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Manifestations of Berry's Topological Phase for the Photon 
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Recently, Berry recognized in quantum mechanics a topological phase factor arising from the adi
abatic transport of a system around a closed circuit, which is essentially the Aharonov-Bohm effect 
in parameter space. Here we consider manifestations of this phase factor for a photon in a state of 
adiabatically invariant helicity. An interferometer is suggested to see this phase. Also, an effective 
optical activity for a helical optical fiber is predicted. These effects emerge on a classical level as 
topological features of Maxwell's theory. 
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Quantum interference effects in the presence of top
ologically nontrivial electromagnetic fields often lead 
to spectacular phenomena in physics. Notable exam
ples include the Aharonov-Bohm effect, I the Dirac 
monopole and the quantization of charge,2 and the 
quantization of flux in superconductivity.3 As Wu and 
Yang4 have emphasized, at the heart of these 
phenomena lies the nonintegrable phase factor 
exp(ie f c A,dx l

) , which multiplies the wave function 
of the system after its transport around a closed curve 
C in the presence of a vector potential AI in ordinary 
space. 

Recently it has been recognized that in quantum 
mechanics there exists another analogous topological 
phase factor, namely Berry's phase.5 This noninte
grable phase factor arises from the adiabatic transport 
of a system around a closed path in parameter space, 
which, according to Simon,6 can be viewed as parallel 
transport in the presence of a gauge field in such 
spaces. This phase factor is amazingly universal. It 
has appeared theoretically in many contexts,7 e.g., a 
treatment of the Born-Oppenheimer approximation, 8,9 

fractional statistics, 10, II and anomalies in gauge field 
theories. 12- 15 Its domain of applicability thus apparent
ly ranges from high-energy physics to low. Clearly it is 
important to look for this abstract phase factor experi
mentally. Therefore we would like to explore here 
some physical manifestations, more specifically, opti
cal manifestations, of this phase factor. 

A striking prediction of Berry5 is that any spin-l par
ticle, a boson, can acquire a phase factor of -1 under 
certain rotations which return it to its original state 
classically. For example, the direction of a magnetic 
field can be slowly rotated through a cone of apex an
gle 1200

, so that the spin's magnetic moment follows it 
adiabatically. After the magnetic field has returned to 
its initial direction, the spin's wave function has 

changed sign relative to that of an identical spin which 
has remained in an unchanged magnetic field. This 
sign change can manifest itself in the destructive in
terference between two beams of spins. Note the 
dependence of this phase on the spin's history, i.e., its 
nonintegrability. 

The photon is a massless spin-l boson. Its helicity 
S . k, where s is the spin operator and k is the direction 
of its propagation, can only be + 1 or -1. It is natural 
to ask whether the photon can acquire a Berry phase or 
not. In principle we can replace in the above example 
the direction of the magnetic field, (Bx,By,Bz), to 
which the photon does not couple, by the direction of 
the propagation of the photon, (kx,ky,kz ), which can 
be affected by slowly varying changes in the external 
environment (e.g., in the index of refraction), as the 
slowly varying parameters. Here parameter space is 
momentum space, or equivalently, reciprocal space. In 
contrast to the case of a massive spin-l boson, the spin 
of the photon will always follow the direction of k, 
since the massless ness of the photon guarantees that 
its helicity will remain either + 1 or -1, if there is 
nothing to change the sign of the helicity. Thus the 
helicity quantum number is an adiabatic invariant. 

We discuss below three cases in which k can change 
adiabatically: (0 when circularly polarized light prop
agates down a helically wound optical fiber, (2) when 
linear polarized light propagates down such a fiber, and 
(3) when microwaves propagate down a helically 
wound circular waveguide. In all three cases, it is re
quired experimentally that there should be no sharp 
kinks (on the scale of a wavelength) in the fiber or 
waveguide, so that the helicity of the photon does not 
flip sign as it propagates. Also, we neglect any linear 
birefringence in the medium, and any ellipticity in the 
cross-sectional shape of the waveguide, which can 
cause conversion between states of opposite helicity. 
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We assume that the light propagates inside the twist
ing waveguide in a single mode. Let us parametrize its 
path by T, the optical path length. Then the adiabatic 
invariance of the helicity of the photon implies that at 
each point T, the photon's spin state Ik(T),O') satis
fies 

s'k(T)lk(T),O') =O'lk(T),O'), 0) 

where k( T) is the photon's propagation direction at T 
and 0' = ± 1 is its helicity quantum number, which is 
independent of T. Formally, this is identical to the 
problem considered by Berry for a spin s in an adiabat
ically changing magnetic field B( t), 

gs' BU) IB( t),ms) = EIBU),ms) ' (2) 

where g is related to the gyromagnetic ratio and ms is 
the component of the spin along the direction of B( t). 
Here E is the energy eigenvalue, which is constant for 
the case where the magnetic field changes direction 
only, but is constant in magnitude. As the magnetic 
field is adiabatically changed, the parameters B( t) 
trace out a closed curve C on the surface of a sphere of 
radius B in parameter space (Bx,By,Bz)' After one 
round trip in parameter space, the system must come 
back to its original state, apart from a dynamical phase 
factor exp( - iEt), which we temporarily ignore, and a 
geometrical phase factor exp [iy (01, where y (C) is 
Berry's phase. Berry showed that 

y ( C) = - ms f}( 0 , (3) 

where n (0 is the solid angle subtended by the curve 
Cwith respect to the origin B=O. The right-hand side 
of Eq. (3) can be interpreted as the "magnetic flux" in 
parameter space through C in the presence of a "mono
pole" of strength - ms at the origin, which is a point 
of degeneracy. For the special case when C is a circle 
which subtends a cone with an apex at the origin with 
apex semiangle 0, 

y ( 0 = - 217' m/ 1 - cosO). (4) 

For 0 = 60 0 and ms = 1, one obtains y = - 17', and thus 
the remarkable result that even bosons can acquire a 
phase factor of -I after an azimuthal rotation of 360 0

, 

which classically restores the original state of the sys
tem. As noted above, this is an observable phase fac
tor, which can cause destructive interference. 

Now we extend these results to the photon. As it 
propagates smoothly down a helical waveguide, k is 
constrained to remain parallel to the local axis of this 
waveguide, since the momentum of the photon is in 
this direction. Since its helicity is adiabatically con
served, s is also constrained to remain parallel to the 
local axis of the waveguide. Hence the geometry of a 
helical path of a waveguide with a unity winding 
number constrains k, and hence s, to trace out a loop 
C on the surface of a sphere in parameter space 
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(kx,ky,kz )' As a result of radial symmetry, the origin 
k = 0 of this space is singular. Berry's argument leads 
to a phase similar to that of Eq. (3). 

(5) 

where n (0 is the solid angle subtended by the loop 
C with respect to k = O. In the special case of a uni
form helix, C is a circle and 

n(O =21TN(l-cosO), (6) 

where N is the winding number of the helix, and 0 is 
the angle between the local waveguide axis and the 
axis of the helix, i.e., the pitch angle of the helix. 
Again, the phase y( 0 can be viewed as the result of 
parallel transport along C in the presence of a Dirac 
monopole with strength - 0' at the origin k = O. 

The phase given by Eq. (5) can be seen in the fol
lowing interference experiment: A circularly polarized 
laser beam is injected into a single input optical fiber. 
This fiber in turn couples an equal amount of the light 
into two helically wound optical fibers, each having N 
turns, but in contrary senses, which are adjusted to 
have equal optical path lengths. These two helices 
form the two arms of the interferometer. (With bal
anced arms, spurious effects, e.g., local optical activity 
inside the medium, can be canceled out.) The fibers 
are then brought together and coupled into a single 
output optical fiber, where interference occurs. The 
predicted interference pattern is 

(7) 

for uniform windings. 
Next, let us inject a linearly polarized laser beam 

into a single helically wound optical fiber. Let the ini
tial state be represented by 

I x) = 2 - 1/2 ( I + ) + I - ) ) , (8) 

where I ± ) are the eigenstates of 0' = ± 1. After prop
agation through the helix, the final state at the output 
of the fiber, if we ignore for the moment dynamical 
phase factors, is 

Ix') = 2- 1/ 2 (exp(iy + ) 1+ ) + exp( - iy + ) 1- ) ) . 
(9) 

Here y + is Berry's phase for 0' = + l. Therefore 
l<xlx')12=cos2y+. By Malus's law, this implies that 
the plane of polarization has been rotated by an angle 
which is equal to y +. The sense of this rotation, when 
one looks into the output end of the fiber, is clockwise 
(i.e., dextrorotatory) for a left-handed helix. This al
lows a direct measurement of Berry's phase. It also 
gives a direct physical interpretation of this phase, 
namely, that it is an angle of optical rotation. 

These effects are topological in nature. To see this, 
recall that there is a monopole at k = 0. 16 The circle C 



VOLUME 57, NUMBER 8 PHYSICAL REVIEW LETTERS 25 AUGUST 1986 

associated with the helix can be continuously de
formed into a closed curve C' of any shape without 
changing Berry's phase, provided that the solid angle 
subtended by C' with respect to the monopole is un
changed. Furthermore, the diameter of the circular 
cross section of the fiber can in principle be scaled ar
bitrarily, but adiabatically, as a function of T without 
affecting this result. 

It should be noted in passing that the optical-fiber 
experiments proposed above are different from the 
one proposed by Berry, 5 in which the cross-sectional 
shape of an optical fiber is slowly deformed in shape
parameter space. Here the circular cross-sectional 
shape is kept constant, but the direction of light prop
agation is slowly changed. Hence the parameter spaces 
are different. Our proposed experiments are, in our 
opinion, simpler to carry out than Berry's. 

These results also apply to microwaves propagating 
down a helically wound circular waveguide. Note that 
the interior of the waveguide can now be the vacuum, 
so that all medium-related effects vanish. However, 
Maxwell's equations with appropriate boundary condi
tions should yield these results classically. Hence 
Berry's phase manifests itself from high energies to 
low, from quantum to classical regimes: The mono
pole at k = 0 has an influence which never disappears, 
no matter how far or close one is to it. 

Now we return to the question of the dynamical 
phase factor. The evolution of the spin of the photon 

is governed by a Hamiltonian that has a form similar to 
that of the spin magnetic moment in a magnetic field: 

H(T)=Ho+KS·k(T). (0) 

where Holk( -r). u') = Eolk( -r). CT) defines background 
propagation. This is the most general Hamiltonian 
which can be formed from the two vectors sand k ( T ) 

in a straight waveguide, for a massless spin-l particle 
in an isotropic medium with an isotropic cross
sectional boundary. For gradual windings, it is expect
ed that additional terms arising from the winding will 
be negligibly small. The coupling constant K is to be 
determined by experiment. The equation of motion 
for the spin state of the photon is 

Clearly the resulting dynamical phase factor 
exp( - iET) depends in general on the form of H. 
However, the dynamical phase factors of the two arms 
of the interferometer, which have equal optical path 
lengths, are the same, and do not enter into the inten
sity pattern given by Eq. (7). Hence this pattern is in
dependent of the specific form of H, and depends only 
on the geometrical phase factor. The separate roles of 
the dynamical and geometrical phase factors can be 
seen in the experiment with linearly polarized light in 
a single helical fiber. After propagation through the 
helix, the final state at the output of the fiber is, in 
general, 

Ix') = 2- 1/ 2 Iexp[ - i(EoT +KT -y+ )11 +) +exp[ - i(EoT- KT +y+) 11-) J. (2) 

Therefore I (xix') 12 = COS2(KT - y+). By Malus's law, 
this implies that the plane of polarization has been ro
tated by an angle which is equal to KT - Y + . If the 
fiber were straight, y + would be zero. The rotation of 
the plane of polarization would then be KT, and must 
therefore arise from the optical activity of the medi
um, with K being related to its optical activity coeffi
cient, which can be measured and subtracted experi
mentally. Note that Berry's phase y + is independent 
of the size of K. Hence in cases where K is negligible, 
the dynamical phase factors can be ignored and the ro
tation angle is just -y+. In summary, a fiber made 
out of nonoptically active material, when wound gra
dually into a helix, acquires an effective global optical 
activity. 

Under what experimental conditions will the adia
batic theorem l7 be applicable? Firstly, the validity of 
Eq. (1) needs that the photon's propagation direction, 
k( T), be well-defined everywhere along the wave
guide, and that it changes adiabatically. This leads to 

(13) 

where d is the diameter of the cross section, L the total 
length, Rc the radius of curvature, and Rt the radius of 
torsion, of the path of the waveguide. Secondly, and 
more importantly, there is a question about the adia
batic conditions for Eq. (11). The nondiagonal matrix 
elements which would lead to a violation of the adia
batic theorem are given by 

where n is the index of refraction and n( T) is the principal normal vector of the path. Since s is a vector operator, 
by the Wigner-Eckart theorem, 

(15) 

i.e., ACT = ± 2 is forbidden. Thus there is no violation of the adiabatic theorem, no matter how small K is. This is a 
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special situation due to the form of the Hamiltonian, 
Eq. (0), and the special properties of the photon (i.e., 
its massless, spin-l nature). This also solves a paradox 
in the understanding of the applicability of the adiabat
ic theorem here. Normally, this theorem requires that 
the system evolves very slowly. But in our case the 
photon travels at the speed of light, so that it takes lit
tle time to go through the entire path of the 
waveguide. However, there is another much faster 
time scale, namely the time for light to cross the diam
eter of the waveguide. This is the time it takes for the 
local isotropy of the system, including its boundaries, 
to be communicated throughout the system locally. 
Also, this is the time scale on which the direction of 
k ( T ), and hence s, is established. In short, Eq. (13) is 
the only relevant condition. Since the diameter of the 
core of an optical fiber is of the order of microns, this 
condition is easily satisfied experimentally. 

An astute reader may point out that our optical ef
fects could be explained in principle entirely classically 
in terms of Maxwell equations plus appropriate boun
dary conditions. Intuitively, one expects classically 
that the mutually orthogonal triad of vectors k, E, and 
B will adiabatically propagate by parallel transport in
side a gradually wound isotropic fiber, thus leading to 
the above results. While this is correct, we point out, 
as a matter of principle, that the classical theory fails 
for low photon number when fluctuations set in, 
whereas our quantum theory still holds. (This is simi
lar to the situation in Young's two-slit experiment: 
Classical and quantum interference patterns agree, but 
fluctuations are absent classically.) Also, the deriva
tion of parallel transport starting from Maxwell's equa
tions in the adiabatic limit for an isotropic medium, 
with isotropic cross-sectional boundary conditions, is 
not trivial. On this connection, note that the ray
optics limit, for which parallel transport in an isotropic 
but inhomogeneous medium has been derived, does 
not apply to a single-mode optical fiber, since the di
ameter of the fiber can be comparable to the 
wavelength of light.) Furthermore, it would be non
trivial to exhibit the topological nature of these effects 
in such a classical treatment for more complicated 
geometries, such as for a nonuniform helix, or for a 
variable-diameter waveguide. Fundamentally, it is the 
Bose nature of the photon which permits these optical 
manifestations of Berry's phase to emerge on a macro
scopic, classical level. Thus we would rather think of 
these effects as topological features of classical 
Maxwell theory which originate at the quantum level, 
but survive the correspondence-principle limit (Ii -+ 0) 
into the classical level. (This situation has an analog in 
quantum field theory: Namely, chiral gauge 
anomalies, which are known to be topological in ori
gin, if present at the fundamental, constituent level, 
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must survive with exactly the same amount at the 
composite level,18 or in a certain decoupling limit in 
which some mass parameters tend to infinity.19) 

It would be interesting to see these optical effects 
experimentally verified. 

One of us (R.Y.C.) thanks M. V. Berry, A. Hansen, 
A. 1. Harris, A. A. Moulthrop, and A. Tomita for help
ful comments. The other (Y.S.W.) was supported in 
part by the National Science Foundation through 
Grant No. PHY -8405648. 

Note added.-After this paper was written, the 
second of the above predicted effects, namely, global 
optical activity in a helically wound optical fiber, was 
experimentally verified. 2o 
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