discrete sampling rate. As established 
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Figure 6.23. Initial trajectory with a reversed initial posture. 

by the localization system hardware, state data is available at a maximum rate of 

30 Hz. An example of a simulated trajectory generated initially after quantizing 

the controller output at 30 Hz is given in Figure 6.24. Without gain adjustment, 

and well formed initial conditions, the controller quickly fails to track the refer­

ence trajectory. This is especially a problem when encountering discontinuities in 

curvature at the endpoints of arcs in the path. No saturation limits on controller 

output are used in this simulation. The resulting trajectory loops many times, as 

the simulated robot continually overruns the reference trajectory. 

To evaluate controller performance at varying sample rates, the overall time 

average of the absolute position error is measured. Absolute position error is a 

term for the kinematic state e from (4.3). The results of the controller simulated 

at different sample rates is shown in Figure 6.25. The vertical line in the center 
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Figure 6.23. Initial trajectory with a reversed initial posture. 
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/ ( * ) = 

—va cos (a) + vr cos (6) 

va sin (a) vrv sin (6) 
e e 

— C J , 
v a sin [a) vr sin I 

(6.2) 

e e 

The parameters va and w a are the actual robot velocities, accounting for lag. Desired 

robot velocities are given by Vd and u>d- Velocity error states are defined in terms of 

actual and desired velocities, given by va = ev + and coa = +u)d- The velocity 

error states are substituted into (6.2), forming, 
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f(x) Va sin (0:) 
e 

VrV sin (8) 
e (6.2) 

Va sin (0:) Vr sin (8) 
-Wr e - e - Wa 

The parameters Va and Wa are the actual robot velocities, accounting for lag. Desired 

robot velocities are given by Vd and Wd. Velocity error states are defined in terms of 

actual and desired velocities, given by Va = ev + Vd and Wa = ew + Wd. The velocity 

error states are substituted into (6.2), forming, 
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fix) = 

— (ev + vd) cos (a) + vr cos (9) 

(ev + u>d) sin (a) u>r sin (9) 
e e 

{ev + Vd) sin (a) ur sin (9) 

(6.3) 

g g cw U>d _ 

The nonlinear control laws (4.31) and (4.34) are substituted into the desired veloc­

ities, vd and ujd, in (6.3). 

The time constants of the robots used in Mobile Emulab are considered. Two 

additional states corresponding to the velocity errors are added to the system. 

Additional system equations are given by, 

h(x) = (6.4) 

where rv and r w are the measured time constants of the robot for linear and 

rotational velocity, respectively. The system modeled with a delay from the system 

time constants is defined as, 

/ ( * ) = 

with system states given by, 

x 

fi(x) 

e 
9 
a 
ev 

(6.5) 

(6.6) 

Expanding (6.5) results in, 

—Pi cos (a) + vr cos (0) 

P\P2 — — k2 tanh (9 + a) — u>r (6.7) 

where, 

Pi ev + -kiePs tanh ( - e + ry/^Ps) + vre cos (9) P2 + vrP4 sin (o + ^) 
ePz + P4 sin (a) 

(6.1 
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rotational velocity, respectively. The system modeled with a delay from the system 
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l(x) 

with system states given by, 

,7;= 

[ 
h(,7;) ] 
12(,7;) , 

e 
o 

Expanding (6.5) results in, 

1(,7;) 

where, 

-PI cos (0:) + Vr cos (0) 
PI P2 - Wr 

PI P2 - ew - k2tanh (0 + 0:) - Wr 

-ev/Tv 

-ew/Tw 

(6.5) 

(6.6) 

(6.7) 

ev + -kI eP3 tanh (-e + n!2P3 ) + vrecos (0) P2 + vrP4 sin (0 + wJre) 
PI = ------------------------------~------------~----~ 

eP3 + P4 sin (0:) 
(6.8) 
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p sin (a) — vr sin (9) 
2 e 

P3 = Vl + e-cos (2 9). 

P4 = rV2sin(2 9) 

(6.9) 

(6.10) 

(6.11) 

An equilibrium point, 

x0 = 

e t 
9 0 
a = 0 

cv 0 
0 

(6.12) 

is chosen. The velocities are chosen as v = vr and to = 0. The nonlinear system 

(6.7) is linearized about the equilibrium point (6.12) by calculating the Jacobian. 

The linearized system is given as, 

A _ d £ 
dx 

Xo in the form, 

x = Ax. 

(6.13) 

(6.14) 

The state transition matrix of the linearized system is calculated by a fourth 

order Taylor series approximation, given by, 

<j> = I + A*T + A2T2/2\ + A3T3/3\ + A4T4/4\. (6.15) 

The system is made discrete by transforming it into the z domain by, 

F(z) = z * I - <f), (6.16) 

where I is an identity matrix of the same dimensions as 6. The desired root 

magnitude is calculated by, 

Z = 1 0 W r ) ) 

where T = 1/30 seconds, and the desired time constant r 

results in a root magnitude of z = 0.9117. 

(6.17) 

0.3 seconds. This 

sin (a) - Vr sin (B) 
P2 = --------'-

e 

P3 = J 1 + E - cos (2 B). 

P4 = rV2 sin (2 B) 

An equilibrium point, 

e E 

B 0 
xo = a 0 

ev 0 
ew 0 
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(6.9) 

(6.10) 

(6.11) 

(6.12) 

is chosen. The velocities are chosen as v = Vr and w = O. The nonlinear system 

(6.7) is linearized about the equilibrium point (6.12) by calculating the Jacobian. 

The linearized system is given as, 

in the form, 

A= at 
ax 

Xo 

i: = Ax. 

(6.13) 

(6.14) 

The state transition matrix of the linearized system is calculated by a fourth 

order Taylor series approximation, given by, 

(6.15) 

The system is made discrete by transforming it into the z domain by, 

F(z) = z * I - cp, (6.16) 

where I is an identity matrix of the same dimensions as cp. The desired root 

magnitude is calculated by, 

Z = 10(Tlog(T)) , ( 6.17) 

where T = 1/30 seconds, and the desired time constant T = 0.3 seconds. This 

results in a root magnitude of z = 0.9117. 
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System parameters are then substituted in to the discrete linearized system: A 

sampling frequency of T = 1/30, dynamic extension gains of kv = 3.0, kc = 3.0, 

controller gains of k\ = 0.85, k2 = 0.5, controller parameters of e = 0.03, r = 0.2, 

velocities of vr = 0.1, v = vr, and robot time constants of rv = 0.5, = 0.5. The 

previous values are determined by tuning the controller to achieve a desired system 

response, based on pole placement methods. 

The discrete system is evaluated with k\ = 3.0, k2 = 5.0, and kv = 3.0, kc = 3.0. 

The parameter e and path manifold radius r are varied to evaluate their effect on 

stability. The sampling frequency is 30 Hz, and the reference velocity is 1.0 meters 

be second. The rotational reference velocity, u is equal to zero. Figure 6.28 shows 

the z transform root magnitudes of three of the system states under varying r and 

e. The root magnitude is close to the desired value of 0.91. In Figure 6.29, the 

root magnitude of the remaining two states is shown. The value is generally lower 

than desired, but stable. Changing the parameter e has no effect on the roots, but 

smaller values of r cause the magnitude to drop. Sufficiently small values of e cause 

the root magnitude to increase. 

The damping ratios of the discrete system for all five states is given in Fig­

ure 6.30. These states are critically damped, and varying the parameters r and e 

has no effect. The parameter r must increase significantly in order to achieve more 

damping. At the lowest point around r = 0.1 meters, the damping ratio is sufficient 

for the desired system performance. As with the z transform root magnitudes, the 

parameter e has no effect on damping. 

The discrete system is evaluated for stability at different reference velocities, 

using the same parameters as above, with the exception of kv = 15 and kc = 45. 

Figure 6.31 shows a plot of the z transform roots for velocities between zero and 

two meters per second. Three of the roots remain stable for all velocities, but the 

last two roots become unstable at vr = 1.6 meters per second. The magnitude of all 

roots must be less than one for the system to meet stability criteria. The damping 

ratios are given in Figure 6.32. 
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Figure 6.32. Z transform damping ratios with varying reference velocity. 
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6.3.5 Simulation Resul ts 

The simulation results for the parameter tuned controller are presented in this 

subsection. The reference trajectories range from a straight line segment, to paths 

with multiple curves. The performance of the controller is evaluated in preparation 

for its implementation in Mobile Emulab. 

For a baseline simulation test, a trajectory without any curves is created. 

The kinematic controller, implemented in simulation with Simulink, tracks the 

reference trajectory closely. Figure 6.33 gives the resulting trajectory compared to 

the reference trajectory. Initial conditions for this simulation are e(0) = 0.0283, 

x(0) = 4.9800, y(0) = -10.9800, and 6(0) = - \ . These initial conditions are 

representative of expected initial conditions for robots in Mobile Emulab. 

A linear velocity profile is used, as shown in Figure 6.34. A maximum velocity 

of O.lm/s is chosen, which would be a reasonably slow speed for robots on the 

testbed. The controller in this simulation is run at 1000 Hz, which is much faster 

than it will be run in implementation. The total simulation time resulting from the 

chosen maximum velocity is 10 seconds. 

The response of the system given in (4.3) is presented in Figure 6.35. The 

initial polar distance error, e, is slightly less than 30 mm, but climbs to a peak of 

45 mm before converging below 20 mm. The convergence rate could be improved 

by adjusting the controller and dynamic extension gains discussed in Section 6.3.4. 

As presented in Figure 6.33, the controller causes the robot to follow the path 

with minimal tracking error. Absolute error is present, as the robot lags behind 

the reference trajectory. The low amount of tracking error contributes to the 

rapidly decreasing values of the 0 and a states after two seconds simulation time 

in Figure 6.35. 

A second simulation is performed, with a reference path including a curve. The 

curve present is a constant radius circular arc. This simulation is important as 

it evaluates the performance of the controller when provided with discontinuous 

reference trajectories. 
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The reference and simulated trajectories are given in Figure 6.36. The accom­

panying velocity profile is presented in Figure 6.37. 

The response of the system given in (4.3) is presented in Figure 6.38. The 

disturbance from the discontinuity in curvature is apparent in the jumps in all 

three states located at approximately 5 and 9 seconds simulation time. 

1 Reference Trajectory 
' Tracked Trajectory 

Figure 6.36. Simulated trajectory with a single curve. 
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Figure 6.37. Single curve trajectory: Reference velocity profile. 
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Figure 6 .37. Single curve trajectory: Reference velocity profile. 
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Figure 6.38. Single curve trajectory: Simulated system response. 
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6.3.6 Simulation of Trajectory Tracking 
Controller Functions 
in R M C D 

Before integration into RMCD, the trajectory tracking functions are tested and 

compared to results from simulation. The major system component outputs tested 

include gain calculation, the Cartesian to Polar state transformation functions, the 

main control law, and the dynamic extension. A test suite for the RMCD motion 

control functions is created, and a framework built in MATLAB to evaluate the 

results and compare them to simulation results. 

A second curved path is tested in simulation, as shown in Figure 6.39. The 

Cartesian states output from this simulation are given as input to the functions 

implemented in RMCD, as discussed in Subsection 7.4.1. The parameters used in 

this simulation are presented in Table 6.1. 

The implementation of the Polar state transformation (4.3) in RMCD is com­

pared to the Polar states calculated in the Simulink simulation of the trajectory 

tracking controller. The states calculated by RMCD are identical to the simulated 
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Table 6.1. Controller parameters 
r 0.2 meters 
e 0.03 meters 
h 3.0 
k2 

5.0 
kv 3.0 
kc 3.0 

signals, with the exception of 9. This is caused by differences in numerical differen­

tiation algorithms between the two applications. The simulated Polar state data, 

as compared to the state data measured in RMCD is compared in Figure 6.40. 

The simulated controller velocity outputs v and to, and their derivatives v and 

Co are plotted in Figure 6.41. The signals match, though the noise in the derivatives 

alters the to signal significantly. 

6.3.7 Filtering of Derivatives in 
R M C D Controller 
Implementation 

The numerical differentiation method employed to obtain v, Co, and 9 has 

significant noise, and must be filtered to preserve the stability and boundedness 

of the motion controller. Digital filtering is used for these signals to attenuate high 

frequency noise. 

An example trajectory with a single curve is presented in Figure 6.42. The 

tracked trajectory is the result of a Simulink simulation of the motion controller 

and kinematics, as discussed in Section 6.3.1. Using the method outlined in Sub­

section 6.3.6, the simulated data is passed to the motion controller functions im­

plemented as part of RMCD. (RMCD is discussed in detail in Subsection 2.5.2.) 

The corresponding velocity profile is given in Figure 6.43. A maximum velocity 

of 0.1 meters per second is chosen, with linear velocity ramps at the trajectory 

boundaries. 
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Figure 6.41. Simulated controller output compared to RMCD controller output 
for a curved path. 
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Figure 6.44 shows the resulting system states as calculated, by RMCD. Without 

filtering, the first differential of 9 is noisy, with saturation in the region of the single 

curve in the path. The condition of this signal is detrimental to the performance 

of the main controller, as the control law (4.34) for UJ includes d9. 

The controller output is shown in Figure 6.45. The signal UJ is noisy, just as the 

d9 signal. The first derivatives of the controller are also noisy, due to the absence 

of filtering. The signals saturate in this example, which keeps the motion controller 

output bounded. 

The final output of the motion controller comes from the dynamic extension, 

which is discussed in Subsection 4.4.2. Figure 6.46 shows the output of this 

component, without any filtering of the output of the controller output derivatives. 

The dynamic extension in RMCD has significant noise and error compared to the 

dynamic extension as simulated using Simulink. 

6.3.8 Run Time of Motion Controller 
in R M C D 

It is important that the motion controller as implemented in RMCD, is capable 

of returning a set of wheel speeds in a sufficient amount of time. As position updates 

from the localization system come in at 30 Hz, the motion controller must complete 

all calculations within 0.03333 seconds, before another position update arrives. It 

is desired that compution for the motion control be as fast as possible, to reduce 

overall lag. Table 6.2 gives the average, minimum, and maximum computation 

time used by the motion controller while under simulation. A single trajectory is 

tested, with the motion controller called once for each of the 13900 data points. 

The experiment is run on a standard desktop computer system, with a 3.00 GHz 

CPU, 1 GB of RAM, and running the FreeBSD operating system. This system is 

comparable to the computer system on which RMCD runs within Mobile Emulab. 
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F i g u r e 6.44. RMCD controller implementation, kinematic states. 
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Figure 6.44. RMCD controller implementation, kinematic states. 
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Figure 6.46. RMCD controller implementation, dynamic extension output. 
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Figure 6.46. RMCD controller implementation, dynamic extension output. 



Table 6.2. Motion controller iteration times 
Average Time 0.000075 seconds 
Minimum Time 0.000062 seconds 
Maximum Time 0.003280 seconds 
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6.4 Obstacle Avoidance 

Obstacle avoidance using the Virtualized Phase Portrait Method is simulated us­

ing MATLAB. A two dimensional, holonomic point robot is modeled in a workspace 

with oriented rectangular obstacle exclusion zones. The phase portrait for a sin­

gle obstacle with a nearby goal, generated using the original VPPM is given in 

Figure 6.47. 

VPPM is well suited for robot trajectory generation when obstacle placement 

is sufficiently sparse. The initial position must be outside of all obstacle exclusion 

zones, as well as surrounding zones in proximity to obstacles; specifically on the 

distal side of obstacles. Figure 6.48 illustrates a successful trajectory generated by 

VPPM. The initial position is just outside an exclusion zone, as is the goal point. 
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Figure 6.47. VPPM field with a single obstacle. 
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Figure 6.48. VPPM generated trajectory successfully negotiating obstacle filled 
region. 

There are no nearby obstacles to send the trajectory into neighboring exclusion 

zones. 

Figure 6.49 shows a case where VPPM fails to generate a trajectory which 

avoids all obstacle exclusion zones. While the trajectory does reach the goal point, 

it travels through an obstacle exclusion zone. The trajectory is pushed into this 

obstacle by an adjoining obstacle with a stronger field. The trajectory is first 

pushed into a concave region, and instead of terminating in a local minima, is 

forced through the obstacle with a relatively weaker field. 

Similar to the previous failure case, VPPM is shown to fail with closely spaced 

obstacles with strong fields in Figure 6.50. In this case, both obstacles have the 

same field strength. A discontinuity is encountered between the two obstacles, 

once the influence of the larger obstacle drops off sharply. The trajectory enters 

the exclusion zone of the smaller obstacle as it is forced through a concave region. 
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Figure 6.48. VPPM generated trajectory successfully negotiating obstacle filled 
region. 

There are no nearby obstacles to send the trajectory into neighboring exclusion 

zones. 
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Figure 6.50. VPPM generated trajectory failing in dense obstacle region. 
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Figure 6.50. VPPM generated trajectory failing in dense obstacle region. 
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The trajectory given in Figure 5.1 in Chapter 5 is a good example of the 

capabilities of VPPM. The initial condition is chosen to avoid concave regions, 

and the goal point is located outside of a dense obstacle region. The trajectory is 

smooth and continuous, and successfully reaches the goal point without colliding 

with any obstacles. 

If a trajectory enters the secondary exclusion zone of an obstacle, it is likely 

to collide with the obstacle. Trajectories can enter these zones by being forced 

by a strong obstacle in proximity, or by poor initial conditions. The region of 

the secondary exclusion zone is determined by the size and shape of the obstacle, 

along with the velocity during approach. Figure 6.51 gives a trajectory with an 

initial condition outside of a secondary exclusion zone. The trajectory reaches the 

goal point without colliding with the obstacle thanks to the fact that there was 

sufficient distance for the repulsive field to deflect the trajectory outside of the 

secondary exclusion zone during approach to the obstacle. The tangential velocity 

of this trajectory is shown in Figure 6.52. Curvature is shown in Figure 6.53. 

Given an initial condition within an exclusion zone, collision with an obstacle 
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Figure 6.51. Simulated trajectory with an initial position outside of a secondary 
obstacle exclusion zone. 
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Figure 6.52. Velocity magnitude of trajectory generated in Figure 6.51 

is unavoidable, as shown in Figure 6.54. There is insufficient distance to deflect 

the trajectory far enough to miss the obstacle boundary. The trajectory proceeds 

through the obstacle, and then continues on to the goal. The velocity and curvature 

plots given in Figure 6.55 and Figure 6.56 show that continuity and boundedness 

is not effected. 

The orientation of obstacle field rolloff functions have design tradeoffs. It is 

important to minimize the impact of the velocity projected on the goal field by 

obstacle fields. This is to keep velocity bounded, and decrease the probability of 

local minima being created in proximity to single obstacles. For larger obstacles, 

field overlays that are perpendicular to the goal field are not parallel to the obstacle 

boundary. The repulsive field will actually pull a trajectory into an obstacle 

exclusion zone if the goal is close enough, and the obstacle is large enough. Orienting 

the field perpendicular to the radial goal line through the center of the obstacle 

minimizes this effect, but still fails to solve the problem. 

In conclusion, the simulation results presented in this chapter establish that the 

major components of the motion planning and coordination system perform as de­

sired. With system parameters established, and designs verified, these components 

are implemented into Mobile Emulab. 
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Figure 6.53. Curvature of trajectory generated in Figure 6.51 

Figure 6.54. Simulated trajectory with initial position inside of a secondary 
obstacle exclusion zone. 
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Figure 6.55. Velocity magnitude of trajectory generated in Figure 6.54 

Figure 6.56. Curvature of trajectory generated in Figure 6.54 
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CHAPTER 7 

IMPLEMENTATION 

This chapter discusses the implementation and integration into Mobile Emulab 

the components presented in previous chapters. Primitive motion is the baseline 

system to be implemented. With point to point motion established on the testbed, 

state feedback control is then integrated. The posture stabilizing controller is 

first included, with trajectory generation and the trajectory tracking controller 

integrated once state feedback control was established as feasible using Mobile 

Emulab. 

To allow for the implementation of state feedback control, system parameters 

of Mobile Emulab must be verified and measured. The controller implementations 

must be computationally fast enough to calculate wheel velocity commands before 

new localization data is received. The sample rate of the state feedback must be 

quantified, and shown to have a low variance. System identification is performed 

on a robot to obtain the time constants for the system with a step input. 

7.1 Primitive Motion Model 
Implementation 

Point to point motion to a single goal point is accomplished by executing motion 

primitives in sequence. The primitives pivot, move, and pivot are completed to move 

a robot to an arbitrary posture in 5?2 Cartesian space. This sequence of primitives is 

used to construct a meta primitive, referred to as a goto command in this research. 

This command is the core of the iterative goal point progression motion model 

presented in Section 3.1. 

During primitive based motion, a robot self-localizes by using odometry mea­

surements. After each goto command is completed, Mobile Emulab checks positions 
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using the overhead camera localization system. If the position achieved through 

local navigation using odometry is not coincident with the goal in the global 

reference frame, subsequent goto commands are issued until the robot is sufficiently 

close to its intended goal. 

Position error becomes significant over long distance moves. To limit error, 

goto commands are limited to a displacement of one and a half meters. This 

limitation allows visual localization to correct robot positions at regular intervals, 

which minimizes final position error. 

Four position adjustment iterations are required to achieve approximately 10 

millimeter accuracy, with diminishing returns for further iterations. 

A velocity value may be configured for each primitive. For move commands, 

velocities as high as 0.8 meters per second have been reliable during testing. To 

increase reliability in relation to error events and end position error, the move 

velocity is limited to 0.2 meters per second. 

The effective acceleration capability is limited by a stall threshold built in to 

the low level motion controller. The threshold is increased from its default value 

to allow the robots to operate on carpet. The stall threshold is a unit measured in 

wheel encoder ticks. When a wheel is measured to be a set number of ticks behind 

its set value, a stall threshold error is triggered. 

7.2 Posture Stabilizing Controller 
Implementation 

The implementation of the posture stabilizing controller requires significant 

modifications to Mobile Emulab. The robot control system is extended to support 

continual state feedback for nonlinear motion control. Wheel stall thresholds still 

apply as in the primitive motion model, but need to be increased further because 

of larger accelerations commanded by the state feedback controller. 

The posture regulator does not suffer any problems with lower the sampling 

rates associated with the localization system of Mobile Emulab. This is because of 

the absence of a moving goal or reference frame. 
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7.3 Trajectory Generator 
Implementation 

The trajectory generators introduced in Chapter 3 are implemented in MATLAB 

simulations, and integrated into Mobile Emulab. Closed form and parametric 

trajectory generation using line-arc segments is simulated using MATLAB, with 

the closed form system integrated within RMCD. This provides a minimum level of 

trajectory generation for Mobile Emulab, which can further be developed to include 

more advanced trajectory generators. 

A polynomial spiral trajectory generator is simulated in MATLAB, but not in­

tegrated into Mobile Emulab. Fitting polynomial spirals to user specified viapoints 

produces numerical errors, and causes complexity while reducing efficiency and 

usability. Spline-based trajectory generation is simulated, but also not implemented 

in Mobile Emulab. 

In the parametric line and arc trajectory generator implementation, a full tra­

jectory dataset is calculated upon receipt of a goto command. This parametric 

trajectory data is stored, and later recalled when the motion controller is activated. 

Waypoint data points are input from a text file configured when starting up RMCD. 

Trajectory data parameterized by the trajectory generator is required at non-

regular intervals. The motion controller is executed only when localization data is 

forwarded to RMCD. In order to send an accurate reference trajectory data set, 

linear interpolation is used. 

7.4 Kinematic State Feedback Trajectory 
Tracking Controller 

Implementation 
The kinematic state feedback trajectory tracking controller presented in Sec­

tion 4.4 is implemented in the C programming language, and then integrated into 

RMCD. The controller is implemented as its own suite of functions, allowing it to 

be removed from RMCD without any difficulty. RMCD must be configured at run 

time to call the trajectory tracking controller. It defaults to primitive motion when 

not instructed to use kinematic state feedback control. 
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7.4.1 Program Structure 

The implementation of the trajectory tracking controller is split into several 

main functions. The entire motion controller is in a single motion controller function 

called by RMCD when an iteration of state feedback data is received. This function 

takes as input the current robot position sent by VMCD, the current data point on 

a parametric reference trajectory, and parameters related to the derivative signals. 

Wheel velocities are returned as output, which are sent as commands to the robot 

by RMCD. 

The main motion controller function, kc-main, first executes a Cartesian to 

Polar state transformation function, kc-cart2pol. Controller parameters and gains 

are then passed to the core controller in kc-controller. The controller velocity 

commands are then sent to the dynamic extension in kc-dynamic-ext. The resulting 

velocities v and u> are then transformed into wheel velocities vL and vR, and then 

sent to the robot. 

The control laws (4.31) and (4.34) are implemented in the kc-controller function. 

Polar state data, gains, and controller parameters are input. Controller velocity 

commands v and to are output. The dynamic extension, discussed in Section 4.4.2, 

is included in the function kc-dynamic-ext. Helper functions kc-dynamic-extsolve 

and kc-dynamic-ext-func are used to solve the differential equations. 

The Cartesian to Polar state transformation is handled by kc-cart2pol. Cartesian 

states are taken as input, and Polar system states are output. The unwrapping of 

6 and a is done in this function. Controller gains are configured in the function 

kc-gains, and derivatives are calculated by kc-d and kcjupdate. An infinite im­

pulse response filter, as discussed in Section 7.4.5 is implemented in the function 

kc-IIRfilter. Phase angle unwrapping, as presented in Section 7.4.3,is handled by 

the function kc-unwrap. 

7.4.2 System Parameters 

The controller parameters given in Table 4.1 must be properly tuned in order 

to assure stability and achieve the desired performance of the system. This is 

accomplished through an understanding of the effects of the various parameters on 
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the system, coupled with rigorous analysis of system stability criteria. The stability 

analysis of the discrete system is discussed in Section 6.3.4. 

There are several design tradeoffs when considering controller parameters and 

gains. The response of the dynamic extension must be faster than the main 

controller response, or instability will result. If the time constants of the dynamic 

extension are too far below the sampling frequency of the motion controller imple­

mentation, the response will become unstable. 

If the parameter e is decreased, the controller will follow the path manifold 

more aggressively. An increase of k\ with cause the error, e to converge faster, 

and an increase in k2 causes the controller to steer towards the path manifold 

more aggressively. Higher values of kv and kc increase the response of the dynamic 

extension, passing through v and u with less filtering. 

Controller output limits for the trajectory tracking controller experimental re­

sults presented in Section 8.1 are given in Table 7.1. These values are determined by 

the robot hardware limitations, and are tested to achieve a high degree of reliability 

in relation to motion control. 

7.4.3 Phase Angle Unwrapping 

The Cartesian to Polar transformation function uses the multiquadrant arctan­

gent trigonometric function to calculate the Polar state 8 from x, y, xr, and yr [46]. 

This function returns values in the range of ±n. Values of 9 and a rise or fall through 

different phases multiple times during a typical trajectory tracking execution. A 

discontinuity results when these values are not unwrapped. For example, at one 

arbitrary timestep, 8% = tt — e, where e is a small value. At the next timestep, as 9 

Table 7.1. RMCD controller output limits 
Parameter Value 
Vmax l.Om/s 
dvmax 2.0m/s'i 

L^max 5.6243rad/s 
du!max 20.0rad/s^ 
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increases, = —7r + £, where £ is another small value. The value of 9 jumps by 

2tt — (e + C)- Unwrapping 0 results in the jump being the true value of e + (. 

Figure 7.1 gives an example of phase angle unwrapping for an angular state 

signal. The grey plot is an angle calculated through the arctangent trigonometric 

function, with a range of [—7r,7r]. The black plot illustrates an unwrapped signal, 

with no discontinuity. 

Phase angle unwrapping is accomplished by first considering the previously 

calculated value of the angle to be unwrapped. The previous angle value 

is wrapped, placing it in the phase containing zero. The wrapped previous angle is 

then compared to the current [wrapped] angle 8i, calculated by the atan2 trigono­

metric function. If a discontinuity of magnitude 7r or greater is detected, the current 

5 10 
Time (seconds) 

Figure 7.1. Example of phase angle unwrapping. 
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angle is offset, as given by, 

Oi = 0i_i - a((7r + a^_ i ) + (TT - aOi)), (7.1) 

where 

a = sign(0i-0i-1). (7.2) 

7.4.4 Numerical Differentiation 

The a; portion of the controller requires the derivative of the Polar state 8, and 

the dynamic extension requires the derivatives the controller output velocities. As 

these states can not be measured directly, and there are no observers in the system, 

the measured states must be differentiated numerically. 

Numerical differentiation is accomplished in RMCD by fitting a second-order 

Lagrange interpolating polynomial, 

J^)(xi-xi-1)(xi-xi+1)~t V'-6) 

t l x , \ 2x-Xj^1-xi 

l+l> (xi+\-Xi-{){xi+i-Xi) • 

to the v, u) and 0 signals. The first derivative at only the most recent data point is 

required. As such, x = xi+\. This reduces (7.3) to 

f(x) = f (Xi-i) ^ ^ { x *.\-xi+x) + 

f(Xi) (xi-xT-1i){xi-xi+1)+ (7-4) 

f t x . \ 2 x i + i - X i - i - X i 

( x i + i - X i - i ) ( x i + i - X i ) ' 

As is common with numerical differentiation methods, a significant amount 

of noise is generated in the output. This may cause stability problems with the 

kinematic controller and its dynamic extension. A low pass filter is needed to 

smooth the differentiated signals used for successful motion control. 
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7.4.5 Filtering 

To compensate for noise introduced by numerical differentiation of noisy signals, 

a digital Infinite Impulse Response lowpass filter is designed [47]. The transfer 

function for the general form of the filter is 

Y(z) b0 + blZ~l + ••• + bnz~n 

X(z) l + aiz~l-{ Yanz~n' 

A first order filter of the form, 

Y(z) _ z-1 

Xjz) ~ 1-z-1' 

is desired. In the s domain, the transfer function of the filter is given by, 

(7.5) 

(7.6) 

F(s) = (7.7) 

A desired corner frequency, u n — 10 Hz is chosen, as it is one third of the frequency 

of the localization feedback sampling frequency, resulting in, 

F(s) = (7.8) 
1 1 1 + 20TT V ' 

A continuous to discrete transformation is completed, using the Matlab command: 

c 2 d ( t f ( [ 2 0 * p i ] , [ 1 , 2 0 * p i ] ) 3 1/30, ' t u s t i n ' ) 

This command gives a transform in the z domain, 

0.5115+ 0.5115,- 1 

[ ) ~ 1 + 0.02305Z-1 ' { } 

These parameters are used for the IIR filter implemented in RMCD, applied to all 

numerically differentiated signals. 

7.4.6 State Feedback Data Timing 

To establish that state feedback data reaches the motion controller, and con­

troller commands reach the robots in sufficient time, experiments are performed to 

establish the network packet data timings. Localization data are available at 30 

frames per second, and the motion controllers implemented in RMCD must be run 
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at as fast a sampling rate as possible. It is also important that there is not too 

much latency, as lag in the system may cause instability. 

Figure 7.2 presents network data packet timing data for a series of experi­

ments where a robot was run under the posture stabilizing controller discussed 

in Section 4.3. The plot of RMCD packet timings correspond to the sampling 

frequency of localization data coming from VMCD. The vertical line represents the 

desired sampling frequency of 30 Hz. Data usually arrives at regular 0.0333 second 

intervals, the maximum sampling rate constrained by VMCD. Pilot packet timings 

correspond to the sampling frequency of the nonlinear controller sending wheel 

speed commands to the Pilot application on the robot. This rate is influenced by 

the frequency at which the controller in RMCD is called, which in turn is influenced 

by the sampling frequency of the localization data coming from VMCD. Packet 

latency for localization data is also given, showing that localization data usually 

does not lag much more than one third of the sampling frequency. 

Measurements of the controller sampling rate during execution of the trajectory 

tracker are taken. The controller is executed upon receipt of a single packet of data 

from the localization system. Sampling rate data is collected from two separate 

experiments. The timestamps of the trajectory data written during controller 

3000 
RMCD Packet timings 

3000 
Pilot Packet timings 

0.05 
Seconds 

3000 
RMCD Packet latency 

Seconds 
0.1 

Seconds 

Figure 7.2. Network data packet timings for RMCD and Pilot. 
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execution are differenced, creating a list of 5t values representing the time elapsed 

between each iteration of the controller. Figure 7.3 shows a histogram plot of 

the controller sampling rate for an experiment run during middle of the day. The 

controller runs near the specified sampling frequency of 30 Hz, with some variability. 

A vertical line denotes 33.3 milliseconds in this plot. 

The same experiment is run again later in the day. The results of this second 

experiment are plotted in Figure 7.4. The performance has degraded in this 

experiment, as shown by the sampling rate for many iterations occuring closer 

to 40 milliseconds. Many iterations have sampling rates at 70 and 105 milliseconds. 

A stability analysis is performed to document the effect of varying sample times 

on the controller. More details about stability analysis are given in Subsection 6.3.4. 

The sampling frequency is varied between 0 and 100 milliseconds, which is the range 

of values seen in Figure 7.3 and Figure 7.4. The magnitudes of the Z transform 

roots are plotted in Figure 7.5. In the plots, the dotted line represents the root 

magnitude, while the solid black line and solid grey lines represent the Real and 

Imaginary parts of the roots, respectively. The magnitude of all roots must be less 

than one to assure stability. 
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Figure 7.4. Controller sampling rates, low network resource usage (evening). 

7.4.7 Sys tem Identification 

The Garcia robot is subjected to a step velocity input in order to determine 

the system time constants needed for discrete stability analysis of the trajectory 

tracking controller. A step command of v — 0.5 meters per second is given for 

approximately five seconds. The resulting displacement magnitude, relative to the 

initial posture of the robot, is given in Figure 7.6. The displacement levels off 

abruptly due to the robot encountering an obstacle. 

The velocity calculated through numerical differentiation of the displacement 

data is shown in Figure 7.7. A time constant, r, for the system to respond to a 

velocity command can be approximated by, 

r « t / 4 , (7.10) 

where t is the amount of time it takes the system to reach the commanded velocity. 

From the velocity data presented here, the system reaches 0.5 meters per second in 

approximately 3 seconds. This results in a time constant r = 0.75. 

The measurements undertaken in this section verify that all system parameters 

are acceptable for operation of the robots under kinematic state feedback control. 

The next section details the results obtained from operating a robot within the 

Mobile Emulab workspace. 
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With the integration of kinematic state feedback control, the performance of 

Mobile Emulab as a complete system is evaluated. The inclusion of trajectory 

tracking control allows the robots to execute complex paths, with continual motion. 
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CHAPTER 8 

EXPERIMENTAL RESULTS 

The motion planning and control systems discussed in Chapter 3 and Chapter 4 

as implemented in RMCD are tested to evaluate their performance and verify their 

behavior. Experiments are run using Mobile Emulab, with robots operating in the 

same workspace intended to be used by normal users. RMCD is instrumented to log 

parametric data on robot posture, reference posture, controller velocity commands, 

and state data. Section 8.1 presents experimental results of the trajectory tracking 

controller. 

8.1 Kinematic State Feedback 
Trajectory Tracking 

Controller 
A series of experiments are run to evaluate the stability and performance of 

the kinematic state feedback trajectory tracking controller. Waypoint paths are 

designed to have a number of curved segments, with a suitable path length to test 

for accumulating errors. The implementation in RMCD is rigorously tested under 

real world conditions in this section. 

The experiments start out with short line segments without curves, then progress 

to more advanced trajectories with low reference velocities. After controller pa­

rameter tuning for stability and performance criteria, complex paths with higher 

reference velocities are tested. 

All results come from data logged from Emulab Mobile, and indicate data 

obtained from robots operating in their normal work environment. Trajectories 

are generated using the system outlined in Chapter 3. The curve type for all 

experiments is circular arc, as discussed in Section 3.3. 
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The parameters set for each experiment are in Table 8.1. The initial results 

of the controller obtained shortly after implementation are presented in Subsec­

tion 8.1.1. The reference path in this instance is a single straight line segment. The 

velocity of the trajectory is zero at the endpoints, with constant acceleration and 

maximum velocity at the midpoint. 

The initial straight line trajectory tracking experiment has parameters initial 

chosen from the simulations in Chapter 6. The dynamic extension is disabled, 

and the same experiment is performed with increased values of R and e. These 

gains are increased to stabilize the system, according to the analysis discussed in 

Section 6.3.4. The values of R are increased to obtain a larger path manifold circle, 

which improves tracking. The parameter e is increased during experimentation to 

be larger than the measured noise threshold of the state feedback data. 

The controller parameter ki is increased according to the discrete system stabil­

ity analysis (discussed in Section 6.3.4), and tested in the experiment presented in 

Section 8.1.5. The dynamic extension gains are chosen based on the desired system 

response, and verified through both simulation and experimentation. 

An initial experiment is performed to evaluate the implementation of the motion 

control system itself. The parameters chosen are taken directly from simulation, 

and the robot is only expected to accomplish motion at low velocity, with high 

error. With the operation of the controller verified, a second experiment is per­

formed to characterize the performance of the trajectory tracking system with the 

dynamic extension disabled. The dynamic extension filters out unbounded velocity 

commands, but slows the response of the robots. The goal of this experiment is to 

Table 8.1. Controller parameters for trajectory tracking experiments 
Exper iment R e ki k2 

kv kw 

(8.1.1) Straight line 0.02 0.001 0.3 0.3 3.0 0.5 
(8.1.2) Dynamic extension disabled 0.05 0.03 0.3 0.3 0.0 0.0 
(8.1.3) Multisegment path, single curve 0.05 0.03 0.3 0.5 3.0 3.0 
(8.1.4) Figure eight path: Low velocity 0.2 0.03 0.3 0.3 3.0 3.0 
(8.1.5) Figure eight path 0.02 0.003 0.85 0.3 3.0 3.0 
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determine if tracking error decreases with a faster system response, at the expense 

of stability. 

A multisegment trajectory is built to test the controller with curved and linear 

segments. Once the controller stability is established for baseline straight-line paths, 

the stability must subsequently be evaluated under curved paths, with curvature 

discontinuities. 

Two final experiments are performed. One experiment tests the ability of the 

motion controller to execute a more advanced multi-segment path at low velocity, 

with parameters obtained through simulation. With parameters obtained through 

discrete system stability analysis, the reference velocity is increased, and the motion 

controller performance is determined. 

8.1.1 Initial Trajectory Tracking Experiment: 
Straight Line Path 

A preliminary test run of the trajectory tracking controller in RMCD is per­

formed before parameter tuning. The resulting trajectory of this test is given in 

Figure 8.1. A straight line reference trajectory is chosen, one meter long, and with 

a maximum velocity of 0.1 meters per second. The parameters chosen for this 

experiment are in Table 8.1. The values are chosen by careful tuning of the motion 

controller in simulation. Low values of e and r reduce oscillations, and aggressively 

track the robot to the trajectory. The gains kv and kc increase the convergence of 

the position state e, while reducing instability in converging 6 and a (from (4.6)). 

The controller eventually fails to track the reference trajectory, terminating the 

experiment early. 

The parameters chosen for this experiment are directly from simulation, and 

do not provide the desired performance. The purpose at this point is to determine 

that the controller actually works, and could be employed to track a basic trajectory 

while utilizing visual state feedback. The experiment further evaluates the major 

components of Mobile Emulab, and establishes that the system will perform as 

desired once parameter tuning is completed. 

The polar system states are shown in Figure 8.2. The states calculated from 
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F i g u r e 8 . 1 . Initial straight line experiment, measured trajectory. 

camera-measured localization data are compared to simulation results obtained 

prior to the experiment. The state e in this experiment is larger than the simulated 

value, as the robot has trouble tracking the reference trajectory. The state d9 has 

a large amount of noise compared to simulation. 

The stability of the controller is marginal, especially the angular parts. The 

states 6 and a differ significantly from the simulation results. The controller is 

incapable of tracking any curved path with the stated parameters. 

Figure 8.3 shows the outputs of the main controller, and their derivatives. The 

experimental results for the output v are similar to the simulation results. There are 

spikes present in the controller linear velocity command, as a result of instability. 

The angular velocity command is unstable, ultimately resulting in the failure of the 

motion control system to track the reference trajectory. 

The dynamic extension outputs are given in Figure 8.4. These outputs corre­

spond directly to the velocity commands sent to the robots. The dynamic extension 

velocity signals are notably smoother than the raw controller velocity commands. 

This verifies that the dynamic extension is performing as intended, and acting as 

a low pass filter on the velocity commands sent to the robots. 

Overall, this experiment is a success, as the baseline performance of the motion 

controller is established. Using parameters obtained through iterative tuning in 

simulation, the system is capable of performing trajectory tracking at low frequency, 

using visual state feedback data. 
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Figure 8.3. Controller output corresponding to Figure 8.1. 
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The performance observed in this experiment is not sufficient for general use in 

Mobile Emulab, and as such, further experiments are needed to improve the motion 

controller. With rigorous testing and parameter tuning, the motion control system 

can attain the level of performance required for general use. 

8.1.2 Straight Line Path with 
Dynamic Extension 
Disabled 

The dynamic extension is disable to determine the behavior of the system 

without filtering of the velocity commands from the controller. This is performed 

to characterize the stability of the controller itself, without any influence from the 

dynamic extension. Steady state error is decreased, but the system is less stable. 

Discontinuities in the trajectory may cause total failure of the experiment, as the 

velocity command derivatives grow unbounded. 

The measured trajectory of this experiment is plotted in Figure 8.5. The 

reference trajectory is followed with minimal offset error, though there is overshoot 

present at the end of the run. The reference path starts at [2.0 — 5.0] and ends at 

[3.0 — 5.0]. The controller parameters used for this experiment are in Table 8.1. 

The lateral offset error is lower than in the initial experiment. While the perfor­

mance seems better, the system is actually much less stable, and is more susceptible 

to disturbances. Tracking a curved path with any curvature discontinuities would 

not be possible without the dynamic extension, or further parameter tuning. 

The system states are shown in Figure 8.6. The position error is higher than 

in other runs because of the suppression of the dynamic extension, and its filtering 

effects. Tracking error remains below 50 millimeters, allowing the entire experiment 

to be completed without intervention of the position error cutoff system. 

Compared to the prior experiment, the angular error states are significantly 

lower. The absolute position error is also lower. The filtering effect of the dynamic 

extension bounds the controller velocity commands, but has the effect of slowing 

the controller response. The ability to reject disturbances is diminished, but in the 

relative absence of disturbances, the stright line tracking performance is improved. 
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Figure 8.6. Straight line trajectory tracked with dynamic extension disabled, 
Polar states. 
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Figure 8.7 is a plot of the controller commands, which are translated into 

wheel speeds and then sent directly to the robot. There is noise present in the 

UJ signal, which corresponds to rotational velocity. This is a result of noise in the 

differentiation of Polar state 9. 

This experiment is successful in characterizing the performance of the controller 

by itself, without the filtering effects of the dynamic extension. As it is not 

practical to simply omit the dynamic extension from the motion control system 

while preserving system stability, further experiments are required to evaluate the 

system with the reintegration of the dynamic extension. 
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8.1.3 Three Segment Path with 
a Single Curve 

Another test run of the trajectory tracking controller is completed, this time 

added an additional line segment, along with a curve. The curve radius is constant 

at 0.5 meters, with the initial reference point at [2.0 — 5.0]. The same controller 

parameters are used as in the experiment discussed in Subsection 8.1.2. These 

parameters are given in Table 8.1. Figure 8.8 illustrates the resultant trajectory, 

with the reference and actual robot postures represented by the wheels and axles. 

The dynamic extension is enabled in this run. 

Left and right wheel velocities are presented in Figure 8.9. The data presented 

here represent the velocity commands calculated by (4.10), not the measured wheel 

velocities on the actual robot. The noise present in the signals is a result of the 

noise in the dynamic extension output. As expected when executing a turn in the 

positive (right hand) direction, the right wheel velocity is greater than the left. 

The motion controller is now verified to be capable of tracking paths with line 

and curve segments, which in this case possess curvature discontinuities. The 

system remains stable through these discontinuities, and successfully tracks the 

reference trajectory. To further evaluate the system performance, further parameter 

tuning 

8.1.4 Figure Eight Path: 
Low Velocity 

A more complex reference trajectory is devised for this experiment. The path 

is in the form of a figure eight, with turn radii of 0.5 meters. A maximum reference 

velocity of 0.05 meters per second, with a curve radius of 0.5 meters is used for this 

experiment. 

All curves in the reference trajectory are constant radius circular arcs. The path 

viapoints are [2.0 - 5.0], [3.0 - 5.0], [3.0 - 4.0], [2.0 - 4.0], [2.0 - 6.0], [1.0 - 6.0], 

[1.0 — 5.0], [2.0 — 5.0], in meters. The dynamic extension is enabled, as is the IIR 

filter. 
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Figure 8.9. Three segment trajectory, wheel velocity commands. 
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Figure 8.9. Three segment trajectory, wheel velocity commands. 
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The configured robot acceleration upon execution of the null primitive is 0.6 

meters per second squared. The controller parameters are given in Table 8.1. The 

reference trajectory starts and ends at [2.0 — 5.0], as shown in the above viapoint 

data. 

Figure 8.10 is a plot of the actual robot trajectory, compared to the reference 

trajectory. The robot tracks the trajectory through all the curves with minimal 

error. To illustrate the tracking error along the path, a plot of the robot compared 

to the reference robot at a single instant in time is given in Figure 8.11. 

The tracking error is this experiment remains low, given the low velocity of 

the reference trajectory. The filtered velocity commands are capable of minimizing 

error, and discontinuities in curvature do not have much effect on overall stability. 

The Polar states for this experiment are plotted in Figure 8.12. There are several 

discontinuous jumps in 6 and a, and e is approximately 40 millimeters through the 

entire run. 

Figure 8.13 shows the corresponding dynamic extension velocity commands for 

this experiment. The signal v is smooth, with little noise, and rapidly converges 

to the configured maximum reference velocity of 0.05 meters per second. Noise is 

present in the UJ, which is a result of the derivative noise from other components of 

the motion controller. 

This experiment illustrates that the trajectory tracking controller is capable of 

tracking a complex reference trajectory at a lower reference velocity. Position error 

is still higher than desired, but the controller is stable. Operating the robot at 

lower velocity is a detriment to performance, and the signal to noise ratio of the 

controller velocity commands becomes lower as the robot velocity lowers. 

To evaluate the final intended performance, the fully tuned motion control 

system is tested at a higher reference velocity. The trajectory characteristics are 

chosen to represent those intended during actual use of the testbed for wireless 

networking experiments. Higher velocities, and greater accuracy and reliability are 

desired. 
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Figure 8.10. Trajectories for low speed experiment. 
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Figure 8.10. Trajectories for low speed experiment. 
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Figure 8.11. Trajectory and instantaneous robot position comparison for low 
speed experiment. 
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Figure 8.12. Polar states for low speed experiment. 

150 

0.06~----~----~----~----~------~----~----~-----. 

0.04 
g 
(]) 0.02 

20 40 60 80 100 120 140 160 
t (sec) 

2 

-----"0 ca 
-=-
CD 

-1 

-2 
0 20 40 60 80 100 120 140 160 

t (sec) 

10 

5 
::0 ca 

0" 
.... -.... - ....-

<::3 

-5 

-10 I 

0 20 40 60 80 100 120 140 160 
t (sec) 

4 

0 2 

~...I ... l 
-

(]) 

oll. C/J _IL __ .... ... .. --"0 ca .- ~ ... .... fT" - . TI . -, -
5B -2 

-4 
0 20 40 60 80 100 120 140 160 

t (sec) 
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Figure 8.13. Dynamic extension output for low speed experiment. 
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Figure 8.13. Dynamic extension output for low speed experiment. 
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8.1.5 Figure Eight Path 

A second experiment using the figure eight path run in Subsection 8.1.4 is 

executed. The controller parameters for this experiment are given in Table 8.1. The 

resulting trajectory is presented in Figure 8.14. The begining and ending point of 

the trajectory is [2.0 — 5.0], with a heading of 4> = 0.0. The maximum configured 

reference velocity is 0.1 meters per second, and the maximimum configured robot 

acceleration is 0.2 meters per second squared. Acceleration and velocity limits 

are imposed to reduce tracking error from operation of robots on an uneven sur­

face, (e.g. carpet). There are curvature discontinuities in the path at [2.5 — 5.0], 

[2.0 — 4.5], [2.0 — 5.5], and [1.5 — 5.0]. These discontinuities cause the tracking 

error, which is high in the instances where the robot transitions from a line segment 

to a curved segment. The curves used for the generated reference trajectory are 

constant radius circular arcs. 

The Polar system states for this experiment are plotted in Figure 8.15. The 

maximum value of e is approximately 100 millimeters, which is within the maximum 

error tolerance of 200 millimeters. The states 6 and a remain within the interval 

—7T —> 7T, as a result of the phase angle unwrapping function. 

Figure 8.16 shows the controller velocity outputs v and lo, plus their respective 

time derivatives. The to signal is noisy, because of noise present in the numerical 

differentiation of 9 in the control law (4.34). There is also noise present in the 

numerical derivatives v and Co. 

The velocity outputs of the dynamic extension are given in Figure 8.17. The 

velocity signals v and to are smoother than the signals presented in Figure 8.16, 

as the dynamic extension acts as a low pass filter. At the time t ~ 75 seconds, 

a negative linear velocity is commanded as the robot overshoots the reference 

trajectory. At this point, the reference trajectory velocity is diminishing to zero. 

The wheel velocities resulting from the velocity commands given in Figure 8.17 

are plotted in Figure 8.18. These signals are sent directly to the robot for the 

low level wheel velocity controller to track. There is some jitter present, which is 

effectively filtered by the configured acceleration of 0.2 meters per second squared 
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Figure 8.14. Trajectory for figure eight path experiment. 

of the wheel velocity tracker. 

The experiments run in this section demonstrate that the trajectory tracking 

controller performs as desired. There exist remaining issues, such as tracking error 

caused by noise and jitter. The maximum successful tracking reference velocity is 

also lower than desired. Overall, it is shown that repeatable results are possible, 

demonstrating stable trajectory tracking of complex curved paths at moderate 

velocities. Furthermore, it is established that the components of Emulab Mobile 

are capable of supporting kinematic state feedback for motion control over a mul­

tipurpose computer network system. 
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Figure 8.16. Controller velocity outputs for figure eight path experiment. 
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Figure 8.16. Controller velocity outputs for figure eight path experiment. 



Figure 8 .17. Dynamic extension velocity outputs for figure eight path experiment. 
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157 

0.15 

g> 0.05 

-0.05 

Figure 8.18. Wheel velocity commands for figure eight path experiment. 

157 

0.3 

0.2 -~ 
-S 
~ 

0.1 
Q) 

....J 

0 

-0.1 
0 10 20 30 40 50 60 70 80 

t (sec) 

0.2 

0.15 
(j) -... 0.1 -S -.s:: 0.05 0> 
0: 

0 

-0.05 
0 10 20 30 40 50 60 70 80 

t (sec) 

Figure 8.18. Wheel velocity commands for figure eight path experiment. 



CHAPTER 9 

DISCUSSION 

The simulation data created in Chapter 6, and experimental data gathered in 

Chapter 8 are used to analyse the overall performance of the Mobile Emulab system, 

as related to the goals set for motion planning and control in Section 1.2. Despite 

the unexpected constraints that arose during the development of the system, the 

implementation of trajectory tracking control was successful. There remain perfor­

mance issues, related to sampling and stability, but the system is tuned to reject 

these disturbances. The trajectory generator is not complete, with higher order 

curves not integrated in to the system. 

The defining experiment for this research is illustrated by the trajectory given 

in Figure 8.14. The robot successfully tracks the provided trajectory, which is a 

figure eight shape with multiple curves. The trajectory has four discontinuities, 

which contribute to tracking error. The robot starts at [2.0 — 5.0] with a heading 

of 0 radians, and ends the run at the same posture. 

The initial posture is close to the initial point of the reference trajectory. The 

robot starts with an initial position error of approximately one centimeter. The 

controller used for motion control is designed to consider large initial errors. Initial 

errors are expected to be very low on Mobile Emulab, because robots are accurately 

positioned by the system prior to each movement. 

As the robot proceeds in the global x direction through the first segment of 

the trajectory, tracking error is low. Once the first line to curve transition is 

encountered, the tracking error increases. The robot is not kinematically capable 

of tracking the trajectory at this point, since curvature must increase linearly. The 

tracking error increases again as the robot progresses around the first curve, and 

then oscillates back to the trajectory. 
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These oscillations are caused by instability introduced by variability in the 

sampling rate of the controller. As discussed in Section 7.4.6, the controller is 

not executed at exactly 30 Hz. Variability is expected, but becomes a problem by 

making the system unstable as sampling frequency decreases. Noise and lag in the 

visual localization system further contribute to this problem. 

The wheel acceleration limits of the robots may be increased, but this also 

contributes to stability problems. A lower acceleration limit acts as a low pass 

filter, and helps reject disturbances in the controller velocity commands. With lower 

acceleration limits, attainable velocities are limited by dimensional constraints in 

the workspace, and by the length of reference trajectories. 

The problems with noise, lag, and sampling rate variability prevent the robots in 

Mobile Emulab from being operated at velocities above 0.1 meter per second while 

tracking C° continuous trajectories. The maximum error tolerance configured in 

Mobile Emulab is 200 millimeters. If tracking error becomes greater than this value, 

the motion controller will abort, and the trajectory execution will fail. 

If the localization data sampling rate were to increase, coupled with a decrease 

in noise, less filtering would be required. This would benefit the stability of the 

system, and allow for higher velocities to be obtained. The localization system 

properties are considered as constraints in this research. As such, few actions can 

be taken to increase the maximum velocity performance of the robots significantly 

under discrete kinematic control. 

The goal of successfully tracking trajectories with wheel velocities of 2.0 meters 

per second was not obtained. An accuracy of 1 centimeter for goal positioning was 

obtained at lower velocities. This is required for the accurate positioning of wireless 

experimentation hardware. 

The tuning of the motion controller system parameters in Table 4.1 greatly 

effects the performance of the trajectory tracking system. If the controller parame­

ters k\ and k<i are too large, the control commands will be too aggressive to assure 

stability. Large velocity commands will either cause the lower level wheel velocity 

controllers to saturate, or the robot to overrun its reference trajectory. This overrun 
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condition contributes to the path loops observed in simulation in Figure 6.24 and 

Figure 6.27. This phenomenon is not observed during experimentation, as the robot 

wheel velocities saturate, causing execution to fail before a undesired path loop is 

completed. An example of instability caused by high values of ki and k2 is in 

Figure 8.1. The main controller gains must be high enough to assure a satisfactory 

system response. Low values limit the maximum velocity of the robots, and increase 

tracking error. 

Larger dynamic extension gains increase the performance of the robots, while 

lower gains decrease tracking error. The response of the dynamic extension must 

be faster than the response of the main controller, or instability will result. This 

stability criterion limits the lower bounds of the dynamic extension gains. 

The path manifold radius, r must be sufficiently large, corresponding with the 

minimum radius of curvature of the robots. In the case of the differentially steered 

robots used in Mobile Emulab, the minimum radius of curvature is determined 

by the maximum velocity and wheel lateral traction limits. The purturbation 

parameter, e must be approximately three times the noise threshold of the state 

feedback data. 

An iterative process is undertaken to achieve optimal controller parameters in 

this research. The process involves a discrete system stability analysis, followed by 

experimental tuning of the parameters. The end result is a system that performs 

trajectory tracking with minimal error, under real world conditions. 
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CHAPTER 10 

CONCLUSION 

In this chapter, final notes and comments about the components discussed in this 

research are presented. The experimental results discussed in Chapter 8 establish 

that the remote kinematic state feedback control of multiple robots simultaneously 

is feasible, and at controller sampling rates of 30 Hz. Stability constraints are 

satisfied, though velocity and acceleration performance is not as high as originally 

desired. To improve performance and reliability, future work is discussed. 

In conclusion, a full motion planning and control system has been integrated into 

the Mobile Emulab wireless networking testbed system. Robots tracking complex 

trajectories under kinematic control are viable as couriers to carry wireless network­

ing equipment to arbitrary locations within a workspace. Remote state feedback 

control is possible at low sampling frequencies, with inexpensive, commercially 

available robots and cameras. 

Problems are encountered with system stability with the trajectory tracking 

controller. The actual robot performance falls short of the initially desired param­

eters. Higher order curves were not implemented in the trajectory generator of 

Mobile Emulab, which caused tracking error to increase. In full, the project was 

successful, and the high level goal of delivering a working motion planning and 

control system to Mobile Emulab was completed. 

10.1 Future Work 
The current implementation of Mobile Emulab provides a working system to per­

form wireless networking experiments remotely. Improvements to the performance 

and features of this system would increase reliability, enhance the user experient, 

and decrease the amount of time required to perform experiments. 
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The performance of the Mobile Emulab system could be improved with changes 

to the robots and operating environment. More powerful robots, with greater com­

puting resources would enhance the performance of the system, resulting in faster 

trajectories and less tracking error. Establishing the testbed in a fully controlled 

environment, without obstacles and with a uniform surface, would increase the 

reliability of the overall system. 

The overall reliability of the system would benefit from the inclusion of a 

robust obstacle avoidance system. This system needs to perform multiple robot 

coordination and conflict resolution. Better multiple robot capabilities would allow 

future temporal and spatial sharing of the Mobile Emulab resources, noted features 

of Emulab itself. 

10.1.1 Implementation 

The software running Mobile Emulab may be improved for usability and reliabil­

ity. The current user interface does not support the segmented viapoint trajectory 

generators, and there is little accommodation for state feedback control outside 

of RMCD. A localization system with cameras capable of faster framerates would 

increase the sampling rate of the controller and improve performance and stability. 

The amount of resource centralization may be altered to increase robot perfor­

mance and reliability. Currently, all path planning, motion control, and localization 

takes place remote from the robots. These components may be moved on board the 

robots, while preserving resources. A distributed solution is also possible, where 

resources on a single robot are used to control multiple robots in a local area. 

Locating motion control and localization closer to the robots would reduce the 

problems created by uncontrolled communication infrastructure. 

The built-in controller has far too little resources to implement effective motion 

control while preserving resources for experimentation. If a more powerful on 

board computer system were installed on the robots, the motion control could be 

decentralized. A motion controller better suited to digital control at low sampling 

frequencies would improve the trajectory tracking reliability. Better state estima­

tion using for example, an Extended Kalman Filter, would greatly improve tracking 
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error without requiring major modifications to the current motion controller. 

With resource requirements relaxed, the adoption of a dynamic controller is 

desired. Kinematic control is limited in performance, especially at higher velocities. 

Modifications would be required to allow the current robots to accept wheel torque 

commands instead of wheel velocity commands. With dynamic control, the robot 

operating speeds could be significantly increased, reducing the time required to run 

experiments. 

10.1.2 Trajectory Generation 

The trajectory generation system currently integrated in Mobile Emulab sup­

ports only line and circular arc segment trajectories. The inclusion of the spline 

based trajectory generator would improve robot performance, and benefit stability. 

The development of spline trajectories is complete, but implementation has not 

been attempted because of time constraints. 

10.1.3 Motion Control 

The trajectory tracking controller is still marginally stable under some circum­

stances, specifically when reference velocities are high, and the state feedback sam­

pling rate is erratic. The current controller would benefit from the implementation 

of an Extended Kalman Filter for state estimation. With an EKF, not only would 

smoother and more accurate Cartesian state data be provided, but also velocity 

data, which would eliminate the need for the controller and dynamic extension to 

rely on noisy numerical differentiation for their velocity states. 

A trajectory tracker of a different design may be necessary to improve the 

performance of the system. The current control law could be made discrete and 

rigorously analyzed to create a digital control law better suited for the current 

system. A different controller design, such as a sliding mode controller may be 

integrated as a replacement to the current controller. The software infrastructure 

required to implement any sort of kinematic state feedback controller is already in 

place. A new controller may be substituted, requiring only minimal effort. 

Major updates to the motion control system of Mobile Emulab may be per-

163 

error without requiring major modifications to the current motion controller. 

With resource requirements relaxed, the adoption of a dynamic controller is 

desired. Kinematic control is limited in performance, especially at higher velocities. 

Modifications would be required to allow the current robots to accept wheel torque 

commands instead of wheel velocity commands. With dynamic control, the robot 

operating speeds could be significantly increased, reducing the time required to run 

experiments. 

10.1.2 Trajectory Generation 

The trajectory generation system currently integrated in Mobile Emulab sup­

ports only line and circular arc segment trajectories. The inclusion of the spline 

based trajectory generator would improve robot performance, and benefit stability. 

The development of spline trajectories is complete, but implementation has not 

been attempted because of time constraints. 

10.1.3 Motion Control 

The trajectory tracking controller is still marginally stable under some circum­

stances, specifically when reference velocities are high, and the state feedback sam­

pling rate is erratic. The current controller would benefit from the implementation 

of an Extended Kalman Filter for state estimation. With an EKF, not only would 

smoother and more accurate Cartesian state data be provided, but also velocity 

data, which would eliminate the need for the controller and dynamic extension to 

rely on noisy numerical differentiation for their velocity states. 

A trajectory tracker of a different design may be necessary to improve the 

performance of the system. The current control law could be made discrete and 

rigorously analyzed to create a digital control law better suited for the current 

system. A different controller design, such as a sliding mode controller may be 

integrated as a replacement to the current controller. The software infrastructure 

required to implement any sort of kinematic state feedback controller is already in 

place. A new controller may be substituted, requiring only minimal effort. 

Major updates to the motion control system of Mobile Emulab may be per-



164 

formed. The addition of a dynamics based controller would significantly improve 

the performance of the robots. Moving the controller to a system offering real 

time performance would be highly beneficial. Emulab provides all the necessary 

components required to implement such a system. 

The current kinematic trajectory tracking is limited in performance, and would 

need to be replaced with a dynamic controller if significantly greater performance is 

desired. State estimation is required if the state feedback data sampling frequency 

is not increased. A controller taking into account the dynamics of the robots, 

and providing accurate state estimation is highly recommended for any future 

improvements to the motion control system of Mobile Emulab. 

10.1.4 Obstacle Avoidance 

The obstacle avoidance system discussed in Chapter 5 is in need of improvements 

before implementation and integration into Mobile Emulab. A bounding box 

hierarchy could be used to speed computation, and model much more detailed 

workspaces. Greater control of rolloff functions, approach and departure zones, 

secondary exclusion zones, and field orientation affords more fine tuning of field 

properties. This also creates the preliminary support structure needed to allow 

dynamic obstacles to be considered. The inclusion of support for moving obstacles 

would make VPPM better suited for use in solving multiple robot coordination 

issues. 

VPPM may be better suited to consider only a single obstacle at a time, because 

of problems arising from interactions of multiple obstacle fields, Similar to some of 

the solutions for potential field methods, a controller or distance algorithm could 

be put in place to determine which obstacle or obstacles to consider as members of 

the field overlay. This could introduce more problems, especially oscillations and 

discontinuities. 

VPPM could conceivably be combined with a trajectory generator, such as a 

probabilistic roadmap generator. While the trajectory generator creates a safe 

trajectory through a workspace or configuration space using geometric methods, 

VPPM could be used to allow dynamic or unforeseen obstacles to deflect a robot 
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from the planned trajectory, providing interim robot navigation when obstacles 

obstruct a preplanned trajectory. 

Combining VPPM with the viapoint-based trajectory generator, could be used 

to add obstacle avoidance support to Mobile Emulab in the future. VPPM could 

be used to deflect user defined paths, routing rough paths around obstacles, and 

allowing robots to react to transient obstacles that may appear in the workspace. 

To solve the problem concerning trajectories entering the obstacle exclusion zone 

on approach, the goal attractor field could be switched to repulse in order to drive 

the trajectory to a safe distance from the obstacle. To minimize the impact of a 

discontinuity, this switch could be accomplished with a saturation function, similar 

to methods commonly employed in sliding mode controller design. The obstacle 

field overlay itself could react to the current posture by changing strength, shape, 

or orientation. We could use these efforts to make VPPM more adaptive, while 

using all of its existing attributes. 

In conclusion, there is much room for improvement in the areas of trajectory 

generation, motion control, and obstacle avoidance within Mobile Emulab. The 

current system as designed provides a robust framework, and verifies the feasibility 

of a centralized robot control system for remote operation of wireless networking 

experiments. 
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