
MOTION PLANNING AND COORDINATION OF

MOBILE ROBOT BEHAVIOR FOR

MEDIUM SCALE DISTRIBUTED

WIRELESS NETWORK

EXPERIMENTS

by

Daniel Montrallo Flickinger

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

The University of Utah

December 2007

MOTION PLANNING AND COORDINATION OF

MOBILE ROBOT BEHAVIOR FOR

MEDIUM SCALE DISTRIBUTED

WIRELESS NETWORK

EXPERIMENTS

by

Daniel Montrallo Flickinger

A thesis submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Mechanical Engineering

The University of Utah

December 2007

Copyright © Daniel Montrallo Flickinger 2007

All Rights Reserved

Copyright © Daniel Montrallo Flickinger 2007

All Rights Reserved

THE UNIVERSITY OF UTAH GRADUATE SCHOOL

SUPERVISORY COMMITTEE APPROVAL

of a thesis submitted by

Daniel Flickinger

TIlls thesis has been read by each member of the following supervisory committee and
by majority vote has been found to be satisfactory.

v

�/

au: Mark M!nor

�ordMeek

J ayltepredG

THE TJNIVERSITY OF UTAH GRADUATE SCHOOL

FINAL READING APPROVAL

To the Graduate Council of the University of Utah:

I have read the thesis of Daniel Flickinger in its final form and have
found that (1) its format, citations and bibliographic style are consistent and acceptable;
(2) its illustrative materials including figures, tables and charts are in place; and (3) the
final manuscript is satisfactory to the supervisory committee and is ready for submission
to The Graduate School.

cMirkMinor
'---

Chair, Supervisory Committee

Approved for the Major Department

Kent S. Udell
Chairman

Approved for the Graduate Council

r
David S. Chapman

Dean of The Graduate School

ABSTRACT

In this research, a computerized motion planning and control system for multiple robots is

presented. Medium scale wheeled mobile robot couriers move wireless antennas within a

semicontrolled environment. The systems described in this work are integrated as components

within Mobile Emulab, a wireless research testbed. This testbed is publicly available to users

remotely via the Internet. Experimenters use a computer interface to specify desired paths and

configurations for multiple robots. The robot control and coordination system autonomously

creates complex movements and behaviors from high level instructions.

Multiple trajectory types may be created by Mobile Emulab. Baseline paths are comprised of

line segments connecting waypoints, which require robots to stop and pivot between each

segment. Filleted circular arcs between line segments allow constant motion trajectories. To avoid

curvature discontinuities inherent in line-arc segmented paths, higher order continuous

polynomial spirals and splines are constructed in place of the constant radius arcs.

Polar form nonlinear state feedback controllers executing on a computer system connected to

the robots over a wireless network accomplish posture stabilization, path following and trajectory

tracking control. State feedback is provided by an overhead camera based visual localization

system integrated into the testbed. Kinematic control is used to generate velocity commands sent

to wheel velocity servo loop controllers built into the robots.

Obstacle avoidance in Mobile Emulab is accomplished through visibility graph methods. The

Virtualized Phase Portrait Method is presented as an alternative. A virtual velocity field overlay is

created from workspace obstacle zone data. Global stability to a single equilibrium point, with

local instability in proximity to obstacle regions is designed into this system.

ABSTRACT

In this research, a computerized motion planning and control system for multiple robots is

presented. Medium scale wheeled mobile robot couriers move wireless antennas within a

semicontrolled environment. The systems described in this work are integrated as components

within Mobile Emulab, a wireless research testbed. This testbed is publicly available to users

remotely via the Internet. Experimenters use a computer interface to specify desired paths and

configurations for multiple robots. The robot control and coordination system autonomously

creates complex movements and behaviors from high level instructions.

Multiple trajectory types may be created by Mobile Emulab. Baseline paths are comprised of

line segments connecting waypoints, which require robots to stop and pivot between each

segment. Filleted circular arcs between line segments allow constant motion trajectories. To avoid

curvature discontinuities inherent in line-arc segmented paths, higher order continuous

polynomial spirals and splines are constructed in place of the constant radius arcs.

Polar form nonlinear state feedback controllers executing on a computer system connected to

the robots over a wireless network accomplish posture stabilization, path following and trajectory

tracking control. State feedback is provided by an overhead camera based visual localization

system integrated into the testbed. Kinematic control is used to generate velocity commands sent

to wheel velocity servo loop controllers built into the robots.

Obstacle avoidance in Mobile Emulab is accomplished through visibility graph methods. The

Virtualized Phase Portrait Method is presented as an alternative. A virtual velocity field overlay is

created from workspace obstacle zone data. Global stability to a single equilibrium point, with

local instability in proximity to obstacle regions is designed into this system.

The design, implementation, integration and analysis of these systems is presented in this

research. Experiments are completed to evaluate the performance of motion planning and control

under real world conditions.

V

The design, implementation. integration and analysis of these systems is presented in this

research. Experiments are completed to evaluate the performance of motion planning and control

under real world conditions.

v

To Mable To Mable

CONTENTS

A B S T R A C T iv

LIST OF FIGURES xi

LIST OF TABLES xv

A C K N O W L E D G E M E N T S xvi

C H A P T E R S

1. I N T R O D U C T I O N 1

1.1 Mobile Emulab 1
1.2 Requirements and Goals 2
1.3 Constraints 3

1.3.1 Robots 3
1.3.2 Localization 3
1.3.3 Software Systems 4

1.4 Challenges 4
1.4.1 Environment 4
1.4.2 Robot Performance 5
1.4.3 Communications 5
1.4.4 Trajectory Specification 5
1.4.5 Robot Control 5
1.4.6 Multiple Robot Coordination 6

1.5 Contributions 6
1.6 Document Structure 7

2. B A C K G R O U N D 8

2.1 Trajectory Specification 9
2.2 Motion Control 11
2.3 Obstacle Avoidance 13
2.4 Hardware 15

2.4.1 Robots 16
2.4.2 Localization 17

2.5 System Architecture 18
2.5.1 Emulab Master Control Daemon 18
2.5.2 Robot Master Control Daemon 19
2.5.3 Vision Master Control Daemon 19
2.5.4 Garcia Pilot 19

CONTENTS

ABSTRACT . iv

LIST OF FIGURES.. Xl

LIST OF TABLES. .. xv

ACKNOWLEDGEMENTS XVI

CHAPTERS

1. INTRODUCTION

1.1 Mobile Emulab .. .
1. 2 Requirements and Goals
1. 3 Constraints

1.3.1 Robots
1.3.2 Localization
1.3.3 Software Systems

1.4 Challenges .. .
1.4.1 Environment
1.4.2 Robot Performance
1.4.3 Communications
1.4.4 Trajectory Specification
1.4.5 Robot Control
1.4.6 Multiple Robot Coordination

1.5 Contributions .. .
1.6 Document Structure

1

1
2
3
3
3
4
4
4
5
5
5
5
6
6
7

2. BACKGROUND... 8

2.1 Trajectory Specification. .. 9
2.2 Motion Control .. 11
2.3 Obstacle Avoidance. .. 13
2.4 Hardware.. 15

2.4.1 Robots.. 16
2.4.2 Localization.. 17

2.5 System Architecture 18
2.5.1 Emulab Master Control Daemon. .. 18
2.5.2 Robot Master Control Daemon. .. 19
2.5.3 Vision Master Control Daemon. .. 19
2.5.4 Garcia Pilot. .. 19

3. T R A J E C T O R Y G E N E R A T O R 20

3.1 Iterative Goal Point Progression
Waypoint Model 21

3.2 User-specified Waypoint Model 23
3.2.1 Line Segment Filleting 25

3.3 Lines and Circular Arcs 28
3.4 Polynomial Spirals 29
3.5 Quintic Splines 29

3.5.1 Parameterization 32

4. M O T I O N C O N T R O L 36

4.1 Primitive Motion 37
4.2 Robot Kinematics 38

4.2.1 Cartesian Kinematic System 38
4.2.2 Polar Kinematic System 39
4.2.3 Kinematic Constraints 41

4.3 Posture Stabilizing Controller 42
4.4 Kinematic State Feedback

Trajectory Tracker 44
4.4.1 Control Law 45
4.4.2 Dynamic Extension 46
4.4.3 Controller Parameters 46

5. OBSTACLE A V O I D A N C E 47

5.1 Velocity Field Phase
Portrait Method 49

5.1.1 Goal Sink 49
5.1.2 Obstacle Fields 51

6. S IMULATION 59

6.1 Trajectory Generation 59
6.1.1 Line-Arc Trajectories 60
6.1.2 Spline Trajectories 61

6.2 Posture Stabilization Controller 63
6.2.1 Simulation Development 63
6.2.2 Simulation Results 66

6.3 Kinematic State Feedback
Trajectory Tracking
Controller 75

6.3.1 Simulation Development 77
6.3.2 Initial Conditions 78
6.3.3 Sampling Rates 80
6.3.4 Discrete System Stability Analysis 83
6.3.5 Simulation Results 93

viii

3. TRAJECTORY GENERATOR. .. 20

3.1 Iterative Goal Point Progression
Waypoint Model .. 21

3.2 User-specified Waypoint Model. .. 23
3.2.1 Line Segment Filleting. .. 25

3.3 Lines and Circular Arcs. .. 28
3.4 Polynomial Spirals " 29
3.5 Quintic Splines. .. 29

3.5.1 Parameterization.................................... 32

4. MOTION CONTROL 36

4.1 Primitive Motion " 37
4.2 Robot Kinematics .. 38

4.2.1 Cartesian Kinematic System. .. 38
4.2.2 Polar Kinematic System 39
4.2.3 Kinematic Constraints. .. 41

4.3 Posture Stabilizing Controller .. 42
4.4 Kinematic State Feedback

Trajectory Tracker. .. 44
4.4.1 Control Law. .. 45
4.4.2 Dynamic Extension. .. 46
4.4.3 Controller Parameters .. 46

5. OBSTACLE AVOIDANCE. .. 47

5.1 Velocity Field Phase
Portrait Method. .. 49

5.1.1 Goal Sink. .. 49
5.1.2 Obstacle Fields " 51

6. SIMULATION... 59

6.1 Trajectory Generation .. 59
6.1.1 Line-Arc Trajectories. .. 60
6.1.2 Spline Trajectories " 61

6.2 Posture Stabilization Controller. .. 63
6.2.1 Simulation Development 63
6.2.2 Simulation Results. .. 66

6.3 Kinematic State Feedback
Trajectory Tracking
Controller .. " 75

6.3.1 Simulation Development 77
6.3.2 Initial Conditions. .. 78
6.3.3 Sampling Rates .. 80
6.3.4 Discrete System Stability Analysis 83
6.3.5 Simulation Results " 93

viii

6.3.6 Simulation of Trajectory Tracking
Controller Functions
in RMCD 100

6.3.7 Filtering of Derivatives in
RMCD Controller
Implementation 101

6.3.8 Run Time of Motion Controller
in RMCD 106

6.4 Obstacle Avoidance I l l

7. I M P L E M E N T A T I O N 119

7.1 Primitive Motion Model
Implementation 119

7.2 Posture Stabilizing Controller
Implementation 120

7.3 Trajectory Generator
Implementation 121

7.4 Kinematic State Feedback Trajectory
Tracking Controller
Implementation 121

7.4.1 Program Structure 122
7.4.2 System Parameters 122
7.4.3 Phase Angle Unwrapping 123
7.4.4 Numerical Differentiation 125
7.4.5 Filtering 126
7.4.6 State Feedback Data Timing 126
7.4.7 System Identification 129

8. E X P E R I M E N T A L RESULTS 134

8.1 Kinematic State Feedback
Trajectory Tracking
Controller 134

8.1.1 Initial Trajectory Tracking Experiment:
Straight Line Path 136

8.1.2 Straight Line Path with
Dynamic Extension
Disabled 141

8.1.3 Three Segment Path with
a Single Curve 145

8.1.4 Figure Eight Path:
Low Velocity 145

8.1.5 Figure Eight Path 152

9. DISCUSSION 158

ix

6.3.6 Simulation of Trajectory Tracking
Controller Functions
in RMCD .. 100

6.3.7 Filtering of Derivatives in
RMCD Controller
Implementation 101

6.3.8 Run Time of Motion Controller
in RMCD. '" " " .. 106

6.4 Obstacle Avoidance 111

7. IMPLEMENTATION.................................... 119

7.1 Primitive Motion Model
Implementation ... 119

7.2 Posture Stabilizing Controller
Implementation ... 120

7.3 Trajectory Generator
Implementation ... 121

7.4 Kinematic State Feedback Trajectory
Tracking Controller
Implementation ... 121

7.4.1 Program Structure 122
7.4.2 System Parameters 122
7.4.3 Phase Angle Unwrapping 123
7.4.4 Numerical Differentiation 125
7.4.5 Filtering ... 126
7.4.6 State Feedback Data Timing 126
7.4.7 System Identification 129

8. EXPERIMENTAL RESULTS .. 134

8.1 Kinematic State Feedback
Trajectory Tracking
Controller .. 134

8.1.1 Initial Trajectory Tracking Experiment:
Straight Line Path 136

8.1.2 Straight Line Path with
Dynamic Extension
Disabled ... 141

8.1.3 Three Segment Path with
a Single Curve . 145

8.1.4 Figure Eight Path:
Low Velocity 145

8.1.5 Figure Eight Path , 152

9. DISCUSSION... 158

IX

10. CONCLUSION 161

10.1 Future Work 161
10.1.1 Implementation 162
10.1.2 Trajectory Generation 163
10.1.3 Motion Control 163
10.1.4 Obstacle Avoidance 164

REFERENCES 166

x

10. CONCLUSION... 161

10.1 Future Work•..•..•................ 161
10.1.1 fmplementation•.....•................ 162
10. 1.2 Trajectory Generation•.... 163
10.1.3 Motion Control• . . •. •.. 163
10.1.4 Obstacle Avoidance , 164

REFERENCES • 166

x

LIST OF FIGURES

2.1 Two Garcia robots 17

2.2 Mobile Emulab system architecture overview 18

3.1 Path generation using iterative goal point progression method 22

3.2 Path generation steps 23

3.3 Comparison of kinematic and closed form trajectory generators 24

3.4 Filleted arc, obtuse via point path angle 25

3.5 Filleted arc, acute via point path angle 26

3.6 Example of a quintic spline 30

3.7 Curvature profile of quintic spline example 31

3.8 Derivative of curvature of quintic spline example 32

3.9 Second derivative of curvature of quintic spline example 33

4.1 Polar kinematic diagram for posture stabilization 39

4.2 Polar kinematic diagram for trajectory tracking 40

5.1 Robot trajectory simulated in a cluttered environment 48

5.2 Field of a single goal sink at the origin 50

5.3 Rolloff of field functions ^ as indicated 52

5.4 An obstacle with no secondary rolloff function 53

5.5 Secondary rolloff function, obstacle angle 0 56

5.6 Secondary rolloff function, obstacle angle 7r /4 57

5.7 Secondary rolloff function, obstacle angle 7r /6 58

6.1 Example trajectory with quintic spline curves 60

6.2 Trajectory generation comparison, path 61

6.3 Trajectory generation comparison, velocity 62

6.4 Trajectory generation comparison, angular velocity 62

6.5 Posture stabilizing controller 64

6.6 Posture stabilizing controller, alternate version (forward motion only). 65

6.7 Posture stabilizing controller: main simulation application 67

LIST OF FIGURES

2.1 Two Garcia robots. 17

2.2 Mobile Emulab system architecture overview. 18

3.1 Path generation using iterative goal point progression method. 22

3.2 Path generation steps. , 23

3.3 Comparison of kinematic and closed form trajectory generators ' 24

3.4 Filleted are, obtuse via point path angle. .. 25

3.5 Filleted are, acute via point path angle , 26

3.6 Example of a quintic spline. .. 30

3.7 Curvature profile of quintic spline example , 31

3.8 Derivative of curvature of quintic spline example. 32

3.9 Second derivative of curvature of quintic spline example. 33

4.1 Polar kinematic diagram for posture stabilization. 39

4.2 Polar kinematic diagram for trajectory tracking. 40

5.1 Robot trajectory simulated in a cluttered environment. 48

5.2 Field of a single goal sink at the origin , 50

5.3 Rolloff of field functions "Ii as indicated. 52

5.4 An obstacle with no secondary rolloff function. 53

5.5 Secondary rolloff function, obstacle angle 0 , 56

5.6 Secondary rolloff fUIlctioIl, obstacle angle 7f / 4 , 57

5.7 Secondary rolloff function, obstacle angle 7f /6 , 58

6.1 Example trajectory with quintic spline curves ' 60

6.2 Trajectory generation comparison, path. , 61

6.3 Trajectory generation comparison, velocity. .. 62

6.4 Trajectory generation comparison, angular velocity. 62

6.5 Posture stabilizing controller. , 64

6.6 Posture stabilizing controller, alternate version (forward motion only). 65

6.7 Posture stabilizing controller: main simulation application. 67

6.8 Robot polar kinematics simulation block diagram 68

6.9 Posture stabilizing controller simulation: paths resulting from initial
postures on a unit circle 69

6.10 Posture stabilizing controller, simulated trajectory 70

6.11 Posture stabilizing controller, simulated system response 70

6.12 Posture stabilizing controller, controller output 71

6.13 Posture stabilizing controller, [—0.6 — 1.2 — 7r /2], simulated trajectory. 72

6.14 Posture stabilizing controller, [—0.6, —1.2, —7r/2], simulated system
response 73

6.15 Posture stabilizing controller, [—0.6, —1.2, —7r/2], controller output. . . 74

6.16 Posture stabilizing controller, [—0.6,-1.2, — 7r /2], wheel velocities. . . . 75

6.17 Posture stabilizing controller, [—0.6, —1.2, — 7r /2] , wheel accelerations. 75

6.18 Trajectory tracking controller, continuous sampling 76

6.19 Trajectory tracking controller simulation block diagram 77

6.20 Path loop caused by initial conditions 78

6.21 Initial trajectory with an aligned initial posture 79

6.22 Initial trajectory with a perpendicular initial posture 80

6.23 Initial trajectory with a reversed initial posture 81

6.24 Initial simulation with controller output sampled at 30 Hz 82

6.25 Controller performance under varying sampling rates 83

6.26 Simulation with continuous controller (no sampling) 84

6.27 Simulation with controller output quantized at 30 Hz 85

6.28 Z transform root magnitude of discrete system, varying r, e, states
1,2,3 89

6.29 Z transform root magnitude of discrete system, varying r, e, states 4,5. 89

6.30 Damping ratios of discrete system, varying r, e, all states 90

6.31 Z transform roots with varying reference velocity 91

6.32 Z transform damping ratios with varying reference velocity 92

6.33 Straight line trajectory: Simulated trajectory 94

6.34 Straight line trajectory: Reference velocity profile 95

6.35 Straight line trajectory: Simulated system response 96

6.36 Simulated trajectory with a single curve 97

6.37 Single curve trajectory: Reference velocity profile 98

xii

6.8 Robot polar kinematics simulation block diagram. 68

6.9 Posture stabilizing controller simulation: paths resulting from initial
postures on a unit circle. 69

6.10 Posture stabilizing controller, simulated trajectory " 70

6.11 Posture stabilizing controller, simulated system response. 70

6.12 Posture stabilizing controller, controller output. 71

6.13 Posture stabilizing controller, [-0.6 - 1.2 - 7T /2]' simulated trajectory. 72

6.14 Posture stabilizing controller, [-0.6, -1.2, -1f /2]' simulated system
response.. .. 73

6.15 Posture stabilizing controller, [-0.6, -1.2, -7T /2]' controller output. .. 74

6.16 Posture stabilizing controller, [-0.6, -1.2, -1f/2], wheel velocities 75

6.17 Posture stabilizing controller, [-0.6, -1.2, -7T/2], wheel accelerations. 75

6.18 Trajectory tracking controller, continuous sampling. 76

6.19 Trajectory tracking controller simulation block diagram. 77

6.20 Path loop caused by initial conditions " 78

6.21 Initial trajectory with an aligned initial posture. 79

6.22 Initial trajectory with a perpendicular initial posture. 80

6.23 Initial trajectory with a reversed initial posture. 81

6.21 Initial simulation with controller output sampled at 30 Hz. 82

6.25 Controller performance under varying sampling rates. 83

6.26 Simulation with continuous controller (no sampling). 84

6.27 Simulation with controller output quantized at 30 Hz. 85

6.28 Z transform root magnitude of discrete system, varying T, E, states
1,2,3. .. 89

6.29 Z transform root magnitude of discrete system, varying T, E, states 4,5. 89

6.30 Damping ratios of discrete system, varying T, E, all states. 90

6.31 Z transform roots with varying reference velocity. 91

6.32 Z transform damping ratios with varying reference velocity. 92

6.33 Straight line trajectory: Simulated trajectory. 94

6.34 Straight line trajectory: Reference velocity profile. 95

6.35 Straight line trajectory: Simulated system response. 96

6.36 Simulated trajectory with a single curve. .. 97

6.37 Single curve trajectory: Reference velocity profile. 98

xii

6.38 Single curve trajectory: Simulated system response 99

6.39 Simulated trajectory compared to RMCD functions for a curved path. 100

6.40 Simulated Polar state data compared to RMCD state data for a curved
path 102

6.41 Simulated controller output compared to RMCD controller output for
a curved path 103

6.42 RMCD controller implementation without filtering, reference path. . . 104

6.43 RMCD controller implementation without filtering, reference velocity
profile 105

6.44 RMCD controller implementation, kinematic states 107

6.45 RMCD controller implementation, controller output 108

6.46 RMCD controller implementation, dynamic extension output 109

6.47 VPPM field with a single obstacle I l l

6.48 VPPM generated trajectory successfully negotiating obstacle filled
region 112

6.49 VPPM failing to negotiate obstacle filled region 113

6.50 VPPM generated trajectory failing in dense obstacle region 114

6.51 Simulated trajectory with an initial position outside of a secondary
obstacle exclusion zone 115

6.52 Velocity magnitude of trajectory generated in Figure 6.51 116

6.53 Curvature of trajectory generated in Figure 6.51 117

6.54 Simulated trajectory with initial position inside of a secondary obsta­
cle exclusion zone 117

6.55 Velocity magnitude of trajectory generated in Figure 6.54 118

6.56 Curvature of trajectory generated in Figure 6.54 118

7.1 Example of phase angle unwrapping 124

7.2 Network data packet timings for RMCD and Pilot 127

7.3 Controller sampling rates, high network resource usage (midday) 128

7.4 Controller sampling rates, low network resource usage (evening) 129

7.5 Z transform roots with varying sampling frequency 130

7.6 Measured displacement magnitude of a step velocity input 131

7.7 Numerically differentiated velocity of a step velocity input 132

8.1 Initial straight line experiment, measured trajectory. 137

8.2 Initial straight line experiment, measured Polar states 138

xiii

6.38 Single curve trajectory: Simulated system response. 99

6.39 Simulated trajectory compared to RMCD functions for a curved path. 100

6.40 Simulated Polar state data compared to RMCD state data for a curved
path .. 102

6.41 Simulated controller output compared to RMCD controller output for
a curved path. ... 103

6.42 RMCD controller implementation without filtering, reference path. .. 104

6.43 RMCD controller implementation without filtering, reference velocity
profile. . .. 105

6.44 RMCD controller implementation, kinematic states .. , 107

6.45 RMCD controller implementation, controller output 108

6.46 RMCD controller implementation, dynamic extension output. 109

6.47 VPPM field with a single obstacle 111

6.48 VPPM generated trajectory successfully negotiating obstacle filled
region. . .. 112

6.49 VPPM failing to negotiate obstacle filled region 113

6.50 VPPM generated trajectory failing in dense obstacle region 114

6.51 Simulated trajectory with an initial position outside of a secondary
obstacle exclusion zone 115

6.52 Velocity magnitude of trajectory generated in Figure 6.51 116

6.53 Curvature of trajectory generated in Figure 6.51 117

6.54 Simulated trajectory with initial position inside of a secondary obsta-
cle exclusion zone. .. 117

6.55 Velocity magnitude of trajectory generated in Figure 6.54 118

6.56 Curvature of trajectory generated in Figure 6.54 118

7.1 Example of phase angle unwrapping 124

7.2 Network data packet timings for RMCD and Pilot 127

7.3 Controller sampling rates, high network resource usage (midday) 128

7.4 Controller sampling rates, low network resource usage (evening). 12~

7.5 Z transform roots with varying sampling frequency 130

7.6 Measured displacement magnitude of a step velocity input 131

7.7 Numerically differentiated velocity of a step velocity input 132

8.1 Initial straight line experiment, measured trajectory. 137

8.2 Initial straight line experiment, measured Polar states 138

xiii

8.3 Controller output corresponding to Figure 8.1 139

8.4 Motion controller velocity commands, corresponding to Figure 8.1.. . . 140

8.5 Straight line trajectory tracked with dynamic extension disabled 142

8.6 Straight line trajectory tracked with dynamic extension disabled, Po­
lar states 143

8.7 Straight line trajectory tracked with dynamic extension disabled, con­
troller velocity commands 144

8.8 Three segment trajectory, final postures 146

8.9 Three segment trajectory, wheel velocity commands 146

8.10 Trajectories for low speed experiment 148

8.11 Trajectory and instantaneous robot position comparison for low speed
experiment 149

8.12 Polar states for low speed experiment 150

8.13 Dynamic extension output for low speed experiment 151

8.14 Trajectory for figure eight path experiment 153

8.15 Polar system states for figure eight path experiment 154

8.16 Controller velocity outputs for figure eight path experiment 155

8.17 Dynamic extension velocity outputs for figure eight path experiment. . 156

8.18 Wheel velocity commands for figure eight path experiment 157

xiv

8.3 Controller output corresponding to Figure 8.1. 139

8.4 Motion controller velocity commands, corresponding to Figure 8.1. ... 140

8.5 Straight line trajectory tracked with dynamic extension disabled 142

8.6 Straight line trajectory tracked with dynamic extension disabled, Po-
lar states .. 143

8.7 Straight line trajectory tracked with dynamic extension disabled, con-
troller velocity commands 144

8.8 Three segment trajectory, final postures 146

8.9 Three segment trajectory, wheel velocity commands 146

8.10 Trajectories for low speed experiment 148

8.11 Trajectory and instantaneous robot position comparison for low speed
experiment. . .. 149

8.12 Polar states for low speed experiment 150

8.13 Dynamic extension output for low speed experiment 151

8.14 Trajectory for figure eight path experiment. 153

8.15 Polar system states for figure eight path experiment 154

8.16 Controller velocity outputs for figure eight path experiment 155

8.17 Dynamic extension velocity outputs for figure eight path experiment .. 156

8.18 Wheel velocity commands for figure eight path experiment 157

XIV

LIST OF TABLES

2.1 Robot specifications 16

4.1 Motion controller parameters 46

6.1 Controller parameters 101

6.2 Motion controller iteration times 110

7.1 RMCD controller output limits 123

8.1 Controller parameters for trajectory tracking experiments 135

LIST OF TABLES

2.1 Robot specifications. • • . . 16

4.1 Motion controller parameters , 46

6.1 Controller parameters• , 101

6.2 Motion controller iteration times . • 110

7.1 RMCD controller output limits 123

8.1 Controller parameters for trajectory tracking experiments 135

ACKNOWLEDGEMENTS

Thanks to Mark Minor, Sanford Meek, and the Flux Research Group. (Es­

pecially David Johnson, Tim Stack, Russ Fish, Leigh Stoller, and Jay Lepreau.)

Thanks to Youngshik Kim for his work on the kinematic controller.

ACKNOWLEDGEMENTS

Thanks to Mark Minor, Sanford Meek, and the Flux Research Group. (Es­

pecially David Johnson, Tim Stack, Russ Fish, Leigh Stoller, and Jay Lepreau.)

Thanks to Youngshik Kim for his work on the kinematic controller.

CHAPTER 1

INTRODUCTION

The design and implementation of a multiple robot motion control system for

a wireless networking research testbed using medium scale robots as couriers is

presented herein. Major aspects of this system, including trajectory generation,

motion control, obstacle avoidance, and multiple robot coordination are discussed.

In addition to the implementation of this system in a real world environment, the

challenges related to localization, communications, and control are analyzed.

It is hypothesized that remote kinematic state feedback control of multiple

robots simultaneously, with visual localization running at 30 Hz is feasible, and

capable of trajectory tracking with minimal error. This research aims to establish

this, and covers all the design and engineering decisions involved in creating a

system capable of evaluating robot motion control under these constraints.

1.1 Mobile Emulab
Emulab mobile [1], an extension to Emulab [2], is designed to allow remote users

to interactively conduct wireless network experiments. Medium scale robots are

used as couriers to position equipment such as antennas and computing hardware

within a semicontrolled environment.

Wireless network simulations may produce inadequate results. There exist

effects which are difficult to model, resulting in differing results when compar­

ing simulation to experimental data. Mobile Emulab is intended to provide the

infrastructure required to obtain data from real world experimentation, using com­

mercially available wireless networking devices. This allows research groups access

to remotely conduct experiments, without the initial cost and effort associated with

the implementation of a wireless network testbed.

CHAPTER 1

INTRODUCTION

The design and implementation of a multiple robot motion control system for

a wireless networking research testbed using medium scale robots as couriers is

presented herein. Major aspects of this system, including trajectory generation,

motion control, obstacle avoidance, and multiple robot coordination are discussed.

In addition to the implementation of this system in a real world environment, the

challenges related to localization, communications, and control are analyzed.

It is hypothesized that remote kinematic state feedback control of multiple

robots simultaneously, with visual localization running at 30 Hz is feasible, and

capable of trajectory tracking with minimal error. This research aims to establish

this, and covers all the design and engineering decisions involved in creating a

system capable of evaluating robot motion control under these constraints.

1.1 Mobile Emulab

Emulab mobile [1], an extension to Emulab [2], is designed to allow remote users

to interactively conduct wireless network experiments. Medium scale robots are

used as couriers to position equipment such as antennas and computing hardware

within a semicontrolled environment.

Wireless network simulations may produce inadequate results. There exist

effects which are difficult to model, resulting in differing results when compar­

ing simulation to experimental data. Mobile Emulab is intended to provide the

infrastructure required to obtain data from real world experimentation, using com­

mercially available wireless networking devices. This allows research groups access

to remotely conduct experiments, without the initial cost and effort associated with

the implementation of a wireless network testbed.

2

Emulab and Mobile Emulab are remotely accessible to experimenters over the

Internet. Emulab provides a web-based experimentation interface for users to cre­

ate, modify and manage network experiments. A Java applet interface is included in

Mobile Emulab to visualize and coordinate control of multiple robots simultaneously

while conducting experiments.

1.2 Requirements and Goals
Robots are chosen for Emulab mobile based on capabilities such as speed,

battery life, and payload. Factors such as cost, maintenance, ease of use, commercial

support, and availability are also strongly considered. Commercially available

robots are desired, in order to speed development time, and build a complete system

that can be reproduced by other research groups.

The robot workspace is best described as a standard office space type envi­

ronment. It consists of a flat carpeted area of 60 square meters. Furniture such

as chairs, tables, shelves, a couch, and other miscellanea are present around the

perimeter of the area. The environment, termed as semicontrolled, has frequent

foot traffic, causing transient obstacles to be present in the workspace. Robots

capable of operating in this environment are required to fulfill courier duties in

Mobile Emulab.

Robots must be capable of untethered, autonomous operation. Remote usage

is an important feature of Mobile Emulab. Minimal operator support is desired in

order to maximize the utility of the robots as couriers. Commands delivered over

a wireless ethernet control network are required, and the robots must be able to

carry the hardware required to achieve this.

It is desired that robots operate at near their rated maximum velocity of 2.0

meters per second. Reconfiguration of multiple robots in the workspace must

be completed as fast as possible in order to reduce the time required to run

experiments. Path tracking error must be as low as possible, and goal positioning

needs to be as accurate as 10 millimeters.

2

Emulab and Mobile Emulab are remotely accessible to experimenters over the

Internet. Emulab provides a web-based experimentation interface for users to cre­

ate, modify and manage network experiments. A Java applet interface is included in

Mobile Emulab to visualize and coordinate control of multiple robots simultaneously

while conducting experiments.

1.2 Requirements and Goals

Robots are chosen for Emulab mobile based on capabilities such as speed,

battery life, and payload. Factors such as cost, maintenance, ease of use, commercial

support, and availability are also strongly considered. Commercially available

robots are desired, in order to speed development time, and build a complete system

that can be reproduced by other research groups.

The robot workspace is best described as a standard office space type envi­

ronment. It consists of a fiat carpeted area of 60 square meters. Furniture such

as chairs, tables, shelves, a couch, and other miscellanea are present around the

perimeter of the area. The environment, termed as semicontrolled, has frequent

foot traffic, causing transient obstacles to be present in the workspace. Robots

capable of operating in this environment are required to fulfill courier duties in

Mobile Emulab.

Robots must be capable of untethered, autonomous operation. Remote usage

is an important feature of Mobile Emulab. Minimal operator support is desired in

order to maximize the utility of the robots as couriers. Commands delivered over

a wireless ethernet control network are required, and the robots must be able to

carry the hardware required to achieve this.

It is desired that robots operate at near their rated maximum velocity of 2.0

meters per second. Reconfiguration of multiple robots in the workspace must

be completed as fast as possible in order to reduce the time required to run

experiments. Path tracking error must be as low as possible, and goal positioning

needs to be as accurate as 10 millimeters.

3

1.3 Constraints
The systems in this research are used to augment a larger existing system.

This integration imposes constraints which would otherwise not be present in an

independent system. The hardware chosen for the system is determined by cost

and commercial availability constraints. To minimize development time and costs,

the robots used in the Mobile Emulab system are commercially available units. The

localization system is comprised of readily available hardware, which also speeds

development of the system. The Mobile Emulab system, and the components

discussed in this research take advantage of a large body of existing software in

the Emulab testbed. All communication, localization, and motion control of robots

in the system must be closely integrated with Emulab.

1.3.1 Robots

Six Acroname Garcia robots [3] are used as couriers in Mobile Emulab, chosen

for their cost and capabilities. These medium scale robots are used to move the

equipment needed for wireless network experimentation within Mobile Emulab.

The Garcia is a differentially steered wheeled mobile robot propelled by electric

motors, powered by a rechargable battery.

1.3.2 Localization

Cost and availability constraints dictate that an overhead camera localization

system is used on Mobile Emulab. This system consists of six overhead color

cameras pushing data to a custom built system designed to detect fiducial markers

placed on top of each robot. The cameras are of a type commonly used for security-

related surveilance purposes. The system provides continual localization data to

the robot control system in the form of a global Cartesian position, and orientation

for each robot in the workspace. To keep costs low, the cameras used are capable

of only 30 Hz framerates, which in turn limits the availability of localization data

to 30 Hz intervals. These localization data are used as state feedback for motion

control.

3

1.3 Constraints

The systems in this research are used to augment a larger existing system.

This integration imposes constraints which would otherwise not be present in an

independent system. The hardware chosen for the system is determined by cost

and commercial availability constraints. To minimize development time and costs,

the robots used in the Mobile Emulab system are commercially available units. The

localization system is comprised of readily available hardware, which also speeds

development of the system. The Mobile Emulab system, and the components

discussed in this research take advantage of a large body of existing software in

the Emulab testbed. All communication, localization, and motion control of robots

in the system must be closely integrated with Emulab.

1.3.1 Robots

Six Acroname Garcia robots [3J are used as couriers in Mobile Emulab, chosen

for their cost and capabilities. These medium scale robots are used to move the

equipment needed for wireless network experimentation within Mobile Emulab.

The Garcia is a differentially steered wheeled mobile robot propelled by electric

motors, powered by a rechargable battery.

1.3.2 Localization

Cost and availability constraints dictate that an overhead camera localization

system is used on Mobile Emulab. This system consists of six overhead color

cameras pushing data to a custom built system designed to detect fiducial markers

placed on top of each robot. The cameras are of a type commonly used for security­

related surveilance purposes. The system provides continual localization data to

the robot control system in the form of a global Cartesian position, and orientation

for each robot in the workspace. To keep costs low, the cameras used are capable

of only 30 Hz framerates, which in turn limits the availability of localization data

to 30 Hz intervals. These localization data are used as state feedback for motion

control.

4

1.3.3 Software Systems

Mobile Emulab is closely tied to Emulab, which provides an established software

base for building the robot control system. A user interface, event system, and other

supporting software are included in the system, but are outside the scope of this

research. Applications to coordinate communication, obtain localization data, and

send wheel velocity commands to robots were created by researchers at the Flux

Research Group at the University of Utah, and are discussed in this research to

provide background information. All components of the research presented in this

document are incorporated as part of the robot control application, termed RMCD,

of which an overview is given in Subsection 2.5.2.

More details about the various software components of Mobile Emulab are

discussed in Section 2.5. These components accomplish all coordination, commu­

nication, and control of robots in the testbed system.

1.4 Challenges
The constraints presented in Section 1.3 create several challenges, which are

addressed in this research. The operating environment, software environment, robot

hardware, and cost constraints all create problems that must be solved. The system

presented as part of the research discussed in this document addresses these issues

and provides a working system that allows robots to effectively operate as couriers

in a semicontrolled environment.

1.4.1 Environment

The environment in which robots must operate within Mobile Emulab is dif­

ferent from many of the more controlled lab environments used in other research.

Robots must avoid interaction with static obstacles, but additionally must account

for transient obstacles and multiple robot interaction issues. The carpeted surface

present in the testbed area is further detrimental to localization through odometry

due to wheel slip.

4

1.3.3 Software Systems

Mobile Emulab is closely tied to Emulab, which provides an established software

base for building the robot control system. A user interface, event system, and other

supporting software are included in the system, but are outside the scope of this

research. Applications to coordinate communication, obtain localization data, and

send wheel velocity commands to robots were created by researchers at the Flux

Research Group at the University of Utah, and are discussed in this research to

provide background information. All components of the research presented in this

document are incorporated as part of the robot control application, termed RMCD,

of which an overview is given in Subsection 2.5.2.

More details about the various software components of Mobile Emulab are

discussed in Section 2.5. These components accomplish all coordination, commu­

nication, and control of robots in the testbed system.

1.4 Challenges

The constraints presented in Section 1.3 create several challenges, which are

addressed in this research. The operating environment, software environment, robot

hardware, and cost constraints all create problems that must be solved. The system

presented as part of the research discussed in this document addresses these issues

and provides a working system that allows robots to effectively operate as couriers

in a semicontrolled environment.

1.4.1 Environment

The environment in which robots must operate within Mobile Emulab is dif­

ferent from many of the more controlled lab environments used in other research.

Robots must avoid interaction with static obstacles, but additionally must account

for transient obstacles and multiple robot interaction issues. The carpeted surface

present in the testbed area is further detrimental to localization through odometry

due to wheel slip.

5

1.4.2 Robot Performance

The robot cost and commercial availability constraints place challenges on the

overall capabilities of the robots. The robots chosen for use on the testbed are

advertised to have a maximum velocity of 2 meters per second. In practice, the

maximum velocity observed is lower. The maximum velocity achieved in the Mobile

Emulab workspace has been measured as 1.5 meters per second. This is attributed

to the fact that the robots are operating on carpet, and the size of the workspace.

There is not enough space for a robot to accelerate to maximum velocity before

crossing a boundary or encountering an obstacle.

1.4.3 Communications

All localization data, user commands, and robot control commands are passed

over an Ethernet network, with any communication between the central control

system and the robots taking place over wireless Ethernet. In the implementation

on Mobile Emulab, the motion controller is run within the central control system,

with the robots receiving only wheel speed commands over the wireless link. When

the link intermittently fails because of interference or other factors, the main control

loop is broken. The use of this link also presents problems with latency.

1.4.4 Trajectory Specification

Trajectories must be specified by users who may not be familiar with the field

of robotics. No mention of nonholonomic kinematic constraints is given within

the user interface for Mobile Emulab. Sparse information about the performance

capabilities is given, allowing users to focus on experiments, not robot control.

1.4.5 Robot Control

Motion control of multiple robots with a kinematic state feedback controller

running at a 30 Hz sampling rate over a potentially lossy communications link

is the biggest challenge in this research. In an effort to save vital on board

computational resources, the main motion controller cannot be run on board the

robots. Localization data cannot be provided at a rate any faster than 30 Hz,

5

1.4.2 Robot Performance

The robot cost and commercial availability constraints place challenges on the

overall capabilities of the robots. The robots chosen for use on the testbed are

advertised to have a maximum velocity of 2 meters per second. In practice, the

maximum velocity observed is lower. The maximum velocity achieved in the Mobile

Emulab workspace has been measured as 1.5 meters per second. This is attributed

to the fact that the robots are operating on carpet, and the size of the workspace.

There is not enough space for a robot to accelerate to maximum velocity before

crossing a boundary or encountering an obstacle.

1.4.3 Communications

All localization data, user commands, and robot control commands are passed

over an Ethernet network, with any communication between the central control

system and the robots taking place over wireless Ethernet. In the implementation

on Mobile Emulab, the motion controller is run within the central control system,

with the robots receiving only wheel speed commands over the wireless link. When

the link intermittently fails because of interference or other factors, the main control

loop is broken. The use of this link also presents problems with latency.

1.4.4 Trajectory Specification

Trajectories must be specified by users who may not be familiar with the field

of robotics. No mention of nonholonomic kinematic constraints is given within

the user interface for ~obile Emulab. Sparse information about the performance

capabilities is given, allowing users to focus on experiments, not robot control.

1.4.5 Robot Control

Motion control of multiple robots with a kinematic state feedback controller

. running at a 30 Hz sampling rate over a potentially lossy communications link

is the biggest challenge in this research. In an effort to save vital on board

computational resources, the main motion controller cannot be run on board the

robots. Localization data cannot be provided at a rate any faster than 30 Hz,

6

limiting the rate at which the control loop can be executed.

1.4.6 Multiple Robot Coordination

The coordination and control of multiple robots simultaneously presents several

challenges. Most significant is the prospect of robot collisions, which can cause

severe deviation from prescribed trajectories. Deadlocking is another issue, where

multiple robots mutually block each other from achieving their objectives.

Communications issues exist when considering multiple robots. The effective

sampling frequency and latency properties of state feedback for motion control

may be degraded when the number of robots simultaneously controlled increases.

Mobile Emulab has only six robots in operation, and scaling factors associated with

additional robots are not researched in this work.

1.5 Contributions
The components of the system discussed in the following chapters are devel­

oped to augment Emulab, an integrated experimental environment for distributed

systems and networks [2]. Emulab provides features useful for the creation of

experiments, along with the required user interface facilities, computing and net­

working hardware, and organizational structure. The topics presented in this

research are part of a greater contribution to provide mobile wireless networking

experimentation capabilities to Emulab. The mobile wireless extension to Emulab

is the first integrated autonomous motion planning and execution system on a

wireless research testbed [1].

Design constraints (discussed in Section 1.3) imposed in the extension of Emulab

create challenges in this research (Section 1.4). In response to communication con­

straints caused by networking limitations, robust kinematic state feedback control

is designed to accomplish reliable motion control of mobile robots. A continuous

controller is analyzed in discrete form to determine stability characteristics and

engineer suitable parameters for desired performance. Contributions are made in

achieving motion control with low sampling frequency and potentially high latency.

A kinematic controller, designed to function at assumed continuous sampling

6

limiting the rate at which the control loop can be executed.

1.4.6 Multiple Robot Coordination

The coordination and control of multiple robots simultaneously presents several

challenges. Most significant is the prospect of robot collisions, which can cause

severe deviation from prescribed trajectories. Deadlocking is another issue, where

multiple robots mutually block each other from achieving their objectives.

Communications issues exist when considering multiple robots. The effective

sampling frequency and latency properties of state feedback for motion control

may be degraded when the number of robots simultaneously controlled increases.

Mobile Emulab has only six robots in operation, and scaling factors associated with

additional robots are not researched in this work.

1.5 Contributions

The components of the system discussed in the following chapters are devel­

oped to augment Emulab, an integrated experimental environment for distributed

systems and networks [2]. Emulab provides features useful for the creation of

experiments, along with the required user interface facilities, computing and net­

working hardware, and organizational structure. The topics presented in this

research are part of a greater contribution to provide mobile wireless networking

experimentation capabilities to Emulab. The mobile wireless extension to Emulab

is the first integrated autonomous motion planning and execution system on a

wireless research testbed [1].

Design constraints (discussed in Section 1.3) imposed in the extension of Emulab

create challenges in this research (Section 1.4). In response to communication con­

straints caused by networking limitations, robust kinematic state feedback control

is designed to accomplish reliable motion control of mobile robots. A continuous

controller is analyzed in discrete form to determine stability characteristics and

engineer suitable parameters for desired performance. Contributions are made in

achieving motion control with low sampling frequency and potentially high latency.

A kinematic controller, designed to function at assumed continuous sampling

7

frequencies is adapted to function under worst-case conditions. Limited compu­

tational resources on the robots must be reserved for user applications needed to

perform and administer experiments. This constraint requires the motion controller

to reside on a remote system. Unlike conventional teleoperated systems, the robots

themselves have no autonomy, and no motion control aside from low level wheel

velocity servo loops.

The nature of the operating environment requires that an obstacle avoidance

system be included in Mobile Emulab. Initially, a geometric method is employed

to coordinate obstacle avoidance. A more advanced method of obstacle avoidance,

based on potential field methods, is designed to address the multiple robot obstacle

avoidance problem. A proposed solution to the local minima problem, through a

novel vector field method, is evaluated in simulation.

1.6 Document Structure
The remaining portions of this document are structured as follows: Chapter 2

contains background material concerning trajectory generation, motion control, and

obstacle avoidance, along with some background about the Mobile Emulab testbed

system. The main research topics follow in the next few chapters, with trajectory

generation discussed in Chapter 3, motion control in Chapter 4, and finally, obstacle

avoidance in Chapter 5.

The design of simulations for the above systems and associated results are pre­

sented in Chapter 6. Discussion of implementation issues for the various trajectory

generators and motion controllers is given in Chapter 7. Experimental results

concerning these areas are given in Chapter 8, and concluding remarks can be

found in Chapter 10.

7

frequencies is adapted to function under worst-case conditions. Limited compu­

tational resources on the robots must be reserved for user applications needed to

perform and administer experiments. This constraint requires the motion controller

to reside on a remote system. Unlike conventional teleoperated systems, the robots

themselves have no autonomy, and no motion control aside from low level wheel

velocity servo loops.

The nature of the operating environment requires that an obstacle avoidance

system be included in Mobile Emulab. Initially, a geometric method is employed

to coordinate obstacle avoidance. A more advanced method of obstacle avoidance,

based on potential field methods, is designed to address the multiple robot obstacle

avoidance problem. A proposed solution to the local minima problem, through a

novel vector field method, is evaluated in simulation.

1.6 Document Structure

The remaining portions of this document are structured as follows: Chapter 2

contains background material concerning trajectory generation, motion control, and

obstacle avoidance, along with some background about the Mobile Emulab testbed

system. The main research topics follow in the next few chapters, with trajectory

generation discussed in Chapter 3, motion control in Chapter 4, and finally, obstacle

avoidance in Chapter 5.

The design of simulations for the above systems and associated results are pre­

sented in Chapter 6. Discussion of implementation issues for the various trajectory

generators and motion controllers is given in Chapter 7. Experimental results

concerning these areas are given in Chapter 8, and concluding remarks can be

found in Chapter 10.

CHAPTER 2

BACKGROUND

Mobile robot testbeds [4, 5, 1], are used to evaluate high level coordination and

motion planning, or to run specific experiments, such as wireless network evaluation.

A common element in these systems is the design of a centralized control system.

In most examples, high level motion commands are issued to autonomous robots.

These robots may self-localize and have local autonomy. In this research, a system

is designed in an environment where the capabilities of the individual robots are

limited. No local autonomy is present, and all localization is handled centrally.

Robots send velocity commands received over a network directly to wheel level

controllers, minimizing the amount of computational resources required on each

robot. This maximizes the amount of resources available for experimentation.

Teleoperation over the Internet [6], pioneered in [7], involves the operation of

robots by remote users issuing high level commands. Web-based interfaces allow

users to coordinate robot motions [8]. For example, mobile robots may be remotely

controlled through haptic interfaces [9]. The model presented in this research is

similar, substituting the human-controlled haptic interface with a computer system

running a motion controller to execute a predetermined trajectory. Teleoperation of

mobile robots using commercially available wireless networking hardware is possible

[10, 11]. The system presented in this research advances this to use nondedicated

networks, with unpredictable characteristics. Control stability problems in this

environment are also addressed. Teleoperation is extended to separate all autonomy

from the robot. With this system, not only can a user be remote, but almost all

of the software controlling the robots can be at a completely different location as

both the user and the robot.

CHAPTER 2

BACKGROUND

Mobile robot testbeds [4, 5, 1], are used to evaluate high level coordination and

motion planning, or to run specific experiments, such as wireless network evaluation.

A common element in these systems is the design of a centralized control system.

In most examples, high level motion commands are issued to autonomous robots.

These robots may self-localize and have local autonomy. In this research, a system

is designed in an environment where the capabilities of the individual robots are

limited. 1\0 local autonomy is present, and all localization is handled centrally.

Robots send velocity commands received over a network directly to wheel level

controllers, minimizing the amount of computational resources required on each

robot. This maximizes the amount of resources available for experimentation.

Teleoperation over the Internet [6], pioneered in [7], involves the operation of

robots by remote users issuing high level commands. Web-based interfaces allow

users to coordinate robot motions [8]. For example, mobile robots may be remotely

controlled through haptic interfaces [9]. The model presented in this research is

similar, substituting the human-controlled haptic interface with a computer system

running a motion controller to execute a predetermined trajectory. Teleoperation of

mobile robots using commercially available wireless networking hardware is possible

[10, 11]. The system presented in this research advances this to use nondedicated

networks, with unpredictable characteristics. Control stability problems in this

. environment are also addressed. Teleoperation is extended to separate all autonomy

from the robot. With this system, not only can a user be remote, but almost all

of the software controlling the robots can be at a completely different location as

both the user and the robot.

9

Other wireless networking research testbeds exist, but not exclusively with robot

couriers capable of unconstrained motion within a similar area. Many testbeds

offer mobility of devices, but only through tethered robots with small workspaces.

Internet based control has been offered on other systems to control the motion

of robots. Other Internet-controllable systems only accomplish high level motion

planning remote from the robots, with lower-level motion controller implemented

traditionally on board the robots. The Mobile Emulab testbed integrates commer­

cial hardware into a full research testbed, at minimal cost, and available to anyone

for use from any location.

Communication networks have disturbances from time delays and lost data,

resulting in varying sampling rates for control loops [12, 13]. This adversely affects

the stability of motion controllers [14, 15]. In this research, the stability criterion of

a state feedback controller over a network is analyzed, solving issues with integrating

this work into a complete teleoperated robot system.

Motion control through state feedback running on remote systems is novel;

as is the control law applied to this system to simultaneously solve the posture

regulation, path following, and trajectory tracking problems. New research is ac­

complished into discrete stability analysis of controllers operating at slow sampling

rates. More details about current motion control methods utilizing state feedback

are discussed in Section 2.2.

The usage of line and circular arc based paths is well established in the research,

as is the generation of more continuous curvature arcs. Trajectory generation is

discussed in detail in Section 2.1.

A novel obstacle avoidance method similar to artificial potential field methods

is presented in this research. Other obstacle avoidance methods are discussed in

Section 2.3. A background of the system hardware and software architecture is

given in Section 2.4 and Section 2.5.

2.1 Trajectory Specification
A feasible reference goal posture, path, or trajectory is required before a motion

controller can move a robot. In its most basic form, a goal posture is set, and a

9

Other wireless networking research testbeds exist, but not exclusively with robot

couriers capable of unconstrained motion within a similar area. Many testbeds

offer mobility of devices, but only through tethered robots with small workspaces.

Internet based control has been offered on other systems to control the motion

of robots. Other Internet-controllable systems only accomplish high level motion

planning remote from the robots, with lower-level motion controller implemented

traditionally on board the robots. The Mobile Emulab testbed integrates commer­

cial hardware into a full research testbed, at minimal cost, and available to anyone

for use from any location.

Communication networks have disturbances from time delays and lost data,

resulting in varying sampling rates for control loops [12, 13]. This adversely affects

the stability of motion controllers [14, 15]. In this research, the stability criterion of

a state feedback controller over a network is analyzed, solving issues with integrating

this work into a complete teleoperated robot system.

Motion control through state feedback running on remote systems is novel;

as is the control law applied to this system to simultaneously solve the posture

regulation, path following, and trajectory tracking problems. New research is ac­

complished into discrete stability analysis of controllers operating at slow sampling

rates. More details about current motion control methods utilizing state feedback

are discussed in Section 2.2.

The usage of line and circular arc based paths is well established in the research,

as is the generation of more continuous curvature arcs. Trajectory generation is

discussed in detail in Section 2.l.

A novel obstacle avoidance method similar to artificial potential field methods

is presented in this research. Other obstacle avoidance methods are discussed in

Section 2.3. A background of the system hardware and software architecture is

given in Section 2.4 and Section 2.5.

2.1 Trajectory Specification
A feasible reference goal posture, path, or trajectory is required before a motion

controller can move a robot. In its most basic form, a goal posture is set, and a

10

robot is turned to orient towards the goal, then driven in a straight line to the goal,

then finally oriented to the goal posture.

Wheeled robots are capable of more complex motions, and only a subset of

robots is actually capable of reorienting by pivoting through a zero radius turn

about their center. Turns of arbitrary radius are possible, and paths must be

generated to take advantage of this. Segmented paths can be constructed. Segments

may involve motion in a straight line, or a turn. Path specification progresses

in complexity to the point of full parametric trajectories defining instantaneous

posture, and its derivatives, resulting in smooth, complex, continuous motion along

a defined path, at defined velocities and accelerations.

Nonholonomically feasible path generation can be accomplished by smoothing

nonfeasible paths. These generators take polygonal waypoint based paths, and

insert curves to produce more continuous paths. This type of generator forms a

path that is feasible considering a nonholonomic kinematic constraint [16].

The geometric curvature continuity of curves used in path generation is an

important aspect of the design of feasible paths [17]. Line and circular arc based

paths, pioneered by Reeds and Shepp, have discontinuities in curvature at the points

between lines and arcs. The curvature of a straight line segment is zero, and the

curvature instantaneously increases to a nonzero number when transitioning from

a line to an arc segment. Line and circular arc segment paths can be extended to

have more continuous curvature [18].

There exist two main categories of curves, closed form, such as circular arcs

and splines, and parametric curves with curvature as a function of arc length.

Closed form circular arcs are defined by their curvature, from which a radius

can be calculated. To arrive at a solution for the curve, a center point, radius,

and boundary points are needed. Parameterization of the curve can be done

geometrically. Splines are more complex, but still may be solved with geometric

methods and straightforward construction.

Parametric curves specified by curvature as a function of arc length allow

direct control over curvature continuity. They are more difficult to construct with

10

robot is turned to orient towards the goal, then driven in a straight line to the goal,

then finally oriented to the goal posture.

Wheeled robots are capable of more complex motions, and only a subset of

robots is actually capable of reorienting by pivoting through a zero radius turn

about their center. Turns of arbitrary radius are possible, and paths must be

generated to take advantage of this. Segmented paths can be constructed. Segments

may involve motion in a straight line, or a turn. Path specification progresses

in complexity to the point of full parametric trajectories defining instantaneous

posture, and its derivatives, resulting in smooth, complex, continuous motion along

a defined path, at defined velocities and accelerations.

Nonholonomically feasible path generation can be accomplished by smoothing

nonfeasible paths. These generators take polygonal waypoint based paths, and

insert curves to produce more continuous paths. This type of generator forms a

path that is feasible considering a nonholonomic kinematic constraint [16].

The geometric curvature continuity of curves used in path generation is an

important aspect of the design of feasible paths [17]. Line and circular arc based

paths, pioneered by Reeds and Shepp, have discontinuities in curvature at the points

between lines and arcs. The curvature of a straight line segment is zero, and the

curvature instantaneously increases to a nonzero number when transitioning from

a line to an arc segment. Line and circular arc segment paths can be extended to

have more continuous curvature [18].

There exist two main categories of curves, closed form, such as circular arcs

and splines, and parametric curves with curvature as a function of arc length.

Closed form circular arcs are defined by their curvature, from which a radius

can be calculated. To arrive at a solution for the curve, a center point, radius,

and boundary points are needed. Parameterization of the curve can be done

geometrically. Splines are more complex, but still may be solved with geometric

methods and straightforward construction.

Parametric curves specified by curvature as a function of arc length allow

direct control over curvature continuity. They are more difficult to construct with

11

boundary constraints at each end of the curve.

In the literature, Clothoids are well-known curves for smoothing paths [19, 20],

and have been heavily utilized in roadway and railroad design. Two Clothoids

are symmetrically paired, with zero curvature at the boundaries, and maximum

curvature at the center of the arc, at the intersection of the two Clothoids. A

major problem with Clothoids, and polynomial spirals in general is the lack of a

closed form solution. Fresnel integrals must be solved to obtain the coefficients

required to meet specific boundary conditions in Cartesian space. Parametric

curves can be created from polynomial spirals of any order [21]. Cubic spiral

curves [22] are analogous to Clothoid pairs. Optimal control theory may be used

to solve for smooth curvature and derivatives of curvature, while minimizing the

maximum curvature [23]. This produces a smooth curve that can be tracked by

a nonholonomic robot with minimal wheel slippage and tracking error, allowing

higher velocities.

2.2 Motion Control
Four major classes of motion control are considered in this research. As a

baseline, point to point motion comprised of straight line motions interrupted by

pivots, tracking polygonal waypoint based paths is considered. Posture stabilization

may be used to execute these polygonal paths, or to stabilize a robot to a single

final goal posture. To reduce motion time and expedite robot arrival to final goal

points, more continuous paths are used, and more advanced motion controllers are

needed. This class of motion controller is capable stabilizing a robot to a parametric

path, or a parametric trajectory.

Two forms of controllers may be used for motion control of wheeled mobile

robots. Kinematic control involves stabilizing a kinematic system by controlling a

robot through velocity inputs. Dynamic control includes a system model including

dynamic and kinematic states, and generally uses torque commands as inputs to

the robot. A hybrid form of control can be used, in which kinematic and dynamic

control are combined through the use of a dynamic extension [24]. Feedback

11

boundary constraints at each end of the curve.

In the literature, Clothoids are well-known curves for smoothing paths [19, 20],

and have been heavily utilized in roadway and railroad design. Two Clothoids

are symmetrically paired, with zero curvature at the boundaries, and maximum

curvature at the center of the arc, at the intersection of the two Clothoids. A

major problem with Clothoids, and polynomial spirals in general is the lack of a

closed form solution. Fresnel integrals must be solved to obtain the coefficients

required to meet specific boundary conditions in Cartesian space. Parametric

curves can be created from polynomial spirals of any order [21]. Cubic spiral

curves [22] are analogous to Clothoid pairs. Optimal control theory may be used

to solve for smooth curvature and derivatives of curvature, while minimizing the

maximum curvature [23]. This produces a smooth curve that can be tracked by

a nonholonomic robot with minimal wheel slippage and tracking error, allowing

higher velocities.

2.2 Motion Control

Four major classes of motion control are considered in this research. As a

baseline, point to point motion comprised of straight line motions interrupted by

pivots, tracking polygonal waypoint based paths is considered. Posture stabilization

may be used to execute these polygonal paths, or to stabilize a robot to a single

final goal posture. To reduce motion time and expedite robot arrival to final goal

points, more continuous paths are used, and more advanced motion controllers are

needed. This class of motion controller is capable stabilizing a robot to a parametric

path, or a parametric trajectory.

Two forms of controllers may be used for motion control of wheeled mobile

robots. Kinematic control involves stabilizing a kinematic system by controlling a

robot through velocity inputs. Dynamic control includes a system model including

dynamic and kinematic states, and generally uses torque commands as inputs to

the robot. A hybrid form of control can be used, in which kinematic and dynamic

control are combined through the use of a dynamic extension [24]. Feedback

12

stabilization of the nonholonomic system is used to solve the goal stabilization,

path tracking, and trajectory tracking problems [25].

Motion control of mobile robots initially centered on kinematic techniques. The

main focus during the early 1990s was on providing ideal velocity commands that

could provide posture regulation or trajectory tracking in consideration of nonholo­

nomic constraints. Approaches were based upon time varying and discontinuous

control laws that satisfied Brockett's theorem [25]. Polar coordinates were then

introduced in order to provide smooth time invariant kinematic controllers that

could provide posture regulation and possibly trajectory tracking [26, 27]. Given

the difficulty of reproducing these velocities on actual robots, the focus shifted in

the late 1990s to backstepping based controllers that considered kinematic control

[28] in conjunction with dynamic controllers to provide wheel torque commands

[29]. A variety of robust and adaptive controllers were then examined during the

early 2000s. Subsequent research has focused on providing smooth time invariant

kinematic controllers capable of satisfying physical constraints [30] in conjunction

with robust dynamic controllers capable of rejecting disturbances [31, 32]. The

Garcia robots used in this research utilize embedded velocity servo loops, however,

and are not amenable to these more advanced dynamic controllers that typically

require torque commands at higher sampling rates. While any kinematic motion

controller could have been used in this research, the path-manifold kinematic con­

troller presented in [32] and described in further detail in [30] is implemented since

it considers physical constraints and provides velocity commands suitable for the

Garcia robots used in Mobile Emulab.

Posture stabilization of wheeled mobile robots may be accomplished using a

kinematic state feedback linearizing controller [26]. This controller is employed for

posture regulation only, but can be extended to perform path following. A unicycle

kinematics model is specified, which is applicable to a differentially-steered vehicle.

A similar technique is applied to compliant frame robots, formed from two

coupled differentially steered robots, also using Lyapunov analysis [30]. This ve­

hicle has additional constraints over a vehicle with unicycle kinematics, such as a

12

stabilization of the nonholonomic system is used to solve the goal stabilization,

path tracking, and trajectory tracking problems [25].

Motion control of mobile robots initially centered on kinematic techniques. The

main focus during the early 1990s was on providing ideal velocity commands that

could provide posture regulation or trajectory tracking in consideration of nonholo­

nomic constraints. Approaches were based upon time varying and discontinuous

control laws that satisfied Brockett's theorem [25]. Polar coordinates were then

introduced in order to provide smooth time invariant kinematic controllers that

could provide posture regulation and possibly trajectory tracking [26, 27]. Given

the difficulty of reproducing these velocities on actual robots, the focus shifted in

the late 1990s to backstepping based controllers that considered kinematic control

[28] in conjunction with dynamic controllers to provide wheel torque commands

[29]. A variety of robust and adaptive controllers were then examined during the

early 2000s. Subsequent research has focused on providing smooth time invariant

kinematic controllers capable of satisfying physical constraints [30] in conjunction

with robust dynamic controllers capable of rejecting disturbances [31, 32]. The

Garcia robots used in this research utilize embedded velocity servo loops, however,

and are not amenable to these more advanced dynamic controllers that typically

require torque commands at higher sampling rates. While any kinematic motion

controller could have been used in this research, the path-manifold kinematic con­

troller presented in [32] and described in further detail in [30] is implemented since

it considers physical constraints and provides velocity commands suitable for the

Garcia robots used in Mobile Emulab.

Posture stabilization of wheeled mobile robots may be accomplished using a

kinematic state feedback linearizing controller [26]. This controller is employed for

posture regulation only, but can be extended to perform path following. A unicycle

kinematics model is specified, which is applicable to a differentially-steered vehicle.

A similar technique is applied to compliant frame robots, formed from two

coupled differentially steered robots, also using Lyapunov analysis [30]. This ve­

hicle has additional constraints over a vehicle with unicycle kinematics, such as a

13

minimum radius of curvature. The time invariant smooth control law developed for

this application employs a minimum radius of curvature, and also limits the vehicle

to forward motion only.

The Lyapunov technique can also be used for a vehicle with bicycle-like kine­

matics. [27]. Cartesian state equations are converted into polar form, and a velocity

and curvature based control law is developed. As with the compliant frame vehicle,

this control law limits the vehicle to forward motion only.

An example of path planning for obstacle avoidance is the use of a sliding mode

controller with a potential field and obstacle exclusion zones based on electrical

charge models. [33]. In this method, sliding mode control is used to direct a path

around known obstacles. Another sliding mode controller executes above the single

obstacle path planner to plan paths with multiple obstacles by considering a single

obstacle at each time increment. Various optimizations are made to eliminate large

accelerations and tight turning radii.

Trajectory tracking control involves stabilizing a robot to a continuously moving

reference frame. A trajectory has both position and velocity parameters, and

may additionally include acceleration and curvature references. Trajectory tracking

control can be accomplished with feedback from visual data [34]. Noisy image data

can be filtered, and used to estimate robot kinematic state data. An Extended

Kalman Filter may be used to provide robust state estimations based on noisy data

from imaging systems.

Lyapunov design may be used to develop a smooth, time invariant control law

to solve the trajectory tracking problem [28, 30]. The kinematic system must be

modeled in Polar form, or a smooth, time invariant control law is not possible.

2.3 Obstacle Avoidance
The earliest example found in the literature of mobile robot obstacle avoidance

using harmonic potential fields is the pioneering work by Khatib [35]. Utilizing

this method, virtual attractive and repulsive forces acting upon manipulators and

mobile robots are created by generating a dipolar field between the center of an

13

minimum radius of curvature. The time invariant smooth control law developed for

this application employs a minimum radius of curvature, and also limits the vehicle

to forward motion only.

The Lyapunov technique can also be used for a vehicle with bicycle-like kine­

matics. [27]. Cartesian state equations are converted into polar form, and a velocity

and curvature based control law is developed. As with the compliant frame vehicle,

this control law limits the vehicle to forward motion only.

An example of path planning for obstacle avoidance is the use of a sliding mode

controller with a potential field and obstacle exclusion zones based on electrical

charge models. [33]. In this method, sliding mode control is used to direct a path

around known obstacles. Another sliding mode controller executes above the single

obstacle path planner to plan paths with multiple obstacles by considering a single

obstacle at each time increment. Various optimizations are made to eliminate large

accelerations and tight turning radii.

Trajectory tracking control involves stabilizing a robot to a continuously moving

reference frame. A trajectory has both position and velocity parameters, and

may additionally include acceleration and curvature references. Trajectory tracking

control can be accomplished with feedback from visual data [34]. Noisy image data

can be filtered, and used to estimate robot kinematic state data. An Extended

Kalman Filter may be used to provide robust state estimations based on noisy data

from imaging systems.

Lyapunov design may be used to develop a smooth, time invariant control law

to solve the trajectory tracking problem [28, 30]. The kinematic system must be

modeled in Polar form, or a smooth, time invariant control law is not possible.

2.3 Obstacle Avoidance

The earliest example found in the literature of mobile robot obstacle avoidance

using harmonic potential fields is the pioneering work by Khatib [35]. Utilizing

this method, virtual attractive and repulsive forces acting upon manipulators and

mobile robots are created by generating a dipolar field between the center of an

14

obstacle, and the goal point. A path is then created by solving the gradient of the

potential field.

Problems with potential field methods are well described in the literature [36].

The most common problem is the creation of traps due to local minima. Paths

resulting from solving a potential field may experience lateral oscillations in the

presence of multiple obstacles. This is especially a problem with methods that

consider multiple obstacles by switching between single obstacles.

To diminish oscillations of paths resulting from potential functions, path gener­

ation using a two-dimensional Gaussian function can be used [37]. Oscillations in

potential fields can be eliminated using a modified Newton's method, instead of a

gradient descent method [38].

It is analytically difficult to design potential fields restricted to have a single

minimum coinciding with the goal. This is especially difficult when considering

multiple obstacles concurrently. The generation of local minima may be suppressed

with potential functions using Laplace's equation [39]. Instead of suppressing the

generation of local minima, multiple minima can be searched with a graph search

algorithm to achieve a final goal configuration [40]. The major drawback with this

method is the increased computation requirements, especially when considering

dynamic obstacle environments.

Sliding mode control can be used to allow a nonholonomic wheeled mobile robot

track reference paths generated through potential energy fields. A single field for

each obstacle is modeled, while a higher level spatial controller is used to apply only

the field from the obstacle closest to the robot. Local minima are not likely to be

created due to the consideration of only a single obstacle at a time. An electrostatic

field is used, guaranteeing that field lines do not escape to infinity [33]. A Coulomb

model electrostatic potential field with harmonic Laplacian properties can be used

to suppress local minima [41]. High path curvature can result without modifying

the sliding surface by shrinking obstacle regions gradually when the robot comes in

proximity.

The problem of local minima in potential field methods can be avoided by

14

obstacle, and the goal point. A path is then created by solving the gradient of the

potential field.

Problems with potential field methods are well described in the literature [36].

The most common problem is the creation of traps due to local minima. Paths

resulting from solving a potential field may experience lateral oscillations in the

presence of multiple obstacles. This is especially a problem with methods that

consider multiple obstacles by switching between single obstacles.

To diminish oscillations of paths resulting from potential functions, path gener­

ation using a two-dimensional Gaussian function can be used [37]. Oscillations in

potential fields can be eliminated using a modified Newton's method, instead of a

gradient descent method [38].

It is analytically difficult to design potential fields restricted to have a single

minimum coinciding with the goal. This is especially difficult when considering

multiple obstacles concurrently. The generation of local minima may be suppressed

with potential functions using Laplace's equation [39]. Instead of suppressing the

generation of local minima, multiple minima can be searched with a graph search

algorithm to achieve a final goal configuration [40]. The major drawback with this

method is the increased computation requirements, especially when considering

dynamic obstacle environments.

Sliding mode control can be used to allow a nonholonomic wheeled mobile robot

track reference paths generated through potential energy fields. A single field for

each obstacle is modeled, while a higher level spatial controller is used to apply only

the field from the obstacle closest to the robot. Local minima are not likely to be

created due to the consideration of only a single obstacle at a time. An electrostatic

field is used, guaranteeing that field lines do not escape to infinity [33]. A Coulomb

model electrostatic potential field with harmonic Laplacian properties can be used

to suppress local minima [41]. High path curvature can result without modifying

the sliding surface by shrinking obstacle regions gradually when the robot comes in

proximity.

The problem of local minima III potential field methods can be avoided by

15

using geometric methods such as cellular decomposition, and Voronoi diagrams.

With cellular decomposition, the free space is divided into discrete cells, which

are heuristically searched using graph theory to obtain a partial ordering of cells

starting from the goal point [42]. Voronoi diagrams can be applied to generate a

safe reference path from initial to goal configurations. A major problem with this

type of solution is that smooth continuous paths are not always created. Reference

paths are generally polygonal when using geometric path planning methods, but

may be smoothed to fit within the nonholonomic kinematic constraints of certain

wheeled mobile robots.

A novel method based on potential field methods is introduced in this research.

Termed the Velocity field Phase Portrait Method, or VPPM, the system is based

on velocity fields to provide obstacle avoidance in cluttered environments. VPPM

avoids many of these issues related to potential fields by utilizing the properties of

nonlinear system equations to control equilibrium points, and minimize oscillations.

Potential fields may be utilized in control schemes for mobile robots [43]. Likewise,

the VPPM field may be designed to provide a desired trajectory, with highly

adjustable field overlay parameters.

The obstacle field overlay can be modified in such a way that field vectors

are directed outwards from the geometric center of a cluster of obstacles. An

obstacle field is not constrained to act only radially outward from the center of

its corresponding obstacle region. Given this, unidirectional obstacle fields can be

created, allowing groups of obstacles to have custom-designed field polarities. This

allows local minima creation to be eliminated.

Our method allows the field in proximity to obstacle regions to be statically

tuned for desired path curvature. The field does not need to be reactively changed

in relation to the current position of a robot.

2.4 Hardware
The core components of Mobile Emulab are the robots, localization system,

computing hardware, and wireless networking hardware. These systems are all

15

using geometric methods such as cellular decomposition, and Voronoi diagrams.

With cellular decomposition, the free space is divided into discrete cells, which

are heuristically searched using graph theory to obtain a partial ordering of cells

starting from the goal point [42]. Voronoi diagrams can be applied to generate a

safe reference path from initial to goal configurations. A major problem with this

type of solution is that smooth continuous paths are not always created. Reference

paths are generally polygonal when using geometric path planning methods, but

may be smoothed to fit within the nonholonomic kinematic constraints of certain

wheeled mobile robots.

A novel method based on potential field methods is introduced in this research.

Termed the Velocity field Phase Portrait Method, or VPPM, the system is based

on velocity fields to provide obstacle avoidance in cluttered environments. VPPM

avoids many of these issues related to potential fields by utilizing the properties of

nonlinear system equations to control equilibrium points, and minimize oscillations.

Potential fields may be utilized in control schemes for mobile robots [43]. Likewise,

the VPPM field may be designed to provide a desired trajectory, with highly

adjustable field overlay parameters.

The obstacle field overlay can be modified in such a way that field vectors

are directed outwards from the geometric center of a cluster of obstacles. An

obstacle field is not constrained to act only radially outward from the center of

its corresponding obstacle region. Given this, unidirectional obstacle fields can be

created, allowing groups of obstacles to have custom-designed field polarities. This

allows local minima creation to be eliminated.

Our method allows the field in proximity to obstacle regions to be statically

tuned for desired path curvature. The field does not need to be reactively changed

in relation to the current position of a robot.

2.4 Hardware

The core components of Mobile Emulab are the robots, localization system,

computing hardware, and wireless networking hardware. These systems are all

16

comprised of commercially available products, with no specialized hardware present

in the system. Commercial hardware is chosen to limit costs, and to lower the

barrier to implementation of Mobile Emulab by other research groups. An entire

system can be bought and set up to a full working system by any moderately

equipped group.

2.4.1 Robots

Six Acroname Garcia [3] robots are used as couriers by Mobile Emulab. This is

a commercially available robotics platform. Specifications for the Garcia robot are

found in Table 2.1. A photograph of two Garcia robots in their normal workspace

is shown in Figure 2.1. The colored fiducials used for localization are visible in this

photograph, as are the on board computers, and wireless antennas.

The Garcia robots are chosen as couriers in Mobile Emulab to meet the con­

straint of using commercially available hardware. The robots are available for

purchase as a commercial product, and include all the components preassembled.

Furthermore, a software API is provided that allows point to point motion, along

with the ability to command wheel velocities directly.

The robots are of steel construction, with an electric motor powering each of the

two wheels independently. Power is obtained from rechargable nickel metal hydride

batteries, commonly used in hobby scale radio controlled vehicles. The robots each

come configured with a Stargate computer system mounted within the case, at the

top.

Slight modifications are performed to each robot. Colored fiducials are added to

the top to allow tracking by the visual localization system. The mounting plate for

the Stargate computer is raised to allow the inclusion of addition equipment needed

Table 2.1. Robot Specifications
Length 10.980 in 0.2789 m
Width 7.673 in 0.1949 m
Height 3.680 in 0.0935 m
Track Width 7.000 in 0.1778 m
Wheel radius 3.996 in 0.1015 m

16

comprised of commercially available products, with no specialized hardware present

in the system. Commercial hardware is chosen to limit costs, and to lower the

barrier to implementation of Mobile Emulab by other research groups. An entire

system can be bought and set up to a full working system by any moderately

equipped group.

2.4.1 Robots

Six Acroname Garcia [3] robots are used as couriers by Mobile Emulab. This is

a commercially available robotics platform. Specifications for the Garcia robot are

found in Table 2.1. A photograph of two Garcia robots in their normal workspace

is shown in Figure 2.1. The colored fiducials used for localization are visible in this

photograph, as are the on board computers, and wireless antennas.

The Garcia robots are chosen as couriers in Mobile Emulab to meet the con­

straint of using commercially available hardware. The robots are available for

purchase as a commercial product, and include all the components preassembled.

Furthermore, a software API is provided that allows point to point motion, along

with the ability to command wheel velocities directly.

The robots are of steel construction, with an electric motor powering each of the

two wheels independently. Power is obtained from rechargable nickel metal hydride

batteries, commonly used in hobby scale radio controlled vehicles. The robots each

come configured with a Stargate computer system mounted within the case, at the

top.

Slight modifications are performed to each robot. Colored fiducials are added to

the top to allow tracking by the visual localization system. The mounting plate for

the Stargate computer is raised to allow the inclusion of addition equipment needed

Table 2.1. Robot Specifications

l Length 10.980 in 0.2789 m
Width 7.673 in 0.1949 m

I Height 3.680 in 0.0935 m
I Track Width 7.000 in 0.1778 m
I Wheel radius 3.996 in 0.1015 m

17

Figure 2.1. Two Garcia robots.

for sensor network experimentation. Finally, a long antenna extension is added, to

place the antenna close to human hip height. This antenna height is desirable to

model mobile devices that may be carried by persons either in a pocket, or clipped

to a belt.

2.4.2 Localization

Robot localization is accomplished by an overhead camera system installed in

the robot workspace. Downward looking cameras continually track colored fiducial

markings on each robot. A series of cameras output localization data used for robot

tracking and state feedback. Corrections are made for lens distortion, resulting in

a mean position error estimate of approximately 10 millimeters.

17

Figure 2.1. Two Garcia robots.

for sensor network experimentation. Finally, a long antenna extension is added, to

place the antenna close to human hip height. This antenna height is desirable to

model mobile devices that may be carried by persons either in a pocket, or clipped

to a belt.

2.4.2 Localization

Robot localization is accomplished by an overhead camera system installed in

the robot workspace. Downward looking cameras continually track colored fiducial

markings on each robot. A series of cameras output localization data used for robot

tracking and state feedback. Corrections are made for lens distortion, resulting in

0. mean position crror estimate of approximately 10 millimeters.

18

2.5 System Architecture
Mobile Emulab is divided into four distinct software systems, termed daemons.

These applications run noninteractively, and handle all the calculation, communica­

tion, and data collection needed to control robots in the testbed environment. The

three main master control daemons run as single instances for each experiment in

the background on a fixed computer, while instances of the Garcia Pilot application

run on the local computer on board the robots. The master control daemons

communicate over an Ethernet connection, while the Robot Master Control Daemon

communicates with instances of Garcia Pilot over a wireless Ethernet link.

An overview of the Mobile Emulab system architecture is shown in Figure 2.2.

The components that are part of Mobile Emulab are on the left side of the diagram,

denoted by light gray boxes. The visual localization block is a part of VMCD, while

the rest of the blocks belong to RMCD.

2.5.1 Emulab Master Control Daemon

The Emulab Master Control Daemon (EMCD) handles communication from

Emulab, users and VMCD. Motion commands, reference waypoints, and posture

updates from VMCD are forwarded to RMCD. Feedback from RMCD is collected,

and passed to Emulab.

EMCD is the primary system to manage data, communicate with Emulab, and

coordinate robots. All high level motion commands and localization data are passed

Reference 5

Trajectory I i
Controller

mam x,y,phi
~~~% 

Visual . l y 
Localization ^ 

Dynamic 
Extension 

B U M S ! 

v,omega 
§» • Robot 

Figure 2.2. Mobile Emulab system architecture overview. 

18 

2.5 System Architecture 

Mobile Emulab is divided into four distinct software systems, termed daemons. 

These applications run noninteractively, and handle all the calculation, communica­

tion, and data collection needed to control robots in the testbed environment. The 

three main master control daemons run as single instances for each experiment in 

the background on a fixed computer, while instances of the Garcia Pilot application 

run on the local computer on board the robots. The master control daemons 

communicate over an Ethernet connection, while the Robot Master Control Daemon 

communicates with instances of Garcia Pilot over a wireless Ethernet link. 

An overview of the Mobile Emulab system architecture is shown in Figure 2.2. 

The components that are part of Mobile Emulab are on the left side of the diagram, 

denoted by light gray boxes. The visual localization block is a part of VMCD, while 

the rest of the blocks belong to RM CD. 

2.5.1 Emulab Master Control Daemon 

The Emulab Master Control Daemon (EM CD) handles communication from 

Emulab, users and VMCD. Motion commands, reference waypoints, and posture 

updates from VMCD are forwarded to RMCD. Feedback from RMCD is collected, 

and passed to Emulab. 

EMCD is the primary system to manage data, communicate with Emulab, and 

coordinate robots. All high level motion commands and localization data are passed 

Reference 
Trajectory 
Generator 

Dynamic 
Extension 

v,omega 

Figure 2.2. Mobile Emulab system architecture overview. 

Robot 



19 

through and coordinated within EMCD. 

2.5.2 Robot Master Control Daemon 

The Robot Master Control Daemon (RMCD) coordinates motion of multiple 

robots. It builds reference trajectories from waypoint data, and sets goal points 

for robots based on user input passed from EMCD. RMCD runs the state feedback 

controllers, and sends wheel speed commands to instances of Garcia Pilot. 

2.5.3 Vision Master Control Daemon 

The Vision Master Control Daemon (VMCD) collects and processes data from 

the overhead camera localization system. When robots are undergoing point-to-

point motion, localization updates are sent to EMCD when requested. When state 

feedback control is active, localization data are continually sent to RMCD through 

EMCD. 

2.5.4 Garcia Pilot 

Instances of the Garcia Pilot application run on each robot. Under point-to-

point motion, Pilot sends line and pivot motion commands, giving feedback based 

on odometry. While under state feedback control, Pilot passes through wheel speed 

commands sent from the controller running on RMCD. Pilot also handles sending 

back telemetry data to RMCD. 

Garcia Pilot utilizes an API provided by the manufacturer of the robots. This 

API provides functions to execute movement commands, termed primitives, which 

use internal odometry to move or pivot a robot in a straight line by a prescribed 

distance or angle. Functions are also provided to set individual wheel speeds, using 

an internal PID servo loop. 

The development of new components to Mobile Emulab is discussed in the 

following three chapters. The design of motion planning and control systems is 

presented, leading to the simulation, testing, and verification of the system. 

19 

through and coordinated within EMCD. 

2.5.2 Robot Master Control Daemon 

The Robot Master Control Daemon (RMCD) coordinates motion of multiple 

robots. It builds reference trajectories from waypoint data, and sets goal points 

for robots based on user input passed from EMCD. RMCD runs the state feedback 

controllers, and sends wheel speed commands to instances of Garcia Pilot. 

2.5.3 Vision Master Control Daemon 

The Vision Master Control Daemon (VMCD) collects and processes data from 

the overhead camera localization system. When robots are undergoing point-to­

point motion, localization updates are sent to EMCD when requested. When state 

feedback control is active, localization data are continually sent to RMCD through 

EMCD. 

2.5.4 Garcia Pilot 

Instances of the Garcia Pilot application run on each robot. Under point-to­

point motion, Pilot sends line and pivot motion commands, giving feedback based 

on odometry. While under state feedback control, Pilot passes through wheel speed 

commands sent from the controller running on RMCD. Pilot also handles sending 

back telemetry data to RMCD. 

Garcia Pilot utilizes an API provided by the manufacturer of the robots. This 

API provides functions to execute movement commands, termed primitives, which 

use internal odometry to move or pivot a robot in a straight line by a prescribed 

distance or angle. FUnctions are also provided to set individual wheel speeds, using 

an internal PID servo loop. 

The development of new components to Mobile Emulab is discussed in the 

. following three chapters. The design of motion planning and control systems is 

presented, leading to the simulation, testing, and verification of the system. 



CHAPTER 3 

TRAJECTORY GENERATOR 

An explicit parametric robot trajectory is required for all robot motion. These 

trajectories are created using a minimum amount of interaction, relying completely 

on a series of user-specified via points. In instances where only a single goal point is 

desired for each individual robot, an iterative line segment based trajectory genera­

tor with obstacle avoidance capabilities is executed, as presented in Section 3.1. In 

other situations, where a specific trajectory is desired for each robot, user-specified 

via points are collected, and the resulting connecting line segments are filleted to 

create trajectories consisting of alternating lines and arcs. This via point model 

is discussed in Section 3.2. Different types of curves are placed in the fillets in 

accordance with the curvature continuity, velocity, and timing requirements of the 

robots. 

A number of curve types may be chosen, based on the usage of line segments 

and filleted arcs. Constant radius circular arcs, discussed in Section 3.3, are used 

as the baseline curve type for their path length optimality, and straightforward 

geometric construction. To improve continuity at segment boundary points, poly­

nomial spirals may be used in the fillets between segments. These spirals, discussed 

in Section 3.4, are described in terms of curvature versus arc length. 

Splines are used to obviate some of the problems inherent in polynomial spirals. 

Parameters are in Cartesian space, instead of functions of arc length and curvature, 

decreasing the compution required to achieve boundary conditions. Quintic splines 

are discussed in detail in Section 3.5. This class of curve is well established in the 

computer graphics and computer aided design fields. 

There exist tradeoffs with curvature constraints, for all curves. A lower curva­

ture derivative at the boundary of a segment results in higher maximum curvature. 

CHAPTER 3 

TRAJECTORY GENERATOR 

An explicit parametric robot trajectory is required for all robot motion. These 

trajectories are created using a minimum amount of interaction, relying completely 

on a series of user-specified via points. In instances where only a single goal point is 

desired for each individual robot, an iterative line segment based trajectory genera­

tor with obstacle avoidance capabilities is executed, as presented in Section 3.1. In 

other situations, where a specific trajectory is desired for each robot, user-specified 

via points are collected, and the resulting connecting line segments are filleted to 

create trajectories consisting of alternating lines and arcs. This via point model 

is discussed in Section 3.2. Different types of curves are placed in the fillets in 

accordance with the curvature continuity, velocity, and timing requirements of the 

robots. 

A number of curve types may be chosen, based on the usage of line segments 

and filleted arcs. Constant radius circular arcs, discussed in Section 3.3, are used 

as the baseline curve type for their path length optimality, and straightforward 

geometric construction. To improve continuity at segment boundary points, poly­

nomial spirals may be used in the fillets between segments. These spirals, discussed 

in Section 3.4, are described in terms of curvature versus arc length. 

Splines are used to obviate some of the problems inherent in polynomial spirals. 

Parameters are in Cartesian space, instead of functions of arc length and curvature, 

decreasing the compution required to achieve boundary conditions. Quintic splines 

are discussed in detail in Section 3.5. This class of curve is well established in the 

computer graphics and computer aided design fields. 

There exist tradeoffs with curvature constraints, for all curves. A lower curva­

ture derivative at the boundary of a segment results in higher maximum curvature. 



21 

A higher maximum curvature reduces the maximum allowable velocity along the 

curve, as limited by attainable traction forces and other maximum force limits. A 

higher curvature derivative at the curve boundaries increases maximum accelera­

tion, and causes tracking error when robot acceleration limits are reached. 

In this chapter, two different motion models are presented. The model in 

Section 3.1 is based upon autonomous path generation from line segments, while the 

rest of the sections in this chapter present motion models derived from Reed-Shepp 

paths. 

3.1 Iterative Goal Point Progression 
Waypoint Model 

The robot workspace is modeled as a series of rectangular zones. Areas covered 

by the localization system are considered as safe zones, while areas containing 

obstacles are exclusion zones. Using this model, a waypoint-based iterative path 

planner is employed to send robots to user selected destinations. To create a path 

for a robot, a user selects a single goal point. The robot is driven iteratively closer 

to this goal point using a modified visibility graph algorithm. 

The waypoint based motion model relies on straight line and pivot motions, 

achieved by using motion commands, termed primitives, built in to the robots. 

Primitives require only a linear distance, or angular measurement argument, and 

use odometry to complete the commands. A pivot and a linear displacement 

command are combined to form a meta command, called the goto command. The 

goto command uses an initial pivot followed by a linear move to send a robot to 

any arbitrary Cartesian relative position. 

An example path created through a sparse obstacle field is given in Figure 3.1. 

An exclusion zone exists around the obstacle, expanding 0.25 meters from the 

obstacle boundary. The width of the expansion is chosen to be greater than 

the maximum robot dimension radially drawn from the center point of the robot. 

Corner points are created on these exclusion zones, and are used as intermediate 

robot waypoints. 

Figure 3.2 illustrates the steps required for a robot to negotiate an obstacle. A 

21 

A higher maximum curvature reduces the maximum allowable velocity along the 

curve, as limited by attainable traction forces and other maximum force limits. A 

higher curvature derivative at the curve boundaries increases maximum accelera­

tion, and causes tracking error when robot acceleration limits are reached. 

In this chapter, two different motion models are presented. The model III 

Section 3.1 is based upon autonomous path generation from line segments, while the 

rest of the sections in this chapter present motion models derived from Reed-Shepp 

paths. 

3.1 Iterative Goal Point Progression 
Waypoint Model 

The robot workspace is modeled as a series of rectangular zones. Areas covered 

by the localization system are considered as safe zones, while areas containing 

obstacles are exclusion zones. Using this model, a waypoint-based iterative path 

planner is employed to send robots to user selected destinations. To create a path 

for a robot, a user selects a single goal point. The robot is driven iteratively closer 

to this goal point using a modified visibility graph algorithm. 

The waypoint based motion model relies on straight line and pivot motions, 

achieved by using motion commands, termed primitives, built in to the robots. 

Primitives require only a linear distance, or angular measurement argument, and 

use odometry to complete the commands. A pivot and a linear displacement 

command are combined to form a meta command, called the goto command. The 

goto command uses an initial pivot followed by a linear move to send a robot to 

any arbitrary Cartesian relative position. 

An example path created through a sparse obstacle field is given in Figure 3.1. 

An exclusion zone exists around the obstacle, expanding 0.25 meters from the 

obstacle boundary. The width of the expansion is chosen to be greater than 

the maximum robot dimension radially drawn from the center point of the robot. 

Corner points are created on these exclusion zones, and are used as intermediate 

robot waypoints. 

Figure 3.2 illustrates the steps required for a robot to negotiate an obstacle. A 



22 

0 1 2 3 4 5 6 7 8 9 10 
x (meters) 

Figure 3.1. Path generation using iterative goal point progression method. 

robot is represented as a triangle, with dashed lines denoting the path direct to the 

goal point. The solid line in Step 2 is the resulting intermediate path created to 

the nearest obstacle exclusion zone corner point. The goal is represented as a star. 

As follows are the steps taken by the iterative path generator. 

Step 1 Create a line segment with endpoints at the current robot position and the 

final goal position chosen by the user. 

Step 2 If the current line segment does not intersect any obstacle exclusion zones, 

the intermediate goal position is set to the final goal position. 

If the current line intersects an obstacle exclusion zone, the zone corner point 

closest to both the current position, and closest to the goal point is chosen as 

~ 
Q) 

Q) 
g 
>-

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

0 1 2 3 4 5 
x (meters) 

I I ~ 

final positiorr-- ,:' 

" " , , , 
r---------~ , , 

6 7 8 9 

22 

10 

Figure 3.1. Path generation using iterative goal point progression method. 

robot is represented as a triangle, with dashed lines denoting the path direct to the 

goal point. The solid line in Step 2 is the resulting intermediate path created to 

the nearest obstacle exclusion zone corner point. The goal is represented as a star. 

As follows are the steps taken by the iterative path generator. 

Step 1 Create a line segment with endpoints at the current robot position and the 

final goal position chosen by the user. 

. Step 2 If the current line segment does not intersect any obstacle exclusion zones, 

the intermediate goal position is set to the final goal position. 

If the current line intersects an obstacle exclusion zone, the zone corner point 

closest to both the current position, and closest to the goal point is chosen as 



23 

Step 1 Step 2 Step 3 

£ 

Figure 3.2. Path generation steps. 

the intermediate goal position. 

Step 3 Drive the robot to the intermediate goal position. 

Step 4 If the robot is not at the final goal position, return to the first step. 

The iterative waypoint method possesses several drawbacks, the most significant 

of which is the high elapsed time between motion start and arrival at the goal point. 

The requirement that robots pivot at each waypoint wastes time, and limits the 

maximum velocity attainable. There is no support for user-specified paths, only 

singular goal points. The method itself is limited in its scope and implementation, 

and only appropriate for a workspace modeled by rectangular regions. 

To allow faster movements, and more complex trajectory specifications, an 

additional motion model is created. Users choose multiple via points to specify 

a path for a robot, instead of choosing only a single goal point. Via points are 

connected by straight line segments comprising a path from a start to a goal 

position. Instead of commanding robots to pivot at waypoints, the path segments 

are filleted, with curve segments inserted between straight line segments. Waypoints 

defined in point to point motion become via points in the extended motion model. 

The resulting path of line segments and arcs allows continuous motion to workspace 

3.2 User-specified Waypoint Model 

23 

Step 1 Step 2 Step 3 

• 
Figure 3.2. Path generation steps. 

the intermediate goal position. 

Step 3 Drive the robot to the intermediate goal position. 

Step 4 If the robot is not at the final goal position, return to the first step. 

The iterative waypoint method possesses several drawbacks, the most significant 

of which is the high elapsed time between motion start and arrival at the goal point. 

The requirement that robots pivot at each waypoint wastes time, and limits the 

maximum velocity attainable. There is no support for user-specified paths, only 

singular goal points. The method itself is limited in its scope and implementation, 

and only appropriate for a workspace modeled by rectangular regions. 

3.2 User-specified Waypoint Model 

To allow faster movements, and more complex trajectory specifications, an 

additional motion model is created. Users choose multiple via points to specify 

a path for a robot, instead of choosing only a single goal point. Via points are 

connected by straight line segments comprising a path from a start to a goal 

position. Instead of commanding robots to pivot at waypoints, the path segments 

are filleted, with curve segments inserted between straight line segments. Waypoints 

defined in point to point motion become via points in the extended motion model. 

The resulting path of line segments and arcs allows continuous motion to workspace 



24 

destinations. Different types of arcs can be used to build a path between the filleted 

segments, with varying curvature continuity properties. 

Two solutions to calculate reference trajectories may be used. These methods 

are compared in Figure 3.3. The kinematics based method uses the Cartesian robot 

state equation, (4.1), to calculate x, y, and <j> given reference velocities v and u>. 

Discontinuities in curvature at the interfaces between line and circular arc segments 

cause drift to occur. A closed-form solution to parameterizing reference trajectories 

is desired to eliminate this drift. 

t 1 r 

5 6 7 8 9 10 11 12 
x(m) 

Figure 3.3. Comparison of kinematic and closed form trajectory generators. 

24 

destinations. Different types of arcs can be used to build a path between the filleted 

segments, with varying curvature continuity properties. 

Two solutions to calculate reference trajectories may be used. These methods 

are compared in Figure 3.3. The kinematics based method uses the Cartesian robot 

state equation, (4.1), to calculate x, y, and ¢ given reference velocities v and w. 

Discontinuities in curvature at the interfaces between line and circular arc segments 

cause drift to occur. A closed-form solution to parameterizing reference trajectories 

is desired to eliminate this drift. 

-7 

-8 

-9 

:[ -10 
>-

-11 
'I 
'() 

-12 

-13 

5 6 7 

Reference Trajectory (closed form) 

"- """ Original Waypoints 

-- Reference Trajectory (kinematics based) 

8 
x(m) 

9 10 11 12 

Figure 3.3. Comparison of kinematic and closed form trajectory generators. 



25 

3.2.1 Line Segment Filleting 

The radius of curvature is determined by specifying a reference velocity. Higher 

reference velocities require larger radius curves to prevent the loss of wheel trac­

tion. A fast, closed form geometric solution is needed to create arcs for trajectory 

generation. Presented here is a method utilizing intersecting offset line segments 

to solve for the center of a circular arc. 

Given three input via points a, b, and c, as illustrated in Figure 3.4 and 

Figure 3.5, line segments ab and be are constructed. These segments are represented 

by dotted lines. Two lines, denoted as dashed lines in these figures, represent lines 

offset by distance r from segments ab and be. The intersection of these offset lines 

corresponds with the arc center point, / . 

Two unit vectors, perpendicular to the via point line segments are calculated, 

and 

(3.2) 

where Rz(\) is a rotation about the z axis by | ; defined by 

b 
d e 

c 

Figure 3.4. Filleted arc, obtuse via point path angle. 

25 

3.2.1 Line Segment Filleting 

The radius of curvature is determined by specifying a reference velocity. Higher 

reference velocities require larger radius curves to prevent the loss of wheel trac­

tion. A fast, closed form geometric solution is needed to create arcs for trajectory 

generation. Presented here is a method utilizing intersecting offset line segments 

to solve for the center of a circular arc. 

Given three input via points a, b, and c, as illustrated in Figure 3.4 and 

Figure 3.5, line segments ab and b-; are constructed. These segments are represented 

by dotted lines. Two lines, denoted as dashed lines in these figures, represent lines 

offset by distance r from segments ab and b-;. The intersection of these offset lines 

corresponds with the arc center point, f. 
Two unit vectors, perpendicular to the via point line segments are calculated, 

Ild!11 = sign(ab x b-;) . Rz (~) . ab/llabll, (3.1) 

and 

(3.2) 

where Rz (~) is a rotation about the z axis by ~; defined by 

a 
'-

c 
'-

'-

Figure 3.4. Filleted arc, obtuse via point path angle. 



26 

Figure 3.5. Filleted arc, acute via point path angle. 

0 - 1 
1 0 

(3.3) 

Points are constructed to build line segments offset to the original line segments, 

Pi = a + M I # l l , (3-4) 

P2 = b + v\\df\\, (3.5) 

P3 = b + r-\\ef\l (3.6) 

p4 = e + f-llelll, (3.7) 

where r is the desired arc radius, corresponding to the offset distance. 

a 

~ 
P3 \ 

\ 

\ 

\ 

\ 

\ 

\ 

\ 

.\ 
\ 

\ 

\ 

\ 
\ 

\ 

b 

• 

\ I 

I 
I 

I 

I 

I 

I 

I 

I 
'1. 

I . 

I 

I 

I 

I 

I 

• I P, 

Figure 3.5. Filleted arc, acute via point path angle. 

R, G) = [~ -~ ]. 

26 

c 

(3.3) 

Points are constructed to build line segments offset to the original line segments, 

PI = a + r . IIdlll, (3.4) 

p, = b + r . IIdfll, (3.5) 

P3 = b+r ·lIelll. (3.6) 

p, = c+ l' 'lIelll, (3.7) 

where r is the desired arc radius, corresponding to the offset distance. 



2 7 

The intersection of the two offset line segments is determined by calculating the 

determinants of the points, such that, 

T 

and 

a n d 

L,= 

P i 

P21 

Pz 
Pa 

T 

M = r ( p i -- P 2 ) T 1 

. (P3 --Pa)T 

If M = 0, this is a degenerate case, resulting in 

f = b. 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

Otherwise, the resulting arc center point is calculated by 

L\ ( P l - P2) 
L2 (P3 - Pa) 

and 

fy = 

M 

Ll (P l - p2)y 
L2 (P3 - Pa)v 

(3.12) 

where 

M 

fx ' 
fy. 

(3.13) 

(3.14) 

The endpoints of the filleted arc, d and e, as shown in Figure 3.4 and Figure 3.5, 

are constructed by, 

d = f-r-\\df\\, (3.15) 

e = / - r - | | e / | | , (3.16) 

where r is the arc fillet radius, and and | | e / | | are defined in (3.1) and (3.2) 

respectively. 

The angle Zdef, 7 is calculated by the following: 

acos((d - f)(e - f)) 
7 l l ( d - / ) H - | | ( c - / ) i r 

The direction of the curve is needed for the closed form solution. 

(3.17) 

27 

The intersection of the two offset line segments is determined by calculating the 

determinants of the points, such that, 

and 

and 

£, ~ I [~~ 11, 

£, ~ I [ ~:~ 11, 

M ~ I [ ~; = ~:l~ 11· 
If M = 0, this is a degenerate case, resulting in 

/ ~ b. 

Otherwise, the resulting arc center point is calculated by 

and 

where 

f~ [i:l 

(3.8) 

(3.9) 

(3. 10) 

(3.11 ) 

(3.12) 

(3.13) 

(3.14) 

The endpoints of the filleted arc, d and e, as shown in Figure 3.4 and Figure 3.5 , 

are constructed by, 

d ~ f - T ' IIdf II , 

e ~ f - r . lIefll. 

(3.15) 

(3.16) 

where ,. is the arc fillet radius, and IIdfll and l!efll are defined in (3.1) and (3.2) 

respectively. 

The angle LdeJ, ; is calculated by the following: 

acos((d - f)ie - f)) 
7 ~ "'II ('7d -"-"'f)-;;-II "oi. 11-7-( e----';/"'") II 

The direction of the curve is needed for the closed form solution. 

(3.17) 



28 

The length of the shortened part of the two original line segments is given by, 

I = \\(P - d)\\ = \\(b - e)\\. (3.18) 

3.3 Lines and Circular Arcs 
The baseline path generation method is the use of constant radius arcs. These 

paths are C° curvature continuous. The discontinuity in the change of curvature 

between line and arc segments requires that a robot must stop at each curve 

boundary point to satisfy kinematic constraints. In practice, a robust controller 

can allow a robot to track a C° continuous path with bounded error. 

Constant radius circular arcs are desirable because of their geometric properties, 

such as endpoint tangency and the existence of straightforward closed form solutions 

for path parameterization. 

The arc radius is chosen in consideration of trajectory velocity requirements. 

As velocity is higher, arc radius must also be higher due to centripetal acceleration, 

given by, 

ac = - —, (3.19) 

where v is the linear velocity of the robot, and r is the radius of the circular arc. 

The maximum allowable lateral acceleration, a m a x is related to the wheel ground 

contact friction force of the robot, 

amax = ^-g, (3.20) 

where /j, is the friction coefficient, and g is acceleration due to gravity. Substituting 

(3.20) into (3.19) yields 

(3.21) 

For example, given a friction coefficient fj, = 0.4, and velocity v = l.Om/s, 

(1.0m/s) 2 

(3.22) 
(0.4) • (9 .8m/s 2 ) ' 

r = 0.26m. (3.23) 

28 

The length of the shortened part of the two original line segments is given by, 

l = II (b - d) II = II (b - e) II· (3.18) 

3.3 Lines and Circular Arcs 

The baseline path generation method is the use of constant radius arcs. These 

paths are CO curvature continuous. The discontinuity in the change of curvature 

between line and arc segments requires that a robot must stop at each curve 

boundary point to satisfy kinematic constraints. In practice, a robust controller 

can allow a robot to track a Co continuous path with bounded error. 

Constant radius circular arcs are desirable because of their geometric properties, 

such as endpoint tangency and the existence of straightforward closed form solutions 

for path parameterization. 

The arc radius is chosen in consideration of trajectory velocity requirements. 

As velocity is higher, arc radius must also be higher due to centripetal acceleration, 

given by, 

ac = --, 
r 

(3.19) 

where v is the linear velocity of the robot, and r is the radius of the circular arc. 

The maximum allowable lateral acceleration, am ax is related to the wheel ground 

contact friction force of the robot, 

amax = f-l. g, (3.20) 

where f-l is the friction coefficient, and g is acceleration due to gravity. Substituting 

(3.20) into (3.19) yields 
v2 

r=--. 
f-l.g 

For example, given a friction coefficient f-l = 0.4, and velocity v = 1.0m/s, 

(1.0m/s)2 
r = ....,------:---...."..,-

(0.4) . (9.8m/82 ) , 

r = 0.26m. 

(3.21 ) 

(3.22) 

(3.23) 



29 

In accordance with these constraints, an arc fillet radius of 0.25 meters is chosen 

for most trajectories. Velocity can likewise be constrained by arc radius, especially 

with curves such as Cornu spirals and splines. Solving (3.21) for v yields, 

v = Vr'V9- (3-24) 

3.4 Polynomial Spirals 

Polynomial spiral arcs are chosen as replacements to constant radius circular 

arcs for greater curvature continuity. These curves are represented by curvature as 

a function of arc length, 

k(s) = a0 • s° + ai • s1 + ... + an • sn, (3.25) 

where k is the curvature in meters - 1 , a* is from a list of coefficients, and n is the 

order of the curve. 

An arbitrary order polynomial is constructed, and its coefficients are solved to 

meet boundary conditions given by the filleting of two intersecting line segments. 

The two endpoints of the curve must coincide with the endpoints of the adjoining 

trimmed line segments, and the curvature at each endpoint must be zero. The lack 

of a closed form solution increases the computational complexity. 

To create a curve in Cartesian space, the curvature from polynomial equation 

describing the spiral must be used, along with a velocity profile, to solve the robot 

kinematics, as discussed in Section 4.2. 

3.5 Quintic Splines 
Quintic splines may improve curvature continuity. Splines can take the place of 

constant radius circular arcs or polynomial spirals to build curve segments that have 

specific boundary conditions of position, velocity, acceleration, and curvature. The 

manipulation of control polygons when generating these curves allows for these 

parameters to be controlled. The design, specification, and parameterization of 

quintic splines is discussed in this section. 

An example of a filleted arc replaced with a quintic spline is given in Figure 3.6. 

The associated curvature profile is shown in Figure 3.7. The first and second 

29 

In accordance with these constraints, an arc fillet radius of 0.25 meters is chosen 

for most trajectories. Velocity can likewise be constrained by arc radius, especially 

with curves such as Cornu spirals and splines. Solving (3.21) for v yields, 

v = Jr· /1' g. (3.24) 

3.4 Polynomial Spirals 

Polynomial spiral arcs are chosen as replacements to constant radius circular 

arcs for greater curvature continuity. These curves are represented by curvature as 

a function of arc length, 

(3.25) 

where K is the curvature in meters-I, ai is from a list of coefficients, and n is the 

order of the curve. 

An arbitrary order polynomial is constructed, and its coefficients are solved to 

meet boundary conditions given by the filleting of two intersecting line segments. 

The two endpoints of the curve must coincide with the endpoints of the adjoining 

trimmed line segments, and the curvature at each endpoint must be zero. The lack 

of a closed form solution increases the computational complexity. 

To create a curve in Cartesian space, the curvature from polynomial equation 

describing the spiral must be used, along with a velocity profile, to solve the robot 

kinematics, as discussed in Section 4.2. 

3.5 Quintic Splines 

Quintic splines may improve curvature continuity. Splines can take the place of 

constant radius circular arcs or polynomial spirals to build curve segments that have 

specific boundary conditions of position, velocity, acceleration, and curvature. The 

manipulation of control polygons when generating these curves allows for these 

parameters to be controlled. The design, specification, and parameterization of 

quintic splines is discussed in this section. 

An example of a filleted arc replaced with a quintic spline is given in Figure 3.6. 

The associated curvature profile is shown in Figure 3.7. The first and second 



30 

_ q 21 1 1 1 i 1 1 

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 
x ( m e t e r s ) 

Figure 3.6. Example of a quintic spline. 

derivatives of this curve are continuous, resulting in C2 curvature continuity. A 

constant radius circular arc is shown for comparison. The change in curvature is 

minimized, but the maximum curvature is increased. 

Figure 3.8 and Figure 3.9 show the first and second derivatives of curvature, 

respectively. The second derivative of curvature for a quintic spline is continuous, 

therefor guaranteeing C 2 continuity in curvature. This minimizes the wheel accel­

eration required for a robot to track this type of trajectory, improving performance 

over the line-arc trajectories discussed in Section 3.3. 

Given a series of disjointed line segments, resulting from the arc filleting method 

........ 
C/) ..... 
Q.) ..... 
Q.) 

E -->-

1 

0.8 

0.6 

0.4 

0.2 

o 

--- Quintic Spline 
• Circular Arc 

--- Control Polygon 

•• 

•• 
•• • •• • 

•• • 
• 

• • 

• • • • • • 

• • • • 

• • • • • • • • • • • 

-0.2~----~----~----~----~----~----~----~ 
-0.2 0 0.2 0.4 0.6 0.8 1 1.2 

x (meters) 

Figure 3.6. Example of a quintic spline. 

30 

derivatives of this curve are continuous, resulting in 0 2 curvature continuity. A 

constant radius circular arc is shown for comparison. The change in curvature is 

minimized, but the maximum curvature is increased. 

Figure 3.8 and Figure 3.9 show the first and second derivatives of curvature, 

respectively. The second derivative of curvature for a quintic spline is continuous, 

therefor guaranteeing 0 2 continuity in curvature. This minimizes the wheel accel­

eration required for a robot to track this type of trajectory, improving performance 

over the line-arc trajectories discussed in Section 3.3. 

Given a series of disjointed line segments, resulting from the arc filleting method 



31 

4 I 1 1 1 1 1 1 1 1 r 

Figure 3.7. Curvature profile of quintic spline example. 

discussed in Section 3.2.1, quintic splines are created instead of circular arcs. A 

control polygon is created from the continuity requirements designed in to the path 

[44]. For a quintic spline, the control polygon has six points. The first and sixth 

points are the endpoints of the arc. The second point and third points control the 

first and second curvature derivatives of the arc. Both endpoints of every arc adjoin 

a straight line segment, with zero curvature and curvature derivatives. To ensure 

zero curvature and curvature derivatives at the boundaries of the arc, the first and 

second, and fourth and fifth segments of the control polygon must be colinear with 

each other. 

31 

4,-----,----,,----,,-----,----,,----,-----,-----,-----,-----, 

3.5 

3 

2.5 

-~ 
I(J) 
L-

a> 
2 Q) 

g 
~ 

1.5 

0.5 

O~~--L---~L-__ ~ ____ ~L-__ ~ ____ ~ ____ ~ ____ ~ ____ ~ __ ~ __ 

a 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 3.7. Curvature profile of quintic spline example. 

discussed in Section 3.2.1, quintic splines are created instead of circular arcs. A 

control polygon is created from the continuity requirements designed in to the path 

[44]. For a quintic spline, the control polygon has six points. The first and sixth 

points are the endpoints of the arc. The second point and third points control the 

first and second curvature derivatives of the arc. Both endpoints of every arc adjoin 

a straight line segment, with zero curvature and curvature derivatives. To ensure 

zero curvature and curvature derivatives at the boundaries of the arc, the first and 

second, and fourth and fifth segments of the control polygon must be colinear with 

each other. 



32 

151 •—i 1 1 1 1 1 r 

_15 I i i i i i i i i i I 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

t 

Figure 3.8. Derivative of curvature of quintic spline example. 

3.5.1 Parameterization 

Splines are parameterized for trajectories using a subdivision algorithm, such 

as DeCastlejau's [44]. With uniform sampling in parametric time, data point 

spacing in the trajectory parameteric data varies significantly. This causes reference 

trajectories to have too many data points in some areas, and too few in others. An 

iterative method may be used to parameterize a curve with uniform spacing in real 

time, as opposed to parametric time, as obtaining a closed form solution is not a 

trivial task. 

A C2 continuous spline path of chained quintic Bezier curve segments is defined 

by giving control points. Each Bezier segment is a 2D parametric curve, as given 

by 

'I :s 
c: 
o 
u 
Q) 
(/) 

32 

15,-----,-----.-----.-----.------.-----.-----.-----.-----,,---~ 

_15L-----L-----~----~----~-----L-----L-----l----~ ____ ~L_ __ ~ 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 3.8. Derivative of curvature of quintic spline example. 

3.5.1 Parameterization 

Splines are parameterized for trajectories using a subdivision algorithm, such 

as DeCastlejau's [44J. With uniform sampling in parametric time, data point 

spacing in the trajectory parameteric data varies significantly. This causes reference 

trajectories to have too many data points in some areas, and too few in others. An 

iterative method may be used to parameterize a curve with uniform spacing in real 

time, as opposed to parametric time, as obtaining a closed form solution is not a 

trivial task. 

A C2 continuous spline path of chained quintic Bezier curve segments is defined 

by giving control points. Each Bezier segment is a 2D parametric curve, as given 

by 



33 

100 

t 

Figure 3.9. Second derivative of curvature of quintic spline example. 

C(t) = [x(t),y(t)], (3-26) 

with t G [0,1] as a polynomial of P(i) where i = 1 . . . 6. 

Evaluation of position and derivatives at a given position along the curve is 

achieved by using De Casteljau's algorithm. This algorithm evaluates points in the 

interior of a Bezier curve by subdivision. 

The first and second derivatives of a quintic Bezier curve at the start point are, 

C'(0) = 5 ( P 2 - P 1 ) , (3.27) 

and 

C"(0) = 20((P! - P 2 ) + (P 3 - P 2 ) ) . (3.28) 

The symmetric construction is used at the end point. 

33 

100,----.----.----,----,----.----,,----,----.----.----, 

~-
"0 
C 
o 
u 
(]) 
CJ) 

~ -150 

-200 

-250~--~----L---~----~--~----~--~L----L----L-----
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure 3.9. Second derivative of curvature of quintic spline example. 

C(t) = [x(t), y(t)] , (3.26) 

with t E [0, 1] as a polynomial of P( i) where i = 1 ... 6. 

Evaluation of position and derivatives at a given position along the curve is 

achieved by using De Casteljau's algorithm. This algorithm evaluates points in the 

interior of a Bezier curve by subdivision. 

The first and second derivatives of a quintic Bezier curve at the start point are, 

(3.27) 

and 

(3.28) 

The symmetric construction is used at the end point. 



34 

The desired linear velocity v(t) of the robot is a function of the curvature at a 

specific point, described below. The parametric step in t along the curve that is 

necessary to produce that given geometric time step f~l is initially estimated from 

the length of the initial tangent vector: 

dt = /• \C'(0)\/v{t). (3.29) 

The chord length distance to the next point along the curve is computed by 

d=\C{t + dt)-C(t)\. (3.30) 

The parametric speed along the curve changes independently from the desired 

velocity. To solve this problem, dt is adaptively refined to match d to the desired 

step velocity within a close tolerance of d ~ v(t)/f. A bisection refinement 

algorithm is used, as described in This refinement is repeated for each point along 

the curve, typically needing only one or two iterations because the velocity of the 

curve changes smoothly. 

The following Cartesian states x(t), y(t) and (j){t) are calculated for each time 

t. To calculate </>, the nonholonomic constraint, (4.2), is applied. A tangential 

velocity is defined for the boundaries of each curve. The desired velocity at each 

time increment will be interpolated from these values. Two additional parameters 

are needed for trajectory specification, v(t) and co(t), which are the linear and 

angular velocities. 

Curvature at each time t is defined by 

K(t) = (x'y"-y'x")/((x'2 + y'2)^).. (3.31) 

Velocity along the curve is computed from curvature through 

1 ' 2 

where vmax is defined as the maximum desired velocity. The rotational velocity u 

is calculated through velocity and curvature by 

u{t) = v(t)-K[t). (3.33) 

34 

The desired linear velocity v(t) of the robot is a function of the curvature at a 

specific point, described below. The parametric step in t along the curve that is 

necessary to produce that given geometric time step I-I is initially estimated from 

the length of the initial tangent vector: 

dt = I ·IC'(O)I/v(t). (3.29) 

The chord length distance to the next point along the curve is computed by 

d = IC(t + dt) - C(t) I. (3.30) 

The parametric speed along the curve changes independently from the desired 

velocity. To solve this problem, dt is adaptively refined to match d to the desired 

step velocity within a close tolerance of d ~ v(t)/ I. A bisection refinement 

algorithm is used, as described in This refinement is repeated for each point along 

the curve, typically needing only one or two iterations because the velocity of the 

curve changes smoothly. 

The following Cartesian states x(t), y(t) and ¢(t) are calculated for each time 

t. To calculate ¢, the nonholonomic constraint, (4.2), is applied. A tangential 

velocity is defined for the boundaries of each curve. The desired velocity at each 

time increment will be interpolated from these values. Two additional parameters 

are needed for trajectory specification, v(t) and w(t), which are the linear and 

angular velocities. 

Curvature at each time t is defined by 

Velocity along the curve is computed from curvature through 

( ) 
Vmax 

v t = 1 K,(t)2 , 
+ 2 

(3.31 ) 

(3.32) 

where Vmax is defined as the maximum desired velocity. The rotational velocity w 

is calculated through velocity and curvature by 

w(t) = v(t) . ""(t). (3.33) 



35 

The trajectories built by components in this chapter are sent to a controller, 

which then creates commands to be sent to the robots. In Chapter 4, various 

motion controllers are designed and discussed. 

35 

The trajectories built by components in this chapter are sent to a controller, 

which then creates commands to be sent to the robots. In Chapter 4, various 

motion controllers are designed and discussed. 



CHAPTER 4 

MOTION CONTROL 

Given a path plan, such as a goal point or trajectory, a controller is required 

to drive a robot towards its objective. The availability of computing hardware for 

control of the robots in Mobile Emulab allows for motion control schemes to be 

tested and implemented fully in software. Accurate localization of robots enables 

the use of state feedback control. These attributes maximize the design flexibility 

of the system, but also are partially responsible for the constaints discussed in 

Section 1.3. The use of software control in this instance detaches the motion 

controller from the robot hardware, increasing the sensitivity of the system to 

imperfect communication channels. 

The initial implementation of robot motion control in Mobile Emulab, presented 

in Section 4.1, made use of the vendor provided application programming interface 

for the Garcia robots. Motion is restricted to straight line segments and zero radius 

pivots. This works well for line segment paths with no arcs. 

A posture stabilizing controller is presented in Section 4.3. This controller 

regulates a robot to a single goal point, and uses continual state feedback from 

the localization system discussed in Subsection 2.5.3. The implementation of this 

controller was used to test feedback control on the testbed, and establish that a 

trajectory tracking controller would ultimately be feasible on the system. 

To increase robot velocities, and decrease the time in motion, more advanced 

reference trajectories are examined in Chapter 3. The robot kinematics, as associ­

ated with these trajectories, is discussed in Section 4.2. A state feedback trajectory 

tracking controller is introduced in Section 4.4, which supersedes the waypoint 

motion controller within Mobile Emulab. 

CHAPTER 4 

MOTION CONTROL 

Given a path plan, such as a goal point or trajectory, a controller is required 

to drive a robot towards its objective. The availability of computing hardware for 

control of the robots in Mobile Emulab allows for motion control schemes to be 

tested and implemented fully in software. Accurate localization of robots enables 

the use of state feedback control. These attributes maximize the design flexibility 

of the system, but also are partially responsible for the constaints discussed in 

Section 1.3. The use of software control in this instance detaches the motion 

controller from the robot hardware, increasing the sensitivity of the system to 

imperfect communication channels. 

The initial implementation of robot motion control in Mobile Emulab, presented 

in Section 4.1, made use of the vendor provided application programming interface 

for the Garcia robots. Motion is restricted to straight line segments and zero radius 

pivots. This works well for line segment paths with no arcs. 

A posture stabilizing controller is presented in Section 4.3. This controller 

regulates a robot to a single goal point, and uses continual state feedback from 

the localization system discussed in Subsection 2.5.3. The implementation of this 

controller was used to test feedback control on the testbed, and establish that a 

trajectory tracking controller would ultimately be feasible on the system. 

To increase robot velocities, and decrease the time in motion, more advanced 

. reference trajectories are examined in Chapter 3. The robot kinematics, as associ­

ated with these trajectories, is discussed in Section 4.2. A state feedback trajectory 

tracking controller is introduced in Section 4.4, which supersedes the waypoint 

motion controller within Mobile Emulab. 



37 

4.1 Primitive Motion 
The initial effort into robot motion on Mobile Emulab is point to point motion, 

accomplished using vendor supplied motion commands. These commands, termed 

primitives, provide the basic elements needed to move in straight lines, pivot, and 

turn. The primitives take as input length and angle measurements, and execute 

low level motion commands using odometry as a reference. 

The robot application programming interface has methods to allow for the 

configuration of parameters related to motion primitives. For example, there are 

settings for maximum wheel velocity, wheel stall threshold, and wheel acceleration. 

These parameters are tuned depending on operating conditions and performance 

requirements. 

When motion primitives are executed, termination is triggered by set boundary 

conditions. For a move primitive, which moves a robot a set distance in a straight 

line, the motion is terminated under the following conditions: 

• Odometry idicates that the robot has traveled by the set distance 

• A wheel has stalled 

• A proximity sensor is triggered 

• A cliff sensor is triggered 

• The primitive is aborted 

The relevent motion primitives in this research are move and pivot. With these 

two motions, a robot can be sent to any single goal posture in Cartesian space. Refer 

to Section 7.1 for more information on the implementation of robot coordination 

using primitives. 

To achieve faster and more accurate goal posture attainment, state feedback 

control is used. This relies on the null primitive, which allows instantaneous 

wheel velocities to be commanded. Kinematic control may be implemented directly. 

The following sections in this chapter discuss the design of kinematic controllers 

37 

4.1 Primitive Motion 

The initial effort into robot motion on Mobile Emulab is point to point motion, 

accomplished using vendor supplied motion commands. These commands, termed 

primitives, provide the basic elements needed to move in straight lines, pivot, and 

turn. The primitives take as input length and angle measurements, and execute 

low level motion commands using odometry as a reference. 

The robot application programming interface has methods to allow for the 

configuration of parameters related to motion primitives. For example, there are 

settings for maximum wheel velocity, wheel stall threshold, and wheel acceleration. 

These parameters are tuned depending on operating conditions and performance 

requirements. 

When motion primitives are executed, termination is triggered by set boundary 

conditions. For a move primitive, which moves a robot a set distance in a straight 

line, the motion is terminated under the following conditions: 

• Odometry idicates that the robot has traveled by the set distance 

• A wheel has stalled 

• A proximity sensor is triggered 

• A cliff sensor is triggered 

• The primitive is aborted 

The relevent motion primitives in this research are move and pivot. With these 

two motions, a robot can be sent to any single goal posture in Cartesian space. Refer 

to Section 7.1 for more information on the implementation of robot coordination 

using primitives. 

To achieve faster and more accurate goal posture attainment, state feedback 

control is used. This relies on the null primitive, which allows instantaneous 

wheel velocities to be commanded. Kinematic control may be implemented directly. 

The following sections in this chapter discuss the design of kinematic controllers 



38 

to accomplish posture stabilization, path following, and trajectory tracking, all 

utilizing the null primitive. 

4.2 Robot Kinematics 
The robots used for Mobile Emulab are exclusively differentially steered wheeled 

mobile robots. Each robot has two independently controlled large wheels, on sides 

opposite along the longitudinal axis of the robot, sharing the same transverse axis. 

A passive two degree of freedom roller wheel is used to statically support the rear 

of the robot. A unicycle kinematic model is used for this class of robot. This model 

may be visualized rolling disk on a flat plane. 

4.2.1 Cartesian Kinematic System 

Three robot position states, x, y, and 4> are used to denote Cartesian position 

and orientation within a known reference frame. In the case of posture regulation, 

the origin of the coordinate system coincides with the goal posture. Otherwise, the 

origin is arbitrarily chosen as a known datum point in the workspace. The robot 

state equations in Cartesian space are 

X r • cos(4>) 
y v • sin(4>) 

J . 

The system inputs, v and u) denote linear and rotational velocities respectively. 

There are three system states, but only two inputs. This class of wheeled mobile 

robot has a nonholonomic kinematic constraint given by, 

x • sin(4>) + y • cos{4>) = 0. (4.2) 

This describes the constraint that the robot may only move linearly along its 

longitudinal axis, (input v), or in rotation, (input ui). An arbitrary set of states, 

[xi2/i</>i] may not necessarily be reached from another initial arbitrary set of states, 

[xoyofo] by a single straight line motion. 

38 

to accomplish posture stabilization, path following, and trajectory tracking, all 

utilizing the null primitive. 

4.2 Robot Kinematics 

The robots used for Mobile Emulab are exclusively differentially steered wheeled 

mobile robots. Each robot has two independently controlled large wheels, on sides 

opposite along the longitudinal axis of the robot, sharing the same transverse axis. 

A passive two degree of freedom roller wheel is used to statically support the rear 

of the robot. A unicycle kinematic model is used for this class of robot. This model 

may be visualized as a rolling disk on a fiat plane. 

4.2.1 Cartesian Kinematic System 

Three robot position states, x, y, and ¢ are used to denote Cartesian position 

and orientation within a known reference frame. In the case of posture regulation, 

the origin of the coordinate system coincides with the goal posture. Otherwise, the 

origin is arbitrarily chosen as a known datum point in the workspace. The robot 

state equations in Cartesian space are 

[
X] [ v . cos ( ¢) ] 
~ = v.sin(¢2 ( 4.1) 

The system inputs, v and w denote linear and rotational velocities respectively. 

There are three system states, but only two inputs. This class of wheeled mobile 

robot has a nonholonomic kinematic constraint given by, 

X· sin(¢) + y . cos(¢) = O. ( 4.2) 

This describes the constraint that the robot may only move linearly along its 

longitudinal axis, (input v), or in rotation, (input w). An arbitrary set of states, 

[XIYl¢l] may not necessarily be reached from another initial arbitrary set of states, 

[XOYO¢2] by a single straight line motion. 



39 

4.2.2 Polar Kinematic System 

To overcome some of the drawbacks associated with the Cartesian system repre­

sentation, a Polar representation is used. A Cartesian to Polar state transformation 

is given by 
e 
9 = 
a 

\ A 2 + 2/2 

atan2(—y, —x) 
9-6 

(4.3) 

where x, y, and 6 a r e the Cartesian states, and e, 9, and a are the Polar states. 

A kinematic diagram of the Polar states e, 9, and a, Cartesian states x, y, and 

4>, and system velocity inputs v and u> is given in Figure 4.1. The axes O signify 

the goal reference frame, to which the wheeled robot is stabilized. For the posture 

stabilization problem, the polar state equations are 

e 
9 = CO 

a 

v • cos{a) 
sin(a) V 

V 
e 

sin(a) 

(4.4) 

Figure 4.1. Polar kinematic diagram for posture stabilization. 

39 

4.2.2 Polar Kinematic System 

To overcome some of the drawbacks associated with the Cartesian system repre­

sentation, a Polar representation is used. A Cartesian to Polar state transformation 

is given by 

( 4.3) 

where x, y, and ¢ are the Cartesian states, and e, e, and 0: are the Polar states. 

A kinematic diagram of the Polar states e, e, and 0:, Cartesian states x, y, and 

¢, and system velocity inputs v and w is given in Figure 4.1. The axes 0 signify 

the goal reference frame, to which the wheeled robot is stabilized. For the posture 

stabilization problem, the polar state equations are 

[ 

~] [ v . cos(o:) ] e + sm(a) = W v· . e 
r" sin (a) 
LtC v·--

e 

( 4.4) 

~~--------~-----+Xr 
o ............ e ........ 

.... ..... 

Figure 4.1. Polar kinematic diagram for posture stabilization. 



40 

For the trajectory tracking problem, three states for a reference trajectory in 

Cartesian coordinates are added to the system. These state equations are given by, 

vr • cos(<pr) ' xr ' 

Vr 
. <t>r _ 

vr • sin(6r) (4.5) 

which is in the same form as (4.1). With the addition of these reference posture 

states, the Polar states given in (4.3) become, 

e 
e = 
a 

^{x- xr)2 + {y-yr)2 

atan2(—(y — yr), —{x — xr)) — 6r 

9-d> + 6r 

(4.6) 

Figure 4.2 illustrates the kinematics of the trajectory tracking problem. The 

reference frame is indicated by a grey set of wheels, while the actual robot is 

indicated by the black set. The reference trajectory is given by the dashed line, and 

the actual trajectory is a solid black line. The Polar states e, 8, and a are given, 

along with their Cartesian components and system inputs (4.6). 

As presented in [32], polar state equations are defined. Differentiating (4.6) and 

substituting (4.1), (4.5) and (4.6), (4.6) becomes 

e 
6 = 
a 

v • cos(a) + vr • cos(8) 
sin(a) sin(a) 1 

e ~ Vr • e ~ <t>r 
. sin(a) _ v . sm(Q) _ 1 

(4.7) 

Robot Trajectory 

r s. Or 
)e 

Figure 4.2. Polar kinematic diagram for trajectory tracking. 

40 

For the trajectory tracking problem, three states for a reference trajectory in 

Cartesian coordinates are added to the system. These state equations are given by, 

[ ~ ] ~ [ ~:: ~~~i:~~ ] , (4.5) 

which is in the same form as (4.1). With the addition of these reference posture 

states, the Polar states given in (4.3) become, 

[ 
e] [ J(x - Xr)2 + (y - Yr)2 ] 
() = atan2(-(y - Yr), -(x - xr)) - cPr 
a e - cP + cPr 

( 4.6) 

Figure 4.2 illustrates the kinematics of the trajectory tracking problem. The 

reference frame is indicated by a grey set of wheels, while the actual robot is 

indicated by the black set. The reference trajectory is given by the dashed line, and 

the actual trajectory is a solid black line. The Polar states e, e, and a are given, 

along with their Cartesian components and system inputs (4.6). 

As presented in [32], polar state equations are defined. Differentiating (4.6) and 

substituting (4.1), (4.5) and (4.6), (4.6) becomes 

[ 
~ ] = [ V. ~i~e(~~s~a~r ~ ~~:~fO~(:~ ] 
a v . sin(a) _ V . sin(a) _ ). 

ere 'Y 

e 

Reference Traje!o~ ~ ~ 
~~~~ 

.... --~X

Figure 4.2. Polar kinematic diagram for trajectory tracking.

(4.7)

I
I

41

The two polar systems defined in (4.4) and (4.7) are used for the design and

simulation of the posture stabilizing controller and trajectory tracking controller,

respectively. In simulation, these differential equations are solved directly, while in

implementation the Cartesian to Polar transformations are used to directly calculate

the Polar states.

4.2.3 Kinematic Constraints

The Garcia robots used in Mobile Emulab have specific kinematic constraints re­

lated to their dimensions and configurations. While a differentially steered wheeled

mobile robot is capable of a zero radius turn (e.g., a pivot), there exist curvature

constraints based on control and traction requirements. In this subsection, the

dimensional constraints of the robots, and how they relate to the robot kinematics

are discussed.

The nonlinear controllers discussed in this chapter, as kinematic motion con­

trollers, produce commands in the form of velocities. Specifically, the control laws

presented in this research produce the inputs v and uj for the systems described

in the previous subsections. The low level control systems on the robot perform

velocity tracking on a per wheel basis. This requires that wheel velocities be

calculated for the v and uj velocities output from the motion controllers. The

system inputs v and tu can be calculated from the individual wheel velocities by,

V l + V r (a c \
^ = g ' (4 8)

V r ~ V l I a a\
w = " 2 7 r - (4 9)

By solving (4.8) and (4.9) for Vl and vr, the individual left and right wheel velocities

are calculated by,
r l r ,i _ But i

(4.10)
vL

v - —
v + ^

where R = 0.0889 meters, as given by Table 2.1.

At maximum wheel velocity,

v+\u\-R (4.11)

41

The two polar systems defined in (4.4) and (4.7) are used for the design and

simulation of the posture stabilizing controller and trajectory tracking controller,

respectively. In simulation, these differential equations are solved directly, while in

implementation the Cartesian to Polar transformations are used to directly calculate

the Polar states.

4.2.3 Kinematic Constraints

The Garcia robots used in Mobile Emulab have specific kinematic constraints re­

lated to their dimensions and configurations. While a differentially steered wheeled

mobile robot is capable of a zero radius turn (e.g., a pivot), there exist curvature

constraints based on control and traction requirements. In this subsection, the

dimensional constraints of the robots, and how they relate to the robot kinematics

are discussed.

The nonlinear controllers discussed in this chapter, as kinematic motion con­

trollers, produce commands in the form of velocities. Specifically, the control laws

presented in this research produce the inputs v and w for the systems described

in the previous subsections. The low level control systems on the robot perform

velocity tracking on a per wheel basis. This requires that wheel velocities be

calculated for the v and w velocities output from the motion controllers. The

system inputs v and w can be calculated from the individual wheel velocities by,

VL +VR
V=---

2

VR -VL
W=---

2·R

(4.8)

(4.9)

By solving (4.8) and (4.9) for VL and VR, the individual left and right wheel velocities

are calculated by,

[~~] [~ ~ ~] , (4.10)

where R = 0.0889 meters, as given by Table 2.1.

At maximum wheel velocity,

Vmax = V + Iw I . R (4.11)

42

Letting v m a x = 1.0 meters per second, consider that iomax = (vmax — v) JR. This

results in u)max ~ 5.6243 radians per second.

The Polar state 8 as calculated by the Cartesian to Polar conversion in (4.3)

is compared to 8 calculated by the Polar state equation (4.4). Without correction

for discontinuities in the Cartesian to Polar conversion, 8 may be ±7 r from the

actual state value. To prevent discontinuities, unwrapping must be performed,

which accounts for the periodicity of the two-dimensional arctangent trigonometric

function used to calculate 8. The discontinuity correction, termed phase angle

unwrapping is discussed in detail in Section 7.4.3.

4.3 Posture Stabilizing Controller
This section presents the development of a smooth, state feedback linearizing

controller for the purpose of posture stabilization. Using a controller developed in

[26], a nonholonomic system is regulated to a single equilibrium point coincident

with a goal posture. The development of this controller is undertaken as an inter­

mediate step in the development of robust motion control for Mobile Emulab. The

ultimate goal for the motion controller is to support full trajectory tracking. The

establishment of posture stabilization through a nonlinear state feedback controller

is used to test the feasibility of the use of this class of motion control on the testbed.

The controller and robot simulation are implemented using MATLAB. The

control law developed here is implemented on Mobile Emulab, with state feedback

coming from the visual localization system. From the polar state equations (4.4),

a control law for a state feedback controller,

[U,UJ]t = g(e,a,8), (4.12)

is desired to drive states e, 8 and a to zero. A control law is designed via Lyapunov

analysis [45]. A quadratic form Lyapunov candidate function,

V = V1+V2 = ~Xe2 + ^ (a 2 + h82) , (4.13)

is chosen, where e is the error distance vector, and [a, \fh • 82]T is the alignment

error vector, and where A > 0 and h > 0.

42

Letting Vmax = 1.0 meters per second, consider that Wmax = (vmax - v) / R. This

results in Wmax ~ 5.6243 radians per second.

The Polar state () as calculated by the Cartesian to Polar conversion in (4.3)

is compared to e calculated by the Polar state equation (4.4). Without correction

for discontinuities in the Cartesian to Polar conversion, e may be ±n from the

actual state value. To prevent discontinuities, unwrapping must be performed,

which accounts for the periodicity of the two-dimensional arctangent trigonometric

function used to calculate e. The discontinuity correction, termed phase angle

unwrapping is discussed in detail in Section 7.4.3.

4.3 Posture Stabilizing Controller

This section presents the development of a smooth, state feedback linearizing

controller for the purpose of posture stabilization. Using a controller developed in

[26], a nonholonomic system is regulated to a single equilibrium point coincident

with a goal posture. The development of this controller is undertaken as an inter­

mediate step in the development of robust motion control for Mobile Emulab. The

ultimate goal for the motion controller is to support full trajectory tracking. The

establishment of posture stabilization through a nonlinear state feedback controller

is used to test the feasibility of the use of this class of motion control on the testbed.

The controller and robot simulation are implemented using MATLAB. The

control law developed here is implemented on Mobile Emulab, with state feedback

coming from the visual localization system. From the polar state equations (4.4),

a control law for a state feedback controller,

[u, w]T = g(e, a, e), (4.12)

is desired to drive states e, e and a to zero. A control law is designed via Lyapunov

analysis [45]. A quadratic form Lyapunov candidate function,

1 2 1 (2 2) V = VI + V2 = 2Ae + 2 a + he , (4.13)

is chosen. where e is the error distance vector, and [a, Vh . e2F is the alignment

error vector, and where A > 0 and h > o.

43

Taking the derivative of (4.13) results in,

V = V1 + V2, (4.14)

which is split into two parts:

V1 = Xe-e, (4.15)

V2=(aa + heey (4.16)

The control laws
v = ('jcos a) • e, (4-17)

cos asin a . , ., .
uj = ka + -f (a + M), (4.18)

a

are chosen, to be substituted into (4.19) and (4.23). The controller gains are

constrained by 7 > 0 and k > 0.

Considering V\ first, the state equations (4.3) and velocity control law (4.17)

are substituted, resulting in,

Vi = Xevcos(a). (4.19)

Vi ~ Xecos(a) (>ycos(a)) e, (4.20)

Vi = Xe2cos2(a)j. (4.21)

Vi = -(Xsin2{a))e2 < 0. (4.22)

The state equations (4.3) and control laws (4.17), (4.18) are also substituted

into (4.16).

Starting with,

(sin(a)\ , „ / sin(a)\ , J V2 = al-uj + v—-^j+hOlv—^J, (4.23)

results in,
/ sin(a) (a + h0)\ JN V2 = a[-oj + v ^ J-\, 4.24
\ a e J

(f f / \ •> sin(a) (a + h • 9)\\ , A V2 = a{-u+\hcos{a)e)—^± }-\\ , (4.25)

(rycos{a)sin{a) , , A , A

V2 = a f -UJ + ^ {a + h-6)\. (4.26)

Taking the derivative of (4.13) results in,

which is split into two parts:

Vi = Ae· e,

The control laws

v = (Icos a) . e,

k cos as'ln a (h())
W= a+, a+,

a

43

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

are chosen, to be substituted into (4.19) and (4.23). The controller gains are

constrained by , > 0 and k > O.

Considering V1 first, the state equations (4.3) and velocity control law (4.17)

are substituted, resulting in,

V1 = Aevcos(a).

Vi = Aecos(a) (Icos(a)) e,

(4.19)

(4.20)

(4.21)

(4.22)

The state equations (4.3) and control laws (4.17), (4.18) are also substituted

into (4.16).

Starting with,

V'- (Sin(a)) h()(Sin(a))
2 - a -w+v + v ,

e e
(4.23)

results in,

V· (sin(a) (a + h()))
2 = a -w+v ,

a e
(4.24)

V2 = a (-w + ((Icos(a)e) Sin~a) (a + eh . ()))) , (4.25)

. (,cos(a)sin(a) (())) V2 = a -w + a + h . .
a

(4.26)

44

V2 = -ka2 < 0. (4.27)

The derivate of the original Lyapunov function from (4.14) is assembled in

(4.28). This is an abuse of the terminology, as the derivative is only negative

semidefinite, instead of negative definite. The final result is,

V = - A (7 • cos2(a)) e2 - ka < 0. (4.28)

The control law (4.17) and (4.18) is further altered to permit forward motion

only, eliminating cusps in the resulting path The avoidance of cusps is desirable

in situations where the high torques required to quickly reverse, stop, and move

forward may reduce the battery life of the robots. Avoidance of path cusps may

also decrease the amount of time required for posture stabilization. Furthermore,

it is aesthetically pleasing to testbed users when robots proceed along more direct

paths to their destinations.

The modified control laws,

v = vmaxtanh [) , (4.29)

and

UJ = - ^ — — . (4.30)
e

are developed. A hyperbolic tangent function is used to provide a smooth saturation

of v m a x .

Posture regulation provides a control schema that bridges the gap between the

waypoint path controller, and the higher performance trajectory tracking controller

in Mobile Emulab. The posture regulating controller may be used with the existing

baseline waypoint path generator, providing faster motion and decreased transit

time during experiments.

4.4 Kinematic State Feedback
Trajectory Tracker

To support continuous robot movement in Mobile Emulab, a suitable trajectory

tracking controller is selected from the research. The controller needs to be capable

44

. 2 V2 = -ka :::; O. (4.27)

The derivate of the original Lyapunov function from (4.14) is assembled in

(4.28). This is an abuse of the terminology, as the derivative is only negative

semidefinite, instead of negative definite. The final result is,

(4.28)

The control law (4.17) and (4.18) is further altered to permit forward motion

only, eliminating cusps in the resulting path The avoidance of cusps is desirable

in situations where the high torques required to quickly reverse, stop, and move

forward may reduce the battery life of the robots. A voidance of path cusps may

also decrease the amount of time required for posture stabilization. Furthermore,

it is aesthetically pleasing to testbed users when robots proceed along more direct

paths to their destinations.

The modified control laws,

v = vmaxtanh (~) ,
Vmax

(4.29)

and
W = (sin(a)) (1 + h~) + f3a .

e
(4.30)

are developed. A hyperbolic tangent function is used to provide a smooth saturation

of vmax .

Posture regulation provides a control schema that bridges the gap between the

waypoint path controller, and the higher performance trajectory tracking controller

in Mobile Emulab. The posture regulating controller may be used with the existing

baseline waypoint path generator, providing faster motion and decreased transit

time during experiments.

4.4 Kinematic State Feedback
~ajectory ~acker

To support continuous robot movement in Mobile Emulab, a suitable trajectory

tracking controller is selected from the research. The controller needs to be capable

45

of commanding a differentially steered robot to follow a specified parametric path

at a high speed, and with minimal error. A kinematic controller is required to take

advantage of the existing development tools and robot capabilities provided by the

robot manufacturer.

The design of a control law to use for trajectory tracking is presented in Sec­

tion 4.4.1. The design of a dynamic extension to this controller is discussed in

Section 4.4.2. Parameter and gain specification of the control system is given

in Section 7.4.2. The stability analysis of the discrete system is discussed in

Section 6.3.4.

4.4.1 Control Law

A nonlinear control law to track a robot to a reference frame along a circular

path manifold are developed using Lyapunov based techniques. This controller pre­

sented in this section is capable of solving the posture stabilization, path following,

and trajectory tracking problems simultaneously. The controller development and

background, along with more details about the design of the circular path manifold

are discused in [32].

The control law is unaltered, and implemented directly in the motion control

system for Mobile Emulab. The optimized control law for linear velocity is given

as,

ki • e • ke • tanh(e — ry/2 • ke) 4- vr • e • cos(9) • ke + vT • kr • (sin(8) + ^ • e)
v = e • ke + kr • sin(a)

(4.31)

where ke is defined as

ke = y/(-cos(26),

kr = rV2-sin(29).

(4.32)

(4.33)

The optimized control law governing rotational velocity is given by,

u = k2 • tanh{9 + a) + 29 + 6r. (4.34)

45

of commanding a differentially steered robot to follow a specified parametric path

at a high speed, and with minimal error. A kinematic controller is required to take

advantage of the existing development tools and robot capabilities provided by the

robot manufacturer.

The design of a control law to use for trajectory tracking is presented in Sec­

tion 4.4.1. The design of a dynamic extension to this controller is discussed in

Section 4.4.2. Parameter and gain specification of the control system is given

in Section 7.4.2. The stability analysis of the discrete system is discussed in

Section 6.3.4.

4.4.1 Control Law

A nonlinear control law to track a robot to a reference frame along a circular

path manifold are developed using Lyapunov based techniques. This controller pre­

sented in this section is capable of solving the posture stabilization, path following,

and trajectory tracking problems simultaneously. The controller development and

background, along with more details about the design of the circular path manifold

are discused in [32].

The control law is unaltered, and implemented directly in the motion control

system for Mobile Emulab. The optimized control law for linear velocity is given

as,

kl . e· ke . tanh(e - rV2· ke) + Vr . e· cos(e) . ke + Vr . kr . (sin(e) + ~r • e)
v = r

e·ke+kr·sin(o:) ,

where ke is defined as

ke = V(- cos(2e),

kr = rV2 . sin(2e).

The optimized control law governing rotational velocity is given by,

(4.31)

(4.32)

(4.33)

(4.34)

46

4.4.2 Dynamic Extension

A dynamic extension is utilized to bound the output of the control law (4.31)

and (4.34). The dynamic extension is defined by new states,

v = —kv(v — vr) + vr, (4.35)

to — — ku{uj — uor) + oJr. (4.36)

introduced to decrease steady state error and improve boundedness. This extension

to the system effectively acts as a low pass filter, which improves the controller

response in the presence of noisy state feedback.

4.4.3 Controller Parameters

The system parameters for the trajectory tracking controller are given in Ta­

ble 4.1. These parameters are referenced in the simulations and experiments pre­

sented in Chapter 6 and Chapter 8.

With the completion of the design of trajectory generation and motion control

systems, one final component is required to create a complete robot coordination

and control system for Mobile Emulab. An obstacle avoidance system is needed

to coordinate the motion of multiple robots, and to avoid obstacles present in the

robot workspace. The next chapter presents an obstacle avoidance system, which

is intended for reactive motion planning. After the presentation of the obstacle

avoidance system, the results of all robot motion components in simulation are

presented.

Table 4.1. Motion controller parameters
Gain Description
r Path manifold radius
e Small perturbance to prevent discontinuity

fci Controller gain, v
k2

Controller gain, UJ
kv Dynamic extension gain, v
ku> Dynamic extension gain, UJ

46

4.4.2 Dynamic Extension

A dynamic extension is utilized to bound the output of the control law (4.31)

and (4.34). The dynamic extension is defined by new states,

(4.35)

(4.36)

introduced to decrease steady state error and improve boundedness. This extension

to the system effectively acts as a low pass filter, which improves the controller

response in the presence of noisy state feedback.

4.4.3 Controller Parameters

The system parameters for the trajectory tracking controller are given in Ta­

ble 4.1. These parameters are referenced in the simulations and experiments pre­

sented in Chapter 6 and Chapter 8.

With the completion of the design of trajectory generation and motion control

systems, one final component is required to create a complete robot coordination

and control system for Mobile Emulab. An obstacle avoidance system is needed

to coordinate the motion of multiple robots, and to avoid obstacles present in the

robot workspace. The next chapter presents an obstacle avoidance system, which

is intended for reactive motion planning. After the presentation of the obstacle

avoidance system, the results of all robot motion components in simulation are

presented.

Table 4.1. Motion controller parameters
Gain Description
r Path manifold radius
E Small perturbance to prevent discontinuity
kl Controller gain, v
k2 Controller gain, W

kv Dynamic extension gain, v
kw Dynamic extension gain, W

CHAPTER 5

OBSTACLE AVOIDANCE

In the iterative goal point progression model, obstacle avoidance is accomplished

through a modified visibility graph method, as discussed in Section 3.1. This

method works well for point to point motion and posture stabilization, but a better

model is needed for path following and trajectory tracking. A method of smooth and

continuous path generation for mobile robots maneuvering in a planar environment

with multiple obstacles is presented in this chapter. The method is based upon

construction of nonlinear dynamic phase portraits where key mathematical features

of their underlying differential equations are manipulated in order to provide a

novel trajectory generator resolving a number of known issues in the literature.

Termed the Virtualized Phase Portrait Method (VPPM), this algorithm uses a

planar velocity field instead of a scalar potential field. This provides trajectories

devoid of oscillations, eliminates problems with local minima, and results in more

direct control over bounded and smooth velocity and path curvature.

In the VPPM, a single vector of equations is constructed to describe the goal

point and obstacles. The goal point appears in the phase portrait differential

equations as a globally asymptotically stable node that attracts the robot directly to

its desired goal point along a minimum length straight line path. Obstacles appear

in the equations in order to deflect the robot from this ideal path as the robot

approaches the obstacles. Due to the smooth saturation nature of the goal point

-and obstacle proximity effects, the trajectory velocity and curvature are ultimately

smooth and bounded. Obstacle proximity effects also allow multiple obstacles to

be considered simultaneously by one set of equations. In cases where groups of

obstacles could trap or hinder the robot path, a bounding volume hierarchy is

CHAPTER 5

OBSTACLE AVOIDANCE

In the iterative goal point progression model, obstacle avoidance is accomplished

through a modified visibility graph method, as discussed in Section 3.1. This

method works well for point to point motion and posture stabilization, but a better

model is needed for path following and trajectory tracking. A method of smooth and

continuous path generation for mobile robots maneuvering in a planar environment

with multiple obstacles is presented in this chapter. The method is based upon

construction of nonlinear dynamic phase portraits where key mathematical features

of their underlying differential equations are manipulated in order to provide a

novel trajectory generator resolving a number of known issues in the literature.

Termed the Virtualized Phase Portrait Method (VPPM), this algorithm uses a

planar velocity field instead of a scalar potential field. This provides trajectories

devoid of oscillations, eliminates problems with local minima, and results in more

direct control over bounded and smooth velocity and path curvature.

In the VPPM, a single vector of equations is constructed to describe the goal

point and obstacles. The goal point appears in the phase portrait differential

equations as a globally asymptotically stable node that attracts the robot directly to

its desired goal point along a minimum length straight line path. Obstacles appear

in the equations in order to deflect the robot from this ideal path as the robot

approaches the obstacles. Due to the smooth saturation nature of the goal point

and obstacle proximity effects, the trajectory velocity and curvature are ultimately

smooth and bounded. Obstacle proximity effects also allow multiple obstacles to

be considered simultaneously by one set of equations. In cases where groups of

obstacles could trap or hinder the robot path, a bounding volume hierarchy is

48

employed to combine obstacles. This allows concave regions to be filled.

A trajectory generated by VPPM through a workspace with moderately placed

obstacles is shown in Figure 5.1. This illustrates key components of the velocity

field, such as the goal sink, obstacle exclusion zones, obstacle regions, and the initial

position. The obstacles in this example are placed manually, but could represent

the configuration space of a circular robot in an obstacle filled workspace known a

priori.

101————| 1 ' i —| r • 1 • 1—• 1™—: r

10 - •• L : I , L : : I I J ! : , I : S : ! : '
-10 -8 -6 -4 -2 0 2 4 6 8 10

meters

Figure 5.1. Robot trajectory simulated in a cluttered environment.

48

employed to combine obstacles. This allows concave regions to be filled.

A trajectory generated by VPPM through a workspace with moderately placed

obstacles is shown in Figure 5.1. This illustrates key components of the velocity

field, such as the goal sink, obstacle exclusion zones, obstacle regions, and the initial

position. The obstacles in this example are placed manually, but could represent

the configuration space of a circular robot in an obstacle filled workspace known a

priori.

10,-----r-----r-----,-----,-----,-----,-----,-----'"-----r----~

8 -

l
I

6 -- I
l
I

4 -- I
l
I
I

2- ~
I

e!
I

* 0 ~ E
I
I f I

-2
. ",,>\

l , " -. \ I

~, \ I
I

-4 , ~ l
l -- I ~ I
'. ~ I

-6 ~ I
l
I
I

-8
I

l
I
I

I I I I I
-10

-10 -8 -6 -4 -2 0 2 4 6 8 10
meters

Figure 5.1. Robot trajectory simulated in a cluttered environment.

49

5.1 Velocity Field Phase
Portrait Method

Given the size and placement of obstacles and goal point location within the

robot workspace, a virtual velocity field,

is generated. The field is used to create a trajectory from an initial point to the

final goal point. For simplicity within the scope of this article, the field equations

are restricted to 9ft2. The velocity field equation (5.1) shows the superposition of

the goal attractor qgoai, and obstacle repulsion fields where i = 1,.. . ,n, and n

is the number of obstacles present.

5.1.1 Goal Sink

In this model, a single goal sink for each robot is considered. This goal sink

globally attracts a robot to a specific Cartesian position within the workspace. A

globally asymptotically stable equilibrium point is placed anywhere in 3?2. The goal

is asymptotically stable, not exponentially stable due to the usage of a saturation

function to prevent undesirably strong velocity fields in areas distant from the sink.

In proximity to the goal, the field strength weakens, by linearly decreasing the

approach velocity of the robot near its objective to provide globally asymptotic

convergence. As shown in Figure 5.2, all differential field lines are oriented towards

the goal point.

The goal attractor function is a saturation function creating a field with all

vectors oriented towards a single configured goal point. The goal attractor function

could be substituted with a reference trajectory tracked by a nonlinear controller, or

a goal posture regulator which drives a robot to a desired position and orientation.

A single Cartesian position, Pgoai is configured for the goal attractor. The

saturation level fi determines the magnitude of the velocity field converging to the

goal point. A polar form saturation function orients the differential field vectors

towards the goal point. The usage of two Cartesian saturation functions results in

vectors converging to the major axes in outlying areas, with trajectories traveling

(5.1)

5.1 Velocity Field Phase
Portrait Method

49

Given the size and placement of obstacles and goal point location within the

robot workspace, a virtual velocity field,

(5.1)

is generated. The field is used to create a trajectory from an initial point to the

final goal point. For simplicity within the scope of this article, the field equations

are restricted to ~2. The velocity field equation (5.1) shows the superposition of

the goal attractor ggoal, and obstacle repulsion fields gi, where i = 1, ... ,n, and n

is the number of obstacles present.

5.1.1 Goal Sink

In this model, a single goal sink for each robot is considered. This goal sink

globally attracts a robot to a specific Cartesian position within the workspace. A

globally asymptotically stable equilibrium point is placed anywhere in R2. The goal

is asymptotically stable, not exponentially stable due to the usage of a saturation

function to prevent undesirably strong velocity fields in areas distant from the sink.

In proximity to the goal, the field strength weakens, by linearly decreasing the

approach velocity of the robot near its objective to provide globally asymptotic

convergence. As shown in Figure 5.2, all differential field lines are oriented towards

the goal point.

The goal attractor function is a saturation function creating a field with all

vectors oriented towards a single configured goal point. The goal attract or function

could be substituted with a reference trajectory tracked by a nonlinear controller, or

a goal posture regulator which drives a robot to a desired position and orientation.

A single Cartesian position, Pgoal is configured for the goal attractor. The

saturation level f.-l determines the magnitude of the velocity field converging to the

goal point. A polar form saturation function orients the differential field vectors

towards the goal point. The usage of two Cartesian saturation functions results in

vectors converging to the major axes in outlying areas, with trajectories traveling

50

5

4

3

2

1

0

- 1

-2

-3

-4

-5
-5 0

Figure 5.2. Field of a single goal sink at the origin.

along them to reach the equilibrium point at the goal. This behavior is undesirable

in the interests of optimizing trajectory length.

The scalar polar distance magnitude,

e=\\q- Pg0ai (5.2)

and angle,

6 = Atan2(q-Pgoal), (5.3)

5~'~'~'~\~\~\~\~\~'~~'~/~/~/-/~/~~~/~~~

"'\\\\\'~"IIII///
'" '- \ \ \ \ , , 111111///
""\\\\\'IIIII//~/
""'\\\\"III//~//
"""\\\"II///~//
"""'\\"II//~;~~
~~""'\\III/;~;'~~
~~~""'\II/~"'~~~ 
~~~~~~"'I~;'~~~~~~ 

4

3

2

1

o

-1

-2

-3

-4

..
~~~~~~~~~t',~~~~~~~ 

~~~~,~~/It\",,~~~~ 
~~~~~~~111\"",'~~ 
~~~~//1111\\"','" 
//~///1111\\\"""
/////11111\\\\"",
~///111111\\\\"",
///11111 ,,, \ \ \ \, '"
~//11111'1'\\\\\'"

-5~~~~~~~~~~~--~~~~~~~

-5 o 5

Figure 5.2. Field of a single goal sink at the origin.

50

along them to reach the equilibrium point at the goal. This behavior is undesirable

in the interests of optimizing trajectory length.

The scalar polar distance magnitude,

e = II q - Pgoal II , (5.2)

and angle,

e = Atan2(q - Pgoal), (5.3)

51

are assembled to form the goal attractor field,

Qgoai = - A t • tanh(e) • Rz{9)
1
0

(5.4)

where Rz{9) is a standard two-dimensional rotation matrix given by,

Rz{0) =
cos(9) —sin(9)
sin{9) cos(9)

(5.5)

Global asymptotic stability of the goal equilibrium point is thus guaranteed based

upon Lyapunov techniques.

5.1.2 Obstacle Fields

Obstacle field overlays are created by defining a set of Cartesian center coor­

dinates. Values describing the two-dimensional size, orientation, and strength of

the desired region of repulsion are also created. To define obstacle regions in the

workspace, let Pi G 3?2, i = 1 , . . . , n be the center positions, and <Zj G 3ft2, % = 1, . . . , n

be the scalar exterior dimensions of n rectangular obstacles. The orientation of each

obstacle is given by 6.

A local coordinate system, di, oriented by angle 6 is created. The origin for

each coordinate system is located at the center point of its parent obstacle.

The partial primary rolloff function,

7i = sat(g(y/amax)), (5.6)

establishes the shape and size of the obstacle repulsion field overlay. The term a m a x

is used for the maximum distance projected in y, to normalize the primary rolloff

function based on obstacle size and orientation. Examples of field functions are

shown in Figure 5.3. The field is designed to inversely saturate in order to limit

the influence of the obstacle field overlays to a controlled local area.

In Figure 5.3, the two solid line plots use the field roll off function g(x) = x 2 ,

while the two dotted line trajectories use a field roll off function of g(x) = x4. The

black lines use the saturation function given by sat(x) = 1 — tanh(x), and the gray

lines use, sat(x) = 1 — (— J • atan(x). These functions are abbreviated as tank

51

are assembled to form the goal attractor field,

qgoal = -/1' tanh(e) . Rz (()) . [~] , (5.4)

where Rz(B) is a standard two-dimensional rotation matrix given by,

R (B) = [COS(B) -sin(B)]
z sin(B) cos (B) . (5.5)

Global asymptotic stability of the goal equilibrium point is thus guaranteed based

upon Lyapunov techniques.

5.1.2 Obstacle Fields

Obstacle field overlays are created by defining a set of Cartesian center coor­

dinates. Values describing the two-dimensional size, orientation, and strength of

the desired region of repulsion are also created. To define obstacle regions in the

workspace, let ~ E R2, i = 1, ... ,n be the center positions, and ai E ~2, i = 1, ... ,n

be the scalar exterior dimensions of n rectangular obstacles. The orientation of each

obstacle is given by cp.

A local coordinate system, di , oriented by angle cp is created. The origin for

each coordinate system is located at the center point of its parent obstacle.

The partial primary rolloff function,

Ii = sat(g(y/amax)), (5.6)

establishes the shape and size of the obstacle repulsion field overlay. The term am ax

is used for the maximum distance projected in fj, to normalize the primary rolloff

function based on obstacle size and orientation. Examples of field functions are

shown in Figure 5.3. The field is designed to inversely saturate in order to limit

the influence of the obstacle field overlays to a controlled local area.

In Figure 5.3, the two solid line plots use the field roll off function g(x) = x2
,

while the two dotted line trajectories use a field roll off function of g(x) = X4. The

black lines use the saturation function given by sat(x) = 1 - tanh(x), and the gray

lines use, sat (x) = 1 - (~) . at an (x). These functions are abbreviated as tanh

Figure 5.3. Rolloff of field functions 7$ as indicated.

and atan respectively, with the superscript referring to one of the above roll off

functions by its exponent.

A saturation and roll off function pair is chosen to get the desired obstacle field

overlay effect. For a strong, predictable obstacle region, it is best to use the tanh4

field, (dotted black line). It has a sharp roll off, and diminishes at approximately

150% of the obstacle region distance from the center. For a smoother trajectory

with lower curvature, it is best to choose the atan2 field, (solid gray line). This

field function has a large area of influence, which is desirable in regions with sparse

obstacle disbursement. Other saturation and roll off function pairs can be chosen,

as long as the region of local instability remains bounded.

The secondary roll off function acts in line with a trajectory approaching the goal

position. It controls the region in which a trajectory is deflected before encountering

an obstacle, as well as providing a smooth trajectory after the obstacle is cleared.

A smooth field envelope is needed to prevent discontinuities in the velocity field.

Minimizing the occurrences of discontinuities benefits the system by keeping the

trajectory velocity bounded, and limiting curvature. Without a secondary rolloff

function, the obstacle field acts in an unlimited region along the local x axis, as

shown in Figure 5.4.

Originally, primary roll off functions acting along the adjoining major axis are

52

0.8
-tanh2

0.6 - - - tanh4

?- -~ atan2

0.4
atan4

0.2

0
0 0.5 1.5 2 2.5 3

x

Figure 5.3. Rolloff of field functions "Ii as indicated.

and atan respectively, with the superscript referring to one of the above roll off

functions by its exponent.

A saturation and roll off function pair is chosen to get the desired obstacle field

overlay effect. For a strong, predictable obstacle region, it is best to use the tanh4

field, (dotted black line). It has a sharp roll off, and diminishes at approximately

150% of the obstacle region distance from the center. For a smoother trajectory

with lower curvature, it is best to choose the atan2 field, (solid gray line). This

field function has a large area of influence, which is desirable in regions with sparse

obstacle disbursement. Other saturation and roll off function pairs can be chosen,

as long as the region of local instability remains bounded.

The secondary roll off function acts in line with a trajectory approaching the goal

position. It controls the region in which a trajectory is deflected before encountering

an obstacle, as well as providing a smooth trajectory after the obstacle is cleared.

A smooth field envelope is needed to prevent discontinuities in the velocity field.

Minimizing the occurrences of discontinuities benefits the system by keeping the

trajectory velocity bounded, and limiting curvature. Without a secondary rolloff

function, the obstacle field acts in an unlimited region along the local x axis, as

shown in Figure 5.4.

Originally, primary roll off functions acting along the adjoining major axis are

53

. < . . l . . .1. . .1.

2
•X. 0 <X>

- 1

1 1 1 1 1 1 1 1 1
t t t t t t t I t
t t 1 t t 1 t 1 1 •

. l . l . . f . . . t . . . t . . l . l . . i . . t . . H

i i i i i i i i i .
i i i i i t i i i ,
i t i i i i i i i

1 1 1 1 1 1 1 1 1
t t t t t i t i t
t t t i t t t t t
u j . . . i . i . i . . i . i . i

i i i i i i i i i

i i i i i i i i i
i t i i i i i t i

-3 -2 - 1 0 1
meters

Figure 5.4. An obstacle with no secondary rolloff function.

used as secondary rolloff functions. With the addition of support for oriented

obstacles, a new secondary rolloff function is needed. VPPM is extended with a

new secondary rolloff function, a. This new extension not only provides support

for oriented obstacles, but preserves continuity of the vector field, and improves

interactions between closely spaced obstacles.

The secondary rolloff function, a, is a scalar value calculated by solving a

cubic polynomial parametric trajectory envelope around the obstacle. The current

3~------~--------~------~--------~--------~------~

2

1 .. j .. I ... 1. .. 1 ... 1 .. j ... 1 ... 1 ... 1. .

1 1 1

t t t t t t t t t
1 1 1 1 1 1 1 1 1

o .. 1 .. 1 .. t .. 1 .1 .. 1 .. 1 .. t .. 1.

~ J ! 4 J ~ J ! ! , I +
, i l , l l

~ J ~ ~

-1 .. ,. . -I"' -.II - • I' . . ,. . . T ··t··

-2

.I .. ! ... 1 ... 1 ... 1. .. 1 .. ! .. .I ... 1 ..

1
t t t t t t t t
1 1 1 1 1 1 1 f 1

.1,. , .. t .. 1 .. 1 .. 1 .. 1. t.

J J ~ J J J J J J , , , t , +
, l !

I I I j f J
. I .. ~ . .. ~ '.f .. .f • . l"' '," 'T'

_3~-------L ________ ~ ______ ~ ________ J-______ ~ ________ ~

53

-3 -2 -1 o
meters

1 2 3

Figure 5.4. An obstacle with no secondary rolloff function.

used as secondary rolloff functions. With the addition of support for oriented

obstacles, a new secondary rolloff function is needed. VPPM is extended with a

new secondary rolloff function, (J". This new extension not only provides support

for oriented obstacles, but preserves continuity of the vector field, and improves

interactions between closely spaced obstacles.

The secondary roll off function, (J", is a scalar value calculated by solving a

cubic polynomial parametric trajectory envelope around the obstacle. The current

54

configuration q is transformed into obstacle local coordinates. For a given x, a value

in y is calculated. The magnitude of the trajectory envelope at that specific point

is then used as the value for a.

The obstacle local coordinate system rotation matrix is given by

Ra = # z (0-0 + 7 r) . (5.7)

The obstacle region is developed as an oriented bounding box, in a local coordinate

system with an origin coincident to its center. The angle of orientation is normalized
TV

to lie between 0 and —. Any other orientations can be normalized to this range by

switching the dimensions of the obstacle region. Using this rotation matrix, and

the dimensional parameters for each individual obstacle, the vertices of the oriented

bounding box are calculated,
-1 0

Vh bottomleft Ra*

vh

bottomright

Vtopleft =

Vtopright

Ra*

Ra*

= Ra*

0 -1

1 0
0 1

-1 0 -

0 1

1 0 -

0 1

* a;/2,

* ai/2,

* aj/2.

(5.8)

(5.9)

(5.10)

(5.11)

The term bisection line is used to denote the x axis of the local coordinate system.

For any oriented bounding box given the above stated parameters, there can be only

one or two vertex points above the bisection line. The bottom left vertex is always

below the bisection line, and can be discarded from consideration for the secondary

rolloff function. Likewise, the top right vertex is always above the bisection line,

and is always considered in the secondary rolloff function. One of the remaining

vertexes may lie above the bisection line, and this is algorithmically determined

in order to get the vertexes comprising the control points of the secondary rolloff

function envelope.

The control points of an obstacle are determined by the one or two vertices above

the bisection line, plus two more points along the bisection line to control the size

54

configuration q is transformed into obstacle local coordinates. For a given X, a value

in f) is calculated. The magnitude of the trajectory envelope at that specific point

is then used as the value for (5.

The obstacle local coordinate system rotation matrix is given by

(5.7)

The obstacle region is developed as an oriented bounding box, in a local coordinate

system with an origin coincident to its center. The angle of orientation is normalized
7f

to lie between 0 and "2' Any other orientations can be normalized to this range by

switching the dimensions of the obstacle region. Using this rotation matrix, and

the dimensional parameters for each individual obstacle, the vertices of the oriented

bounding box are calculated,

~ottomleft = RfJ * [- ~ _ ~] * ad2,

~ottomright = RfJ * [~ _ ~] * ad2,

Vtopleft = RfJ * [- ~ ~] * ad2,

Vtopright = RfJ * [~ ~] * ad2.

(5.8)

(5.9)

(5.10)

(5.11)

The term bisection line is used to denote the x axis of the local coordinate system.

For any oriented bounding box given the above stated parameters, there can be only

one or two vertex points above the bisection line. The bottom left vertex is always

below the bisection line, and can be discarded from consideration for the secondary

rolloff function. Likewise, the top right vertex is always above the bisection line,

and is always considered in the secondary rolloff function. One of the remaining

vertexes may lie above the bisection line, and this is algorithmically determined

in order to get the vertexes comprising the control points of the secondary rolloff

function envelope.

The control points of an obstacle are determined by the one or two vertices above

the bisection line, plus two more points along the bisection line to control the size

55

-Wi
0

(5.15)

w2

0

of the obstacle approach and departure regions. These outlying control points are

determined based on the velocity of the approaching trajectory, which in turn is

influenced by the goal and local obstacle field strengths. Two scalar distance values,

w\ and u>2 are calculated, and used to determine the secondary rolloff envelope

function control points. The values wi and u>2 correspond to obstacle approach

and departure distances, respectively.

The first control point is

(5.12)

in the local obstacle coordinate system. If the top left obstacle vertex is above the

bisection line, the next control point becomes,

Gi = Vtopleft- (5.13)

The top right vertex is always above the bisection line, which leads to its inclusion

as a control point:

Gi = Vtopright- (°-14)

If the bottom right vertex is above the bisection line,

Gi — Vbottomright-

Due to the symmetric properties of oriented bounding boxes, either the top left or

bottom right vertex can exclusively lie above the bisection line. If the orientation

angle is —, both vertexes will lie directly on the bisection line, and will not be

control points. The bottom left vertex is always below the bisection line, and

therefor never considered as a control point. The final control point is given by,

(5.16)

For each segment of the trajectory envelope, four parameters are given. The

vectors Pj and Pf represent the initial and final control points, while and Vf

denote the derivatives which control the orientation at each control point, t is

calculated given x, which also determines the active segment. For each segment, t

55

of the obstacle approach and departure regions. These outlying control points are

determined based on the velocity of the approaching trajectory, which in turn is

influenced by the goal and local obstacle field strengths. Two scalar distance values,

WI and W2 are calculated, and used to determine the secondary rolloff envelope

function control points. The values WI and W2 correspond to obstacle approach

and departure distances, respectively.

The first control point is

[
-WI] G I = 0' (5.12)

in the local obstacle coordinate system. If the top left obstacle vertex is above the

bisection line, the next control point becomes,

(5.13)

The top right vertex is always above the bisection line, which leads to its inclusion

as a control point:

(5.14)

If the bottom right vertex is above the bisection line,

Gi = Vbottomright. (5.15)

Due to the symmetric properties of oriented bounding boxes, either the top left or

bottom right vertex can exclusively lie above the bisection line. If the orientation
7f

angle is "4' both vertexes will lie directly on the bisection line, and will not be

control points. The bottom left vertex is always below the bisection line, and

therefor never considered as a control point. The final control point is given by,

(5.16)

For each segment of the trajectory envelope, four parameters are given. The

vectors Pi and Pf represent the initial and final control points, while Vi and vf

denote the derivatives which control the orientation at each control point. t is

calculated given X, which also determines the active segment. For each segment, t

56

starts at zero, and ends at one. The cubic trajectory coefficients for each segment

are given by

h = Pu (5.17)

k2 = vu (5.18)

k3 = 3*{Pf-Pi)-{2*Vi + vf), (5.19)

and

h = - 2 * (Pf - Pi) + {Vi + vf). (5.20)

Using these coefficients yields

y = k4-t3 + k3-t2 + k2-t + k1. (5.21)

An example secondary rolloff function envelope for an obstacle oriented at zero

is given in Figure 5.5. Four control points are used, and Wi and w2 are both

arbitrarily set to one. Note that the top curve is the calculated envelope, and that

the bottom curve is reverse-symmetric.

1.5

1

0.5

o

-0.5

- 1

-1.5
- 2 -1.5 - 1 -0.5 0 0.5 1 1.5 2

Figure 5.5. Secondary rolloff function, obstacle angle 0

56

starts at zero, and ends at one. The cubic trajectory coefficients for each segment

are given by

and

U sing these coefficients yields

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

An example secondary rolloff function envelope for an obstacle oriented at zero

is given in Figure 5.5. Four control points are used, and WI and W2 are both

arbitrarily set to one. Note that the top curve is the calculated envelope, and that

the bottom curve is reverse-symmetric.

1.5

-1.5 '----_~ _ ____':_ __ __'_____-----'---_---,JL--_~ _ ____':_ __

-2 -1.5 -1 2

Figure 5.5. Secondary rolloff function, obstacle angle 0

57

In Figure 5.6, the same values are used, except that the obstacle is now oriented

7r/4. In this case, we only need three control points. The reverse symmetry

properties are more prominent in this example.

The value for w<i is significantly decreased, and the orientation is changed to 7r /6

in Figure 5.7. A smaller exclusion zone around the obstacle is required in regions

where the obstacle face slants away from the bisection line.

The partial obstacle field equation,

p=\[i-o>i\, (5.22)

is constructed from the primary and secondary rolloff functions, multiplied by the

obstacle field strength parameter. Field lines are aligned perpendicular to the goal

attractor to keep obstacle repulsion fields from influencing the approach velocity

of a robot in proximity to an obstacle, which helps prevent local minima from

forming. Otherwise, field lines radiating directly from the center of an obstacle

region can create local minima on the side furthest from the goal attractor, while

accelerating trajectories towards the goal near the side closest to the goal attractor.

1 -

0 .5 -

o -

- 0 . 5 -

-1 -

- 2 -1.5 - 1 -0.5 0 0.5 1 1.5 2

Figure 5.6. Secondary rolloff function, obstacle angle 7r/4

57

In Figure 5.6, the same values are used, except that the obstacle is now oriented

7r / 4. In this case, we only need three control points. The reverse symmetry

properties are more prominent in this example.

The value for W2 is significantly decreased, and the orientation is changed to 7r /6

in Figure 5.7. A smaller exclusion zone around the obstacle is required in regions

where the obstacle face slants away from the bisection line.

The partial obstacle field equation,

(5.22)

is constructed from the primary and secondary rolloff functions, multiplied by the

obstacle field strength parameter. Field lines are aligned perpendicular to the goal

attractor to keep obstacle repulsion fields from influencing the approach velocity

of a robot in proximity to an obstacle, which helps prevent local minima from

forming. Otherwise, field lines radiating directly from the center of an obstacle

region can create local minima on the side furthest from the goal at tract or , while

accelerating trajectories towards the goal near the side closest to the goal attractor.

1.5

0.5

Ol---~

-0.5

-1

-1.5'----_---'-_-----' __ ---'-----_--"-__ --'---_---'--__ '----_---.J

-2 -1.5 -1 -0.5 o 0.5 1.5 2

Figure 5.6. Secondary rolloff function, obstacle angle 7r / 4

58

- 2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 5.7. Secondary rolloff function, obstacle angle 7r /6

The orientation of the field is determined by

(5.23)

dependent on whether the current point is above or below the bisection line. The

scalar partial field and field orientation parameters are then used to calculate the

final oriented obstacle differential field,

cos(C)
sin(Q

(5.24)

58

1.5

. .. :-.

- 1.5 ~---'~"--''--:---'-;!;-'''--;;-:-'----';:-;c'---'--:-'---~;-',,-,,-,!
-2 -1.5 -1 -0.5 0 0.5 1.5 2

Figure 5.7. Secondary rolloff function , obstacle angle 1[/6

The orientation of the field is determined by

7r
(= O±-

2'
(5.23)

dependent on whether the current point is above or below the bisection line. The

scalar partial field and field orientation parameters are then used to calculate the

final oriented obstacle differential field,

. [cos(() 1
q, = p. sin(O . (5.24)

CHAPTER 6

SIMULATION

In this chapter, the design, implementation, and results of simulations for

trajectory generation, motion control, and obstacle avoidance are presented. The

design of all components to be implemented into Mobile Emulab are first rigorously

tested in simulation to verify their characteristics and performance. All simulations

presented here use MATLAB and Simulink.

Several simulation applications are used to evaluate the performance of the

different aspects of motion planning and control. The simulations are used to speed

the development of algorithms, and verify the planned features before undertaking

the task of implementation in to the Mobile Emulab system. The simulation results

presented in this chapter provide a baseline to establish desired behavior, which can

be used to compare and verify results gathered through experimentation on real

hardware.

6.1 Trajectory Generation
The trajectory generators discussed in Chapter 3 are evaluated in simulation in

this section. Applications are created in the MATLAB programming language to

test all aspects of the trajectory generators before integration within RMCD. This

method is chosen to enable rapid development and evaluation of algorithms for

generating segmented paths, curves, and parameterization to create final reference

trajectories required by the motion controller.

For simulation and verification of the segmented trajectory generators, a stan­

dard reference trajectory is needed. A series of viapoints resulting in a path with

curves with high and low angles, plus multiple segments that must be orthoganal.

This standard trajectory is designed to thouroughly test all generators for robust-

CHAPTER 6

SIMULATION

In this chapter, the design, implementation, and results of simulations for

trajectory generation, motion control, and obstacle avoidance are presented. The

design of all components to be implemented into Mobile Emulab are first rigorously

tested in simulation to verify their characteristics and performance. All simulations

presented here use MATLAB and Simulink.

Several simulation applications are used to evaluate the performance of the

different aspects of motion planning and control. The simulations are used to speed

the development of algorithms, and verify the planned features before undertaking

the task of implementation in to the Mobile Emulab system. The simulation results

presented in this chapter provide a baseline to establish desired behavior, which can

be used to compare and verify results gathered through experimentation on real

hardware.

6.1 Trajectory Generation

The trajectory generators discussed in Chapter 3 are evaluated in simulation in

this section. Applications are created in the MATLAB programming language to

test all aspects of the trajectory generators before integration within RMCD. This

method is chosen to enable rapid development and evaluation of algorithms for

generating segmented paths, curves, and parameterization to create final reference

trajectories required by the motion controller.

For simulation and verification of the segmented trajectory generators, a stan­

dard reference trajectory is needed. A series of viapoints resulting in a path with

curves with high and low angles, plus multiple segments that must be orthoganal.

This standard trajectory is designed to thouroughly test all generators for robust-

60

ness, and correctness. Figure 6.1 gives an example of a standard testing trajectory,

colloquially termed the double paperclip.

6.1.1 Line-Arc Trajectories

Line-Arc trajectory generation by the path planning software is discussed in

Section 3.3. Paths generated in this manner are C° continuous, with a discontinuity

in curvature at the boundaries of lines and arcs. A closed form parametric trajectory

is realized, given a list of via points.

In Figure 6.2, the resulting paths from two trajectory generators are presented.

The path created from simulation is generated from the MATLAB application. The

Figure 6.1. Example trajectory with quintic spline curves.

60

ness, and correctness. Figure 6.1 gives an example of a standard testing trajectory,

colloquially termed the double paperclip.

6.1.1 Line-Arc Trajectories

Line-Arc trajectory generation by the path planning software is discussed in

Section 3.3. Paths generated in this manner are CO continuous, with a discontinuity

in curvature at the boundaries of lines and arcs. A closed form parametric trajectory

is realized, given a list of via points.

In Figure 6.2, the resulting paths from two trajectory generators are presented.

The path created from simulation is generated from the MATLAB application. The

-7r-----~----~------~----~----~------~----~----~

-8

-9

-10

-11

-12

-13

-14~--~----~----~----~----~--~----~--~

4 5 6 7 8 9 10 11 12

Figure 6.1. Example trajectory with quintic spline curves.

61

Simulation

4 6 8 10 12
x (meters)

RMCD

r

1 I

4 6 8 10 12
x (meters)

Figure 6.2. Trajectory generation comparison, path.

path in the plot labeled R M C D is generated from the implementation on Mobile

Emulab, as discussed in Section 2.5. To test for conformability, the two plots are

compared.

The velocity profiles from the two trajectory generators are compared in Fig­

ure 6.3. A linear velocity ramp is applied at the beginning and end of the path to

create a trajectory. A constant velocity is otherwise applied.

Figure 6.4 gives a comparison of the angular velocities. The zero order curvature

continuity of the path results in the abrupt changes in angular velocity. This

path could not be followed exactly by a differentially steered mobile robot without

stopping at each discontinuity point and executing a zero radius turn. A kinematic

controller with first order filtering can approximately track a C° continuous path

with a minimal amount of error.

6.1.2 Spline Trajectories

An example of the standard test trajectory generated using quintic splines, as

discussed in Section 3.5 is given in Figure 6.1. The fillet radius is 0.25 meters,

and where P 2

 — Pi = 0.05, as developed in Section 3.5.1. The radius and control

polygon points are chosen arbitrarily in this section, for illustration purposes.

61

Simulation RMCD
-7 -7

-8 -8

-9 -9

(j)
Qi -10

(j)
Qi -10

Q) Q)

.s -11 .s -11
>. >.

-12 -12

-13 . -13

-14 -14
4 6 8 10 12 4 6 8 10 12

x (meters) x (meters)

Figure 6.2. Trajectory generation comparison, path.

path in the plot labeled RMCD is generated from the implementation on Mobile

Emulab, as discussed in Section 2.5. To test for conformability, the two plots are

compared.

The velocity profiles from the two trajectory generators are compared in Fig­

ure 6.3. A linear velocity ramp is applied at the beginning and end of the path to

create a trajectory. A constant velocity is otherwise applied.

Figure 6.4 gives a comparison of the angular velocities. The zero order curvature

continuity of the path results in the abrupt changes in angular velocity. This

path could not be followed exactly by a differentially steered mobile robot without

stopping at each discontinuity point and executing a zero radius turn. A kinematic

controller with first order filtering can approximately track a CO continuous path

with a minimal amount of error.

6.1.2 Spline Trajectories

An example of the standard test trajectory generated using quintic splines, as

discussed in Section 3.5 is given in Figure 6.1. The fillet radius is 0.25 meters,

and where P2 - PI = 0.05, as developed in Section 3.5.1. The radius and control

polygon points are chosen arbitrarily in this section, for illustration purposes.

62

Simulation RMCD

50 100 150 200 250 300 0
Time (seconds)

50 100 150 200 250 300
Time (seconds)

Figure 6.3. Trajectory generation comparison, velocity.

0.5
Simulation

-0.5 L

100 200
Time (seconds)

300

0.5
RMCD

c
o
o
0) in <n
c
w
JO

o
CD

>

-0.5
100 200

Time (seconds)
300

Figure 6.4. Trajectory generation comparison, angular velocity.

62

Simulation RMCD

~

~lo ~lo

c c
0 8 () 0.1 0.1 Ql Ql
U) U)

U) ~ Q) Ql
a; a;
.s .s
.5' 0.05 .-5' 0.05
0 0

CD CD
> >

0
0 50 100 150 200 250 300 50 100 150 200 250 300

Time (seconds) Time (seconds)

Figure 6.3. Trajectory generation comparison, velocity.

Simulation RMCD
0.5 0.5

~'o ~'o

c c
0 0
() ()
Q) Q)
U) CJ)

CJ) CJ)

c C
<tl <tl
15 15

~ ~
?;> 0 .:=- 0
'u 'u
0 0
1) 1)
> >
~ m

::::J "3
OJ OJ
C c « «

-0.5 -0.5
0 100 200 300 0 100 200 300

Time (seconds) Time (seconds)

Figure 6.4. Trajectory generation comparison, angular velocity.

63

The feasibility of using splines for parametric trajectory generation is demon­

strated, as the path shown in Figure 6.1 is similar to the path shown in Figure 6.2,

albeit without any lower order discontinuities in curvature. The same via point

data is used for both simulations. This demonstrates that spline-based trajectories

can be used in Mobile Emulab, requiring minimal modification to path data input

requirements.

6.2 Posture Stabilization Controller
Simulations of the posture stabilization controllers discussed in Chapter 4 are

created to test the stability and performance of the designs. Before integration of

these controller in to Mobile Emulab, the controllers must be verified to respond

as desired. The results presented in this section explore the behavior of the two

posture stabilization controllers under different initial conditions, parameters, and

gains. The simulations presented here do not account for the sampling frequency

of the state feedback on the real system. Noise characteristics are not modeled,

and robot dynamics consist mainly of the saturation velocity and acceleration of

the controller command signals. The goal of these simulations is to establish the

feasibility of these controllers to perform as expected while being used to control

real robots.

6.2.1 Simulation Development

The posture stabilizing controller discussed in Section 4.3 is shown in Figure 6.5,

as implemented in Simulink. Logging facilities are in place to capture position,

state, controller, and wheel velocity data from the simulation. Both Cartesian and

polar inputs for initial conditions are accepted.

An alternate version of the posture stabilizing controller is included in this

simulation. This version allows only forward motion, avoiding cusps in the resulting

paths. The block diagram for this controller is given in Figure 6.6.

63

The feasibility of using splines for parametric trajectory generation is demon­

strated, as the path shown in Figure 6.1 is similar to the path shown in Figure 6.2,

albeit without any lower order discontinuities in curvature. The same via point

data is used for both simulations. This demonstrates that spline-based trajectories

can be used in Mobile Emulab, requiring minimal modification to path data input

requirements.

6.2 Posture Stabilization Controller

Simulations of the posture stabilization controllers discussed in Chapter 4 are

created to test the stability and performance of the designs. Before integration of

these controller in to Mobile Emulab, the controllers must be verified to respond

as desired. The results presented in this section explore the behavior of the two

posture stabilization controllers under different initial conditions, parameters, and

gains. The simulations presented here do not account for the sampling frequency

of the state feedback on the real system. Noise characteristics are not modeled,

and robot dynamics consist mainly of the saturation velocity and acceleration of

the controller command signals. The goal of these simulations is to establish the

feasibility of these controllers to perform as expected while being used to control

real robots.

6.2.1 Simulation Development

The posture stabilizing controller discussed in Section 4.3 is shown in Figure 6.5,

as implemented in Simulink. Logging facilities are in place to capture position,

state, controller, and wheel velocity data from the simulation. Both Cartesian and

polar inputs for initial conditions are accepted.

An alternate version of the posture stabilizing controller is included in this

simulation. This version allows only forward motion, avoiding cusps in the resulting

paths. The block diagram for this controller is given in Figure 6.6.

1.2

g a m m a

a l p h a

CT>H
e

cos

sin

O f

u m a x

tanh
U

r XTJ3
o m e g a

e t a

Figure 6.5. Posture stabilizing controller.

a

Figure 6.5. Posture stabilizing controller.

omega

Figure 6.6. Posture stabilizing controller, alternate version (forward motion only). Figure 6.6. Posture stabilizing controller, alternate version (forward motion only).

66

A Simulink block diagram of the main simulation application of the posture

stabilizing controller is shown in Figure 6.7. Included in this application are blocks

to accept initial conditions in either Polar or Cartesian coordinates, and output of

the resulting trajectory, Polar states, and controller output velocities. Both posture

regulators are included, and can be chosen at run time.

The robot polar kinematics block diagram, shown in Figure 6.8, takes input from

the controller, runs through a robot dynamics model, and then directly implements

the polar state equations (4.3). The initial state values come from the values set in

the main simulation.

6.2.2 Simulation Results

Figure 6.9 shows the paths generated by the posture stabilizing controller dis­

cussed in Section 4.3. Initial postures are located at various angles on a unit circle.

The initial angle is zero at each instance. For initial postures with a large value

of the polar state 6, the resultant paths include cusps, where the linear velocity

changes directions. Two simulations are presented here, both with initial postures

resulting in higher values of 9. These postures were chosen since they result in

more interesting trajectories. All postures are presented in the form [xyS]. Unless

otherwise noted, linear measurements are in meters, and angular units are radians.

The alternate posture stabilizing controller is simulated with an initial posture of

[x, y, </>] = [0.0, —1.0, —7r /4]. The results of this simulation are shown in Figure 6.10.

The light gray structures represent the posture of a differentially steered robot's

axle at constant time intervals. This posture stabilizing controll is designed to

command forward motion only, avoiding any cusps in the resulting path.

The polar system states of this simulation are given in Figure 6.11. As desired,

all states are regulated to zero, with no overshoot. The controller is demonstrated

here to be exponentially stable for this specific set of initial conditions and controller

parameters. Figure 6.12 displays plots of the controller outputs.

66

A Simulink block diagram of the main simulation application of the posture

stabilizing controller is shown in Figure 6.7. Included in this application are blocks

to accept initial conditions in either Polar or Cartesian coordinates, and output of

the resulting trajectory, Polar states, and controller output velocities. Both posture

regulators are included, and can be chosen at run time.

The robot polar kinematics block diagram, shown in Figure 6.8, takes input from

the controller, runs through a robot dynamics model, and then directly implements

the polar state equations (4.3). The initial state values come from the values set in

the main simulation.

6.2.2 Simulation Results

Figure 6.9 shows the paths generated by the posture stabilizing controller dis­

cussed in Section 4.3. Initial postures are located at various angles on a unit circle.

The initial angle is zero at each instance. For initial postures with a large value

of the polar state e, the resultant paths include cusps, where the linear velocity

changes directions. Two simulations are presented here, both with initial postures

resulting in higher values of e. These postures were chosen since they result in

more interesting trajectories. All postures are presented in the form [xy¢]. Unless

otherwise noted, linear measurements are in meters, and angular units are radians.

The alternate posture stabilizing controller is simulated with an initial posture of

[x, y, ¢] = [0.0, -1.0, -7r / 4]. The results of this simulation are shown in Figure 6.10.

The light gray structures represent the posture of a differentially steered robot's

axle at constant time intervals. This posture stabilizing controll is designed to

command forward motion only, avoiding any cusps in the resulting path.

The polar system states of this simulation are given in Figure 6.11. As desired,

all states are regulated to zero, with no overshoot. The controller is demonstrated

here to be exponentially stable for this specific set of initial conditions and controller

parameters. Figure 6.12 displays plots of the controller outputs.

p o s t u r e reg (f)
e u
alpha
theta omega

p o s t u r e reg (fb)

- 1 p i / 4)

x,y,pni

[1 pi pi]

e, alpha

e u
alpha
theta omega

•

"caff2poT

1 — ^ * —

I—• d l p h A Y

| — • IHRTI p n i .

initial c o n d i t i o n s

theta

Figure 6.7. Posture stabilizing controller: main simulation application.

initial conditions

Figure 6.7. Posture stabilizing controller: main simulation application.

u

omega
cos

e dot

e initlaT

alphj pha

•KjD
e

s i n alpha dot

alphajnitiaf

theta dot

— •
theta initial

*<§f
tfieta

Figure 6.8. Robot polar kinematics simulation block diagram.

00

e dot

Figure 6.8. Robot polar kinematics simulation block diagram.

w

Figure 6.9. Posture stabilizing controller simulation: paths resulting from initial
postures on a unit circle.

69

~ ~

/
,

/
,

0.8 /
,

"-
/

, ,
0.6 / , ,

/ \ ,
OA , ,

I

0.2 \

0

,
-0.2 \

\
I \

-0.4 I
\ I , I

-0.6 \ / , /
,

/
-0.8 "- / , /" ,

/

~ -- 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure 6 .9. Posture stabilizing controller simulation : paths resulting from ini tial
postures on a unit circle.

70

-0.6 0 0.2
x (meters)

Figure 6.10. Posture stabilizing controller, simulated trajectory.

10 15
time (seconds)

25

Figure 6.11. Posture stabilizing controller, simulated system response.

70

o

-0.2

~ -0.4

* E -,.,

'" c
~

'i5
~
.;
~

* E

- 0.6

-0.8

- 1

-0.6 -0.4 -0.2 o 0.2 0.4 0.6 0.8
x (meters)

Figure 6.10. Posture stabilizing controller, simulated trajectory.

3 , ,
2 I

fo ;
1

0

-1

-2 o

,..
~

\

I
I
\
I

I-~;;

\.
5

E - a

- - - e

10 15 20
time (seconds)

Figure 6.11. Posture stabilizing controller, simulated system response.

I

25

71

Figure 6.12. Posture stabilizing controller, controller output.

71

1 r-------.-------~------_r------_.------_,

~'o 0.8
c

§
w 0.6
1? * 0.4
E
;- 0.2

5 10 15 20 25
time (seconds)

4 ,-------~------_.--------~------_.------__,

~'g 2V\
8
~
~ 0
~

'g
..=.. -2
8

-4 ~------~------~~------~------~~----~ o 5 10 15 20 25
time (seconds)

Figure 6. 12. Posture stabilizing controller, controller output .

72

The main posture stabilizing controller is simulated with initial Cartesian states

of [x,y,6] = [—0.6, —1.2, — 7 r / 2] . The resulting trajectory is given in Figure 6.13.

These initial conditions result in a cusp in the path. The robot is initially oriented

South in this figure. This results in the robot undergoing backward motion over

the first section of the trajectory.

The simulated Polar system states are plotted in Figure 6.14. All states smoothly

progress to zero, and settle rapidly.

Figure 6.13. Posture stabilizing controller, [—0.6 —1.2—7r/2], simulated trajectory.

72

The main posture stabilizing controller is simulated with initial Cartesian states

of [x,y,¢l = [-O.6,-1.2,-7f/2]. The resulting trajectory is given in Figure 6.13.

These initial conditions result in a cusp in the path. The robot is initially oriented

South in this figure. This results in the robot undergoing backward motion over

the first section of the trajectory.

The simulated Polar system states are plotted in Figure 6.14. All states smoothly

progress to zero, and settle rapidly.

o

-0.2

-0.4

en
Q)

~ -0.6 --
-0.8

-1

-1.2 -1 -0.8 -0.6 -0.4 -0.2 o 0.2 0.4
x (meters)

Figure 6.13. Posture stabilizing controller, [-O.6-1.2-7f /2], simulated trajectory.

73

Figure 6.14. Posture stabilizing controller, [-0.6, - 1 . 2 , —7r /2], simulated system
response.

73

3

w 2 c
.'>1
." ~

e
- a.
- - - e

m
~

~ 1
w

" ;; -E 0

-1
0 5 10 15 20 25

time (seconds)

Figure 6.14. Posture stabilizing controller, (-0.6, - 1.2, -7r/2}, simulated system
response.

74

Output from the controller is given in Figure 6.15, with the resulting wheel

speeds in Figure 6.16. The wheel velocities differ from the controller command

because of acceleration saturation.

The wheel accelerations are shown in Figure 6.17. These accelerations are

saturated at 0.4 meters per second squared.

The simulations presented in this section establish that the posture stabilizing

controller presented in Section 4.3 is exponentially stable, and produces bounded

and smooth output. With continuous state feedback, kinematic control may be used

to drive a robot to a single goal posture. In the next section, a kinematic trajectory

tracking controller is tested in simulation. The development of the posture regulator

serves as an initial effort, and establishes the kinematics and control structure

1

-0.5 • ' - 1 1 1 1

0 5 10 15 20 25
time (seconds)

Figure 6.15. Posture stabilizing controller, [—0.6, —1.2, — 7 r / 2] , controller output.

74

Output from the controller is given in Figure 6.15, with the resulting wheel

speeds in Figure 6.16. The wheel velocities differ from the controller command

because of acceleration saturation.

The wheel accelerations are shown III Figure 6.17. These accelerations are

saturated at 0.4 meters per second squared.

The simulations presented in this section establish that the posture stabilizing

controller presented in Section 4.3 is exponentially stable, and produces bounded

and smooth output. With continuous state feedback, kinematic control may be used

to drive a robot to a single goal posture. In the next section, a kinematic trajectory

tracking controller is tested in simulation. The development of the posture regulator

serves as an initial effort, and establishes the kinematics and control structure

~lo

0.5 c
0
()
Q)
(/)

(/) 0
Q)

CD
E '-" -0.5
>

-1
0 5 10 15 20 25

time (seconds)

1.5
~

I
"0
C 1 0
()
Q)
(J)

(J) 0.5 c
CIl
'6
CIl 0 '-"

8

-0.5
0 5 10 15 20 25

time (seconds)

Figure 6.15. Posture stabilizing controller, [-0.6, -1.2, -7f /2]' controller output.

75

10 15
time (seconds)

Left Wheel
Right Wheel

20 25

Figure 6.16. Posture stabilizing controller, [—0.6, —1.2, — 7 r / 2] , wheel velocities.

0.5

7
~o c o o CD W
w 0
CD
CD
E.
CO

-0.5
10 15

time (seconds)

- Left Wheel
- Right Wheel

20 25

Figure 6.17. Posture stabilizing controller, [—0.6, —1.2, —7r / 2] , wheel accelera­
tions.

required to proceed to development of more advanced motion controllers.

6.3 Kinematic State Feedback
Trajectory Tracking

Controller
The trajectory tracking controller presented in Chapter 4 is evaluated in simula­

tion in this section. This controller requires careful simulation design, and rigorous

testing, because of the challenges presented by the state feedback sampling rate and

other aspects of the Mobile Emulab system. For example, the existing software

75

1~-------.--------,--------,----~==~======~

~~

c 0.5 o
u
<J.)
(/)

(/) o
<J.)

Q5

g -0.5
>

-LeftWheel
- Right Wheel

-1 ~--------~----------~--------~----------~--------~
o 5 10 15 20 25

time (seconds)

Figure 6.16. Posture stabilizing controller, [-0.6, -1.2, -n)2], wheel velocities.

0.5

CfI
"0
c
0
u
<J.)
(/)

(/) 0
<J.) -<J.)

g
co

~"""

-0.5
0

-I
~

~_w

tf
5

~

10 15
time (seconds)

1

- Left Wheel
~=- Right Wheel

20 25

Figure 6.17. Posture stabilizing controller, [-0.6, -1.2, -7[/2], wheel accelera­
tions.

required to proceed to development of more advanced motion controllers.

6.3 Kinematic State Feedback
Trajectory Tracking

Controller

The trajectory tracking controller presented in Chapter 4 is evaluated in simula­

tion in this section. This controller requires careful simulation design, and rigorous

testing, because of the challenges presented by the state feedback sampling rate and

other aspects of the Mobile Emulab system. For example, the existing software

76

contstraints allow for only position information to be available to the controller.

The simulated control system must reflect the operating environment provided by

the real system, in order to properly evaluate the feasibility and performance of

motion control on Mobile Emulab. The goal in this section is to obtain results that

establish the feasibility of using this controller to control actual hardware.

An example trajectory generated by the motion controller discussed in Sec­

tion 4.4 is shown in Figure 6.18. This simulation is an initial result from the con­

troller, with little gain adjustment, and a continuous sampling rate. The reference

trajectory is the standard double paperclip trajectory, as presented in Section 6.1.

The simulated trajectory initially converges slowly, but eventually manages to track

the reference path closely for the duration of the simulation.

5 6 7 8 9 10 11 12
x (m)

Figure 6.18. Trajectory tracking controller, continuous sampling.

76

contstraints allow for only position information to be available to the controller.

The simulated control system must reflect the operating environment provided by

the real system, in order to properly evaluate the feasibility and performance of

motion control on Mobile Emulab. The goal in this section is to obtain results that

establish the feasibility of using this controller to control actual hardware.

An example trajectory generated by the motion controller discussed m Sec­

tion 4.4 is shown in Figure 6.18. This simulation is an initial result from the con­

troller, with little gain adjustment, and a continuous sampling rate. The reference

trajectory is the standard double paperclip trajectory, as presented in Section 6.l.

The simulated trajectory initially converges slowly, but eventually manages to track

the reference path closely for the duration of the simulation.

-8

-9

-10

-11

-12

-13

5 6 7 8
x (m)

9

, , , , , , , Reference Trajecto

- Tracked Trajectory

10 11

Figure 6.18. Trajectory tracking controller, continuous sampling.

12

77

6.3.1 Simulation Development

A block diagram for the kinematic state feedback trajectory tracking controller

simulation is included in Figure 6.19. This simulation is completed in MATLAB and

Simulink. It includes input of a reference trajectory, and logging of states, gains,

controller outputs, and trajectories to and from the MATLAB workspace. Polar

states are calculated from Cartesian trajectories according to (4.3). The motion

controller output is passed to a block which calculates the resulting trajectory

using the Cartesian state equations, (4.1).

The models in simulation are designed to account for acceleration and velocity

saturation on the real robots. The sampling frequency is also considered by applying

a zero order hold with a rate of 30 Hz to the dynamic extension output. Facilities

are built into the simulation to log all state and localization data for creating plots

for later review.

Applications are written to noninteractively run the controller system simulation

with varying parameters. Discrete derivatives are used to best model the RMCD

implementation. The simulation is run at a constant sampling rate of one kilohertz.

The sampling rate is chosen to accurately simulate the robot kinematics.

Figure 6.19. Trajectory tracking controller simulation block diagram.

77

6.3.1 Simulation Development

A block diagram for the kinematic state feedback trajectory tracking controller

simulation is included in Figure 6.19. This simulation is completed in MATLAB and

Simulink. It includes input of a reference trajectory, and logging of states, gains,

controller outputs, and trajectories to and from the MATLAB workspace. Polar

states are calculated from Cartesian trajectories according to (4.3). The motion

controller output is passed to a block which calculates the resulting trajectory

using the Cartesian state equations, (4.1).

The models in simulation are designed to account for acceleration and velocity

saturation on the real robots. The sampling frequency is also considered by applying

a zero order hold with a rate of 30 Hz to the dynamic extension output. Facilities

are built into the simulation to log all state and localization data for creating plots

for later review.

Applications are written to noninteractively run the controller system simulation

with varying parameters. Discrete derivatives are used to best model the RMCD

implementation. The simulation is run at a constant sampling rate of one kilohertz.

The sampling rate is chosen to accurately simulate the robot kinematics.

R~fet~\i¢~
"·~:;";"'Ory

Initial
Conditions

Robot
Simulation

Figure 6.19. Trajectory tracking controller simulation block diagram.

78

6.3.2 Initial Condi t ions

An initial position which is ahead of the start of a reference trajectory may cause

problems, as shown in Figure 6.20. The control law given in Subsection 4.4.1 does

not allow backward motion. A consequence of this is that simulated trajectories will

loop around to join the reference trajectory, instead of backing up or pausing until

the reference trajectory has caught up. This sort of trajectory would be difficult to

send as a command to a real robot, as the velocities and accelerations required are

too high.

A series of tests are performed to determine safe initial conditions for the motion

controller. A sample of the evaluations are presented here. All postures presented

here are in the form [x,y,6]. The initial trajectory convergence is shown, and

-11

-13

4 5 6 7 8
x(m)

9 10 11 12

Figure 6.20. Path loop caused by initial conditions.

78

6.3.2 Initial Conditions

An initial position which is ahead of the start of a reference trajectory may cause

problems, as shown in Figure 6.20. The control law given in Subsection 4.4.1 does

not allow backward motion. A consequence of this is that simulated trajectories will

loop around to join the reference trajectory, instead of backing up or pausing until

the reference trajectory has caught up. This sort of trajectory would be difficult to

send as a command to a real robot, as the velocities and accelerations required are

too high.

A series of tests are performed to determine safe initial conditions for the motion

controller. A sample of the evaluations are presented here. All postures presented

here are in the form [x, y, <Pl. The initial trajectory convergence is shown, and

-7,------.------~------,------.------~------,------.------~

-8

-9

____ -10
.s
>,

-11

-12

-13

4 5 6 7 8
x (m)

9

, , , , , " Reference Trajectory

- Tracked Trajectory

10 11 12

Figure 6.20. Path loop caused by initial conditions.

79

it may be assumed that the out of boundary trajectories resemble the trajecto­

ries presented in Figure 6.18. The double paperclip reference trajectory starts at

[x,y,6}= [5 . 0 , - 1 1 . 0 , - f] .

Figure 6.21 has a favorable initial posture of [4.95, —10.95, . The simulated

trajectory converges rapidly, with no overshoot or oscillations. The initial condi­

tions are favorable in this case because the position results in the initial absolute

value of the polar kinematic state 9 to be less than | radians. The orientation of

the initial posture also matches the initial orientation of the reference trajectory.

An example of a poorly formed initial posture is given in Figure 6.22. An

initial posture of [5.04, —10.99, — TT] is used in this simulation. The initial position

is satisfactory, but the orientation is pointed away from the initial reference posture.

This results in a high value of the kinematic polar state a. To converge upon the

reference trajectory, the motion controller commands a large fast loop, which results

in large error initially. The looping is caused by the simulated robot overruning the

-10.95

- 1 1

-11.05

-11.1

-11.15

-11 .2

4.95 5 5.05 5.1
x (m)

Figure 6.21. Initial trajectory with an aligned initial posture.

79

it may be assumed that the out of boundary trajectories resemble the trajecto­

ries presented in Figure 6.18. The double paperclip reference trajectory starts at

[x, y, ¢] = [5.0, -11.0, -~].

Figure 6.21 has a favorable initial posture of [4.95, -10.95, -27r]. The simulated

trajectory converges rapidly, with no overshoot or oscillations. The initial condi­

tions are favorable in this case because the position results in the initial absolute

value of the polar kinematic state e to be less than ~ radians. The orientation of

the initial posture also matches the initial orientation of the reference trajectory.

An example of a poorly formed initial posture is given in Figure 6.22. An

initial posture of [5.04, -10.99, -7r] is used in this simulation. The initial position

is satisfactory, but the orientation is pointed away from the initial reference posture.

This results in a high value of the kinematic polar state cx. To converge upon the

reference trajectory, the motion controller commands a large fast loop, which results

in large error initially. The looping is caused by the simulated robot overruning the

-10.95

-11

-11.05

-11.1

-11.15

-11.2

4.95

, , , , , " Reference Trajectory

- Tracked Trajectory

5 5.05 5.1
x (m)

Figure 6.21. Initial trajectory with an aligned initial posture.

80

Reference Trajectory
Tracked Trajectory

-11

-11.1

-11.2

E -11 .3

-11.4

-11 .5

-11.6

4.9 5 5.1 5.2 5.3 5.4
x(m)

Figure 6.22. Initial trajectory with a perpendicular initial posture.

reference trajectory. The controller compensates by commanding a high rotational

velocity to loop the robot back, as opposed to commanding a lower linear velocity.

A high initial value of a does not necessarily cause problems, as evidenced in

Figure 6.23. The initial posture is [4.99, —11.03, —f] - The trajectory converges

rapidly, in a similar fashion to more favorable boundary conditions.

6.3.3 Sampling Rates

Simulating the motion controller under conditions approximating an ideal con­

tinuous sampling rate establishes the feasibility and performance of trajectory

tracking using this design, but the implementation constraints dictate that state

feedback will only be available at a known discrete sampling rate. As established

80

-11
-
-
- I I I I I I I Reference Tra.jectory --

-11.1 -
- Tracked Trajectory
-
--
-
-----11.2
-
-
-
-
-
-
-
-E -11.3 ----

-11.4

-11.5

-11.6

4.9 5 5.1 5.2 5.3 5.4
x (m)

Figure 6.22. Initial trajectory with a perpendicular initial posture.

reference trajectory. The controller compensates by commanding a high rotational

velocity to loop the robot back, as opposed to commanding a lower linear velocity.

A high initial value of 0: does not necessarily cause problems, as evidenced in

Figure 6.23. The initial posture is [4.99, -1l.03, -~J. The trajectory converges

rapidly, in a similar fashion to more favorable boundary conditions.

6.3.3 Sampling Rates

Simulating the motion controller under conditions approximating an ideal con­

tinuous sampling rate establishes the feasibility and performance of trajectory

tracking using this design, but the implementation constraints dictate that state

feedback will only be available at a known discrete sampling rate. As established

81

Reference Trajectory
Tracked Trajectory

Figure 6.23. Initial trajectory with a reversed initial posture.

by the localization system hardware, state data is available at a maximum rate of

30 Hz. An example of a simulated trajectory generated initially after quantizing

the controller output at 30 Hz is given in Figure 6.24. Without gain adjustment,

and well formed initial conditions, the controller quickly fails to track the refer­

ence trajectory. This is especially a problem when encountering discontinuities in

curvature at the endpoints of arcs in the path. No saturation limits on controller

output are used in this simulation. The resulting trajectory loops many times, as

the simulated robot continually overruns the reference trajectory.

To evaluate controller performance at varying sample rates, the overall time

average of the absolute position error is measured. Absolute position error is a

term for the kinematic state e from (4.3). The results of the controller simulated

at different sample rates is shown in Figure 6.25. The vertical line in the center

81

-10.7.,.-----,-----.....--------,------,-----1 Reference Trajectory

-10.8

-10.9

-11

-11.1

-. -11.2
g
>- -11.3

-11.4

-11.5

-11.6

-11.7

5 5.2 5.4 5.6
x (m)

- Tracked Trajectory

5.8 6 6.2

Figure 6.23. Initial trajectory with a reversed initial posture.

by the localization system hardware, state data is available at a maximum rate of

30 Hz. An example of a simulated trajectory generated initially after quantizing

the controller output at 30 Hz is given in Figure 6.24. Without gain adjustment,

and well formed initial conditions, the controller quickly fails to track the refer­

ence trajectory. This is especially a problem when encountering discontinuities in

curvature at the endpoints of arcs in the path. No saturation limits on controller

output are used in this simulation. The resulting trajectory loops many times, as

the simulated robot continually overruns the reference trajectory.

To evaluate controller performance at varying sample rates, the overall time

average of the absolute position error is measured. Absolute position error is a

term for the kinematic state e from (4.3). The results of the controller simulated

at different sample rates is shown in Figure 6.25. The vertical line in the center

82

-10.5

-11

-11.5

E,
-12

-12.5

-13

•13.5
" " Reference Trajectory

—™ Tracked Trajectory

4.5 5 5.5 6 6.5 7
x(m)

Figure 6.24. Initial simulation with controller output sampled at 30 Hz.

of the plot is located at a sample rate of 30 Hz. Error increases significantly as

sampling frequency decreases, and the controller time step increases. In this set of

simulations, a sampling rate of approximately 1 kHz is required to achieve a desired

average error of one centimeter. At 30 Hz, average error exceeds thirty millimeters.

Figure 6.26 shows a simulated trajectory with a continuous controller. The

controller output is then quantized at 30 Hz, with the results presented in Fig-

-10.5

-11

-11.5

- -12
E -

-12.5

-13

-13.5

4.5 5

I I I I I I I Reference Trajectory
-- Tracked Trajectory

5.5 6 6.5 7
x (m)

Figure 6.24. Initial simulation with controller output sampled at 30 Hz.

82

of the plot is located at a sample rate of 30 Hz. Error increases significantly as

sampling frequency decreases, and the controller time step increases. In this set of

simulations, a sampling rate of approximately 1 kHz is required to achieve a desired

average error of one centimeter. At 30 Hz, average error exceeds thirty millimeters.

Figure 6.26 shows a simulated trajectory with a continuous controller. The

controller output is then quantized at 30 Hz, with the results presented in Fig-

Figure 6.25. Controller performance under varying sampling rates.

ure 6.27. There are no saturation limits on the accelerations or velocities of the

controller output in the simulations in this subsection. With unbounded velocity

and acceleration, the controller can follow a reference trajectory at a low sampling

frequency, albeit with tracking errors. With the absence of velocity and acceleration

saturation, the robot will overrun the reference trajectory if the sampling frequency

is too low. Large angular velocity commands will be given by the controller to

compensate for the high angle error resulting from a trajectory overrun, causing

the looping behavior.

6.3.4 Discrete System Stability Analysis

The trajectory tracking controller system is made discrete at a fixed sampling

rate, and analyzed to choose parameters that result in a stable system. A fixed

83

0.1

0.09
(j)
Q) 0.08 -Q)

E ---.... 0.07 e
w
c 0.06 0

'';::::; 'w
0

a.. 0.05
Q) -::J
0 0.04 (/)
.0
~
Q)

g> 0.03
....
Q)
>
~ 0.02

0.01~ ____ _

o~--~--~~~~~~----~--~~~~~~----~--~~~~~

10-3 10-2 10-1 100

Controller Time Step (seconds)

Figure 6.25. Controller performance under varying sampling rates.

me 6.27. There are no saturation limits on the accelerations or velocities of the

controller output in the simulations in this subsection. With unbounded velocity

and acceleration, the controller can follow a reference trajectory at a low sampling

frequency, albeit with tracking errors. With the absence of velocity and acceleration

saturation, the robot will overrun the reference trajectory if the sampling frequency

is too low. Large angular velocity commands will be given by the controller to

compensate for the high angle error resulting from a trajectory overrun, causing

the looping behavior.

6.3.4 Discrete System Stability Analysis

The trajectory tracking controller system is made discrete at a fixed sampling

rate, and analyzed to choose parameters that result in a stable system. A fixed

84

-7

-8

-9

- 10

-11

-12

-13 ' Reference Trajectory
~ Tracked Trajectory

8
x(m)

10 11 12

Figure 6.26. Simulation with continuous controller (no sampling).

sampling rate of 30 Hz is considered in the discrete system. Parameters for hi,

&2 , kv and kc are chosen based on discrete system stability criterion, with constant

values chosen for r and e. Desired Z transform roots are chosen based upon pole

placement methods.

The nonlinear system of the robot kinematic controller is presented in the form,

± = f(x). (6.1)

The system state equations in Polar form are defined as,

-7.--.------.------.------~----~.-----~------~----~

-8

-9

........ -10
E --

-11

-12

-13

5 6 7 8
x (m)

9

I I I I I I I Reference Trajecto

Tracked Trajectory

10 11 12

Figure 6.26. Simulation with continuous controller (no sampling).

84

sampling rate of 30 Hz is considered in the discrete system. Parameters for kl'

k2' kv and kc are chosen based on discrete system stability criterion, with constant

values chosen for rand E. Desired Z transform roots are chosen based upon pole

placement methods.

The nonlinear system of the robot kinematic controller is presented in the form,

x = f(x). (6.1)

The system state equations in Polar form are defined as,

85

- 7

-8

-9

- 1 0

-11

-12

- 1 3

8
x(m)

Reference Trajectory

Tracked Trajectory

10 11 12

F i g u r e 6.27. Simulation with controller output quantized at 30 Hz.

/ (*) =

—va cos (a) + vr cos (6)

va sin (a) vrv sin (6)
e e

— C J ,
v a sin [a) vr sin I

(6.2)

e e

The parameters va and w a are the actual robot velocities, accounting for lag. Desired

robot velocities are given by Vd and u>d- Velocity error states are defined in terms of

actual and desired velocities, given by va = ev + and coa = +u)d- The velocity

error states are substituted into (6.2), forming,

-7.--.------,,------.------.------.-----~------~----~

-8

-9

-- -10
E -

-11

-12

-13

5 6 7 8 9
x (m)

Reference Trajectory

-- Tracked Trajectory

10 11 12

Figure 6.27. Simulation with controller output quantized at 30 Hz.

-Va cos (0:) + Vr cos (8)

85

f(x) Va sin (0:)
e

VrV sin (8)
e (6.2)

Va sin (0:) Vr sin (8)
-Wr e - e - Wa

The parameters Va and Wa are the actual robot velocities, accounting for lag. Desired

robot velocities are given by Vd and Wd. Velocity error states are defined in terms of

actual and desired velocities, given by Va = ev + Vd and Wa = ew + Wd. The velocity

error states are substituted into (6.2), forming,

86

fix) =

— (ev + vd) cos (a) + vr cos (9)

(ev + u>d) sin (a) u>r sin (9)
e e

{ev + Vd) sin (a) ur sin (9)

(6.3)

g g cw U>d _

The nonlinear control laws (4.31) and (4.34) are substituted into the desired veloc­

ities, vd and ujd, in (6.3).

The time constants of the robots used in Mobile Emulab are considered. Two

additional states corresponding to the velocity errors are added to the system.

Additional system equations are given by,

h(x) = (6.4)

where rv and r w are the measured time constants of the robot for linear and

rotational velocity, respectively. The system modeled with a delay from the system

time constants is defined as,

/ (*) =

with system states given by,

x

fi(x)

e
9
a
ev

(6.5)

(6.6)

Expanding (6.5) results in,

—Pi cos (a) + vr cos (0)

P\P2 — — k2 tanh (9 + a) — u>r (6.7)

where,

Pi ev + -kiePs tanh (- e + ry/^Ps) + vre cos (9) P2 + vrP4 sin (o + ^)
ePz + P4 sin (a)

(6.1

86

- (ev + Vd) cos (0:) + Vr cos (8)

1(,7;) (6.3)

The nonlinear control laws (4.31) and (4.34) are substituted into the desired veloc­

ities, Vd and Wd, in (6.3).

The time constants of the robots used in Mobile Emulab are considered. Two

additional states corresponding to the velocity errors are added to the system.

Additional system equations are given by,

(6.4)

where Tv and Tw are the measured time constants of the robot for linear and

rotational velocity, respectively. The system modeled with a delay from the system

time constants is defined as,

l(x)

with system states given by,

,7;=

[
h(,7;)]
12(,7;) ,

e
o

Expanding (6.5) results in,

1(,7;)

where,

-PI cos (0:) + Vr cos (0)
PI P2 - Wr

PI P2 - ew - k2tanh (0 + 0:) - Wr

-ev/Tv

-ew/Tw

(6.5)

(6.6)

(6.7)

ev + -kI eP3 tanh (-e + n!2P3) + vrecos (0) P2 + vrP4 sin (0 + wJre)
PI = ------------------------------~------------~----~

eP3 + P4 sin (0:)
(6.8)

87

p sin (a) — vr sin (9)
2 e

P3 = Vl + e-cos (2 9).

P4 = rV2sin(2 9)

(6.9)

(6.10)

(6.11)

An equilibrium point,

x0 =

e t
9 0
a = 0

cv 0
0

(6.12)

is chosen. The velocities are chosen as v = vr and to = 0. The nonlinear system

(6.7) is linearized about the equilibrium point (6.12) by calculating the Jacobian.

The linearized system is given as,

A _ d £
dx

Xo in the form,

x = Ax.

(6.13)

(6.14)

The state transition matrix of the linearized system is calculated by a fourth

order Taylor series approximation, given by,

<j> = I + A*T + A2T2/2\ + A3T3/3\ + A4T4/4\. (6.15)

The system is made discrete by transforming it into the z domain by,

F(z) = z * I - <f), (6.16)

where I is an identity matrix of the same dimensions as 6. The desired root

magnitude is calculated by,

Z = 1 0 W r))

where T = 1/30 seconds, and the desired time constant r

results in a root magnitude of z = 0.9117.

(6.17)

0.3 seconds. This

sin (a) - Vr sin (B)
P2 = --------'-

e

P3 = J 1 + E - cos (2 B).

P4 = rV2 sin (2 B)

An equilibrium point,

e E

B 0
xo = a 0

ev 0
ew 0

87

(6.9)

(6.10)

(6.11)

(6.12)

is chosen. The velocities are chosen as v = Vr and w = O. The nonlinear system

(6.7) is linearized about the equilibrium point (6.12) by calculating the Jacobian.

The linearized system is given as,

in the form,

A= at
ax

Xo

i: = Ax.

(6.13)

(6.14)

The state transition matrix of the linearized system is calculated by a fourth

order Taylor series approximation, given by,

(6.15)

The system is made discrete by transforming it into the z domain by,

F(z) = z * I - cp, (6.16)

where I is an identity matrix of the same dimensions as cp. The desired root

magnitude is calculated by,

Z = 10(Tlog(T)) , (6.17)

where T = 1/30 seconds, and the desired time constant T = 0.3 seconds. This

results in a root magnitude of z = 0.9117.

88

System parameters are then substituted in to the discrete linearized system: A

sampling frequency of T = 1/30, dynamic extension gains of kv = 3.0, kc = 3.0,

controller gains of k\ = 0.85, k2 = 0.5, controller parameters of e = 0.03, r = 0.2,

velocities of vr = 0.1, v = vr, and robot time constants of rv = 0.5, = 0.5. The

previous values are determined by tuning the controller to achieve a desired system

response, based on pole placement methods.

The discrete system is evaluated with k\ = 3.0, k2 = 5.0, and kv = 3.0, kc = 3.0.

The parameter e and path manifold radius r are varied to evaluate their effect on

stability. The sampling frequency is 30 Hz, and the reference velocity is 1.0 meters

be second. The rotational reference velocity, u is equal to zero. Figure 6.28 shows

the z transform root magnitudes of three of the system states under varying r and

e. The root magnitude is close to the desired value of 0.91. In Figure 6.29, the

root magnitude of the remaining two states is shown. The value is generally lower

than desired, but stable. Changing the parameter e has no effect on the roots, but

smaller values of r cause the magnitude to drop. Sufficiently small values of e cause

the root magnitude to increase.

The damping ratios of the discrete system for all five states is given in Fig­

ure 6.30. These states are critically damped, and varying the parameters r and e

has no effect. The parameter r must increase significantly in order to achieve more

damping. At the lowest point around r = 0.1 meters, the damping ratio is sufficient

for the desired system performance. As with the z transform root magnitudes, the

parameter e has no effect on damping.

The discrete system is evaluated for stability at different reference velocities,

using the same parameters as above, with the exception of kv = 15 and kc = 45.

Figure 6.31 shows a plot of the z transform roots for velocities between zero and

two meters per second. Three of the roots remain stable for all velocities, but the

last two roots become unstable at vr = 1.6 meters per second. The magnitude of all

roots must be less than one for the system to meet stability criteria. The damping

ratios are given in Figure 6.32.

88

System parameters are then substituted in to the discrete linearized system: A

sampling frequency of T = 1/30, dynamic extension gains of kv = 3.0, kc = 3.0,

controller gains of kl = 0.85, k2 = 0.5, controller parameters of E = 0.03, r = 0.2,

velocities of Vr = 0.1, v = Vr , and robot time constants of Tv = 0.5, Tw = 0.5. The

previous values are determined by tuning the controller to achieve a desired system

response, based on pole placement methods.

The discrete system is evaluated with kl = 3.0, k2 = 5.0, and kv = 3.0, kc = 3.0.

The parameter E and path manifold radius r are varied to evaluate their effect. on

stability. The sampling frequency is 30 Hz, and the reference velocity is 1.0 meters

be second. The rotational reference velocity, w is equal to zero. Figure 6.28 shows

the z transform root magnitudes of three of the system states under varying rand

E. The root magnitude is close to the desired value of 0.91. In Figure 6.29, the

root magnitude of the remaining two states is shown. The value is generally lower

than desired, but stable. Changing the parameter E has no effect. on the roots, but

smaller values of r cause the magnitude to drop. Sufficiently small values of E cause

the root magnitude to increase.

The damping ratios of the discrete system for all five states is given in Fig­

ure 6.30. These states are critically damped, and varying the parameters rand E

has no effect. The parameter r must increase significantly in order to achieve more

damping. At the lowest point around r = 0.1 meters, the damping ratio is sufficient

for the desired system performance. As with the z transform root magnitudes, the

parameter E has no effect on damping.

The discrete system is evaluated for stability at different reference velocities,

using the same parameters as above, with the exception of kv = 15 and kc = 45.

Figure 6.31 shows a plot of the z transform roots for velocities between zero and

two meters per second. Three of the roots remain stable for all velocities, but the

last two roots become unstable at Vr = 1.6 meters per second. The magnitude of all

roots must be less than one for the system to meet stability criteria. The damping

ratios are given in Figure 6.32.

Figure 6.29. Z transform root magnitude of discrete system, varying r, e, states
4,5.

0,8

~ .a 0,6
'E

'" I
"5 0.4
e
N

0,2

o
0,25

0,2

89

0,16

0,15

0,1

r(meters) 0,05 0,02
g (meters)

Figure 6.28. Z transform root magnitude of discrete system, varying r, E, states
1,2,3.

0,8

Q)
'C
~ 0,6

g>
E
~ 0,4
e
N

0,2

° 0,25

0,2 0,16

0,15

0,1 0,08

r(meters) 0,05 0,02
E (meters)

Figure 6.29. Z transform root magnitude of discrete system, varymg r, E, states
4,5.

o
0.25

0.2

0.15

r (meters)
0.1

0.05 ""--'-~-~--~-~---'---:---..:--',

0.02 O~ O~ O~ 01 O~ O~ O~

91

n 1 1 • r

Real
Imaginary

- - ~ Magnitude

n 1 1 r " i 1 1 r

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
v (m/s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
v (m/s)

n r H 1 1 r

j i i i

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
v (m/s)

I

i i i

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
v (m/s)

Figure 6.31. Z transform roots with varying reference velocity.

1

(5
0 0.5
N

oL,_..J..~

1

(5
0 0.5
N

0

1

(5
0 0.5
N

0

(5 1
e
N 0

-1

2

1 -0 e 0
N

-1

0

0

0

0

-2
0

0.2

0.2

",-I"

0.2

i

0.2

._;,;,..:,.,;.; ..

0.2

0.4 0.6

0.4 0.6

I

0.4 0.6

0.4 0.6

--
"

0.4 0.6

Real
"'~~ Imaginary

- - - Magnitude

I ~~r !:III$! w 'O?~c $.~~_"<''''''~'''''''l'f'''~'''''~~

0.8 1 1.2 1.4 1.6 1.8
v (m/s)

~Miri ! ~~ I

0.8 1 1.2 1.4 1.6 1.8
v (m/s)

b.- I ~,*,,,*-'<i!<,.,=!

0.8 1 1.2 1.4 1.6 1.8
v (m/s)

i i i i

0.8 1 1.2 1.4 1.6 1.8
v (m/s)

--. . . .'. -. -.~ ... , -----' .. ~~

. . -

0.8 1 1.2 1.4 1.6 1.8
v (m/s)

Figure 6.31. Z transform roots with varying reference velocity.

91

2

..J
2

2

2

--

2

92

Figure 6.32. Z transform damping ratios with varying reference velocity.

92

2

>J>1

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

v (m/s)

2

>J>1

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

v (m/s)

2

>J>1

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

v (m/s)

1

>J> 0.5

0
0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

v (m/s)

1

>J> 0.5

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

v (m/s)

Figure 6.32. Z transform damping ratios with varying reference velocity.

93

6.3.5 Simulation Resul ts

The simulation results for the parameter tuned controller are presented in this

subsection. The reference trajectories range from a straight line segment, to paths

with multiple curves. The performance of the controller is evaluated in preparation

for its implementation in Mobile Emulab.

For a baseline simulation test, a trajectory without any curves is created.

The kinematic controller, implemented in simulation with Simulink, tracks the

reference trajectory closely. Figure 6.33 gives the resulting trajectory compared to

the reference trajectory. Initial conditions for this simulation are e(0) = 0.0283,

x(0) = 4.9800, y(0) = -10.9800, and 6(0) = - \ . These initial conditions are

representative of expected initial conditions for robots in Mobile Emulab.

A linear velocity profile is used, as shown in Figure 6.34. A maximum velocity

of O.lm/s is chosen, which would be a reasonably slow speed for robots on the

testbed. The controller in this simulation is run at 1000 Hz, which is much faster

than it will be run in implementation. The total simulation time resulting from the

chosen maximum velocity is 10 seconds.

The response of the system given in (4.3) is presented in Figure 6.35. The

initial polar distance error, e, is slightly less than 30 mm, but climbs to a peak of

45 mm before converging below 20 mm. The convergence rate could be improved

by adjusting the controller and dynamic extension gains discussed in Section 6.3.4.

As presented in Figure 6.33, the controller causes the robot to follow the path

with minimal tracking error. Absolute error is present, as the robot lags behind

the reference trajectory. The low amount of tracking error contributes to the

rapidly decreasing values of the 0 and a states after two seconds simulation time

in Figure 6.35.

A second simulation is performed, with a reference path including a curve. The

curve present is a constant radius circular arc. This simulation is important as

it evaluates the performance of the controller when provided with discontinuous

reference trajectories.

93

6.3.5 Simulation Results

The simulation results for the parameter tuned controller are presented in this

subsection. The reference trajectories range from a straight line segment, to paths

with multiple curves. The performance of the controller is evaluated in preparation

for its implementation in Mobile Emulab.

For a baseline simulation test, a trajectory without any curves is created.

The kinematic controller, implemented in simulation with Simulink, tracks the

reference trajectory closely. Figure 6.33 gives the resulting trajectory compared to

the reference trajectory. Initial conditions for this simulation are e(O) = 0.0283,

x(O) = 4.9800, y(O) = -10.9800, and ¢(O) = -~. These initial conditions are

representative of expected initial conditions for robots in Mobile Emulab.

A linear velocity profile is used, as shown in Figure 6.34. A maximum velocity

of O.lm/s is chosen, which would be a reasonably slow speed for robots on the

testbed. The controller in this simulation is run at 1000 Hz, which is much faster

than it will be run in implementation. The total simulation time resulting from the

chosen maximum velocity is 10 seconds.

The response of the system given in (4.3) is presented in Figure 6.35. The

initial polar distance error, e, is slightly less than 30 mm, but climbs to a peak of

45 mm before converging below 20 mm. The convergence rate could be improved

by adjusting the controller and dynamic extension gains discussed in Section 6.3.4.

As presented in Figure 6.33, the controller causes the robot to follow the path

with minimal tracking error. Absolute error is present, as the robot lags behind

the reference trajectory. The low amount of tracking error contributes to the

rapidly decreasing values of the e and a states after two seconds simulation time

in Figure 6.35.

A second simulation is performed, with a reference path including a curve. The

curve present is a constant radius circular arc. This simulation is important as

it evaluates the performance of the controller when provided with discontinuous

reference trajectories.

-11h

-11.1h

-11.2,

E.

-11.3

-11.4

-11.5

4.95 5 5.05
x(m)

Reference Trajectory
Tracked Trajectory

Figure 6.33. Straight line trajectory: Simulated trajectory.

-11

-1 1.1

- 11 .2

-11 .3

-11.4

-11.5

4.95 5
x (m)

5.05

. ' , , , " Reference Trajectory

- Tracked Trajectory

Figure 6.33. Straight line trajectory: Simulated trajectory.

94

95

1 I I I I I I I

Time (seconds)

Figure 6.34. Straight line trajectory: Reference velocity profile.

0 .1

0.09

~i 0.08

8 0.07
~ -~ 0.06

* .s 0.05

.~
~ 0.04

0.03

0 .02

0.01

95

2 3 4 5 6 7 8 9
Time (seconds)

Figure 6.34. Straight line trajectory: Reference veloci ty profile.

0.045 -

0.04 -

-co 0.035 -

| 0.03

4 5 6
time (seconds)

10

Figure 6.35. Straight line trajectory: Simulated system response.

96

0.05

0.045

0.04

"W 0.035

* 0.03 g

0.02

Om5

0.01
0 2 3 • 5 6 7 8 9 10

time (seconds)

0.' - ,
'5: 0.2 [\ - - - 0.

• c •• 0 u
g , ,
0 , ,
.; - 0.2 \

, , ,
"

,
- 0.4

0 2 3 • 5 6 7 8 9 10
time (seconds)

15

of'--'----------------------------,
~ J

-5 ~_7--~~~_7--7_~--~--~~--~, o 2 3 4 5 6 7 8 9 10
time (seconds)

Figure 6.35 . Straight line trajectory: Simulated system response.

97

The reference and simulated trajectories are given in Figure 6.36. The accom­

panying velocity profile is presented in Figure 6.37.

The response of the system given in (4.3) is presented in Figure 6.38. The

disturbance from the discontinuity in curvature is apparent in the jumps in all

three states located at approximately 5 and 9 seconds simulation time.

1 Reference Trajectory
' Tracked Trajectory

Figure 6.36. Simulated trajectory with a single curve.

97

The reference and simulated trajectories are given in Figure 6.36. The accom­

panying velocity profile is presented in Figure 6.37.

The response of the system given in (4.3) is presented in Figure 6.38. The

disturbance from the discontinuity in curvature is apparent in the jumps in all

three states located at approximately 5 and 9 seconds simulation time .

-11

-11.05

-11.1

-11.15

-11.2

E
;: -11.25

-11.3

-11.35

-11.4

-11.45

-11.5

4.9 5 5.1 5.2
x(m)

5.3

. . , , , , , Reference Trajector

- Tracked Trajectory

5.4 5.5

Figure 6.36. Simulated trajectory with a single curve.

5.6

Figure 6.37. Single curve trajectory: Reference velocity profile.

0.1

0.09

;- 0.08
'g
8 0.07
:Jl
~ 0.06

* E. 0.05
.~
u

0.04 0
a;
>

0.03

0.02

0,01

98

2 4 6 8
Time (seconds)

Figure 6 .37. Single curve trajectory: Reference velocity profile.

0.051

0.04 h

0.01

0 -

lime (seconds)

time (seconds)

10 12 14

8 5

6 8
time (seconds)

14

Figure 6.38. Single curve trajectory: Simulated system response.

99

20

15 .. 10
u
g
'/I 5

O ~

- 5
0 2 4 6 8 10 12 14

time (seconds)

Figure 6.38. Single curve trajectory: Simulated system response.

100

-4.1

-4.2

-4.3

_ -4.4
In

t _ <u
| -4.5

>,

-4.6

-4.7

-4.8

-4.9

-5
1.8 2 2.2 2.4 2.6 2.8 3

x (meters)
Figure 6.39. Simulated trajectory compared to RMCD functions for a curved
path.

6.3.6 Simulation of Trajectory Tracking
Controller Functions
in R M C D

Before integration into RMCD, the trajectory tracking functions are tested and

compared to results from simulation. The major system component outputs tested

include gain calculation, the Cartesian to Polar state transformation functions, the

main control law, and the dynamic extension. A test suite for the RMCD motion

control functions is created, and a framework built in MATLAB to evaluate the

results and compare them to simulation results.

A second curved path is tested in simulation, as shown in Figure 6.39. The

Cartesian states output from this simulation are given as input to the functions

implemented in RMCD, as discussed in Subsection 7.4.1. The parameters used in

this simulation are presented in Table 6.1.

The implementation of the Polar state transformation (4.3) in RMCD is com­

pared to the Polar states calculated in the Simulink simulation of the trajectory

tracking controller. The states calculated by RMCD are identical to the simulated

6.3.6 Simulation of Trajectory Tracking
Controller Functions
in RMCD

100

Before integration into RMCD, the trajectory tracking functions are tested and

compared to results from simulation. The major system component outputs tested

include gain calculation, the Cartesian to Polar state transformation functions, the

main control law, and the dynamic extension. A test suite for the RMCD motion

control functions is created, and a framework built in MATLAB to evaluate the

results and compare them to simulation results.

A second curved path is tested in simulation, as shown in Figure 6.39. The

Cartesian states output from this simulation are given as input to the functions

implemented in RMCD, as discussed in Subsection 7.4.1. The parameters used in

this simulation are presented in Table 6.l.

The implementation of the Polar state transformation (4.3) in RMCD is com­

pared to the Polar states calculated in the Simulink simulation of the trajectory

tracking controller. The states calculated by RM CD are identical to the simulated

-4.1

-4.2

-4.3

-4.4
~
.l!:!
<Il -4.5 .s
>-

-4.6

-4.7

-4.8

-4.9

-5
1.8 2

, , , , , " Reference Trajectory

- Tracked Trajectory

2.2 2.4
x (meters)

2.6 2.8 3

Figure 6.39. Simulated trajectory compared to RMCD functions for a curved
path.

101

Table 6.1. Controller parameters
r 0.2 meters
e 0.03 meters
h 3.0
k2

5.0
kv 3.0
kc 3.0

signals, with the exception of 9. This is caused by differences in numerical differen­

tiation algorithms between the two applications. The simulated Polar state data,

as compared to the state data measured in RMCD is compared in Figure 6.40.

The simulated controller velocity outputs v and to, and their derivatives v and

Co are plotted in Figure 6.41. The signals match, though the noise in the derivatives

alters the to signal significantly.

6.3.7 Filtering of Derivatives in
R M C D Controller
Implementation

The numerical differentiation method employed to obtain v, Co, and 9 has

significant noise, and must be filtered to preserve the stability and boundedness

of the motion controller. Digital filtering is used for these signals to attenuate high

frequency noise.

An example trajectory with a single curve is presented in Figure 6.42. The

tracked trajectory is the result of a Simulink simulation of the motion controller

and kinematics, as discussed in Section 6.3.1. Using the method outlined in Sub­

section 6.3.6, the simulated data is passed to the motion controller functions im­

plemented as part of RMCD. (RMCD is discussed in detail in Subsection 2.5.2.)

The corresponding velocity profile is given in Figure 6.43. A maximum velocity

of 0.1 meters per second is chosen, with linear velocity ramps at the trajectory

boundaries.

101

Table 6.1. Controller parameters

r 0.2 meters
f 0.03 meters
kl 3.0
k2 5.0
kv 3.0
kc 3.0

signals, with the exception of e. This is caused by differences in numerical differen­

tiation algorithms between the two applications. The simulated Polar state data,

as compared to the state data measured in RMCD is compared in Figure 6.40.

The simulated controller velocity outputs v and w, and their derivatives v and

ware plotted in Figure 6.41. The signals match, though the noise in the derivatives

alters the w signal significantly.

6.3.7 Filtering of Derivatives in
RMCD Controller
Implementation

The numerical differentiation method employed to obtain v, W, and e has

significant noise, and must be filtered to preserve the stability and boundedness

of the motion controller. Digital filtering is used for these signals to attenuate high

frequency noise.

An example trajectory with a single curve is presented in Figure 6.42. The

tracked trajectory is the result of a Simulink simulation of the motion controller

and kinematics, as discussed in Section 6.3.1. Using the method outlined in Sub­

section 6.3.6, the simulated data is passed to the motion controller functions im­

plemented as part of RMCD. (RMCD is discussed in detail in Subsection 2.5.2.)

The corresponding velocity profile is given in Figure 6.43. A maximum velocity

of 0.1 meters per second is chosen, with linear velocity ramps at the trajectory

boundaries.

102

0.06 I 1 1 1 1 1 1 r

0 5 10 15 20 25 30 35 40 45 50
t (sec)

21 1 1 1 1 1 1 1 1 1

Figure 6.40. Simulated Polar state data compared to RMCD state data for a
curved path.

E
'-'
Q)

102

0.06~--~--~----~--~----~--~----~--~----~---.

0.04~

0.02 lliI!! lliI!! lliI!! Simulation

--RMCD

---()
Q)

~
"0 co
'-'

CD
"0

o="~--~--~--~~--~--~----~--~----~--~----~

o 5 10 15 20 25 30
t (sec)

35 40 45 50

-

-4·~--~--~~--~--~~--~--~----~--~----~--~

o 5 10 15 20 25 30
t (sec)

35 40 45 50

1.---~---,~--~---,~--~--~----~--~----~--~

5 10 15 20 25 30 35 40 45 50
t (sec)

5

0

0 5 10 15 20 25 30 35 40 45 50
t (sec)

Figure 6.40. Simulated Polar state data compared to RMCD state data for a
curved path.

103

Figure 6.41. Simulated controller output compared to RMCD controller output
for a curved path.

0.2

0.1
-.
(f)

---E 0
---->

-0.1

-0
0 5 10 15

-.
.5!l.
"0
ctl
'-----8

0 5 10 15

1

~
---E 0 ---->
"0

-1
0 5 10 15

5 10 15

~ ~ ~ Simulation

--RMCD

20 25 30
t (sec)

20 25 30
t (sec)

20 25 30
t (sec)

20 25 30
t (sec)

35

35

35

35

103

40 45 50

40 45 50

40 45 50

40 45 50

Figure 6.41. Simulated controller output compared to RMCD controller output
for a curved path.

104

-10.9

-11

-11.1

-11.2

5^

-11.3

-11.4

-11.5

-i 1 -

1 1 1 ' 1 1 ' Reference Trajectory
— — Tracked Trajectory

J L

4.9 5 5.1 5.2 5.3 5.4 5.5 5.6
x(m)

Figure 6.42. RMCD controller implementation without filtering, reference path.

- 10.9

-- 11

-11 .1

- 11.2

-11 .3

-1 1.4

- 11 .5

4.9 5 5.1

",,,,,

5.2 5.3
x (m)

Reference Trajectory

Tracked Trajectory

,

5.4 5.5

104

5.6

Figure 6 .42. RMCD controller implementation without. filtering, reference path.

105

T

Time (seconds)

Figure 6.43. RMCD controller implementation without filtering, reference veloc­
ity profile.

105

6 B 14
Time (seconds)

Figu re 6.43. RMCD controller implementation without filtering, reference veloc­
ity profile.

106

Figure 6.44 shows the resulting system states as calculated, by RMCD. Without

filtering, the first differential of 9 is noisy, with saturation in the region of the single

curve in the path. The condition of this signal is detrimental to the performance

of the main controller, as the control law (4.34) for UJ includes d9.

The controller output is shown in Figure 6.45. The signal UJ is noisy, just as the

d9 signal. The first derivatives of the controller are also noisy, due to the absence

of filtering. The signals saturate in this example, which keeps the motion controller

output bounded.

The final output of the motion controller comes from the dynamic extension,

which is discussed in Subsection 4.4.2. Figure 6.46 shows the output of this

component, without any filtering of the output of the controller output derivatives.

The dynamic extension in RMCD has significant noise and error compared to the

dynamic extension as simulated using Simulink.

6.3.8 Run Time of Motion Controller
in R M C D

It is important that the motion controller as implemented in RMCD, is capable

of returning a set of wheel speeds in a sufficient amount of time. As position updates

from the localization system come in at 30 Hz, the motion controller must complete

all calculations within 0.03333 seconds, before another position update arrives. It

is desired that compution for the motion control be as fast as possible, to reduce

overall lag. Table 6.2 gives the average, minimum, and maximum computation

time used by the motion controller while under simulation. A single trajectory is

tested, with the motion controller called once for each of the 13900 data points.

The experiment is run on a standard desktop computer system, with a 3.00 GHz

CPU, 1 GB of RAM, and running the FreeBSD operating system. This system is

comparable to the computer system on which RMCD runs within Mobile Emulab.

106

Figure 6.44 shows the resulting system states as calculated by RMCD. Without

filtering, the first differential of e is noisy, with saturation in the region of the single

curve in the path. The condition of this signal is detrimental to the performance

of the main controller, as the control law (4.34) for w includes de.

The controller output is shown in Figure 6.45. The signal w is noisy, just as the

de signal. The first derivatives of the controller are also noisy, due to the absence

of filtering. The signals saturate in this example, which keeps the motion controller

output bounded.

The final output of the motion controller comes from the dynamic extension,

which is discussed in Subsection 4.4.2. Figure 6.46 shows the output of this

component, without any filtering of the output of the controller output derivatives.

The dynamic extension in RMCD has significant noise and error compared to the

dynamic extension as simulated using Simulink.

6.3.8 Run Time of Motion Controller
in RMCD

It is important that the motion controller as implemented in RMCD, is capable

of returning a set of wheel speeds in a sufficient amount of time. As position updates

from the localization system come in at 30 Hz, the motion controller must complete

all calculations within 0.03333 seconds, before another position update arrives. It

is desired that com put ion for the motion control be as fast as possible, to reduce

overall lag. Table 6.2 gives the average, minimum, and maximum computation

time used by the motion controller while under simulation. A single trajectory is

tested, with the motion controller called once for each of the 13900 data points.

The experiment is run on a standard desktop computer system, with a 3.00 GHz

CPU, 1 GB of RAM, and running the FreeBSD operating system. This system is

comparable to the computer system on which RMCD runs within Mobile Emulab.

107

F i g u r e 6.44. RMCD controller implementation, kinematic states.

107

4 6 8 10 12 14
t (sec)

s
~
<D

-0.5
0 2 4 6 8 10 12 14

t (sec)

0 S V
--.

~
i:l -1

-2
0 2 4 6 8 10 12 14

t (sec)

20

U 10
OJ

'" :0 0
~
~ -10

2 4 6 8 10 12 14
t (sec)

Figure 6.44. RMCD controller implementation, kinematic states.

108

0.4
0.2

0
-0.2
-0.4
-0.6

6 8
t (sec)

10

Simulation
RMCD

12 14

Figure 6.45. RMCD controller implementation, controller output.

0.4

0.2

~ 0
.s -0.2
> -0.4

-0.6

40

~ 20
"0
co
'--8 0

-20

2

c'b
1

E 0 ->
"0 -1

-2

20

..-.. 10
"b
"0 0 co
'-

'8
"0 -10

-20

I
I

2

0 2

0 2

0 2

-- ..1,.
,..... --

- - - Simulation
-RMCD

4 6 8 10 12
t (sec)

4 6 8 10 12
t (sec)

4 6 8 10 12
t (sec)

4 6 8 10 12
t (sec)

Figure 6.45. RMCD controller implementation, controller output.

108

14

14

14

14

109

Figure 6.46. RMCD controller implementation, dynamic extension output.

109

1
- - - Simulation

0.5 -RMCD

Ui -...
E ----- .. ~-
---->

-0.5

-1
0 2 4 6 8 10 12 14

t (sec)

10

8

_10L-----~------~------L-----~-------L------~----~
o 2 4 6 8 10 12 14

t (sec)

Figure 6.46. RMCD controller implementation, dynamic extension output.

Table 6.2. Motion controller iteration times
Average Time 0.000075 seconds
Minimum Time 0.000062 seconds
Maximum Time 0.003280 seconds

110

Table 6.2. Motion controller iteration times
Average Time 0.000075 seconds
Minimum Time 0.000062 seconds
Maximum Time 0.003280 seconds

Ill
6.4 Obstacle Avoidance

Obstacle avoidance using the Virtualized Phase Portrait Method is simulated us­

ing MATLAB. A two dimensional, holonomic point robot is modeled in a workspace

with oriented rectangular obstacle exclusion zones. The phase portrait for a sin­

gle obstacle with a nearby goal, generated using the original VPPM is given in

Figure 6.47.

VPPM is well suited for robot trajectory generation when obstacle placement

is sufficiently sparse. The initial position must be outside of all obstacle exclusion

zones, as well as surrounding zones in proximity to obstacles; specifically on the

distal side of obstacles. Figure 6.48 illustrates a successful trajectory generated by

VPPM. The initial position is just outside an exclusion zone, as is the goal point.

~ * ^ ^ \ \ \ V

- - N S \ \ \

* » ^ N \ \

X \ \

+~ y S / / S s s> - _^ ̂ \ y S S. / / / / S y +~ *~ *
/ / / / / { / / / / / / ^

I ^^^s* / / /. t I tt / /
/

*~ s s / / r t / t
/
/
/
/
/
/
/
/

7

1

~ 0

-1

-2

-3

- 4

- 5

r s> y / / « J

y s s

^ / S / t. t. t t t S +~ S> S / /.JA I I '

*~ -~ — —^ — +~ * S
/ /

/
/
/
/
/

/
/
/
/
/
/
/
/

/
/
/

N

\
\

\

\
\
1

1

1

1

1

T

T

V

N

Y

\

/ F F T

- 5 - 4 -3 -2 - 1 0
meters

1

Figure 6.47. VPPM field with a single obstacle.

111

6.4 0 bstacle Avoidance

Obstacle avoidance using the Virtualized Phase Portrait Method is simulated us­

ing MATLAB. A two dimensional, holonomic point robot is modeled in a workspace

with oriented rectangular obstacle exclusion zones. The phase portrait for a sin­

gle obstacle with a nearby goal, generated using the original VPPM is given in

Figure 6.47.

VPPM is well suited for robot trajectory generation when obstacle placement

is sufficiently sparse. The initial position must be outside of all obstacle exclusion

zones, as well as surrounding zones in proximity to obstacles; specifically on the

distal side of obstacles. Figure 6.48 illustrates a successful trajectory generated by

VPPl1. The initial position is just outside an exclusion zone, as is the goal point.

5 -~-~-~-.- - r- -" " '" " \ \ I ----------- --- -- " , \ \ I 4--------- --- - " " \ \ I , .", ,. -- '"
, \ ,

3 ,,~, ~ , -- ~ "
, ,

----~""", ~// / / ", - - - "-
2 --------""", ~""" -.- . ~

------'-"",,,,/ ////.",.
1 ..-..,..-"",,,,// I / .-.fIII* / , \

(/J ~-"",,,,/// --.-.--'., ~ I \
'-

"""",.,,//~ __ ".1'1 , \ Q)
0 -Q) "",,,,,,,// / I , ,

E ... -- ""
-1 ",.",,,,/// _--;t~1 , ,

-" / I I , ,
-2 -- ",

/ I I t ,
""",,-"'.,.-...-.--------""/ I' I I t ,

-3 .""""""~-- ... ------,, / / I I t ,
",,,,.,,,,,,-"--'--------""~/ 1 I I f ,

-4 ",.",,,,,,,.,,,,,--'--"-----',,, ;"1' I I I f t
,t#",,,,,,,,,,,,,,.,,,-,,,,,,,,~ I' ~ I I I f t

-5
-5 -4 -3 -2 -1 0 1 2 3 4 5

meters

Figure 6.47. VPPM field with a single obstacle.

112

_81 i i ' i . J . J - J i . i • i -

-1 0 1 2 3 4 5 6 7 8

Figure 6.48. VPPM generated trajectory successfully negotiating obstacle filled
region.

There are no nearby obstacles to send the trajectory into neighboring exclusion

zones.

Figure 6.49 shows a case where VPPM fails to generate a trajectory which

avoids all obstacle exclusion zones. While the trajectory does reach the goal point,

it travels through an obstacle exclusion zone. The trajectory is pushed into this

obstacle by an adjoining obstacle with a stronger field. The trajectory is first

pushed into a concave region, and instead of terminating in a local minima, is

forced through the obstacle with a relatively weaker field.

Similar to the previous failure case, VPPM is shown to fail with closely spaced

obstacles with strong fields in Figure 6.50. In this case, both obstacles have the

same field strength. A discontinuity is encountered between the two obstacles,

once the influence of the larger obstacle drops off sharply. The trajectory enters

the exclusion zone of the smaller obstacle as it is forced through a concave region.

112

-2

"" ~ \ \ ~\ ,
~,

'1>, '\
\

-3 "" '"'' \

~ \ \

"
q

"- ,
\

'\
~

-4 "-
\ \
\ \ ~

-5 'V
t \

'l!

-6

/

-7

Figure 6.48. VPPM generated trajectory successfully negotiating obstacle filled
region.

There are no nearby obstacles to send the trajectory into neighboring exclusion

zones.

Figure 6.49 shows a case where VPPM fails to generate a trajectory which

avoids all obstacle exclusion zones. While the trajectory does reach the goal point,

it travels through an obstacle exclusion zone. The trajectory is pushed into this

obstacle by an adjoining obstacle with a stronger field. The trajectory is first

pushed into a concave region, and instead of terminating in a local minima, is

forced through the obstacle with a relatively weaker field.

Similar to the previous failure case, VPPM is shown to fail with closely spaced

obstacles with strong fields in Figure 6.50. In this case, both obstacles have the

same field strength. A discontinuity is encountered between the two obstacles,

once the influence of the larger obstacle drops off sharply. The trajectory enters

the exclusion zone of the smaller obstacle as it is forced through a concave region.

113

6

5 '" '" "-

..-

4 /'

~.' -..-

r

'" /

/ ..-
".

0

!!!
Q)

Ql
E

_8L-~-L~--~~~--~~--~--~~~~--~-L--~

-3 -2 -1 o 2 3 4 5 6
meters

Figure 6.49. VPPM failing to negotiate obstacle filled region.

114

Figure 6.50. VPPM generated trajectory failing in dense obstacle region.

114

2

Figure 6.50. VPPM generated trajectory failing in dense obstacle region.

115

The trajectory given in Figure 5.1 in Chapter 5 is a good example of the

capabilities of VPPM. The initial condition is chosen to avoid concave regions,

and the goal point is located outside of a dense obstacle region. The trajectory is

smooth and continuous, and successfully reaches the goal point without colliding

with any obstacles.

If a trajectory enters the secondary exclusion zone of an obstacle, it is likely

to collide with the obstacle. Trajectories can enter these zones by being forced

by a strong obstacle in proximity, or by poor initial conditions. The region of

the secondary exclusion zone is determined by the size and shape of the obstacle,

along with the velocity during approach. Figure 6.51 gives a trajectory with an

initial condition outside of a secondary exclusion zone. The trajectory reaches the

goal point without colliding with the obstacle thanks to the fact that there was

sufficient distance for the repulsive field to deflect the trajectory outside of the

secondary exclusion zone during approach to the obstacle. The tangential velocity

of this trajectory is shown in Figure 6.52. Curvature is shown in Figure 6.53.

Given an initial condition within an exclusion zone, collision with an obstacle

T v ^ 1 \

_2L= ^ L c ^ L - = £ ^ L £ Z \L Z 1L t t 1 i
-3 -2 -1 0 1 2 3 4 5

meters

Figure 6.51. Simulated trajectory with an initial position outside of a secondary
obstacle exclusion zone.

115

The trajectory given in Figure 5.1 in Chapter 5 is a good example of the

capabilities of VPPM. The initial condition is chosen to avoid concave regions,

and the goal point is located outside of a dense obstacle region. The trajectory is

smooth and continuous, and successfully reaches the goal point without colliding

with any obstacles.

If a trajectory enters the secondary exclusion zone of an obstacle, it is likely

to collide with the obstacle. Trajectories can enter these zones by being forced

by a strong obstacle in proximity, or by poor initial conditions. The region of

the secondary exclusion zone is determined by the size and shape of the obstacle,

along with the velocity during approach. Figure 6.51 gives a trajectory with an

initial condition outside of a secondary exclusion zone. The trajectory reaches the

goal point without colliding with the obstacle thanks to the fact that there was

sufficient distance for the repulsive field to defiect the trajectory outside of the

secondary exclusion zone during approach to the obstacle. The tangential velocity

of this trajectory is shown in Figure 6.52. Curvature is shown in Figure 6.53.

Given an initial condition within an exclusion zone, collision with an obstacle

2 '.
1,5 ~ ',,- "

" \ ,

1 ~ .' /

0,5 -. /
,~

~ ! 4
Q) a " Q)
E

-0,5 ',-....
,< / " '0.

\, '-,,-
~ "

-1 / " '-,,-

" ';,.

-1.5 ,,' , /

-2 , I~ 1,,,;-

-3 -2 -1 a 2 3 4 5
meters

Figure 6.51. Simulated trajectory with an initial position outside of a secondary
obstacle exclusion zone.

116

0.35 ! I

0.3 0.3

0.25
•«
E

0.2
o o
H 0.15
>

0.1

0.25
•«
E

0.2
o o
H 0.15
>

0.1

0.25
•«
E

0.2
o o
H 0.15
>

0.1

0.25
•«
E

0.2
o o
H 0.15
>

0.1

0.25
•«
E

0.2
o o
H 0.15
>

0.1

0.05

0

0.05

0 I I " •
0 5 10 15 20 25 30 35 40

t (time) seconds

Figure 6.52. Velocity magnitude of trajectory generated in Figure 6.51

is unavoidable, as shown in Figure 6.54. There is insufficient distance to deflect

the trajectory far enough to miss the obstacle boundary. The trajectory proceeds

through the obstacle, and then continues on to the goal. The velocity and curvature

plots given in Figure 6.55 and Figure 6.56 show that continuity and boundedness

is not effected.

The orientation of obstacle field rolloff functions have design tradeoffs. It is

important to minimize the impact of the velocity projected on the goal field by

obstacle fields. This is to keep velocity bounded, and decrease the probability of

local minima being created in proximity to single obstacles. For larger obstacles,

field overlays that are perpendicular to the goal field are not parallel to the obstacle

boundary. The repulsive field will actually pull a trajectory into an obstacle

exclusion zone if the goal is close enough, and the obstacle is large enough. Orienting

the field perpendicular to the radial goal line through the center of the obstacle

minimizes this effect, but still fails to solve the problem.

In conclusion, the simulation results presented in this chapter establish that the

major components of the motion planning and coordination system perform as de­

sired. With system parameters established, and designs verified, these components

are implemented into Mobile Emulab.

116

0.35 ,-----,.-------,-----,------,--------,-------r----,-------,

0.3

0.25

~
~ 0.2
.(3
o
! 0.15
>

0.1

0.05

o~----~-----~-----~------~---~---~------~--~

o 5 10 15 20 25 30 35 40
t (time) seconds

Figure 6.52. Velocity magnitude of trajectory generated in Figure 6.51

is unavoidable, as shown in Figure 6.54. There is insufficient distance to deflect

the trajectory far enough to miss the obstacle boundary. The trajectory proceeds

through the obstacle, and then continues on to the goal. The velocity and curvature

plots given in Figure 6.55 and Figure 6.56 show that continuity and boundedness

is not effected.

The orientation of obstacle field rolloff functions have design tradeoffs. It is

important to minimize the impact of the velocity projected on the goal field by

obstacle fields. This is to keep velocity bounded, and decrease the probability of

local minima being created in proximity to single obstacles. For larger obstacles,

field overlays that are perpendicular to the goal field are not parallel to the obstacle

boundary. The repulsive field will actually pull a trajectory into an obstacle

exclusion zone if the goal is close enough, and the obstacle is large enough. Orienting

the field perpendicular to the radial goal line through the center of the obstacle

minimizes this effect, but still fails to solve the problem.

In conclusion, the simulation results presented in this chapter establish that the

major components of the motion planning and coordination system perform as de­

sired. With system parameters established, and designs verified, these components

are implemented into Mobile Emulab.

117

0 0.2 1 1.5 2 2.5 3 3.5 4
t (time) seconds

Figure 6.53. Curvature of trajectory generated in Figure 6.51

Figure 6.54. Simulated trajectory with initial position inside of a secondary
obstacle exclusion zone.

117

-0.6

-0.8

_1~------~------~------~------~------~------~-------L------~
o 0.2 1.5 2 2.5 3 3.5 4

t (time) seconds

Figure 6.53. Curvature of trajectory generated in Figure 6.51

2 "

1.5

,-~ . ,r>'

,,,," / / ! / 0.5 /11 /

~ I ! / 1 f (])
0 /" I I I

Q)
E

-0.5 "-
,

\ \ '" ~-
/' /' "

\
-1 ,

/' ,/ / \

/' /' / '/' /

-2 -
-3 -2 -1 0 2 3 4 5

meters

Figure 6.54. Simulated trajectory with initial position inside of a secondary
obstacle exclusion zone,

118

Figure 6.55. Velocity magnitude of trajectory generated in Figure 6.54

Figure 6.56. Curvature of trajectory generated in Figure 6.54

118

O.' r---~---~-----'----~-----r---~-----'---,

0.7:,. ',' "

0 .•
• E 0.5 •...

~
8 0.4 - - ...

~
;: 0.3 c ••••••

0.2

0.1

1
15 20 25 30 35 40 °0~--~5C------'~0C-----~------+.c-----=~~~~~----~~----~·

t (time) seconds

Figure 6.55. Velocity magnitude of trajectory generated in Figure 6.54

0.2

0

--0.2 .,. . .. ,"

.- -0.4
~
> ,
~ --0 .• ; ..
"

--0,'

- 1

0 5 10 15 20 25 30 35 40
I (lime) seconds

F igure 6 .56 . Curvature of trajectory generated in Figure 6.54

CHAPTER 7

IMPLEMENTATION

This chapter discusses the implementation and integration into Mobile Emulab

the components presented in previous chapters. Primitive motion is the baseline

system to be implemented. With point to point motion established on the testbed,

state feedback control is then integrated. The posture stabilizing controller is

first included, with trajectory generation and the trajectory tracking controller

integrated once state feedback control was established as feasible using Mobile

Emulab.

To allow for the implementation of state feedback control, system parameters

of Mobile Emulab must be verified and measured. The controller implementations

must be computationally fast enough to calculate wheel velocity commands before

new localization data is received. The sample rate of the state feedback must be

quantified, and shown to have a low variance. System identification is performed

on a robot to obtain the time constants for the system with a step input.

7.1 Primitive Motion Model
Implementation

Point to point motion to a single goal point is accomplished by executing motion

primitives in sequence. The primitives pivot, move, and pivot are completed to move

a robot to an arbitrary posture in 5?2 Cartesian space. This sequence of primitives is

used to construct a meta primitive, referred to as a goto command in this research.

This command is the core of the iterative goal point progression motion model

presented in Section 3.1.

During primitive based motion, a robot self-localizes by using odometry mea­

surements. After each goto command is completed, Mobile Emulab checks positions

CHAPTER 7

IMPLEMENTATION

This chapter discusses the implementation and integration into Mobile Emulab

the components presented in previous chapters. Primitive motion is the baseline

system to be implemented. With point to point motion established on the test bed,

state feedback control is then integrated. The posture stabilizing controller is

first included, with trajectory generation and the trajectory tracking controller

integrated once state feedback control was established as feasible using Mobile

Emulab.

To allow for the implementation of state feedback control, system parameters

of Mobile Emulab must be verified and measured. The controller implementations

must be computationally fast enough to calculate wheel velocity commands before

new localization data is received. The sample rate of the state feedback must be

quantified, and shown to have a low variance. System identification is performed

on a robot to obtain the time constants for the system with a step input.

7.1 Primitive Motion Model
Implen'lentation

Point to point motion to a single goal point is accomplished by executing motion

primitives in sequence. The primitives pivot, move, and pivot are completed to move

a robot to an arbitrary posture in ~2 Cartesian space. This sequence of primitives is

used to construct a meta primitive, referred to as a goto command in this research .

. This command is the core of the iterative goal point progression motion model

presented in Section 3.1.

During primitive based motion, a robot self-localizes by using odometry mea­

surements. After each goto command is completed, Mobile Emulab checks positions

120

using the overhead camera localization system. If the position achieved through

local navigation using odometry is not coincident with the goal in the global

reference frame, subsequent goto commands are issued until the robot is sufficiently

close to its intended goal.

Position error becomes significant over long distance moves. To limit error,

goto commands are limited to a displacement of one and a half meters. This

limitation allows visual localization to correct robot positions at regular intervals,

which minimizes final position error.

Four position adjustment iterations are required to achieve approximately 10

millimeter accuracy, with diminishing returns for further iterations.

A velocity value may be configured for each primitive. For move commands,

velocities as high as 0.8 meters per second have been reliable during testing. To

increase reliability in relation to error events and end position error, the move

velocity is limited to 0.2 meters per second.

The effective acceleration capability is limited by a stall threshold built in to

the low level motion controller. The threshold is increased from its default value

to allow the robots to operate on carpet. The stall threshold is a unit measured in

wheel encoder ticks. When a wheel is measured to be a set number of ticks behind

its set value, a stall threshold error is triggered.

7.2 Posture Stabilizing Controller
Implementation

The implementation of the posture stabilizing controller requires significant

modifications to Mobile Emulab. The robot control system is extended to support

continual state feedback for nonlinear motion control. Wheel stall thresholds still

apply as in the primitive motion model, but need to be increased further because

of larger accelerations commanded by the state feedback controller.

The posture regulator does not suffer any problems with lower the sampling

rates associated with the localization system of Mobile Emulab. This is because of

the absence of a moving goal or reference frame.

120

using the overhead camera localization system. If the position achieved through

local navigation using odometry is not coincident with the goal in the global

reference frame, subsequent goto commands are issued until the robot is sufficiently

close to its intended goal.

Position error becomes significant over long distance moves. To limit error,

goto commands are limited to a displacement of one and a half meters. This

limitation allows visual localization to correct robot positions at regular intervals,

which minimizes final position error.

Four position adjustment iterations are required to achieve approximately 10

millimeter accuracy, with diminishing returns for further iterations.

A velocity value may be configured for each primitive. For move commands,

velocities as high as 0.8 meters per second have been reliable during testing. To

increase reliability in relation to error events and end position error, the move

velocity is limited to 0.2 meters per second.

The effective acceleration capability is limited by a stall threshold built in to

the low level motion controller. The threshold is increased from its default value

to allow the robots to operate on carpet. The stall threshold is a unit measured in

wheel encoder ticks. When a wheel is measured to be a set number of ticks behind

its set value, a stall threshold error is triggered.

7.2 Posture Stabilizing Controller
Implementation

The implementation of the posture stabilizing controller requires significant

modifications to Mobile Emulab. The robot control system is extended to support

continual state feedback for nonlinear motion control. Wheel stall thresholds still

apply as in the primitive motion model, but need to be increased further because

of larger accelerations commanded by the state feedback controller.

The posture regulator does not suffer any problems with lower the sampling

rates associated with the localization system of Mobile Emulab. This is because of

the absence of a moving goal or reference frame.

121

7.3 Trajectory Generator
Implementation

The trajectory generators introduced in Chapter 3 are implemented in MATLAB

simulations, and integrated into Mobile Emulab. Closed form and parametric

trajectory generation using line-arc segments is simulated using MATLAB, with

the closed form system integrated within RMCD. This provides a minimum level of

trajectory generation for Mobile Emulab, which can further be developed to include

more advanced trajectory generators.

A polynomial spiral trajectory generator is simulated in MATLAB, but not in­

tegrated into Mobile Emulab. Fitting polynomial spirals to user specified viapoints

produces numerical errors, and causes complexity while reducing efficiency and

usability. Spline-based trajectory generation is simulated, but also not implemented

in Mobile Emulab.

In the parametric line and arc trajectory generator implementation, a full tra­

jectory dataset is calculated upon receipt of a goto command. This parametric

trajectory data is stored, and later recalled when the motion controller is activated.

Waypoint data points are input from a text file configured when starting up RMCD.

Trajectory data parameterized by the trajectory generator is required at non-

regular intervals. The motion controller is executed only when localization data is

forwarded to RMCD. In order to send an accurate reference trajectory data set,

linear interpolation is used.

7.4 Kinematic State Feedback Trajectory
Tracking Controller

Implementation
The kinematic state feedback trajectory tracking controller presented in Sec­

tion 4.4 is implemented in the C programming language, and then integrated into

RMCD. The controller is implemented as its own suite of functions, allowing it to

be removed from RMCD without any difficulty. RMCD must be configured at run

time to call the trajectory tracking controller. It defaults to primitive motion when

not instructed to use kinematic state feedback control.

7.3 Trajectory Generator
Implementation

121

The trajectory generators introduced in Chapter 3 are implemented in MATLAB

simulations, and integrated into Mobile Emulab. Closed form and parametric

trajectory generation using line-arc segments is simulated using MATLAB, with

the closed form system integrated within RMCD. This provides a minimum level of

trajectory generation for Mobile Emulab, which can further be developed to include

more advanced trajectory generators.

A polynomial spiral trajectory generator is simulated in MATLAB, but not in­

tegrated into Mobile Emulab. Fitting polynomial spirals to user specified viapoints

produces numerical errors, and causes complexity while reducing efficiency and

usability. Spline-based trajectory generation is simulated, but also not implemented

in Mobile Emulab.

In the parametric line and arc trajectory generator implementation, a full tra­

jectory dataset is calculated upon receipt of a goto command. This parametric

trajectory data is stored, and later recalled when the motion controller is activated.

Waypoint data points are input from a text file configured when starting up RMCD.

Trajectory data parameterized by the trajectory generator is required at non­

regular intervals. The motion controller is executed only when localization data is

forwarded to RMCD. In order to send an accurate reference trajectory data set,

linear interpolation is used.

7.4 Kinen'latic State Feedback Trajectory
Tracking Controller

Implementation

The kinematic state feedback trajectory tracking controller presented in Sec­

tion 4.4 is implemented in the C programming language, and then integrated into

RMCD. The controller is implemented as its own suite of functions, allowing it to

be removed from RMCD without any difficulty. RMCD must be configured at run

time to call the trajectory tracking controller. It defaults to primitive motion when

not instructed to use kinematic state feedback control.

122

7.4.1 Program Structure

The implementation of the trajectory tracking controller is split into several

main functions. The entire motion controller is in a single motion controller function

called by RMCD when an iteration of state feedback data is received. This function

takes as input the current robot position sent by VMCD, the current data point on

a parametric reference trajectory, and parameters related to the derivative signals.

Wheel velocities are returned as output, which are sent as commands to the robot

by RMCD.

The main motion controller function, kc-main, first executes a Cartesian to

Polar state transformation function, kc-cart2pol. Controller parameters and gains

are then passed to the core controller in kc-controller. The controller velocity

commands are then sent to the dynamic extension in kc-dynamic-ext. The resulting

velocities v and u> are then transformed into wheel velocities vL and vR, and then

sent to the robot.

The control laws (4.31) and (4.34) are implemented in the kc-controller function.

Polar state data, gains, and controller parameters are input. Controller velocity

commands v and to are output. The dynamic extension, discussed in Section 4.4.2,

is included in the function kc-dynamic-ext. Helper functions kc-dynamic-extsolve

and kc-dynamic-ext-func are used to solve the differential equations.

The Cartesian to Polar state transformation is handled by kc-cart2pol. Cartesian

states are taken as input, and Polar system states are output. The unwrapping of

6 and a is done in this function. Controller gains are configured in the function

kc-gains, and derivatives are calculated by kc-d and kcjupdate. An infinite im­

pulse response filter, as discussed in Section 7.4.5 is implemented in the function

kc-IIRfilter. Phase angle unwrapping, as presented in Section 7.4.3,is handled by

the function kc-unwrap.

7.4.2 System Parameters

The controller parameters given in Table 4.1 must be properly tuned in order

to assure stability and achieve the desired performance of the system. This is

accomplished through an understanding of the effects of the various parameters on

122

7.4.1 Program Structure

The implementation of the trajectory tracking controller is split into several

main functions. The entire motion controller is in a single motion controller function

called by RMCD when an iteration of state feedback data is received. This function

takes as input the current robot position sent by VMCD, the current data point on

a parametric reference trajectory, and parameters related to the derivative signals.

Wheel velocities are returned as output, which are sent as commands to the robot

by R\1CD.

The main motion controller function, kc_main, first executes a Cartesian to

Polar state transformation function, kecart2pol. Controller parameters and gains

are then passed to the core controller in kecontroller. The controller velocity

commands are then sent to the dynamic extension in kc_dynamieext. The resulting

velocities v and ware then transformed into wheel velocities VL and VR, and then

sent to the robot.

The control laws (4.31) and (4.34) are implemented in the kc_controller function.

Polar state data, gains, and controller parameters are input. Controller velocity

commands v and ware output. The dynamic extension, discussed in Section 4.4.2,

is included in the function kedynamieext. Helper functions kcdynamicexLsolve

and kc_dynamieexLfunc are used to solve the differential equations.

The Cartesian to Polar state transformation is handled by kc_cart2pol. Cartesian

states are taken as input, and Polar system states are output. The unwrapping of

e and a is done in this function. Controller gains are configured in the function

kc_gains, and derivatives are calculated by ked and kc_update. An infinite im­

pulse response filter, as discussed in Section 7.4.5 is implemented in the function

kc_IIRfilter. Phase angle unwrapping, as presented in Section 7.4.3,is handled by

the function keunwmp.

7.4.2 System Parameters

The controller parameters given in Table 4.1 must be properly tuned in order

to assure stability and achieve the desired performance of the system. This is

accomplished through an understanding of the effects of the various parameters on

123

the system, coupled with rigorous analysis of system stability criteria. The stability

analysis of the discrete system is discussed in Section 6.3.4.

There are several design tradeoffs when considering controller parameters and

gains. The response of the dynamic extension must be faster than the main

controller response, or instability will result. If the time constants of the dynamic

extension are too far below the sampling frequency of the motion controller imple­

mentation, the response will become unstable.

If the parameter e is decreased, the controller will follow the path manifold

more aggressively. An increase of k\ with cause the error, e to converge faster,

and an increase in k2 causes the controller to steer towards the path manifold

more aggressively. Higher values of kv and kc increase the response of the dynamic

extension, passing through v and u with less filtering.

Controller output limits for the trajectory tracking controller experimental re­

sults presented in Section 8.1 are given in Table 7.1. These values are determined by

the robot hardware limitations, and are tested to achieve a high degree of reliability

in relation to motion control.

7.4.3 Phase Angle Unwrapping

The Cartesian to Polar transformation function uses the multiquadrant arctan­

gent trigonometric function to calculate the Polar state 8 from x, y, xr, and yr [46].

This function returns values in the range of ±n. Values of 9 and a rise or fall through

different phases multiple times during a typical trajectory tracking execution. A

discontinuity results when these values are not unwrapped. For example, at one

arbitrary timestep, 8% = tt — e, where e is a small value. At the next timestep, as 9

Table 7.1. RMCD controller output limits
Parameter Value
Vmax l.Om/s
dvmax 2.0m/s'i

L^max 5.6243rad/s
du!max 20.0rad/s^

123

the system, coupled with rigorous analysis of system stability criteria. The stability

analysis of the discrete system is discussed in Section 6.3.4.

There are several design tradeoffs when considering controller parameters and

gams. The response of the dynamic extension must be faster than the main

controller response, or instability will result. If the time constants of the dynamic

extension are too far below the sampling frequency of the motion controller imple­

mentation, the response will become unstable.

If the parameter E is decreased, the controller will follow the path manifold

more aggressively. An increase of kl with cause the error, e to converge faster,

and an increase in k2 causes the controller to steer towards the path manifold

more aggressively. Higher values of kv and kc increase the response of the dynamic

extension, passing through v and w with less filtering.

Controller output limits for the trajectory tracking controller experimental re­

sults presented in Section 8.1 are given in Table 7.1. These values are determined by

the robot hardware limitations, and are tested to achieve a high degree of reliability

in relation to motion control.

7.4.3 Phase Angle Unwrapping

The Cartesian to Polar transformation function uses the multiquadrant arctan­

gent trigonometric function to calculate the Polar state e from x, y, Xn and Yr [46].

This function returns values in the range of ±7f. Values of e and a rise or fall through

different phases multiple times during a typical trajectory tracking execution. A

discontinuity results when these values are not unwrapped. For example, at one

arbitrary timestep, ei = 7f - E, where E is a small value. At the next timestep, as e

Table 7.1. RMCD controller output limits
Parameter Value
Vmax l.Om/s
dvmax 2.0m/s:l
Wmax 5.6243rad/s
dwmax 20.0rad/s:l

124

increases, = —7r + £, where £ is another small value. The value of 9 jumps by

2tt — (e + C)- Unwrapping 0 results in the jump being the true value of e + (.

Figure 7.1 gives an example of phase angle unwrapping for an angular state

signal. The grey plot is an angle calculated through the arctangent trigonometric

function, with a range of [—7r,7r]. The black plot illustrates an unwrapped signal,

with no discontinuity.

Phase angle unwrapping is accomplished by first considering the previously

calculated value of the angle to be unwrapped. The previous angle value

is wrapped, placing it in the phase containing zero. The wrapped previous angle is

then compared to the current [wrapped] angle 8i, calculated by the atan2 trigono­

metric function. If a discontinuity of magnitude 7r or greater is detected, the current

5 10
Time (seconds)

Figure 7.1. Example of phase angle unwrapping.

124

increases, ei +1 = -'if + (, where (is another small value. The value of e jumps by

2'if - (f + (). Unwrapping e results in the jump being the true value of f + (.

Figure 7.1 gives an example of phase angle unwrapping for an angular state

signal. The grey plot is an angle calculated through the arctangent trigonometric

function, with a range of [-'if, 'if]. The black plot illustrates an unwrapped signal,

with no discontinuity.

Phase angle unwrapping is accomplished by first considering the previously

calculated value of the angle to be unwrapped. The previous angle value Oi-l

is wrapped, placing it in the phase containing zero. The wrapped previous angle is

then compared to the current [wrapped] angle Oi, calculated by the atan2 trigono­

metric function. If a discontinuity of magnitude 'if or greater is detected, the current

4.-----------------.-----------------.-----------------.

--- ----- -------p"""--r

2

0
,.-..
(/)
c
co
"0
co -2 -Q)

OJ
c «

-4

-6
-"""" Trigonometric function output
-- Unwrapped angle

- +1t

- -1t

-8~==========~======~----~----------~ o 5 10 15
Time (seconds)

Figure 7.1. Example of phase angle unwrapping.

125

angle is offset, as given by,

Oi = 0i_i - a((7r + a^_ i) + (TT - aOi)), (7.1)

where

a = sign(0i-0i-1). (7.2)

7.4.4 Numerical Differentiation

The a; portion of the controller requires the derivative of the Polar state 8, and

the dynamic extension requires the derivatives the controller output velocities. As

these states can not be measured directly, and there are no observers in the system,

the measured states must be differentiated numerically.

Numerical differentiation is accomplished in RMCD by fitting a second-order

Lagrange interpolating polynomial,

J^)(xi-xi-1)(xi-xi+1)~t V'-6)

t l x , \ 2x-Xj^1-xi

l+l> (xi+\-Xi-{){xi+i-Xi) •

to the v, u) and 0 signals. The first derivative at only the most recent data point is

required. As such, x = xi+\. This reduces (7.3) to

f(x) = f (Xi-i) ^ ^ { x *.\-xi+x) +

f(Xi) (xi-xT-1i){xi-xi+1)+ (7-4)

f t x . \ 2 x i + i - X i - i - X i

(x i + i - X i - i) (x i + i - X i) '

As is common with numerical differentiation methods, a significant amount

of noise is generated in the output. This may cause stability problems with the

kinematic controller and its dynamic extension. A low pass filter is needed to

smooth the differentiated signals used for successful motion control.

125

angle is offset, as given by,

(7.1)

where

(7.2)

7.4.4 Numerical Differentiation

The w portion of the controller requires the derivative of the Polar state (), and

the dynamic extension requires the derivatives the controller output velocities. As

these states can not be measured directly, and there are no observers in the system,

the measured states must be differentiated numerically.

Numerical differentiation is accomplished in RMCD by fitting a second-order

Lagrange interpolating polynomial,

(7.3)

to the v, wand () signals. The first derivative at only the most recent data point is

required. As such, x = Xi+l' This reduces (7.3) to

(7.4)

As is common with numerical differentiation methods, a significant amount

of noise is generated in the output. This may cause stability problems with the

. kinematic controller and its dynamic extension. A low pass filter is needed to

smooth the differentiated signals used for successful motion control.

126

7.4.5 Filtering

To compensate for noise introduced by numerical differentiation of noisy signals,

a digital Infinite Impulse Response lowpass filter is designed [47]. The transfer

function for the general form of the filter is

Y(z) b0 + blZ~l + ••• + bnz~n

X(z) l + aiz~l-{ Yanz~n'

A first order filter of the form,

Y(z) _ z-1

Xjz) ~ 1-z-1'

is desired. In the s domain, the transfer function of the filter is given by,

(7.5)

(7.6)

F(s) = (7.7)

A desired corner frequency, u n — 10 Hz is chosen, as it is one third of the frequency

of the localization feedback sampling frequency, resulting in,

F(s) = (7.8)
1 1 1 + 20TT V '

A continuous to discrete transformation is completed, using the Matlab command:

c 2 d (t f ([2 0 * p i] , [1 , 2 0 * p i]) 3 1/30, ' t u s t i n ')

This command gives a transform in the z domain,

0.5115+ 0.5115,- 1

[) ~ 1 + 0.02305Z-1 ' { }

These parameters are used for the IIR filter implemented in RMCD, applied to all

numerically differentiated signals.

7.4.6 State Feedback Data Timing

To establish that state feedback data reaches the motion controller, and con­

troller commands reach the robots in sufficient time, experiments are performed to

establish the network packet data timings. Localization data are available at 30

frames per second, and the motion controllers implemented in RMCD must be run

126

7.4.5 Filtering

To compensate for noise introduced by numerical differentiation of noisy signals,

a digital Infinite Impulse Response lowpass filter is designed [47]. The transfer

function for the general form of the filter is

Y(z) bo + b1z-1 + ... + bnz-n

X(z) 1 + alz- 1 + ... + anz-n .

A first order filter of the form,

Y(z)
X(z)

is desired. In the s domain, the transfer function of the filter is given by,

F(s) = 2wn 7f

S + 2wn 7f

(7.5)

(7.6)

(7.7)

A desired corner frequency, Wn = 10 Hz is chosen, as it is one third of the frequency

of the localization feedback sampling frequency, resulting in,

F(s) = 207f
1 + 207f

(7.8)

A continuous to discrete transformation is completed, using the Matlab command:

c2d(tf([20*pi], [1, 20*pi]), 1/30, 'tustin')

This command gives a transform in the z domain,

F(z) = 0.5115 + 0.5115z-
1

1 + 0.02305z-1
(7.9)

These parameters are used for the IIR filter implemented in RMCD, applied to all

numerically differentiated signals.

7.4.6 State Feedback Data Timing

To establish that state feedback data reaches the motion controller, and con­

troller commands reach the robots in sufficient time, experiments are performed to

establish the network packet data timings. Localization data are available at 30

frames per second, and the motion controllers implemented in RMCD must be run

127

at as fast a sampling rate as possible. It is also important that there is not too

much latency, as lag in the system may cause instability.

Figure 7.2 presents network data packet timing data for a series of experi­

ments where a robot was run under the posture stabilizing controller discussed

in Section 4.3. The plot of RMCD packet timings correspond to the sampling

frequency of localization data coming from VMCD. The vertical line represents the

desired sampling frequency of 30 Hz. Data usually arrives at regular 0.0333 second

intervals, the maximum sampling rate constrained by VMCD. Pilot packet timings

correspond to the sampling frequency of the nonlinear controller sending wheel

speed commands to the Pilot application on the robot. This rate is influenced by

the frequency at which the controller in RMCD is called, which in turn is influenced

by the sampling frequency of the localization data coming from VMCD. Packet

latency for localization data is also given, showing that localization data usually

does not lag much more than one third of the sampling frequency.

Measurements of the controller sampling rate during execution of the trajectory

tracker are taken. The controller is executed upon receipt of a single packet of data

from the localization system. Sampling rate data is collected from two separate

experiments. The timestamps of the trajectory data written during controller

3000
RMCD Packet timings

3000
Pilot Packet timings

0.05
Seconds

3000
RMCD Packet latency

Seconds
0.1

Seconds

Figure 7.2. Network data packet timings for RMCD and Pilot.

127

at as fast a sampling rate as possible. It is also important that there is not too

much latency, as lag in the system may cause instability.

Figure 7.2 presents network data packet timing data for a senes of experi­

ments where a robot was run under the posture stabilizing controller discussed

in Section 4.3. The plot of RMCD packet timings correspond to the sampling

frequency of localization data coming from VM CD. The vertical line represents the

desired sampling frequency of 30 Hz. Data usually arrives at regular 0.0333 second

intervals, the maximum sampling rate constrained by VMCD. Pilot packet timings

correspond to the sampling frequency of the nonlinear controller sending wheel

speed commands to the Pilot application on the robot. This rate is influenced by

the frequency at which the controller in RMCD is called, which in turn is influenced

by the sampling frequency of the localization data coming from VMCD. Packet

latency for localization data is also given, showing that localization data usually

does not lag much more than one third of the sampling frequency.

Measurements of the controller sampling rate during execution of the trajectory

tracker are taken. The controller is executed upon receipt of a single packet of data

from the localization system. Sampling rate data is collected from two separate

experiments. The timestamps of the trajectory data written during controller

3000
RMCD Packet timings

3000
Pilot Packet timings

3000
RMCD Packet latency

CIl
2500

CIl
2500

CIl
2500 - Q) Q)

~
2000

~
2000

~
2000 (.) (.) (.)

CIl CIl CIl
0... 0... 0... -0 1500 '0 1500 -0 1500
a.> a.> a.>

..0 ..0 ..0
E 1000 E 1000 E 1000
::J ::J ::J
Z Z z

500 500

1 J
500

0 0 0
0 0.05 0.1 0 0.05 0 0.1 0.2

Seconds Seconds Seconds

Figure 7.2. Network data packet timings for RMCD and Pilot.

128

execution are differenced, creating a list of 5t values representing the time elapsed

between each iteration of the controller. Figure 7.3 shows a histogram plot of

the controller sampling rate for an experiment run during middle of the day. The

controller runs near the specified sampling frequency of 30 Hz, with some variability.

A vertical line denotes 33.3 milliseconds in this plot.

The same experiment is run again later in the day. The results of this second

experiment are plotted in Figure 7.4. The performance has degraded in this

experiment, as shown by the sampling rate for many iterations occuring closer

to 40 milliseconds. Many iterations have sampling rates at 70 and 105 milliseconds.

A stability analysis is performed to document the effect of varying sample times

on the controller. More details about stability analysis are given in Subsection 6.3.4.

The sampling frequency is varied between 0 and 100 milliseconds, which is the range

of values seen in Figure 7.3 and Figure 7.4. The magnitudes of the Z transform

roots are plotted in Figure 7.5. In the plots, the dotted line represents the root

magnitude, while the solid black line and solid grey lines represent the Real and

Imaginary parts of the roots, respectively. The magnitude of all roots must be less

than one to assure stability.

500

.2 400
-t—> 05 i

CD ~ 300
CD

o 200-

O 100

150
Milliseconds

Figure 7.3. Controller sampling rates, high network resource usage (midday).

128

execution are differenced, creating a list of 6t values representing the time elapsed

between each iteration of the controller. Figure 7.3 shows a histogram plot of

the controller sampling rate for an experiment run during middle of the day. The

controller runs near the specified sampling frequency of 30 Hz, with some variability.

A vertical line denotes 33.3 milliseconds in this plot.

The same experiment is run again later in the day. The results of this second

experiment are plotted in Figure 7.4. The performance has degraded in this

experiment, as shown by the sampling rate for many iterations occuring closer

to 40 milliseconds. Many iterations have sampling rates at 70 and 105 milliseconds.

A stability analysis is performed to document the effect of varying sample times

on the controller. More details about stability analysis are given in Subsection 6.3.4.

The sampling frequency is varied between 0 and 100 milliseconds, which is the range

of values seen in Figure 7.3 and Figure 7.4. The magnitudes of the Z transform

roots are plotted in Figure 7.5. In the plots, the dotted line represents the root

magnitude, while the solid black line and solid grey lines represent the Real and

Imaginary parts of the roots, respectively. The magnitude of all roots must be less

than one to assure stability.

500
(Jl

c
0 400 . .;::::;
co
Q)

300 :!:::
.....
Q)

0 200
.....
+-'
C
0

100 0

0
0 50 100 150

Milliseconds

Figure 7.3. Controller sampling rates, high network resource usage (midday).

129

Figure 7.4. Controller sampling rates, low network resource usage (evening).

7.4.7 Sys tem Identification

The Garcia robot is subjected to a step velocity input in order to determine

the system time constants needed for discrete stability analysis of the trajectory

tracking controller. A step command of v — 0.5 meters per second is given for

approximately five seconds. The resulting displacement magnitude, relative to the

initial posture of the robot, is given in Figure 7.6. The displacement levels off

abruptly due to the robot encountering an obstacle.

The velocity calculated through numerical differentiation of the displacement

data is shown in Figure 7.7. A time constant, r, for the system to respond to a

velocity command can be approximated by,

r « t / 4 , (7.10)

where t is the amount of time it takes the system to reach the commanded velocity.

From the velocity data presented here, the system reaches 0.5 meters per second in

approximately 3 seconds. This results in a time constant r = 0.75.

The measurements undertaken in this section verify that all system parameters

are acceptable for operation of the robots under kinematic state feedback control.

The next section details the results obtained from operating a robot within the

Mobile Emulab workspace.

129

500

(/J
c
0 400 +=0
co
Q)

300 +-'

....
Q)

0 200
+-'
C
0

100 ()

0
0 50 100 150

Milliseconds

Figure 7.4. Controller sampling rates, low network resource usage (evening).

7.4.7 System Identification

The Garcia robot is subjected to a step velocity input in order to determine

the system time constants needed for discrete stability analysis of the trajectory

tracking controller. A step command of v = 0.5 meters per second is given for

approximately five seconds. The resulting displacement magnitude, relative to the

initial posture of the robot, is given in Figure 7.6. The displacement levels off

abruptly due to the robot encountering an obstacle.

The velocity calculated through numerical differentiation of the displacement

data is shown in Figure 7.7. A time constant, T, for the system to respond to a

velocity command can be approximated by,

T ~ t/4, (7.10)

where t is the amount of time it takes the system to reach the commanded velocity.

From the velocity data presented here, the system reaches 0.5 meters per second in

approximately 3 seconds. This results in a time constant T = 0.75.

The measurements undertaken in this section verify that all system parameters

are acceptable for operation of the robots under kinematic state feedback control.

The next section details the results obtained from operating a robot within the

Mobile Emulab workspace.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
T (seconds)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
T (seconds)

9 0.5 -

"0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
T (seconds)

-0.5 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
T (seconds)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
T(seconds)

Figure 7.5. Z transform roots with varying sampling frequency.

~ 0:[:
, , , , ,

o 0.01 002 0.03 0.04 0.05 0.06
T (seconds)

0.07 0.08 0.09 0.1

~ 0:[: : : : , , , ,
o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

1 ,
0,09 0.1

T (seconr;Is)

~ o:c=:===s-=~
-0.5 1 , ' , , , , , , ,

o 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
T ($8COr'ICIS)

~~iF; - -, - - ~- - : -~
o 0.01 0.1)2 0.03 0.04 O.OS 0.06 0.07 0.08 0.09 0. \

T (seconc;!s)

Figure 7.5. Z transform roots with varying sampling frequency.

130

131

1.5 i 1 1 1 1 r

t (seconds)

Figure 7.6. Measured displacement magnitude of a step velocity input.

U>
~

2
Q>

.s
"

131

1 .5 ,---~--~---~--~--~--_____,

1

0.5

°0~--~~1L-----~2L-------3~------4L-------5L-----~6

t (seconds)

Figure 7.6. Measured displacement magnitude of a step velocity input.

1.2. . 1 , r

1 -

0.8 -

0.6 -

I i i i i i I
0 1 2 3 4 5 6

t (seconds)

Figure 7.7. Numerically differentiated velocity of a step velocity input.

-,
"C
C
0
<..>

" "' "' ~ " 1i>
oS
>

1.2

0.8

0.6

0.4

0.2

V o

-0.2 o

..r

~l/

1 2 3
t (seconds)

l ...
• ~

t.

4 5

Figure 7 .7. Numerically differentiated velocity of a step velocity input.

132

6

133

With the integration of kinematic state feedback control, the performance of

Mobile Emulab as a complete system is evaluated. The inclusion of trajectory

tracking control allows the robots to execute complex paths, with continual motion.

133

With the integration of kinematic state feedback control) the performance of

Mobile Emulab as a complete system is evaluated. The inclusion of trajectory

tracking control allows the robots to execute complex paths, with continual motion .

CHAPTER 8

EXPERIMENTAL RESULTS

The motion planning and control systems discussed in Chapter 3 and Chapter 4

as implemented in RMCD are tested to evaluate their performance and verify their

behavior. Experiments are run using Mobile Emulab, with robots operating in the

same workspace intended to be used by normal users. RMCD is instrumented to log

parametric data on robot posture, reference posture, controller velocity commands,

and state data. Section 8.1 presents experimental results of the trajectory tracking

controller.

8.1 Kinematic State Feedback
Trajectory Tracking

Controller
A series of experiments are run to evaluate the stability and performance of

the kinematic state feedback trajectory tracking controller. Waypoint paths are

designed to have a number of curved segments, with a suitable path length to test

for accumulating errors. The implementation in RMCD is rigorously tested under

real world conditions in this section.

The experiments start out with short line segments without curves, then progress

to more advanced trajectories with low reference velocities. After controller pa­

rameter tuning for stability and performance criteria, complex paths with higher

reference velocities are tested.

All results come from data logged from Emulab Mobile, and indicate data

obtained from robots operating in their normal work environment. Trajectories

are generated using the system outlined in Chapter 3. The curve type for all

experiments is circular arc, as discussed in Section 3.3.

CHAPTER 8

EXPERIMENTAL RESULTS

The motion planning and control systems discussed in Chapter 3 and Chapter 4

as implemented in RMCD are tested to evaluate their performance and verify their

behavior. Experiments are run using Mobile Emulab, with robots operating in the

same workspace intended to be used by normal users. RMCD is instrumented to log

parametric data on robot posture, reference posture, controller velocity commands,

and state data. Section 8.1 presents experimental results of the trajectory tracking

controller.

8.1 Kinematic State Feedback
Trajectory Tracking

Controller

A series of experiments are run to evaluate the stability and performance of

the kinematic state feedback trajectory tracking controller. Waypoint paths are

designed to have a number of curved segments, with a suitable path length to test

for accumulating errors. The implementation in RMCD is rigorously tested under

real world conditions in this section.

The experiments start out with short line segments without curves, then progress

to more advanced trajectories with low reference velocities. After controller pa­

rameter tuning for stability and performance criteria, complex paths with higher

reference velocities are tested.

All results come from data logged from Emulab Mobile, and indicate data

obtained from robots operating in their normal work environment. Trajectories

are generated using the system outlined in Chapter 3. The curve type for all

experiments is circular arc, as discussed in Section 3.3.

135

The parameters set for each experiment are in Table 8.1. The initial results

of the controller obtained shortly after implementation are presented in Subsec­

tion 8.1.1. The reference path in this instance is a single straight line segment. The

velocity of the trajectory is zero at the endpoints, with constant acceleration and

maximum velocity at the midpoint.

The initial straight line trajectory tracking experiment has parameters initial

chosen from the simulations in Chapter 6. The dynamic extension is disabled,

and the same experiment is performed with increased values of R and e. These

gains are increased to stabilize the system, according to the analysis discussed in

Section 6.3.4. The values of R are increased to obtain a larger path manifold circle,

which improves tracking. The parameter e is increased during experimentation to

be larger than the measured noise threshold of the state feedback data.

The controller parameter ki is increased according to the discrete system stabil­

ity analysis (discussed in Section 6.3.4), and tested in the experiment presented in

Section 8.1.5. The dynamic extension gains are chosen based on the desired system

response, and verified through both simulation and experimentation.

An initial experiment is performed to evaluate the implementation of the motion

control system itself. The parameters chosen are taken directly from simulation,

and the robot is only expected to accomplish motion at low velocity, with high

error. With the operation of the controller verified, a second experiment is per­

formed to characterize the performance of the trajectory tracking system with the

dynamic extension disabled. The dynamic extension filters out unbounded velocity

commands, but slows the response of the robots. The goal of this experiment is to

Table 8.1. Controller parameters for trajectory tracking experiments
Exper iment R e ki k2

kv kw

(8.1.1) Straight line 0.02 0.001 0.3 0.3 3.0 0.5
(8.1.2) Dynamic extension disabled 0.05 0.03 0.3 0.3 0.0 0.0
(8.1.3) Multisegment path, single curve 0.05 0.03 0.3 0.5 3.0 3.0
(8.1.4) Figure eight path: Low velocity 0.2 0.03 0.3 0.3 3.0 3.0
(8.1.5) Figure eight path 0.02 0.003 0.85 0.3 3.0 3.0

135

The parameters set for each experiment are in Table 8.1. The initial results

of the controller obtained shortly after implementation are presented in Subsec­

tion 8.1.1. The reference path in this instance is a single straight line segment. The

velocity of the trajectory is zero at the endpoints, with constant acceleration and

maximum velocity at the midpoint.

The initial straight line trajectory tracking experiment has parameters initial

chosen from the simulations in Chapter 6. The dynamic extension is disabled,

and the same experiment is performed with increased values of Rand E. These

gains are increased to stabilize the system, according to the analysis discussed in

Section 6.3.4. The values of R are increased to obtain a larger path manifold circle,

which improves tracking. The parameter E is increased during experimentation to

be larger than the measured noise threshold of the state feedback data.

The controller parameter kl is increased according to the discrete system stabil­

ity analysis (discussed in Section 6.3.4), and tested in the experiment presented in

Section 8.1.5. The dynamic extension gains are chosen based on the desired system

response, and verified through both simulation and experimentation.

An initial experiment is performed to evaluate the implementation of the motion

control system itself. The parameters chosen are taken directly from simulation,

and the robot is only expected to accomplish motion at low velocity, with high

error. With the operation of the controller verified, a second experiment is per­

formed to characterize the performance of the trajectory tracking system with the

dynamic extension disabled. The dynamic extension filters out unbounded velocity

commands, but slows the response of the robots. The goal of this experiment is to

Table 8.1. Controller parameters for trajectory tracking experiments
Experiment R E kl k2 k v kw
(8.1.1) Straight line 0.02 0.001 0.3 0.3 3.0 0.5 I

(8.1.2) Dynamic extension disabled 0.05 0.03 0.3 0.3 0.0 0.0
(8.1.3) Multisegment path, single curve 0.05 0.03 0.3 0.5 3.0 3.0
(8.1.4) Figure eight path: Low velocity 0.2 0.03 0.3 0.3 3.0 3.0
(8.1.5) Figure eight path 0.02 0.003 0.85 0.3 3.0 3.0

136

determine if tracking error decreases with a faster system response, at the expense

of stability.

A multisegment trajectory is built to test the controller with curved and linear

segments. Once the controller stability is established for baseline straight-line paths,

the stability must subsequently be evaluated under curved paths, with curvature

discontinuities.

Two final experiments are performed. One experiment tests the ability of the

motion controller to execute a more advanced multi-segment path at low velocity,

with parameters obtained through simulation. With parameters obtained through

discrete system stability analysis, the reference velocity is increased, and the motion

controller performance is determined.

8.1.1 Initial Trajectory Tracking Experiment:
Straight Line Path

A preliminary test run of the trajectory tracking controller in RMCD is per­

formed before parameter tuning. The resulting trajectory of this test is given in

Figure 8.1. A straight line reference trajectory is chosen, one meter long, and with

a maximum velocity of 0.1 meters per second. The parameters chosen for this

experiment are in Table 8.1. The values are chosen by careful tuning of the motion

controller in simulation. Low values of e and r reduce oscillations, and aggressively

track the robot to the trajectory. The gains kv and kc increase the convergence of

the position state e, while reducing instability in converging 6 and a (from (4.6)).

The controller eventually fails to track the reference trajectory, terminating the

experiment early.

The parameters chosen for this experiment are directly from simulation, and

do not provide the desired performance. The purpose at this point is to determine

that the controller actually works, and could be employed to track a basic trajectory

while utilizing visual state feedback. The experiment further evaluates the major

components of Mobile Emulab, and establishes that the system will perform as

desired once parameter tuning is completed.

The polar system states are shown in Figure 8.2. The states calculated from

136

determine if tracking error decreases with a faster system response, at the expense

of stability.

A multisegment trajectory is built to test the controller with curved and linear

segments. Once the controller stability is established for baseline straight-line paths,

the stability must subsequently be evaluated under curved paths, with curvature

discontinuities.

Two final experiments are performed. One experiment tests the ability of the

motion controller to execute a more advanced multi-segment path at low velocity,

with parameters obtained through simulation. With parameters obtained through

discrete system stability analysis, the reference velocity is increased, and the motion

controller performance is determined.

8.1.1 Initial Trajectory Tracking Experiment:
Straight Line Path

A preliminary test run of the trajectory tracking controller in RMCD is per­

formed before parameter tuning. The resulting trajectory of this test is given in

Figure 8.1. A straight line reference trajectory is chosen, one meter long, and with

a maximum velocity of 0.1 meters per second. The parameters chosen for this

experiment are in Table 8.1. The values are chosen by careful tuning of the motion

controller in simulation. Low values of E and r reduce oscillations, and aggressively

track the robot to the trajectory. The gains kv and kc increase the convergence of

the position state e, while reducing instability in converging () and Ct (from (4.6)).

The controller eventually fails to track the reference trajectory, terminating the

experiment early.

The parameters chosen for this experiment are directly from simulation, and

do not provide the desired performance. The purpose at this point is to determine

that the controller actually works, and could be employed to track a basic trajectory

while utilizing visual state feedback. The experiment further evaluates the major

components of Mobile Emulab, and establishes that the system will perform as

desired once parameter tuning is completed.

The polar system states are shown in Figure 8.2. The states calculated from

137

Reference Trajectory
Actual Trajectory

_5 - | I i i i 1 i i i i i i i

1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1
x (meters)

F i g u r e 8 . 1 . Initial straight line experiment, measured trajectory.

camera-measured localization data are compared to simulation results obtained

prior to the experiment. The state e in this experiment is larger than the simulated

value, as the robot has trouble tracking the reference trajectory. The state d9 has

a large amount of noise compared to simulation.

The stability of the controller is marginal, especially the angular parts. The

states 6 and a differ significantly from the simulation results. The controller is

incapable of tracking any curved path with the stated parameters.

Figure 8.3 shows the outputs of the main controller, and their derivatives. The

experimental results for the output v are similar to the simulation results. There are

spikes present in the controller linear velocity command, as a result of instability.

The angular velocity command is unstable, ultimately resulting in the failure of the

motion control system to track the reference trajectory.

The dynamic extension outputs are given in Figure 8.4. These outputs corre­

spond directly to the velocity commands sent to the robots. The dynamic extension

velocity signals are notably smoother than the raw controller velocity commands.

This verifies that the dynamic extension is performing as intended, and acting as

a low pass filter on the velocity commands sent to the robots.

Overall, this experiment is a success, as the baseline performance of the motion

controller is established. Using parameters obtained through iterative tuning in

simulation, the system is capable of performing trajectory tracking at low frequency,

using visual state feedback data.

137

- - - Reference Trajectory

- Actual Trajectory

i ~:I-:-~ ~--~--:-0-'-~-·, 1
1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

x (meters)

Figure 8.1. Initial straight line experiment, measured trajectory.

camera-measured localization data are compared to simulation results obtained

prior to the experiment. The state e in this experiment is larger than the simulated

value, as the robot has trouble tracking the reference trajectory. The state de has

a large amount of noise compared to simulation.

The stability of the controller is marginal, especially the angular parts. The

states e and 0: differ significantly from the simulation results. The controller is

incapable of tracking any curved path with the stated parameters.

Figure 8.3 shows the outputs of the main controller, and their derivatives. The

experimental results for the output v are similar to the simulation results. There are

spikes present in the controller linear velocity command, as a result of instability.

The angular velocity command is unstable, ultimately resulting in the failure of the

motion control system to track the reference trajectory.

The dynamic extension outputs are given in Figure 8.4. These outputs corre­

spond directly to the velocity commands sent to the robots. The dynamic extension

velocity signals are notably smoother than the raw controller velocity commands.

This verifies that the dynamic extension is performing as intended, and acting as

a low pass filter on the velocity commands sent to the robots.

Overall, this experiment is a success, as the baseline performance of the motion

controller is established. Using parameters obtained through iterative tuning in

simulation, the system is capable of performing trajectory tracking at low frequency,

using visual state feedback data.

0.2

0.15

1 0.1
01

0.05

0

1 1 [1 1 1 1 1

Simulation
RMCD

m — i — — —

0 8 10 12 14 16 18
t (sec)

20

Figure 8.2. Initial straight line experiment, measured Polar states.

0.2,--.-----.----.-----r------,----,--r--r-----;::-:---;-::-----;

0.15

E 0.1
Ql

0.5

:0-
~ 0
<D

-1

2

:0-
~
ij

0.5

U
Ql

.!!!.
"0 0
~
'B

-0.5

,

0

I

0

Figure 8.2.

-- - - - - - -- - lilt ___ _

2 4 6 8 10 12 14 16 18 20
t (sec)

~ .. , ,

2 4 6 8 10 12 14 16 18 20
t (sec)

.... -
2 4 6 8 10 12 14 16 18 20

t (sec)

2 4 6 8 10 12 14 16 18 20
t (sec)

Initial straight line experiment, measured Polar states.

138

Figure 8.3. Controller output corresponding to Figure 8.1.

139

_ 0.1
en

~
> 0.05

...
2 4 6 8 10 12 14 16 18 20

t (sec)

en --'0 co
----8

-0.

2 4 6 8 10 12 14 16 18 20
t (sec)

0.05

C\J-;
--E- O
> ------
'0

-0.05
0 2 4 6 8 10 12 14 16 18 20

t (sec)

5

~ --'0 0 co
~

-5
0 2 4 6 8 10 12 14 16 18 20

t (sec)

Figure 8.3. Controller output corresponding to Figure 8.1.

-0 .2

C/3

3 - 0 . 5 '

Figure 8.4. Motion controller velocity commands, corresponding to Figure 8.1.

140

0.2

--~ -.-
.----~ ~

E 0 r -- --> • Simulation

RMCD
-0.2

0 5 10 15 20
t (sec)

0.5

.- 0 (f) -'C
co --8

-1
0 5 10 15 20

t (sec)

Figure 8.4. Motion controller velocity commands, corresponding to Figure 8.1.

141

The performance observed in this experiment is not sufficient for general use in

Mobile Emulab, and as such, further experiments are needed to improve the motion

controller. With rigorous testing and parameter tuning, the motion control system

can attain the level of performance required for general use.

8.1.2 Straight Line Path with
Dynamic Extension
Disabled

The dynamic extension is disable to determine the behavior of the system

without filtering of the velocity commands from the controller. This is performed

to characterize the stability of the controller itself, without any influence from the

dynamic extension. Steady state error is decreased, but the system is less stable.

Discontinuities in the trajectory may cause total failure of the experiment, as the

velocity command derivatives grow unbounded.

The measured trajectory of this experiment is plotted in Figure 8.5. The

reference trajectory is followed with minimal offset error, though there is overshoot

present at the end of the run. The reference path starts at [2.0 — 5.0] and ends at

[3.0 — 5.0]. The controller parameters used for this experiment are in Table 8.1.

The lateral offset error is lower than in the initial experiment. While the perfor­

mance seems better, the system is actually much less stable, and is more susceptible

to disturbances. Tracking a curved path with any curvature discontinuities would

not be possible without the dynamic extension, or further parameter tuning.

The system states are shown in Figure 8.6. The position error is higher than

in other runs because of the suppression of the dynamic extension, and its filtering

effects. Tracking error remains below 50 millimeters, allowing the entire experiment

to be completed without intervention of the position error cutoff system.

Compared to the prior experiment, the angular error states are significantly

lower. The absolute position error is also lower. The filtering effect of the dynamic

extension bounds the controller velocity commands, but has the effect of slowing

the controller response. The ability to reject disturbances is diminished, but in the

relative absence of disturbances, the stright line tracking performance is improved.

141

The performance observed in this experiment is not sufficient for general use in

Mobile Emulab, and as such, further experiments are needed to improve the motion

controller. With rigorous testing and parameter tuning, the motion control system

can attain the level of performance required for general use.

8.1.2 Straight Line Path with
Dynamic Extension
Disabled

The dynamic extension is disable to determine the behavior of the system

without filtering of the velocity commands from the controller. This is performed

to characterize the stability of the controller itself, without any influence from the

dynamic extension. Steady state error is decreased, but the system is less stable.

Discontinuities in the trajectory may cause total failure of the experiment, as the

velocity command derivatives grow unbounded.

The measured trajectory of this experiment is plotted in Figure 8.5. The

reference trajectory is followed with minimal offset error, though there is overshoot

present at the end of the run. The reference path starts at [2.0 - 5.0] and ends at

[3.0 - 5.0]. The controller parameters used for this experiment are in Table 8.l.

The lateral offset error is lower than in the initial experiment. While the perfor­

mance seems better, the system is actually much less stable, and is more susceptible

to disturbances. Tracking a curved path with any curvature discontinuities would

not be possible without the dynamic extension, or further parameter tuning.

The system states are shown in Figure 8.6. The position error is higher than

in other runs because of the suppression of the dynamic extension, and its filtering

effects. Tracking error remains below 50 millimeters, allowing the entire experiment

to be completed without intervention of the position error cutoff system.

Compared to the prior experiment, the angular error states are significantly

lower. The absolute position error is also lower. The filtering effect of the dynamic

extension bounds the controller velocity commands, but has the effect of slowing

the controller response. The ability to reject disturbances is diminished, but in the

relative absence of disturbances, the stright line tracking performance is improved.

142

-4.7 r

-4.8 h

-4.9

a3

E 5

-5.1 r

-5.2

-5.3

~i r

• Reference Trajectory
~ Actual Trajectory

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
x (meters)

Figure 8.5. Straight line trajectory tracked with dynamic extension disabled.

142

- - - Reference Trajector

-4.7
- Actual Trajectory

-4.8

-4.9 -~
~

* -5
E ->.

-5.1

- 5.2

-5.3

2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
x (meters)

Figure 8.5. St.raight line trajectory tracked wit.h dynamic extension disabled.

143

0.05

I I I I I I

I i i i i i

8 10 12 14 16 18 20
t (sec)

Figure 8.6. Straight line trajectory tracked with dynamic extension disabled,
Polar states.

143

~O.O:~~~_I
o 2 4 6 8 1 0 12 14 16 18 20

t (sec)

! _~k = : : ' : : ~:- ~
o 2 4 6 8 10 12 14 16 18 20

t (sec)

l :~ = = ' = -: < ~~ -2~--~--~--~----~--~--~--~----~--~--~

o 2 4 6 8 10 12 14 16 18 20
t (sec)

U 1~--~--~--~----~--~--~--~----~--~--~

i ~~~~~ .. ~~~~.~
"0 - 0 2 4 6 8 1 0 12 14 16 18 20

t (sec)

Figure 8.6. Straight line trajectory tracked with dynamic extension disabled,
Polar states.

144

Figure 8.7 is a plot of the controller commands, which are translated into

wheel speeds and then sent directly to the robot. There is noise present in the

UJ signal, which corresponds to rotational velocity. This is a result of noise in the

differentiation of Polar state 9.

This experiment is successful in characterizing the performance of the controller

by itself, without the filtering effects of the dynamic extension. As it is not

practical to simply omit the dynamic extension from the motion control system

while preserving system stability, further experiments are required to evaluate the

system with the reintegration of the dynamic extension.

0.15 i 1 1 1 1 1 1 1 1 1

_21 i i i i i i i i i I
0 2 4 6 8 10 12 14 16 18 20

t (sec)

Figure 8.7. Straight line trajectory tracked with dynamic extension disabled,
controller velocity commands.

144

Figure 8.7 is a plot of the controller commands, which are translated into

wheel speeds and then sent directly to the robot. There is noise present in the

w signal, which corresponds to rotational velocity. This is a result of noise in the

differentiation of Polar state e.
This experiment is successful in characterizing the performance of the controller

by itself, without the filtering effects of the dynamic extension. As it is not

practical to simply omit the dynamic extension from the motion control system

while preserving system stability, further experiments are required to evaluate the

system with the reintegration of the dynamic extension.

0.15 ,-------,---,-------r---,-----,-----,--------r-----,-----,-----,

0.1

~E(/) _ 0.05
>

-0.05
0 2 4 6 8 10 12 14 16 18 20

t (sec)

2

1

en -....
"C

0 co
----8

-1

-2
0 2 4 6 8 10 12 14 16 18 20

t (sec)

Figure 8.7. Straight line trajectory tracked with dynamic extension disabled,
controller velocity commands.

145

8.1.3 Three Segment Path with
a Single Curve

Another test run of the trajectory tracking controller is completed, this time

added an additional line segment, along with a curve. The curve radius is constant

at 0.5 meters, with the initial reference point at [2.0 — 5.0]. The same controller

parameters are used as in the experiment discussed in Subsection 8.1.2. These

parameters are given in Table 8.1. Figure 8.8 illustrates the resultant trajectory,

with the reference and actual robot postures represented by the wheels and axles.

The dynamic extension is enabled in this run.

Left and right wheel velocities are presented in Figure 8.9. The data presented

here represent the velocity commands calculated by (4.10), not the measured wheel

velocities on the actual robot. The noise present in the signals is a result of the

noise in the dynamic extension output. As expected when executing a turn in the

positive (right hand) direction, the right wheel velocity is greater than the left.

The motion controller is now verified to be capable of tracking paths with line

and curve segments, which in this case possess curvature discontinuities. The

system remains stable through these discontinuities, and successfully tracks the

reference trajectory. To further evaluate the system performance, further parameter

tuning

8.1.4 Figure Eight Path:
Low Velocity

A more complex reference trajectory is devised for this experiment. The path

is in the form of a figure eight, with turn radii of 0.5 meters. A maximum reference

velocity of 0.05 meters per second, with a curve radius of 0.5 meters is used for this

experiment.

All curves in the reference trajectory are constant radius circular arcs. The path

viapoints are [2.0 - 5.0], [3.0 - 5.0], [3.0 - 4.0], [2.0 - 4.0], [2.0 - 6.0], [1.0 - 6.0],

[1.0 — 5.0], [2.0 — 5.0], in meters. The dynamic extension is enabled, as is the IIR

filter.

8.1.3 Three Segment Path with
a Single Curve

145

Another test run of the trajectory tracking controller is completed, this time

added an additional line segment, along with a curve. The curve radius is constant

at 0.5 meters, with the initial reference point at [2.0 - 5.0]. The same controller

parameters are used as in the experiment discussed in Subsection 8.1.2. These

parameters are given in Table 8.1. Figure 8.8 illustrates the resultant trajectory,

with the reference and actual robot postures represented by the wheels and axles.

The dynamic extension is enabled in this run.

Left and right wheel velocities are presented in Figure 8.9. The data presented

here represent the velocity commands calculated by (4.10), not the measured wheel

velocities on the actual robot. The noise present in the signals is a result of the

noise in the dynamic extension output. As expected when executing a turn in the

positive (right hand) direction, the right wheel velocity is greater than the left.

The motion controller is now verified to be capable of tracking paths with line

and curve segments, which in this case possess curvature discontinuities. The

system remains stable through these discontinuities, and successfully tracks the

reference trajectory. To further evaluate the system performance, further parameter

tuning

8.1.4 Figure Eight Path:
Low Velocity

A more complex reference trajectory is devised for this experiment. The path

is in the form of a figure eight, with turn radii of 0.5 meters. A maximum reference

velocity of 0.05 meters per second, with a curve radius of 0.5 meters is used for this

experiment.

All curves in the reference trajectory are constant radius circular arcs. The path

viapoints are [2.0 - 5.0], [3.0 - 5.0], [3.0 - 4.0], [2.0 - 4.0], [2.0 - 6.0]' [1.0 - 6.0],

[1.0 - 5.0]' [2.0 - 5.0], in meters. The dynamic extension is enabled, as is the IIR

filter.

Figure 8.9. Three segment trajectory, wheel velocity commands.

-4.1

-4.2

-4.3

-4.4

W
Q) -4.5 Q)

S
>- -4.6

-4.7

-4.8

-4.9

-5
2 2.2

- - - Reference Trajectory

- Actual Trajectory

2.4 2.6
x (meters)

2.8 3

Figure 8.8. Three segment trajectory, final postures.

0.2

0.15

~
E- 0.1 .:::
Cll
...J

0.05

5 10 15 20 25
t (sec)

0.15

0.1
-!!!
E-

0.05 1:
0> a:

-0.05
0 5 10 15 20 25

t (sec)

Figure 8.9. Three segment trajectory, wheel velocity commands.

146

147

The configured robot acceleration upon execution of the null primitive is 0.6

meters per second squared. The controller parameters are given in Table 8.1. The

reference trajectory starts and ends at [2.0 — 5.0], as shown in the above viapoint

data.

Figure 8.10 is a plot of the actual robot trajectory, compared to the reference

trajectory. The robot tracks the trajectory through all the curves with minimal

error. To illustrate the tracking error along the path, a plot of the robot compared

to the reference robot at a single instant in time is given in Figure 8.11.

The tracking error is this experiment remains low, given the low velocity of

the reference trajectory. The filtered velocity commands are capable of minimizing

error, and discontinuities in curvature do not have much effect on overall stability.

The Polar states for this experiment are plotted in Figure 8.12. There are several

discontinuous jumps in 6 and a, and e is approximately 40 millimeters through the

entire run.

Figure 8.13 shows the corresponding dynamic extension velocity commands for

this experiment. The signal v is smooth, with little noise, and rapidly converges

to the configured maximum reference velocity of 0.05 meters per second. Noise is

present in the UJ, which is a result of the derivative noise from other components of

the motion controller.

This experiment illustrates that the trajectory tracking controller is capable of

tracking a complex reference trajectory at a lower reference velocity. Position error

is still higher than desired, but the controller is stable. Operating the robot at

lower velocity is a detriment to performance, and the signal to noise ratio of the

controller velocity commands becomes lower as the robot velocity lowers.

To evaluate the final intended performance, the fully tuned motion control

system is tested at a higher reference velocity. The trajectory characteristics are

chosen to represent those intended during actual use of the testbed for wireless

networking experiments. Higher velocities, and greater accuracy and reliability are

desired.

147

The configured robot acceleration upon execution of the null primitive is 0.6

meters per second squared. The controller parameters are given in Table 8.1. The

reference trajectory starts and ends at [2.0 - 5.0]' as shown in the above viapoint

data.

Figure 8.10 is a plot of the actual robot trajectory, compared to the reference

trajectory. The robot tracks the trajectory through all the curves with minimal

error. To illustrate the tracking error along the path, a plot of the robot compared

to the reference robot at a single instant in time is given in Figure 8.11.

The tracking error is this experiment remains low, given the low velocity of

the reference trajectory. The filtered velocity commands are capable of minimizing

error, and discontinuities in curvature do not have much effect on overall stability.

The Polar states for this experiment are plotted in Figure 8.12. There are several

discontinuous jumps in e and a, and e is approximately 40 millimeters through the

entire run.

Figure 8.13 shows the corresponding dynamic extension velocity commands for

this experiment. The signal v is smooth, with little noise, and rapidly converges

to the configured maximum reference velocity of 0.05 meters per second. Noise is

present in the w, which is a result of the derivative noise from other components of

the motion controller.

This experiment illustrates that the trajectory tracking controller is capable of

tracking a complex reference trajectory at a lower reference velocity. Position error

is still higher than desired, but the controller is stable. Operating the robot at

lower velocity is a detriment to performance, and the signal to noise ratio of the

controller velocity commands becomes lower as the robot velocity lowers.

To evaluate the final intended performance, the fully tuned motion control

system is tested at a higher reference velocity. The trajectory characteristics are

chosen to represent those intended during actual use of the testbed for wireless

networking experiments. Higher velocities, and greater accuracy and reliability are

desired.

148

x (meters)

Figure 8.10. Trajectories for low speed experiment.

148

- 4

- - - Reference Trajectory
-4.2 Actual Trajectory

-4.4

-4.6

- 4.8
~
'" ;; - 5
.§.
>-

-5.2

-5.4

-5.6

-5.8

-6
1 1.5 2 2.5 3

x (meters)

Figure 8.10. Trajectories for low speed experiment.

149

x (meters)

Figure 8.11. Trajectory and instantaneous robot position comparison for low
speed experiment.

-4

-4.2

-4.4

-4.6

-4.8
.........

CJ)
L-

a> -5 -a>
E --->. -5.2

-5.4

-5.6

-5.8

-6

- - - Reference Trajectory

Actual Trajectory

1 1.5 2
x (meters)

149

2.5 3

Figure 8.11. Trajectory and instantaneous robot position comparison for low
speed experiment.

150

Figure 8.12. Polar states for low speed experiment.

150

0.06~----~----~----~----~------~----~----~-----.

0.04
g
(]) 0.02

20 40 60 80 100 120 140 160
t (sec)

2

-----"0 ca
-=-
CD

-1

-2
0 20 40 60 80 100 120 140 160

t (sec)

10

5
::0 ca

0"
.... -.... --

<::3

-5

-10 I

0 20 40 60 80 100 120 140 160
t (sec)

4

0 2

~...I ... l
-

(])

oll. C/J _IL __ --"0 ca .- ~ fT" - . TI . -, -
5B -2

-4
0 20 40 60 80 100 120 140 160

t (sec)

Figure 8.12. Polar states for low speed experiment.

151

Figure 8.13. Dynamic extension output for low speed experiment.

151

0.08

0.06

en 0.04 --E
'-"

> 0.02

0

-0.02
0 20 40 60 80 100 120 140 160

t (sec)

1

0.5
,.-.,.
(f)

:0
ell ..=..
8

-0.5

-1
0 20 40 60 80 100 120 140 160

t (sec)

Figure 8.13. Dynamic extension output for low speed experiment.

152

8.1.5 Figure Eight Path

A second experiment using the figure eight path run in Subsection 8.1.4 is

executed. The controller parameters for this experiment are given in Table 8.1. The

resulting trajectory is presented in Figure 8.14. The begining and ending point of

the trajectory is [2.0 — 5.0], with a heading of 4> = 0.0. The maximum configured

reference velocity is 0.1 meters per second, and the maximimum configured robot

acceleration is 0.2 meters per second squared. Acceleration and velocity limits

are imposed to reduce tracking error from operation of robots on an uneven sur­

face, (e.g. carpet). There are curvature discontinuities in the path at [2.5 — 5.0],

[2.0 — 4.5], [2.0 — 5.5], and [1.5 — 5.0]. These discontinuities cause the tracking

error, which is high in the instances where the robot transitions from a line segment

to a curved segment. The curves used for the generated reference trajectory are

constant radius circular arcs.

The Polar system states for this experiment are plotted in Figure 8.15. The

maximum value of e is approximately 100 millimeters, which is within the maximum

error tolerance of 200 millimeters. The states 6 and a remain within the interval

—7T —> 7T, as a result of the phase angle unwrapping function.

Figure 8.16 shows the controller velocity outputs v and lo, plus their respective

time derivatives. The to signal is noisy, because of noise present in the numerical

differentiation of 9 in the control law (4.34). There is also noise present in the

numerical derivatives v and Co.

The velocity outputs of the dynamic extension are given in Figure 8.17. The

velocity signals v and to are smoother than the signals presented in Figure 8.16,

as the dynamic extension acts as a low pass filter. At the time t ~ 75 seconds,

a negative linear velocity is commanded as the robot overshoots the reference

trajectory. At this point, the reference trajectory velocity is diminishing to zero.

The wheel velocities resulting from the velocity commands given in Figure 8.17

are plotted in Figure 8.18. These signals are sent directly to the robot for the

low level wheel velocity controller to track. There is some jitter present, which is

effectively filtered by the configured acceleration of 0.2 meters per second squared

152

8.1.5 Figure Eight Path

A second experiment using the figure eight path run in Subsection 8.1.4 is

executed. The controller parameters for this experiment are given in Table 8.1. The

resulting trajectory is presented in Figure 8.14. The begining and ending point of

the trajectory is [2.0 - 5.0], with a heading of ¢ = 0.0. The maximum configured

reference velocity is 0.1 meters per second, and the maximimum configured robot

acceleration is 0.2 meters per second squared. Acceleration and velocity limits

are imposed to reduce tracking error from operation of robots on an uneven sur­

face, (e.g. carpet). There are curvature discontinuities in the path at [2.5 - 5.0],

[2.0 - 4.5], [2.0 - 5.5], and [1.5 - 5.0]. These discontinuities cause the tracking

error, which is high in the instances where the robot transitions from a line segment

to a curved segment. The curves used for the generated reference trajectory are

constant radius circular arcs.

The Polar system states for this experiment are plotted in Figure 8.15. The

maximum value of e is approximately 100 millimeters, which is within the maximum

error tolerance of 200 millimeters. The states () and a remain within the interval

-7r ----t 7r, as a result of the phase angle unwrapping function.

Figure 8.16 shows the controller velocity outputs v and w, plus their respective

time derivatives. The w signal is noisy, because of noise present in the numerical

differentiation of () in the control law (4.34). There is also noise present in the

numerical derivatives v and w.
The velocity outputs of the dynamic extension are given in Figure 8.17. The

velocity signals v and ware smoother than the signals presented in Figure 8.16,

as the dynamic extension acts as a low pass filter. At the time t ~ 75 seconds,

a negative linear velocity is commanded as the robot overshoots the reference

trajectory. At this point, the reference trajectory velocity is diminishing to zero.

The wheel velocities resulting from the velocity commands given in Figure 8.17

are plotted in Figure 8.18. These signals are sent directly to the robot for the

low level wheel velocity controller to track. There is some jitter present, which is

effectively filtered by the configured acceleration of 0.2 meters per second squared

153

x (meters)

Figure 8.14. Trajectory for figure eight path experiment.

of the wheel velocity tracker.

The experiments run in this section demonstrate that the trajectory tracking

controller performs as desired. There exist remaining issues, such as tracking error

caused by noise and jitter. The maximum successful tracking reference velocity is

also lower than desired. Overall, it is shown that repeatable results are possible,

demonstrating stable trajectory tracking of complex curved paths at moderate

velocities. Furthermore, it is established that the components of Emulab Mobile

are capable of supporting kinematic state feedback for motion control over a mul­

tipurpose computer network system.

153

-4

-4.2

-4.4
- Reference Trajectory

-- Actual Trajectory

-4.6

-4.8
.-
C/l
Q)

-5 +-'
Q)

E
>- -5.2

-5.4

-5.6

-5.8

-6

1 1.5 2 2.5 3
x (meters)

Figure 8.14. Trajectory for figure eight path experiment.

of the wheel velocity tracker.

The experiments run in this section demonstrate that the trajectory tracking

controller performs as desired. There exist remaining issues, such as tracking error

caused by noise and jitter. The maximum successful tracking reference velocity is

also lower than desired. Overall, it is shown that repeatable results are possible,

demonstrating stable trajectory tracking of complex curved paths at moderate

velocities. Furthermore, it is established that the components of Emulab Mobile

are capable of supporting kinematic state feedback for motion control over a mul­

tipurpose computer network system.

154

0.2 | 1 1 1 1 1 1 r

0.15 -

0 10 20 30 40 50 60 70 80
t (sec)

t (sec)

Figure 8.15. Polar system states for figure eight path experiment.

154

0.2

0.15
..-..
E 0.1 ---Q)

0.05

10 20 30 40 50 60 70 80
t (sec)

2

:0- 0
eo

.!::.-
a:> -2

-4
0 10 20 30 40 50 60 70 80

t (sec)

2

1
:0-
eo 0 ---;::s

-1

-2
0 10 20 30 40 50 60 70 80

t (sec)

5

U
Q)
en
"0 0 eo ---
~

-5
0 10 20 30 40 50 60 70 80

t (sec)

Figure 8.15. Polar system states for figure eight path experiment.

155

Figure 8.16. Controller velocity outputs for figure eight path experiment.

155

0.2

0.15
(j) --...
E 0.1 ->

0.05

10 20 30 40 50 60 70 80
t (sec)

5

.-..
~
'U
~ 0 -8

-5
0 10 20 30 40 50 60 70 80

t (sec)

0.2

~ 0.1
--...
E- O
> -0.1 'U

-0.2

0 10 20 30 40 50 60 70 80
t (sec)

5

~
'U 0 ~
'8
'U

-5
0 10 20 30 40 50 60 70 80

t (sec)

Figure 8.16. Controller velocity outputs for figure eight path experiment.

Figure 8 .17. Dynamic extension velocity outputs for figure eight path experiment.

156

0.15,-----,-----,------,-----,-,,---,-----,-----,------,

0.1

(j)

E 0.05
"-'

>

-0.05 '--____ J--____ --'---____ -----L ___ ------' ____ L..-___ --'-__ --'---__ ---.J

o 10 20 30 40 50 60 70 80
t (sec)

2,-----,------.------,-----,------,-----,------,------

_2'------~-----L----~'------~---------L----------'--------'-----~

o 10 20 30 40 50 60 70 80
t (sec)

Figure 8.17. Dynamic extension velocity outputs for figure eight path experiment.

157

0.15

g> 0.05

-0.05

Figure 8.18. Wheel velocity commands for figure eight path experiment.

157

0.3

0.2 -~
-S
~

0.1
Q)

....J

0

-0.1
0 10 20 30 40 50 60 70 80

t (sec)

0.2

0.15
(j) -... 0.1 -S -.s:: 0.05 0>
0:

0

-0.05
0 10 20 30 40 50 60 70 80

t (sec)

Figure 8.18. Wheel velocity commands for figure eight path experiment.

CHAPTER 9

DISCUSSION

The simulation data created in Chapter 6, and experimental data gathered in

Chapter 8 are used to analyse the overall performance of the Mobile Emulab system,

as related to the goals set for motion planning and control in Section 1.2. Despite

the unexpected constraints that arose during the development of the system, the

implementation of trajectory tracking control was successful. There remain perfor­

mance issues, related to sampling and stability, but the system is tuned to reject

these disturbances. The trajectory generator is not complete, with higher order

curves not integrated in to the system.

The defining experiment for this research is illustrated by the trajectory given

in Figure 8.14. The robot successfully tracks the provided trajectory, which is a

figure eight shape with multiple curves. The trajectory has four discontinuities,

which contribute to tracking error. The robot starts at [2.0 — 5.0] with a heading

of 0 radians, and ends the run at the same posture.

The initial posture is close to the initial point of the reference trajectory. The

robot starts with an initial position error of approximately one centimeter. The

controller used for motion control is designed to consider large initial errors. Initial

errors are expected to be very low on Mobile Emulab, because robots are accurately

positioned by the system prior to each movement.

As the robot proceeds in the global x direction through the first segment of

the trajectory, tracking error is low. Once the first line to curve transition is

encountered, the tracking error increases. The robot is not kinematically capable

of tracking the trajectory at this point, since curvature must increase linearly. The

tracking error increases again as the robot progresses around the first curve, and

then oscillates back to the trajectory.

CHAPTER 9

DISCUSSION

The simulation data created in Chapter 6, and experimental data gathered in

Chapter 8 are used to analyse the overall performance of the Mobile Emulab system,

as related to the goals set for motion planning and control in Section 1.2. Despite

the unexpected constraints that arose during the development of the system, the

implementation of trajectory tracking control was successful. There remain perfor­

mance issues, related to sampling and stability, but the system is tuned to reject

these disturbances. The trajectory generator is not complete, with higher order

curves not integrated in to the system.

The defining experiment for this research is illustrated by the trajectory given

in Figure 8.14. The robot successfully tracks the provided trajectory, which is a

figure eight shape with multiple curves. The trajectory has four discontinuities,

which contribute to tracking error. The robot starts at [2.0 - 5.0J with a heading

of 0 radians, and ends the run at the same posture.

The initial posture is close to the initial point of the reference trajectory. The

robot starts with an initial position error of approximately one centimeter. The

controller used for motion control is designed to consider large initial errors. Initial

errors are expected to be very low on Mobile Emulab, because robots are accurately

positioned by the system prior to each movement.

As the robot proceeds in the global x direction through the first segment of

the trajectory, tracking error is low. Once the first line to curve transition is

encountered, the tracking error increases. The robot is not kinematically capable

of tracking the trajectory at this point, since curvature must increase linearly. The

tracking error increases again as the robot progresses around the first curve, and

then oscillates back to the trajectory.

159

These oscillations are caused by instability introduced by variability in the

sampling rate of the controller. As discussed in Section 7.4.6, the controller is

not executed at exactly 30 Hz. Variability is expected, but becomes a problem by

making the system unstable as sampling frequency decreases. Noise and lag in the

visual localization system further contribute to this problem.

The wheel acceleration limits of the robots may be increased, but this also

contributes to stability problems. A lower acceleration limit acts as a low pass

filter, and helps reject disturbances in the controller velocity commands. With lower

acceleration limits, attainable velocities are limited by dimensional constraints in

the workspace, and by the length of reference trajectories.

The problems with noise, lag, and sampling rate variability prevent the robots in

Mobile Emulab from being operated at velocities above 0.1 meter per second while

tracking C° continuous trajectories. The maximum error tolerance configured in

Mobile Emulab is 200 millimeters. If tracking error becomes greater than this value,

the motion controller will abort, and the trajectory execution will fail.

If the localization data sampling rate were to increase, coupled with a decrease

in noise, less filtering would be required. This would benefit the stability of the

system, and allow for higher velocities to be obtained. The localization system

properties are considered as constraints in this research. As such, few actions can

be taken to increase the maximum velocity performance of the robots significantly

under discrete kinematic control.

The goal of successfully tracking trajectories with wheel velocities of 2.0 meters

per second was not obtained. An accuracy of 1 centimeter for goal positioning was

obtained at lower velocities. This is required for the accurate positioning of wireless

experimentation hardware.

The tuning of the motion controller system parameters in Table 4.1 greatly

effects the performance of the trajectory tracking system. If the controller parame­

ters k\ and k<i are too large, the control commands will be too aggressive to assure

stability. Large velocity commands will either cause the lower level wheel velocity

controllers to saturate, or the robot to overrun its reference trajectory. This overrun

159

These oscillations are caused by instability introduced by variability in the

sampling rate of the controller. As discussed in Section 7.4.6, the controller is

not executed at exactly 30 Hz. Variability is expected, but becomes a problem by

making the system unstable as sampling frequency decreases. Noise and lag in the

visual localization system further contribute to this problem.

The wheel acceleration limits of the robots may be increased, but this also

contributes to stability problems. A lower acceleration limit acts as a low pass

filter, and helps reject disturbances in the controller velocity commands. With lower

acceleration limits, attainable velocities are limited by dimensional constraints in

the workspace, and by the length of reference trajectories.

The problems with noise, lag, and sampling rate variability prevent the robots in

Mobile Emulab from being operated at velocities above 0.1 meter per second while

tracking CO continuous trajectories. The maximum error tolerance configured in

Moblle Emulab is 200 millimeters. If tracking error becomes greater than this value,

the motion controller will abort, and the trajectory execution will fail.

If the localization data sampling rate were to increase, coupled with a decrease

in noise, less filtering would be required. This would benefit the stability of the

system, and allow for higher velocities to be obtained. The localization system

properties are considered as constraints in this research. As such, few actions can

be taken to increase the maximum velocity performance of the robots significantly

under discrete kinematic control.

The goal of successfully tracking trajectories with wheel velocities of 2.0 meters

per second was not obtained. An accuracy of 1 centimeter for goal positioning was

obtained at lower velocities. This is required for the accurate positioning of wireless

experimentation hardware.

The tuning of the motion controller system parameters in Table 4.1 greatly

effects the performance of the trajectory tracking system. If the controller parame­

ters kl and k2 are too large, the control commands will be too aggressive to assure

stability. Large velocity commands will either cause the lower level wheel velocity

controllers to saturate, or the robot to overrun its reference trajectory. This overrun

160

condition contributes to the path loops observed in simulation in Figure 6.24 and

Figure 6.27. This phenomenon is not observed during experimentation, as the robot

wheel velocities saturate, causing execution to fail before a undesired path loop is

completed. An example of instability caused by high values of ki and k2 is in

Figure 8.1. The main controller gains must be high enough to assure a satisfactory

system response. Low values limit the maximum velocity of the robots, and increase

tracking error.

Larger dynamic extension gains increase the performance of the robots, while

lower gains decrease tracking error. The response of the dynamic extension must

be faster than the response of the main controller, or instability will result. This

stability criterion limits the lower bounds of the dynamic extension gains.

The path manifold radius, r must be sufficiently large, corresponding with the

minimum radius of curvature of the robots. In the case of the differentially steered

robots used in Mobile Emulab, the minimum radius of curvature is determined

by the maximum velocity and wheel lateral traction limits. The purturbation

parameter, e must be approximately three times the noise threshold of the state

feedback data.

An iterative process is undertaken to achieve optimal controller parameters in

this research. The process involves a discrete system stability analysis, followed by

experimental tuning of the parameters. The end result is a system that performs

trajectory tracking with minimal error, under real world conditions.

160

condition contributes to the path loops observed in simulation in Figure 6.24 and

Figure 6.27. This phenomenon is not observed during experimentation, as the robot

wheel velocities saturate, causing execution to fail before a undesired path loop is

completed. An example of instability caused by high values of kl and k2 is in

Figure 8.1. The main controller gains must be high enough to assure a satisfactory

system response. Low values limit the maximum velocity of the robots, and increase

tracking error.

Larger dynamic extension gains increase the performance of the robots, while

lower gains decrease tracking error. The response of the dynamic extension must

be faster than the response of the main controller, or instability will result. This

stability criterion limits the lower bounds of the dynamic extension gains.

The path manifold radius, r must be sufficiently large, corresponding with the

minimum radius of curvature of the robots. In the case of the differentially steered

robots used in Mobile Emulab, the minimum radius of curvature is determined

by the maximum velocity and wheel lateral traction limits. The purturbation

parameter, E must be approximately three times the noise threshold of the state

feedback data.

An iterative process is undertaken to achieve optimal controller parameters in

this research. The process involves a discrete system stability analysis, followed by

experimental tuning of the parameters. The end result is a system that performs

trajectory tracking with minimal error, under real world conditions.

CHAPTER 10

CONCLUSION

In this chapter, final notes and comments about the components discussed in this

research are presented. The experimental results discussed in Chapter 8 establish

that the remote kinematic state feedback control of multiple robots simultaneously

is feasible, and at controller sampling rates of 30 Hz. Stability constraints are

satisfied, though velocity and acceleration performance is not as high as originally

desired. To improve performance and reliability, future work is discussed.

In conclusion, a full motion planning and control system has been integrated into

the Mobile Emulab wireless networking testbed system. Robots tracking complex

trajectories under kinematic control are viable as couriers to carry wireless network­

ing equipment to arbitrary locations within a workspace. Remote state feedback

control is possible at low sampling frequencies, with inexpensive, commercially

available robots and cameras.

Problems are encountered with system stability with the trajectory tracking

controller. The actual robot performance falls short of the initially desired param­

eters. Higher order curves were not implemented in the trajectory generator of

Mobile Emulab, which caused tracking error to increase. In full, the project was

successful, and the high level goal of delivering a working motion planning and

control system to Mobile Emulab was completed.

10.1 Future Work
The current implementation of Mobile Emulab provides a working system to per­

form wireless networking experiments remotely. Improvements to the performance

and features of this system would increase reliability, enhance the user experient,

and decrease the amount of time required to perform experiments.

CHAPTER 10

CONCLUSION

In this chapter, final notes and comments about the components discussed in this

research are presented. The experimental results discussed in Chapter 8 establish

that the remote kinematic state feedback control of multiple robots simultaneously

is feasible, and at controller sampling rates of 30 Hz. Stability constraints are

satisfied, though velocity and acceleration performance is not as high as originally

desired. To improve performance and reliability, future work is discussed.

In conclusion, a full motion planning and control system has been integrated into

the Mobile Emulab wireless networking testbed system. Robots tracking complex

trajectories under kinematic control are viable as couriers to carry wireless network­

ing equipment to arbitrary locations within a workspace. Remote state feedback

control is possible at low sampling frequencies, with inexpensive, commercially

available robots and cameras.

Problems are encountered with system stability with the trajectory tracking

controller. The actual robot performance falls short of the initially desired param­

eters. Higher order curves were not implemented in the trajectory generator of

Mobile Emulab, which caused tracking error to increase. In full, the project was

successful, and the high level goal of delivering a working motion planning and

control system to Mobile Emulab was completed.

10.1 Future Work

The current implementation of Mobile Emulab provides a working system to per­

form wireless networking experiments remotely. Improvements to the performance

and features of this system would increase reliability, enhance the user experient,

and decrease the amount of time required to perform experiments.

162

The performance of the Mobile Emulab system could be improved with changes

to the robots and operating environment. More powerful robots, with greater com­

puting resources would enhance the performance of the system, resulting in faster

trajectories and less tracking error. Establishing the testbed in a fully controlled

environment, without obstacles and with a uniform surface, would increase the

reliability of the overall system.

The overall reliability of the system would benefit from the inclusion of a

robust obstacle avoidance system. This system needs to perform multiple robot

coordination and conflict resolution. Better multiple robot capabilities would allow

future temporal and spatial sharing of the Mobile Emulab resources, noted features

of Emulab itself.

10.1.1 Implementation

The software running Mobile Emulab may be improved for usability and reliabil­

ity. The current user interface does not support the segmented viapoint trajectory

generators, and there is little accommodation for state feedback control outside

of RMCD. A localization system with cameras capable of faster framerates would

increase the sampling rate of the controller and improve performance and stability.

The amount of resource centralization may be altered to increase robot perfor­

mance and reliability. Currently, all path planning, motion control, and localization

takes place remote from the robots. These components may be moved on board the

robots, while preserving resources. A distributed solution is also possible, where

resources on a single robot are used to control multiple robots in a local area.

Locating motion control and localization closer to the robots would reduce the

problems created by uncontrolled communication infrastructure.

The built-in controller has far too little resources to implement effective motion

control while preserving resources for experimentation. If a more powerful on

board computer system were installed on the robots, the motion control could be

decentralized. A motion controller better suited to digital control at low sampling

frequencies would improve the trajectory tracking reliability. Better state estima­

tion using for example, an Extended Kalman Filter, would greatly improve tracking

162

The performance of the Mobile Emulab system could be improved with changes

to the robots and operating environment. More powerful robots, with greater com­

puting resources would enhance the performance of the system, resulting in faster

trajectories and less tracking error. Establishing the testbed in a fully controlled

environment, without obstacles and with a uniform surface, would increase the

reliability of the overall system.

The overall reliability of the system would benefit from the inclusion of a

robust obstacle avoidance system. This system needs to perform multiple robot

coordination and conflict resolution. Better multiple robot capabilities would allow

future temporal and spatial sharing of the Mobile Emulab resources, noted features

of Emulab itself.

10.1.1 Implementation

The software running Mobile Emulab may be improved for usability and reliabil­

ity. The current user interface does not support the segmented viapoint trajectory

generators, and there is little accommodation for state feedback control outside

of RMCD. A localization system with cameras capable of faster framerates would

increase the sampling rate of the controller and improve performance and stability.

The amount of resource centralization may be altered to increase robot perfor­

mance and reliability. Currently, all path planning, motion control, and localization

takes place remote from the robots. These components may be moved on board the

robots, while preserving resources. A distributed solution is also possible, where

resources on a single robot are used to control multiple robots in a local area.

Locating motion control and localization closer to the robots would reduce the

problems created by uncontrolled communication infrastructure.

The built-in controller has far too little resources to implement effective motion

control while preserving resources for experimentation. If a more powerful on

board computer system were installed on the robots, the motion control could be

decentralized. A motion controller better suited to digital control at low sampling

frequencies would improve the trajectory tracking reliability. Better state estima­

tion using for example, an Extended Kalman Filter, would greatly improve tracking

163

error without requiring major modifications to the current motion controller.

With resource requirements relaxed, the adoption of a dynamic controller is

desired. Kinematic control is limited in performance, especially at higher velocities.

Modifications would be required to allow the current robots to accept wheel torque

commands instead of wheel velocity commands. With dynamic control, the robot

operating speeds could be significantly increased, reducing the time required to run

experiments.

10.1.2 Trajectory Generation

The trajectory generation system currently integrated in Mobile Emulab sup­

ports only line and circular arc segment trajectories. The inclusion of the spline

based trajectory generator would improve robot performance, and benefit stability.

The development of spline trajectories is complete, but implementation has not

been attempted because of time constraints.

10.1.3 Motion Control

The trajectory tracking controller is still marginally stable under some circum­

stances, specifically when reference velocities are high, and the state feedback sam­

pling rate is erratic. The current controller would benefit from the implementation

of an Extended Kalman Filter for state estimation. With an EKF, not only would

smoother and more accurate Cartesian state data be provided, but also velocity

data, which would eliminate the need for the controller and dynamic extension to

rely on noisy numerical differentiation for their velocity states.

A trajectory tracker of a different design may be necessary to improve the

performance of the system. The current control law could be made discrete and

rigorously analyzed to create a digital control law better suited for the current

system. A different controller design, such as a sliding mode controller may be

integrated as a replacement to the current controller. The software infrastructure

required to implement any sort of kinematic state feedback controller is already in

place. A new controller may be substituted, requiring only minimal effort.

Major updates to the motion control system of Mobile Emulab may be per-

163

error without requiring major modifications to the current motion controller.

With resource requirements relaxed, the adoption of a dynamic controller is

desired. Kinematic control is limited in performance, especially at higher velocities.

Modifications would be required to allow the current robots to accept wheel torque

commands instead of wheel velocity commands. With dynamic control, the robot

operating speeds could be significantly increased, reducing the time required to run

experiments.

10.1.2 Trajectory Generation

The trajectory generation system currently integrated in Mobile Emulab sup­

ports only line and circular arc segment trajectories. The inclusion of the spline

based trajectory generator would improve robot performance, and benefit stability.

The development of spline trajectories is complete, but implementation has not

been attempted because of time constraints.

10.1.3 Motion Control

The trajectory tracking controller is still marginally stable under some circum­

stances, specifically when reference velocities are high, and the state feedback sam­

pling rate is erratic. The current controller would benefit from the implementation

of an Extended Kalman Filter for state estimation. With an EKF, not only would

smoother and more accurate Cartesian state data be provided, but also velocity

data, which would eliminate the need for the controller and dynamic extension to

rely on noisy numerical differentiation for their velocity states.

A trajectory tracker of a different design may be necessary to improve the

performance of the system. The current control law could be made discrete and

rigorously analyzed to create a digital control law better suited for the current

system. A different controller design, such as a sliding mode controller may be

integrated as a replacement to the current controller. The software infrastructure

required to implement any sort of kinematic state feedback controller is already in

place. A new controller may be substituted, requiring only minimal effort.

Major updates to the motion control system of Mobile Emulab may be per-

164

formed. The addition of a dynamics based controller would significantly improve

the performance of the robots. Moving the controller to a system offering real

time performance would be highly beneficial. Emulab provides all the necessary

components required to implement such a system.

The current kinematic trajectory tracking is limited in performance, and would

need to be replaced with a dynamic controller if significantly greater performance is

desired. State estimation is required if the state feedback data sampling frequency

is not increased. A controller taking into account the dynamics of the robots,

and providing accurate state estimation is highly recommended for any future

improvements to the motion control system of Mobile Emulab.

10.1.4 Obstacle Avoidance

The obstacle avoidance system discussed in Chapter 5 is in need of improvements

before implementation and integration into Mobile Emulab. A bounding box

hierarchy could be used to speed computation, and model much more detailed

workspaces. Greater control of rolloff functions, approach and departure zones,

secondary exclusion zones, and field orientation affords more fine tuning of field

properties. This also creates the preliminary support structure needed to allow

dynamic obstacles to be considered. The inclusion of support for moving obstacles

would make VPPM better suited for use in solving multiple robot coordination

issues.

VPPM may be better suited to consider only a single obstacle at a time, because

of problems arising from interactions of multiple obstacle fields, Similar to some of

the solutions for potential field methods, a controller or distance algorithm could

be put in place to determine which obstacle or obstacles to consider as members of

the field overlay. This could introduce more problems, especially oscillations and

discontinuities.

VPPM could conceivably be combined with a trajectory generator, such as a

probabilistic roadmap generator. While the trajectory generator creates a safe

trajectory through a workspace or configuration space using geometric methods,

VPPM could be used to allow dynamic or unforeseen obstacles to deflect a robot

164

formed. The addition of a dynamics based controller would significantly improve

the performance of the robots. Moving the controller to a system offering real

time performance would be highly beneficial. Emulab provides all the necessary

components required to implement such a system.

The current kinematic trajectory tracking is limited in performance, and would

need to be replaced with a dynamic controller if significantly greater performance is

desired. State estimation is required if the state feedback data sampling frequency

is not increased. A controller taking into account the dynamics of the robots,

and providing accurate state estimation is highly recommended for any future

improvements to the motion control system of Mobile Emulab.

10.1.4 Obstacle Avoidance

The obstacle avoidance system discussed in Chapter 5 is in need of improvements

before implementation and integration into Mobile Emulab. A bounding box

hierarchy could be used to speed computation, and model much more detailed

workspaces. Greater control of rolloff functions, approach and departure zones,

secondary exclusion zones, and field orientation affords more fine tuning of field

properties. This also creates the preliminary support structure needed to allow

dynamic obstacles to be considered. The inclusion of support for moving obstacles

would make VPPM better suited for use in solving multiple robot coordination

issues.

VPPM may be better suited to consider only a single obstacle at a time, because

of problems arising from interactions of multiple obstacle fields, Similar to some of

the solutions for potential field methods, a controller or distance algorithm could

be put in place to determine which obstacle or obstacles to consider as members of

the field overlay. This could introduce more problems, especially oscillations and

discontinuities.

VPPM could conceivably be combined with a trajectory generator, such as a

probabilistic roadmap generator. While the trajectory generator creates a safe

trajectory through a workspace or configuration space using geometric methods,

VPPM could be used to allow dynamic or unforeseen obstacles to deflect a robot

165

from the planned trajectory, providing interim robot navigation when obstacles

obstruct a preplanned trajectory.

Combining VPPM with the viapoint-based trajectory generator, could be used

to add obstacle avoidance support to Mobile Emulab in the future. VPPM could

be used to deflect user defined paths, routing rough paths around obstacles, and

allowing robots to react to transient obstacles that may appear in the workspace.

To solve the problem concerning trajectories entering the obstacle exclusion zone

on approach, the goal attractor field could be switched to repulse in order to drive

the trajectory to a safe distance from the obstacle. To minimize the impact of a

discontinuity, this switch could be accomplished with a saturation function, similar

to methods commonly employed in sliding mode controller design. The obstacle

field overlay itself could react to the current posture by changing strength, shape,

or orientation. We could use these efforts to make VPPM more adaptive, while

using all of its existing attributes.

In conclusion, there is much room for improvement in the areas of trajectory

generation, motion control, and obstacle avoidance within Mobile Emulab. The

current system as designed provides a robust framework, and verifies the feasibility

of a centralized robot control system for remote operation of wireless networking

experiments.

165

from the planned trajectory, providing interim robot navigation when obstacles

obstruct a preplanned trajectory.

Combining VPPM with the viapoint-based trajectory generator, could be used

to add obstacle avoidance support to Mobile Emulab in the future. VPPM could

be used to deflect user defined paths, routing rough paths around obstacles, and

allowing robots to react to transient obstacles that may appear in the workspace.

To solve the problem concerning trajectories entering the obstacle exclusion zone

on approach, the goal attractor field could be switched to repulse in order to drive

the trajectory to a safe distance from the obstacle. To minimize the impact of a

discontinuity, this switch could be accomplished with a saturation function, similar

to methods commonly employed in sliding mode controller design. The obstacle

field overlay itself could react to the current posture by changing strength, shape,

or orientation. We could use these efforts to make VPPM more adaptive, while

using all of its existing attributes.

In conclusion, there is much room for improvement in the areas of trajectory

generation, motion control, and obstacle avoidance within Mobile Emulab. The

current system as designed provides a robust framework, and verifies the feasibility

of a centralized robot control system for remote operation of wireless networking

experiments.

REFERENCES

[1] D. Johnson, T. Stack, D. M. Flickinger, L. Stoller, R. Ricci, and J. Lep-
reau, "Mobile emulab: A robotic wireless and sensor network testbed," in
the 25th Conference on Computer Communications (IEEE INFOCOM 2006),
Barcelona, Spain, Apr. 2006.

[2] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi-
bler, C. Barb, and A. Joglekar, "An integrated experimental environment for
distributed systems and networks," in Fifth Symposium on Operating Systems
Design and Implementation, Boston, MA, Dec. 2002, pp. 255 - 270.

[3] "Garcia robots from acroname, inc." [Online]. Available: http://www.
acroname.com/garcia/garcia.html

[4] M.-Y. Hsieh, V. Kumar, and C. Taylor, "Constructing radio signal strength
maps with multiple robots," in IEEE International Conference on Robotics
and Automation, vol. 4, 2004, pp. 4184 - 4189.

[5] P. De, R. Krishnan, A. Raniwala, K. Tatavarthi, N. A. Syed, J. Modi, and
T. cker Chiueh, "Mint-m: An autonomous mobile wireless experimentation
platform," in Mobisys, 2006.

[6] R. Luo, K. Su, S. Shen, and K. Tsai, "Networked intelligent robots through
the internet: issues and opportunities," in IEEE, vol. 91, no. 3, Mar. 2003, pp.
371 - 382.

[7] K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, and J. Wieg-
ley, "Desktop teleoperation via the world wide web," in IEEE International
Conference on Robotics and Automation, vol. 1, Nagoya, Jpn, 1995, pp. 654 -
659.

[8] R. Simmons, J. Fernandez, R. Goodwin, S. Koenig, and J. O'Sullivan, "Lessons
learned from xavier," IEEE Robot. Automat. Mag., vol. 7, no. 2, pp. 33 - 39,
June 2000.

[9] D. Lee, O. Martinez-Palafox, and M. W. Spong, "Bilateral teleoperation
of a wheeled mobile robot over delayed communication network," in IEEE
International Conference on Robotics and Automation, Orlando, FL, United
States, 2006, pp. 3298 - 3303.

[10] E. A. Thompson, E. Harmison, R. Carper, R. Martin, and J. Isaacs, "Robot
teleoperation featuring commercially available wireless network cards," Journal
of Network and Computer Applications, vol. 29, no. 1, pp. 11 - 24, 2006.

REFERENCES

[1] D. Johnson, T. Stack, D. M. Flickinger, L. Stoller, R. Ricci, and J. Lep­
reau, "Mobile emulab: A robotic wireless and sensor network testbed," in
the 25th Conference on Computer Communications (IEEE INFO COM 2006),
Barcelona, Spain, Apr. 2006.

[2] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hi­
bler, C. Barb, and A. Joglekar, "An integrated experimental environment for
distributed systems and networks," in Fifth Symposium on Operating Systems
Design and Implementation, Boston, MA, Dec. 2002, pp. 255 - 270.

[3] "Garcia robots from acroname, inc." [Online]. Available: http://www.
acroname.com/ garcia/ garcia.html

[4] M.-y' Hsieh, V. Kumar, and C. Taylor, "Constructing radio signal strength
maps with multiple robots," in IEEE International Conference on Robotics
and Automation, vol. 4, 2004, pp. 4184 - 4189.

[5] P. De, R. Krishnan, A. Raniwala, K. Tatavarthi, N. A. Syed, J. Modi, and
T. cker Chiueh, "Mint-m: An autonomous mobile wireless experimentation
platform," in Mobisys, 2006.

[6] R. Luo, K. Su, S. Shen, and K. Tsai, "Networked intelligent robots through
the internet: issues and opportunities," in IEEE, vol. 91, no. 3, Mar. 2003, pp.
371 - 382.

[7] K. Goldberg, M. Mascha, S. Gentner, N. Rothenberg, C. Sutter, and J. Wieg­
ley, "Desktop teleoperation via the world wide web," in IEEE International
Conference on Robotics and Automation, vol. 1, Nagoya, Jpn, 1995, pp. 654 -
659.

[8] R. Simmons, J. Fernandez, R. Goodwin, S. Koenig, and J. O'Sullivan, "Lessons
learned from xavier," IEEE Robot. Automat. Mag., vol. 7, no. 2, pp. 33 - 39,
June 2000.

[9] D. Lee, O. Martinez-Palafox, and M. W. Spong, "Bilateral teleoperation
of a wheeled mobile robot over delayed communication network," in IEEE
International Conference on Robotics and Automation, Orlando, FL, United
States, 2006, pp. 3298 - 3303.

[10] E. A. Thompson, E. Harmison, R. Carper, R. Martin, and J. Isaacs, "Robot
teleoperation featuring commercially available wireless network cards," Journal
of Network and Computer Applications, vol. 29, no. 1, pp. 11 - 24, 2006.

http://www
http://acroname.com/garcia/

167

[11] N. Sgouros and S. Gerogiannakis, "Robot teleoperation environments featuring
wap-based wireless devices," J. Netw. Comput. Appl. (UK), vol. 26, no. 3, pp.
259 - 271, Aug. 2003.

[12] J. H. Park and H. C. Cho, "Sliding-mode controller for bilateral teleopera­
tion with varying time delay," in IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, Atlanta, GA, USA, 1999, pp. 311 - 316.

[13] H. C. Cho and J. H. Park, "Stable bilateral teleoperation under a time delay
using a robust impedance control," Mechatronics, vol. 15, no. 5, pp. 611 - 625,
2005.

[14] F. Goktas, J. Smith, and R. Bajcsy, "Telerobotics over communication net­
works," in 36th IEEE Conference on Decision and Control, vol. 3, San Diego,
CA, USA, 1997, pp. 2399 - 2404.

[15] S. Yadlapalli, S. Darbha, and K. Rajagopal, "Information flow and its relation
to stability of the motion of vehicles in a rigid formation," IEEE Trans. Autom.
Control (USA), vol. 51, no. 8, pp. 1315 - 1319, Aug. 2006.

[16] J.-P. Laumond, P. Jacobs, M. Taix, and R. Murray, "A motion planner for non-
holonomic mobile robots," IEEE Transactions on Robotics and Automation,
vol. 10, no. 5, pp. 577 - 93, Oct. 1994.

[17] B. Barsky and T. DeRose, "Geometric continuity of parametric curves: three
equivalent characterizations," IEEE Computer Graphics and Applications,
vol. 9, no. 6, pp. 60 - 9, Nov. 1989.

[18] T. Fraichard and A. Scheuer, "From reeds and shepp's to continuous-curvature
paths," IEEE Transactions on Robotics, vol. 20, no. 6, pp. 1025 - 35, Dec. 2004.

[19] S. Fleury, P. Soueres, J.-P. Laumond, and R. Chatila, "Primitives for smooth­
ing mobile robot trajectories," IEEE Transactions on Robotics and Automa­
tion, vol. 11, no. 3, pp. 441 - 448, 1995.

[20] D. Walton and D. Meek, "A controlled clothoid spline," Computers & Graph­
ics, vol. 29, no. 3, pp. 353 - 63, June 2005.

[21] A. Kelly and B. Nagy, "Reactive nonholonomic trajectory generation via para­
metric optimal control," International Journal of Robotics Research, vol. 22,
no. 7-8, pp. 583 - 601, July 2003.

[22] Y. Kanayama and B. Hartman, "Smooth local path planning for autonomous
vehicles," Proceedings. 1989 IEEE International Conference on Robotics and
Automation, pp. 1265 - 70, 1989.

[23] J. Reuter, "Mobile robots trajectories with continuously differentiable curva­
ture: an optimal control approach," Proceedings. 1998 IEEE/RSJ Interna­
tional Conference on Intelligent Robots and Systems. Innovations in Theory,
Practice and Applications, vol. 1, pp. 38 - 43, 1998.

167

[11] N. Sgouros and S. Gerogiannakis, "Robot teleoperation environments featuring
wap-based wireless devices," J. Netw. Comput. Appl. (UK), vol. 26, no. 3, pp.
259 - 271, Aug. 2003.

[12] J. H. Park and H. C. Cho, "Sliding-mode controller for bilateral teleopera­
tion with varying time delay," in IEEE/ ASME International Conference on
Advanced Intelligent Mechatronics, Atlanta, GA, USA, 1999, pp. 311 - 316.

[13] H. C. Cho and J. H. Park, "Stable bilateral teleoperation under a time delay
using a robust impedance control," Mechatronics, vol. 15, no. 5, pp. 611 - 625,
2005.

[14] F. Goktas, J. Smith, and R. Bajcsy, "Telerobotics over communication net­
works," in 36th IEEE Conference on Decision and Control, vol. 3, San Diego,
CA, USA, 1997, pp. 2399 - 2404.

[15] S. Yadlapalli, S. Darbha, and K. Rajagopal, "Information flow and its relation
to stability of the motion of vehicles in a rigid formation," IEEE Trans. Autom.
Control (USA), vol. 51, no. 8, pp. 1315 - 1319, Aug. 2006.

[16] J.-P. Laumond, P. Jacobs, M. Taix, and R. Murray, "A motion planner for non­
holonomic mobile robots," IEEE Transactions on Robotics and Automation,
vol. 10, no. 5, pp. 577 - 93, Oct. 1994.

[17] B. Barsky and T. DeRose, "Geometric continuity of parametric curves: three
equivalent characterizations," IEEE Computer Graphics and Applications,
vol. 9, no. 6, pp. 60 - 9, Nov. 1989.

[18] T. Fraichard and A. Scheuer, "From reeds and shepp's to continuous-curvature
paths," IEEE Transactions on Robotics, vol. 20, no. 6, pp. 1025 - 35, Dec. 2004.

[19] S. Fleury, P. Soueres, J.-P. Laumond, and R. Chatila, "Primitives for smooth­
ing mobile robot trajectories," IEEE Transactions on Robotics and Automa­
tion, vol. 11, no. 3, pp. 441 - 448, 1995.

[20] D. Walton and D. Meek, "A controlled clothoid spline," Computers €3 Graph­
ics, vol. 29, no. 3, pp. 353 - 63, June 2005.

[21] A. Kelly and B. Nagy, "Reactive nonholonomic trajectory generation via para­
metric optimal control," International Journal of Robotics Research, vol. 22,
no. 7-8, pp. 583 - 601, July 2003.

[22J Y. Kanayama and B. Hartman, "Smooth local path planning for autonomous
vehicles," Proceedings. 1989 IEEE International Conference on Robotics and
Automation, pp. 1265 - 70, 1989.

[23] J. Reuter, "Mobile robots trajectories with continuously differentiable curva­
ture: an optimal control approach," Proceedings. 1998 IEEE/RSJ Interna­
tional Conference on Intelligent Robots and Systems. Innovations in Theory,
Practice and Applications, vol. 1, pp. 38 - 43, 1998.

168

[24] R. Fierro and F. Lewis, "Control of a nonholonomic mobile robot: back-
stepping kinematics into dynamics," Proceedings of the IEEE Conference on
Decision and Control, vol. 4, pp. 3805 - 3810, 1995.

[25] I. Kolmanovsky and N. McClamroch, "Developments in nonholonomic control
problems," IEEE Control Syst. Mag., vol. 15, no. 6, pp. 20 - 36, Dec. 1995.

[26] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino, "Closed loop steering of
unicycle like vehicles via lyapunov techniques," IEEE Robot. Automat. Mag.,
vol. 2, no. 1, pp. 27 - 35, 1995.

[27] G. Indiveri, "Kinematic time-invariant control of a 2d nonholonomic vehicle,"
in 1999 Conference on Decision and Control, vol. 3, 1999, pp. 2112 - 2117.

[28] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, "A stable tracking
control method for an autonomous mobile robot," in IEEE International
Conference on Robotics and Automation, 1990, pp. 384 - 389.

[29] R. Fierro and F. L. Lewis, "Control of a nonholonomic mobile robot using
neural networks," IEEE Trans. Neural Networks, vol. 9, no. 4, pp. 589 - 600,
1998.

[30] Y. Kim and M. A. Minor, "Path manifold based kinematic control of wheeled
mobile robots considering physical constraints," Int. Journal of Robotics Re­
search, 2007, under revision.

[31] X. Zhu, M. A. Minor, and S. Park, "Distributed robust control of compliant
framed wheeled modular mobile robots," ASME Journal of Dynamic Systems,
Measurement, and Control, vol. 128, no. 3, pp. 489 - 498, 2006.

[32] X. Zhu, Y. Kim, and M. A. Minor, "Cooperative distributed robust control
of modular mobile robots with bounded curvature and velocity," in 2005
IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
Monterey, California, 2005.

[33] V. Utkin, S. Drakunov, H. Hashimoto, and F. Harashima, "Robot path ob­
stacle avoidance control via sliding mode approach," in IROS '91. IEEE/RSJ
International Workshop on Intelligent Robots and Systems '91. Intelligence for
Mechanical Systems, 1991, pp. 1287 - 90.

[34] Y. Ma, J. Kosecka, and S. S. Sastry, "Vision guided navigation for a nonholo­
nomic mobile robot," IEEE Trans. Robot. Automat., vol. 15, no. 3, pp. 521 -
536, 1999.

[35] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots."
International Journal of Robotics Research, vol. 5, no. 1, pp. 90 - 98, 1986.

[36] Y. Koren and J. Borenstein, "Potential field methods and their inherent limi­
tations for mobile robot navigation," in 1991 IEEE International Conference
on Robotics and Automation, 1991, pp. 1398 - 404.

168

[24] R. Fierro and F. Lewis, "Control of a nonholonomic mobile robot: back­
stepping kinematics into dynamics," Proceedings of the IEEE Conference on
Decision and Control, vol. 4, pp. 3805 - 3810, 1995.

[25] I. Kolmanovsky and N. McClamroch, "Developments in nonholonomic control
problems," IEEE Control Syst. Mag., vol. 15, no. 6, pp. 20 - 36, Dec. 1995.

[26] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino, "Closed loop steering of
unicycle like vehicles via lyapunov techniques," IEEE Robot. A utomat. Mag.,
vol. 2, no. 1, pp. 27 - 35, 1995.

[27] G. Indiveri, "Kinematic time-invariant control of a 2d nonholonomic vehicle,"
in 1999 Conference on Decision and Control, vol. 3, 1999, pp. 2112 - 2117.

[28] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, "A stable tracking
control method for an autonomous mobile robot," in IEEE International
Conference on Robotics and Automation, 1990, pp. 384 - 389.

[29] R. Fierro and F. L. Lewis, "Control of a nonholonomic mobile robot using
neural networks," IEEE Trans. Neural Networks, vol. 9, no. 4, pp. 589 - 600,
1998.

[30] Y. Kim and M. A. Minor, "Path manifold based kinematic control of wheeled
mobile robots considering physical constraints," Int. Journal of Robotics Re­
search, 2007, under revision.

[31] X. Zhu, M. A. Minor, and S. Park, "Distributed robust control of compliant
framed wheeled modular mobile robots," ASME Journal of Dynamic Systems,
Measurement, and Control, vol. 128, no. 3, pp. 489 - 498, 2006.

[32] X. Zhu, Y. Kim, and M. A. Minor, "Cooperative distributed robust control
of modular mobile robots with bounded curvature and velocity," in 2005
IEEE/ ASME International Conference on Advanced Intelligent Mechatronics,
Monterey, California, 2005.

[33] V. Utkin, S. Drakunov, H. Hashimoto, and F. Harashima, "Robot path ob­
stacle avoidance control via sliding mode approach," in IROS '91. IEEE/RSJ
International Workshop on Intelligent Robots and Systems '91. Intelligence for
Mechanical Systems, 1991, pp. 1287 - 90.

[34] Y. Ma, J. Kosecka, and S. S. Sastry, "Vision guided navigation for a nonholo­
nomic mobile robot," IEEE Trans. Robot. Automat., vol. 15, no. 3, pp. 521 -
536, 1999.

[35] O. Khatib, "Real-time obstacle avoidance for manipulators and mobile robots."
International Journal of Robotics Research, vol. 5, no. 1, pp. 90 - 98, 1986.

[36] Y. Koren and J. Borenstein, "Potential field methods and their inherent limi­
tations for mobile robot navigation," in 1991 IEEE International Conference
on Robotics and Automation, 1991, pp. 1398 - 404.

169

[37] K. A. Mclsaac, J. Ren, and X. Huang, "Modifed newton's method applied to
potential field navigation," Proceedings of the IEEE Conference on Decision
and Control, vol. 6, pp. 5873 - 5878, 2003.

[38] J. Ren, K. Mclsaac, and R. Patel, "Modified newton's method applied to
potential field-based navigation for mobile robots," IEEE Transactions on
Robotics, vol. 22, no. 2, pp. 384 - 91, Apr. 2006.

[39] C. I. Connolly, J. B. Burns, and R. Weiss, "Path planning using laplace's
equation," in Robotics and Automation, Cincinnati, OH, USA, 1990, pp. 2102
- 2106.

[40] J. Barraquand, B. Langlois, and J.-C. Latombe, "Numerical potential field
techniques for robot path planning," IEEE Transactions on Systems, Man
and Cybernetics, vol. 22, no. 2, pp. 224 - 41, 1992.

[41] J. Guldner and V. Utkin, "Sliding mode control for an obstacle avoidance
strategy based on an harmonic potential field," in 32nd IEEE Conference on
Decision and Control, vol. vol.1, 1993, pp. 424 - 9.

[42] D. C. Conner, A. A. Rizzi, and H. Choset, "Composition of local potential
functions for global robot control and navigation," in IEEE International
Conference on Intelligent Robots and Systems, vol. 4, 2003, pp. 3546 - 3551.

[43] K. Pathak and S. Agrawal, "An integrated path-planning and control approach
for nonholonomic unicycles using switched local potentials," IEEE Transac­
tions on Robotics, vol. 21, no. 6, pp. 1201 - 8, Dec. 2005.

[44] C. DeBoor, A Practical Guide to Splines, 1st ed. Springer, Aug. 1994.

[45] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.

[46] D. C. Schultz, R. Koetter, B. J. Frey, and D. C. Munson Jr., "Balanc­
ing rewrapping error and smoothness in two dimensional phase unwrap­
ping problems," in International Geoscience and Remote Sensing Symposium
(IGARSS), vol. 4, Toronto, Ont., Canada, 2002, pp. 2507 - 2509.

[47] Y. Kim, "Control system prototyping: From dsp to microcontroller (case
study: Throwing robot arm)," Master's thesis, University of Utah, May 2003.

169

[37] K. A. McIsaac, J. Ren, and X. Huang, "Modifed newton's method applied to
potential field navigation," Proceedings of the IEEE Conference on Decision
and Control, vol. 6, pp. 5873 - 5878, 2003.

[38] J. Ren, K. McIsaac, and R. Patel, "Modified newton's method applied to
potential field-based navigation for mobile robots," IEEE Transactions on
Robotics, vol. 22, no. 2, pp. 384 - 91, Apr. 2006.

[39] C. 1. Connolly, J. B. Burns, and R. Weiss, "Path planning using laplace's
equation," in Robotics and Automation, Cincinnati, OH, USA, 1990, pp. 2102
- 2106.

[40] J. Barraquand, B. Langlois, and J.-C. Latombe, "Numerical potential field
techniques for robot path planning," IEEE Transactions on Systems, Man
and Cybernetics, vol. 22, no. 2, pp. 224 - 41, 1992.

[41] J. Guldner and V. Utkin, "Sliding mode control for an obstacle avoidance
strategy based on an harmonic potential field," in 32nd IEEE Conference on
Decision and Control, vol. vol.1, 1993, pp. 424 - 9.

[42] D. C. Conner, A. A. Rizzi, and H. Choset, "Composition of local potential
functions for global robot control and navigation," in IEEE International
Conference on Intelligent Robots and Systems, vol. 4, 2003, pp. 3546 - 3551.

[43] K. Pathak and S. Agrawal, "An integrated path-planning and control approach
for nonholonomic unicycles using switched local potentials," IEEE Transac­
tions on Robotics, vol. 21, no. 6, pp. 1201 - 8, Dec. 2005.

[44] C. DeBoor, A Practical Guide to Splines, 1st ed. Springer, Aug. 1994.

[45] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.

[46] D. C. Schultz, R. Koetter, B. J. Frey, and D. C. Munson Jr., "Balanc­
ing rewrapping error and smoothness in two dimensional phase unwrap­
ping problems," in International Geoscience and Remote Sensing Symposium
(IGARSS), vol. 4, Toronto, Ont., Canada, 2002, pp. 2507 - 2509.

[47] Y. Kim, "Control system prototyping: From dsp to micro controller (case
study: Throwing robot arm)," Master's thesis, University of Utah, May 2003.

