
WPCA: THE WREATH PRODUCT COGNITIVE

ARCHITECTURE

by

Anshul Joshi

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

December 2016

Copyright c© Anshul Joshi 2016

All Rights Reserved

The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Anshul Joshi

has been approved by the following supervisory committee members:

Thomas C. Henderson , Chair(s) 03 Aug 2016
Date Approved

Charles D. Hansen , Member 03 Aug 2016
Date Approved

Elaine Cohen , Member 03 Aug 2016
Date Approved

Preston Thomas Fletcher , Member 03 Aug 2016
Date Approved

Tamim Asfour , Member 15 Aug 2016
Date Approved

by Ross T. Whitaker , Chair/Dean of

the Department/College/School of School of Computing

and by David B. Kieda , Dean of The Graduate School.

ABSTRACT

We propose to examine a representation which features combined action and percep-

tion signals, i.e., instead of having a purely geometric representation of the perceptual data,

we include the motor actions, e.g., aiming a camera at an object, which are also actions

that generate the particular shape. This generative perception-action representation uses

Leyton’s cognitive representation based on wreath products. The wreath product is a

special kind of group which captures information through symmetries on the sensorimotor

data. The key insight is the bundling of actuation and perception data together in order

to capture the cognitive structure of interactions with the world. This involves developing

algorithms and methods: (1) to perform symmetry detection and parsing, (2) to represent

and characterize uncertainties in the data and representations, and (3) to provide an overall

cognitive architecture for a robot agent. We demonstrate these functions in 2D text clas-

sification, as well as on 3D data, on a real robot operating according to a well-defined

experimental protocol for benchmarking indoor navigation, along with capabilities for

multirobot communication and knowledge sharing. A cognitive architecture called the

Wreath Product Cognitive Architecture is developed to support this approach.

CONTENTS

ABSTRACT . iii

LIST OF FIGURES . vii

LIST OF TABLES . xi

ACKNOWLEDGEMENTS . xii

CHAPTERS

1. INTRODUCTION AND BACKGROUND . 1

2. WREATH PRODUCT REPRESENTATIONS, RECOVERY FROM DATA AND
UNCERTAINTY CHARACTERIZATION . 8

2.1 Wreath Product Representation . 8
2.1.1 Restrictions to the Representation . 11

2.2 Wreath Product Discovery . 12
2.3 Uncertainty Characterization in Wreath Product Trees 13

3. WPCA: THE WREATH PRODUCT COGNITIVE ARCHITECTURE 23

3.1 WPCA Overview . 23
3.2 Beliefs . 25

3.2.1 Floor Plane . 25
3.2.2 Gravity Vector . 26
3.2.3 World Frame . 26
3.2.4 Find Wreath Products . 26
3.2.5 Combine Wreath Products . 27
3.2.6 Terminate Execution . 27

3.3 Innate Beliefs . 27
3.4 Perception . 27
3.5 Plans . 30
3.6 Detailed BDI Component of WPCA . 30

3.6.1 Environment Interaction Module . 31
3.6.2 Robot Brain (WP BOT) . 32
3.6.3 Data To WPs: Wreath Product Construction Cycle 32
3.6.4 Belief Revision . 34
3.6.5 Belief Store . 35
3.6.6 Analyzer . 37
3.6.7 Plan Library . 38
3.6.8 Action Execution . 42

3.6.8.1 Motion . 42
3.6.8.2 Perception . 44

3.7 Goals (Prioritized) . 44
3.7.1 World Frame Discovery: Corner Detection . 44

4. WREATH PRODUCT BASED 2D SHAPE ANAYLSIS IN ENDAS 55

4.1 Structural Model . 58
4.1.1 Terminal Structure Set . 58
4.1.2 Nonterminal Structure Set . 58

4.2 Wreath Product Primitives . 59
4.3 Wreath Product Constraint Sets . 60

4.3.1 < Hypotheses . 61
4.3.2 O(2) Hypotheses . 62

4.4 Character Templates and Segment Classification . 62
4.5 Actuation Signals as Representation . 62

4.5.1 Virtual Camera . 63
4.5.2 Virtual Hand . 63

4.6 Classification Based on Translation Symmetry . 64
4.7 Classification Based on Pan-Tilt Actuation Signals . 65
4.8 Classification Based on RR Robot Actuation Signals . 65
4.9 Experiments . 66

5. WREATH PRODUCT 3D DATA ANALYSIS: LOCALIZATION AND MAPPING,
ROBOT KNOWLEDGE SHARING AND BENCHMARK RESULTS 77

5.1 Navigation Benchmarking . 77
5.1.1 Robot . 79
5.1.2 Environment . 79
5.1.3 Ground Truth . 79

5.2 Benchmark Results . 80
5.3 Floor Mapping . 81

5.3.1 Start State . 81
5.3.2 State 1 . 81

5.3.2.1 Clean floor plane . 81
5.3.2.2 Get floor points . 82
5.3.2.3 Get boundary points . 82
5.3.2.4 Identify next point . 83
5.3.2.5 Get action set . 84
5.3.2.6 Set start point to the next point . 87

5.3.3 State 3 . 87
5.3.4 State 4 . 87
5.3.5 State 5 . 87
5.3.6 State 6 . 87
5.3.7 State 7 . 87
5.3.8 State 8 . 87
5.3.9 State 9 . 87

5.4 Mapping the Environment . 88
5.4.1 Motion Localization . 88
5.4.2 Wreath Product (WP Landmark) Localization . 89

5.5 Multirobot Knowledge Sharing . 91

v

5.5.1 Scenario 1: Exchange of Knowledge by World
Frame Correspondence. 91

5.5.2 Scenario 2: Exchange of Knowledge by Environment
Shape and WP Matching. 94

6. CONCLUSIONS AND FUTURE WORK . 112

6.1 Future Work . 113
6.1.1 Innate Knowledge . 113
6.1.2 Learning . 114

6.1.2.1 Reinforcement learning . 114
6.1.2.2 Own structure . 114
6.1.2.3 Deep learning . 114

6.1.3 Abstraction . 115
6.1.3.1 Generalization . 115
6.1.3.2 CAD architecture mapping . 115
6.1.3.3 Summarization . 115
6.1.3.4 Natural objects . 115

6.1.4 Further 3D Applications and Experiments . 116
6.1.4.1 Multiple depth sensors . 116
6.1.4.2 As-built vs. as-designed . 116
6.1.4.3 Outdoor mapping and localization . 116

APPENDIX: BELIEF STORE DATA . 117

REFERENCES . 120

vi

LIST OF FIGURES

2.1 Point e. 16

2.2 Translation of point with group <. 16

2.3 Square generation process. 17

2.4 Control flow in a wreath product gives an explicit definition in terms of
actuation of how to generate the shape; rot(0) (rotate by 0 degrees), the group
identity, acts on the first copy, <1 to obtain the top of the square; rot(90) acts
on <1 by rotating it 90 degrees about the center of the square to obtain the
right side, <2; rot(180) acts on <1 by rotating it 180 degrees to obtain <3, and
finally, rot(270) acts on <1 rotating it 270 degrees to obtain <4. The rotations,
R1, R2, R3, and R4, denote the group action (of Z4) on the sides of the square. . 17

2.5 Wreath product discovery in a scene. 18

2.6 PDA for wreath product language. 18

2.7 Mechanisms for the detection of symmetries in the square. 19

2.8 Illustration of different views of a cube and corresponding depth images. (a)
RGB view of one face of cube (b) Depth map of one face (c) RGB view of three
visible faces of cube (d) Depth map of three face view. 19

2.9 Cube and corresponding (3D) wreath product representation. (a) Geometry
of Z3 representation of cube (b) The wreath product tree for <2 o Z2 o Z3. 19

2.10 The wreath product tree for a square shape, displayed as a Bayesian network. 20

2.11 Kinect depth data noise characteristics. (a) Reference normal (in red) derived
from plane-fitting (b) Histogram of angles between normals of a neighbor-
hood and the reference normal. 20

2.12 A Bayesian wreath product tree for cube. 21

2.13 Bayesian wreath product tree for cube with observation probabilities. 21

2.14 Kinect depth data for cube (left) and recovered <2 symmetries (right). 22

2.15 Cube (3D) symmetry detection on real data. (a) Similarity of 3 surface nor-
mals under rotation about their Mean Vector (b) Trajectories of normal end-
points under rotation. 22

3.1 BDI architecture. 47

3.2 Illustration of the transform between Kinect frame (C) and robot frame (R).
ZC-axis and YR-axis lie in the same (vertical) plane, ZC axis is rotated clock-
wise about the XC axis by 27.86◦, and XC and XR axes point in the same
direction. Camera frame origin C is translated by 0.82 m above, and 0.2032 m
in front of the robot origin R. 48

3.3 Polar image optical flow method to detect pure translation. 48

3.4 Log polar transforms of consecutive images upon Translation, shown by (a)
and (b), and (c) is the histogram of direction of optical flow motion vectors. . . . 49

3.5 WP discovery from data: (left) shows the different planes segmented using
RANSAC and (right) shows the detailed WPs discovered. 49

3.6 FSM for the plan “Find World Frame.” . 50

3.7 Determining rotation motion bias for the robot. 50

3.8 Depth image of the cluttered scene. 51

3.9 One view of the 3 planes detected in a cluttered scene, shown in different
colors based on point labels. 52

3.10 X-Y (top) view of the 3 planes detected in a cluttered scene, shown in different
colors based on point labels. 52

3.11 One view of the uncluttered scene with orthogonal planes marked in differ-
ent colors, segmented by RANSAC. 53

3.12 Depth image of uncluttered corner. 53

3.13 Rotated view of the planes, with the corner marked as a thick black point. 54

4.1 Overall symmetry analysis flow. 68

4.2 Two CAD drawings: (left) text image that is included with CAD to explain
how to paint the structure, and (right) a hand-drawn design of a nuclear
storage facility. 68

4.3 The ENDAS system. 69

4.4 Example WPP minimal cover sets. 69

4.5 Wreath Product Constraint Set for letter “A.” . 70

4.6 Wreath Product Constraint Set for letter “H.” . 70

4.7 Skeleton of lower case letter “a” overlaid on original image. 70

4.8 < hypotheses for letter “A.” . 71

4.9 Skeleton overlaid on original image for letter “C.” . 71

4.10 O(2) hypotheses for letter “C.” . 71

4.11 Image of lower case letter “a.” . 72

4.12 O(2) hypotheses for letter “a.” . 72

4.13 The pan and tilt signals for lower case “a.” . 72

4.14 A simple 2-revolute joint (RR) robot hand. 73

4.15 Lower case letter “a” representation by (θ1, θ2). 73

4.16 Image used in experiments. 73

4.17 Translation symmetry directions for lower case letter “a.” 74

viii

4.18 Comparison of combined symmetry translation direction histograms from
four subwindows in two different “a” segments. 74

4.19 Precision and recall plot for symmetry translation classification. 74

4.20 Precision and recall plot for pan-tilt actuation data classification. 75

4.21 Precision and recall plot for RR robot actuation data classification. 75

4.22 Pan tilt control angles for the characters in Figure 4.4. 76

4.23 Test image. 76

5.1 Symmbot. 98

5.2 Example of (top) a hallway, and (bottom) an office in the Warnock Engineer-
ing Building. 98

5.3 Finite state machine of the floor mapping plan. 99

5.4 Planes can be identified with any points that solve the plane equation. 99

5.5 Floor segmentation view 1. 100

5.6 Floor segmentation view 2. 100

5.7 Depiction of the wall following algorithm in top view. 101

5.8 Action set generation. 101

5.9 A zoomed in image of the action set generation process on real data. Floor
points are blue dots. The X and Y axes are showing as red and green arrows
respectively. Current robot location and robot heading are shown as red dot
and red arrow. Points p and p1 correspond to those shown in Figure 5.8,
whereas Next Location corresponds to point p2 in Figure 5.8. 102

5.10 Floor boundary generated using the wall following technique. 103

5.11 Comparison between original world frame and candidate world frame in a
different sequence of actions. 2D correlation score = 0.8506. 104

5.12 Comparison between original world frame and candidate world frame. 2D
correlation score = 0.9043. 104

5.13 Candidate world frame 2. 2D correlation score = 0.3627. 104

5.14 Candidate world frame 3. 2D correlation score = 0.4599. 105

5.15 Candidate world frame 4. 2D correlation score = 0.4007. 105

5.16 Points on the floor shown in the X-Y view. 106

5.17 Points on the floor shown in the X-Y view with lines added for demarca-
tion. The red dashed lines shows the rectangular bounding rectangles of
the floor that matches the data closely. The green dotted lines indicate the
occluding pillars and other structures obstructing view of the south-side wall.
The green dot indicates the world frame origin and the red and blue arrows
indicate X and Y axes, respectively. 107

ix

5.18 All the WP planes shown in different colors in a bird’s-eye view (note that
different colors does not necessarily mean different planes and same color
does not necessarily mean same plane. The limited options of colors in the
plotting function means colors have to be shared by various planes). 108

5.19 Points on the floor shown in the X-Y view with lines added for demarcation.
The red dashed lines shows the rectangular bounding rectangles of the floor
that matches the data closely. The green dotted lines indicate the occluding
pillars and other structures obstructing view of the south-side wall. The
green dot indicates the world frame origin and the red and blue arrows indi-
cate X and Y axes respectively. Note that robot B starts at a different world
origin on the right (east) side of the floor. 108

5.20 Range scan of map for robot A. 109

5.21 Range scan of map for robot B. 109

5.22 Range scan distances of map for robot A. 110

5.23 Range scan distances of map for robot B. 110

5.24 Range scan distances of map for robot B, shifted by 270◦. 110

5.25 WP planes from two different environment overlayed. 111

x

LIST OF TABLES

2.1 Shapes and corresponding wreath product strings. 15

2.2 Attribute grammar semantic functions for Gwp. 15

3.1 Rotation error compensation. 47

5.1 Location error (in meters) comparison between systems using RANSAC. 97

5.2 Angular (orientation) error (in degrees) comparison between systems using
RANSAC. 97

5.3 Location error (in meters) comparison between systems with planar segmen-
tation using pixel-based approach. 97

5.4 Angular (orientation) error (in degrees) comparison between systems with
planar segmentation using pixel-based approach. 97

ACKNOWLEDGEMENTS

I would like to sincerely thank my advisor Prof. Thomas C. Henderson, whose unwa-

vering patience and support throughout my program has been the greatest motivation for

me and helped me finish this dissertation. Our technical discussions and learning from

the ground up approach has helped me learn a lot more about my field, and also helped

me with generating new ideas. We have explored the unexplored and his experience,

knowledge, and insights have driven this work forward, and always will.

I would also like to express gratitude towards my committee members: Prof. Tamim

Asfour, Prof. Elaine Cohen, Prof. Thomas P. Fletcher, and Prof. Charles (Chuck) Hansen,

for their support, guidance, and their feedback which has helped shape this work into

something better.

I owe a debt of gratitude to all my colleagues in the Omega-Infinity group, Wenyi

Wang, Narong Boonsirisumpun, Dr. Linda DuHadway, and Nishith Tirpankar, who, dur-

ing this work, have helped me solve many problems when they seemed unsolvable.

Last but not the least, we would like to acknowledge the support, in part, by the Air

Force Office of Scientific Research (AFOSR) grant FA9550-12-1-0291 (2012-2015), and the

Graduate Research Fellowship Award, Graduate School, University of Utah (2015-2016)

which has funded this, and other work.

CHAPTER 1

INTRODUCTION AND BACKGROUND

We have proposed innate theories of symmetry as the cognitive basis for embodied

robot agents [1–3] and more recently, a specific cognitive architecture based on Bayesian

Symmetry Networks [4, 5]. This representation builds on the framework layed out by Leyton

[6, 7] wherein he proposes that the wreath product captures the notion of a specific concept

which is a representation of what something is or how it works; this may capture either a

specific instance of an existing thing or an abstract description of a class of related objects.

For Leyton, the wreath product provides the basis for concept representation, where a

wreath product is a group formed by a splitting extension of the direct product of the fiber

group which is acted on by a control group (usually a cyclic group – see details below) and

is derived from related perception and actuation. The distinctive feature of this represen-

tation is that it is based on how the set of features comprising the object to be represented

is generated – it is a generative theory of shape. Thus, the actuation control sequences

are part of the description of an object and determine the control group hierarchy. This is

important because objects are expressed in terms of the specific embodiment of the robot

agent perceiving them.

In recent years robotics researchers have understood the importance of developing

cognitive abilities of robots, rather than explicitly programming the robots with the knowl-

edge and algorithms to process that knowledge for achieving results. This is evident

from the amount of research that has been devoted to developing the most generalized

and robust cognitive framework and internal representation that works for every possible

context the robot operates in (see [8–12]). In the process of building cognitive systems,

researchers have defined and used various paradigms of cognition to build intelligent

agents, with each paradigm having its own advantages and disadvantages (see Vernon

et al. [12] for an excellent overview of cognitive architectures). At a high level, cognitive

2

systems can be classified into cognitivist and emergent systems paradigms. Cognitivist

approaches rely on explicit symbolic knowledge built into the system by the designer,

which may then learn and add to that knowledge and exhibit behaviors which are oper-

ations on this knowledge. Embodiment is not a requirement in cognitivist approaches.

Emergent systems, on the other hand, are embodied and rely on self-organization where

the intelligent agent constructs its world as a result of operations in that world. Most

of today’s practically used robots are built on cognitivist approaches, and although theo-

retically more powerful than cognitivist approaches, emergent systems have limited and

incomplete practical implementations compared to cognitivist systems which have better

capabilities at present. Vernon, however, claims that “cognitivist systems are brittle,” the

main reason being that their cognitive abilities are fixed and determined by human beings

who design the system, and the knowledge and processes at the outset are not their own,

but the system designer’s. This proves to be a problem when essential capabilities such as

generalization, creativity, anticipation, and learning are desired in or required of the agent.

An argument for actuation being an inseparable part of perception is made by Noë [13],

who proposes that perception is not something that happens to us, but it is something

we do. The effects of movement on sensory stimulation are necessary to understand

perception. Noë suggests that perception is not just a process in the brain that constructs

an internal representation of the world - which we also propose as part of this framework -

but a “skillful activity on the part of the animal as a whole.” In support he gives examples

of “experiential blindness” where the mere presence of visual stimulus does not result in

“seeing” things; seeing requires understanding the movement and thought relevant to a

particular visual stimulus. Noë also provides case studies (e.g., experiential blindess) and

test subject testimonies where it is evident that sensorimotor skills are necessary for form-

ing valid perceptual patterns in response to environmental changes. Noë [13] provides a

philosophical and psychological argument for the primary role of actuation in perception.

He states (p. 102):

The sensorimotor dependencies that govern the seeing of a cube certainly differ
from those that govern the touching of one, that is, the ways cube appear-
ances change as a function of movement is decidedly different for these two
modalities. At an appropriate level of abstraction, however, these sensorimotor
dependencies are isomorphic to each other, and it is this fact – rather than
any fact about the quality of sensations, or their correlation – that explains

3

how sight and touch can share a common spatial content. When you learn
to represent spatial properties in touch, you come to learn the transmodal sen-
sorimotor profiles of those spatial properties. Perceptual experience acquires
spatial content thanks to the establishment of links between movement and
sensory stimulation. At an appropriate level of abstraction, these are the same
across the modalities. We can illustrate this by means of a simple example. If
something looks square, then one would need to move one’s head in character-
istic ways to look at the corners. One would have to move one’s hands the same
way at the appropriate level of abstraction to feel each corner.

Note that Noë’s discussion may involve more of the human actuation system (e.g.,

neck, torso, etc.) than we exploit in the character recognition problem.

Asada [8] stresses the idea of “physical embodiment” of an agent which specifies the

constraints of interaction between an agent and its environment that are responsible for

generating the rich contents of its processes and consequences. In the various stages

of human development (embryo, fetus, and so on), interactions with the physical envi-

ronment determines information structuring (sensorimotor representation, etc.). Further-

more, Asada asserts that self-exploration plays an important role in cognitive develop-

ments in infancy, in which a systematic exploration of perceptual consequences resulting

from self-produced actions provides a “sense of the bodily self.”

Bajcsy [14] defines active perception as a study of modeling and control strategies for

perception. In her argument she states that perception is not passive but active. Perception

is the result of active exploration, probing and searching; percepts do not simply fall onto

sensors. The pupils adjusting to the illumination, lens adjusting focus depending on dis-

tance, eyes converging or diverging, moving the head to get a better view, are all examples

of active perception. An example of active sensing using a passive sensor by actively

changing its state parameters is depth from focus (or defocus) where the focal length is

adjusted, and relative depths of pixels are approximated based on how pixels go in and

out of focus. However, Bajcsy differs from Aloimonos [15], regarding active perception

as a scientific paradigm, in that she emphasizes it more as a study of modeling and control

strategies. For example, active perception is crucial to the modeling of sensors, objects,

environment, and the interaction between them for various processes like manipulation,

mobility, and recognition.

Mishra, Aloimonos et al. [15, 16] have used the active vision paradigm in robotics for

image segmentation, where they use object fixation by an active observer (e.g., a moving

4

robot who fixates on one point on an object) for segmenting that particular object from

the scene. In their work, they discover depth boundaries of objects by using various

monocular cues (e.g., color, texture) and binocular cues (stereo disparities and optical flow)

and fixating on a point. This fixation point lies inside a particular region of interest which

might be the object, and segmentation of this object is the problem they solve. The problem

of segmentation is modeled as finding the enclosing (closed) contour around the fixation

point. This is achieved by first converting the image from Cartesian to log-polar space (the

fixation point is the pole) where the probability of a pixel being near the depth edge defines

its brightness, and the log-polar image is used to normalize different contours within the

same object around the fixation point. This boundary edge map is then improved, first

using a graph cut-based approach, and then using binocular cues: a disparity stereo map

and optical flow field at multiple times steps.

Another example of active vision in robotics is given by Allen et al. [17] where real-time

servoing of a robot arm is performed. Input is provided using multiple calibrated, unreg-

istered cameras, which robustly calculate the 3D position of a moving object using optical

flow, and this position is used by a kinematic control algorithm to move the robotic arm,

thus tracking the moving object. Tarabanis et al., in [18], give a survey of sensor planning

(“active perception” by Bajcsy’s definition) in computer vision. Tarabanis defines sensor

planning as developing strategies for automatically determining sensor parameter values

that achieve a certain vision task (e.g., object recognition, object manipulation, etc.), given

information about the environment, to a certain degree of satisfaction. He argues that

sensing strategies are especially needed for dynamic situations (where the environment,

the robot, or the sensor settings might change over time), as well as for sensor systems that

perform object segmentation, since a single sensor configuration might not be sufficiently

informative.

An approach similar in spirit to ours is the Object-Action Complex (OAC) methodology

described in [19] which is the basis for symbolic representations of sensory-motor experi-

ence and behaviors. The description of physical interactions of the robot with the environ-

ment are encoded as a linkage between perceptual aspects and actuation actions. OAC’s

provide a framework for representing interactions, both low-level reactive behavior and

high-level deliberative planning. Following a certain set of design ideas, OAC’s attempt to

5

represent models of interactions with the world, e.g., those that might be mediated through

a low level control program, thus providing a framework for formalizing actions and their

effects in artificial cognitive systems.

Leyton [7] proposes a cognitive framework that incorporates symmetry-based pro-

cesses that, by acting in the environment, are able to generate concepts from the relation

between actuation and perception. For us, these concepts form the knowledge base of the

robot, and it builds affordances (goal-directed interactions with the environment) in terms

of this knowledge. Leyton proposes that,“The human perceptual system is structured as

an n-fold wreath product G1 o G2 . . . o Gn,” where Gi is a specific type of group, and o is

the wreath product symbol. Our aim is to develop a capable and robust cognitive system

based on Leyton’s cognitive representation.

We propose to advance robot cognition by developing an operational wreath product

based cognitive architecture. In addition, the wreath product should not only provide

an abstraction mechanism for a robot to see similarity in structures, but will also allow

robot knowledge sharing: the wreath product provides the abstraction of a concept, and

annotations provide the mapping to specific actuator systems.

The thesis of this work is that:

Wreath product group representations enable concept formation in an embod-
ied agent, and together with Bayesian methods to characterize uncertainty,
provide the basis for a robust robot cognitive architecture.

In order to demonstrate this, we make the following contributions:

1. The development of a combined sensorimotor representation for 2D and 3D shapes

based on an implementation of the wreath product, and algorithms for their discov-

ery and manipulation in real world data.

2. The development of a Bayesian characterization of the uncertainty in the wreath

product representations extracted from sensorimotor data, including algorithms for

the propagation of uncertainty from sensors and actuators through to the shape

representations, as well as the exploitation of uncertainty for planning purposes.

3. The development of a wreath product based cognitive architecture in which plans

may be encoded as wreath products, affordances are captured by these, and broader

6

issues relating to robot intelligence can be explored, including the provision of a

universal language for 2D and 3D shape representation and robot motion planning.

4. The validation of the above theory in terms of 2D text classification and a 3D envi-

ronment mapping and navigation benchmark application.

This dissertation is divided into chapters as follows. Chapter 2 discussed the idea of

wreath product both in the context of Leyton’s cognitive concept as well as an entity within

the context of a mathematical group, followed by detailed examples of how this translates

into usable concepts that exploit actuation and perception as a bundle. Thereafter, we

present an approach using context-free grammar to represent wreath products for the

purpose of knowledge sharing, followed by high-level mechanisms to discover wreath

products from data. We conclude Chapter 2 by a detailed analysis of characterizing and

exploiting uncertainty associated with real data.

Chapter 3 delves into more details of the design of our cognitive architecture - Wreath

Product Cognitive Architecture (WPCA) - by a high-level discussion of its various working

blocks, and how each of them fits into our broader idea of creating a practical cognitive

architecture. Each block is described later in the chapter in significant detail, along with

a characterization of the kind of 3D depth data we deal with, and the methodologies

used to process them. Various algorithms implemented as parts of different blocks of

the framework are also presented and discussed in detail, along with the 3D geometric

analysis of the data. Plan library that contains detailed high-level plans for achieving

high-level goals are also described in detail.

Chapter 4 presents results obtained while applying our wreath product analysis meth-

ods on 2D data, specifically, the problem of character classification in engineering drawing.

A novel system called the Enhanced Non-Deterministic Analysis System (ENDAS) was

developed as a high-level agent-based system that is used to classify characters in engi-

neering drawing. Wreath Product Constraint Sets (WPCS) are developed for representing

various characters using wreath products. The concept of exploiting the actuation infor-

mation in a WP is also explored in this chapter. We show with experimental results that

we achieve high character classification accuracy using this approach.

Chapter 5 deals specifically with 3D depth data analysis on a robot operating in a

7

real indoor environment. We have demonstrated good localization performance using

WPCA and this performance is discussed along with the benchmarks compared against.

High-level plans and algorithms used to achieve this performance is described in detail.

Multirobot communication scenarios using WP representation are presented which ex-

tends WPCA to multiple robots operating in the same environment.

Chapter 6 concludes the dissertation with a brief discussion of goals achieved so far, as

well as of a strong potential for expanding the work in the future in multiple areas.

CHAPTER 2

WREATH PRODUCT REPRESENTATIONS, RECOVERY

FROM DATA AND UNCERTAINTY

CHARACTERIZATION

This chapter elaborates on the high-level concept of a wreath product and its applica-

tion to shape analysis and generative structure. The high-level mechanism for converting

a wreath product to a linear representation of strings using context-free grammar is also

discussed. Mechanisms for wreath product discovery and uncertainty characterization are

also explained.

2.1 Wreath Product Representation
Leyton’s main idea is that wreath products provide a generative representation of

shape by describing how the point set defining a shape is generated by taking a single

point and moving it to all other points in the shape. The movements are characterized by

group actions on sets, and thus, a major role is played by symmetry. We propose to provide

an operational implementation of this theory in which the group operators correspond to

actuation processes and the point sets to perception data (e.g., 2D or 3D point sets from

camera images or range finders).

Weyl [20] defines symmetry as (pp. 44–45):

Given a spatial configuration, F , those automorphisms of space which leave
F unchanged form a group, τ, and this group describes exactly the symmetry
possessed by F .

Much work has been done on finding symmetry in data (see [21]). The important

point for us is that shape is described not only in terms of the set of points (or their

automorphisms) comprising the shape, but also in terms of a sequence of actions which

generates the shape. For example, for 2D and 3D shapes, this includes translation, rotation

and reflection. Wreath products allow multiple distinct representations of the same shape

9

(set of points) generated in different ways. This fits well with our previous work on

representations for robot knowledge sharing (see [22]) in that wreath products provide

an abstract robot control scheme description which can be mapped to diverse actuation

systems (either within the same robot or across distinct robot platforms). Thus, the sym-

metries exploited here are not so much those invariants of a shape (i.e., automorphisms),

but those which describe possible actuator motions for the robot.

Here we give the wreath product’s high-level significance for shape generation. A

wreath product, G, is a group formed by the semidirect product of two subgroups, F (or

more precisely a direct product of copies of F) and C. C is the control group whose action

is to map copies of F, the fiber group, to each other.

If ∏n
1 F is a set of copies (at different spatial locations) of some set of points, and C

defines a permutation between these sets (|C| = n), then ∏n
1 F o C is the wreath product,

G, of F acted on by C; i.e., G = F o C. To obtain a wreath product group, G, the direct

product of n copies of F serves as the normal subgroup to G. Consider as an example

the wreath product representation of the outline of a square. For example, e o Z2 o < o Z4

indicates that:

1. e is a point (the meaning is a specific point in a given coordinate frame with the group

consisting of just the identity element acting on the point; see Figure 2.1).

2. < specifies a (continuous Lie group) translation of the point along a specific line in

space. In practice, it is represented by a finite set of translations for a specific set of

edge points (see Figure 2.2).

3. Z4 indicates the set of 90-degree rotations about the center of the square and which

act on the line segments to move them onto each other. Note that without additional

annotations in the implementation, the meaning assigned to this group is abstract;

annotations apply to a specific instance of the shape (see Figures 2.3(a)–2.3(c)).

4. Z2 acts as the characteristic function defined in such a way as to select points in the

shape, and reject points not in the shape (see Figure 2.3(d)).

Each new group to the right side of the wreath symbol defines a control action on

the group to the left, and thus provides a description of how to generate the shape. For

10

example, to draw a square, start at the specified point (details of the x,y values of the

point, etc., are left to annotations in the representation), translate some length along a

straight line, then rotate 90 degrees and draw the next side, and repeat this two more

times. Figure 2.4 depicts the process mentioned in the previous paragraph, of how control

flows from the rotation group, Z4, down to copies of the translation group, <.

Although this may work well in theory, major difficulties arise when attempting to

implement a working system that can use sensor and actuator data to describe arbitrary

objects in a scene. Figure 2.5 shows an example result of producing WP representations

for the various frequently occuring objects in an indoor setting (planes, lines, and points).

Discovery of cylinder and sphere is discussed elsewhere [4]. Results on the extraction of

wreath product representations in 2D and 3D are given below.

In order to understand a wreath product we briefly explain the concept of a semidirect

product in group theory, that underlies the concept of a wreath product. Consider a homo-

morphism φ given by φh(n) = hnh−1 for all n ∈ N and h ∈ H, where H and N are groups,

and H is a group that acts on N by conjugation. For each h ∈ H, conjugation by h is an

element of Aut(N) (automorphism group of N).

Given two groups N and H, and a group homomorphism φ from H into Aut(N), N oφ

H denotes the semidirect product of N and H with respect to φ and satisfies the following:

1. N oφ H contains elements from N × H

2. Group operation ? of N oφ H is defined as: (n1, h1) ? (n2, h2) = (n1φh1(n2), h1h2),

where n1, n2 ∈ N and h1, h2 ∈ H.

Now consider a group L where L consists of the direct product of k =| H | copies of

N, i.e., L = N1 × N2 × ...Nk. The wreath product, G = N oH, is formed by the semidirect

product of L and H. Thus G = N oH ≡ G = L o H.

The creation, manipulation and sharing of wreath products requires a clear and un-

ambiguous representation. To this end, we provide a context-free grammar, Gwp, and a

(nondeterministic) pushdown automaton, Pwp:

Gwp = (V, Σ, R, S)

where

V = {W, F, C, B, N, D}

11

Σ = {o,<,O,Z ,<2, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

S ≡W

R = {W → FC, F → Bo, B→ C, B→ FC, C → e,

C → <, C → O, C → ZN, N → ND,

C → <2, W → e,

N → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9,

D → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9}

Gwp produces strings of the form G1 oG2 o . . . oGn, where Gi is one of the groups {e,<,<2,Zn,O};

e is the identity group, < is the 1D translation group, <2 is the 2D translation group, Zn is

the cyclic group of order n, and O is the continuous 2D rotation group. Pwp, the PDA

corresponding to Gwp, is given in Figure 2.6. Examples of wreath products and their

corresponding point sets are given in Table 2.1. Gwp and Pwp provide the minimal basis

for sharing wreath product representations.

Unfortunately, this syntactic description does not completely capture the meaning of

the wreath product. For example, e as the identity group represents a specific point in some

coordinate frame, and this information must be added to the syntactic representation. This

is done using an attribute grammar (see [23] for details of attribute grammars). Each

rewrite rule has an associated set of functions describing what values are to be assigned

to the nonterminal symbols (it is assumed that the terminal symbols are assigned a value

during the scanning process). Table 2.2 gives the value functions associated with Gwp.

This representation is well-suited to efficient parsing, storage and sharing. However,

for other purposes, namely during data analysis and for uncertainty specification, an alter-

native form of the wreath product tree proves more effective. The tree form is semantically

equivalent to the attribute grammar, Gwp, but makes the normal subgroup direct product

explicit. It is straightforward to convert between the string and tree representations.

2.1.1 Restrictions to the Representation

The continuous Lie groups, < and O, are only used to depict the ideal line and circle.

Any specific line segment or circle recovered from sensory data is constructed from a finite

12

set of points in the data. To express this, we use T to represent a finite version of translation,

and � for O. For example, if P = {(11, 10), (12, 10), . . . (20, 10)} is a set of edge pixels in

an image, then T is the group of translations formed as follows:

1. Given n points, ēi, i = 1 : n, they are ordered so that ēi × ēj all point in the same

direction.

2. T = {ēi − ē1}, i = 1 : n

3. The Z2 group defines in the fixed coordinate frame of T, the points that are in the

line segment.

Discrete circles (i.e., those arising from a finite number of samples) are handled in a similar

manner.

2.2 Wreath Product Discovery
Figure 2.7 describes the basic mechanisms involved in mapping data to a specific wreath

product representation. A standard symmetry analysis on a set of points (in a 2D or 3D

image) results in the detection of translational, rotational and reflective symmetries which

can be structured via, e.g., a dihedral group, D4 (see our work on this in [1–3]). However,

this approach is agnostic as to how the shape was produced. The WPCA requires that

the symmetries result from a sequence of actions. In the figure, the corners (e1,e2,e3,e4)

are detected, then the edges of the square are found as translations of these points (e.g.,

e1 → e2 ≡ R1, e2 → e3 ≡ R2, etc.), and finally, the complete set of points in the square

shape is found to result from the action of the four rotations (r0,r90,r180,r270) acting on the

edge segments. To determine the associated actuation sequence needed to produce the

shape, the motor sequence of some set of actuators on the robot need to be aligned with

this specific shape; e.g., the motor controls necessary to move the center pixel of the robot’s

camera to each corner would suffice.

As another example, consider a 3D cube which also has multiple wreath product repre-

sentations corresponding to distinct shape generation sequences. We have been working

with a Kinect sensor to obtain RGB-D data and Figure 2.8 shows both a 1-face and a

3-face view of the cube (in this case, a footstool found in the office). Figure 2.9 shows the

geometry and wreath product tree for the generative sequence we use in analyzing cubes

13

in indoor scenes. The Z2 group describes the reflective symmetry between parallel faces;

the Z3 group describes the rotational symmetry between the pairs of faces. The resulting

wreath product is then e o <2 o Z2 o Z3 (we only describe down to the planar face level in

the figure).

Next, we describe the results of applying wreath product discovery algorithms to 2D

and 3D shapes.

2.3 Uncertainty Characterization in Wreath Product Trees
Although wreath products are typically described as a sequence of strings, it is conve-

nient to interpret the wreath product as a tree structured Directed Acyclic Graph (DAG),

and this allows a straightforward association of a Bayesian network. To define a tree for a

wreath product, F oC, take C as the root, and its children are the n copies of F in the normal

subgroup of G.

Figure 2.101 shows how a wreath product can be developed into a wreath product tree

which is defined inductively as follows:

• The control group on the right end of the wreath product is the root node, and its

children are the components of the direct product normal (fiber) subgroup.

• Root of each child node is one of the G(F)s, and its children are formed recursively.

We propose a methodology to construct the BN associated with the wreath product, as

well as a method for initializing the Conditional Probability Tables (CPT’s). For example,

consider the analysis of Kinect data for a planar surface, and how uncertainty can be

ascribed to a planar hypothesis. Figure 2.11 (a) shows the plane fitted to a set of planar

points that defines its reference normal (in red) and (b) shows the distribution of angular

deviation of normal belonging to planes fit to local neighborhoods, with respect to the

reference normal. This data allows the specification of the probability that a local normal

is aligned with the correct normal.

Given an abstract representation (e.g., for a cube) as shown in Figure 2.9 (b), we attach a

Bayesian framework to characterize the uncertainty in each element of the wreath product

1This network was constructed using the AgenaRisk software which accompanies [24].

14

(e.g., as shown in Figure 2.12). In order to populate the conditional probability tables

(CPT’s) which define the complete joint probability distribution, it is necessary to initialize

certain tables based on sensorimotor data, and to propagate that uncertainty in a correct

manner through the tree. For example, the Z3 group has a prior 5% probability since this is

statistically the frequency of cube corners in the indoor environment. Similarly, gathering

statistics from the environment leads to values for the other CPT’s: if the Z3 symmetry

is false, then there is a 30% conditional probability of the existence of a Z2 symmetry,

otherwise an 80% conditional probability. The conditional probability for flat faces is 70%

with no known Z2 symmetry, otherwise, 95%. Figure 2.12 shows the probabilities with

no evidence asserted. On the other hand, if three planar faces (i.e., <2) are found that

have a Z3 symmetry, then Figure 2.13 shows the change in probabilities. The probability

for the unseen planar faces rises to 91%. The Bayesian Wreath Product Tree thus offers a

clear cognitive benefit to an agent in terms of understanding and predicting the detailed

geometric structure of the environment. This type of information may not be readily

available to a robot without this cognitive structure.

In practice, this works reasonably well; the left side of Figure 2.14 shows Kinect data

for a 3-face view of a cube shape, and the right hand side shows the three sets of similar

<2 planar data found (i.e., the faces are the result of the 2D planar translation relation

between local planar fits). Each fit carries its own likelihood (e.g., the least squares error).

This data is then used to compute a representative normal for each planar face, and then

the existence of the Z3 symmetry can be characterized by the error found in the planar

face fits when rotated through 2π
3 about the mean vector of the three planar face vectors.

A similarity measure can be computed and works fairly well; see Figure 2.15 where (a)

shows the similarity measure (best match of three original normals with rotated versions

of themselves), and (b) shows the trajectories of the three normal endpoints under the

rotation.

More detailed information on wreath product representation and recovery is given in

Chapters 4 and 5 which describe the 2D and 3D applications.

15

Table 2.1. Shapes and corresponding wreath product
strings.

Point Set Wreath Product String
circle O
square e o Z2 o < o Z4
triangle e o Z2 o < o Z3
cube e o Z2 o <2 o Z2 o Z3
plane e o <2

Table 2.2. Attribute grammar semantic functions for Gwp.

Rewrite Rule Value Functions
W → FC v(W) := ∏n

1 F o C
F → B v(F) := ∏n

i=1 F; n= | C |
B→ C v(B) := v(C), a specific group
B→ FC v(B) := ∏n

1 F o C
C → e | < | ZN | O v(C) := value of specific group
N → ND v(N) := 10N + D
N → 1 | 2 | . . . | 9 v(N) := value of selected digit
D → 0 | 1 | . . . | 9 v(D) := value of selected digit

16

Figure 2.1. Point e.

Figure 2.2. Translation of point with group <.

17

(a) Rotation by r90. (b) Rotation by r180.

(c) Rotation by r270. (d) Characteristic function Z2 applied to e’s
to turn them on or off.

Figure 2.3. Square generation process.

Figure 2.4. Control flow in a wreath product gives an explicit definition in terms of
actuation of how to generate the shape; rot(0) (rotate by 0 degrees), the group identity,
acts on the first copy, <1 to obtain the top of the square; rot(90) acts on <1 by rotating it 90
degrees about the center of the square to obtain the right side, <2; rot(180) acts on <1 by
rotating it 180 degrees to obtain <3, and finally, rot(270) acts on <1 rotating it 270 degrees
to obtain <4. The rotations, R1, R2, R3, and R4, denote the group action (of Z4) on the sides
of the square.

18

Figure 2.5. Wreath product discovery in a scene.

Figure 2.6. PDA for wreath product language.

19

Figure 2.7. Mechanisms for the detection of symmetries in the square.

Figure 2.8. Illustration of different views of a cube and corresponding depth images. (a)
RGB view of one face of cube (b) Depth map of one face (c) RGB view of three visible faces
of cube (d) Depth map of three face view.

Figure 2.9. Cube and corresponding (3D) wreath product representation. (a) Geometry of
Z3 representation of cube (b) The wreath product tree for <2 o Z2 o Z3.

20

Figure 2.10. The wreath product tree for a square shape, displayed as a Bayesian network.

Figure 2.11. Kinect depth data noise characteristics. (a) Reference normal (in red) derived
from plane-fitting (b) Histogram of angles between normals of a neighborhood and the
reference normal.

21

Figure 2.12. A Bayesian wreath product tree for cube.

Figure 2.13. Bayesian wreath product tree for cube with observation probabilities.

22

Figure 2.14. Kinect depth data for cube (left) and recovered <2 symmetries (right).

0 100 200 300 400
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Rotation Angle about Mean of 3 Faces

S
im

ila
ri
ty

 o
f
F

a
c
e
 N

o
rm

a
ls

 t
o

 O
ri
g
in

a
ls

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

X Axis
Y Axis

Z
 A

x
is

Figure 2.15. Cube (3D) symmetry detection on real data. (a) Similarity of 3 surface normals
under rotation about their Mean Vector (b) Trajectories of normal endpoints under rotation.

CHAPTER 3

WPCA: THE WREATH PRODUCT COGNITIVE

ARCHITECTURE

The Wreath Product Cognitive Architecture (WPCA) is our implementation of a wreath

product approach for a cognitive framework. This chapter describes, in-depth, the design

principles and various modules that form the WPCA. The beliefs, processes, and modules

that form the WPCA are explained in detail.

3.1 WPCA Overview
The layout of the WPCA – a cognitive architecture which exploits the wreath product

representation – is shown in Figure 3.1. This architecture allows object representations

to be constructed from groups discovered in sensorimotor data, and combined to form

wreath products.

As can be seen, the WPCA is a variation of a Beliefs, Desires and Intentions (BDI)

architecture (see [25, 26]) consisting of:

• a set of repositories:

– belief store: maintains all beliefs about the world.

– goal store: asserts the goals of the robot agent as well as their priorities.

– intention hierarchy: keeps a small number of currently selected most important

specific goals.

– plan library: consists of processes designed to achieve specific goals.

• a number of short-term memories:

– percepts: information derived from sensorimotor data.

24

– options: a set of possible intentions which are then filtered to get a small set of

intentions.

– action: selected agent action (e.g., take data, move, communicate).

– reactive action: emergency control of robot (e.g., obstacle avoidance).

• and a set of processes:

– perceive: acquire and convert raw data into percepts (the first step toward wreat

hproduct construction).

– belief revision: updates beliefs, including: add new beliefs, revise old beliefs and

update uncertainties.

– analyzer: considers beliefs, goals and current intentions and produces a new set

of intentions.

– filter: selects a small set of intentions from the options.

– plan selection: given the current intentions, find appropriate plans to achieve

them.

– reactive control: interrupt normal cognitive processing in emergency situations.

– execute action: robot platform level control.

This system provides the mapping from percepts to action for the robot system, but

is called from a higher-level module that provides the percept and receives the action. In

our framework, this higher-level module drives the perceive, and execute action blocks as

depicted in the architecture diagram. These blocks are part of the code which interfaces

the WPCA to the hardware, i.e., the robot, and the Kinect, and thus handles the image

acquisition module (which collects structural and RGB data from the Kinect), execution

of actions (robot motion in our case), other housekeeping activities, such as termination

of execution upon completion, and logging all these processes for debug purposes. The

blocks belief revision, analyzer, options generation, filter, plan selection, action generation are

part of the robot’s “brain” which processes perceptual data (executes reactive behavior if

deemed necessary), revises its beliefs based on this data, analyzes the current intentions,

25

goals, and beliefs to generation options (actions that can be taken), and then selects the

plan that lays out the sequence of steps (actions) needed to achieve a particular goal. For

example, one of the goals in our framework is to “discover a world frame” and the plan

will perceive its environment checking for a world frame (a corner in a wall, e.g., which it

can reliably find), move around in its environment until it finds the world frame. Every

plan in our framework is a state machine, with each state assessing current beliefs and

recommending a particular action to take. Action can be taking data, translating (forward

or backward), and rotating in place by a given angle (positive or negative rotation). The

following sections give a high-level overview of various aspects of this architecture. De-

tailed workings of the various building blocks of the architecture are given later.

3.2 Beliefs
Beliefs express robot knowledge, and generally have a specification for their uncer-

tainty. For example, when a geometric object such as a planar surface is discovered in the

robot’s range data, the belief may be created that asserts the existence of a plane. Note that

before such a belief is added to the beliefs store, it is checked against existing plane beliefs

and merged if it matches one of those. In addition, beliefs may serve to express goals by

requiring the WPCA to prioritize reducing their uncertainty. In particular, to set up the 3D

mapping and navigation benchmark, six goal beliefs are included in the initial beliefs of

the robot and prioritized as follows:

1. Floor Plane

2. Gravity Vector

3. World Frame

4. Find All Wreath Products

5. Combine Wreath Products

6. Terminate Execution.

3.2.1 Floor Plane

The floor plane is very special, and it must be discovered before any other goals can

be addressed. The initial uncertainty of the floor plane is set to infinity, and until this is

26

reduced to an acceptable level, the robot takes data and tries to identify the floor. In order

to identify the floor plane, the robot takes advantage of innate knowledge describing what

the floor’s normal vector should be in the camera frame.

3.2.2 Gravity Vector

We believe the gravity vector is a strong perceptual cue, and provide innate knowledge

to the robot so that the gravity vector is simply the negative of the floor normal (see Leyton

[7] for more details on the special role of the gravity direction). Note that the assumption

here is that the robot starts off in a position where the floor normal is

[0, 0, 1]T.

Mechanisms would have to be put in place to accommodate for other motion planes (ramps,

etc.).

3.2.3 World Frame

The world frame is a coordinate transform which describes the robot’s coordinate frame

in world frame coordinates. This frame has an uncertainty which is initialized to infinity.

Once the floor plane (and thus the gravity vector) is known, finding the world frame

becomes the robot’s top goal. To find this frame, three mutually perpendicular planes

which meet in a corner visible in the range data are sought. In this respect, the world

frame ({e} o R× R o Z3) resembles the wreath product of the cube ({e} o R× R o Z2 o Z3 as

described in Chapter 2 section 2.2, except there are no reflected planes. The uncertainty

of the frame is determined from these three planes. All other mapping and navigation is

performed in the world frame. Percepts are expressed in world frame coordinates. All

data acquired in the previous time steps before the world frame is found are deleted, and

data found in the current time step are represented in this world frame.

3.2.4 Find Wreath Products

After the world frame is found, the robot’s highest priority goal is to discover new

wreath product primitives; this includes planes, lines, and points. Both depth and rgb

images are analyzed to find these.

27

3.2.5 Combine Wreath Products

Once no more primitive wreath products can be found, the next goal is to use innate

knowledge to discover more complex semantic categories. For example, a pair of parallel

planes results in <×< o Z2 where Z2 is either a reflection or a rotation. A cube would be

an even more complex wreath product comprised of three <×< o Z2 pairs.

3.2.6 Terminate Execution

Once no more wreath product combinations can be found, the robot’s goal is to wrap

up its activities. This includes saving the beliefs and shutting down the physical robot.

3.3 Innate Beliefs
The robot is provided with a set of innate (initial) beliefs (some corresponding to goals

as described above). Some of these beliefs provide a mechanism for the robot to keep track

of where it is in the execution of a plan. Some important initial beliefs not described above

include the following:

1. Camera Pose

This is a transformation matrix (4x4) which describes the pose of the camera coordi-

nate frame in the robot coordinate frame.

2. Ever Localized

If the robot has already determined a world frame, but after some time, the uncer-

tainty in its pose grows too large, this belief is used to let the robot know that it needs

to simply reacquire the existing world frame rather than reinvent the world frame.

3. Floor Plane

This is the assertion that the floor has been found. Other information associated with

the floor includes the index into beliefs that points to the WP plane that corresponds

to the floor.

3.4 Perception
The principal perception device of the robot is the Kinect V2 (Kinect for Windows

v2). Kinect is a time-of-flight sensor which emits an infrared (IR) laser, which reflects off

28

different objects in the scene which is then recorded by an IR camera. The time between

laser emission and capture gives the distance to the object. Time-of-flight is recorded per

pixel (if the corresponding world point is within a certain range), and thus the depth

images are considerably accurate and less noisy than other IR pattern projection structural

sensors such as the Kinect v1 or the Asus Xtion. If the depth cannot be determined at a

certain pixel, it is assigned either a NaN (Not a Number) value, which is cleaned up by the

perception module.

The Kinect v2 is a reasonably priced consumer-grade sensor, has been studied in the

field of robotics and computer vision since its launch in 2014, and is widely considered

to be one of the best performing time-of-flight sensors for the price, for both gaming and

computer vision/robotics applications [27–30] (see [31] for an excellent characterization of

the Kinect v2 performance). It has an IR camera, an IR projector, and an RGB camera and

outputs the following data:

1) RGB image (1920 × 1080 px).

2) Infrared image (512 × 424 px).

3) Depth image (512 × 424 px).

In addition, an RGB image registered with the IR camera can be generated as the intrinsic

and distortion parameters of the device are known. Since the intrinsic parameters and the

depth value at each pixel are known, the point cloud can also be generated by determining

x and y values per pixel (assuming depth z is known for the pixel), using Equation 3.1,

where i and j are the pixel coordinates, and fx, fy, cx, cy are intrinsic parameters of the IR

camera.

x =
(i− cx) · z

fx
, y =

(j− cy) · z
fy

(3.1)

The depth (IR) camera has a field of view of 70.6◦ (horizontal) ×60.0◦ (vertical), whereas

the color camera has a field of view of 84.1◦ (horizontal)×53.8◦ (vertical). It outputs depth

images at a frame rate of 30 frames per second. The frame rate is fixed since it is closely cou-

pled with the time-of-flight mechanism. The operating range of the Kinect is stated to be

between 0.5 m and 4.5 m (however, it was observed in our experiments that the minimum

distance should be 0.6 m to avoid NaN-pixels and noisy data. The Kinect v2 was calibrated

29

in our experiments using OpenCV calibration technique, and the intrinsic parameters were

determined to be as follows: fx = 362.3099, fy = 362.5217, cx = 260.1303, cy = 205.9577

whereas the distortion coefficients were found to be k1 = 0.0973, k2 = −0.2822, p1 =

0.0003, p2 = 0.0009, k3 = 0.1059. We use the libfreenect2 library (driver) by Echtler et al.

[32], which outputs the registered RGB image (registered to the depth image), as well as

the X,Y,Z points per pixel, along with the depth map. We have modified the libfreenect2

driver source code to suit our needs and output the data in our preferred format so that it

can be accessed directly.

The Kinect sensor is mounted on the robot, at a height of 0.82 m above the ground and

0.2032 m in front of the robot center, and it is tilted downwards at 27.86◦ with respect to

the ground (see Figure 3.2). The transformation that represents camera frame points (data

acquired from the Kinect), in robot frame can be given as follows: in order to align YC with

YR, we perform a rotation of 27.86◦ + 90◦, about the X-axis of the camera frame. Then we

translate the points by:

t̄ =

 0

0.2032

0.820

(Note that the translation vector t̄ is in meters).

If RP represents points in the robot (R) frame, and CP represents points in the Kinect frame,

then the transform from points in the Kinect frame to the robot frame, is given by

RTC =

[
R t
0T 1

]
whereR is the rotation matrix to align the axes of the frame C with R, and t is the transla-

tion vector between the origins of these two frames. Thus, RPC = CP R+ t, will transform

points from the camera frame to the robot frame. Based on physical measurements, we

have determinedR and t to be the following:

R =

1 0 0

0 −0.4674 0.8841

0 −0.8841 −0.4674

and

t =

 0

0.2032

0.820

30

3.5 Plans
In operation, the WPCA supports the beliefs, desires and intentions in the form of

finite state machines (FSM). Wreath products can also be used to represent plans in the

WPCA. Consider the simple sentence and desire “Go to point B from point A in a straight

line.” Since points A and B are points in space,“...point B from point A in a straight line”

can be represented as a wreath product for a straight line segment (e o Z2 o <). Thus,

a wreath product with the semantics (i.e., geometry) required for this specific motion

must be instantiated. The following discussion gives a high-level overview of the wreath

product interpretation process. A wreath product directly describes a way to generate a

set of points by a specific action sequence. That sequence is abstracted to a specific set of

groups which express Euclidean transforms like translation, rotation, etc.

In the example posed above, the agent uses the wreath product abstraction e o Z2 o <

annotated with the specifics of the motion (i.e., e is set as a specific start point in a particular

coordinate frame;Z2 is set to a specific characteristic function;< is the specific line between

start and end points of the task. What is key is that the execution of the abstract wreath

product actuation groups can be mapped to multiple actuation systems simultaneously;

for example, while driving the wheels to move along the path, it can also drive the camera

to scan along the path to watch for obstacles. Alternatively, the vision system can be

used to monitor that the motion is indeed linear – for example by watching for specific

symmetries in the visual data (there should be a focus of expansion in a regular camera

image, or there should only be columnar motion in a polar image expanded about the

focus of expansion – Figure 3.3). In Figure 3.4 : (a) and (b) are the log polar transforms

of perceptual data (images) as the robot moves forward, while (c) shows the symmetry

in the direction of the optical flow vectors (the majority of them are in the π
2 direction as

indicated by the histogram).

3.6 Detailed BDI Component of WPCA
The following subsections briefly explain, at an algorithmic level, how all the signif-

icant blocks of the architecture are designed and executed, and the workings of various

algorithms used in the perceptual data processing, action generation, and plan library.

31

3.6.1 Environment Interaction Module

The environment interaction module works similar to a simulator, where, at each step,

it perceives the environment, and takes the action returned by the “brain” of the robot.

Algorithm 1 illustrates, at a very high level, how the environment module works: The

program starts with basic housekeeping activities such as clearing persistent variables

from the previous run, setting the configurations for communication with robot hardware,

and logging. The terminating condition for the program is received from the brain of

the robot, the WP BOT, when it has finished executing its plans. The program alternates

between capturing perceptual data and executing action as determined by the WP BOT. If

the action specifies to capture data, the KINECT drivers will be called and data acquired

and cleaned (more details are given in section 3.4). If the action specifies to move (either

translate, or rotate), the robot’s drivers will be called to move the robot.

Algorithm 1: WP RUN BDI algorithm
Data:

– Clear persistent variables

– Set Robot Hardware Connection Constants

– Initialize Logger

1 while Terminate condition not set do
2 if action = TAKE DATA then
3 Call KINECT drivers;
4 TAKE DATA();
5 Clean acquired data;
6 else
7 empty data/use previous data;
8 end
9 Bundle acquired data as percept;

10 //Call robot brain to process current percept;
11 action = WP bot(percept, del t, action);
12 Log action;
13 if action = MOVE or ROTATE then
14 Initiate robot controller;
15 MOVE ROBOT();
16 end
17 end
18 Close logger;

32

3.6.2 Robot Brain (WP BOT)

WP BOT is the brain of the robot and utilizes the BDI paradigm. It is comprised

of the WP discovery, localization, belief revision, analyzer, filter, and plan selection and

action generation functions. At the start, beliefs are initialized with the innate knowledge

available to the robot, and the variables that will persist throughout the execution of this

program. Variables needed for localization of robot are also initialized. The percepts

(discussed earlier in sub-section 3.4), are passed on as arguments to the DATA TO WP

function, which processes these percepts to create wreath product sets (WP SETS) that

contain (possibly newly) discovered wreath products. The robot starts its life with little

innate knowledge. As part of the innate knowledge the transform that takes the camera

frame to the robot frame (base of the robot) is supplied. Based on this, the robot will first

discover the floor vector (i.e., the vector of the plane that is pointing up). Once the floor

vector is discovered, the normal of the floor plane that best matches the floor vector, is

assigned as the floor plan normal, and the corresponding floor plane index is updated in

the beliefs. Once the floor plane vector is discovered, the robot will try to discover the

world frame. The world frame is any corner in the surroundings that has 3 orthogonal

walls - one of which needs to be the floor - that meet at a single point, since this point

and the wall plane normals can uniquely identify a world frame (e.g., if the robot started

off inside a cylindrical room, it cannot find a unique world frame). The plane normals of

these 3 orthogonal planes, originating at the corner point form the X,Y,Z-axes of the world

frame. Note that the floor plane is always the Z-axis pointing opposite the gravity vector,

and the X and Y axes follow the right-hand rule. The structure of WP BOT is shown in

Algorithm 2. The function DATA TO WP (Algorithm 2 line 1) is described in sub-section

3.6.3.

3.6.3 Data To WPs: Wreath Product Construction Cycle

Algorithm 3 transforms range data from the depth sensor into wreath products. The

process starts by building planes from 3D data points in the camera frame that are seg-

mented using the RANSAC (RANdom Sample And Consensus) algorithm ([33, 34]). For

example, in Figure 3.5 (a), the three orthogonal planes found during the search for world

frame and segmented using RANSAC are shown in different colors, along with the axes

33

Algorithm 2: WP BOT.
Data: Initialize persistent variables, Set Beliefs to innate knowledge, Initialize

localization variables
1 [WP SET]← DATA TO WP(percepts);
2 if World frame found then

3 [µ, Σ]← Update Robot Pose();

4 [L, c]← Detect landmark Correspondence();

5 [µ, Σ]← Update Robot Pose Using LM Correspondence();

6 [W TR]← Update Robot Pose(µ);

7 Update Pose In Beliefs(W TR)
8 end
9 BELIEF REVISION(WP SET);

10 [OPTIONS]←WP ANALYZER(INTENTIONS);

11 [INTENTIONS]← FILTER(OPTIONS);

12 [PLAN]← PLAN SELECTION(INTENTIONS);

13 [ACTION]← PLAN TO ACTION(PLAN);

14 if current plan terminated then

15 [INTENTIONS]← UPDATE INTENTIONS();
16 end
17 if terminate signal then

18 UPDATE BELIEFS();

19 TERMINATE();
20 end

found (which are the normals to the three planes located at the origin).

Even though these normals might be very close to, but not exactly orthonormal, they

can be converted into three orthonormal vectors (Mortho) using equation 3.2, where R is

the rotation matrix in the transform W TR =

[
R t
0T 1

]
.

Rortho = R(RTR)− 1
2 (3.2)

Each plane point is then transformed from the camera frame to the robot frame (using

the innate knowledge of the transform RTC - camera frame to robot frame). For each

plane, the plane parameters are found, namely, the plane normal npi using singular value

decomposition (SVD), distance to the plane from origin dpi, and error, εpi, of the plane

points fit to the plane (lines 3 - 10). Line 12 removes duplicate planes by merging planes

34

that have similar surface normal and similar distance from the origin. Lines 15 and 18

will find lines (R) and points (E) based on intersection of two (i, j), or three [R× R] planes

(i, j, k), respectively. More details on the E, R, and [R × R] notation can be found in [4].

Figure 3.5 (b) shows the WPs discovered by this process.

The yellow star has been added which signifies the location of the world frame origin.

The plane points (in black) are sparsely plotted to show the 3 planes (denoted by [R× R]

and green dotted lines added for demarcation). Each plane’s normal is shown as a blue

arrow. Lines (R’s) are intersections of pairs of planes and are shown in red, whereas points

(E’s) are intersections of three planes and are shown as blue dots. This particular image

was generated from a set of beliefs that contained 12 innate beliefs (robot pose, camera to

robot transform, gravity vector, and other information), and an additional 11 beliefs were

discovered (four planes, five lines, and two points), for a total of 23 beliefs. Since an indoor

office environment is mostly comprised of planar surfaces, this algorithm effectively finds

most of the planes, lines, and points, and their parametric information, if any. All these

planes, points, and lines are added to the WP set. Note that the superscript R - not to be

confused with the wreath product R which is a line - of a wreath product signifies that all

these WPs have been transformed from the camera reference frame to the robot reference

frame; they will be transformed into the world reference frame when the world frame is

discovered, in the MERGE function.

3.6.4 Belief Revision

This function merges newly discovered beliefs (as wreath products) with existing be-

liefs (see Algorithm 4). Note that a distinction is made in our algorithms between points

that comprise a plane, or a line (R pi for example) which will be used for frame transfor-

mations etc., and wreath product points (denoted by E). Lines 3 – 7 transform all newly

discovered WPs to the world reference frame - denoted by superscript W - where they are

compared against the existing planes (lines 9 – 14), lines (lines 16 – 21) and points (lines

23 – 28) in beliefs to check if they are duplicates, and to merge them if so. The functions

Ψ[R×R], ΨR, and ΨE - for planes, lines and points, respectively - check the parameters to

determine if two WPs match each other spatially, and Γ[R×R], ΓR, and ΓE merge those two

WPs for planes, lines, and points, respectively. The beliefs are then updated accordingly.

35

Algorithm 3: DEPTH TO WP.

1 [P]← RANSAC(percepts);
2 RTC ← get transform(Beliefs);
3 for all plane points C pi in P do
4 R pi ← trans f orm(RTC,C pi);
5 npi ← svd(R pi);
6 dpi ← distance(RO,R pi, npi);
7 εpi ← plane error(R pi, npi, dpi);
8 R[R× R]i ← [R pi, npi, dpi]

9 WP set(w)←R [R× R]i;
10 end
11 for all planes C[R× R]i in WP set do
12 Remove Duplicates();
13 end
14 for all plane pairs R[R× R]i and R[R× R]j in WP set do
15 Ri,j ← intersection(R[R× R]i,R [R× R]j);
16 end
17 for all plane triples R[R× R]i, R[R× R]j, and R[R× R]k in WP set do
18 Ei,j,k ← intersection(R[R× R]i,R [R× R]j,R [R× R]k);
19 end
20 WP set(w)←R Ri,j;
21 WP set(w)←R Ei,j,k;
22 return WP set

3.6.5 Belief Store

Beliefs are stored on disk as an array of structures, where each index corresponds to a

belief. For an example of the structure of this array, see Appendix A, section A.1. These

innate beliefs are described; note that each also has a type and an associated uncertainty.

• belief (1) [type: POSE]: robot pose (a 4× 4 rigid transform matrix initially set to the

identity before it is discovered).

• belief (2) [type: VECTOR]: gravity vector which is known to be [0, 0,−1]T (pointing

downwards).

• belief (3) [type: ACTION]: retrieve all WPs in the belief store (innate beliefs as well).

• belief (4) [type: ACTION]: extend the WPs discovered so far.

• belief (5) [type: ACTION]: combine WPs discovered so far. These WPs that are

combined do not qualify for merging, as they are not the same WPs, but they satisfy

36

Algorithm 4: MERGE BELIEFS.

1 W TR ← get transform(Beliefs);
2 for all new planes R[R× R]i do
3 R pi ← get points(R[R× R]i);
4 W pi ← trans f orm(W TR,R pi);
5 npi ← svd(W pi);
6 dpi ← distance(WO,W pi, npi);
7 εpi ← plane error(W pi, npi, dpi);

8 W [R× R]i ← [W pi, npi, dpi];
9 for all existing planes W [R× R]j in Beliefs do

10 [W pj, npj, dpj]←W [R× R]j;

11 if Ψ[R×R](
W [R× R]j,W [R× R]i) < τ then

12 W [R× R]j ← Γ[R×R](
W [R× R]j,W [R× R]i);

13 Beliefs←W [R× R]j;
14 end
15 end
16 for all existing lines W Rj in Beliefs do
17 [W lj, nl j, dl j]←W Rj;
18 if ΨR(

W Rj,W Ri) < τ then
19 W Rj ← ΓR(

W Rj,W Ri);
20 Beliefs←W Rj;
21 end
22 end
23 for all existing points W Ej in Beliefs do
24 [Wej]←W Ej;
25 if ΨE(

W Ej,W Ei) < τ then
26 W Ej ← ΓE(

W Ej,W Ei);
27 Beliefs←W Ej;
28 end
29 end
30 end

certain symmetry constraints. For example, opposite walls of a room that satisfy a

reflective symmetry will be combined to a form a [R× R] o Z2 WP.

• belief (6) [type: POSE]: 4 × 4 rigid transform matrix from camera frame to robot

frame. This transformation has been explained in detail in section 3.4.

• belief (7) [type:ACTION]: Terminate robot run. A run of the robot may execute

several plans, and any one of the plans can set the terminating condition. Once

37

this condition is set, the robot will save all the beliefs in the store (disk), and stop

execution.

• belief (8) [type: FACT]: This is a type of “FACT” which says whether the robot was

ever localized, i.e., has it ever found the world frame. Ideally, the robot will find

the world frame once and all beliefs will be transformed into this world frame. But

occasionally the robot can get lost where the uncertainty of its world frame increases

beyond a certain threshold. In this case the robot will relocalize itself and transform

the subsequently discovered beliefs in the new frame.

• belief (9) [type: FACT]: The “floor” belief is a special kind of plane in our archi-

tecture, because the robot moves on the floor (we are assuming it would not go

on ramps, or change floors, etc.). The floor plane WP is discovered during the

“Find Floor Plane” plan detailed later, but to summarize, the floor plan is usually

found during the very first data acquisition cycle when planes are segmented using

RANSAC, and the plane whose normal is opposite to the gravity vector is selected

as the floor plane. The “id” (index) of this plane in the beliefs is stored in the

“belief(9).info,” which points to the floor plane WP.

• belief (10) [type: FACT]: WPs have been combined to form higher level WPs.

• belief (11) [type: IMAGE2]: The “world frame image” is simply the RGB image

(registered with the depth data), or in other words, the snapshot of the world frame.

This RGB image is used during multi-robot navigation and localization algorithm, to

match the world frame originally discovered by one robot, to the world frame newly

discovered by another robot.

• belief (12) [type: FACT]: “Plan Done?” simply means whether the current plan in

execution is done or otherwise. This notifies the analyzer to select the next plan based

on current priorities.

3.6.6 Analyzer

The Analyzer module considers current options and beliefs, and returns viable options.

The Analyzer has access to the plan library as well as current beliefs. Whenever the Analyzer

38

is called, it first checks whether any reactive behavior needs to be executed; for example, it

will query “Is there any obstacle present?” If there is, the reactive behavior will be called,

else normal execution resumes. During normal execution, the Analyzer will consider all

options (plans that can be executed, including reactive behavior) based on priority, and

whether the plan has already been executed, or uncertainties are too high / too low for

the plan to be executed. For example, highest priority will be obstacle avoidance - the

robot cannot take normal action if obstacles are present. Then it will try to find the floor

plane, if the uncertainty associated with the floor plane is too high. Once the floor plane is

found, the world frame discovery will be the next highest priority task if the uncertainty

associated with the world frame is too high. Once the floor plane uncertainty is lowered,

the floor mapping plan can be executed, and so on.

3.6.7 Plan Library

In the WPCA, plans are finite state machines (FSMs), each one achieving a high-level

goal (for example, “detect world frame”). After each state, the control is returned to the

WP-BOT that either takes an action, or acquires data depending on the action suggested

by the plan. Figure 3.6 illustrates one of the plans: “Find World Frame.” The start and final

states are shown with dark edges, the blue arrows indicate transitions to next states, and

green arrows indicate that the world frame was found, and leads to the final state.

• Start State: The execution of the plan starts here. The start state of every plan will

direct the robot to acquire Kinect data (since the robot may have moved before plan

execution started). When the action is set to “Take Data,” control returns back to the

WP BOT where the action is executed, and the control comes back to the plan. The

next state is set as state 1.

• State 1: Check if world frame exists in current view. This state will first check if there

exist 3 orthogonal planes (one of which is the floor). Algorithm 5 first checks, for all

triples of planes ([R× R]i, [R× R]j, [R× R]k), if any of them are parallel to each other

(lines 2,3). If not, this candidate triple is checked by Algorithm 6 for a corner point -

pt intersection which is the intersection of the three planes - and how close the corner

is to all three planes (score, determined by how many plane points fall within a sphere

of a given radius R). The maximum score from all triples and corresponding inter-

39

section point is chosen for determining the world frame. Algorithm 7 determines the

world frame by taking cross product of pairs of surface normals of all three planes

(cross product of two vectors is orthogonal to both those vectors). The cross product

vector which is in the direction of the floor plane normal is chosen as the Z-axis

(else the vectors are swapped and the cross product is determined again to satisfy

this condition). The two vectors whose cross product is a valid z-axis are chosen in

the order in which they satisfy the right-hand rule (z̄ ← x̄× ȳ). These three vectors

corresponding to the world frame axes are arranged in a rotation matrixR as shown

on line 11. The orthonormality of R is improved by line 12 as discussed before. The

origin of this world frame is the pt intersection. R and pt intersection is combined

on line 14 to yield transform T from world frame to robot frame. The inverse of T

yield the robot frame to world frame transform. Uncertainty of this world frame is

determined by uncertainty of the three planes forming the world frame. If a corner

is found, the next state is set to 14, else it is set to 2. States 3, 5, 7, 9, 11 are similar to

1, except for the action they take when world frame is not found in that state. If such

a frame is not found in the current location, the robot finds the largest plane that it

can see, apart from the floor, and it sets the action to rotate towards that plane by an

angle such that its Y-axis will be perpendicular to that plane. Once this action is set,

control returns to WP BOT for action execution.

• States 2, 4, 6, 8, 10, 12: Acquire kinect data and move to their respective next states. WPs

that are not the floor plane are deleted from current beliefs (since only the floor plane

remains fixed with respect to the robot’s motion). For example, in state 2, Action is

set to “Take Data” and next state is set to 3.

• State 3: Check if world frame exists in current view. This state will first check if it can

see a corner, as in state 1. If a corner is found, the next state is set to 14, else it is set to

4. If such a frame is not found in the current location, the robot finds the distance to

the largest plane that it can see, and it sets the action to translate by the determined

distance towards that plane. Once this action is set control returns to WP BOT for

action execution.

• State 5: Check if world frame exists in current view. This state first checks if it can see a

40

corner, as in state 1. If a corner is found, the next state is set to 14, else it is set to 6.

If such a frame is not found in the current location, the robot sets the action to rotate

45◦ counter-clockwise. Once this action is set control returns to WP BOT for action

execution.

• State 7: Check if world frame exists in current view. This state first checks if it can see a

corner, as in state 1. If a corner is found, the next state is set to 14, else it is set to 8.

If such a frame is not found in the current location, the robot sets the action to rotate

90◦ clockwise (to be oriented at 45◦ with respect to the wall). Once this action is set

control returns to WP BOT for action execution.

• State 9: Check if world frame exists in current view. This state first checks if it can see a

corner, as in state 1. If a corner is found, the next state is set to 14, else it is set to 10. If

such a frame is not found in the current location, the robot sets the action to rotate 45◦

clockwise (to be oriented parallel to the wall). Once this action is set control returns

to WP BOT for action execution.

• State 11: Check if world frame exists in current view. This state first checks if it can see

a corner, as in state 1. If a corner is found, the next state is set to 14, else it is set to

12. If such a frame is not found in the current location, the robot finds the distance to

the wall in front - after rotating 90◦ to the previous wall - that it can see (if the wall is

out of range for the Kinect sensor, the robot will move by a fixed 1 m increments till

it sees the wall). The action is set to move forwards by the distance discovered to the

wall it is now looking at. Once this action is set control returns to WP BOT for action

execution.

• State 13: Check if corner is found, else repeat from state 5. If a corner is found, the next

state is set to 14, else it is set to 5 and action is set to “Do Nothing.” Thus, control goes

to state 5 (after returning from WP BOT), and the process is repeated at the current

wall it is facing, from state 5 onwards.

• State 14: Final state. This state is only reached if a world frame is found. At the start

of this state, the uncertainty of the world frame in beliefs(1) is set to the mean of

the uncertainties of the three orthonormal planes forming the world frame (initially,

41

by default, the uncertainty is a large number). Here, each plane’s uncertainty is

determined by the RMS error of the distance of points of the plane to the regression

plane as determined by the eigenvectors. Thereafter, the robot frame to world frame

transform (W TR) is determined based on the distance to the corner point and the

three orthonormal vectors. The camera to robot transform (RTC) is already part of

the innate beliefs. Using these transforms, the WP beliefs determined in the current

cycle are represented in the world frame. Hereafter, any new WPs generated in any

subsequent plans are represented in the world reference frame. The plan is set to

“Done” and execution of this plan will be halted once control goes back to WP BOT.

Algorithm 5: MULTI-ROBOT WORLD FRAME MATCHING
input : LM2: All observed WPs in robot 2’s frame.

LM1: All WP in beliefs from robot 1
output: E: Error (plane parameter) between matches planes in LM1 and LM2.

1 for all plane triples [R× R]i, [R× R]j, [R× R]k in LM2 do
2 if [R× R]i · [R× R]j ≈ 1 or [R× R]j · [R× R]k ≈ 1 or [R× R]i · [R× R]k ≈ 1 then
3 continue with next triple;
4 else
5 [scores, pt intersections]←

CHECK CORNER LOCALE([R× R]i, [R× R]j, [R× R]k);
6 end
7 end
8 [score, index]← max(scores);
9 if score > τ then

10 [world frame, world frame uncertainty]←
GET WORLD FRAME([R× R]i, [R× R]j, [R× R]k, pt intersectionindex);

11 end
12 return E

Algorithm 6: CHECK CORNER LOCALE
input : Plane triples [R× R]i, [R× R]j, [R× R]k, R
output: score, pt intersection

1 pt intersection← f ind intersection point();
2 score←

get num points within sphere([R× R]i, [R× R]j, [R× R]k, pt intersection, R);
3 return score, pt intersection

42

Algorithm 7: GET WORLD FRAME
input : plane triple [R× R]1, [R× R]2, [R× R]3 in LM2, floor plane normal

n̄ f loor, pt intersection
output: world frame, world frame uncertainty.

1 n̄1 ← normal([R× R]1), n̄2 ← normal([R× R]2), n̄3 ← normal([R× R]3);
2 c1,2 ← n̄1 × n̄2, c2,3 ← n̄2 × n̄3, c3,2 ← n̄3 × n̄1;
3 [v, maxdp]← max(c1,2 · n̄ f loor, c2,3 · n̄ f loor, c3,1 · n̄ f loor);
4 if maxdp < 0 then
5 z̄← −v̄;
6 [x̄, ȳ]← swap(c1,2, c2,3, c3,1)

7 else
8 z̄← v̄;
9 [x̄, ȳ]← select(c1,2, c2,3, c3,1)

10 end

11 R =

x̄1 ȳ1 z̄1

x̄2 ȳ2 z̄2

x̄3 ȳ3 z̄3

;

12 Rortho = R(RTR)− 1
2 ;

13 t̄← pt intersection;

14 T =

[
Rortho t

0 1

]
;

15 world f rame← T −1;
16 world f rame uncertainty← [ui, uj, uk];
17 return world f rame, world f rame uncertainty

3.6.8 Action Execution

In WPCA, at a high-level, two kinds of actions are possible: Motion and Perception.

3.6.8.1 Motion

The robot platform is an iRobot Create differential-drive platform. Thus, there are two

discrete possible movements for the robot: rotate and translate. The hardware driver

for this robot [35] does not allow for complicated combined rotation and translation and

leads to a simple motion model. Robot hardware and wheel slip mean that the motion

execution of the robot is not perfect and this has been quantified. There is a certain motion

bias (usually negative) introduced when the robot moves. For example, if the robot is

commanded to rotate 30◦ clockwise, the robot might rotate only 25◦ clockwise in reality.

To understand this motion bias, tests were performed for rotation as well as translation

motions.

43

The approach used to determine the bias is very simple: the robot is placed on a circular

chart with a hole large enough for the circular robot to rotate in. The circumference is

marked with angles [0, 360]◦ with 1◦ increments (see Figure 3.7).

The robot is then commanded to rotate 10 times for 5 positive angles (10◦, 30◦, 60◦, 90◦, 180◦)

and their negative counterparts, for a total of 100 rotations. For every command, the

error between the amount of rotation commanded, and the amount the robot actually

rotated is recorded. This gives us the rotation error as a function of amount of rotation

commanded, and a mapping of commanded rotation to rotation error (see Table 3.1 for the

error data). Based on our experiments, it was observed that the robot tends to rotate less

than what is commanded, in a majority of occasions (the signs of errors in Table 3.1 reflect

this fact). Note that the error increases as the rotation command angle value increases. In

operation, large rotation values such as 180◦ were not used, hence only moderate error was

encountered. To ensure actual rotation stays true to the command, positive and negative

rotation commands are compensated with appropriate values from the table, and for other

rotation command values, compensation is determined by interpolation.

Forward motion translation error of the robot was quantified by translating it a positive

distance (forward translation) 10 times over a meter, and over two meters, and recording

the error along the X and Y axes of the robot. The translation error in Y axis is determined

to be 0.0294 m., with variance 0.00004, and is a function of the translation distance (thus,

for 2 m, the error will be 2× 0.0294). The distance moved can be given by Equation 3.3

dmoved = 0.9706× dcommanded (3.3)

It should be noted that unlike the rotational error, the robot always moves less by the

amount stated above. This error is compensated for, by adding it to the command to

translate. The translation error in X axis is determined to be 0.0176 m. with variance 0.0010.

and the robot tends to move towards the positive X axis. Action commands are 3-tuple;

for rotation and translation they are represented as [0,±δθ, 0] and [0, 0,±norm(δx, δy)],

respectively, where δθ is the rotation angle, and δx, δy specify movement in x, y direction,

and the amount of translation is given by norm(δx, δy).

44

3.6.8.2 Perception

At code-level, the action [1, 0, 0] specifies to take data. When WP BOT gets this action

command, the Kinect v2 driver code is called to acquired the depth image, (x, y, z) data,

and the registered RGB image. Details of the perception mechanism have already been

discussed previously in subsection 3.4.

3.7 Goals (Prioritized)
Goals are prioritized tasks based on the order in which they need to be completed, for

subsequent goals to be achieved. For example, the gravity vector and the floor plane must

be found first, before the world frame can be discovered. The floor mapping goal needs to

be completed, before robot belief-sharing goal can be achieved.

• Priority 1:

– Gravity Vector: Find out which way gravity points

– World Frame: Localize robot in the world frame for the first time.

– World Frame Rediscovery (if applicable): Relocalize robot in the world frame,

if lost.

• Priority 2:

– Floor Mapping: Find direction of gravity vector

– Robot Sharing: Localize robot in the world frame.

The following subsections briefly discuss the gravity vector and world frame detection

plans. World frame rediscovery, floor mapping, and robot sharing plans are discussed in

chapter 5

3.7.1 World Frame Discovery: Corner Detection

The corner detection algorithm uses RANSAC as mentioned in subsection 3.6.3. When

the agent starts off in a new world, it can either be in a cluttered scene or an uncluttered

scene. Figure 3.8 shows the depth image of a cluttered scene whereas Figures 3.9 and

3.10 show two different views of the same cluttered scene, with planes segmented using

45

RANSAC shown in different colors (green represents the floor, red represents the side

wall, and blue represents the back wall that is partially hidden by the legs of a table, seen

as vertical gaps in Figure 3.9).

Gaps in the floor (green) also result from occluded views of the boxes under the table.

Note that these 3D points are in the robot frame of reference, thus the robot is at x = 0, y =

0 in its own frame of reference, i.e., at the origin, and it is looking towards the wall depicted

in blue. Couple of things should be noted in this particular processed data set example:

• Of the total number of points - 217088 - only a subsampled set of 72,363 points is

used. Out of these, RANSAC determines only 49,471 points as belonging to any

plane (inliers); remaining 22,892 points are determined to be outliers. Thus, we have

a fairly large percentage - 31% - of points that do not belong to a plane, because

RANSAC filters them out. This percentage varies depending on the scene, however,

it has been observed that RANSAC is effective at discarding points that do not belong

to planes.

• The three distinct planes determined using RANSAC are fairly far apart from each

other. Ideally, at a corner, the three planes should have a larger percentage of points

close to one another, and at the corner, points from all three planes should be very

close to one another.

These observations help us determine whether the current set of points arise from

where three orthonormal planes - two orthogonal walls and the floor meet to form a corner.

The first such corner found when the agent starts exploring, is determined to be its initial

world frame.

Compared to the cluttered scene, an uncluttered scene is shown in Figure 3.11 that con-

tains only 3 (or more) planes orthogonal to each other. The depth image of the uncluttered

scene is shown in Figure 3.12 and red lines are added to demarcate where the 3 planes

intersect each other.

The number of points in the original point cloud is 108,544, of which 96,571 points are

retained after RANSAC segmentation (a retention rate of 88.97%). For these 3 orthogonal

planes, their point of intersection determines the corner point (origin of the world frame)

46

we are interested in. In order to find the corner point, we solve the linear system of

equations of the planes. The general equation of a plane is given by

ax + by + bz + d = 0

For this plane, the representative normal is given by n̂ = (a, b, c). Let A represent the

matrix of coefficients of the three planar equations, i.e., the coefficients ai, bi, ci, for the ith

plane, let x represent the unknowns, i.e., (x, y, z)T, and let b represent the right-hand side

of the equations, i.e., −di, for the ith plane. This gives us the system of linear equations

of the form Ax = b. This can be solved using x = A−1b – since the intersection point

cannot be at the robot origin – giving us the point where the three planes intersect. For this

particular data in Figure 3.13, this point was determined to be (−0.16, 2.165,−0.01), and is

shown as the thick black point (for emphasis), in Figure 3.13. Since all the points are in the

robot frame and the robot Y-axis is pointed at the origin, the X and Z values will be small

whereas the Y-value will be large.

47

Table 3.1. Rotation error compensation.

Rotation Command (◦) Error Mean (◦) Error Variance
10 -3.4 1.82
30 -2.75 1.125
60 -1.65 1.225
90 -1.25 0.4583
180 -9.35 6.5583
-10 1.8 0.4556
-30 3.3 4.1778
-60 2.1 0.71
-90 2.95 0.8583
-180 9.9 23.3778

Figure 3.1. BDI architecture.

48

Figure 3.2. Illustration of the transform between Kinect frame (C) and robot frame (R).
ZC-axis and YR-axis lie in the same (vertical) plane, ZC axis is rotated clockwise about the
XC axis by 27.86◦, and XC and XR axes point in the same direction. Camera frame origin C
is translated by 0.82 m above, and 0.2032 m in front of the robot origin R.

Figure 3.3. Polar image optical flow method to detect pure translation.

49

Figure 3.4. Log polar transforms of consecutive images upon Translation, shown by (a)
and (b), and (c) is the histogram of direction of optical flow motion vectors.

Figure 3.5. WP discovery from data: (left) shows the different planes segmented using
RANSAC and (right) shows the detailed WPs discovered.

50

Figure 3.6. FSM for the plan “Find World Frame.”

Figure 3.7. Determining rotation motion bias for the robot.

51

Figure 3.8. Depth image of the cluttered scene.

52

Figure 3.9. One view of the 3 planes detected in a cluttered scene, shown in different colors
based on point labels.

Figure 3.10. X-Y (top) view of the 3 planes detected in a cluttered scene, shown in different
colors based on point labels.

53

Figure 3.11. One view of the uncluttered scene with orthogonal planes marked in different
colors, segmented by RANSAC.

Figure 3.12. Depth image of uncluttered corner.

54

Figure 3.13. Rotated view of the planes, with the corner marked as a thick black point.

CHAPTER 4

WREATH PRODUCT BASED 2D SHAPE

ANAYLSIS IN ENDAS

Although the original intent was to explore the application of wreath products to 3D

data analysis, in the course of the work we obtained some interesting results in the analysis

of 2D shapes, and, in particular, in the classification of text in engineering drawings.1 We

show that this representation offers several advantages with respect to robust and effec-

tive semantic analysis of Computer-Aided Design (CAD) drawings in terms of classifica-

tion rates. Document analysis methods have been studied for several decades and much

progress has been made; see [36, 37] for an overview. However, there are many classes

of document images which still pose serious problems for effective semantic analysis. Of

particular interest here are CAD drawings, and more specifically sets of scanned drawings

for which either the electronic CAD no longer exists, or which were produced by hand.

We demonstrate results on a set of CAD-generated drawings for automotive parts.

One major issue with the wreath product approach is that the symmetry groups (op-

erators) are defined in some specific Cartesian coordinate frame; i.e., a translation is along

a line defined in that frame. One of our goals in this work is to find a representation

in terms of the natural motor actuation signals of the observing robot agent. This leads

to the hypothesis that shape representation based on the generative actuation process of

the observing agent can be effective and efficient. We describe here a shape recognition

method based on encoding the shape in terms of the actuation signal needed to generate

(or observe) the shape. The method is effective in that it robustly characterizes shape, and

it is effective in that it has low computational complexity.

In a more general setting, autonomous robots are embedded in some static or dynamic

environment, and are expected to represent and carry out tasks in this environment in the

1This work was done in collaboration with Narong Boonsirisumpun and we appreciate his contributions.

56

presence of sensing and actuation uncertainty. This requires the agent to have a robust

representation of its environment, as well as of the plans and actions that it can execute

in that environment [21]. Our work here deals with creating such a representation that

is robust by (1) being abstract in nature and grounded in (symmetry) theory so that it is

more general, and (2) being mathematically well-structured so that it is practical. This

framework is exploited to classify 2D characters.

Here we extend our previous work [5] to include direct incorporation and exploitation

of actuation data in the analysis of shape. Our main result here is the development of a

novel shape analysis method and the demonstration of its effectiveness in the text anal-

ysis of engineering CAD documents. Figure 4.1 shows the overall scheme for both 2D

and 3D datasets. The 2D data of interest here consists of scanned engineering drawings

like those shown in Figure 4.2. The image analysis consists of the extraction of basic

shape symmetries (represented as wreath products), followed by symmetry parsing (given

as Wreath Product Constraint Sets), finally passing through a classification component

where hypotheses are formed as described in the figure. We provide a formal grammar

for this parsing in which the lowest level terminal symbols are simple symmetries and

nonterminal symbols correspond to more complex shapes. The hypotheses produced

by the system are ranked according to a Bayesian analysis based on the wreath product

directed acyclic graph as well as the parse tree. Much work has been done in engineering

document analysis (see [36] for a detailed survey), but to our knowledge, there are few

implemented systems in which shape is represented in terms of actuation primitives. One

example of such work is that of Plamondon [38–41]), but that approach has a very different

basis rooted in the kinematics of human rapid movement. Other recent studies of more

global properties of document analysis, e.g., using deep convolutional networks [42, 43],

are more conventional in that they are still based on the geometric properties of the points

comprising the shape, rather than exploiting how the shape is synthesized. For another

survey of document analysis and recognition, see [44].

For the basic description of the original work on the wreath product sensorimotor

approach, see [37]. Here we go beyond their results by developing a coherent approach to

the semantic analysis of large sets of CAD drawing images. Figure 4.2 shows examples of

the types of images we analyze; on the left is a text file that accompanies an engineering

57

drawing to explain how to paint the structure; on the right is a hand-drawn design of a

nuclear waste storage facility.

The left image is a text drawing that provides information about the drawing and

the image on the right is a hand drawn plan for one of the double-shell nuclear waste

storage tanks at Hanford, WA. The semantic information in such drawings is needed

to develop electronic CAD for automotive parts and for nondestructive examinations,

respectively. The overall goal is to find the basic character strokes (defined as Wreath

Product Primitives), followed by character classification (using Wreath Product Constraint

Sets) and finally word recognition (by dictionary lookup) from those. Figure 4.3 shows

the Enhanced Non-Deterministic Analysis System (NDAS) which achieves this analysis;

ENDAS uses agents to achieve a parse of the image. The levels of NDAS correspond to

preprocessing, terminal symbol hypotheses, and nonterminal symbol hypotheses. Every

start symbol represents a complete parse of the image (e.g., a Text Image).

We apply Leyton’s idea of a generative model of shape directly to low-level image

analysis of drawings. Some examples of the types of symmetry include:

• the translation symmetry group denoted by < (1D): the invariance of pixel sets under

translation defines a straight line segment.

• the rotation symmetry group denoted by O(2) (2D): the invariance of pixel sets under

rotation defines a circle.

• the reflection symmetry group denoted byZ2 (2D): the invariance of a set of pixels under

reflection about a line in the plane describes bilateral symmetry in 2D.

From these symmetry features, we apply this idea to generate the Wreath Product

Constraint Set (WPCS) to improve the segmentation of low-level geometric primitives

in engineering drawings. For example, the lowercase letter set (“b,” “d,” “p,” “q”) all look

similar in shape. But using symmetry analysis, each character shows that the important

symmetry structure in their shape is only one circle (O(2)) and one straight line (<).

So, we can write a WPCS for each letter (“b,” “d,” “p,” “q”) to organize the detection

of their features (O(2) and <) in the desired position and differentiate between these four

characters. We then create agents to search for such WPCS’s.

58

4.1 Structural Model
In this section we introduce a structural model of technical drawings that allows an

agent-based organization of the ENDAS system. We define the layout of the technical

drawings in terms of structural grammar. G = (V, Σ, R, S) where V is a set of non-

terminals, Σ is a set of terminals, R is a set of rewrite rules, and S is the start symbol.

4.1.1 Terminal Structure Set

• a|b|...|z|A|B|...|Z|0|1|...|9|%|$|...|#|.|, | − |′|(|)|...|?

• Space ≡ ” ” (image segment which is a white space)

• HSpace ≡ Space with a nearby left and right segment

• VSpace ≡ Space with a nearby up and down segment

• Line ≡ image segment which is a straight solid line.

• Arc ≡ image segment which is an arc.

• Circle ≡ image segment which is a circle.

4.1.2 Nonterminal Structure Set

• Letter := a|b|...|z|A|B|...|Z

• Digit := 0|1|...|9

• SpecialChar := %|$|...|#

• Punctuation := .|, | − |′|(|)|...|?

• Char := Letter | Digit | SpecialChar | Punctuation

• Word := Char | Char Word

• LineO f Text := Word HSpace Word |Word HSpace LineO f Text

• PageO f Text := LineO f Text VSpace LineO f Text | LineO f Text VSpace PageO f Text

• Text := Word | LineO f Text | PageO f Text

59

• ArrowHead : Line + Line

|Line + Line + Line

• PointerRay := Line + ArrowHead

• PointerLine := ArrowHead + Line + ArrowHead

• PointerArcRay := Arc + ArrowHead

• PointerArcLine := ArrowHead + Arc + ArrowHead

• Box := Line + Line + Line + Line

• PointerPair := (PointerRay + PointerRay)|(PointerLine + PointerLine)

• PointerArcPair := (PointerArcRay+ PointerArcRay)|(PointerArcLine+ PointerArcLine)

• Dimension := (PointerPair|PointerArcPair) + Text

• Graphic := Line|Box|Circle|ArrowHead

|PointerRay|PointerLine|PointerArcRay

|PointerArcLine|Dimension

• TextinBox := Text + Box

• Table := TextinBox TextinBox | TextinBox Table

• GraphicDrawing := Graphic | Graphic Table | Graphic Text

• TextDrawing := PageO f Text | PageO f Text Text | Table | Table Text

• Drawing := TextDrawing|GraphicDrawing

4.2 Wreath Product Primitives
Define a wreath product primitive (WPP) as either a e o Z2 o < group or a e o Z2 o O(2)

group. As a first step, a set of WPP’s is fit to the pixels in each connected component.

Given a connected component and a WPP set for that component, a minimal WPP cover set

is a combination of WPP’s that cover the connected component skeleton, and if any WPP

is removed, the component is no longer covered.

60

From each WPP set, the complete set of minimal WPP cover sets is found, and they pro-

vide the initial characterization of what defines a particular shape. For example, Figure 4.4

shows some examples of WPP minimal cover sets.

Leyton described wreath products abstractly as symbol sequences and every e o Z2 o <

wreath product is equivalent to every other. We, however, are faced with unique, existing

instances, and thus, associate a coordinate frame (generally, the rectangle containing the

symbol) with each as well as descriptions of the Z2 mod group which is used to produce

finite length sets (i.e., end points for line segments and angular limits for circles).

The WPP minimal cover sets shown in Figure 4.4 are then used to produce a WPCS

which will characterize the shape. The additional information in the WPCS over the

minimal cover set includes any symmetries between WPP’s in the set. For example, the

two WPP’s in the lowercase letters “a” and “e” have both vertical and horizontal reflection

symmetries; the letter “A” has a vertical reflection symmetry between the two side arms;

the letter “M” has vertical reflection symmetries on the two side arms and the two inner

arms; the digits “0” and “2” do not have higher level symmetries.

4.3 Wreath Product Constraint Sets
We propose Wreath Product Constraint Sets (WPCS) as a mechanism to represent shape

(here: lower and upper case English letters and the digits 0 to 9). A wreath product con-

straint set (WPCS) is a set of WPPs as well as any higher level symmetries (e.g., reflection

symmetries which are described in this same coordinate frame as the WPPs):

1. Uses < and O(2) wreath product groups as the basic shape constituents.

2. Enumerates further wreath products that hold between constituents (even single-

tons).

3. Adds specific (geometric) constraints between shape constituents (e.g., set opera-

tions).

Note that we use < to represent the 1D translation symmetry group, O(2) for the 2D

rotation symmetry group (both of these are continuous), and Zn to represent the cyclic

group of order n (e.g., discrete set of rotations). As an example, consider the representation

of the upper case letter “A” shown in Figure 4.5.

61

The left side of the figure shows the basic constituents of the letter “A” – in this case

five < groups; the right hand side of the figure shows the two constraints in the WPCS: (1)

C1 describes the triangle in the letter, and (2) C2 describes the reflection symmetry between

the left and right side line segments. Note that Z2 is the cyclic group of order 2 and models

several geometric symmetries. We denote reflection by adding the annotation : Re f , and

rotation by : Rot. Each of these groups has its own specific coordinate axes (e.g., the z−axis

for rotation, and a specific line in the plane for the reflections. For the top-level Z2 : Re f

group in C2 this axis is the y−axis, while for the lower level reflections, it will be the line

bisecting the respective side at the points indicated in the drawing (on the left of the figure).

Ri in the figure is the ith straight line segment. Note that there will be additional

information added to the representation to describe the actuation processes which give

rise to these constituents (see below). Compare this to the WPCS representation of the

capital letter “H” shown in Figure 4.6. It can be seen that there is only one constraint

in the set (the triangle is not found), and the highest level reflection symmetry describes

the horizontal reflection of the entire “H” figure. Thus, the WPCS representation exposes

both the similarities (e.g., the common subgraph) between the two letters, as well as the

differences. Also, note that there are multiple WPCS representations for a set. For example,

the letter “A” can also be represented as the two sides and the cross bar in the middle (i.e.,

3 < groups, instead of 5).

The basic WPs for letter representation are < (straight line segments) and O(2) (cir-

cles). Therefore, we have developed special analysis algorithms to produce < and O(2)

hypotheses.

4.3.1 < Hypotheses

In order to discover < hypotheses, we use the connected component image and its

skeleton image (i.e., medial axis transform). Figure 4.7 shows a skeleton overlaid on the

original image. The basic logic of the < hypothesis approach is:

for every pixel, p, in the skeleton

V := skeleton pixels visible from p

R hyp := pixel sets with p as endpt

Figure 4.8 shows the < hypotheses found in a sample capital letter “A” skeleton image.

62

V is formed by checking visibility in terms of the a straight line of pixels in the original

image connecting p and the visible skeleton pixel. p is an endpoint if it is one of the two

most distant points of the projection of the points in V onto the best fit line to the points in

V.

4.3.2 O(2) Hypotheses

Circular sections (or parts thereof) are more difficult to find. Figure 4.9 shows the letter

“C” and its skeleton. The basic logic of the O(2) hypothesis approach is:

for every pixel,p, in the skeleton

flow := distance of pixel from p

T := pixels within distance 15 of p

O(2)_hyp := best fit circles in T

Figure 4.10 shows the O(2) hypotheses found for the sample letter “C” image. As

another example, Figure 4.11 shows the lower case letter “a” image. Figure 4.12 shows the

O(2) hypotheses found for it. Distance here is in terms of chain code distance (8-neighbor

steps).

4.4 Character Templates and Segment Classification
Given < and O(2) basic constituents, it is possible to define WPCS templates for all the

character shapes; e.g., those for the letters “A” and “H” shown above. It is also possible

to learn the templates by taking a set of training samples, extracting the constituents

and finding the constraints between the constituents. This would involve either setting

a hard threshold to produce predicates for the constraints (e.g., for when a reflection holds

between two point sets), or adding a probabilistic framework. In the course of this study,

we discovered that the actuation signals which encode the basic constituents provide an

effective and efficient shape representation for the WPCS; this is described in the next

section.

4.5 Actuation Signals as Representation
Since we do not have an embodied agent in this application, we resort here to virtual ac-

tuators, and in particular, a virtual camera for image acquisition and a virtual hand for shape

63

generation. We show that a character can be represented as a wreath product constraint

set which provides an abstract representation of the shape and allows for

1. recognition and classification of text characters, and

2. structured knowledge transfer from the camera actuation system to the robot hand

actuation system in order to achieve shape synthesis.

4.5.1 Virtual Camera

Since we are working with images that have already been scanned, we have devel-

oped virtual actuators and corresponding actuation command streams for the given data

acquired from the image. This works as follows:

• Each individual connected component is set in a circumscribing rectangle (Figure

4.11 shows the subwindow for the lower case letter “a”).

• A virtual camera is positioned in the middle of the image and above the image by

one-half the length of the longer rectangular side.

• The skeleton of the connected component is found next (see Figure 4.7).

• The camera is aimed at each of its constituent pixels in turn, and the pan and tilt

angles are recorded. For example, Figure 4.13 shows the pan and tilt angles for the

lower case letter “a.”

4.5.2 Virtual Hand

The specific virtual hand considered here is an RR robot (i.e., two revolute joints). The

base of the arm is located at the center of the character subwindow, and the lengths of the

links are equal and set to one-fourth the length of the greater diagonal of the subwindow

(see Figure 4.14). This allows the virtual hand to place its endpoint anywhere within the

subwindow.

Given that a shape will need to be generated in a standard Cartesian coordinate frame,

it will be necessary, in general, to learn the transform from (pan,tilt) space to (θ1, θ2) space

64

so as to obtain the same (x, y) point. However, in this specific case, the transform is given

as:

c2 = D =
(dtan(θpan))2 + (dtan(θtilt))

2 − 2a2

2a2

s2 =
√

1− D2

θ2 = atan2(s2, c2)

θ1 = atan2(dtan(θtilt), dtan(θpan))− atan2(s2, 1− c2))

For example, the (θ1, θ2) signal representation for lower case “a” is shown in Figure 4.15.

In the experiments described below, we use the (pan,tilt) representation of the WPCS

constituents.

4.6 Classification Based on Translation Symmetry
It is possible to represent shapes in terms of just the local translation symmetries. This

means that for every pixel in the shape, the maximal translation direction is determined;

this is done by finding the maximal set of pixels forming a line through the given pixel

and that stay inside the shape. It is not necessary to recover the < or O(2) constituents

for this approach. Statistics of the pixel-based translation symmetries provide enough

information for shape classification. For experiments we use segments from the image

shown in Figure 4.16. There are 1174 legitimate characters (although seven of these do

not satisfy the classification assumptions – e.g., wrong Euler number, etc.); of these 1161

are correctly classified in the top five hypotheses (we allow multiple hypotheses and then

reduce them when words are found).

Consider a character such as that shown in Figure 4.11. At each pixel, the direction

and extent of the 1D translation is determined. Figure 4.17 shows the results for this

character. Our first classification approach exploits the first order statistic of orientation.

The directions are aligned with the closest of 0, 45, 90, and 135 degrees.

In order to constrain the orientations somewhat according to their 2D distribution

in space, we construct a histogram for each of four sub-regions of the image: (1) upper

portion, (2) lower portion, (3) left portion, and (4) right portion (in this study the portion

is 2/3’s). The method also uses Euler number and horizontal and vertical symmetry

measures.

65

Figure 4.18 shows the four histograms catenated, and for comparison, the histogram

from another letter “a” from a test image. In practice the four histograms from a test

character, and the norm of the resulting 4-tuple is used as the distance measure (in this

case, the vector was p = [0.0425, 0.0409, 0.0459, 0.0069]). Each unknown character (con-

nected component) in a test image is compared to each character template, and the top

five matches are kept. Using this approach, we obtained a 95% classification rate; when

only the top 1, 2, 3, and 4 hypotheses are kept, the classification rate are 80%, 90%, 95%,

and 98%, respectively. Figure 4.19 shows the precision and recall plot for this method.

4.7 Classification Based on Pan-Tilt Actuation Signals
It is also possible to use explicit actuation data to classify unknown characters. Given a

set of pixels along the skeleton of a character, the pan and tilt angle for the virtual camera are

found as described earlier. For the template character “a” the pan and tilt angles are shown

in Figure 4.13. A distance measure between the shapes is then based on the difference of

the two (pan,tilt) signals for the different characters. We use the following simple measure:

µ((p1, t1), (p2, t2)) = ∑
i∈I1

argminj∈I2(| (pi, ti)− (pj, tj) |)

where I1 and I2 are the index sets for points in shape 1 and 2, respectively. This is the

sum of the distances to closest (pan,tilt) pair in the other set. Using this method, we

obtained a 99% classification rate for the top five hypotheses; when only the top 1, 2, 3,

and 4 hypotheses are kept, the classification rate are 88%, 96%, 97%, and 98%, respectively.

Figure 4.20 shows the precision and recall plot for this method.

4.8 Classification Based on RR Robot Actuation Signals
We also explored the use of explicit 2-revolute joint robot actuation data to classify

unknown characters. Given a set of pixels along the skeleton of a character, the two joint

angles for the virtual robot hand are found as described earlier. For the template character

“a” the pan and tilt angles are shown in Figure 4.13. A distance measure between the

shapes is then based on the difference of the two (θ1, θ2) signals for the different characters.

We use the following simple measure:

µ((p1, t1), (p2, t2)) = ∑
i∈I1

argminj∈I2(| (θ11i, θ12i)− (θ21j, θ22j) |)

66

where I1 and I2 are the index sets for points in shape 1 and 2, respectively. This is

the sum of the distances to closest (θ1, θ2) pair in the other set. Using this method, we

obtained a 98% classification rate for the top five hypotheses; when only the top 1, 2, 3,

and 4 hypotheses are kept, the classification rate are 79%, 93%, 97%, and 98%, respectively.

Figure 4.21 shows the precision and recall plot for this method.

We have developed a WPCS representation which is simply a list of the R WPP’s, fol-

lowed by the O2 WPP’s, and then followed by the higher level wreath product symmetries

found in the shape. For example, the WPCS’s for the shapes in Figure 4.4 are characterized

as:

• “a”: “O;O;Z2O;”

• “A”: “R;R;R;Z2R;”

• “O”: “O;Z2O;”

• “e”: “O;O;Z2O;”

• “M”: “R;R;R;R;Z2R;Z2R;Z2R;”

• “2”: “R;O;”

The next step in the process is to associate a specific generative mechanism with the

shape. Here we use the virtual sensors (pan-tilt camera) and actuators which were pro-

posed in [37]; the pan-tilt control angles for a camera trace for each of the characters

are shown in Figure 4.22. Character classification for an unknown shape is started by

producing the WPCS’s for the shape (note there may be several). Next, these are compared

at the abstract level to the character template WPCS’s, and where a match is found, then

the pan-tilt actuation generative data are compared. Any match at this level that is above

threshold produces a character hypothesis. The final step uses the character hypotheses to

produce legal word hypotheses (using a dictionary).

4.9 Experiments
The tests were run of the image shown in Figure 4.23 which resulted in 1,111 connected

components to classify. The 62 templates for lower and uppercase letters and the ten digits

resulted in 184 minimal cover WPCS’s for the 62 characters. A total of 3,333 minimal cover

67

WPCS’s were generated for the 1,111 connected components. The abstract wreath product

filter eliminated 67% of the unknown hypotheses; note that this check only requires com-

parison of their wreath product string representations. The remaining hypotheses were

matched to templates by a 2D pointwise comparison of their pan-tilt function values. An

unknown is considered a match if the correct character is in the top 5 best pan-tilt distance

matches. The classification rate is very good with this approach (∼ 99%) when using the

top five hypotheses.

68

Figure 4.1. Overall symmetry analysis flow.

Figure 4.2. Two CAD drawings: (left) text image that is included with CAD to explain how
to paint the structure, and (right) a hand-drawn design of a nuclear storage facility.

69

Figure 4.3. The ENDAS system.

0 10 20

0

5

10

15

20

-10 0 10 20

0

5

10

15

20

-10 0 10 20 30

0

10

20

-10 0 10 20 30

0

10

20

-10 0 10 20

0

5

10

15

20

-10 0 10 20 30

0

5

10

15

20

25

Figure 4.4. Example WPP minimal cover sets.

70

Figure 4.5. Wreath Product Constraint Set for letter “A.”

Figure 4.6. Wreath Product Constraint Set for letter “H.”

Figure 4.7. Skeleton of lower case letter “a” overlaid on original image.

71

Figure 4.8. < hypotheses for letter “A.”

Figure 4.9. Skeleton overlaid on original image for letter “C.”

Figure 4.10. O(2) hypotheses for letter “C.”

72

Figure 4.11. Image of lower case letter “a.”

Figure 4.12. O(2) hypotheses for letter “a.”

Figure 4.13. The pan and tilt signals for lower case “a.”

73

Figure 4.14. A simple 2-revolute joint (RR) robot hand.

Figure 4.15. Lower case letter “a” representation by (θ1, θ2).

Figure 4.16. Image used in experiments.

74

Figure 4.17. Translation symmetry directions for lower case letter “a.”

Figure 4.18. Comparison of combined symmetry translation direction histograms from
four subwindows in two different “a” segments.

Figure 4.19. Precision and recall plot for symmetry translation classification.

75

Figure 4.20. Precision and recall plot for pan-tilt actuation data classification.

Figure 4.21. Precision and recall plot for RR robot actuation data classification.

76

0 10 20 30 40 50

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60

-1

-0.5

0

0.5

1

0 10 20 30 40 50

-1

-0.5

0

0.5

1

0 20 40 60 80

-1

-0.5

0

0.5

1

0 10 20 30 40 50

-1

-0.5

0

0.5

1

0 10 20 30 40 50

-1

-0.5

0

0.5

1

Figure 4.22. Pan tilt control angles for the characters in Figure 4.4.

Figure 4.23. Test image.

CHAPTER 5

WREATH PRODUCT 3D DATA ANALYSIS: LOCALIZATION

AND MAPPING, ROBOT KNOWLEDGE SHARING

AND BENCHMARK RESULTS

We explored wreath product application to 3D range data by implementing WPCA on

a differential-drive robot. This chapter covers the localization and mapping, multirobot

communication, and performance of our architecture compared against similar systems.

5.1 Navigation Benchmarking
In order to judge the effectiveness and robustness of operation of the WPCA repre-

sentational framework in the real world, we demonstrate its performance in terms of a

benchmarking protocol. Benchmarking protocols for a robot operating in a real dynamic

environment are more difficult to engineer and implement, compared to those in machine

learning or computer vision benchmarks, that evaluate algorithms operating on datasets.

In order to solve this problem Sprunk et al. [45] defined, for the first time, a detailed

benchmarking protocol for evaluation of robot indoor navigation algorithms. However,

their benchmarking protocol is specifically designed for evaluating the entire navigation

software of a robot, which also includes localization. However, navigation is not the

primary focus of this work. Hence we use only the localization performance of their

experiments as one of the benchmarks for determining the performance of our navigation

approach using our framework and data representation. In order to better evaluate our

benchmarking performance, we also compare against three other systems: (1) The Fast

Sampling Plane Filtering (FSPF) algorithm by Biswas et al. [46] on a Kinect-based robot

system, (2) Microsoft Research’s P1 robot platform which utilizes Sprunk’s framework,

and (3) Endres’ hand-held Kinect-based SLAM implementation on a dataset. They are

briefly explained as follows:

78

1. Sprunk’s protocol: In their benchmarking protocol, Sprunk et al. [45] attempt to

standardize the methodology used to assess the robustness of navigation algorithms.

To this end, they use a Pioneer P3-DX differential drive robot as a reference robot, to

which all other robots and their navigation algorithms are compared. Their pro-

tocol uses a Pioneer P3-DX differential-drive robot with a SICK LiDAR sensor. To

model the protocol for all possible users, they standardize most of the entities and

processes involved in testing a navigation system, for example, the environment,

the ground truth determination, environment dynamics, testing periods (simulated

months, years, etc.), performance statistics, etc. As mentioned earlier we compare

their localization performance to the WPCA system, and we try to model the envi-

ronment as they suggest, namely testing the localization in an office and an atrium

(discussed below).

2. FSPF: The system that resembles our framework the closest in terms of sensor,

and methodologies and algorithms used, is the Fast Sampling Plane Filtering (FSPS)

by Biswas et al. from CMU [46–49]. Unlike our system, their system’s main pur-

pose is navigation and obstacle avoidance, and it does not implement a higher-level

representational framework or behaviors. They predominantly use lines which are

down-projected planes discovered in the data, for localization. Our system uses a

combination of plane, line and point wreath products for localization. However,

they use an older version of the Kinect v2 sensor (Kinect v1) and work on point

clouds, similar to our system. They also process point clouds in a way similar to us,

by segmenting them using RANSAC, and determining their parameters. The major

difference between the two systems is that they compare down-projected planes

(lines) to an existing 2D vector map of the floor plan, determine which lines are

visible, and localize based on that, whereas we generate the floor plan from scratch

by exploring the environment.

3. MSR: Microsoft Research’s experiments employ Sprunk’s experimental benchmark-

ing protocol, although in a different environment and on a different robot - the

Microsoft Robotics Prototype 1 (MSR-P1).

4. Endres’ system: This system tracks a hand-held Kinect v1 sensor and generates a

79

dense 3D model of the environment. Their approach extracts and matches visual

features (SURF, SIFT, ORB) from RGB data of consecutive frames, and evaluates

the depth images for these frames to determine 3D correspondences between them.

They use a published benchmark dataset [50] which contains the RGB-D images from

Kinect with time-synchronized ground truth poses.

5.1.1 Robot

For our experiments, we use the SYMMBOT (shown in Figure 5.1). SYMMBOT is a

differential-drive robot based on an iRobot Create platform (the Matlab toolbox for iRobot

Create [35] was used to issue commands to the Create). It has a Kinect V2 (time-of-flight

RGB-D depth sensor). The architecture is implemented on an IBM Thinkpad, as shown in

Figure 5.1. It runs Linux (Ubuntu 14.04, 64-bit), has an 2.50GHz Intel Core i5, and 8 GB

RAM. Symmbot is a mobile robot; it needs an external power supply cable, as shown in

the figure, to power the Kinect V2, as the robot’s battery is insufficient for this purpose.

The laptop has its own battery, and the robot battery is used to drive the robot.

5.1.2 Environment

The environment is divided into two types of areas:

• Atrium: This is a predominantly open space (at least 90 % of its surface is without

furniture). An open area in Warnock Engineering Building (WEB), as shown in

Figure 5.2 top, serves as the atrium in the experiments described here.

• Office: This is an area densely occupied by desks, office chairs, and shelves. The

Virtual Reality (VR) lab in Warnock Engineering Building (WEB), as shown in Figure

5.2 bottom, serves as the office space.

5.1.3 Ground Truth

To evaluate the performance of a robot this protocol requires ground truth. In Sprunk’s

and MSR’s method (both employ the same protocol), this ground truth is obtained by

placing markers above the robot that identity the position of way-points. The robot has

an upward-facing camera that locates these markers (which are checkerboard patterns at

a height of 2.45m above ground). The experimenter initially manually drives to each way

80

point and records its position within the reference software. In Biswas’ FSPF method, their

system is compared against three different Collective Gradient Refinement (CGR)-based

laser rangefinder localization algorithms which simulate laser range scans [51]. Endres’

system used RGB-D datasets where each frame is time-synchronized to the ground truth

pose which is obtained using a high-accuracy motion-capture system. To generate our

benchmark tests, the experimenter manually marks the position and orientation of the

robot, with respect to the world frame origin, each time the robot stops, and measures it

using a tape measure. The robot localization results are compared to this hand-measured

ground truth.

5.2 Benchmark Results
The statistics used to evaluate the navigation performance of the WPCA are the location

and orientation error of the robot (see [52]). Tables 5.1 and 5.2 show the performance

measures (in terms of localization error in x, y-location in meters and angular error (ori-

entation in degrees), respectively, for the mean, median, minimum, and maximum error

encountered in the lab and Atrium environment when we use the RANSAC method for

WP discovery, compared to other systems. Similarly, Tables 5.3 and 5.4 show the per-

formance measures (in terms of localization error in x, y-location in meters and angular

error (orientation in degrees), respectively, for the mean, median, minimum, and maxi-

mum error encountered in the lab and Atrium environment when we use the pixel-based

approach method for WP discovery. Statistics that were not available for some of these

systems has been marked with an “X.” We observe that WPCA system performs better

than the Pioneer, MSR and FSPF systems, and is comparable to the Endres’12 system, with

respect to the localization error. Our system does not perform so well for the orientation

error, compared to the systems that provided orientation error data. However, it must be

noted that our algorithms have very high tolerances for landmark correspondence since

landmark rediscovery is more important to us than filtering out landmarks that are fairly

close to one another, but which might not meet tight tolerances, which tends to impact the

orientation measures significantly.

81

5.3 Floor Mapping
Chapter 3, section 3.7 describes the various goals (materialized as plans) that the robot

can achieve. One of these goals is mapping the environment. We describe the plan used

to achieve this in detail, and demonstrate the workings of our motion and landmark

localization algorithms that are used to localize the robot and account for motion and

perception uncertainties. The finite state machine for the floor mapping plan is shown

in Figure 5.3. This automaton works as follows:

5.3.1 Start State

This state starts off by acquiring data and then moving to state 1.

5.3.2 State 1

This state incorporates the following functions that segment the floor plane and iden-

tify its boundary, as well as identify the next point the robot should move to.

5.3.2.1 Clean floor plane

RANSAC is an iterative method that selects points randomly and assign them to planes

that fit the plane model with least error. In WPCA, points can belong to multiple planes,

given their plane parameters. For example, in Figure 5.4, the green plane illustrates the

floor whereas the blue plane illustrates a vertical wall. The red points on the floor should

belong to the floor plane, but got assigned to the blue plane since they also satisfy the

plane equation of the wall (since it is an infinite plane mathematically, it extends beyond

the points that are assigned to it, as depicted by the dotted line).

To avoid this ambiguity, all points that lie below a certain z-threshold, are checked

against the plane equation of the floor. For example,

ax + by + cz = d (5.1)

is the equation of a 3D plane, where a, b, c are components of the vector normal to the

plane, d is the distance of the plane from the origin, and [x, y, z]T is any point that satisfies

this equation. For the floor plane, a = 0, b = 0, and d = 0, hence we only retain points that

have |z| < threshold.

82

5.3.2.2 Get floor points

Floor points detected using RANSAC might be a subset of all the floor points that can

be seen by the camera. Thus, we use an additional step to get as many valid points into

the floor plane as possible. Our DEPTH TO WP algorithm in subsection 3.6.3 gives us the

parameters [a, b, c, d]T of an [R× R] plane and a subset of points that lie in the floor plane.

We first transform points in the depth image R[xi, yi, zi], i = 1 : N, from the robot frame

to the world frame, using the W TR transform. We then check for points W [xi, yi, zi], i =

1 : N, if |z| < threshold; if so, the point gets assigned to the floor plane. This expands

the currently known floor points and gives a more complete set of points that belong to

the floor. Figure 5.5 illustrates this in practice with one example. Figure 5.5(a) shows

the RGB image registered with the depth image, Figure 5.5(b) shows the corresponding

x, y, z point cloud run through the distance function as mentioned above, and the resulting

segmented floor as white pixels, and Figure 5.5(c) shows Canny edge detector applied to

the segmented floor pixels to yield the boundary of the floor in this image. Figure 5.6

demonstrates similar process for another location.

5.3.2.3 Get boundary points

The boundary points of the floor can be found using the intersection of a plane with

the floor. Algorithm 8 below illustrates the process to determine floor boundary. This

algorithm gets all the floor points from the belief that contains the floor information. It

also retrieves all the beliefs in the belief set that are planes (lines 1 and 2, respectively).

Thereafter, for every point in the current nonfloor plane [R × R]i, the line intersection of

this plane with the floor plane [R× R] f is found as Ri f (line 5). For every point pi on the

floor plane [R× R] f , we check if it satisfies the equation of the line Ri f , using the function

Ξ, and those that satisfy are added to ι. Γ contains these points for every plane [R× R]i that

intersect with the floor. To further ensure the completeness of the floor plane boundary, we

run all points pi in the point cloud data, through the function Ξ (line 11), which ultimately

gets added to Γ, giving us a more complete floor plane boundary. Note that we have the

data not only in the point cloud format, but also the correspondence of each point to a

pixel location, as well as its RGB value. Thus, we have the information [x, y, z, i, j, R, G, B],

where i and j are the row and column, per pixel at our disposal, which is how Figures 5.5

83

Algorithm 8: FIND FLOOR BOUNDARY.
Data: ι← {}, Γ← {}

1 F ← get all floor points();
2 [LMP] = get all Plane landmarks(Beliefs);
3 for all planes [R× R]i in LMP do
4 for floor plane [R× R] f do
5 Ri f ← I([R× R] f , [R× R]i);
6 for points pi in [R× R] f do
7 ι← Ξ(pi, Ri f);
8 end
9 Γ← ι;

10 for all points pi in [xi, yi, zi]
T ∈ Point Cloud do

11 ι← Ξ(pi, Ri f);
12 end
13 Γ← ι;
14 end
15 end
16 return Γ

and 5.6 are generated.

5.3.2.4 Identify next point

In order to follow a path on the floor we utilize the concept of the wall following

algorithm for maze solving [53–56]. The gist of this method is that, given a maze that

has a solution, if a robot follows the left wall (turning as the wall turns), eventually it

will reach the exit; i.e., the solution of the maze. If we consider the floor as a maze, and

start at the world frame location and keep following the left wall, eventually we reach the

starting location (the world frame location) again, and this completes the floor mapping.

Since the robot does not have a range sensor on the side, it relies on its front-facing depth

sensor. Thus, at every step, it turns towards the wall and determines the next point to

move to. The current step in the floor mapping plan generates - given the boundary pixels

generated by the previous step - the next point that the robot must move to, which will be

the right-most visible point of the connected floor boundary, since we are following the left

wall. The right-most visible point can either be the right-most edge of the visible image

as the floor boundary disappears towards the right, it can be a jump edge point, or it can

be a break in the floor boundary generated by the previous step as a result of noisy data.

84

Figure 5.7 depicts the process of the wall following approach along with finding the next

point to move to.

The robot is at location 1 initially, looking at the world frame, with origin O and X, Y

axes depicted in the top left of the image. The solid black line is the floor boundary, as

seen from above. Once the world frame is determined and control is passed to the floor

mapping algorithm, the f ind next point() function gets called. This function finds the

right-most point of the floor boundary visible in the currently acquired Kinect data. This

floor boundary is depicted as the set of dark (0) pixels in Figure 5.5(c), which is the edge

traced from left to right to find the next point (x, y, z) associated with a pixel (i, j) that

satisfies the conditions stated above. Initially the starting pixel on the floor boundary is

chosen as the pixel among the edge pixels in the current view, whose associated point is

closest to the world origin O. Starting from this pixel, we move to any edge pixels that

neighbor the current pixel (i, j) on its right side. In the next cycle this neighboring pixel is

the current pixel, and the process is repeated until:

1. A pixel does not exist on the right-side neighborhood of the current pixel, or,

2. The difference between the depth (z) value of the point associated with the next pixel

is significantly different than the one associated with the current pixel, indicating a

jump edge (based on empirical evidence this difference threshold is chosen to be 0.15

m.).

Thus, the edge is traced until one of the conditions above is satisfied, and the (x, y, z) point

associated with the current pixel (i, j) is chosen as the next point. The next point is depicted

as the yellow point 1 on the floor boundary. When control reaches this function again in

the future, point 1 will be considered as the starting point and the process repeated for all

the other next points.

5.3.2.5 Get action set

After a point, say the yellow point 1 depicted by p shown in Figure 5.8, is selected as

the next point to be visited, an action set must be generated that contains a set of commands

that the robot must execute so that it moves in such a way that the robot is directly looking

at the point 1, and its orientation is perpendicular to the floor boundary around this point.

85

The idea behind this approach is that the robot needs to expand its view around the area

of the next point, so that it can continue the process of finding the boundary further ahead.

Figure 5.8 illustrates this process.

After the next point 1 is found, the robot must find a point to move to (depicted by the

red dot p2), such that it is looking at the point 1 directly. Consider the short line segment,

determined by the range scan function discussed in Chapter 4, depicted by p1 p. Given the

vector ¯p1 p, the x, y components, in the floor plane, of the vector orthogonal to these two

vectors, given by n̄1 can be found as[
n̄1(x)
n̄1(y)

]
=

[
cos(π

2) sin(π
2)

− sin(π
2) cos(π

2)

] [
p2(x)− p1(x)
p2(y)− p1(y)

]
(5.2)

Once n̄1 is known, the point to which the robot must move is simply this vector (di-

rection), scaled by the distance d. Based on empirical evidence, this distance d is set to

1.5 m which is neither too close for depth data loss, nor too far for ambiguous depth data

acquisition and noise.

Once this point on the floor (red dot p2) is known, the robot actions to rotate clockwise

θ1, translate t, and rotate counter-clockwise θ2 can be found as follows:

θ1 = cos−1(
v̄1 · v̄2

(|v̄1| · |v̄2|)
) (5.3)

t = |v̄2| (5.4)

θ2 = π − cos−1(
n̄1 · v̄2

(|n̄1| · |v̄2|)
) (5.5)

where v̄1 is the current robot heading, and

v̄2 = p2 − R

is the vector from current robot location R to point p2. These three actions are returned

as action sets for the robot to execute. Note that these action sets do not necessarily

orient or translate the robot exactly normal to n̄1, owing to noisy data and erroneous

robot movements, but the Kinect’s 70◦ horizontal field of view is wide enough that the

subsequent portions and points (e.g., the yellow dot 2) are seen after these motions are

executed. It should be noted that since the data is noisy, especially at the boundary where

the floor meets the wall, depending on the features around the robot some points may

86

be discarded due to distance to the sensor or lighting effects, resulting in breaks in the

boundary.

Figure 5.9 shows the action generation process on real data for the starting location of

the robot. The initial pose is ([x, y, θ]T, where θ is in radians):

initial_pose =

0.9102

1.4062

2.5119

and is shown as a red dot representing location and a red arrow representing orientation.

The blue points are floor points, and their density decreases as distance from the sensors

increases; i.e., points farther away are less dense hence we see the pattern at each location

as the robot moves. The X and Y axes are shown as red and green arrows, respectively.

Points p and p1 correspond to those shown in Figure 5.8, whereas Next Location corre-

sponds to point p2 in Figure 5.8. The black points near the corner are the floor boundary

points determined so far, and they appear as a thick edge because the margin for selecting

floor points is set to 0.1 m. The Kinect data is especially noisy where the floor meets the

wall (it tends to shift upwards as we get closer to the wall). This can result in breaks in the

contiguous boundary, and a larger margin ensures maximum contiguous boundary. For

this particular location, the action set generated is:

action_set =

0 -81.8805 0

0 0 1.5362

0 121.6262 0

which indicates

(1) rotate clockwise by −81.8805◦, to face Next Location.

(2) translate 1.5362 m to arrive at Next Location.

(3) rotate counter-clockwise by 121.6262◦ degrees, to face point p.

87

5.3.2.6 Set start point to the next point

Once the robot is in position and is looking at the next point, this point is set as the start

point when this algorithm is called again by state 8. The next state is set to 3, for executing

the action sets generated by the method stated above.

5.3.3 State 3

The robot executes the first rotation by θ1 and sets next state to 4.

5.3.4 State 4

The robot acquires Kinect data and sets next state to 5.

5.3.5 State 5

The robot executes the translation by t m, and sets next state to 5.

5.3.6 State 6

The robot acquires Kinect data and sets next state to 7.

5.3.7 State 7

The robot executes the second rotation by θ2 and sets next state to 8.

5.3.8 State 8

This state is similar to state 2, where it generates the next action set. However, this

state also checks if the next point is sufficiently close to the start point, which implies that

the robot mapped the entire space and reached the world frame origin again. Of course,

this check does not get called in the first iterations of this FSM, so that the plan does not

complete prematurely.

5.3.9 State 9

If it is detected that the robot has completed the task by coming back to the origin, the

boundary points are updated with the data from the last iteration, and the plan is marked

as “complete.”

The final floor boundary generated is shown in Figures 5.10(a) (which shows the bound-

ary as generated) and 5.10(b) (which demarcates the boundary to elaborate on the breaks

88

in the boundary generated due to noise).

In Figure 5.10(b), the world frame axes are shown as red and green arrows respectively.

The red dotted lines at the top mark the start of the corridor, and serve as virtual walls at

the software level that prevent the robot from further exploring the corridors. The blue

boxes near the glass windows of the atrium indicate noisy data generated due to intense

sunlight, thus, no data is generated for those patches on the floor, resulting in breaks or

noisy edges. Finally, the red boxes marked with red cross are areas on the floor behind

the earthquake resistant metallic pillars that cannot be accessed, which prevents the robot

from generating the floor boundary at that area. Note that robot is blocked in software at

restricted or inaccessible spaces.

5.4 Mapping the Environment
Environment mapping functionality follows the same plan as the floor mapping, al-

though when we map the environment we consider not just the floor, but all the WPs

that are generated along the way. The environment mapped is shown in Figure 5.2. This

environment is on the second floor of the Warnock Engineering Building at the University

of Utah. Dynamic environment and moving obstacle detection and avoidance is out of

the scope of this work, and thus, this environment is ideal for our operations, as it is a

low-traffic region. We have mapped both the cluttered environment of the lab as well as

the uncluttered environment of the atrium. However, the lab is a small room and due

to the large field of view of the Kinect is mapped in a few steps. Therefore, most of our

experiments are performed in the large atrium (≈ 12× 5 m2).

5.4.1 Motion Localization

Our localization algorithm (based on [57, 58]) works in two steps as indicated in Algo-

rithm 2 (line 3 corresponds to state update using current pose and control data, also known

as motion update, and line 5 corresponds to state update using landmark correspondences,

if any). These two steps are elaborated on, in the following subsections.

Algorithm 9 describes the procedure to update the robot pose based on control com-

mands sent to the robot. The algorithm accepts the current state µ, covariance Σ, and

control ut as the arguments. Based on whether a translation motion occurred (vt 6= 0) or a

89

rotational motion occurred (ωt 6= 0), the state is updated accordingly. This algorithm is a

standard motion model update. Since the robot has only two discrete motions - translation

and rotation - and not a combination of both at the same time, this model is simple.

Algorithm 9: UPDATE ROBOT POSE.

1 [vt, ωt]T ← ut;
2 Fx ← I3,3;
3 if ωt = 0 then

4 T ←

δtvt cos(µt−1,θ +
π
2)

δtvt sin(µt−1,θ +
π
2)

0

;

5 else

6 T ←

−ωt
vt

sin µt−1,θ +
ωt
vt

sin(µt−1,θ + ωtδt)

−ωt
vt

cos µt−1,θ − ωt
vt

cos(µt−1,θ + ωtδt)

ωtδt

;

7 end
8 µ̄t = µt−1 + Fx × T;

9 Gt = I + FT
x

0 0 − vt
ωt

cos µt−1,θ +
vt
ωt

cos(µt−1,θ + ωtδt)
0 0 − vt

ωt
sin µt−1,θ +

vt
ωt

cos(µt−1,θ + ωtδt)
0 0 0

;

10 Σ̄t = GtΣt−1GT
t + FT

x RtFx;
11 µt = µ̄t;
12 Σt = Σ̄t;
13 return µt, Σt

5.4.2 Wreath Product (WP Landmark) Localization

WP landmark localization (shown in Algorithm 10) matches – using function Ψ, and

threshold τ – newly discovered landmarks, Zt (transformed from robot frame into the

world frame), to existing WP landmarks in beliefs (LMs), and adds the indexes to corre-

spondence C (lines 1 – 3) if they are close enough (Algorithm 11 elaborates the process

of landmark correspondence detection). We localize the robot based on the geometric

constraints that must be satisfied if the type of WP landmark correspondence is known.

For example, lines (parallel to the floor) and (nonfloor) planes intersecting with the floor

plane form line constraints (lines 15, 22), i.e., the robot has to be on a line that is at a certain

distance from, and parallel to the observed line. If multiple constraint lines are present,

pairs of these lines will intersect to give location hypotheses, whereas for single lines

the closest point on the constraint line is our possible location (added to the hypotheses).

90

Algorithm 10: LANDMARK LOCALIZATION.
Data: C ← {}, Hµ ← [µt,x,y, σµ], Hθ ← [µt,θ , σθ] Observations
input: Zt ← Observations
output: µt, Σt

1 [LM] = get all WP landmarks(Beliefs);
2 W TR=get transform(Beliefs);
3 C ← LANDMARK CORRESPONDENCES(Zt, LM);
4 for all point observations Ei

zt
and LMs Ej

lm in C do
5 r ← norm([0, 0], [xi

zt
, yi

zt
]);

6 circles← [xEj
lm

, yEj
lm

, r];

7 end
8 for all line observations Ri

zt
and LMs Rj

lmin C do
9 if Rj

lm ⊥ f loor then
10 ip← I(Ri

zt
, f loor);

11 r ← norm(ip);
12 circles← [xRj

lm
, yRj

lm
, r];

13 else
14 [aj, bj]← Φ(Rj

lm), cj ← η((Ri
zt

, Rj
lm);

15 lines← [aj, bj, cj];
16 end
17 end
18 for all plane observations [R× R]izt

and LMs [R× R]jlmin C do
19 if [R× R]jlmnot parallel to f loor then
20 Rint ← I([R× R]izt

, f loor);
21 [aj, bj]← Φ(Rint), cj ← η(Rint, R′int);
22 lines← [aj, bj, cj];
23 end
24 end
25 Hµ(x,y),Hθ ← Υ(circles), Hµ(x,y),Hθ ← Λ(lines);

/* Each Hµ(x,y) ← [x, y, σ2
(x,y)], Hθ ← [θ, σ2

θ] */

26 µt, Σt ← COMBINE HYPOTHESES(Hµ(x,y),Hθ)

Lines intersecting the floor planes (for example, vertical lines) give point constraints, and

coupled with already known point landmarks signify that the robot is at a certain distance

from these points (lines 6, 12), i.e., the robot has to be on the circle(s) with these point(s) as

center(s). For a single circle constraint, the closest point on this circle to the current robot

location is an additional hypothesis. If multiple circles are present, intersection of pairs of

these circles give additional hypotheses. An orientation estimate θ hypothesis is simply

the difference between existing landmark orientation and newly observed landmark ori-

91

Algorithm 11: LANDMARK CORRESPONDENCES
input : Zt: All observed landmarks in robot frame. LM: All landmarks in beliefs
output: C: correspondences between Zt and LM.

1 for all observations Rzi
t in Zt do

2 for all landmarks lmj in LM do
3 Wzi

t = trans f orm(W TR,R zi
t);

4 if Ψ(Rzi
t, lmj) < τ then

5 C ← {i, j};
6 end
7 end
8 end
9 return C

entation, added to the current orientation hypotheses. Function I is used to determine the

intersection of a line or plane with the floor, function Φ calculates line parameters (a, b),

and η determines the constraint line’s distance (parameter c in the line equation) from the

origin and the side of the line the robot is located on. Multiple hypotheses (Hµ for location

andHθ for orientation) might be generated depending on how many constraint circles and

constraint lines are discovered as explained above, and determined by functions Υ and Λ,

respectively (line 25). These hypotheses are combined based on the weights K, that are

determined using the standard applied optimal estimate [57] (see Algorithm 12), and are

based on the the noise variances associated with the hypotheses (lines 6 – 7).

5.5 Multirobot Knowledge Sharing
Multirobot knowledge sharing helps two robots share their acquired knowledge, in

the form of WP beliefs. We demonstrate this capability in a simple fashion by sharing

one robot’s knowledge base with another robot which can then avoid mapping the envi-

ronment. We demonstrate the multirobot knowledge sharing with two scenarios, both of

which are likely to occur in day-to-day operation of multiple robots. First scenario deals

with world frame image matching, whereas second scenario deals with WP data matching.

5.5.1 Scenario 1: Exchange of Knowledge by World
Frame Correspondence.

In this scenario we assume that a robot B has not been in robot A’s environment before,

but has the world frame (RGB) image of A’s environment (we also assume some form

92

Algorithm 12: COMBINE HYPOTHESES
input :Hµ(x,y),Hθ

output: µt, Σt

1 for all hypotheses pairs {hi
µ, hj

µ} ∈ Hµ, and {hp
θ , hq

θ} ∈ Hθ , do2

Vµ ←

σ2
µ,1/σ2

µ,1 σ2
µ,1/σ2

µ,2 ... σ2
µ,1/σ2

µ,n
...

...
. . .

...
σ2

µ,n/σ2
µ,1 σ2

µ,n/σ2
µ,2 ... σ2

µ,n/σ2
µ,n

Vθ ←

σ2
θ,1/σ2

θ,1 σ2
θ,1/σ2

θ,2 ... σ2
θ,1/σ2

θ,m
...

...
. . .

...
σ2

θ,m/σ2
θ,1 σ2

θ,/σ2
θ,2 ... σ2

θ,m/σ2
θ,m

3 end
4

Kx,y,(1...N) = [1/
N

∑
j=1

Vµ(1, j), 1/
N

∑
j=1

Vµ(2, j), ..., 1/
N

∑
j=1

Vµ(N, j)]T

Kθ,(1...M) = [1/
M

∑
j=1

Vθ(1, j), 1/
M

∑
j=1

Vθ(2, j), ..., 1/
M

∑
j=1

Vθ(M, j)]T

µ̂t(x,y) ← ∑N
i=1 KiHµ(x,y),i , θ̂t ← ∑M

i=1 KiHθ,i

5 σ2
x,y =

√
∑N

i=1 Kx,y,iσx,y,i

6 σ2
θ =

√
∑M

i=1 Kθ,iσθ,i

7 µt ← [µ̂t(x, y), θ̂t]T

Σt ←

σ2
x,y 0 0
0 σ2

x,y 0
0 0 σ2

θ

return µt, Σt

of communication interface between the robots has been established for image exchange

such robot B can acquire this image from robot A at the start). When B finds this world

frame it simply needs to localize itself in A’s frame and acquire the WP knowledge base

from A. The key to achieving this functionality is world frame matching. Figure 5.11(a)

shows the world frame image for robot A which starts at this particular section on the

floor, and builds WPs with respect to this frame, whereas Figure 5.11(b) shows the image

of the world frame during the robot B’s run, encountered midway during execution.

Similarly Figure 5.12(a) shows the world frame image for robot A, whereas Figure

93

5.12(b) shows the image of the world frame during the robot B’s run, encountered after

loop closure.

B does not know beforehand, which particular corner in the current environment cor-

responds to A’s world frame, but it can determine this using RGB data of the candidate

corners. We do not consider the original RGB image in our calculations since the size of

the images are different and they are shifted along the baseline and the RGB pixels are not

associated directly with x, y, z, but use the RGB image registered with the depth camera

(the dark pixels near the metal grate in Figure 5.11(a) and 5.11(b) are artifacts of inverse

mapping occurring during this registration process).

A simple 2D correlation using Equation 5.6 on the two images in Figure 5.11 yields a

score of 0.8506.

c =
∑i ∑j(Aij − Ā)(Bij − B̄)√

(∑i ∑j(Aij − Ā)2)(∑i ∑j(Bij − B̄)2)
(5.6)

where Ā is mean(A), and B̄ is mean(B). The 2D correlation using the two images in Figure

5.12 yields a score of 0.9043.

Figures 5.13 - 5.15 illustrate the matching of world frame image of robot A to corners

encountered during robot B’s run that do not match the original image (invalid corners),

and their respective 2D correlation scores.

The basic idea and assumption behind this approach is that corners will be sufficiently

different in terms of their color and other features that will help identify similar corners

(two corners in a building that are not the same but look exactly alike would have no

solution with the 2D approach; this ambiguity can be solved for by using 3D structure of

the environment (see scenario 2 discussed in subsection 5.5.2).

Once a high correlation location is found, robot B acquires range data and builds a

coordinate frame and localizes itself in this frame, and it acquires the belief set from robot

A and it can proceed with its other plans since it is now localized in this frame. Thus, it

can avoid repeating the WP building process if it has access to the RGB image of the world

frame of another robot.

94

5.5.2 Scenario 2: Exchange of Knowledge by Environment
Shape and WP Matching.

In this scenario, two robots A and B are exploring the same environment, although both

have started their run from different world frames in the same environment (this scenario

is also useful to test for world frame similarity, if ambiguity exists, as discussed in scenario

1. After their respective runs are complete, they can exchange their WP knowledge - for

example, to discover flaws in their individual beliefs or to merge the two sets. For example,

consider Figure 5.16 which shows the floor map, obtained from the floor mapping plan,

of the atrium environment, and Figure 5.17 shows the same floor map, demarcated with

lines for convenience.

The black points are all the points on the floor plane. The two (unexplored) corridors

are indicated at the north side of Figure 5.17. The left-most (green dotted lined) pillar is

used as the initial world frame of robot A and is shown by the red (X-axis) and blue (Y-axis)

arrows. Robot A moves in a clockwise direction starting from this position, and covers the

entire area before closing the loop at the starting position.

Figure 5.18 shows a bird’s-eye view of the atrium environment mapped, with various

planes shown in different colors.

On the other hand, robot B starts at a different world frame location as shown in Figure

5.19.

The world frame location is on the right (East) side of the floor and marked with X and

Y axes. After both robots have finished mapping the floor we use range scan algorithm

to determine the shape of the mapped floor using the upright plane WPs (walls, pillars,

doors, etc.). The algorithm proceeds as follows: both robots find the mean points Pi (PA

and PB, for the two robots) of their respective floor maps which are in different world

frames. If the environment is the same in both cases, these points should be close to each

other spatially in the real world. We then start scanning, with the mean point Pi as the

center, from 0◦ to 359◦ with respect to each frame’s X-axis, and step in the direction of this

angle in small increments (similar to how a radar would scan the world around it). During

these small increments, if a WP plane is encountered within 0.05 m, the increments for the

current angle are added to get the range to this WP plane from Pi. We then start the same

process from the next angle. This is similar to a polar coordinate representation. Since

95

lines and points are less likely to be encountered owing to discrete increments of angles

and distance increments, we only consider planes for this process. Two robots that have

scanned the same environment get similar range scans for their WP planes, albeit shifted

(circularly) by a certain angle depending on the orientation between their respective world

frames.

Figures 5.20 shows the floor map for robot A (in blue) and WP planes shown in various

colors (note that the colors are repeated, hence, there is not necessarily a correspondence

between planes of the same color). The mean point PA is shown as a big red dot at the

center of the floor. The concentric green “x” circles indicate discrete increments from PA

till a WP plane is encountered, for all angles from [0◦, 360◦]. Figure 5.21 shows the range

scan for robot B. Notice that the mean points PA and PB are not exactly at the same location,

but are close to each other. Also note that the axes are switched for the two scans.

These ranges for robots A and B are shown in Figures 5.22 and 5.23, respectively. Notice

that they have the same structure but are circularly shifted by 270◦ (or 90◦ depending on

the direction of rotation). By keeping ranges for one robot constant, the ranges for other

robot are shifted one angle at a time (anti-clockwise rotation =⇒ 270◦ shift and clockwise

rotation =⇒ 90◦ shift.), and the score at any particular shift value s is calculated as

Scores = ∑359◦
i=0◦ abs(di,1 − di+s,2), where di,1 is the range value for first robot for angle i and

di,2 is the range value for second robot for angle i, and s ∈ [0◦, 359◦]. The maximum score

corresponded to a shift of 270◦ in our experiments for the range values. Figure 5.24 (range

scan of robot B shifted by s = 270◦) matches Figure 5.22 (range scan of robot A) very well.

The WP planes from the two datasets were also matched with one another, using

distance function d, for these shifts and the plane parameters were checked for the two sets

and the maximum number of matches - corresponding to minimum distance, implying

maximal plane alignment - were found to be at a shift of 267◦. We used the distance

function d, shown in Equation 5.7, to measure how close the two sets of planes align with

one another when one set is circularly shifted by a certain shift value, where P1 and P2

are the two planes from two sets, n̄1 and n̄2 are their respective plane normals, d1 and

d2 are their respective distances from their respective origins, and these two measures

(dot product n̄1 · n̄2 and absolute difference of their distance from their respective origin

|d1 − d2|) are weighted by a. In our experiments both are weighted equally, thus a = 0.5.

96

d(P1, P2) =
a (1−n̄1·n̄2)

2 + (1− a)(1− e−|d1−d2|)

2
(5.7)

This shift is applied to the sequence of WP occurrence (in other words, indexes of WP

planes) in robot B’s dataset, to align the indexes with that of WP dataset of robot A. Once

the correct correspondence is known, a rotation corresponding to the shift angle (267◦ in

our case) is applied to one of the world frame to align the axes of the two world frames,

and since the correspondence between WP planes indexes is now known between the two

datasets, the translation is found by finding the translation between any pair of matching

WP planes in the two aligned datasets, to give the complete transform between the two

world frames. In the example discussed above, this transform was determined to be

BTA =

−0.0523 0.9986 0 −0.0253
−0.9986 −0.0523 0 10.5500

0 0 1.0000 0
0 0 0 1.0000

Note that the respective world frames for A and B are translated with respect to each

other only in positive X direction (in A’s frame), and minimally in A-frame’s Y-axis, and

they are rotated with respect to each other by 270◦. Thus the transform given above

matches the data. Once this transform is determined, it can be applied to the first dataset

(or the inverse of this transform applied to the second dataset) to align the WP datasets

with one another. The alignment performed using this transform is shown in Figure 5.25

where the planes from dataset A are shown in blue and those from dataset B are shown in

red. Note that these planes are represented in the world frame for robot B which is why the

X-axis is aligned breadth-wise instead of length-wise, like in the case of robot A’s world

frame.

97

Table 5.1. Location error (in meters) comparison between systems using RANSAC.

System→ WPCA (lab) WPCA (Atrium) Pioneer MSR FSPF Endres’12
Mean 0.0989 0.2065 0.22 0.23 0.7 0.097

Median 0.0948 0.1939 - - 1.08 -
Min 0.0511 0.0454 0.12 0.03 0.17 0.034
Max 0.2574 0.4180 0.32 0.43 3.47 0.16

Table 5.2. Angular (orientation) error (in degrees) comparison between systems
using RANSAC.

System→ WPCA (lab) WPCA (Atrium) Pioneer MSR FSPF Endres’12
Mean 10.4221 5.9360 - 0.5 - 3.39

Median 8.9267 5.2658 - - - -
Min 2.3491 0.2658 - - - 1.84
Max 29.1521 13.7671 - 2.5 - 4.94

Table 5.3. Location error (in meters) comparison between systems with planar
segmentation using pixel-based approach.

System→ WPCA (lab) WPCA (Atrium) Pioneer MSR FSPF Endres’12
Mean 0.0733 0.3624 0.22 0.23 0.7 0.097

Median 0.1029 0.2832 - - 1.08 -
Min 0.0363 0.0593 0.12 0.03 0.17 0.034
Max 0.1029 0.6984 0.32 0.43 3.47 0.16

Table 5.4. Angular (orientation) error (in degrees) comparison between systems
with planar segmentation using pixel-based approach.

System→ WPCA (lab) WPCA (Atrium) Pioneer MSR FSPF Endres’12
Mean 3.8647 3.6306 - 0.5 - 3.39

Median 3.5648 3.6279 - - - -
Min 0.4344 0.3719 - - - 1.84
Max 12.4380 7.6306 - 2.5 - 4.94

98

Figure 5.1. Symmbot.

Figure 5.2. Example of (top) a hallway, and (bottom) an office in the Warnock Engineering
Building.

99

Figure 5.3. Finite state machine of the floor mapping plan.

Figure 5.4. Planes can be identified with any points that solve the plane equation.

100

(a) Registered RGB image. (b) Floor segmented from the
entire x,y,z point cloud based on
distance function.

(c) The boundary of the floor
based on plane intersections
with the floor, with gaps filled
with BW morph functions.

Figure 5.5. Floor segmentation view 1.

(a) Registered RGB image. (b) Floor segmented from the
entire x,y,z point cloud based on
distance function.

(c) The boundary of the floor
based on plane intersections
with the floor, with gaps filled
with BW morph functions.

Figure 5.6. Floor segmentation view 2.

101

Figure 5.7. Depiction of the wall following algorithm in top view.

Figure 5.8. Action set generation.

102

Figure 5.9. A zoomed in image of the action set generation process on real data. Floor
points are blue dots. The X and Y axes are showing as red and green arrows respectively.
Current robot location and robot heading are shown as red dot and red arrow. Points p and
p1 correspond to those shown in Figure 5.8, whereas Next Location corresponds to point p2
in Figure 5.8.

103

(a) Floor boundary generated using wall following technique.

(b) Analysis of floor boundary generated using wall following technique.

Figure 5.10. Floor boundary generated using the wall following technique.

104

(a) World frame corner image for first world
frame detection.

(b) World frame corner image for second
world frame detection, in another run (loop
closure).

Figure 5.11. Comparison between original world frame and candidate world frame in a
different sequence of actions. 2D correlation score = 0.8506.

(a) World frame corner image for first world
frame detection.

(b) World frame corner image for second
world frame detection in the same run (loop
closure).

Figure 5.12. Comparison between original world frame and candidate world frame. 2D
correlation score = 0.9043.

(a) World frame corner image for first world
frame detection.

(b) Candidate World frame corner image for
second world frame detection.

Figure 5.13. Candidate world frame 2. 2D correlation score = 0.3627.

105

(a) World frame corner image for first world
frame detection.

(b) Candidate World frame corner image for
second world frame detection

Figure 5.14. Candidate world frame 3. 2D correlation score = 0.4599.

(a) World frame corner image for first world
frame detection.

(b) Candidate World frame corner image for
second world frame detection

Figure 5.15. Candidate world frame 4. 2D correlation score = 0.4007.

106

Figure 5.16. Points on the floor shown in the X-Y view.

107

Figure 5.17. Points on the floor shown in the X-Y view with lines added for demarcation.
The red dashed lines shows the rectangular bounding rectangles of the floor that matches
the data closely. The green dotted lines indicate the occluding pillars and other structures
obstructing view of the south-side wall. The green dot indicates the world frame origin
and the red and blue arrows indicate X and Y axes, respectively.

108

Figure 5.18. All the WP planes shown in different colors in a bird’s-eye view (note
that different colors does not necessarily mean different planes and same color does not
necessarily mean same plane. The limited options of colors in the plotting function means
colors have to be shared by various planes).

Figure 5.19. Points on the floor shown in the X-Y view with lines added for demarcation.
The red dashed lines shows the rectangular bounding rectangles of the floor that matches
the data closely. The green dotted lines indicate the occluding pillars and other structures
obstructing view of the south-side wall. The green dot indicates the world frame origin
and the red and blue arrows indicate X and Y axes respectively. Note that robot B starts at
a different world origin on the right (east) side of the floor.

109

Figure 5.20. Range scan of map for robot A.

Figure 5.21. Range scan of map for robot B.

110

Figure 5.22. Range scan distances of map for robot A.

Figure 5.23. Range scan distances of map for robot B.

Figure 5.24. Range scan distances of map for robot B, shifted by 270◦.

111

Figure 5.25. WP planes from two different environment overlayed.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

We conclude this dissertation with a summary of contributions of our work and poten-

tial for future work and enhancements in the WPCA. Our contributions include:

1. The first implementation of Wreath Product representation of Leyton’s ideas, to the

best of our knowledge.

2. The Enhanced Non-Deterministic Agent System (ENDAS) for 2D character classifi-

cation uses WP and symmetry concepts, as well as binds perception and actuation to

create an effective and efficient representation of 2D data.

3. A BDI architecture implementation which manages WPCA in operation.

4. A demonstration of the performance of WPCA in the context of mapping and local-

ization using WPs as landmarks.

5. Incorporation of actuation as a generative mechanism in the WPCA, and its applica-

tion to 2D character classification.

6. Multirobot communication and knowledge sharing using WP representation.

We have demonstrated a novel practical implementation of a cognitive architecture us-

ing the wreath product representation for indoor environmental data and a Belief Desire

Intention (BDI) framework that gives structure for realizing these representations. To

the best of our knowledge, this is the only existing practical implementation of Leyton’s

wreath product cognitive model. This architecture is also another example of a working

BDI framework module that is modeled on the human practical reasoning process. The

amalgamation of the wreath product representation and BDI framework brings together

two powerful cognitive architectures concepts: effective representations that tie together

perception and actuation, and a framework based on practical reasoning to use these

113

representations to achieve high-level goals in the form of plans. We have addressed not

only 3D depth data for the purposes of robot operation in a real environment, but have also

found interesting results working with 2D data and applying wreath product principles to

character classification in engineering drawings. We have demonstrated that our imple-

mentation works very well in the context of robot localization, one of the most essential

functionalities of a mobile robot, and a precursor to other intelligent capabilities. The

performance of our localization algorithm using wreath products as landmarks compares

fairly well to localization algorithms on other systems similar to ours; it performs better

than other systems in terms of localization error, but does not perform well in terms of

orientation error which can be attributed to trade-off between landmark correspondence

discovery, and matching thresholds. Future work in this regard would involve improving

orientation accuracy without negatively affecting location accuracy or landmark discovery.

Experimentation with sensors using other depth measurement technique (e.g., structured

light or LIDAR sensors) is also possible. Our representations are structured in a way that

allows for multirobot knowledge sharing in scenarios where the collective knowledge of

a set of robots will be larger than their individual knowledge bases, vastly reducing the

time and effort required overall. We also provided a context-free grammar and pushdown

automaton for the representation of wreath products. Finally, we have shown how WPs

can be interpreted as motion plans.

6.1 Future Work
The WPCA provides a base upon which to build additional cognitive capabilities for

an autonomous agent. In that respect, some avenues to explore are as follows:

6.1.1 Innate Knowledge

In living beings, some innate knowledge comes from evolutionary experience. For

example, the fight-or-flight response, the feeling of stress or hunger, etc., are some of the

built-in biochemical mechanisms, acquired through evolution, that drive the responses of

living beings. Some of this innate knowledge gives rise to the intrinsic motivation, while

other motivations are acquired by existence in the environment. In future, analyses will

be done to identify additional innate beliefs required for improving the robot’s cognitive

114

capabilities, or to identify which beliefs should be acquired initially to improve effective-

ness.

6.1.2 Learning

6.1.2.1 Reinforcement learning

Although not in the scope of this work, learning mechanisms can be added to the

plan library, in order to promote some actions using reward functions, while discouraging

others that can impede progress. These learning mechanisms can be used not only in the

high-level WP plans that generate actions, but also in the low-level robot control functions,

given the robot motion model, to reduce error.

6.1.2.2 Own structure

Discovery of relations between perception and actuation systems is an important pro-

cess for an autonomous agent; in most practical applications this information is built into

the system by the designer. We have explored some aspects of this in the form of sensori-

motor recontruction, and symmetry bundles in [1, 3, 59]. The discovery of own structure can

be explored further by adding more sensors and actuators, and mechanisms to determine

the relations formed during operation. This capability can be tested on more complicated

robot systems where the robot will be able to identify the relationship between its own

perception and actuation systems upon ”waking up” in the world with minimal knowl-

edge. For example, the iRobot Create has simple translate and rotate actuation mechanisms.

On more complicated Unmanned Ground Vehicle (UGV) platforms, other motions - e.g.,

driving on the circumference of a circle - can be tested. In addition, pan-and-tilt camera

mounts will provide additional capabilities to trace an object visually, akin to our work on

virtual camera, in Chapter 4.

6.1.2.3 Deep learning

We have recently demonstrated the applicability of recurrent neural networks to form

simple concepts of shapes using the perception and actuation signals, where we describe

how wreath products can be represented as recurrent neural networks where the actu-

ations are represented one one side of the network and the perceived symmetries are

represented on the other side (see [60]). For complex relationships between these, the ad-

115

vancements in deep learning [61] can be exploited, where the relations between actuation,

and resulting symmetries is complicated and spans many layers.

6.1.3 Abstraction

6.1.3.1 Generalization

A variety of objects or structures can be generalized. For example, a number of man-

made objects in the environment can be generalized as rectangular parallelepipeds, cylin-

ders, etc. A robot with generalization mechanism may look at a hallway and a storage box

and will generalize generalize them both as parallelepipeds, or it may look at a cylindrical

pillar and a water bottle and generalize them both as cylinders, etc., even though these

objects may have protrusions, recesses, or imperfections. This mechanism can be informed

by the WP shape representations.

6.1.3.2 CAD architecture mapping

Since WPCA works on indoor 3D data, it is ideally suited for mapping the architecture

of the environment for CAD purposes to measure the build quality, either by incorporating

CAD models in software, or by analyzing scanned images of CAD drawings (see our work

on CAD drawing analysis in [62]).

6.1.3.3 Summarization

Producing summarization sentences (e.g., ”Square has symmetries (e o Z2 oR o Z4) and

(e o Z4 oR)”), and/or semantic labels (e.g., ”room,” ”box,” ”pillar,” etc.) can be a useful

cognitive capability, where the performance of the system is tested by a human tester, on

how accurate these sentences are.

6.1.3.4 Natural objects

Autonomous capabilities need to be tested outdoors as well. For that purpose, abstract

representations of non-man-made objects are necessary; e.g., trees, rocks, uneven surfaces.

These objects may or may not have some form of symmetry. For example, wreath product

can be used to represent crumpled paper, formed by applying symmetry-breaking opera-

tions to a sphere. Asymmetrical objects (such as a tree) might possess symmetry in parts.

For example, the stem, branches, and leaves, may possess their own symmetry.

116

6.1.4 Further 3D Applications and Experiments

6.1.4.1 Multiple depth sensors

An additional Kinect (or a single sensor that can be aimed) will acquire data from the

floor and lower walls, as well as upper walls and ceiling in the same run, providing a

larger picture of the environment. This capability will be essential for the CAD architecture

mapping, and other scenarios discussed above, and will be useful for platforms that are

smaller than our present iRobot Create to acquire data effectively.

6.1.4.2 As-built vs. as-designed

An extension of the CAD architecture mapping described above, the As-build vs. As-

designed method will match CAD design of an object/indoor environment, to the respec-

tive structure perceived by the robot, in order to determine the build quality.

6.1.4.3 Outdoor mapping and localization

A completely autonomous robot must be able to operate outdoors as well. New chal-

lenges arise in an outdoor environment; e.g., lighting, different surfaces, and other envi-

ronmental conditions affect the sensing capabilities, as well as motion of the robot, since a

UGV has to adjust to varying surface conditions, and an Unmanned Aerial Vehicle (UAV)

has to deal with turbulent air, etc. In an indoor environment, most structures around

the robot remain relatively uniform (e.g., most surfaces are planar) whereas in outdoor

environment, the surfaces can vary depending on the landscape and the operational en-

vironment. Accessibility for the robot is another issue in an outdoor environment. These

challenges imply more work (error correction, adaptive capability, additional planning)

for both perception and actuation systems, and this will be studied in more detail in the

future.

APPENDIX

BELIEF STORE DATA

A.1 Innate Beliefs

b e l i e f s (1) . name = ’ Robot Pose ’ ;
b e l i e f s (1) . id = 1 ;
b e l i e f s (1) . type = POSE ;
b e l i e f s (1) . i n f o = eye (4 , 4) ;
b e l i e f s (1) . u n c e r t a i n t y = I n f ∗eye (3 , 3) ;
b e l i e f s (1) . ch i ldren = 0 ;
b e l i e f s (1) . parent = 0 ;

b e l i e f s (2) . name = ’ Gravity Vector ’ ;
b e l i e f s (2) . id = 2 ;
b e l i e f s (2) . type = VECTOR;
b e l i e f s (2) . i n f o = [0 ; 0 ; − 1] ;
b e l i e f s (2) . u n c e r t a i n t y = [Inf , Inf , I n f] ;
b e l i e f s (2) . ch i ldren = 0 ;
b e l i e f s (2) . parent = 0 ;

b e l i e f s (3) . name = ’ Find WP’ ;
b e l i e f s (3) . id = 3 ;
b e l i e f s (3) . type = ACTION;
b e l i e f s (3) . i n f o = 0 ; % 0 : not ac t ive , 1 : a c t i v e
b e l i e f s (3) . u n c e r t a i n t y = 0 ;
b e l i e f s (3) . ch i ldren = 0 ;
b e l i e f s (3) . parent = 0 ;

b e l i e f s (4) . name = ’ Extend WP’ ;
b e l i e f s (4) . id = 4 ;
b e l i e f s (4) . type = ACTION;
b e l i e f s (4) . i n f o = 0 ; % 0 : not ac t ive , 1 : a c t i v e
b e l i e f s (4) . u n c e r t a i n t y = 0 ;
b e l i e f s (4) . ch i ldren = 0 ;
b e l i e f s (4) . parent = 0 ;

b e l i e f s (5) . name = ’ Combine WPs ’ ;
b e l i e f s (5) . id = 5 ;
b e l i e f s (5) . type = ACTION;

118

b e l i e f s (5) . i n f o = 0 ; % 0 : not ac t ive , 1 : a c t i v e
b e l i e f s (5) . u n c e r t a i n t y = 0 ;
b e l i e f s (5) . ch i ldren = 0 ;
b e l i e f s (5) . parent = 0 ;

b e l i e f s (6) . name = ’ Camera Pose ’ ;
b e l i e f s (6) . id = 6 ;
b e l i e f s (6) . type = POSE ;
R = CS5320 gen R ([1 ; 0 ; 0] , − (2 7 . 8 6 4 + 9 0)∗ pi / 1 8 0) ;
T = eye (4 , 4) ;
T (1 : 3 , 1 : 3) = R ;
T (2 , 4) = 0 . 2 0 3 2 ; %T r a n s l a t i o n from the c e n t e r of the robot
to Kinect base
T (3 , 4) = 0 . 8 2 ; %T r a n s l a t i o n from the l o c a t i o n of the Kinect
to i t s base
b e l i e f s (6) . i n f o = T ; % pose of camera wrt robot
b e l i e f s (6) . u n c e r t a i n t y = 0 .0001∗ eye (3 , 3) ;
b e l i e f s (6) . ch i ldren = 0 ;
b e l i e f s (6) . parent = 0 ;

b e l i e f s (7) . name = ’ Terminate ’ ;
b e l i e f s (7) . id = 7 ;
b e l i e f s (7) . type = ACTION;
b e l i e f s (7) . i n f o = 0 ; % 0 : not ac t ive , 1 : a c t i v e
b e l i e f s (7) . u n c e r t a i n t y = 0 ;
b e l i e f s (7) . ch i ldren = 0 ;
b e l i e f s (7) . parent = 0 ;

b e l i e f s (8) . name = ’ Ever Local ized ? ’ ;
b e l i e f s (8) . id = 8 ;
b e l i e f s (8) . type = FACT;
b e l i e f s (8) . i n f o = 0 ; % 0 : not ac t ive , 1 : a c t i v e
b e l i e f s (8) . u n c e r t a i n t y = 0 ;
b e l i e f s (8) . ch i ldren = 0 ;
b e l i e f s (8) . parent = 0 ;

b e l i e f s (9) . name = ’ Floor ’ ;
b e l i e f s (9) . id = 9 ;
b e l i e f s (9) . type = FACT;
b e l i e f s (9) . i n f o = 0 ; % index of WP f o r f l o o r
b e l i e f s (9) . u n c e r t a i n t y = i n f ;
b e l i e f s (9) . ch i ldren = 0 ;
b e l i e f s (9) . parent = 0 ;

b e l i e f s (1 0) . name = ’WPs combined ’ ;
b e l i e f s (1 0) . id = 1 0 ;
b e l i e f s (1 0) . type = FACT;

119

b e l i e f s (1 0) . i n f o = 0 ; % 0 i f not combined , e l s e 1
b e l i e f s (1 0) . u n c e r t a i n t y = 0 ;
b e l i e f s (1 0) . ch i ldren = 0 ;
b e l i e f s (1 0) . parent = 0 ;

b e l i e f s (1 1) . name = ’ World Frame Image ’ ;
b e l i e f s (1 1) . id = 1 1 ;
b e l i e f s (1 1) . type = IMAGE2 ;
b e l i e f s (1 1) . i n f o = [rgb im] ; % w i l l be occupied by
r e g i s t e r e d rgb image
b e l i e f s (1 1) . u n c e r t a i n t y = 0 ;
b e l i e f s (1 1) . ch i ldren = 0 ;
b e l i e f s (1 1) . parent = 0 ;

b e l i e f s (1 2) . name = ’ Plan Done ? ’ ;
b e l i e f s (1 2) . id = 1 2 ;
b e l i e f s (1 2) . type = FACT;
b e l i e f s (1 2) . i n f o = 0 ; % 0 : not done , 1 : done
b e l i e f s (1 2) . u n c e r t a i n t y = 0 ;
b e l i e f s (1 2) . ch i ldren = 0 ;
b e l i e f s (1 2) . parent = 0 ;

REFERENCES

[1] T. C. Henderson, E. Cohen, E. Grant, M. Draelos, N. Deshpande, and A. Joshi,
“Symmetry as a Basis for Perceptual Fusion,” in Proc. IEEE Conf. Multisensor Fusion
and Integration for Intelligent Systems, (Hamburg, Germany), pp. 101–107, September
2012.

[2] T. Henderson, A. Joshi, and E. Grant, “From Sensorimotor Data to Concepts: The Role
of Symmetry,” Tech. Rep. UUCS-12-005, University of Utah, School of Computing,
Salt Lake City, UT, USA, October 2012.

[3] T. Henderson, H. Peng, C. Sikorski, N. Deshpande, and E. Grant, “Symmetry: A
Basis for Sensorimotor Reconstruction,” Tech. Rep. UUCS-11-011, University of Utah,
School of Computing, Salt Lake City, UT, May 2011.

[4] A. Joshi, T. C. Henderson, and W. Wang, “Generative Cognitive Representation for
Embodied Agents,” in Proc. IEEE Conf. Multisensor Fusion and Integration for Intelligent
Systems, (Beijing, China), pp. 1–7, September 2014.

[5] A. Joshi, T. Henderson, and W. Wang, “Robot Cognition using Bayeisan Symme-
try Networks,” in Proc. Int. Conf. Agents and Artificial Intelligence, (Angers, France),
pp. 696–702, March 2014.

[6] M. Leyton, Symmetry, Causality, Mind. Cambridge, MA: MIT Press, 1992.

[7] M. Leyton, A Generative Theory of Shape. Berlin: Springer, 2001.

[8] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y. Yoshikawa, M. Ogino, and
C. Yoshida, “Cognitive Developmental Robotics: A Survey,” IEEE Trans. Autonomous
Mental Development, vol. 1, no. 1, pp. 12–34, 2009.

[9] J.-C. Buisson, “A Computer Model of Interactivism and Piagetian Assimilation Ap-
plied to Visual Perception,” in Proc. 31st Annu. Symp. Jean Piaget Society, (Berkeley,
CA), June 2001.

[10] G. H. Granlund, “Organization of Architectures for Cognitive Vision Systems,” in
Cognitive Vision Systems, Lecture Notes in Computer Science, pp. 37–55, Berlin: Springer,
2006.

[11] F. Guerin, “Learning Like a Baby: A Survey of Artificial Intelligence Approaches,”
The Knowledge Engineering Review, vol. 26, no. 2, pp. 209–236, 2011.

[12] D. Vernon, G. Metta, and G. Sandini, “A Survey of Artificial Cognitive Systems: Im-
plications for the Autonomous Development of Mental Capabilities in Computational
Agents,” IEEE Trans. Evolutionary Computation, vol. 11, no. 2, pp. 151–180, 2007.

[13] A. Noë, Action in Perception. Cambridge, MA: MIT Press, 2004.

121

[14] R. Bajcsy, “Active Perception,” Proc. IEEE, vol. 76, pp. 966–1005, March 1988.

[15] J. Aloimonos and A. Badyopadhyay, “Active Vision,” in Proc. IEEE 1st Int. Conf.
Computer Vision, (London, UK), pp. 333–356, June 1987.

[16] A. K. Mishra, C. Fermuller, and Y. Aloimonos, “Active Segmentation for Robots,” in
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, (St. Louis, MO, USA), pp. 3133–3139,
October 2009.

[17] P. K. Allen, B. Yoshimi, and A. Timcenko, “Real-Time Visual Servoing,” in Proc. IEEE
Conf. Robotics and Automation, (Sacramento, CA USA), pp. 851–856, April 1991.

[18] K. Tarabanis, P. K. Allen, and R. Y. Tsai, “A Survey of Sensor Planning in Computer
Vision,” IEEE Trans. Robotcis and Automation, vol. 11, no. 1, pp. 86–104, 1995.

[19] N. Krueger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Woergoetter, A. Ude,
T. Asfour, D. Kraft, D. Omrcen, A. Agostini, and R. Dillmann, “Object-Action Com-
plexes: Grounded Abstractions of Sensory-Motor Processes,” Robotics and Autonomous
Systems, vol. 59, no. 1, pp. 23–40, 2011.

[20] H. Weyl, Symmetry. Princeton, NJ: Princeton University Press, 1952.

[21] Y. Liu, H. Hel-Or, C. Kaplan, and L. V. Gool, Computational Symmetry in Computer
Vision and Computer Graphics. Hanover, MA: Now Publishers, Inc., 2010.

[22] T. Henderson and Y. Fan, “RobotShare: A Google for Robots,” Special Issue on Cogni-
tive Humanoid Robots of the Int. J. Humanoid Robotics, vol. 5, pp. 311–329, June 2008.

[23] S. Reghizzi, Formal Languages and Compilation. Berlin, Germany: Springer Verlag,
2009.

[24] N. Fenton and M. Neil, Risk Assessment and Decision Analysis with Bayesian Networks.
Boca Raton, FL: CRC Press, November 2012.

[25] G. Weiss, Multiagent Systems. Cambridge, MA: MIT Press, 2013.

[26] M. J. Wooldridge, Reasoning about Rational Agents. Intelligent Robots and Au-
tonomous Agents, Cambridge, MA, USA: The MIT Press, 2000.

[27] P. Fankhauser, M. Bloesch, D. Rodriguez, R. Kaestner, M. Hutter, and R. Siegwart,
“Kinect v2 for Mobile Robot Navigation: Evaluation and Modeling,” in Proc. IEEE
Int. Conf. Advanced Robotics, (Istanbul, Turkey), pp. 388–394, July 2015.

[28] T. Palys and W. Zorski, “Enhanced Movement Tracking with Kinect Supported by
High-Precision Sensors,” in Federated Conf. Computer Science and Information Systems,
(Lódz, Poland), pp. 883–888, September 2015.

[29] L. Yang, L. Zhang, H. Dong, A. Alelaiwi, and A. E. Saddik, “Evaluating and Improv-
ing the Depth Accuracy of Kinect for Windows v2,” IEEE Sensors J., vol. 15, no. 8,
pp. 4275–4285, 2015.

[30] S. Zennaro, M. Munaro, S. Milani, P. Zanuttigh, A. Bernardi, S. Ghidoni, and
E. Menegatti, “Performance Evaluation of the 1st and 2nd Generation Kinect For
Multimedia Applications,” in Int. Conf. Multimedia and Expo, (Torino, Italy), pp. 1–6,
June 2015.

122

[31] D. Pagliari and L. Pinto, “Calibration of Kinect for Xbox One and Comparison be-
tween the Two Generations of Microsoft Sensors,” in Sensors J., (Busan, South Korea),
pp. 69–89, November 2015.

[32] F. Echtler, C. Kerl, L. Xiang, T. Wiedemeyer, Lars, R. Gordon, hanyazou, laborer2008,
R. Wareham, M. Goldhoorn, F. Facioni, gaborpapp, alberth, S. Fuchs, Federico, jm-
tatsch, J. Blake, H. Jungkurth, Y. Mingze, vinouz, D. Coleman, R. Rawat, P. Reynolds,
P. Viau, Ludique, Alistair, and J. Billingham, “libfreenect2: Release 0.1.1.” [web page]
https://github.com/OpenKinect/libfreenect2, January 2016.

[33] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A Paradigm for Model
Fitting with Applications to Image Analysis and Automated Cartography,” Commun.
ACM, vol. 24, pp. 381–395, 1981.

[34] M. Zuliani, “RANSAC Toolbox for Matlab.” [web page]
http://www.mathworks.com/matlabcentral/fileexchange/18555, November 2008.

[35] J. M. Esposito, B. Owen, J. Koehler, and D. Lim, “Matlab Toolbox for the Create
Robot,” August 2011.

[36] T. Henderson, Analysis of Engineering Drawings and Raster Map Images. New York, NY:
Springer Verlag, 2014.

[37] T. C. Henderson, N. Boonsirisumpun, and A. Joshi, “Actuation in Perception: Char-
acter Classification in Engineering Drawings,” in Proc. IEEE Conf. Multisensor Fusion
and Integration for Intelligent Systems, (San Diego, CA, USA), pp. 145–151, September
2015.

[38] R. Plamondon, “A Kinematic Theory of Rapid Human Movements. I: Movement
Representation and Generation,” Bio. Cybernetics, vol. 72, no. 4, pp. 295–307, 1995.

[39] R. Plamondon, “A Kinematic Theory of Rapid Human Movements. II: Movement
Time and Control,” Bio. Cybernetics, vol. 72, no. 4, pp. 309–320, 1995.

[40] R. Plamondon, “A Kinematic Theory of Rapid Human Movements. III: Kinematic
Outcomes,” Bio. Cybernetics, vol. 78, no. 2, pp. 133–145, 1998.

[41] R. Plamondon, C. O’Reilly, J. Galbslly, A. Almaksour, and E. Anquetil, “Recent
Developments in the Study of Rapid Human Movements with the Kinematic The-
ory: Applications to Handwriting and Signature Synthesis,” Pattern Recognition Lett.,
vol. 35, no. 1, pp. 225–235, 2014.

[42] A. Harley, A. Ufkes, and K. G. Derpanis, “Evaluation of Deep Convolutional Nets
for Document Image Classification and Retrieval,” in Int. Conf. Document Analysis and
Recognition, (Nancy, France), pp. 991–995, August 2015.

[43] L. Kang, P. Ye, Y. Li, and D.Doermann, “A Deep Learning Approach to Document
Image Quality Assessment,” in Proc. IEEE Int. Conf. Image Processing, (Paris, France),
pp. 2570–2574, October 2014.

[44] S. Marinai, “Introduction to Document Analysis and Recognition,” in Stud. Computa-
tional Intelligence, (Berlin, Germany), pp. 1–20, Springer, 2008.

123

[45] C. Sprunk, G. Parent, L. Spinello, G. D. Tipaldi, W. Burgard, and M. Jalobeanu, “An
Experimental Protocol for Benchmarking Robotic Indoor Navigation,” in Proc. Int.
Symp. Experimental Robotics, (Marrakech, Morocco), pp. 487–504, June 2014.

[46] J. Biswas and M. Veloso, “Depth Camera-based Indoor Mobile Robot Localization and
Navigation,” in Proc. IEEE Int. Conf. Robotics and Automation, (St. Paul, MN, USA),
pp. 1697–1702, May 2012.

[47] J. Biswas, Vector Map-Based, Non-Markov Localization for Long-Term Deployment of Au-
tonomous Mobile Robots. Pittsburg, PA USA: PhD Thesis 2014, The Robotics Institute,
Carnegie Mellon University.

[48] J. Biswas and M. Veloso, “Wifi Localization and Navigation for Autonomous Indoor
Mobile Robots,” in Proc. IEEE Int. Conf. Robotics and Automation, (Anchorage, AK,
USA), pp. 4379–4384, May 2010.

[49] J. Biswas and M. Veloso, “Multi-sensor Mobile Robot Localization for Diverse En-
vironments,” in RoboCup 2013: Robot World Cup XVII: 468-479, (Eindhoven, Nether-
lands), pp. 468–479, Springer Berlin, June 2013.

[50] J. Sturm, S. Magnena, N. Engelhard, F. Pomerleau, F. Colas, D. Cremers, R. Siegwart,
and W. W. Burgard, “Towards a Benchmark for RGB-D SLAM Evaluation,” in RGB-D
Workshop on Advanced Reasoning with Depth Cameras at Robotics: Science and Systems
Conf., (Los Angeles, CA, USA), June 2011.

[51] J. Biswas, B. Coltin, and M. Veloso, “Corrective Gradient Refinement for Mobile Robot
Localization,” in Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems, (San Francisco,
CA, USA), pp. 73–78, September 2011.

[52] A. Joshi and T. C. Henderson, “Wreath Product Cognitive Architecture (WPCA),”
in Proc. IEEE Conf. Multisensor Fusion and Integration for Intelligent Systems, (Baden-
Baden, Germany), September 2016. (To Appear).

[53] J. Cai, X. Wan, M. Huo, and J. Wu, “An Algorithm of Micromouse Maze Solving,” in
Proc. IEEE Int. Conf. Computer and Information Technology, (Bradford, UK), pp. 1995–
2000, June 2010.

[54] J. Cai, J. Wu, M. Huo, and J. Huang, “A Micromouse Maze Solving Simulator,” in Proc.
IEEE Int. Conf. Future Computer and Communication, vol. 3, (Wuhan, China), pp. 686–
689, May 2010.

[55] S. Mishra and P. Bande, “Maze Solving Algorithms for Micro Mouse,” in Proc. IEEE
Int. Conf. Signal Image Technology and Internet Based Systems, (Bali, Indonesia), pp. 86–
93, November 2008.

[56] A. B. S. Saman and I. Abdramane, “Solving a Reconfigurable Maze using Hybrid Wall
Follower Algorithm,” Int. J. Computer Applications, vol. 82, pp. 22–26, November 2013.

[57] A. Gelb, J. F. Kasper, R. A. Nash, C. F. Price, and A. A. Sutherland, eds., Applied Optimal
Estimation. Cambridge, MA: MIT Press, 1974.

[58] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics (Intelligent Robotics and Au-
tonomous Agents). Cambridge, MA: The MIT Press, 2005.

124

[59] T. Henderson, A. Joshi, and W. Wang, “The Cognitive Symmetry Engine,” Tech. Rep.
UUCS-13-004, The University of Utah, School of Computing, Salt Lake City, UT, USA,
September 2013.

[60] T. Henderson and T. Beall, “A Sensorimotor Approach to Concept Formation using
Neural Networks,” in Proc. IEEE Conf. Multisensor Fusion and Integration for Intelligent
Systems, (Baden-Baden, Germany), September 2016. (To Appear).

[61] J. Schmidhuber, “Deep Learning in Neural Networks: An Overview,” Neural Net-
works, vol. 61, pp. 85–117, 2015.

[62] T. Henderson, N. Boonsirisumpun, and A. Joshi, “Symmetry Based Semantic Analysis
of Engineering Drawings,” in Proc. IEEE Conf. Multisensor Fusion and Integration for
Intelligent Systems, (Beijing, China), pp. 1–6, September 2014.

