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ABSTRACT

Ten separate idealized cloud-resolving model (CRM) and four separate nested 

limited area model (LAM) three-dimensional simulations having horizontal grid spacing 

of ~1 km and ~75-100 vertical levels are compared to observations during the active 

monsoon period of the Tropical Warm Pool -  International Cloud Experiment, based in 

Darwin, Australia, with specific focus on a large mesoscale convective system observed 

on January 23-24, 2006. All simulations produce high biased convective radar 

reflectivity and low biased stratiform rainfall with these biases heavily modulated by bulk 

microphysics scheme assumptions.

High biased convective radar reflectivity aloft always involves a graupel/hail 

component, but also includes a snow component for some two-moment schemes. 

Making snow particle mass proportional to ~D2 rather than D3 may lower snow 

reflectivity. This high bias is also related to freezing of very large simulated rain water 

contents in deep convective updrafts. Peak vertical velocities are greater than dual- 

Doppler retrieved values, especially in the upper troposphere likely due to greater latent 

heating from freezing and deposition in simulations. A subdomain LES simulation also 

produces overly intense simulated updrafts. Therefore, they may be a product of 

interactions between convective dynamics and parameterized microphysics that promote 

a different convective mode and strength than observed, while inadequately simulated 

instability and vertical shear variability may also be involved.



Two-moment schemes do not outperform one-moment schemes in stratiform 

rainfall prediction. Excessive size sorting produces more large stratiform raindrops at 

low levels than observed in two-moment schemes. One-moment schemes produce too 

many small stratiform raindrops relative to observed because constant size intercepts are 

too high. Increasing the rain gamma shape parameter from 0 to 2.5 improves agreement 

with observations. Due to differences in raindrop size that create different mass 

sedimentation rates, low-level stratiform liquid water contents are close to observed in 

one-moment schemes, but lower than observed in two-moment schemes. Low biased 

stratiform rainfall is primarily due to an under-prediction of melting ice consistent with 

the lack of a large well-developed stratiform region in simulations. This may be caused 

by overly intense simulated convection, limited domain size in the CRM simulations, and 

large-scale forcing biases in the LAM simulations.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Deep convective systems are an integral part of large-scale tropical circulations, 

such as the Hadley and Walker circulations (e.g., Riehl and Malkus 1958; Hartmann et al. 

1984; Schumacher et al. 2004; Fierro et al. 2009), because they largely determine the 

distribution of tropical free tropospheric heating. Unfortunately, achieving realistic 

modeling of deep convection remains a prominent problem, even at cloud-resolving 

scales. Despite this problem, cloud-resolving models (CRMs) are increasingly used in 

satellite algorithms (e.g., Kummerow et al. 2001; Kingsmill et al. 2004; Shige et al. 2009) 

to retrieve rainfall and latent heating distributions around the world and hence, will be a 

big part of Global Precipitation Measurement (GPM) satellite retrievals. CRMs are also 

increasingly used to guide global climate model (GCM) cloud and convective 

parameterization improvement (e.g., Tiedtke 1993; Lohmann and Roeckner 1996; Fowler 

et al. 1996; Ghan et al. 1997; Rotstayn 1997; Wilson and Ballard 1999) as these 

parameterizations remain among the largest sources of uncertainty in GCMs (Randall et 

al. 2003), while some have begun embedding two-dimensional CRMs in GCM grid 

boxes, a process known as superparameterization (Grabowski 2001; Khairoutdinov and 

Randall 2001; Randall et al. 2003).



Accurately representing and predicting the latent heating and radiative effects of 

deep convective systems in the context of large-scale environmental properties is 

required to confidently predict future weather and climate. Yet, the atmospheric science 

community continues to struggle with realistically representing these effects and their 

relationship with predicted large-scale environmental variables in global climate models 

(Del Genio and Kovari 2002; Neale and Slingo 2003; Stephens 2005; Randall et al. 

2007). Recently, attention has turned toward representation of mesoscale convective 

organization in GCMs (e.g., Mapes and Neale 2011; Del Genio et al. 2012) since only 

one GCM to date attempts to represent mesoscale updrafts and downdrafts (Donner 1993, 

Donner et al. 2001), even though approximately 80 percent of tropical rainfall comes 

from mesoscale systems (Del Genio and Kovari 2002) with about 40 percent coming 

from stratiform rain (Schumacher and Houze 2003). Del Genio et al. (2012) discuss the 

importance of representing cold pool processes, which is difficult given 100 km or 

greater horizontal grid spacing in GCMs. With quickly increasing computing 

capabilities, it has been suggested by some in GCM model development that GCMs will 

be running with 10-km horizontal grid spacing in 10 years time. If this is the case, then 

mesoscale processes associated with deep convective systems will begin to be resolved 

and conventional convective parameterizations based on scale separation break down. 

This could provide a major step forward in mesoscale parameterization difficulties, but 

such systems will still depend on simulating the deep convective properties correctly, 

something that has proven difficult in CRMs.

Upscale effects on the large-scale circulation by the thermodynamic and radiative 

effects of mesoscale precipitation systems are sensitive to the proportion of convective to
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stratiform precipitation (Houze 1982, 1989, 1997, 2004; Hartmann et al. 1984; Johnson 

1984) because of their distinctly different vertical heating profiles with convective 

regions heating the entire troposphere and stratiform regions heating only the upper 

troposphere while cooling the lower troposphere. This effect is not only important in the 

mean, but the different timing in the peaks of convective and stratiform precipitation is 

key to convectively coupled waves (Mapes et al. 2006), which are not well represented in 

most GCMs (Lin et al. 2006), a good example being the Madden-Julian Oscillation (Kim 

et al. 2009). This proportioning depends on the convective morphology or mode, which 

is dependent on large-scale environmental parameters such as vertical wind shear, but 

vertical wind shear is mostly ignored in GCM convective parameterizations (Moncrieff et 

al. 2012). Even if it were represented, transitions between different convective modes are 

still not well understood (Stevens 2005), making the problem of proportioning convective 

and stratiform precipitation even more difficult to address. Del Genio et al. (2012) point 

out that the lack of mesoscale organization in GCMs combined with the erroneous peak 

in convective rainfall at noon over land can lead to a high bias in the shortwave effect 

from convection and a low bias in soil moisture.

Primary sources for error in model simulations are parameterizations of subgrid 

scale processes, which are often poorly constrained by theory and observations (Tao and 

Moncrieff 2009), often because few trustworthy observations exist. For this reason and 

because more complexity in model physics schemes requires more computing power, 

such parameterizations can often be quite crude. Over the past couple of decades, 

however, significant advances in computing power have allowed for increasingly more 

complex simulations of large convective cloud systems. This has led to three­
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dimensional high-resolution mesoscale simulations down to the cloud-resolving scale of 

less than 4 km, a scale at which convective processes are explicitly simulated over 

horizontal domain dimensions of hundreds of kilometers. Despite this newfound ability 

to explicitly resolve convective clouds, subgrid scale processes still need to be 

approximated through parameterizations, which lead to introduction of error into 

simulations. Increasingly complex parameterization developments have accompanied the 

evolution of convective cloud simulations to finer scales, and with such developments 

come field experiments needed to both test and constrain parameterizations with high 

quality observations. This is a tall task for a few reasons. First, the most common and 

highest quality observations are often not the first variables that modelers would choose 

for evaluating, improving, and developing parameterizations. Second, the temporal and 

spatial scales of observations are often quite different from those of model output. And 

third, it is difficult to provide an accurate large-scale forcing for models. Still, comparing 

model output to observations is one of the best avenues for testing and improving 

parameterizations, especially when many complementary and co-located observations are 

available. Of the subgrid scale parameterizations that need much more constraint and 

guidance from observations, microphysics parameterizations are near the top of the list 

because of their direct linkages to latent and radiative heating and cooling, but they may 

be the most complex because of the high number of poorly constrained nonlinear 

interactions occurring within them.
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1.2 Background

The detailed and comprehensive tropical observational datasets necessary for 

validating model simulations come primarily from intensive observational periods (IOPs) 

during field experiments. One such field experiment was the Tropical Warm Pool -  

International Cloud Experiment (TWP-ICE), which serves as the basis for the research 

presented in this dissertation.

1.2.1 TWP-ICE and Intercomparison Studies 

TWP-ICE (May et al. 2008) was conducted out of Darwin, Australia in January 

and February of 2006. Darwin is an excellent location for studying deep convective 

systems because several field experiments have been performed there in the past (e.g., 

EMEX (Webster and Houze 1991); DUNDEE (Rutledge et al. 1992); MCTEX (Keenan 

et al. 2000); DAWEX (Hamilton et al. 2004)), there is a permanent Atmospheric 

Radiation Measurement (ARM) site with extensive observations there, and it experiences 

deep convective systems characteristic of tropical oceanic regions during active monsoon 

periods and continental regions during monsoon break periods (Keenan and Carbone 

1992). From this experiment, a high quality model forcing data set was created using a 

variational analysis (Xie et al. 2010) that made use of a pentagonal array of three-hourly 

atmospheric soundings, rainfall estimation using the scanning C-band radar (CPOL) 

(Keenan et al. 1998), and surface flux sites. The first six days of the experiment, January 

19-25, were characterized by active monsoon conditions in which the environment was 

oceanic in nature, although convective intensity was a bit more intense than that over 

some parts of the oceanic tropics because some lightning was observed. This period
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covered an intense and large mesoscale convective system (MCS) that initiated over the 

area on January 23 and exited to the southwest on January 24. A prolonged period of 

suppressed monsoon conditions followed the active phase due to strong westerly 

advection of dry continental air at midlevels associated with “Landphoon John” to the 

south, the remnant of the January 23-24 MCS. This period primarily consisted of 

isolated congestus and little rainfall. February 6th through the end of the experiment 

consisted of break conditions, in which intense continental convection was observed, 

commonly forming on sea breeze convergence lines and propagating to the west in the 

characteristic easterly break period flow.

The active and suppressed periods served as the primary focus for the TWP-ICE 

CRM Intercomparison Study (Fridlind et al. 2010, 2012), a joint project through the 

ARM program, the Global Energy and Water Exchanges project (GEWEX) Cloud 

Systems Study (GCSS), and the Stratospheric Processes And their Role in Climate 

(SPARC) program. Intercomparison studies were also performed for limited area model 

(LAM) simulations of a 3.5 day period from 12Z on January 22 to 0Z on January 26 

focusing on the intense MCS on January 23-24 (Zhu et al. 2012), single column model 

(SCM) simulations, and global atmospheric model (GAM) simulations covering the 

monsoon and break periods (Lin et al. 2012). These studies welcomed participants from 

modeling centers around the world to run their models using a common setup 

specification for the purpose of comparing models against each other and against 

observations. Intercomparisons have been used extensively for SCMs (e.g., Bechtold et 

al. 2000; Ghan et al. 2000; Wu and Moncrieff 2001; Xie et al. 2002) and CRMs (e.g., Wu 

et al. 1998; Redelsperger et al. 2000; Xu et al. 2002; Bryan et al. 2006; Grabowski et al.
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2006), but the TWP-ICE limited area model (LAM) Intercomparison Study is the first of 

its kind. A general objective of intercomparison projects is to determine combinations of 

model setup and parameterizations that lead to the best agreement with observations and 

combinations that lead to the largest discrepancies with observations for the purpose of 

identifying model components that can be improved. For any given intercomparison 

study, specific scientific objectives also exist. For the TWP-ICE CRM Intercomparison 

Study, goals beyond analyzing model performance and methodology included 

quantifying convective transport to the tropopause and studying processes that controlled 

anvil cirrus longevity (Fridlind et al. 2010). For the TWP-ICE LAM Intercomparison 

Study, goals included finding out whether LAMs could reproduce observed dynamical 

processes from the convective scale to the monsoon trough scale for a large MCS event 

and whether they produced similar cloud structures as those in the CRMs (Zhu et al. 

2012).

1.2.2 Model Setups

LAM setups have become increasingly popular as computing power has 

increased, and using them with CRM setups is beneficial because they have different 

sources for bias. LAMs are forced through updating lateral boundary conditions 

(typically through a large-scale analysis) whereas CRMs are idealized and use periodic or 

open boundary conditions, while being forced in a variety of ways. The advective 

forcing method uses large-scale vertical velocity and advective tendencies of temperature 

and moisture that are calculated from observationally derived constrained variational 

analyses (e.g., Xie et al. 2010) to allow convection to freely form, which differs from

! 7 !



some other popular methods that use idealized “warm bubbles” and cold pools to force 

the initial convective updrafts. The advective forcing method is used for the TWP-ICE 

CRM Intercomparison Study. The advantage of the CRM approach over the LAM 

approach is that it does not have inherent bias associated with a large-scale analysis. By 

being idealized, errors can be more easily attributed to specific sources because some 

sources of error are removed. The disadvantage is that it generally uses periodic lateral 

boundary conditions that require uniformity in surface and atmospheric conditions at the 

boundaries. This is problematic over land or in scenarios with substantial vertical 

vorticity on the scale of the domain. Furthermore, the variational analysis calculates a 

mean thermodynamic profile and large-scale vertical velocity, but this assumes that 

convection is responding to the mean environmental state on the scale of the CRM 

domain, which is not necessarily true. LAMs avoid this issue by nesting down the large- 

scale analyses that are forcing them, but if the large-scale analysis does not adequately 

represent reality, then those errors will be manifested in the LAM simulation. LAMs also 

involve more complexity because of heterogeneous surfaces and use of more 

parameterizations in nonconvection resolving domains. Lastly, LAMs often use large 

outer domains. With two-way nesting, inner domain processes can feedback upscale to 

the larger domains making a wide range of simulations possible because the inner 

domains are not strictly regulated. Therefore, without assimilation of observations or 

nudging of the atmospheric mean state, one has to be careful in attributing differences 

between simulations purely to alteration of model physics schemes.
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1.2.3 Bulk Microphysics Schemes

Most large three-dimensional domain runs or ones run over long periods of time 

use bulk microphysics schemes. Bulk microphysics schemes are so-called because they 

define continuous hydrometeor size distributions using predicted bulk properties of the 

hydrometeor size distributions. Microphysical processes are then calculated from 

properties of the continuous size distributions rather than for discrete particle sizes. 

Warm cloud bulk microphysics started with Kessler (1969), which is the basis for many 

warm cloud bulk schemes, although representation of collection in a subset of bulk 

schemes has since evolved into bin emulating schemes (e.g., Feingold et al. 1998). 

Representation of ice microphysics is much more complicated because of the many forms 

of ice, the many ways in which ice can grow, and incomplete knowledge of mixed-phase 

and ice microphysical processes. Most schemes assume a finite number of hydrometeor 

categories, typically four to six, although up to 12 have been used (Straka and Mansell

2005). In recent years, novel approaches have been formulated to try and move away 

from ice categories that require arbitrary conversions between the categories by 

predicting ice riming fraction and/or varying mass-dimension and projected area- 

dimension relationships with ice size or temperature (e.g., Morrison and Grabowski 2008; 

Lin and Colle 2011).

Although there are many different schemes, many basic components of the 

schemes are quite similar, at least partially owing to a lack of large samples of quality 

observations. Many processes and hydrometeor characteristics in bulk microphysics 

schemes are based on observations obtained in mid-latitude field experiments (e.g., 

United States, Japan, and Europe) (e.g., Lin et al. 1983; Rutledge and Hobbs 1984;
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Cotton et al. 1986; Dudhia 1989; Ikawa and Saito 1991; Ferrier 1994; Reisner et al. 

1998). While processes should be physically universal, hydrometeor properties can differ 

substantially between different large-scale environments and dominant physical processes 

may differ in different meteorological regimes. Most schemes parameterize specific 

hydrometeor properties and processes from single field experiments, so parts of schemes 

are already somewhat tuned to specific cases without knowing the representativeness of 

those observations used.

Most bulk schemes that are commonly used are one-moment or two-moment 

schemes. One-moment bulk schemes predict one moment of hydrometeor size 

distributions, typically the mass mixing ratio, which is directly related to the 3rd moment 

of the size distribution for spherical, constant density hydrometeors. Two-moment 

schemes are more computationally expensive than one-moment schemes because they 

predict two moments of hydrometeor size distributions, typically number concentration, 

the 0th moment, in addition to mass mixing ratio. Even three-moment schemes exist (e.g., 

Milbrandt and Yau 2005), but these have not been extensively used in research to date. 

Because of these simplifications relative to the real world, substantial amounts of 

computing time are saved over potentially more realistic but costly bin (spectral) 

microphysics schemes.

Hydrometeor size distributions are typically assumed to be gamma distributions 

of the form n(D) = N0 in most bulk schemes, where No is the size intercept, i  is 

the shape parameter, and A is the slope. For a given water content, a higher N0 means a 

greater number of small sized particles. The higher i  is, the narrower the size 

distribution becomes, while the higher A is, the faster the number of hydrometeors per

10



unit volume goes to 0 with increasing particle size. Figure 1.1 shows the ways by which 

N 0 and n  affect rain size distributions for a 1 g m"3 rain water content.

When ^  = 0, this gamma distribution reduces to a simpler exponential 

distribution. For one-moment schemes with ^  = 0, No is generally assumed to be 

constant, but it can be diagnostically determined based on variables such as temperature 

as well. The classic Marshall-Palmer distribution assumes ^  = 0 and N 0 = 8 x 103 m-3 

mm-1 (Marshall and Palmer 1948). For a typical one-moment scheme, A is dependent on 

the prognostic hydrometeor mass mixing ratio, N0, air density, ^, and the hydrometeor 

mass-diameter relationship, which incorporates hydrometeor bulk density. For a typical 

two-moment scheme, A is dependent on the prognostic hydrometeor number

N" +1
concentration and air density. No in these two-moment schemes is equal to --------- ,

#(0 + 1)

where N  is the hydrometeor number concentration. By predicting N , hydrometeor growth 

processes are better represented, and the size distribution is allowed to shift the 

proportioning of large to small hydrometeor sizes within the constraints of the assumed 

gamma distribution.

Each hydrometeor species has a mass-diameter ( m = aDb) relationship. For this 

relationship, raindrops are assumed to be spherical and thus have a simple relationship

where a = " p x and b = 3, where px is the hydrometeor density. Many schemes also
6

assume that snow, graupel, and hail are spherical for this relationship. When 

hydrometeors are assumed to be nonspherical (b "  3) with a set constant, hydrometeor 

density varies as a function of D because mass is no longer directly proportional to 

volume. Each prognostic variable has a terminal fall speed relationship ( vf = cDde"fD )
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with coefficients c, d, and f  that are set constant and vary between schemes. These 

relationships are often based on field observations and thus do not assume hydrometeor 

shapes. Both one-moment and two-moment schemes incorporate mass mixing ratio fall 

speeds with two-moment schemes also incorporating number concentration fall speeds. 

For one-moment schemes, the entire hydrometeor size distribution sediments at the same 

rate. For two-moment schemes, the mass fall speed is often greater than the number fall 

speed, which mimics the effect of larger sized hydrometeors falling faster than smaller 

sized hydrometeors, a process called size sorting. Although two-moment schemes are 

clearly more realistic than one-moment schemes, greater complexity leads to greater 

computing expense and greater difficulty in constraining the scheme with observations.

1.2.4 Model Deep Convective Biases 

Not only have most bulk microphysics schemes been based on mid-latitude 

continental observations, they are often tested in mid-latitude continental squall, 

supercell, or winter storm scenarios, which is likely a result of much more extensive 

observational networks in mid-latitude continental environments. Cloud-resolving 

simulations have a history of providing process level understanding of observations. 

Such simulations beginning in the late 1970s and progressing into the 2000s have been 

instrumental in our understanding of moist convective life cycles for a variety of modes, 

notably supercells and squall lines (e.g., Weisman and Klemp 1984; Rotunno and Klemp 

1985; Weisman and Rotunno 2004).

In the 1990s, some studies began to emerge that compared results from different 

simulation setups and schemes, but only recently with vastly increased computing
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resources have extensive comparisons of different microphysics parameterizations, 

limited area model simulations, and LES simulations begun. While using observations to 

improve high-resolution model parameterizations is far from extensive (Stephens 2005), 

some biases have become well known and widely accepted in recent years. Mesoscale 

simulations run on cloud-resolving horizontal scales down to approximately 1 km often 

fail to reproduce observed convective and stratiform structures (e.g., Lang et al. 2003; 

McFarquhar et al. 2006; Zhou et al. 2007; Luo et al. 2010; Varble et al. 2011) that depend 

on the large-scale environmental properties (Houze 2004). CRM simulations still 

struggle to produce adequately large and well-developed stratiform regions associated 

with squall lines, for example (e.g., Morrison et al. 2009).

In convective regions, several studies focusing on bulk microphysics schemes 

have found that a high bias in Rayleigh radar reflectivity due to graupel is common in 

CRM simulations (Blossey et al. 2007; Lang et al. 2007; Li et al. 2008; Matsui et al. 

2009). This has led many to point fingers at ice growth processes as a major problem in 

bulk microphysics schemes. Lang et al. (2011) adjusted graupel growth processes and 

collection efficiencies to lower the amount of graupel aloft in CRM simulations of 

tropical convection. While this improved the comparison of observed and simulated 

radar reflectivity, it did not completely solve the problem. One problem with this 

approach is that it is aimed at improving comparisons with Rayleigh radar reflectivity, 

which is related to the sixth moment of the equivalent melted hydrometeor size 

distribution, whereas parameterized bulk microphysical processes are dependent on lower 

moments of the size distribution, such as number concentration and mass mixing ratio. 

Therefore, one has to be careful when tuning schemes to radar reflectivity so that they do
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not worsen comparisons between observed and simulated lesser moments of hydrometeor 

size distributions. Another problem with this approach is that it ignores other sources of 

error, such as those that may exist in the liquid region of convective updrafts that may be 

leading to excessive graupel aloft. Tuning microphysics processes with limited 

information can cover up the real causes of problems, but recent studies have elucidated 

some key processes that can have major impacts on convective properties and thus should 

be carefully considered when designing a microphysics scheme. One such example is 

raindrop breakup. Morrison et al. (2012) found large sensitivities to different raindrop 

breakup parameterizations in mid-latitude continental squall line simulations through 

modulation of evaporation and the strength of cold pools. McCumber et al. (1991) found 

that three ice categories, one for cloud ice, one for snow, and one for graupel best 

simulated a tropical convective case, but that the quality of bulk microphysics 

parameterizations in cloud models could be case specific and that more ice categories or 

prediction of more moments of the size distributions would likely be necessary to 

adequately simulate some convective systems. Studies since then indeed have found 

large sensitivities to how those ice categories are represented including whether graupel 

or hail is used (e.g., Morrison and Milbrandt 2011; Bryan and Morrison 2012; Milbrandt 

and Morrison 2013). Van Weverberg et al. (2013) further found large sensitivities in 

tropical MCS anvil properties based on different cloud ice formulations in various bulk 

microphysics schemes.

Despite many studies showing excessive amounts of large graupel aloft in 

simulations of tropical deep convection, few studies exist that thoroughly compare 

simulated deep convective vertical velocity to observational retrievals in tropical
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environments. Lang et al. (2007) compared dual-Doppler vertical velocity retrievals to 

simulated vertical velocity in simulations of Amazonian convection and concluded that 

convective vertical velocities were comparable in magnitude to those retrieved, but their 

comparisons were limited and did not take into account possible differences in terms of 

the vertical momentum equation. Other studies suggest that a primary issue is indeed the 

scale required to resolve convective motions. While 1-km horizontal grid spacing is 

considered “cloud-resolving,” studies show that this is not really true (Craig and 

Dornbrack 2008), while Bryan et al. (2003) recommend a 100-m grid spacing for 

simulating deep convection. Bryan and Morrison (2012) showed that the properties of an 

idealized mid-latitude continental squall line changed when the horizontal grid spacing 

was decreased from 1 km to 250 m because the size of individual convective drafts 

decreased, effectively increasing cloud water evaporation and altering the convective 

updraft and downdraft strength. Del Genio and Wu (2010) did not find major differences 

between 600-m and 125-m grid spaced WRF simulations of TWP-ICE monsoon break 

period convection, although entrainment increased some in the 125-m simulation. 

Romps and Kuang (2010) also found entrainment increased as horizontal grid spacing 

decreased between 3.2 km and 100 m in idealized simulations of deep convection, but 

differences were not tremendously large. The representativeness of such studies is 

unclear, especially for moist tropical environments, but the question of adequate 

resolution is an important one. LES simulations with horizontal grid spacing of 100 m 

begin resolving large eddies and these simulations are often used as “truth” when 

evaluating coarser resolution simulations. Such simulations do appear to better represent 

the transition from shallow to deep convection (Kuang and Bretherton 2006;
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Khairoutdinov and Randall 2006; Khairoutdinov et al. 2009) than coarser resolution 

setups (e.g., 1-km horizontal grid spacing) that sometimes fail (e.g., Petch et al. 2002), 

but evaluation of such runs against high quality observational datasets for deep 

convection is far from thorough. Ten-meter scale turbulence representation in congestus 

and deep convection may be important, but it is difficult to measure the effects of 

turbulent entrainment and detrainment in the real world, even though they can have major 

impacts on processes such as evaporation. While microphysical processes are the focus 

of this dissertation, this is but one of many examples of how they cannot be completely 

untangled from convective dynamics.

Outside of convective regions, attention in recent years has turned to low biases in 

stratiform precipitation associated with deep convection (e.g., Morrison et al. 2009; Luo 

et al. 2010). Morrison et al. (2009) attributed a low bias in rain rate for simulations using 

one-moment bulk microphysics schemes to excessive evaporation because of a constant 

rain size intercept assumption. A two-moment scheme predicting rain number 

concentration significantly reduced this low bias by allowing the size intercept to shift to 

lower values and the raindrops to size sort while falling. Li et al. (2009) point out that 

high subcloud relative humidity can mitigate the low bias due excessive evaporation. 

Luo et al. (2010) further suggest that part of the problem in low biased stratiform 

precipitation is tied to detrainment from convective regions occurring too high in the 

troposphere. Morrison et al. (2009) showed that stratiform regions were indeed sensitive 

to the detrainment of buoyancy and condensate in the upper troposphere and that a two- 

moment scheme outperformed a one-moment scheme for an idealized squall line 

simulation because the convective strength was weaker in the two-moment simulation.
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Despite improved performance by two-moment rain schemes in mid-latitude continental 

environments, studies such as Wacker and Seifert (2001) and Morrison et al. (2009) 

mention excessive vertical redistribution of raindrops by size (excessive size sorting) as a 

problem in such schemes.

It is clear from the preceding discussion that cloud-resolving simulations of deep 

convective systems are not perfect in their representation of convective and stratiform 

precipitation structure, nor should they be expected to be perfect. These simulations, 

however, are used in satellite retrievals and large-scale model parameterization 

development, and therefore, it is prudent to evaluate and improve such simulations as 

much as possible. Many biases and sensitivities to subgrid scale parameterizations, 

especially microphysics, have been established, but more research is needed to identify 

key parts of subgrid scale parameterizations that can be improved because many previous 

studies use specific model setups, schemes, and case studies. Of particular importance 

are processes that affect convective and stratiform anvil structures because of their 

importance in affecting global weather and climate patterns.

1.3 Objectives

The ultimate goal of this research is to improve mesoscale simulations of deep 

convective systems, primarily through improving bulk microphysics schemes, without 

substantially increasing the computing time for the scheme. This is accomplished by 

comparing many different CRM and LAM simulations with TWP-ICE observations 

much more thoroughly than has been done in previously published research. An attempt 

is made to find dynamical and microphysical sources of bias common to all simulations
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and sources of bias that differ between simulations. For bias that substantially differs, 

unique microphysics scheme components are identified that may be responsible for 

modulating the bias. For bias common to all simulations, hypotheses on the causes of 

such biases are developed. As these are lofty goals, simulation improvements are not 

guaranteed; rather, this research picks a few well-supported pathways to improvement out 

of a great number of possibilities of future research directions.
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Figure 1.1. Raindrop size distributions for a rain water content of 1 g m-3 with the only 
difference in panels being the logarithmic y-axis in the bottom panel. The solid black 
line represents a one-moment constant N0 and ^  = 0 distribution (Marshall-Palmer), the 
dashed black line represents a one-moment ^  = 2.5 distribution, and the solid gray lines 
represent a range of possible distributions in a ^  = 0 two-moment scheme.



CHAPTER 2

DATA AND METHODS

Numerous simulations and multiple observational datasets are utilized to achieve 

the objectives of this dissertation. These are described in this chapter.

2.1 Cloud-Resolving Model Simulations 

Two different sets of three-dimensional CRM simulations are used. The first set 

covers the entire six-day active monsoon period from 12Z January 19 to 12Z January 25, 

2006 during TWP-ICE. The second set covers the largest and most intense MCS event 

during the active monsoon period from 3Z January 23 to 12Z January 24, 2006.

2.1.1 Active Monsoon Period 

Table 2.1 lists nine three-dimensional CRM simulations run as part of the TWP- 

ICE CRM Intercomparison Study (Fridlind et al. 2012). The simulations are spread 

across four different models: the Distributed Hydrodynamic-Aerosol-Radiation Model 

Application (DHARMA) (Ackerman et al. 2000; Stevens et al. 2002), the UK Met Office 

Large Eddy Model (UKMO) (Shutts and Gray 1994; Petch and Gray 2001), the Meso- 

NH Atmospheric Simulation System (MESONH) (Lafore et al. 1998), and the System for 

Atmospheric Modeling (SAM) (Khairoutdinov and Randall 2003). As shown in Table



2.1, all simulations have horizontal resolutions of 917-1000 m and vertical resolutions 

that vary from 100-225 m in the boundary layer to 250-500 m in the mid to upper 

troposphere. All simulations are idealized with horizontal domain boundaries that are 

periodic and a lower domain boundary that is assumed to be oceanic with a constant sea 

surface temperature of 29°C and albedo of 0.07. Large-scale forcing is supplied using 

three-hourly domain-mean profiles derived from a constrained variational objective 

analysis of available observations including three-hourly soundings and radar-derived 

rain rates, as described in Xie et al. (2010). Figure 2.1 shows a map of the region with 

sounding sites (triangles) enclosing the pentagonal forcing region. Model domains are 

approximately equal to the area covered by this pentagon. The location of the CPOL 

radar is also shown with the 150-km range ring dashed. In addition to the model forcing, 

domain-mean horizontal wind profiles are nudged on a two-hour time scale.

All of these simulations are run for 16 days starting on 0Z 18 January 2006 with 

36 hours allowed for spin-up. The six days following spin-up are characterized by active 

monsoonal conditions with significant mesoscale rainfall events, while the rest of the 

time after the first six days is characterized by suppressed conditions with minimal 

rainfall. Because of the vastly different large-scale environment during these two periods 

and because the active monsoonal mesoscale convective systems are much more 

important to large-scale tropical circulations, only the active monsoon period is analyzed.

Table 2.2 shows the advection, turbulence, surface flux, and radiation schemes 

used for each model. All models solve the anelastic equations and use advection schemes 

shown in the ‘Advection’ column of Table 2.2. These schemes vary between models, but 

these differences do not appear to create much difference between simulation statistics, as
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will be shown in Chapters 3-5. All radiation schemes use fast radiative transfer 

calculations by the methods shown in the ‘Radiation’ column of Table 2.2. Subgrid scale 

turbulence schemes use a Smagorinsky-Lilly model (Lilly 1967; Deardorff 1970) or a

1.5-order closure (Cuxart et al. 2000). Surface flux schemes for DHARMA and UKMO 

are based on Monin-Obukhov similarity theory (Monin and Obukhov 1954), whereas 

MESONH uses bulk iterative Exchange Coefficients from Unified Multi-Campaigns 

Estimates (ECUME) (Weill et al. 2003; Belamari 2005) and SAM uses the scheme in the 

National Center for Atmospheric Research Community Climate Model version 3.5 

(Collins et al. 1997). Fridlind et al. (2012) shows that mean surface heat fluxes are not 

far off from those in the model forcing dataset for the active monsoon period, while 

sensitivity simulations are lower and match those measured at the Darwin harbor site. 

Fridlind et al. (2012) also shows moist static energy (MSE) drift in many simulations 

associated with net radiative flux divergence relative to net convergence in the forcing 

dataset. With reasonable fluxes despite the surface cooling from MSE drift, this could be 

an indication that simulated surface heat fluxes are too low. Of course, one of the 

complications is that the model forcing domain contains land, which exhibits a distinct 

diurnal cycle in surface sensible heat fluxes despite the humid maritime environment, 

while the CRM simulations assume an idealized oceanic surface, which should not 

experience a significant diurnal cycle because it is dominated by latent heat fluxes. This 

is supported by the surface flux data on the Southern Surveyor ship during this period, 

which is dominated by the latent heat flux with minimal diurnal variability.

All simulations use bulk microphysics schemes in which continuous hydrometeor 

size distributions are defined through prediction of either one (one-moment) or two (two-
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moment) moments of each hydrometeor size distribution. All schemes predict the mass 

mixing ratio of every hydrometeor species used in the scheme, whereas some schemes 

include two-moment species for which number concentration is also predicted. If  a 

simulation includes two-moment species, they are shown in the Microphysics column of 

Table 2.1 in parentheses. All simulations include cloud water and rain as species, but 

some differences exist in the ice species used. DHARMA-B and DHARMA-S include 

graupel and a combined cloud ice and snow category (Grabowski 1999). Cloud ice and 

snow are diagnostically separated into two separate size distributions that are defined in 

McFarquhar and Heymsfield (1997) so that proper comparisons involving snow can be 

made with the other simulations. SAM-B and SAM-S use an early version of the 

Morrison scheme (Morrison et al. 2009), which includes two-moment cloud ice, snow, 

and hail. These are the only simulations that use hail rather than graupel. All other 

simulations use cloud ice, snow, and graupel. UKMO-2M uses a slightly later version of 

the Morrison scheme than the SAM simulations use and includes two-moment cloud ice, 

snow, and graupel. The UKMO LEM scientific documentation version 2.3 (Gray et al. 

2001) describes the schemes used in UKMO-1 and UKMO-2. UKMO-1 and UKMO-2 

predict the number concentration of cloud ice. UKMO-2 differs from UKMO-1 in that it 

additionally predicts the number concentrations of snow and graupel. The MESONH 

model scientific documentation version 4.8 (Bougeault et al. 2009) describes the schemes 

used in MESONH-1 and MESONH-2. MESONH-2 differs from MESONH-1 in that 

cloud water and cloud ice number concentrations are predicted following Pinty (2002). 

Idealized aerosol profiles for three separate size modes generated from in situ aircraft 

observations during the Aerosol and Chemical Transport In tropical conVEction
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(ACTIVE) field campaign (Vaughan et al. 2008), which preceded and partially 

overlapped the TWP-ICE field campaign in Darwin, are used as input to the simulations 

that include two-moment cloud water (SAM simulations and MESONH-2).

Two of the nine simulations are referred to as sensitivity simulations, DHARMA-

S and SAM-S. In these simulations, the domain mean potential temperature and water 

vapor profiles are nudged on a six-hour time scale toward the observed domain mean 

profiles throughout the troposphere. These two simulations also include baseline (-B) 

counterparts in which this nudging only occurs in the far upper troposphere and lower 

stratosphere, so that these simulations are more freely allowed to alter the tropospheric 

thermodynamic profile. The sensitivity simulations give a sense of errors that may arise 

due to the idealized nature of the model forcing. More details on all simulations can be 

found in Varble et al. (2011) and Fridlind et al. (2012).

2.1.2 Mesoscale Convective System Event 

To better understand statistical differences found between models and 

observations with the three-hour output over six days, two-day simulations covering 12Z 

22 January 2006 to 12Z 24 January 2006 were run with 10-minute output produced for 

the 33-hour period between 3Z 23 January 2006 and 12Z 24 January 2006 during which a 

large MCS forms. Although a large MCS is not ideal for CRMs run with periodic lateral 

boundary conditions over a 176 km by 176 km domain, this period was chosen because 

of the unique observational retrievals and LAM simulations available for comparison. 

For this event, the UKMO simulations were altered from the original simulations to have 

higher vertical resolution, making them more comparable to the other simulations. All
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else is the same as the original UKMO simulations. A tenth simulation was also added, 

DHARMA-2M, which uses the Morrison two-moment scheme in the DHARMA model 

with prognostic cloud water number concentration that uses idealized aerosols profiles in 

three size modes based on ACTIVE observations. This simulation is unique compared to 

others in that it accounts for aerosol transport and consumption. All other simulations 

(DHARMA-B, DHARMA-S, MESONH-1, MESONH-2, SAM-B, and SAM-S) are 

unchanged from the longer runs with three-hour output. Information on these MCS 

simulations is shown in Table 2.1.

2.2 Limited Area Model Simulations 

Table 2.3 show the setups for four three-dimensional LAM simulations, all 

Advanced Research Weather Research and Forecasting (WRF-ARW) model (Skamarock 

et al. 2008) simulations, three of which were used as part of the TWP-ICE LAM 

Intercomparison Study (Zhu et al. 2012). The LAMs are set up in a very different 

manner than the CRMs although the horizontal and vertical resolution remains 

approximately the same. LAMs are forced through their horizontal boundaries. Rather 

than a constant sea surface temperature oceanic surface such as that used in the CRMs, 

the LAMs have an inhomogeneous surface with variable land and ocean properties. This 

setup is better equipped to simulate the large MCS event because of the nonperiodic 

lateral boundary conditions, which do not limit the size of the MCS and allow a 

mesoscale cyclonic wind field. The primary drawback is that the forcing is less 

constrained by observations and prone to errors from the large-scale analysis used to 

force the LAM. WRF-W, WRF-T, and WRF-M are run using WRF V3.1 and described
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as WRF-1, WRF-2, and WRF-3, respectively, in the TWP-ICE LAM Intercomparison 

Study (Zhu et al. 2012). All three simulations share the same setup except for the use of 

different microphysics schemes as shown in Table 2.3. WRF-M uses the Morrison 

scheme (Morrison et al. 2009), WRF-W the WSM6 scheme (Hong and Lim 2006), and 

WRF-T the Thompson scheme (Thompson et al. 2008). The Morrison scheme used 

includes two-moment rain, graupel, snow, and cloud ice with one-moment cloud water. 

The Thompson scheme is a recent version that uses two-moment rain and cloud ice with 

one-moment graupel, snow, and cloud water. For one-moment graupel, the Thompson 

scheme varies the size intercept as a function of mass mixing ratio to mimic the transition 

from lightly rimed snow to hail (Thompson et al. 2008). For one-moment snow, the 

Thompson scheme uses a combination of two gamma size distributions with a 

dependence on temperature described in Field et al. (2005). Furthermore, the Thompson 

snow mass-diameter relationship assumes nonspherical particles based on the relationship 

in Cox (1988), whereas the Morrison and WSM6 schemes assume spherical particles. 

The WSM6 scheme is purely a one-moment scheme, although the snow size intercept 

varies diagnostically as a function of temperature using a relationship from Houze et al. 

(1979). Other model physics schemes used in all LAM simulations include the Rapid 

Radiative Transfer Model (RRTM) longwave radiation scheme (Mlawer et al. 1997), the 

Dudhia shortwave radiation scheme (Dudhia 1989), a five-layer thermal diffusion land 

surface scheme, and the Yonsei University planetary boundary layer scheme (Hong et al.

2006). Additional parameterizations used are comparable to those used in the CRM 

simulations, including a Smagorinsky-type first order turbulence closure, Monin- 

Obukhov similarity theory for surface fluxes, fifth order horizontal with third-order
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vertical advection of momentum and scalars, and positive definite moisture advection. In 

D1 and D2 (27 and 9 km horizontal grid spaced domains), the Kain-Fritsch convective 

parameterization (Kain 2004) is used because the horizontal grid spacing is too coarse for 

explicitly resolved convection.

These simulations are all forced using ECMWF global analyses and nested down 

from an outer domain (D1) horizontal resolution of 27 km to an inner domain (D4) 

horizontal resolution of 1 km as shown in Figure 2.2. Two-way nesting is used in all four 

simulations, which allows inner domains to impact outer domains. The innermost 

domain covers 450 km by 330 km. A fourth WRF simulation was run using WRF V3.3.1 

and the Morrison microphysics scheme. This simulation is referred to as WRF-M2. This 

simulation uses almost the same setup as the three other WRF runs, except that the cloud 

water number concentration is set to 100 cm-3 rather than 250 cm-3 and ECMWF analysis 

nudging is turned off in D3 and in the boundary layer of all domains. In WRF-W, WRF- 

T, and WRF-M, analysis nudging is used in D1, D2, and D3 throughout the entire 

troposphere on a six-hour time scale using a nudging coefficient of 0.0003 s-1. While 

analysis nudging further imposes some of the large-scale analysis errors on the 

simulations, it keeps the large-scale conditions fairly similar in all simulations, which 

allows attribution of simulation differences to the different microphysics schemes used. 

For all comparisons to observations, only WRF output with 10-minute output frequency 

covering the same 33-hour period as the CRM simulations that is within the CPOL radar 

coverage area is included.
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2.3 Bulk Microphysics Scheme Properties 

Tables 2.4 through 2.6 show relevant properties of rain, graupel, and snow in 

every microphysics scheme used in the CRM and LAM setups, which are briefly 

discussed here for reference in Chapters 3 through 5. Most schemes assume gamma 

distributions with ^  = 0, which is equivalent to an exponential distribution. Snow is the 

most common precipitation hydrometeor that is not represented by such a distribution, as 

in the Grabowski (1999) and Thompson schemes, which assume lognormal and two 

combined gamma distributions, respectively. The complexity of determining No can vary 

from setting it to a constant to computing it from predicted mass mixing ratio and number 

concentration. Some schemes avoid some of the pitfalls of having a constant No and the 

additional computational expense of predicting number concentration by diagnostically 

varying No with temperature in the case of snow (WSM6 and Thompson) or mass mixing 

ratio in the case of graupel (Thompson). Outside of the prediction of number 

concentration for rain, all schemes assume the same rain mass-diameter (m-D) 

relationship and similar fall speed relationships. The only scheme that does not assume 

spherical, bulk density graupel or hail is MESONH, which assumes an m-D relationship 

based on Locatelli and Hobbs (1974) that forces density to decrease with increasing size. 

This produces low density graupel of between 100 and 200 kg m-3 but No values are 

generally close to 2*107, five times the constant value in the Grabowski (1999) and 

WSM6 schemes, which significantly limits the size of graupel. For the schemes that 

assume constant bulk graupel density, it is set to 400 or 500 kg m-3, while hail in the 

Morrison scheme is set to 900 kg m-3. Graupel terminal fall speed relationships are 

shown in Figure 2.3b. They produce similar values for particle diameters less than 2 mm,
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so for most low to moderate graupel mass situations, the mass-weighted fall speed for 

simulations using graupel are similar. For larger sizes, however, fall speeds diverge with 

WSM6 and UKMO giving the highest fall speeds followed by Thompson, MESONH, 

and finally Morrison and Grabowski (1999). The Morrison hail scheme, not surprisingly, 

produces much higher fall speeds than any other scheme for a given particle size. Of 

course, the actual fall speeds in simulations are dependent on the size distributions. For 

large graupel mass mixing ratios (qg), the Thompson scheme produces mass-weighted fall 

speeds on par with those in the Morrison hail scheme. It does this by lowering N0 when 

qg is large, as shown in Table 2.5. For graupel mass mixing ratios greater than 5 g kg-1, 

the median mass-weighed mean diameter in WRF-T is nearly 13 mm! This has a major 

impact on the amount of graupel aloft, as will be discussed in Chapters 3 and 4. Snow 

terminal fall speed relationships, as opposed to graupel, are similar up to diameters of 

about 5 mm as shown in Figure 2.3a, despite their different coefficients.

For the majority of schemes, snow is assumed to be spherical with a constant bulk 

density of 100 kg m-3. For the MESONH and Thompson schemes, snow mass is assumed 

to be proportional to D19 and D2, respectively, based on observations. This allows 

density to decrease with size, a more realistic assumption for a snow category that must 

represent all noncloud particle ice and nonheavily rimed particles, but one that can 

produce issues if placed in a scheme that is too simple, as will be discussed in Chapter 3. 

For small snow particle diameters of 100-200 ^m, density in these schemes is near that 

of pure ice, but as size increases, the density quickly decreases. In MESONH, 500 ^m 

diameter snow particles have a density of 163 kg m-3, 1 mm snow particles a density of 

76 kg m-3, and 5 mm snow particles a density of 13 kg m-3. In the Thompson scheme,
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snow is higher density, decreasing from 264 kg m"3 for a 500 ^m diameter particle to 132 

kg m-3 for a 1mm particle and 26 kg m-3 for a 5 mm particle.

While fall speed relationships differ and create some differences between 

simulations, especially for graupel and hail, the effects of N0 and the m-D relationship on 

the distribution of particle diameters significantly affects particle fall speeds as well. Van 

Weverberg et al. (2013) found that different MCS anvil coverage was strongly related to 

cloud ice fall speed, which was dominated by differences in number concentration (size) 

of particles rather than the fall speed formulation. As will be shown in Chapters 3 

through 5, the largest differences in model output are indeed between one-moment and 

two-moment schemes because two-moment schemes can produce a range of fall speeds 

for a given mass mixing ratio through the prediction of number concentration.

2.4 Calculation of Variables From Model Output 

To compare model output to observations requires calculation of many variables 

from model output. These variables include Rayleigh horizontal radar reflectivity 

(henceforth radar reflectivity) and Doppler velocity, rain rate, liquid water content for a 

limited range of raindrop sizes, mass-weighted mean diameter, median volume diameter, 

normalized size intercept parameter, and moist static energy. Calculation of all of these 

variables is consistent with the assumptions of each simulation’s microphysics scheme.

Model Rayleigh radar reflectivity is computed by integrating from a diameter of 0 

to a diameter of infinity over the sixth moment of the hydrometeor melted equivalent 

diameter size distributions for rain, graupel, snow, and cloud ice, and adding components
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from each of these four hydrometeor species. For a given hydrometeor species, the 

Rayleigh reflectivity computation is
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where De is the equivalent melted diameter, D is the original diameter, and n(D) is the 

size distribution. A dielectric factor of 0.224 is assumed for ice species, following Smith 

(1984). This factor is related to the dielectric function divided by the ice density, which 

is constant for Rayleigh scattering when the dielectric function is approximated by the 

relationship in Debye (1929) and assuming a dielectric function of 1.0 for air. Actual 

measurements show that this factor does in fact vary as a function of ice density, but only 

slightly, as shown in Bohren and Battan (1980), and thus this assumption does not have 

any significant impact on computed reflectivity. A general solution to this integration for 

ice species represented by gamma distributions is shown in equation 2.2:

18 AT 1 X  i  - X -2 bZ = 0.224 x10 6a
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where Ze has units of mm6 m-3, N  is the number concentration with units of m-3, a and b 

are coefficients in the mass-diameter relationship, pw is the density of liquid water with 

units of kg m-3, A is the gamma slope parameter with units of m-1, X  is equal to 1+^, 

where is the gamma shape parameter. The size intercept, No, is shown in equation 2.3:
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where No has units of m-4. Non-gamma distributions such as those for combined cloud 

ice and snow in DHARMA-B and DHARMA-S and snow in WRF-T have more 

complicated solutions. This approximation is valid for the observational radar’s 5.5-cm 

wavelength for convective systems without significant hail as is expected during 

Darwin’s active monsoon period (see Section 2.4.1 and Keenan et al. (1998) for more 

details on the observational radar (CPOL)). Additionally, observed radar reflectivity 

used for comparisons with simulated radar reflectivity is primarily within 100 km of the 

radar location and attenuation corrected. Because observed radar reflectivity resolution is

2.5 km horizontally for data covering the entire CPOL domain, the computed model radar 

reflectivities are degraded to 2.5-km horizontal resolution in a process that conserves 

radar reflectivity factor for most comparisons to observations. Simulated Rayleigh 

reflectivity-weighted Doppler velocity is computed in a similar manner to Rayleigh radar 

reflectivity by computing equation 2.4:

Vdoppler = ----------------- , (2.4)

0

where D is melted equivalent diameter, v(D) is the hydrometeor fall speed relationship, 

and n(D) is the size distribution assumed in the microphysics scheme.



2.5 Observations

2.5.1 C-Band Polarimetric Radar (CPOL)

A central source of observational data is the 5.5-cm wavelength C-band 

polarimetric scanning radar (CPOL) described in detail in Keenan et al. (1998) and 

located at Gunn Point about 30 km northeast of Darwin. CPOL provides three­

dimensional radar reflectivity at 10-minute resolution. The radar reflectivity is 

interpolated onto a 2.5-km horizontal and 0.5-km vertical grid. Reflectivity uncertainty is 

estimated to be approximately 1 dBZ (Peter May, personal communication).

As described in Bringi et al. (2009), rain rates were calculated using a 

climatological radar reflectivity-rain rate (Z-R) relationship based on a wet season of 

disdrometer data at Darwin for low rain rates. For higher rain rates, the retrieval makes 

use of differential reflectivity (Zdr) and specific differential phase (Kdp), which brings 

down the uncertainty at higher rain rates. ZDR provides information on the median 

raindrop size, while Kdp is not affected by radar calibration, attenuation by precipitation, 

or partial beam blockage (Rhyzkov et al., 2005). Uncertainty ranges from about 100 

percent (e.g. 1 mm h-1 represents a range of 0.5 to 2 mm h-1) for the lowest rain rates to 

25 percent for rain rates of 10 mm h-1 or more (Peter May, personal communication). 

The rain rates are calculated at a 2.5-km height due to radar beam height restrictions at 

far ranges, and these are the rain rates that went into the variational analysis used to force 

the CRM simulations. Because the sensitivity of the CPOL radar is approximately 0 dBZ 

at a 150-km range and clutter was found to be an issue around 0 dBZ, comparisons with 

simulations are limited to reflectivities of 5 dBZ or greater.
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2.5.2 Scanning Radar Retrievals 

In addition to deriving rain rates at 2.5 km, Bringi et al. (2009) developed an 

algorithm based on an entire wet season of disdrometer data at Darwin to derive the rain 

size distribution median volume diameter (Do) and normalized size intercept (Nw) at 2.5 

km. Do is the diameter in the rain size distribution at which half of the water content is 

contained in raindrops smaller than Do and half is contained in raindrops larger than Do.

For the gamma distributions used in simulations, Do is equal to ^ . Nw is defined

as the size intercept of an exponential size distribution that has the same mass-weighted 

mean diameter and liquid water content as the retrieved gamma size distribution. As 

discussed in Bringi et al. (2009), the disdrometer data were fitted to a normalized gamma 

drop size distribution (DSD) and T-matrix scattering calculations were performed to 

output observable polarimetric radar quantities such as horizontal reflectivity, differential 

reflectivity, and specific differential phase. The variability of raindrop shape and 

orientation were taken into account in scattering calculations based on fall bridge 

experiments in which raindrops were formed with a hose and released off of an 80-m 

bridge and measured at the ground with a two-dimensional video disdrometer. From the 

outputted radar variables produced in the scattering calculations, algorithms were 

developed relating rain rate, Do, and Nw to the radar variables. Bringi et al. (2009) 

showed that this retrieval compared favorably with dual-profiler retrievals at an altitude 

of 2.5 km. May et al. (2011) state that the retrieval uncertainty (8) is 0.11 mm in the Do 

retrievals and 0.24 in the Nw retrievals for most Do and Nw values.

Another scanning radar retrieval, a dual-Doppler retrieval, is described in Collis et 

al. (2013, accepted). It uses radial velocity vectors from the operational Berrima and
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research CPOL radars where the horizontal component of these vectors is between 30° 

and 150°. This yields two lobes covering an area of 4165 km2, approximately 7-8 times 

smaller than the CRM domain areas. The retrieval covers a five-hour period from 1310Z 

to 1750Z on January 23 during the peak of convective activity. Vertical velocity is 

assumed to be 0 at echo top, and convergence is assumed to be constant below the lowest 

radar beam down to the surface if a valid radar return is detected in that column by the 

lowest radar beam. These are two important sources of error because convergence may 

actually more commonly increase toward the surface, as is seen in simulations, and 

significant divergence may occur above the radar echo top, as discussed in Mapes and 

Houze (1995). Due to accumulating error as one integrates the continuity equation 

upward or downward, the continuity equation is integrated both upward from the surface 

and downward from cloud top with a weighting function used in combining the two. 

Assumed hydrometeor fall speeds are used with the vertical component of the radial 

velocity vectors as a weak constraint on the analysis. Due to smoothing, the true 

resolution of the analysis is likely 2-3 km despite output on 1-km grids, but the exact 

resolution is not known. Despite assumed lower horizontal resolution, Collis et al. (2013, 

accepted) shows that retrieved vertical velocities are comparable to vertical profiler 

vertical velocity retrievals, which are positioned between the two lobes, with a root mean 

square error (RMSE) of 1.9 m s-1 and a negative bias in the dual-Doppler retrieval of 2.2 

m s-1. Because of the stated uncertainties in this analysis, it is reserved for comparing the 

deepest and strongest convective updrafts to those in the models. This dual-Doppler 

dataset also has radar reflectivity interpolated onto a 1-km horizontal grid rather than the

2.5-km horizontal grid used for the entire CPOL domain since the dual-Doppler lobes are
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closer to the radar than most of the CPOL domain. This higher resolution reflectivity 

dataset is used in Chapter 4 when examining dual-Doppler derived convective drafts.

2.5.3 Joss-Waldvogel Disdrometer 

The Joss-Waldvogel disdrometer data were collected in 127 diameter bins with a 

10-second dwell time, but were processed with a dead-time correction into 20 diameter 

bins with one-minute resolution. The minimum size measured is 0.308 mm and the 

maximum size 5.258 mm. Tokay et al. (2001) show that this type of disdrometer 

severely underreports raindrops less than 0.5 mm. Therefore, comparisons of 

disdrometer observed and simulated liquid water content are limited to the stratiform 

liquid water content of raindrops with diameters greater than 0.308 mm and less than 

5.258 mm. The liquid water content is designated convective or stratiform based on the 

classification of the CPOL column over the disdrometer. The separation of convective 

and stratiform regions is described in Section 2.5. The convective sample size is too 

small for comparisons with model output. Because model output for the MCS event is 

generated every 10 minutes, disdrometer observations are sampled every 10 minutes for 

comparisons with model output. Comparing the distribution of all stratiform one-minute 

disdrometer samples to samples every 10 minutes yields very similar distributions. 

Given the one-minute temporal resolution and depending on the propagation speed of the 

precipitation system, the disdrometer observations are slightly higher to approximately 

the same resolution as the model output along the propagation direction, but the sampling 

volume is smaller because of the nearly one-dimensional nature of the disdrometer. 

There is not any great way to adjust for this, but stratiform rain by definition varies
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slowly in space and time, so differences in sampling volume should be minimized as long 

as the sample size is large enough.

2.5.4 Vertically-Pointing Profilers 

As with the disdrometer data, comparisons of vertical profiler datasets with model 

output are limited to stratiform regions due to sample size. The highest frequency 

vertical profiler used is S-band (2835-MHz), which provides Rayleigh radar reflectivity 

and Doppler velocity. The dual-profiler retrieval of rain DSDs follows Williams and 

Gage (2009), which uses a VHF (50-MHz) vertical profiler to measure the clear air Bragg 

scattering Doppler spectrum and a UHF (920-MHz) vertical profiler to measure the 

Rayleigh scattering Doppler spectrum of precipitation. With the use of both profilers, 

precipitation spectral broadening due to air motions is accounted for. In Williams and 

Gage (2009), 42 different retrieval models were used to estimate retrieval bias and 

uncertainty. For the retrievals used in this study, a gamma distribution is assumed 

(Section 2.1 in Williams and Gage (2009)), the convolution method is used as the 

numerical inverse model (Section 4.1 of Williams and Gage (2009)), and a spectral two- 

norm cost function (Section 5.1 of Williams and Gage (2009)) is applied. Even if it isn’t 

the best possible fit to the real rain size distribution, assuming a gamma distribution is 

appealing because it is the general form of the rain size distributions used in the 

simulations. Relative to the 42-member ensemble mean, this methodology produced a 

0.031 mm bias in the retrieved mass-weighted mean diameter (Dm). Williams and Gage 

(2009) also estimated rain rate and Dm retrieval uncertainty by calculating the 10th, 50th, 

and 90th percentiles of the standard deviation of rain rate and Dm for small intervals of
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mean rain rate and Dm. For the most common Dm values between 0.8 and 1.8 mm, the 

50th and 90th percentiles were less than 0.11 and 0.15 mm, respectively. Uncertainties for 

rain rate increase as rain rate increases. While the 90th percentile is 0.6 mm hr-1 for a 2 

mm hr-1 rain rate, the 50th percentile is only 0.15 mm hr-1.

Dm, Nw, and p are derived from the best fit to the observed spectra from which 

moments of the gamma size distribution such as liquid water content and reflectivity are 

calculated. Dm is the fourth moment of the rain size distribution divided by the third 

moment of the size distribution. For the gamma distributions assumed in the simulations,

4 + fa
Dm = — . DSD profiles are retrieved between 1.5 and 4 km every minute. The

profiler retrievals have a dwell time of 45 seconds. The VHF profiler has a beam width 

of 3° and vertical resolution of 310 m, while the UHF profiler has a beam width of 9° and 

vertical resolution of 105 m. Assuming a reasonable horizontal wind speed such as 10 m 

s-1, this dwell time with the beam width gives a horizontal resolution in the along wind 

direction of approximately 700 to 1100 m depending on height. Calculating from the 

UHF profiler beam width, the approximate resolution in the direction perpendicular to the 

wind decreases from approximately 240 m at 1.5 km to 630 m at 4 km. Therefore, the 

sampling area is similar to the model grid spacing of 917 m by 917 m or 1000 m by 1000 

m. Because model output is saved every 10 minutes, profiler retrievals are used every 10 

minutes as well. This is done to avoid greater autocorrelation in observational retrievals 

than in model output and to maintain similar sample sizes for comparison of simulated 

and dual-profiler retrieved temporal mean profiles in Chapter 5. Using all one-minute 

samples produces a similar distribution to samples every 10 minutes. Each retrieved 

DSD profile is designated as convective or stratiform based on the classification of the
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CPOL column that encompasses the profilers’ location with only stratiform regions being 

considered for comparison with simulated output owing to small sample size and large 

retrieval error in convective regions. The separation of convective and stratiform regions 

is described in the next section.

2.6 Convective-Stratiform Separation 

Model output and observations are compared for convective and stratiform regions 

separately because of the fundamentally different radar reflectivity structure in each 

region owing to distinctly different dynamical and microphysical processes (Houze, 

1997). As will be shown in Chapter 3, this separation is crucial to identifying model 

biases in variables such as rainfall that would be largely covered up if all precipitating 

regions were included in statistics. Separation of convective and stratiform regions can 

be done in many ways. The method used in this dissertation uses low-level horizontal 

radar reflectivity texture as the separating variable. This allows radar reflectivity to be 

used as a separator of the two regions. A simple texture-based separation algorithm 

based on Steiner et al. (1995) is applied to 2.5 km altitude radar reflectivity. This 

algorithm works especially well for Darwin because it is based on Darwin radar data. 

This is a three-step algorithm. First, all grid points with reflectivities of at least 40 dBZ 

are labeled as convective. Second, a “peakedness” definition is applied that labels a grid 

point as convective if it has a reflectivity sufficiently above the background reflectivity. 

This threshold varies based on the value of the background reflectivity, and the 

background reflectivity is determined within an 11-km radius surrounding the grid point 

being labeled. In Steiner et al. (1995), only grid points with reflectivities above the
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detection limit of the radar are included, but in this analysis, all points are included and 

any points that are below the CPOL detection limit are set to the detection limit value of 

0 dBZ. The last step involves setting a radius around convective identified grid points 

that grows as the radar reflectivity at the convective grid point is increased. All grid 

points enveloped by this radius are then set as convective. All remaining columns with

2.5 km altitude radar reflectivities greater than 5 dBZ are considered stratiform. Figures

2.4 and 2.5 show observed and CRM simulated horizontal cross-sections of radar 

reflectivity at 2.5-km and 7.5-km altitudes, respectively, for 3Z on January 20. Outlined 

in thick black are the convective regions and outlined in thin black are the stratiform. 

These figures show that the convective-stratiform separation method separates the 

regions as would be expected with high echoes and very “peaked” echoes in space 

identified as convective. Although not shown, the DHARMA-2M simulation looks very 

similar. Figures 2.6 and 2.7 show observed and LAM simulated horizontal cross-sections 

of radar reflectivity at 2.5 km and 7.5 km altitudes, respectively, for 18Z on January 23. 

The positions of the simulated and observed precipitation fields are not directly 

comparable because of timing and location errors in the ECMWF analysis forcing the 

LAM simulations, but the convective and stratiform structures within observations and 

simulations are fairly representative. WRF-T, WRF-M, and WRF-M2 produce large 

areas identified as convective through radar reflectivities that are greater than 40 dBZ 

even though substantial portions of those areas are free of convective drafts (not shown). 

This is related to large amounts of ice being produced with slow fall speeds near the 

center of the mesoscale circulation. Even though such large convective regions are not
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realistic, that does not invalidate the separation technique because they are a result of 

model errors.
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Table 2.1. Descriptions of all CRM simulations being used including the symbol 
representing them in figures, their domain size and resolution, the type of bulk 
microphysics used, and the frequency of model output. In the Microphysics column, 
letters in the parentheses indicate two-moment hydrometeor species: cloud ice (i), cloud 
water (w), rain (r), graupel (g), hail (h), and snow (s).

CRM Simulation Characteristics
Simulation Symbol Domain AX (m) AZ (m) Microphysics 3-hr

Output
10-min
Output

DHARMA-B Solid
diamond

(176 km)2 917 100-250 1-moment X X

DHARMA-S Open
diamond

(176 km)2 917 100-250 1-moment X X

DHARMA-2M X (176 km)2 917 100-250 2-moment
(i,w,r,g,s)

X

UKMO-1 Right-
pointing
triangle

(177 km)2 917 225-500 2-moment (i) X

UKMO-2 Left-
pointing
triangle

(177 km)2 917 225-500 2-moment
(i,g,s)

X

UKMO-2M Square (177 km)2 917 225-500 2-moment
(i,r,g,s)

X

UKMO-1 Right-
pointing
triangle

(177 km)2 917 100-250 2-moment (i) X

UKMO-2 Left-
pointing
triangle

(177 km)2 917 100-250 2-moment
(i,g,s)

X

UKMO-2M Square (177 km)2 917 100-250 2-moment
(i,r,g,s)

X

MESONH-1 Up-
pointing
triangle

(192 km)2 1000 100-250 1-moment X X

MESONH-2 Down-
pointing
triangle

(192 km)2 1000 100-250 2-moment
(i,w)

X X

SAM-B Solid circle (192 km)2 1000 100-400 2-moment
(i,w,r,h,s)

X X

SAM-S Open circle (192 km)2 1000 100-400 2-moment
(i,w,r,h,s)

X X
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Table 2.2. The advection, turbulence, surface flux, and radiation schemes used in the 
four CRMs. All models solve the equations of motion using the anelastic approximation.

Other CRM Simulations Schemes
Model Advection Turbulence Surface Flux Radiation

DHARMA 2nd order forward in time with 
3rd order upwinding advection 
(Stevens and Bretherton 1996)

Smagorinsky
-Lilly

Monin-Obukhov 
similarity theory

2-stream with 
equivalent 

spheres (Toon et 
al. 1989)

MESONH 4th order forward in time with 
piecewise parabolic method 

advection (Colella and 
Woodward 1984)

1.5 order 
closure 

(Cuxart et al. 
2000)

Bulk iterative 
Exchange 

Coefficients from 
ECUME 

(Belamari 2005)

Rapid Radiative 
Transfer Model 
(Mlawer et al. 

1997)

UKMO Leapfrog scheme with a 
Robert-Asselin time filter; 

Piascek and Williams (1970) 
momentum advection; 

Monotonic scalar advection 
(Leonard et al. 1993)

Smagorinsky
-Lilly

Monin-Obukhov 
similarity theory

Edwards-Slingo 
(Edwards and 
Slingo 1996)

SAM 3rd order Adams-Bashforth 
with variable time stepping, 

2nd order momentum 
advection and monotonic 
positive-definite scalar 

advection (Smolarkiewicz and 
Grabowski 1990)

Smagorinsky 
-Lilly or 1.5- 
order closure

NCAR 
Community 

Climate Model 
version 3.5 

(Collins et al. 
1997)

NCAR 
Community 

Climate Model 
(CCM3) (Kiehl et 

al. 1998)
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Table 2.3. Descriptions of all LAM simulations being used including the symbol 
representing them in figures, their domain size and resolution, and the type of bulk 
microphysics used. In the Microphysics column, letters in the parentheses indicate two- 
moment hydrometeor species: cloud ice (i), cloud water (w), rain (r), graupel (g), and 
snow (s).

LAM Simulations Characteristics
Simulation Symbol Domain (D4) AX (m) AZ (m) Microphysics
WRF-W Triangle 450 km x 330 km 1000 ~100-300 1-moment
WRF-T Square 450 km x 330 km 1000 ~100-300 2-moment (r)
WRF-M Diamond 450 km x 330 km 1000 ~100-300 2-moment (i,r,g,s)

WRF-M2 Dashed Line 450 km x 330 km 1000 ~100-300 2-moment (i,r,g,s)
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Table 2.4. Relevant rain characteristics for each microphysics scheme used in the CRM 
and LAM simulations. The first column shows the name of the scheme. The Grabowski 
(1999) scheme is used in DHARMA-B and DHARMA-S. The Morrison scheme is used 
in UKMO-2M, DHARMA-2M, SAM-B, SAM-S, WRF-M, and WRF-M2. The version 
with hail is used in SAM-B and SAM-S. The second column shows the size distribution 
(SD) shape. For gamma distributions, the gamma shape parameter (p) is listed. The third 
column shows the size intercept and whether number concentration is prognostic or not. 
N  is the number concentration and A is the slope of the SD. The fourth and fifth columns 
show am and bm coefficients in MKS units of the mass-diameter relationship m = amDbm, 
where pr is the density of rain. The sixth and seventh columns show the av and bv 
coefficients in MKS units of the terminal fall speed relationship vf = avDbve"fv° , w heref
equals 195 for the Thompson scheme# and 0 for all other schemes . The last column 
shows the rain density.

Rain Characteristics
Scheme SD No [m-4] am bm av bv Pr [kg m-3]

Grabowski Gamma 1x107 ! Pr 3 130 0.5 1000
(1999) ( 0 = 0 ) 6

MESONH Gamma 8x106 ! Pr 3 842 0.8 1000
( 0 = 0 ) 6

UKMO Gamma 1.1x1015 ! Pr 3 362 0.65 1000
( ̂  = 2.5 ) 6

Morrison Gamma Prognostic: ! Pr 3 841.9 0.8 1000
( 0 = 0 ) NX 6

Thompson Gamma Prognostic: ! Pr 3 4854.4# 1# 1000
( 0 = 0 ) NX 6

WSM 6 Gamma 8x106 ! Pr 3 841.9 0.8 1000
( 0 = 0 ) 6
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Table 2.5. Relevant graupel characteristics for each microphysics scheme used in the 
CRM and LAM simulations. The first column shows the name of the scheme. The 
Grabowski (1999) scheme is used in DHARMA-B and DHARMA-S. The Morrison 
scheme is used in UKMO-2M, DHARMA-2M, WRF-M, and WRF-M2. The version 
with hail is used in SAM-B and SAM-S. The second column shows the size distribution 
(SD) shape. For gamma distributions, the gamma shape parameter (w) is listed. The third 
column shows the size intercept and whether number concentration is prognostic or not. 
N  is the number concentration, A is the slope of the SD, and qg is the graupel mass mixing 
ratio. The fourth and fifth columns show am and bm coefficients in MKS units of the 
mass-diameter relationship m = amDbm, where pg is the density of graupel. The sixth and 
seventh columns show the av and bv coefficients in MKS units of the terminal fall speed 
relationship vf = avDb e"fD, wheref v equals 0 for all graupel schemes. The last column 
shows the graupel d ensity.

Graupel Characteristics
Scheme

Grabowski
(1999)

SD 
Gamma 
( 0 = 0 )

No [m-4] 
4x106

am
! Pg

bm
3

av
19.3

bv
0.37

Pg [kg m" ] 
400

MESONH Gamma 
( 0 = 0 )

in?<oXin 19.6 2.8 124 0.66 6 a m D bm

UKMO Gamma 
( ̂  = 2.5 )

5 x 1025 A"4 / 
Prognostic: 

N A3'5 
r(3.5)

! Pg
6

3 253 0.734 500

Morrison Gamma Prognostic: NX ! Pg 3 114.5 0.5 900
(hail) ( 0 = 0 ) 6

Morrison Gamma 
( 0 = 0 )

Prognostic: NX ! Pg
6

3 19.3 0.37 400

Thompson Gamma 
( 0 = 0 )

max[1x104, 

min( 200, 5x106)]
q g

! Pg
6

3 442 0.89 400

WSM6 Gamma 
( 0 = 0 )

4x106 ! Pg
6

3 330 0.8 500
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Table 2.6. Relevant snow characteristics for each microphysics scheme used in the CRM 
and LAM simulations. The first column shows the name of the scheme. The Grabowski 
(1999) scheme is used in DHARMA-B and DHARMA-S. The Morrison scheme is used 
in UKMO-2M, DHARMA-2M, SAM-B, SAM-S, WRF-M, and WRF-M2. The second 
column shows the size distribution (SD) shape. For gamma distributions, the gamma 
shape parameter (w) is listed. The third column shows the size intercept and whether 
number concentration is prognostic or not. N  is the number concentration, A is the slope 
of the SD, T is temperature, and T0 = 273.15 K. The fourth and fifth columns show am 
and bm coefficients in MKS units of the mass-diameter relationship m = amDbm, where ps 
is the density of snow. The sixth and seventh columns show the av and bv coefficients in 
MKS units of the terminal fall speed relationship vf = avDbve~fv° , where f v equals 125 in 
the Thompson scheme# and 0 in all other schemes. The fall speed relation in Grabowski 
[1999]$ is vf = 0.9 + 100IWC where IWC is the snow water content with units of kg m-3.
The last column shows the snow density.

Snow Characteristics
Scheme SD No [m-4] am bm av bv Ps [kg m 3]

Grabowski Log- - ! Ps 3 $ -$ 100
(1999) normal 6

MESONH Gamma 
( 0 = 0 )

5X2 0.02 1.9 5.1 0.27
6 a m  D bm_3

UKMO Gamma 
( ̂  = 2.5 )

2 x 1027A“3'5/ 
Prognostic: 

N ! 3'5 
r(3.5)

! Ps
6

3 4.84 0.25 100

Morrison Gamma 
( 0 = 0 )

Prognostic: NX ! Ps
6

3 11.72 0.41 100

Thompson Two - 0.069 2 40# 0.55#
6 a m  D bm"3

Gammas
WSM 6 Gamma 

( 0 = 0 )
min(2x108,

2 x 106 e012(r )
! Ps
6

3 11.72 0.41 100



48

129 130 131 132 133

Figure 2.1. The five sites shown with triangles define the TWP-ICE pentagonal domain. 
Each site took three-hourly soundings. The variational analysis was performed for this 
region and used to force the CRM runs. The location of the CPOL radar used for 
observed radar reflectivity and derived rain rates is also shown on the map as a black 
circle with the 150-km CPOL range ring shown with a dashed line.
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120 123 126 129 132 135 138 141

120 123 126 129 132 135 138 141

Figure 2.2. The WRF domains used for the TWP-ICE LAM Intercomparison Study. 
Domain 1 (D1) has a horizontal resolution of 27 km; domain 2 (D2), 9 km; domain 3 
(D3), 3 km; and domain 4 (D4), 1 km. The CPOL range is shown with a dashed circle 
and the pentagonal forcing region for the CRM simulations is also plotted.
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Snow Graupel

Diameter [mm] Diameter [mm]
Figure 2.3. Mass terminal fall speed relationships for (a) snow and (b) graupel terminal 
as a function of particle diameter for the various bulk microphysics schemes used. An 
altitude of approximately 7 km (air density of ~0.57 kg m-3) is used for calculations. The 
MESONH scheme is dashed in blue, the UKMO scheme dashed in green, the Thompson 
scheme in solid orange, the WSM6 scheme in solid red, the Morrison scheme in solid 
black, and the Morrison hail scheme in dotted black. The Grabowski (1999) scheme has 
the same graupel relationship of the Morrison scheme and a snow fall speed that depends 
on IWC as shown in the Table 2.6 caption, generally varying between 0.9 and 1.1 m s-1.
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Figure 2.4. Representative 2.5-km altitude horizontal cross-sections of radar reflectivity 
at 3Z 20 January 2006: (a) CPOL, (b) UKMO-1, (c) UKMO-2, (d) UKMO-2M, (e) 
MESONH-1, (f) SAM-B, (g) DHARMA-B, (h) MESONH-2, (i) SAM-S, and (j) 
DHARMA-S. Convective regions are outlined in thick black and stratiform regions in 
thin black.
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Figure 2.5. Representative 7.5-km altitude horizontal cross-sections of radar reflectivity 
at 3Z 20 January 2006: (a) CPOL, (b) UKMO-1, (c) UKMO-2, (d) UKMO-2M, (e) 
MESONH-1, (f) SAM-B, (g) DHARMA-B, (h) MESONH-2, (i) SAM-S, and (j) 
DHARMA-S. Convective regions are outlined in thick black and stratiform regions in 
thin black.
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Figure 2.6. Representative 2.5-km altitude horizontal cross-sections of radar reflectivity 
at 18Z 23 January 2006: (a) CPOL, (b) WRF-W, (c) WRF-T, (d) WRF-M, and (e) WRF- 
M2. Convective regions are outlined in thick black and stratiform regions in thin black.
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Figure 2.7. Representative 7.5-km altitude horizontal cross-sections of radar reflectivity 
at 18Z 23 January 2006: (a) CPOL, (b) WRF-W, (c) WRF-T, (d) WRF-M, and (e) WRF- 
M2. Convective regions are outlined in thick black and stratiform regions in thin black.



CHAPTER 3

CONVECTIVE AND STRATIFORM STRUCTURE

3.1 Overview

After separating convective and stratiform regions in observations and 

simulations, properties such as volumetric rainfall, area, rain rate, and radar reflectivity 

distribution are compared in this chapter. Differences in precipitation structure between 

simulations are then related to differences in microphysics assumptions between 

simulations. Because bulk microphysics schemes are used in the simulations, rain mass 

falls at the mass-weighted speed of the rain size distribution. Simulated rain rate is 

calculated by multiplying this speed by the rain water content. Radar reflectivity 

observations and simulated radar reflectivity calculations are described in Sections 2.3 

and 2.4.1. The CRM results for the active monsoon period in this chapter are published 

in Varble et al. (2011).

3.2 Area and Rain Rate

3.2.1 CRM Simulations 

Table 3.1 shows that the mean volumetric rainfall over the entire six-day active 

monsoon period is very similar in CRM simulations and observations. This is expected 

due to the advective forcing that incorporates CPOL-derived rain rates. The portioning of



rainfall into convective and stratiform components, however, shows far different results 

in simulations than in observations. Table 3.1 shows that most simulations over-predict 

convective rainfall and under-predict stratiform rainfall, although most values are within 

high levels of observational uncertainty. The highest simulated stratiform rainfalls are 

produced by UKMO-1, UKMO-2, and DHARMA-B, which all use one-moment rain 

schemes. Furthermore, Tables 3.2 and 3.3 show that when rainfall is broken down into 

area and rain rate components, both convective and stratiform areas are over-predicted 

while mean rain rates are under-predicted. Five of nine simulations over-predict 

convective area by 55 percent or more and seven of nine simulations over-predict 

stratiform area by 33 percent or more. Six of nine simulations underestimate mean 

convective rain rate by 20 percent or more, although only three are technically outside of 

observational uncertainty. UKMO-1 and UKMO-2 produce convective rain rates closest 

to observed, which is likely related to their unique size distributions, as discussed later in 

this section. All simulations underestimate mean stratiform rain rate by at least 33 

percent with five simulations outside of observational uncertainty. The two sensitivity 

simulations are the only two simulations to accurately predict stratiform area, which 

implies that the idealized model forcing is at least partially responsible for the overly 

large stratiform areas, but rain rate is just as low in these simulations which combined 

with the lesser area produces even lower stratiform rainfall.

Figure 3.1 shows that both convective rainfall and area track observations in time 

very well because of strict regulation by the model forcing. Closer inspection, however, 

shows that most simulations over-predict the area during and after observed precipitation 

events. The over-prediction after precipitation peaks is likely a result of the periodic
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lateral boundary conditions. The highest peak around 18Z on January 23 corresponds to 

the mesoscale convective system event described in Section 2.1.2. Convective rainfall, 

however, is not as over-predicted because most simulations have a larger proportion of 

convective rain rates at relatively low rain rates between 2 and 6 mm hr-1, as shown in 

Figure 3.2a. Consistent with Table 3.3, UKMO-1 and UKMO-2 (right and left pointing 

triangles) closely follow the observed CDF of observed convective rain rates. These 

simulations are unique in that they assume a gamma shape parameter (^) of 2.5 rather 

than 0 for rain. This may act to lower radar reflectivity for lesser convective rain rates by 

narrowing the rain size distribution, thus decreasing the number of lesser rain rates 

identified as convective. Figure 3.2b shows that very large rain rates greater than 50 mm 

hr-1 also contribute more to total convective rainfall in most simulations than in 

observations, and thus, simulations tend to have a larger range of convective rain rates 

that significantly contribute to convective rainfall.

Figure 3.3 shows that stratiform rainfall also closely follows the observed time 

series, but stratiform area is significantly over-predicted for most of the active monsoon 

period. Note the open symbols representing the sensitivity simulations do not over­

predict stratiform area, but perform worse than baseline simulations in simulating 

stratiform rainfall. While the model forcing may be partially responsible for the high bias 

in stratiform area, it does not appear to affect the low bias in stratiform rain rate. Figure 

3.4a shows that only DHARMA-B and DHARMA-S (diamonds) are able to match the 

median stratiform rain rate of 0.4 mm hr-1, whereas all other simulations show median 

stratiform rain rates near the lower bound of observational uncertainty around 0.2 mm 

hr-1. At higher rain rates near 2 mm hr-1, all simulations fall along or outside of the lower
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bound of observational uncertainty. Larger differences exist in contribution to stratiform 

rainfall. Rain rates less than 1 mm hr-1 contribute far more to simulated stratiform 

rainfall than observed rainfall and rain rates greater than 5 mm hr-1 contribute far more to 

observed stratiform rainfall than simulated rainfall. The only simulations within 

observational uncertainty for moderate to high rain rates are the UKMO-1 and UKMO-2 

simulations (left and right pointing triangles) that use ^  = 2.5 rather than ^ = 0.

Chapters 4 and 5 will focus on the MCS event between 3Z on January 23 and 12Z 

on January 24 for which 10-minute simulation output is available for CRMs and LAMs. 

For reference in those chapters, the time series of CRM convective and stratiform area 

and rainfall for the MCS event are shown in Figure 3.5. Due to the use of periodic lateral 

boundary conditions, the issue of simulated convective regions not leaving the domain 

when they do in observations shows up in Figure 3.5, as does the issue of too little 

stratiform rainfall. The peak in observed stratiform area coincides with the peak in 

observed stratiform rainfall and rain rates. The peak in simulated stratiform rainfall, 

however, precedes the peak in simulated stratiform area. This too could be related to the 

issue of convection not leaving the domain, but also the inability to support a large 

stratiform region without convection feeding it, another issue in the idealized CRM setup. 

This issue is a possible reason for stratiform rainfall during this major event being more 

under-predicted than other events shown in Figure 3.3, even though stratiform rain rates 

are under-predicted in all events. Although not shown, differences between simulated 

and observed convective and stratiform rain rate CDFs for the MCS event look very 

similar to the entire active monsoon period shown in Figures 3.2 and 3.4.

58



3.2.2 LAM Simulations

The LAM (WRF) simulations show some similarities and some differences when 

compared with the CRM simulations. With volumetric rainfall less constrained than in 

the CRM simulations, all WRF simulations overestimate the volumetric rainfall for the 

mesoscale convective system event. As shown in Table 3.4, the over-prediction of 

convective rainfall and under-prediction of stratiform rainfall seen in CRM simulations is 

accentuated in the WRF simulations with all simulations overestimating convective 

rainfall by at least 80 percent and underestimating stratiform rainfall by at least 67 

percent.

Tables 3.5 and 3.6 show that, as was the case for the CRM simulations, the 

overestimation of convective rainfall is due to overestimation of convective area rather 

than mean convective rain rate. Unlike the CRM simulations, the three WRF runs from 

the TWP-ICE LAM Intercomparison Study underestimate stratiform rainfall primarily 

through area rather than rain rate. WRF-M2 has vastly underestimated stratiform rain 

rates, but reasonable stratiform area, which is in better agreement with the CRM 

simulations. The vast under-prediction of stratiform area in WRF-W, WRF-T, and WRF- 

M is likely due to their tight coupling to the ECMWF analysis used to force them. Del 

Genio et al. (2012) point out a dry bias in the ECMWF analysis and high sensitivity of 

simulated stratiform regions to free tropospheric relative humidity. With WRF-M2 less 

constrained by the analysis, it may have more ability to humidify the free troposphere and 

develop more stratiform area. This is discussed more in later chapters.

Whereas observations show a clear convective precipitation peak around 18Z on 

January 23 (23.75) in Figure 3.7, WRF simulations have two less distinct peaks. WRF-
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W, WRF-T, and WRF-M (symbols) closely track one another showing that the large- 

scale environment in those runs is strongly regulated through the analysis nudging. Thus, 

these errors in rainfall are very likely tied to the ECMWF analysis being used. WRF-M2 

(dashed) shows even greater peaks in convective area and precipitation, although it much 

better approximates the observed stratiform area in Figure 3.7c. All simulations fail to 

simulate the strong peak in stratiform precipitation shown in Figure 3.7d between 21Z 

January 23 and 0Z January 24.

Figure 3.8 shows that LAMs have a greater occurrence of light to moderate 

convective rain rates with median convective rain rates from 5 to 8 mm hr-1 whereas 

observational retrievals yield a median convective rain rate greater than 10 mm hr-1. This 

is in agreement with CRM simulations. Also in agreement with CRM simulations is the 

greater fraction of high convective rain rates than observational retrievals show. In fact, 

very high rain rates greater than 50 mm hr-1 contribute more to total convective rainfall 

than those in observational retrievals or CRM simulations. As was shown in Table 3.6, 

WRF-W, WRF-T, and WRF-M produce stratiform rain rates that are closer to those 

observed than those in most CRM simulations. However, WRF-M2 produces similar 

high fractions of low stratiform rain rates. Figure 3.8 also shows that observed high 

stratiform rain rates contribute much more to observed stratiform rainfall than simulated 

high stratiform rain rates do to simulated stratiform rainfall. For example, 40 percent of 

observationally retrieved stratiform rainfall is produced by rain rates greater than 5 mm 

hr-1, but only 10-20 percent of simulated stratiform rainfall is produced by such rain 

rates. This too is in agreement with CRM simulation results and is likely related to the 

absence of a large stratiform region with a well-developed mesoscale updraft in
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simulations. While CRM simulations and LAM simulations may have differences in 

convective and stratiform area, they show the same biases in convective radar reflectivity, 

which is discussed next.

3.3 Convective Radar Reflectivity

3.3.1 CRM Simulations 

Figure 3.9 shows observed and CRM simulated histograms of 2.5-km altitude 

convective radar reflectivity for the active monsoon period. Statistics for the MCS event 

alone look very similar and are not shown. All simulations are able to produce the 

observed sharp peak in values between 35 and 40 dBZ. This is evidence that the 

convective-stratiform separation method performed well. It is also not all that surprising 

as radar reflectivity is not nearly as sensitive to rain water content at high rain water 

contents as it is at low rain water contents if  one assumes a Marshall-Palmer size 

distribution, as might be expected in heavy convective rainfall on the spatial scale 

considered here.

The CRM simulations do not perform nearly as well at 7.5 km, where significant 

high biases in convective radar reflectivity show up. Figure 3.10 shows that the observed 

convective radar reflectivity distribution for the active monsoon period peaks sharply at 

20 dBZ. This peaked distribution is evident at all height levels in observations and 

moves toward lower reflectivities as height increases (not shown). Simulated reflectivity 

distributions tend to be uniform from 5 dBZ through 30 to 40 dBZ. The Morrison 2- 

moment scheme (circles and square) produces more peaked distributions than most one- 

moment schemes and the UKMO-2 two-moment scheme because the Morrison scheme
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has significant contributions to high radar reflectivities from snow, shown in Figure 

3.10c, whereas most one-moment schemes and the UKMO-2 two-moment scheme have 

convective radar reflectivity that is more dominated by graupel in Figure 3.10b. 

Interestingly, the UKMO-1 simulation (right pointing triangle) is the only one-moment 

scheme that produces high snow radar reflectivity and it assumes ^ = 2.5. The two- 

moment UKMO-2 simulation (left pointing triangle) with ^ = 2.5 significantly decreases 

both the graupel and snow radar reflectivity from that in UKMO-1. The SAM 

simulations (circles), which are the only simulations that use hail, have the highest snow 

radar reflectivity and lowest dense precipitating ice reflectivity because hail has at least 

double the fall speed of graupel for the formulation in the Morrison scheme, meaning it 

falls out of the convective updraft much more efficiently than the graupel used by all 

other simulations. Convective radar reflectivity distributions aloft look similar for the 

MCS event, although the SAM simulations have slightly greater samples of high 

reflectivity, which is consistent with the stronger convective strength during the MCS 

event.

Just because simulated convective radar reflectivity aloft is biased high does not 

mean that simulated convective regions are deeper. Shown in Figure 3.11, a normalized 

CDF of 5-dBZ echo top heights in convective regions shows that observed 5 dBZ echo 

tops are higher than most CRM simulations’ 5-dBZ echo tops. Observed 25-dBZ echo 

tops, on the other hand, are lower than in all simulations. This leads to a median 

difference in 25-dBZ and 5-dBZ convective echo tops of 6 km in observations but only 

1-3 km in simulations. This means that convective regions are similar in depth between
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simulations and observations but radar reflectivity decreases much more gradually in 

observations than in simulations.

3.3.2 LAM Simulations 

As shown in Figure 3.12, WRF simulations show the same sharply peaked 

convective radar reflectivity distribution at 2.5 km that is seen in the CRM simulations 

and observations. This is not surprising considering the WRF rain microphysics schemes 

are very similar if  not the same as several of those used in the CRM simulations. WRF- 

M and WRF-M2 (diamond and dashed line) produce a much larger peak associated with 

greater convective area. As in the CRM simulations, convective radar reflectivity aloft is 

biased high in Figure 3.13, although the WRF distributions are more peaked than the 

CRM distributions. The Morrison two-moment scheme (diamond and dashed line) is 

again plagued by high snow radar reflectivity, which leads to the worst high bias aloft of 

all of the simulations. Snow radar reflectivity appears more reasonable in the one- 

moment WSM6 (triangle) and Thompson (square) schemes, but graupel leads to high 

biases in those schemes, as it does in all schemes. The WSM6 and Thompson one- 

moment snow schemes produce higher radar reflectivities than the one-moment schemes 

used in DHARMA and MESONH because they vary the snow size distribution based on 

temperature, which mimics aggregation of snow that increases radar reflectivity.
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3.4 Stratiform Radar Reflectivity

3.4.1 CRM Simulations 

Whereas the primary issues in convective radar reflectivity were aloft, issues in 

stratiform radar reflectivity arise at all height levels. All CRM baseline simulations show 

substantial peaks in their 2.5-km altitude radar reflectivity distribution between 10 and 20 

dBZ in Figure 3.14, whereas the observed distribution remains approximately constant 

between 5 and 30 dBZ before dropping off between 30 and 40 dBZ. The two sensitivity 

simulations eliminate the large peak at low radar reflectivities, again implying the 

idealized model forcing may be the primary driver of the over-prediction of stratiform 

area in the CRM baseline simulations. These two simulations do not, however, increase 

the number of samples between 25 and 35 dBZ, the range that contains most of the high 

stratiform rain rates. Differences in radar reflectivity between simulations are larger in 

stratiform regions than convective regions partly because radar reflectivity is more 

sensitive to changes in liquid water content at low liquid water contents than at high 

liquid water contents. The simulations using the Morrison two-moment scheme (circles 

and square) have more samples than observed at reflectivities between 35 and 40 dBZ. 

Results are similar for the MCS event alone.

A large model spread exists in radar reflectivity histograms at a 7.5-km altitude, 

shown in Figure 3.15. The simulations using various forms of the Morrison 2-moment 

scheme (circles and square) and the UKMO simulations (left and right pointing triangles) 

show substantial samples of radar reflectivity greater than 25 dBZ whereas observed 

samples decrease from a peak at 20 dBZ to almost no samples greater than 25 dBZ. The 

DHARMA (diamonds) and MESONH (up and down pointing triangles) simulations
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using 1-moment schemes have much lower radar reflectivity than observed, peaking 

between 5 and 10 dBZ. No simulation is close to reproducing the observed distribution. 

Histograms for the MCS event produce similar conclusions, except that the observed 

histogram is much more strongly peaked at 20 dBZ due to the large uniform stratiform 

region produced during that event. The reasons for these large differences in simulated 

radar reflectivity aloft are explored in Section 3.5.

3.4.2 LAM Simulations 

Shown in Figure 3.16, the WRF simulations do not have the large peaks at low 

radar reflectivities seen in CRM simulations. The simulations with the Morrison two- 

moment scheme (diamond and dashed line), especially WRF-M2, produce the closest 

agreement with observations at 2.5 km, while WRF-W (triangle) and WRF-T (square) 

under-predict 2.5-km radar reflectivity. All simulations struggle, as did the CRM 

simulations, to reproduce the distinct peak at 30 dBZ, perhaps owing to a lack of a large, 

continuous, well-developed stratiform region in simulations. WRF-M and WRF-M2, 

however, have too many samples of reflectivity over 30 dBZ at 7.5 km without the 

distinct peak at 20 dBZ. WRF-T (squares) is the only LAM simulation to not over­

predict reflectivity and hint at this peak, although it is at 16 dBZ and not as pronounced. 

Still, this can be seen as a success and may be due to the relatively complicated bi­

gamma snow size distribution (see Field et al., 2005) used in the Thompson scheme that 

varies as a function of temperature and assumes mass is proportional to D 2.
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3.5 Relation to Model Microphysics Assumptions 

There are substantial differences between simulated precipitation structures aloft. 

This section relates such differences to differences in assumed hydrometeor properties in 

the CRM simulations. Figure 3.17 shows 7.5-km altitude graupel and snow radar 

reflectivity histograms for the MCS event with specific simulations highlighted based on 

assumptions in the microphysics scheme they use. Highlighted in blue in (a) and (d) are 

the SAM simulations that use hail rather than graupel as the precipitating dense ice 

category. This assumption substantially reduces the amount of dense ice aloft, but any 

reduction in radar reflectivity is offset by very high snow radar reflectivity in this case. 

The two other simulations with many high snow radar reflectivity echoes (squares and 

x ’s) use the Morrison two-moment microphysics scheme. Part of the issue with that 

snow scheme is that it allows for aggregation of snow, but assumes snow has a constant 

bulk snow density of 100 kg m-3, whereas aggregated dendritic snow typically has lower 

density than smaller snow particles, as shown by m-D relationships in Locatelli and 

Hobbs (1974) and Field et al. (2005), for example.

One solution to this problem could be to assume a nonspherical snow m-D 

relationship that allows snow density to decrease with increasing size, as is assumed in 

the MESONH simulations highlighted in (e) and described in Table 2.6. Unfortunately, 

with the one-moment treatment in MESONH, the m-D relationship used produces an 

under-prediction in snow radar reflectivity because small snow has such high density and 

aggregation is not well represented even though N 0 shifts to smaller sizes as A decreases, 

as shown in Table 2.6. MESONH also assumes a nonspherical graupel m-D with 

coefficients shown in Table 2.5 that assumes low density graupel, but N 0 values are very
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high based on their dependence on A in Table 2.5, which limits the maximum graupel 

radar reflectivity in (b) from reaching the levels of DHARMA-B and DHARMA-S 

(diamonds).

The dispersion of the gamma size distribution is controlled by ^, which also has a 

significant impact on graupel and snow radar reflectivity as one might expect. As 

described in Tables 2.4 and 2.6, UKMO-1 and UKMO-2 assume ^ = 2.5 rather than 0 as 

all other simulations do. Revisit Figure 1.1 to see how this affects the size distribution. 

Simply put, increasing p  results in a narrower size di stribution for a given number 

concentration and mass mixing ratio. This can lead to closer agreement with observed 

reflectivity through narrowing of the graupel and snow size distributions, but this only 

occurs when number concentration is predicted in the case of UKMO-1 and UKMO-2. 

The green line with higher reflectivity values in Figure 3.17 (c) and (d) is the one- 

moment UKMO-1 simulation and the one with the lower values is the two-moment 

UKMO-2 simulation. As all of these examples illustrate, the way in which hydrometeor 

size distributions are defined can create large differences in radar reflectivity.

Figure 3.18 shows normalized cumulative distributions of convective graupel 

radar reflectivity, water content (IWC), number concentration (N), and mass-weighted 

mean diameter (Dm). The DHARMA simulations (diamonds) produce the highest 

graupel radar reflectivity in Figure 3.18a, whereas the simulations employing two- 

moment schemes (circles, square, and left pointing triangle) and the MESONH 

simulations (up and down pointing triangles) group together at lower reflectivity values. 

These distributions of radar reflectivity are not highly correlated with the distributions of 

graupel IWC in Figure 3.18b because of very different assumptions in size distribution
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characteristics between different microphysics schemes. The MESONH simulations (up 

and down pointing triangles) have the highest graupel IWC despite having the lowest 

reflectivities of the one-moment schemes because MESONH has the highest graupel N  of 

any scheme in Figure 3.18c. This is the result of the No-k relationship used in MESONH 

as discussed earlier. With the highest N, MESONH has the smallest D m of all CRM 

simulations in Figure 3.18d. The other one-moment schemes have larger D m, which is 

consistent with lower graupel N  values in those simulations rather than higher IWC. 

UKMO-1 (right pointing triangle) is an outlier in both Dm and N  because it uses ^ = 2.5. 

The only other simulation with a nonzero ^ is UKMO-2, but N  is predicted in that 

simulation.

As in the case of graupel, simulations with the highest snow radar reflectivities 

also tend to have the highest mass-weighted mean diameters. As shown in Figure 3.19, 

the snow Dm distributions for two-moment schemes (circles and square) cover a larger 

range of diameters than one-moment schemes due to their ability to predict N . This 

ability also allows a broader range of snow IWC and N  than the one-moment schemes 

used in MESONH (up and down pointing triangles) and DHARMA (diamonds). 

Nonzero n  had implications for graupel and has implications for snow as well. UKMO-1 

(right pointing triangle) is the only one-moment simulation that covers a large range of 

IWC and N  due to its use of a nonzero ^. Relative to convective snow IWC (not shown), 

the stratiform snow IWC for all two-moment schemes and UKMO-1 is significantly 

lower, whereas it is only slightly lower for MESONH and DHARMA. In fact, 

DHARMA has the highest stratiform snow IWC but the lowest stratiform snow radar 

reflectivity because of its log-normal size distribution described in McFarquhar and
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Heymsfield (1997) that forces extremely high N  and limits the size of snow. UKMO-1 

again has the lowest N  due to a ^  value of 2.5 rather than 0 and nonprognostic N, which 

allows for reflectivities closer to observations. Whereas the nonspherical m-D and N0-A 

relationships used in MESONH aided those simulations with respect to graupel radar 

reflectivity, they produce snow reflectivities that are too low. This is clearly shown in 

Figure 3.20, which shows radar reflectivity as a function of IWC for graupel and snow.

One-moment microphysics schemes produce single lines in Figure 3.20 because 

each water content has but one size distribution and hence one radar reflectivity in these 

treatments (unlike more complex one-moment schemes, with diagnostic intercepts, such 

as Thompson et al. (2004)). Two-moment schemes, however, allow for different size 

distributions for a given ice water content and hence, such schemes are depicted by 

frequency distributions in which the shading contours are logarithmically spaced. This 

figure reaffirms some of the previous conclusions drawn about differences in radar 

reflectivity relating to differences in size distribution assumptions. For graupel/hail in 

panels (a), (b), and (c), MESONH (up pointing triangle) has the lowest radar reflectivity 

for any given IWC, but the MESONH convective radar reflectivity agrees much better 

with observations than the other simulations. The Morrison hail scheme used in SAM-B 

shown in 3.20a tends to have a higher radar reflectivity for a given IWC than the 

Morrison graupel scheme in UKMO-2M (3.20b), but there are also fewer occurrences of 

large ice water contents. It can also be seen that radar reflectivities are generally brought 

down for a given IWC in UKMO-2 (3.20c) relative to UKMO-1 (right pointing triangles) 

showing the impact of predicting N  in a scheme. For both graupel and snow, the range of 

reflectivity possibilities for a given IWC is very large as shown in the shadings. The
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slope and values of the relation for UKMO-1 snow is closest to the two-moment schemes 

for low to moderate IWC while MESONH produces the best agreement at high IWC, but 

clearly aggregation leads to a spread to higher reflectivities in the two-moment schemes 

that the one-moment schemes cannot produce if they use a fixed No and n  in the size 

distribution. In reality, snow aggregates as it approaches the melting level (Houze and 

Churchill 1987; Heymsfield et al. 2002; Stith et al. 2002) leading to a decrease in the 

number concentration and an increase in the size of snow particles. Microphysics 

schemes, such as two-moment schemes, that have the ability to predict a large spread of 

reflectivity values for a given IWC have the ability to better predict the observed radar 

reflectivity distribution. However, simulations with the two-moment Morrison scheme 

generally over-predict snow radar reflectivity. This is not to say that all two-moment 

schemes have this problem because the UKMO two-moment scheme that uses ^ = 2.5 

(shaded in Figure 3.20c and 3.20f) has far fewer samples of high radar reflectivity at very 

low IWC for both graupel and snow.

LAM simulations include two versions of the Morrison two-moment scheme, 

which had multiple versions used in the CRM simulations, which although not shown, 

align very nicely with the statistics from those CRM simulations. The two other schemes 

used, WSM6 and Thompson, provide different schemes for comparison. Graupel and 

snow characteristics are outlined in Tables 2.5 and 2.6. The WSM6 scheme is a one- 

moment scheme but allows the snow size intercept to diagnostically shift based on 

temperature in an attempt to mimic aggregation. These diagnostic shifts in the size 

distribution are popular because they reduce computational expense, but produce more 

realistic shifts in snow sizes and number concentrations. For the Thompson scheme,
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diagnostics based on temperature combined with a unique m-D relationship 

( m = 0.069D2) and a complicated size distribution defined by two combined gamma 

distributions based on Field et al. (2005) leads to very realistic snow reflectivities. The 

Thompson scheme uses a diagnostic size intercept for graupel as well. For graupel, the 

scheme decreases the size intercept as the predicted mass mixing ratio increases to mimic 

the shift from lightly rimed snow to hail. This scheme produces much more snow than 

graupel aloft, which is somewhat due to the faster fallout of large graupel amounts with 

lower diagnosed size intercepts and hence larger sizes. Interestingly, despite the lower 

graupel water contents, graupel radar reflectivities are higher in the Thompson scheme 

where the graupel has not yet fallen out because of those much larger sizes and much 

lower size intercepts. This is but one example that supports the CRM results that show 

more dependence of radar reflectivity on size distribution assumptions than significant 

differences in water content.

Although it is obvious that radar reflectivity aloft depends on IWC for any one 

simulation, differences in radar reflectivity across the CRM and LAM simulations are 

more dependent on differences in assumed size distribution properties, such as No, ^ , and 

X. The difficulty in choosing the appropriate assumptions is that IWC may be incorrect, 

which is explored in the next chapter. Either way, it is important that any changes in 

microphysics assumptions are guided by observations and theory.

3.6 Discussion

Both CRM and LAM simulations do not correctly proportion convective and 

stratiform regions. Some of this difference between simulations and observations can be
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attributed to model initialization and forcing, but some can likely be attributed to model 

parameterizations as well. Convective radar reflectivity aloft is biased high and 

stratiform rain rate is biased low, indicating dynamics and microphysics components to 

model biases. Differences in model ice microphysics parameterization assumptions play 

a larger role in radar reflectivity differences between simulations than do differences in 

graupel and snow water contents, but this does not mean that ice water contents are 

correct. The next two chapters explore dynamical and microphysical sources of model 

biases including those due to model forcing, convective draft properties, and 

microphysics.

72



73

Table 3.1. Six-day active monsoon mean rainfall for all precipitating regions, convective 
regions, and stratiform regions for observations and CRM simulations. Precipitation is 
calculated using rain rates at a 2.5-km altitude and only includes points with radar 
reflectivity of 5 dBZ or greater. Precipitation is defined as convective or stratiform 
following Steiner et al. (1995). The percentage difference between each simulation and 
observations is also shown. Observed mean rainfalls in parentheses show the lower and 
upper bounds with observational error taken into account. Rainfall has units of 103 mm 
h '1 km2.

CRM Active Monsoon Volumetric Rainfall
All Convective Stratiform

Mean Difference Mean Difference Mean Differen
Observed 33.36 (23.66- - 20.68 (16.19- - 12.68 (7.48- -

48.51) 26.59) 21.92)
DHARMA-B 35.66 +7% 24.66 +19% 11.00 -13%
DHARMA-S 35.95 +8% 27.90 +35% 8.05 -37%
UKMO-1 35.26 +6% 23.30 +12% 12.06 -5%
UKMO-2 36.65 +10% 24.79 +20% 11.85 -7%
UKMO-2M 34.92 +5% 25.98 +26% 8.93 -30%
MESONH-1 33.11 -1% 23.79 +15% 9.33 -26%
MESONH-2 20.52 -38% 11.96 -42% 8.55 -33%
SAM-B 35.50 +6% 26.12 +26% 9.37 -26%
SAM-S 27.41 -18% 21.14 +2% 6.27 -51%
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Table 3.2. Six-day active monsoon mean domain fractions covered by all precipitation, 
convective precipitation, and stratiform precipitation. Precipitation is defined as 
convective or stratiform following Steiner et al. (1995) with a lower bound of 5 dBZ. 
The percentage difference between each simulation and observations is also shown.

CRM Active Monsoon Precipitating Area
All Convective Stratiform

Mean Difference Mean Difference Mean Difference
Observed 0.363 - 0.044 - 0.319 -
DHARMA-B 0.491 +35% 0.068 +55% 0.423 +33%
DHARMA-S 0.379 +2% 0.071 +61% 0.308 -3%
UKMO-1 0.507 +40% 0.047 +7% 0.460 +44%
UKMO-2 0.496 +37% 0.053 +20% 0.443 +39%
UKMO-2M 0.517 +42% 0.073 +66% 0.444 +39%
MESONH-1 0.521 +44% 0.068 +55% 0.453 +42%
MESONH-2 0.521 +44% 0.042 -5% 0.479 +50%
SAM-B 0.598 +65% 0.072 +64% 0.526 +65%
SAM-S 0.360 -1% 0.057 +30% 0.303 -5%
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Table 3.3. Six-day active monsoon 2.5-km altitude mean rain rates (mm h-1) for all 
precipitating regions, convective regions, and stratiform regions. Only grid points with 
radar reflectivity of 5 dBZ or greater are included. Precipitation is defined as convective 
or stratiform following Steiner et al. (1995). The percentage difference between each 
simulation and observations is also shown. Mean rain rates in parentheses show lower 
and upper bounds with observational error taken into account.

CRM Active Monsoon Rain Rate
All Convective Stratiform

Mean Difference Mean Difference Mean Differen
Observed 2.95 (2.09- - 15.14 (11.85- - 1.27 (0.75- -

4.29) 19.47) 2.20)
DHARMA-B 2.37 -20% 11.86 -22% 0.85 -33%
DHARMA-S 3.10 +5% 12.84 -15% 0.85 -33%
UKMO-1 2.25 -24% 15.98 +6% 0.85 -33%
UKMO-2 2.39 -19% 15.17 0% 0.87 -31%
UKMO-2M 2.19 -26% 11.57 -24% 0.65 -49%
MESONH-1 2.10 -29% 11.58 -24% 0.68 -46%
MESONH-2 1.30 -56% 9.46 -38% 0.59 -54%
SAM-B 1.96 -34% 11.99 -21% 0.59 -54%
SAM-S 2.51 -15% 12.15 -20% 0.68 -46%
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Table 3.4. Mesoscale convective system event rainfall for all precipitating regions, 
convective regions, and stratiform regions for the CPOL domain and the portion of D4 of 
the LAM simulations that is covered by the CPOL domain. Precipitation is defined as 
any radar reflectivity echoes greater than or equal to 5 dBZ at an altitude of 2.5 km. All 
precipitation is defined as either convective or stratiform following Steiner et al. (1995). 
The percentage difference between each model simulation and observations is also 
shown. Observed mean rainfalls in parentheses show the lower and upper bounds with 
observational error taken into account. Rainfall has units of 103 mm h-1 km2.

LAM MCS Volumetric Rainfall
All Convective Stratiform

Mean Difference Mean Difference Mean Differen
Observed 118.6 (86.07- - 75.19 (59.08- - 43.37 (26.99- -

167.8) 96.18) 71.58)
WRF-W 148.9 +26% 135.5 +80% 13.38 -69%
WRF-T 166.1 +40% 152.0 +102% 14.07 -68%
WRF-M 158.5 +34% 146.4 +95% 12.13 -72%
WRF-M2 191.3 +61% 177.1 +136% 14.23 -67%
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Table 3.5. Mesoscale convective system event domain mean fractions covered by all 
precipitation, convective precipitation, and stratiform precipitation. Precipitation is 
defined as convective or stratiform following Steiner et al. (1995) with a lower bound of 
5 dBZ. The percentage difference between each simulation and observations is also 
shown.

LAM MCS Precipitating Area
All Convective Stratiform

Mean Difference Mean Difference Mean Difference
Observed 0.513 - 0.073 - 0.440 -
WRF-W 0.312 -39% 0.132 +81% 0.180 -59%
WRF-T 0.371 -28% 0.155 +112% 0.215 -51%
WRF-M 0.366 -29% 0.168 +130% 0.199 -55%
WRF-M2 0.568 +11% 0.196 +168% 0.371 -16%
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Table 3.6. Mesoscale convective system event 2.5-km altitude mean rain rates (mm h-1) 
for all precipitating regions, convective regions, and stratiform regions. Only grid points 
with radar reflectivity of 5 dBZ or greater are included. Precipitation is defined as 
convective or stratiform following Steiner et al. (1995). The percentage difference 
between each simulation and observations is also shown. Mean rain rates in parentheses 
show lower and upper bounds with observational error taken into account.

LAM MCS Rain Rates
All Convective Stratiform

Mean Difference Mean Difference Mean Differen
Observed 3.63 (2.64- - 16.19 (12.72- - 1.55 (0.96- -

5.14) 20.71) 2.56)
WRF-W 7.51 +107% 16.17 0% 1.17 -25%
WRF-T 7.04 +94% 15.38 -5% 1.03 -34%
WRF-M 6.80 +87% 13.72 -15% 0.96 -38%
WRF-M2 5.29 +46% 14.17 -12% 0.60 -61%
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Figure 3.1. The six-day active monsoon time series of (a) convective area and (b) 
volumetric rainfall at a 2.5-km altitude. CRMs are represented by symbols (see Table 
2.1). The thick black line represents observations derived from the CPOL radar. 
Volumetric rainfall has units of 1x 10-4 mm h-1 km2.
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Figure 3.2. 2.5-km altitude CRM convective rain rate normalized cumulative 
distributions for the six-day active monsoon are shown in (a) with models represented by 
symbols (see Table 2.1) and observations by the thick black line. Thin black lines show 
the observational error bounds. The cumulative contribution of convective rain rates to 
total convective rainfall is shown in (b). Observations are derived from the CPOL radar.
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Figure 3.3. The six-day active monsoon time series of (a) stratiform area and (b) 
volumetric rainfall at a 2.5-km altitude. CRMs are represented by symbols (see Table 
2.1). The thick black line represents observations derived from the CPOL radar. 
Volumetric rainfall has units of 1x 10-4 mm h-1 km2.
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Figure 3.4. 2.5-km altitude CRM stratiform rain rate normalized cumulative 
distributions for the six-day active monsoon are shown in (a) with models represented by 
symbols (see Table 2.1) and observations by the thick black line. Thin black lines show 
the observational error bounds. The cumulative contribution of stratiform rain rates to 
total stratiform rainfall is shown in (b). Observations are derived from the CPOL radar.
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Figure 3.5. The time series of CRM (a) convective area, (b) convective volumetric 
rainfall at an altitude of 2.5 km, (c) stratiform area, and (d) stratiform volumetric rainfall 
at an altitude of 2.5 km for the MCS period between 3Z 1/23 and 12Z 1/24 using 10- 
minute output. Observations derived from the CPOL radar are represented by the black 
line and CRM simulations by the gray lines and symbols (see Table 2.1). The solid thin 
black lines represent volumetric rainfall retrieval uncertainty. Rainfall has units of 1 x 10-4 
mm h-1 km2.
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Figure 3.8. 2.5-km altitude LAM convective rain rate normalized cumulative 
distributions for the MCS event are shown in (a). Symbols and the dashed line represent 
simulations (see Table 2.3). The thick black line represents observations. Thin black 
lines show the observational error bounds. The cumulative contribution of convective 
rain rates to total convective rainfall is shown in (b). The same statistics for stratiform 
regions are shown in (c) and (d). Observations are derived from the CPOL radar.
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Figure 3.9. Histograms of observed and CRM simulated convective radar reflectivity at 
a 2.5-km altitude for the six-day active monsoon period. Models are represented by 
symbols (see Table 2.1), and the thick black line represents observations from the CPOL 
radar.
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Figure 3.10. Histograms of (a) 7.5-km altitude observed and CRM simulated convective 
radar reflectivity, (b) 7.5-km simulated graupel (hail for SAM) radar reflectivity, and (c) 
7.5-km simulated snow radar reflectivity for the six-day active monsoon period. Models 
are represented by symbols (see Table 2.1), and the thick black line represents 
observations from the CPOL radar.
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Figure 3.11. Observed and CRM simulated convective radar reflectivity echo top 
normalized cumulative distributions for (a) 5 dBZ and (b) 25 dBZ for the six-day active 
monsoon period. Shown in (c) are the cumulative distributions of the difference between 
5-dBZ and 25-dBZ echo tops. With the focus on deeper convective regions, samples are 
limited to columns that have at least a 25-dBZ echo at 5.5 km or higher. Models are 
represented by symbols (see Table 2.1), and the thick black lines represent observations 
from the CPOL radar.
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Figure 3.12. Histograms of 2.5-km altitude observed and LAM simulated convective 
radar reflectivity for the MCS event. Models are represented by symbols and the dashed 
line (see Table 2.3), while the thick black line represents CPOL observations. WRF 
output is limited to the CPOL domain.
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the dashed line (see Table 2.3), while the thick black line represents CPOL observations. 
WRF output is limited to the CPOL domain.
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Figure 3.14. Histograms of observed and CRM simulated stratiform radar reflectivity at 
2.5 km for the six-day active monsoon period. Models are represented by symbols (see 
Table 2.1), and the thick black line represents observations from the CPOL radar.
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Figure 3.16. Histograms of (a) 2.5-km altitude observed and LAM simulated stratiform 
radar reflectivity and (b) 7.5-km altitude observed and LAM simulated stratiform radar 
reflectivity for the MCS event. Models are represented by symbols and the dashed line 
(see Table 2.3). CPOL observations are represented by the solid black lines.
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Figure 3.17. CRM simulated 7.5-km altitude histograms of graupel (a, c, e) and snow (b, 
d, f) radar reflectivity during the MCS event highlighting (a-b) SAM-B and SAM-S that 
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^ = 2.5 rather than 0 in green.



95

Convective Graupel dBZ

Radar Reflectivity [dBZ]

Convective Graupel N

Number Concentration [ L ]

oCO

Convective Graupel IWC
T T f . T :

1.0 

0.8 

0.6 

0.4 

0.2 .

0.0 Z
0.001 0.01 0.1 1 

Ice Water Content [g m-3]

Convective Graupel Dn

oto

1.0

0.8

0.6

0.4

0.2

0.0

:(d):
p •-

--
A . 4

" : ' 2 .

♦ '
f I I y

►

: : ►
. . . L i . A * . ►

-- . * a#  :
►

0 1 2 3 4
Mass-weighted Mean Diameter [mm]

Figure 3.18. Normalized cumulative distributions of simulated convective graupel (hail 
for SAM) (a) radar reflectivity, (b) water content, (c) number concentration, and (d) 
mass-weighted mean diameter for the six-day active monsoon period. Results only 
include grid points at which the graupel/hail radar reflectivity is at least 5 dBZ and the 
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Figure 3.20. CRM simulated radar reflectivity as a function of water content: (a) for 
hail; (b) and (c) for graupel; and (d), (e), and (f) for snow. The diamond represents the 
microphysics scheme used in DHARMA-B and DHARMA-S; the right pointing triangle 
represents the scheme used in UKMO-1; and the up pointing triangle represents the 
scheme used in MESONH-1 and MESONH-2. The shading in (a) and (d) is from SAM- 
B results with each shading increasing by an order of magnitude starting with 1 to 10 
samples per bin for the darkest shading increasing to 100,000 or more samples per bin for 
the brightest shading in (d) and (e); shading in (b) and (e) is from UKMO-2M results; and 
shading in (c) and (f) is from UKMO-2. Samples are taken from the six-day active 
monsoon period with three-hourly output.



CHAPTER 4

CONVECTIVE DRAFT PROPERTIES

4.1 Overview

Several recent studies attribute the high biases in convective radar reflectivity 

aloft discussed in Chapter 3 to poorly represented ice processes in bulk microphysics 

schemes. This has not been authoritatively linked to differences in observed and 

simulated convective strength in past studies because few comparisons exist with 

observationally retrieved vertical velocities. This chapter aims to go beyond the point at 

which many previous studies stopped to find the dynamical and microphysical reasons 

for the high bias in convective radar reflectivity aloft through extensive comparison of 

simulated and observationally retrieved convective updraft properties.

4.2 Updraft Definition 

For simulation output and dual-Doppler retrieval output, which are both on three­

dimensional spatial grids with ~1-km horizontal grid spacing, convective updrafts are 

defined three-dimensionally in space every 10 minutes between 1310Z and 1750Z on 

January 23 by connecting contiguous grid points at which vertical velocity at least 1 m 

s-1. This vertical velocity threshold follows the one used for updraft cores in LeMone and 

Zipser (1980), although that study based on aircraft data during the GATE field program



over the tropical Atlantic west of Africa resolved smaller diameter (~500-m) updrafts 

along a one-dimensional aircraft trajectory than are possible given the ~1-km horizontal 

grid spacing in the TWP-ICE simulations. The 1310Z to 1750Z period on January 23 

covers the available dual-Doppler retrieval data and the peak of the event near the CPOL 

radar. Using the vertical profile of convective radar reflectivity as a proxy for convective 

updraft vertical velocity magnitude as discussed in Zipser and Lutz (1994), Figure 4.1 

shows that the vertical profile of convective radar reflectivity during this period in the 

dual-Doppler lobes is representative of both the dual-Doppler lobes for the entire event 

and the entire CPOL domain. The 50th, 90th, and 99th percentiles of convective radar 

reflectivity nearly overlap for all periods and domains.

As discussed in Chapter 2, Lang et al. (2007) modeled Amazonian deep 

convection and compared simulated vertical velocities with dual-Doppler retrievals 

concluding that maximum upward vertical velocity values were similar in the simulations 

and retrievals. Often, a contoured frequency by altitude (CFAD) figure that incorporates 

all grid points is shown to justify this conclusion, but the use of such a figure is a 

misapplication of the dual-Doppler retrieval, which is only applicable for deep convective 

drafts when three-dimensional scanning C-band or S-band radars are used because of the 

errors involved in such an analysis. Collis et al. (2013, accepted) show that relative to 

vertical profiler retrievals of vertical velocity in convective cells that moved over the 

profilers and through the dual-Doppler lobes, the dual-Doppler analysis used in this 

chapter has a root mean square error of 1.9 m s-1 and a negative bias of 2.2 m s-1. This 

means that typical oceanic draft vertical velocity magnitudes are similar to dual-Doppler 

retrieved vertical velocity errors. The three-dimensional updraft definition allows for
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selection of updrafts by size, such as deep updrafts that begin in the boundary layer below 

1 km and end near the tropopause above 15 km. Only considering these deep updrafts 

removes most of the three-dimensional dual-Doppler domain including most updrafts, 

which are usually smaller in size and have lesser peak vertical velocities than the deep 

updrafts, from consideration of comparison with model output. Most figures that follow 

in this chapter will only consider this subset of ‘deep’ three-dimensional updrafts that 

begin below 1 km and extend to above 15 km. This is justified not only on the grounds 

of appropriate comparison of observational retrievals and model output, but on the 

grounds that this subset accounts for anywhere from 75 to 90 percent of the total 

convective updraft mass flux at mid and upper levels in the dual-Doppler retrieval and 

CRM simulations for the 1310Z to 1750Z period, as shown in Figure 4.2.

4.3 Deep Updraft Radar Reflectivity, Vertical Velocity, and Size 

Direct measurement of deep convective updraft vertical velocity is rare due to 

obvious safety concerns with aircraft penetrating cores. Although comparisons to 

previous field studies will be made later in the chapter, no observations near convective 

cores exist for TWP-ICE. Thus, it is necessary to resort to dual-Doppler retrievals for 

comparison to simulated drafts.

For both simulated and dual-Doppler retrieved ‘deep’ three-dimensional updrafts 

as were defined in Section 4.2, the 50th percentiles of average vertical velocity, maximum 

vertical velocity, average radar reflectivity, maximum reflectivity, area, and samples as a 

function of height are compared in Figure 4.3. In this comparison, 1-km horizontal 

resolution radar reflectivity, which is available for the dual-Doppler lobes close to the
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CPOL radar, is used rather than the 2.5-km horizontal resolution radar reflectivity 

available for the entire CPOL domain. Most simulations produce similar median updraft 

sizes with the exceptions of DHARMA-2M (x’s) and SAM-B (filled circles), which are 

larger at midlevels. Normalized cumulative distributions of updraft size (not shown) 

show that the SAM-B updrafts are consistently larger than other CRM simulated 

updrafts. These two simulations also have the least updraft samples to balance the larger 

updraft sizes. It is unclear why the updrafts tend to be larger in these two simulations. 

However, it may be related to the unique prognostic cloud water number concentration 

schemes used or differences in diffusion. For DHARMA-2M, a slow down in updraft 

speed around 4 km is causing detrainment that could be increasing the size of updrafts in 

that simulation. This slow down is discussed later in the chapter. Interestingly, SAM-S 

(open circles) does not have the large updrafts that SAM-B does with the only difference 

being the tropospheric thermodynamic nudging, so the model forcing could be interacting 

with the specific SAM setup to yield larger updrafts.

There is a clear separation of dual-Doppler retrieved vertical velocity represented 

by the black line and simulated vertical velocity represented by symbols. At the melting 

level, simulations show maximum vertical velocity values between 10 and 17 m s-1, 

which is faster than all simulated mass-weighted rain mass mixing ratio fall speeds, 

meaning rain in these cores is lifted above the melting level if not advected out of the 

core. Dual-Doppler retrievals, however, show maximum vertical velocity values at the 

melting level of approximately 8 m s-1. Taking the approximate ~2 m s-1 dual-Doppler 

retrieval negative bias listed in Collis et al. (2013, accepted) into account yields a 10 m s-1 

maximum vertical velocity value, similar to values in the DHARMA-2M simulation, but
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still less than other simulations. As will be discussed in Section 4.4, the smaller peak 

vertical velocity values in DHARMA-2M than other simulations are due to the unique 

representation of aerosols in that simulation. Interestingly, the median value of 

maximum reflectivity at 5 km also matches in DHARMA-2M and observationally 

retrieved updrafts, but other simulations yield significantly higher maximum reflectivities 

at this height, which could be due to raindrops that are larger in simulations than in 

reality or more liquid water content in simulations than in reality. Without observations, 

it is impossible to know the exact reason for this reflectivity difference, but this issue is 

explored more in later sections. Maximum vertical velocity differences are larger in the 

upper troposphere where each simulation’s maximum vertical velocity peaks between 21 

and 28 m s-1 but dual-Doppler retrieved maximum values peak just short of 12 m s-1. 

Slightly lower horizontal resolution of the dual-Doppler analysis, cutting off of some 

updrafts at dual-Doppler lobe boundaries, and other assumptions listed in Section 2.5.2 

may contribute to a portion of the vertical velocity difference between the retrieval and 

simulations, but adding the RMSE and bias listed in Collis et al. (2013, accepted) yields 

only 4 m s-1, so much of these differences are very likely real in the upper troposphere.

The large separation between simulations and observations is also seen in average 

and maximum radar reflectivity aloft. The median of maximum reflectivity at 10 km is 

30 dBZ in observations, but ranges from 37 to 49 dBZ in the simulations. Most 

simulations also show increasing average reflectivity and constant maximum reflectivity 

with increasing height below the melting level at ~4.7 km, whereas observations show 

decreasing average and maximum reflectivity with height. This may be a function of rain 

that is not efficiently falling out of the simulated deep updrafts, whereas large raindrops
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are falling out of observed deep updrafts, which lends credence to low and midlevel 

updrafts being stronger in simulations than in observations. Despite similar vertical 

velocity profiles in all simulations, there is considerable spread in radar reflectivity aloft, 

which is due to different assumptions in the microphysics schemes as discussed in 

Chapter 3.

Interestingly, the 90th percentile of CRM deep updraft properties in Figure 4.4 

yields a much different result than the 50th percentile. Maximum vertical velocity 

between the surface and 10 km is now similar in dual-Doppler retrievals and simulations 

with values between 15 and 20 m s-1 at the melting level. Above 10 km, however, the 

dual-Doppler retrieval and simulations still diverge with simulations showing 

substantially stronger updrafts. While there are still the same differences in average radar 

reflectivity as seen in the 50th percentile, the observed maximum radar reflectivity profile 

is now a little closer to the simulated profiles. It is worth noting that the only six 

observationally derived deep updrafts have values greater than or equal to the 90th 

percentile, whereas two to three times as many samples exist at percentiles greater than 

90 percent in the simulations. Therefore, the median profiles are likely better represented 

than the 90th percentile. The 90th percentile of maximum reflectivity at 10 km is 37 dBZ 

in observations and ranges from 40 to 50 dBZ in the simulations. The value not only 

remains more constant with height below 5 km, but also parallels the UKMO-2 

simulation (left pointing triangle) aloft as in Figure 4.4, which uses two-moment graupel 

with ^ = 2.5 instead of 0 as is used in other two-moment schemes. This lowers the 

graupel radar reflectivity by reducing the number of large graupel particles through 

narrowing of the size distribution, but the prediction of number concentration is very
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important. UKMO-1 (right pointing triangle) with one-moment graupel and ^ = 2.5 

nearly produces the highest reflectivity aloft. Radar reflectivity aloft for all simulations is 

still higher than observed and a significant spread exists between 5 and 10 km despite a 

spread in updraft vertical velocities that would not suggest such large differences in radar 

reflectivity. Two-moment schemes outperform one-moment schemes in general due their 

ability to increase number concentration to offset large ice water contents that will be 

discussed in the next section. MESONH actually produces the lowest reflectivities 

between 6 and 9 km because of its unique m-D relationships for snow and graupel in a 

one-moment scheme that prevents very high reflectivities from being possible, but the 

gradient in radar reflectivity with height is completely wrong aloft, something common to 

one-moment schemes.

Figure 4.5 shows that LAMs also show a significant high bias in reflectivity with 

all four simulations producing median values of maximum reflectivity over 40 dBZ at a 

10 km altitude. The very large reflectivities in WRF-T (squares) between 5 and 8 km are 

due to the very large graupel particles there, as mentioned in Chapters 2 and 3. All 

LAMs also produce median values of maximum vertical velocity greater than 10 m s-1 at 

the melting level, but values aloft are less than in the CRMs, peaking between 15 and 20 

m s-1. Average vertical velocities are also lower in LAMs than in CRMs, although 

updraft sizes and number of samples are comparable. The unique simulation is WRF-W 

(triangles), which has smaller and weaker updrafts than other simulations have, which 

will be discussed later in the chapter. As is shown in the Figure 3.7 time series, WRF-M2 

exhibits a double peak in convective precipitation while the other WRF simulations 

exhibit a near constant high amount of convective precipitation between 12Z on January
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23 and 6Z and January 24 rather than the single peak evident in observations and CRM 

simulations. Thus, some of the difference in median deep updraft properties may be 

related to offsets in location and timing of the event relative to observations and the CRM 

simulations, especially considering that simulated statistics are limited to the CPOL 

domain and the ECMWF forcing is biased, as will be discussed in Chapter 5.

The 90th percentiles of maximum radar reflectivity in LAMs shown in Figure 4.6 

are substantially higher than observed, as was the case for the 50th percentiles. In all but 

the WRF-W simulation, midlevel maximum vertical velocity in the LAMs exceeds 20 m 

s-1, higher than they reach in the CRMs. In the upper troposphere, all but the WRF-W 

simulation (triangles) have peak vertical velocities between 34 and 40 m s-1, which fall 

within the distribution of CRM values. A possible reason for lower vertical velocities in 

WRF-W than in other simulations is that it has a much drier upper troposphere, as is 

shown in Figure 5.28 in Chapter 5. It also has a different condensate profile in updrafts, 

as will be discussed in the next section. Despite the WRF-W outlier, it is clear that 

similar biases exist in both CRMs and LAMs, although greater variability is seen in 

LAMs.

4.4 Deep Updraft Hydrometeor Properties 

Examination of hydrometeor mass mixing ratios in Figure 4.7 shows important 

differences between simulations due to the microphysics scheme used. Cloud water 

mixing ratios, for example, are strongly dependent on the representation of aerosols. For 

two-moment representations of cloud water, idealized aerosol number concentration 

profiles for three different size modes were used that were based on active monsoon
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observations from the ACTIVE field campaign (Vaughan et al. 2008; Fridlind et al. 

2010), which overlapped TWP-ICE and was also based in Darwin, Australia. The unique 

scheme in DHARMA-2M (x’s) leads to significant differences from the other two- 

moment cloud water schemes that do not include consumption of aerosols. DHARMA- 

2M produces the least cloud water with the median of the maximum mixing ratio around 

1 g kg-1 at midlevels, whereas the other simulations with two-moment schemes have 

values around 3 g kg-1, the highest of all simulations. There are also important 

differences between one-moment and two-moment schemes. For average cloud water 

mixing ratios (not shown), all two-moment schemes have less cloud water than all one- 

moment schemes except in the upper troposphere. One-moment schemes use a constant 

cloud water number concentration without consideration of cloud condensation nuclei 

(CCN). Significant cloud water mixing ratios exist up to the homogeneous freezing 

level, which is not all that surprising given the high simulated vertical velocity 

magnitudes, but such high liquid water mixing ratios are rarely if at all observed in 

tropical oceanic deep convection at temperatures colder than -20°C (Stith et al. 2004; 

Stith et al. 2006; Heymsfield et al. 2009). This may further indicate that simulated 

updrafts could be too strong, although the deep convection observed in this case is likely 

stronger than in these other tropical field campaigns. Without in situ observations, it is 

difficult to judge the amount of cloud water that is expected at the homogeneous freezing 

level. Lawson et al. (2010) showed that homogeneous freezing of cloud water was a 

source for ice particles at 11 km ( T = -47°C ) in an intense convective cell off of the 

Central American coast during the Tropical Chemistry, Cloud, and Climate Coupling 

(TC4) field campaign. That cell also contained substantial amounts of 1-mm diameter
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graupel, so there are intense cells over the ocean near coastlines that appear to 

homogeneously freeze cloud water droplets.

Precipitation-sized hydrometeors, including graupel/hail, snow, and rain, are less 

affected by representation of cloud water than by size distribution assumptions, with an 

exception being the effect on rain of including a more complex cloud droplet nucleation 

scheme that accounts for aerosol consumption in DHARMA-2M. Between 3 and 8 km 

altitudes, DHARMA-2M shown with x ’s in Figure 4.3 is closer to observationally 

retrieved vertical velocity values than other simulations. In a low cloud condensation 

nuclei (CCN) ‘clean’ environment such as this case, most CCN are consumed and rain 

quickly forms in convective updrafts. With minimal entrainment, this leads to very high 

supersaturations with respect to liquid water in the DHARMA-2M simulation, sometimes 

greater than 30 percent, in the CCN-free and cloud water free updraft core, which limits 

condensational heating and weakens the maximum updraft vertical velocity (x’s) in 

Figures 4.3 and 4.4. Note, however, that the updraft vertical velocity recovers to match 

other simulations in the upper troposphere due to a significant amount of water still being 

available for latent heat release through freezing. This is also the likely reason for the 

agreement in maximum reflectivity at low and midlevels between DHARMA-2M (x’s) 

and observations in Figure 4.3. The SAM simulations, unique in their use of hail instead 

of graupel for representation of rimed ice, have the lowest rimed ice mixing ratios and 

highest snow mixing ratios aloft. This is not all that surprising because hail mass fall 

speeds are often more than twice those of graupel. The slow mass fall speed of graupel 

(2-4 m s-1) is important because it means a large amount of graupel gets lofted high into 

the upper troposphere in deep, strong convective updrafts and advected over large areas,
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producing larger than observed regions of radar reflectivity of 40 dBZ or greater 

identified as convective in the Steiner et al. (1995) algorithm. Interestingly, this leads to 

median convective rain rates in all but the UKMO-1 and UKMO-2 simulations that are 

less than those observed despite higher maximum convective rain rates, as shown in 

Varble et al. (2011). Of the schemes using graupel, the lowest graupel mixing ratios and 

highest snow mixing ratios are in the UKMO-1 and UKMO-2 simulations that use a 

gamma size distribution shape parameter of 2.5 rather than 0. Of these two simulations, 

the two-moment UKMO-2 simulation produces more graupel and less snow than the one- 

moment UKMO-1, but produces convective radar reflectivity aloft much closer to 

observations because the size of graupel in UKMO-2 is much smaller due to predicted 

higher number concentrations.

Median values of maximum rain mixing ratio peak between 5.5 and 10 g kg-1 just 

below the melting level for all simulations, showing that a significant portion of rain is 

not falling out of deep convective updraft cores before reaching temperatures where 

raindrops begin freezing. This is consistent with an increase in maximum radar 

reflectivity with height in modeled deep convective updrafts, as was shown in Figures 4.3 

and 4.5. Furthermore, the 90th percentile of maximum mass mixing ratios in Figure 4.8a 

reaches 9 to 12 g kg-1 in all but one simulation at 3 km, indicating little mixing with the 

environment. Such high water contents in cores stronger than 10 m s-1 leads to very large 

ice mixing ratios aloft, peaking from 9.5 to 12 g kg-1 in the median profiles in Figure 4.7 

and 11 to 14 g kg-1 in the 90th percentile in Figure 4.8a. It is interesting to note that the 

highest maximum condensate mixing ratios are produced in the sensitivity simulations in 

which the thermodynamic profile is nudged toward the forcing profile. As will be
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discussed later in the chapter, this nudging produces a higher CAPE in the sensitivity 

simulations, which may be linked to the higher convective condensate values. The 90th 

percentile of condensate mixing ratios in WRF-W agrees well with those in the CRM 

simulations, although they drop off faster above 10 km, perhaps due to the smaller and 

weaker updrafts in WRF-W. WRF-M and WRF-M2 produce even larger 90th percentile 

peak condensate mixing ratios than those in the CRM simulations of 14-16 g kg-1 at 5 km 

and 16-17 g kg-1 at 12 km. WRF-T is the only simulation that doesn’t have a relative 

minimum between 6 and 7 km that is produced by different fall speeds between rain and 

precipitation sized ice. This is due to the unique graupel formulation in the Thompson 

scheme, as discussed in the next paragraph.

Shown in Figure 4.9, median values of maximum liquid mass mixing ratio vary 

from 6 to 9 g kg-1 in the LAM simulations and occur just below the melting level, which 

is similar to the CRM results. Significant amounts of cloud water in all but the WRF-W 

run exist up to 8-10 km altitudes, also similar to many of the CRM runs. Median values 

of maximum ice mass maxing ratios peak between 6 to 10 g kg-1 aloft, and are lower in 

the WRF-W and WRF-T runs than in any CRM simulations. For WRF-W, this is 

consistent with its lower vertical velocities that may be related to a dry bias aloft, as will 

be discussed later in this chapter. For WRF-T, the Thompson scheme uses a variable size 

intercept for graupel that produces very large graupel sizes when mass mixing ratios are 

high to mimic the transition to hail, and a graupel fall speed relationship based on 

Heymsfield and Kajikawa (1987) that produces higher fall speeds than the relationship 

used in the Morrison scheme that is based on Ferrier et al. (1995) (see Figure 2.3). This 

produces large fall speeds for graupel, especially when mass mixing ratios are high,
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producing a convergence in condensate mass at 5-6 km that further increases graupel 

sizes and prevents large graupel amounts from being lofted high into the troposphere.

The aforementioned intense convective cell in Lawson et al. (2010), penetrated at 

an 11-km altitude and having a peak updraft vertical velocity of 20 m s-1, had a peak IWC 

of 2.4 g m-3, which is one of the largest published values for tropical oceanic convection. 

This is but one sample, but considering the lack of higher values in peer-reviewed 

literature, the similar tropical coastal environment and maximum updraft vertical velocity 

magnitude as the median simulated values of maximum updraft vertical velocity make it 

a worthwhile case for comparison. Despite the similar peak updraft vertical velocity, the 

peak IWC in Lawson et al. (2010), also presumably measured at a finer resolution than 

the model resolutions, is significantly less than the median value of peak CRM simulated 

IWC at that altitude, which varies from 3.5-4.3 g m-3 in Figure 4.10a. Figure 4.10b 

shows that median peak IWC in WRF-M (diamonds) and WRF-M2 (dashed line) fall in 

line with the CRM simulations, whereas WRF-W (triangles) and WRF-T (squares) have 

lesser peak IWCs aloft, matching the Lawson et al. (2010) value of 2.4 g m-3 at 11 km. 

For WRF-W, this is consistent with lower peak water contents at low and midlevels, 

which could be related to smaller updraft sizes and easier fall out of rain. For WRF-T, 

this is consistent with high fall speeds for large graupel that allows most graupel to fall 

out of the updraft by 11 km, as shown in Figure 4.9. Figure 4.10 also shows that median 

peak IWCs occur around 8-9 km in altitude in all simulations except for WRF-T, which 

has peak water contents continuously dropping off from midlevels upward. By 15 km, 

peak IWCs are half of their values at 8-9 km, so substantial amounts of ice are falling out 

of the updrafts, but not at a fast enough rate to substantially affect buoyancy reduction
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due to water loading because mixing ratios shown in Figures 4.7-4.9 remain high 

between 8-km and 15-km altitudes. Figure 4.10 also shows that while liquid mixing 

ratios peak just below the melting level, peak LWCs peak between 3-km and 4-km 

altitudes showing that some rain is falling out of the updraft cores before reaching the 

melting level, but not enough to dramatically bring down the amount of rain being lofted.

Interestingly, the 90th percentile of peak water contents shown in Figure 4.11b 

shows extremely high water contents in the WRF-T simulation at midlevels, which are 

due to the high graupel fall speeds leading to an accumulation of condensate between 4 

and 6 km. The x-axis of Figure 4.11 only goes to 12 g m-3, but the 90th percentile peak 

value in WRF-T is 17 g m-3 with the 99th percentile going to 25 g m-3! This may be the 

cause of the decrease in 90th percentile maximum vertical velocity between 3 and 8 km in 

Figure 4.6 that does not appear in other simulations. Note that despite these huge water 

contents, the peak water contents in the upper troposphere are not significantly higher in 

WRF-T, likely because these high water contents are not being frozen instantaneously, 

but are accumulating over time. WRF-W, which had amongst the lowest water contents 

in the 50th percentile, now falls in line with the CRM simulations that yield anywhere 

from 4 to 5.5 g m-3 at 11 km in the 90th percentile, approximately twice the IWC reported 

in Lawson et al. (2010). Meanwhile, WRF-M and WRF-M2 have the highest water 

contents aloft, producing 6 g m-3 at 11 km. At low levels, maximum water contents tend 

to peak at higher altitudes with values of about 7-11 g m-3, except in the case of WRF-T, 

which is much higher as already discussed.
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4.5 Downdrafts and Cold Pools 

Convective downdrafts, like updrafts, were identified with a threshold vertical 

velocity of -1 m s-1, but the dual-Doppler data show strong convective downdrafts at low 

and midlevels that are untrustworthy based on comparison with previous literature 

showing in situ (e.g., Lucas et al. 1994) and remotely sensed (e.g., May and 

Rajopadhyaya 1999; Uma and Rao 2008) vertical velocity in tropical convective 

downdrafts within moist environments. In fact, simulated downdraft vertical velocities 

fall in line with tropical oceanic and coastal values in previous literature. Furthermore, 

the 2.2 m s-1 dual-Doppler retrieval bias and 1.9 m s-1 RMSE are similar in magnitude to 

the typical average convective downdraft speed. Thus, analysis is limited to model 

comparisons. Figure 4.12 shows that downdraft vertical velocity at a 1-km altitude varies 

much more than updraft vertical velocity, with the strongest downdraft values greater 

than 5 m s-1 in the SAM simulations (circles) and weakest downdraft values in the 

DHARMA-2M (x’s) simulation. This is likely due to a combination of differences in 

dense ice representation and rain water contents. The SAM simulations use hail, which 

falls out faster than graupel. This acts to concentrate hydrometeor mass into a smaller 

area that can increase water loading and lower the height level to which the melting of 

dense ice extends. Thus, SAM simulations have the strongest convective downdrafts. 

This is consistent with previous mid-latitude continental studies that found colder cold 

pools when hail was used rather than graupel (Gilmore et al. 2004; Morrison and 

Milbrandt 2011; Van Weverberg et al. 2012). UKMO-1 (right pointing triangle) also has 

relatively strong downdrafts, likely due to greater amounts of large graupel produced in 

that simulation relative to other CRM simulations using graupel. Higher rain water
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content, some of which detrains at midlevels, also increases convective downdraft 

strength through water loading and not surprisingly, DHARMA-2M has the lowest rain 

water content and weakest convective downdrafts. These results are consistent with 

those found in Mrowiec et al. (2012) that compared DHARMA-2M to SAM-B and 

DHARMA-B. Vertical velocity PDFs at 1 km in WRF-W, WRF-M, and WRF-M2 are 

very similar with convective drafts that tend to be slightly stronger than in CRM 

simulations. WRF-T has the strongest downdrafts, consistent with large fast-falling 

graupel in the Thompson scheme that was discussed in the last section.

Convective downdrafts bring lower moist static energy air from midlevels down 

into the boundary layer, which forms cold pools that locally limit surface-based 

instability but force convergence on their spreading boundaries, which can produce new 

convective updrafts. Low-level horizontal cross-sections in the boundary layer (not 

shown) support the results of Del Genio et al. (2012) that new updraft formation during 

this active monsoon period occurs on cold pool outflow boundaries, but above the 

boundary layer, updrafts are more isolated and driven by deeper layer forcing. As will be 

shown later in the chapter, most cold pool boundaries that are convergent at a 50-m 

altitude are already divergent or no longer strongly convergent at a 550-m altitude 

because most cold pools were shallow. Regions of deeper layer updraft forcing can result 

from dynamically produced midlevel negative pressure perturbations (e.g., Rotunno and 

Klemp 1984) and localized regions of deeper cold pools produced by merging cold pools, 

situations in which the cold pool and vertical wind shear interactions are maximized (e.g., 

Rotunno et al. 1988), and probably other conditions relating to the time history of 

convective downdraft strength and location associated with any given convective cell.
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Sections 4.6.2 and 4.6.3 discuss the relative importance of simulated cold pool and 

convective updraft interactions with vertical wind shear in a bit more detail. Any 

differences that do exist in simulated cold pools do not appear to substantially affect deep 

convective updraft vertical velocity, which is distributed similarly in all simulations at 

low levels in Figure 4.11 and in most simulations at midlevels in the statistics shown in 

Sections 4.3 and 4.4.
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4.6 Production Mechanisms for Strong Updrafts

4.6.1 Entrainment

Simulated deep convective updrafts that are much stronger, especially in the 

upper troposphere, than those in dual-Doppler retrievals coupled with the large simulated 

water contents aloft beg the question of how such conditions are produced in the 

simulations. Figure 4.13 shows example vertical cross sections through strong deep 

convective updrafts in four of the CRM simulations, one for each dynamical core used. 

Moist static energy (MSE), which is color filled, remains almost constant with height in 

the updraft cores signified by the thick black vertical velocity contours meaning little 

entrainment of environmental air is occurring in the core of the updrafts. Moist static 

energy with units of Kelvin is defined in equation 4.1:

MSE = T + —  +1 x 106(2.501 -  0.00237Tc) ̂ , (4.1)
c c

p p

where T is temperature in Kelvin, g  is gravity, z  is height, Cp is the specific heat capacity 

of air at constant pressure, Tc is the temperature in Celsius, and qv is the water vapor



mixing ratio. Shown in Figure 4.14, the 50th to 90th percentiles of maximum MSE in 

deep convective updraft cores for each of the four dynamical cores decrease by 0 to 3 K 

from the boundary layer to 5 km whereas the environment drops off by 10 to 13 K. 

Neglecting the effects of ice, undiluted parcel ascent would be characterized by constant 

MSE with height, but some studies insist that this is rare in tropical oceanic environments 

because of parcel mixing with the low and midlevel environmental air where MSE 

quickly decreases to a minimum (e.g., Zipser 2003; Romps and Kuang 2010).

In TOGA-COARE observations, for example, Wei et al. (1998) concluded that 

entrainment reduced convective updraft buoyancy by 2 K while water loading reduced it 

by 0.5 K at 700 mb. This differs from the simulations in which buoyancy reduction by 

water loading is equal to or greater than that by entrainment. Large eddy simulations 

(LES) of a TRMM LBA case over the Amazon (Khairoutdinov and Randall 2006) with 

horizontal grid spacing of 100 m and vertical grid spacing of 50-100 m, show that 

tropical deep convective updraft MSE in those environments typically drops off 

substantially in the low and mid troposphere due to mixing with the environment. 

However, updrafts still reach the tropopause because latent heat release due to freezing 

increases the moist static energy at upper levels, as discussed in Zipser (2003) and Fierro 

et al. (2009). While the TRMM LBA LES case does not have deep convection as strong 

as seen in this TWP-ICE MCS case, the differences in their updraft core MSE and the 

updraft core MSE in this case are substantial, which deserves further investigation.

The TWP-ICE CRM simulations clearly have some updraft cores that are not 

mixing much with the environment at low and midlevels, which may be leading to some 

of the microphysics problems aloft. This is supported by the very large liquid water
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contents in strong deep convective cores shown in Figures 4.10 and 4.11, high 

supersaturations in DHARMA-2M due to consumption of all available CCN, and very 

large peaks in vertical velocity aloft due to large amounts of freezing condensate. Of 

course, MSE at midlevels is not only a function of midlevel entrainment, but also of 

boundary layer mixing that determines the initial thermodynamics of the air being lifted. 

Petch et al. (2002) recommend horizontal grid spacing of at least a quarter of the depth of 

the surface to cloud base to properly represent boundary layer mixing. For this case, that 

would be on the order of 100 m. Insufficient representation of boundary layer mixing 

could be another issue contributing to improper convective strength, but this is difficult to 

analyze without observations.

As in the CRMs, the median value of maximum deep convective updraft MSE in 

LAMs shown in Figure 4.15 only drops off by a few Kelvin between the surface and 5 

km, while remaining fairly constant above 5 km, whereas the environment significantly 

drops off between the surface and 5 km. The 90th percentile even increases by a few 

Kelvin just above the melting level in all but WRF-W in 4.15a due to the latent heat 

release from large amounts of freezing. This difference in WRF-W is consistent with its 

weaker and smaller updrafts with generally lesser rain shown in Figures 4.5, 4.6, and 4.9 

through 4.11.

Bryan et al. (2003) and Craig and Dornbrack (2008) concluded that 1 km was 

insufficient to resolve buoyancy in convective clouds that they simulated. A recent 

modeling study of a mid-latitude continental squall line by Bryan and Morrison (2012) 

also showed large sensitivity to horizontal resolutions between 1 km and 250 m due to 

greater large eddy entrainment and cloud water evaporation in the higher resolution

116



simulation, but that was in a different large-scale environment that was notably drier. 

Unfortunately, no TWP-ICE observations directly related to convective entrainment 

exist, and thus, this theory of too little dilution remains speculative. Preliminary results 

from a quarter domain (88 km by 88 km size) DHARMA-2M simulation using ~100 m 

horizontal resolution and 192 vertical levels shows that increased resolution does cause 

greater entrainment at low and midlevels, which increases the transition time from 

shallow to deep convection as found in Khairoutdinov and Randall (2006). Despite this, 

bubble-like cores of shedding thermals in the high resolution simulation that are not 

resolved by the ~900-m grid spaced simulations remain nearly undiluted and are 

collectively able to still transport very high amounts of condensed water aloft while 

reaching similarly high vertical velocities as in the ~900-m run, albeit on a smaller scale. 

It appears that these smaller shedding thermals achieve this by detraining at midlevels so 

that regions of rising motion, ~10 km across and with vertical velocities of 1-5 m s-1, are 

generated with new updrafts 1-2 km across with vertical velocities of 10-20 m s-1 

forming and thriving in the broader region of rising motion with higher MSE than the 

free atmosphere at midlevels. This is consistent with LES findings by Zhao and Austin 

(2005) and Heus et al. (2009) for deepening shallow cumulus, but of course this case 

involves deep convection in a much more unstable environment. Even in the so-called 

“giga-LES” simulation of idealized mean GATE phase III conditions (1300 J kg-1 of 

convective available potential energy (CAPE) and less shear than this case), which had 

100-m horizontal grid spacing and 256 vertical levels, the 99th percentile of convective 

updraft vertical velocities reaches 20-30 m s-1 in the upper troposphere (Khairoutdinov et 

al. 2009), but there are no observations in the upper troposphere to verify whether such
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values are realistic in that type of environment. These top updrafts are also associated 

with less condensate than this TWP-ICE case, but with the maximum updraft speeds, are 

consistent with the intense cell encountered in TC4 described in Lawson et al. (2010) and 

detailed in Section 4.4.

4.6.2 Large-scale Environment 

Further complicating comparison of this case with other tropical cases is the 

unique large-scale environment. While the thermodynamic profile derived from 

observed soundings for this MCS suggests a tropical oceanic environment with very low 

cloud base of a few hundred meters and high relative humidity throughout the 

troposphere, there is substantial convective available potential energy (CAPE) and 

moderate vertical shear present between 0 and 3 km, which is more typical of break 

period continental squall lines (Keenan and Carbone 1992). Indeed, this MCS does 

eventually form a potent squall line after a substantial period of widespread isolated 

convective cells. The 0-3 km and 0-6 km vertical wind shear in the variational analysis 

sounding during the beginning of this event is moderate (10-15 m s-1) with domain 

median bulk Richardson (BRN) shear of over 50 m2 s-2 shown in Figures 4.16 and 4.17 

and an anticyclonic rotated hodograph (not shown) favorable in the southern hemisphere 

for supercells based on values shown in Thompson et al. (2003) when given sufficient 

instability.

Domain median surface-based CAPE values of over 2000 J kg-1 occur early in the 

event in CRM and LAM simulations as shown in Figures 4.16 and 4.17, while maximum 

grid point values reach 4000 J kg-1 in some simulations showing plenty of instability is
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present. Dividing these CAPE values by the bulk Richardson shear values yields the 

commonly used bulk Richardson number, but bulk Richardson numbers suitable for 

supercellular convection based on Thompson et al. (2003) can be found for low CAPE 

and low shear situations not conducive to supercell, and therefore, it is better to 

separately analyze the CAPE and bulk Richardson shear. These instability and vertical 

shear parameters calculated from the variational analysis sounding also fit in well with 

typical values found in mid-latitude continental supercell convection (Thompson et al. 

2003).

It is unclear, however, how well the variability of these environmental parameters 

is captured in the simulations, which could be contributing to overly intense convection. 

The variational analysis used to force the CRMs gives domain mean quantities, when in 

reality some portion of the domain could have higher vertical shear in magnitude or 

direction and another portion could have higher CAPE at any given time. This is not to 

say that the CRM simulations perfectly follow the forcing. Figure 4.16 shows that the 

forcing sounding has higher median CAPE than baseline simulations early in the event 

and all simulations late in the event with median BRN shear that exceeds all simulations, 

although the downward trend in both quantities is visible in the forcing and simulations. 

Figure 4.16 also shows that the sensitivity simulations have higher CAPE at the 

beginning of the event, which is due to MSE drift (discussed in Fridlind et al. (2012)) that 

is higher at low levels than upper levels in the baseline simulations. This higher CAPE is 

the likely reason for slightly stronger convection in the sensitivity simulations.

LAM simulations, on the other hand, almost perfectly follow the ECMWF time 

series of surface-based CAPE shown in Figure 4.17. The BRN shear, however, is
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substantially higher than in the ECMWF analysis and slightly exceeding that in the CRM 

simulations, but exhibiting the same downward trend with time. It is worth noting the 

high sensitivity of these convective environmental parameters to slight changes in wind 

or MSE. The difference between a BRN shear favorable for supercells (50 m2 s-2) and 

one not favorable for supercells (25 m2 s-2) is 3 m s-1 in the difference between the air 

density weighted mean 0-6 km wind and the air density weighted mean 0-500 m wind. 

Similarly, a couple Kelvin decrease in MSE through cooling or drying in the boundary 

layer can significantly reduce surface-based CAPE, again putting convection into a 

different regime. Over warm sea surfaces, the boundary layer MSE is regulated by the 

competing effects of cooling and drying by convective downdrafts and warming and 

moistening by heat fluxes from the ocean to the atmosphere. It is unclear how well these 

processes are handled in CRMs and LAMs.

4.6.3 Convective Mode 

It is clear that the representation of the large-scale environment in the simulations 

is suitable to spawn left and right moving cells in the DHARMA simulations with left 

movers displaying supercell characteristics shown in Figure 4.18 and thus being stronger 

and more long-lived than the right movers. Strong updraft forcing through 2-3 km 

results from a strong vertical pressure gradient produced by shear induced midlevel 

negative pressure perturbations of 1-2 hPa or greater, as discussed in Rotunno and Klemp 

(1984). This forcing is strong enough to accelerate the updraft to 10-15 m s-1 despite 

negative or neutral buoyancy due to large water loading in 4.18a-c. The lift in a 

negatively buoyant environment likely helps to limit low and midlevel entrainment,
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especially in the upshear portion of the updraft, which, as discussed in several studies in 

the late 1960s and 1970s (Barnes 1969; Wilhelmson 1974; Ramond 1978; Heymsfield et 

al. 1978), is protected by midlevel positive pressure perturbations caused by the 

interaction of the easterly flow with the slower moving updraft. As shown in Figure 

4.18d and 4.19c, this is the case in the simulations as well. Above the 3-km height level 

of the peak negative pressure perturbation, water loading slows the updraft in some cases 

and detrainment occurs. The rain that exits the updraft here is pushed downshear where it 

fuels a convective downdraft that increases the horizontal gradient in vertical velocity and 

further increases tilting and stretching of environmental horizontal vorticity. This is 

already enhanced in left mover updraft developing regions relative to right moving 

updraft developing regions, again due to dynamic interactions between the preexisting 

updrafts and the vertical shear. Figure 4.20b shows the extreme vertical shear induced by 

the left moving cell in the region of updraft formation to the west-southwest of the cell. 

As discussed in Rotunno and Klemp (1984), nonlinear shear interactions in this region 

produce the midlevel pressure perturbation that causes the leftward propagation of the 

cell. Although it is clear from Figure 4.19a-b that low-level convergence is organized by 

cold pools, they are secondary to the forcing caused by the shear-induced pressure 

perturbations for the left-moving cells, as mentioned in Rotunno and Klemp (1984). 

Lower pressure under these perturbations at low levels helps to induce greater inflow as 

well, shown by the relative wind vectors in 4.19a-b to the south and west of the left- 

moving cell.

Despite detrainment below the melting level, the updraft often remains strong 

enough to loft substantial condensate above the melting level, where rain quickly freezes
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into graupel or hail, depending on the microphysics scheme used. Freezing of very large 

condensate contents provides an increase in temperature of ~2-4 K to the updraft through 

latent heating, which causes the large increase in thermal buoyancy in 4.18a and large 

peak in updraft speeds in the upper troposphere. The deep convective updraft core 

speeds in the mid and upper troposphere are easily strong enough to quickly loft graupel 

and snow into the upper troposphere, which allows advection of moderate to large water 

contents over large areas. When these large ice water contents melt, it produces high 

radar reflectivity identified as convective, which appears to be one reason for the high 

bias in simulated convective area and lower than observed mean convective rain rate in 

simulations. Interestingly, in these left movers, some of the rain that is detrained before 

reaching the melting level ends up in regions of new updraft formation, which could be 

another process by which large rain water contents are produced. All simulations have 

not been thoroughly checked for left and right movers and analysis is hindered by a lack 

of four-dimensional pressure fields for most CRM simulations, but strong updrafts that 

take advantage of the vertical shear and instability are present in all simulations as shown 

earlier in the deep updraft statistics. Similar strong left moving cells with associated 

large midlevel negative pressure perturbations, some larger than those in the DHARMA 

simulations, are produced in the WRF-M simulation (not shown), and therefore this is not 

a symptom of the model setup.

Figures 4.19 and 4.20 show example horizontal cross-sections that include a 

strong left-moving cell near x = 55 km and y = 50 km and a right-moving multicellular 

region near x = 70 km and y = 105 km. Updrafts are not highly correlated with regions 

of positive buoyancy at low and midlevels as shown in Figure 4.19e or surface-based
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CAPE in Figure 4.20a because they are controlled by vertical pressure gradient forcing 

controlled by cold pools and interactions between updrafts and vertical shear. Figure 

4.19d-e shows strong negative buoyancy and a positive pressure perturbation gradient at 

1 km to the south of the multicellular cluster associated with a relatively deep cold pool. 

This cold pool is able to force convergence in Figure 4.19a-b over a depth greater than 

most cold pool edges. Two negative pressure perturbations lobes at 2.5 km are visible on 

the northwest side of two updraft lobes due to interaction with vertical shear, but these 

are small relative to the large negative perturbations created by the left-moving cell. 

Although the left-moving cell has a cold pool associated with it, the shear-induced 

midlevel pressure perturbation, not the cold pool, creates the peak pressure perturbation 

gradient force in Figure 4.19d to the south-southwest of the cell, whereas the cold pool is 

on the north-northwest side the cell. Comparing Figure 4.19c to 4.20b shows that the 

midlevel pressure perturbations are highly correlated with the BRN shear and this shear is 

related to the vertical vorticity shown in Figure 4.19f with left movers strongly 

cyclonically rotating and right movers anticyclonically rotating. This is also shown in the 

example vertical cross-sections through a left mover in Figure 4.18f and a right mover 

4.21f.

Although not evident in Figure 4.21, the right moving updrafts are forced by a 

combination of dynamically produced pressure perturbations and cold pools. 

Approximately 3-4 km to the west of this the south-north vertical cross-section in Figure 

4.21 is the midlevel negative pressure perturbation peaking at 2.5 km. The positive 

pressure perturbation at the surface in Figure 4.21d and the strong perturbation pressure 

gradient acceleration in Figure 4.21e at low levels is due to the cold pool. The primary
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difference with left movers is that the nonhydrostatic pressure gradient force associated 

with the midlevel pressure perturbation is significantly stronger than it is for right 

movers. As the DHARMA simulations go on, instability and vertical shear decrease as 

shown in Figure 4.15, and cold pools begin to exert a larger control with cells moving 

more toward the north in broken lines (not shown). Despite being generally weaker than 

the left movers, these right movers still lift significant amounts of condensate above the 

melting level as evidenced by the water loading acceleration in Figure 4.21b with low 

and midlevel vertical velocities of 5-10 m s-1 combined with rain mass-weighted fall 

speeds of 4-8 m s-1. This condensate freezes and fuels strong upper tropospheric vertical 

velocities of 30 m s-1 and greater in Figure 4.21a-c. Although not shown, right movers 

are not as undiluted as left movers, but they are still able to maintain small cores of fairly 

high MSE in many cases. They also likely have more detrainment to stratiform regions 

relative to left movers due to their more favorable updraft tilt, although this was not 

explored in depth.

As discussed in Chapter 3 and shown by Varble et al. (2011), microphysics 

assumptions surely create some convective precipitation structure issues. Differences 

based on dense ice and snow representation can produce substantially different 

reflectivity distributions, however the fact that all CRM and LAM configurations 

overestimate reflectivity and produce updraft statistics that differ from both dual-Doppler 

retrievals and previously published statistics suggests representation of convective 

dynamics needs to be further explored as a source for bias. This requires analysis of the 

representation of the large-scale environment, the subgrid scale turbulence, and the 

covariance of vertical velocity and condensate. Although entrainment tends to receive
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more attention, proper observation and model representation of the size of convective 

updraft cores and variability of vertical velocity within them may be just as important. 

Aircraft observations of maritime tropical convection near Darwin during EMEX show 

half of updraft cores observed were 1 km in width or less at low and midlevels (Lucas et 

al. 1994). While these are aircraft transects, this indicates that many convective updraft 

cores may not be adequately resolved with a 1-km horizontal grid spaced model. In fact, 

as discussed previously, a quarter domain DHARMA-2M simulation with ~100-m 

horizontal grid spacing shows smaller congestus clouds with 1-2 km wide shedding 

thermals, although only slight reductions of peak vertical velocity and condensate aloft 

are found as nearly undiluted bubbles rise through broader ~10 km wide regions of rising 

motion generated through substantial congestus detrainment.

Without significantly improved convective and stratiform biases in the quarter 

domain LES simulation, sources other than horizontal resolution are likely involved in 

producing biases including the imposed large-scale model forcing, although poor 

representation of turbulence on the scale of meters to tens of meters could be an 

important source as well. Investigating these sources is beyond the scope of this study, 

but many small errors due to model forcing and physics approximations could be 

interacting in nonlinear ways that lead to different convective regimes than were 

observed. For example, updraft vertical velocity changes of a few meters per second at 

the melting level can result in significant changes in the amount of rain lofted and frozen.

Despite observed peak radar reflectivity aloft that is in between that observed in 

typical active and break period convection, convection as strong as that in the simulations 

does not appear in observational retrievals. Rather small differences in the large-scale
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environment, updraft forcing, entrainment, and microphysics could alter the balance 

between vertical shear and instability leading to weaker convection in reality, but this is 

speculation and more research on this topic is needed. The possibility that large amounts 

of water are being lofted and ice multiplication processes such as Hallett-Mossop (Hallet 

and Mossop 1974) or ice-ice collisions (Yano and Phillips 2011) are limiting ice size in 

reality can also not be ruled out, although this scenario seems less likely based on the 

lack of very strong observationally retrieved vertical velocities in the upper troposphere, 

which would be expected purely from latent heat release in the freezing of such large 

water contents.

The simulated large-scale environmental variability is not perfect. Improper 

covariance of low and midlevel instability and vertical shear can affect convective mode, 

especially if subgrid scale approximations in microphysics and possibly turbulence 

interact to shift convection into a different regime. If convection enters a strong 

convective mode such as that of a supercell, the supercell can keep forcing new 

supercellular updrafts through its interaction with the environment, which leads to strong 

long-lived storms. Even in nonsupercells, the large buoyancy produced by large amounts 

of freezing rain produces a hydrostatic drop in pressure that can reinforce convergence 

into the region where convection is already occurring. Tripoli and Cotton (1980) 

performed numerical simulations that showed that the low and midlevel updraft is 

sensitive to the convergence feeding it air. The low pressure caused by the updraft can 

accelerate low-level outflow to reinforce the updraft if the pressure gradient is strong 

enough. Furthermore, the more strongly concentrated the low-level convergence is, the 

greater the fraction of updraft air below 5 km will be that originates in the boundary
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layer, a process that could strongly modulate the convective strength and amount of 

condensate lifted. Some of these processes may be at work in the TWP-ICE CRM and 

LAM simulations, but further research is needed to look into factors controlling 

convective strength.

4.7 Discussion

Lang et al. (2007) is one of the few studies that compared tropical simulated deep 

convective vertical velocities with those in dual-Doppler retrievals. They concluded that 

CRM simulations using ~1-km horizontal grid spacing produce convective vertical 

velocity similar to that observed. They included entire dual-Doppler domains in their 

comparison, which is not advised based on biases and errors of at least a few meters per 

second in such datasets and the large fraction of convective updraft mass flux contributed 

by large, strong updrafts. They focused on maximum vertical velocity values, but as 

shown in this chapter, these values can be similar in distributions of maximum updraft 

vertical velocity that are very different. Furthermore, they failed to acknowledge that 

comparable convective vertical velocity does not guarantee accurate convective updraft 

dynamics and microphysics. For example, if  a simulated convective updraft is 1 K 

warmer than an observed convective updraft in the same environment, this can be offset 

by about 3.3 g kg-1 more hydrometeor loading in the simulated updraft to yield the same 

buoyancy in both updrafts. This is not to say that modeling studies have not displayed 30 

m s-1 and greater updraft vertical velocities in tropical maritime environments before. 

Zeng et al. (2008) showed that three-dimensional simulations of a South China Sea 

Monsoon Experiment (SCSMEX) case and a Kwajalein Experiment (KWAJEX) case
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using 1-km horizontal grid spacing, 41 vertical levels, and a 256 km by 256 km domain 

produced vertical velocities of 30 m s-1 and greater throughout the upper troposphere with 

associated high cloud water and graupel mass mixing ratios. They also showed that these 

values were substantially higher in three-dimensional simulations than two-dimensional 

simulations, but did not investigate the reasons for this or do any comparisons with 

observational datasets.

Of the in situ tropical oceanic convective vertical velocity and liquid water 

content in situ measurements in the literature, only a select few (Zipser and Gautier 1978; 

Jorgensen and LeMone 1989) show vertical velocity values close to those in the 

simulated deep convective updraft cores for this case, and the few deep convective 

condensate measurements near the melting level or in mixed phase regions are 

questionable in sustained regions of high water content due to the instrumentation used. 

These studies show peak vertical velocity values of 15 m s-1 around 6-km altitudes in 

strongly forced tropical depression and MCS cases with updrafts that are on the order of 

10 km wide or greater when spatial resolution is degraded to 1 km. While tropical 

coastal convection in a monsoon trough environment is often more intense than over the 

open ocean (Petersen and Rutledge 2001; Xu and Zipser 2012) and this MCS case is 

comparable to strongly forced tropical depression convection over the ocean in Zipser 

and Gautier (1978) and Houze et al. (2009), it is still weaker than typical break period 

continental convection (May and Ballinger 2007; Xu and Zipser 2012). May and 

Rajopadhyaya (1999) used ground-based vertical profilers at Darwin to examine 

convective updraft properties in both active and break monsoon periods. Despite 

including primarily break period convection, they found a 90th percentile maximum
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vertical velocity of approximately 8 m s-1 at 5 km and 11 m s-1 at 10 km, similar to the 

median dual-Doppler values for this case. The drawback of their comparison is that they 

also included shallow and decaying updrafts in addition to mature updrafts in their 

statistics. Purely deep updraft statistics using profilers in a near coastal site in India 

(Uma and Rao 2008), however, show very similar peak vertical velocity values to those 

shown in May and Rajopadhyaya (1999). For deep cores greater than 10 km in extent in 

their study, many of which are sampled in MCSs, peak values of 15 m s-1 are retrieved in 

the upper troposphere with values of around 10 m s-1 at 4-5 km altitudes.

Heymsfield et al. (2010) used nadir-viewing airborne Doppler radar to examine 

intense deep convective updraft vertical velocities in several near coastal environments. 

Specifically targeting overshooting cloud tops, their mean oceanic maximum vertical 

velocity profile reaches 10 m s-1 at 5 km and 13 m s-1 at 10 km, lower than the median 

values in the simulations, but almost identical to median dual-Doppler values for this 

case. The peak vertical velocity in the mean profile also occurs at an altitude of 10 km, 

the same as that in dual-Doppler retrievals. There is no reason to think that there is 

anything special about 10 km, but it is interesting that observational retrievals show peak 

vertical velocities well below cloud top while simulated peak vertical velocities tend to 

be closer to cloud top. The peak oceanic vertical velocity in Heymsfield et al. (2010) at 5 

km is 17 m s-1 and 25 m s-1 at 10 km, which are very close to the 90th percentile of dual- 

Doppler maximum vertical velocities for this case, which are 15 m s-1 at 5 km and 23 m s- 

1 at 10 km. These higher percentiles also agree well with the 20 m s-1 peak vertical 

velocity at 11 km measured in an intense TC4 convective cell reported in Lawson et al. 

(2010). It should be noted that these are not weak tropical oceanic cells out in the middle
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of the Intertropical Convergence Zone, but tropical oceanic cells near coastlines of 

Central America, the Caribbean, and the Gulf of Mexico, where more intense cells with 

some lightning are expected. Heymsfield et al. (2010) also show that the mean of the 

maximum radar reflectivity in these cells at 10 km is 30 dBZ, which agrees perfectly with 

the dual-Doppler retrievals from TWP-ICE, but is significantly lower than simulated 

values. Maximum radar reflectivities at 10 km approach 40 dBZ, again consistent with 

observations in this case. Heymsfield et al. (2010) attributes acceleration between cloud 

base and T = 0°C in these intense oceanic updrafts near coasts to unloading of large 

raindrops, which increases updraft buoyancy despite appreciable entrainment. If this is 

true, then this is far different than the simulated intense updrafts, which do not unload 

much rainwater but maintain high vertical velocities by not entraining much 

environmental air. It is difficult to know how intense tropical oceanic updrafts are 

behaving in nature without more co-located, coincident, and redundant in situ and remote 

sensing observations of vertical velocity and condensate, something that should be a goal 

in future field campaigns.

The evidence presented here shows that simulated convective updrafts for a TWP- 

ICE MCS are too strong in all CRM and LAM setups. This is especially true in the upper 

troposphere, which suggests that too much freezing of rain is occurring based on the large 

rain water contents being lofted. Preliminary results indicate that nearly undiluted and 

large updrafts do not appear to be due to unresolved large eddies. They do appear related 

to a different convective mode than occurred in observations, which could be a result of 

nonlinear interactions with some possible feedbacks between several imperfect 

approximations in the models.
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with (d) sample size for the dual-Doppler lobes (dashed lines) and pentagonal model 
forcing domain (solid lines). Gray lines represent the entire MCS event while black lines 
represent the 1310Z through 1750Z period on January 23rd for which dual-Doppler 
retrievals are available.
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Figure 4.4. The 90th percentile profiles of (a) maximum vertical velocity and (b) 
maximum radar reflectivity are shown for three-dimensionally defined convective 
updrafts beginning below 1 km and ending above 15 km in both CRMs (symbols defined 
in Table 2.1) and dual-Doppler retrievals (solid black line) for the period of 1310Z to 
1750Z on January 23rd.
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defined in Table 2.3). LAM statistics are limited to the CPOL domain. Note the x-axes 
are different for the two panels.
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Figure 4.13. Example vertical cross-sections through strong deep convective updrafts 
are shown for each of the CRM dynamical cores: (a) DHARMA, (b) MESONH, (c) 
UKMO, and (d) SAM. Moist static energy is color filled. Upward vertical velocity is 
contoured in thick black at 1, 5, 10, 15, 20, 25, and 30 m s-1, while downward vertical 
velocity is contoured in thin black at -1 and -5 m s-1.
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Figure 4.14. Profiles of moist static energy for four simulations: (a) DHARMA-2M, (b) 
SAM-B, (c) MESONH-1, and (d) UKMO-2. The domain-mean (environmental) profiles 
are shown in black. The median profiles of maximum moist static energy in three- 
dimensionally defined deep convective updrafts beginning below 1 km and ending above 
15 km for the 1310Z to 1750Z period on January 23rd are shown with symbols. The 10th 
and 90th percentiles are shown with gray lines.
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Figure 4.15. Profiles of moist static energy for (a) WRF-W, (b) WRF-T, (c) WRF-M, 
and (d) WRF-M2. The domain-mean (environmental) profiles are shown in black. The 
median profiles of maximum moist static energy in three-dimensionally defined deep 
convective updrafts beginning below 1 km and ending above 15 km for the 1310Z to 
1750Z period on January 23rd are shown with symbols. The 10th and 90th percentiles are 
shown with gray lines. Only LAM updrafts in the CPOL domain are included.
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Figure 4.16. A time series of the MCS event from 3Z on January 23rd to 12Z on January 
24l showing domain-median CRM (a) surface-based CAPE and (b) bulk Richardson 
vertical wind shear. Symbols are defined in Table 2.1. The variational analysis used to 
force the CRMs is shown in solid black at three-hour resolution. Only DHARMA and 
SAM simulations are shown because pressure profiles were not provided for the UKMO 
simulations and outputted horizontal wind fields in the MESONH simulations are of 
questionable accuracy.
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Figure 4.17. A time series of the MCS event from 3Z on January 23rd to 12Z on January 
24l showing domain-median LAM (a) surface-based CAPE and (b) bulk Richardson 
vertical wind shear within the CPOL domain. The three-hourly ECMWF analysis in the 
CPOL domain is shown in solid black.
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Figure 4.18. Example vertical cross-sections through a strong long-lived “left-moving” 
deep convective updraft in the DHARMA-2M simulation at 1320Z showing (a) thermal 
buoyancy acceleration [1*10-1 m s-2], (b) water loading buoyancy acceleration [1*10-1 m 
s-2], (c) total buoyancy acceleration [1*10-1 m s-2], (d) pressure perturbation [hPa], (e)
vertical pressure perturbation gradient acceleration [1*10-1 m s-2], and (f) vertical 
vorticity [1*10-2 s-1]. Zero lines are shown in dashed black, vertical velocity (1, 5, 10, 15, 
20, 25, and 30 m s-1) is contoured in solid black, and Dw/Dt (every 0.02 m s-2) is 
contoured in white. Cell motion is primarily from right to left (westward).
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Figure 4.19. Example horizontal cross-sections at 1350Z in the DHARMA-2M 
simulation showing color filled (a) 50-m divergence [1*10-4 s-1], (b) 550-m divergence 
[1x10-4 s-1], (c) 2.5-km pressure perturbations [Pa], (d) 1 km vertical pressure 
perturbation gradient acceleration [1*10-2 m s-2], (e) 1-km total buoyancy acceleration 
[1x10‘2 m s-2], and (f) 2.5-km vertical vorticity [1*10-4 s-1] over a 90 km by 90 km 
section of the model domain with zero lines shown in dashed black. 2.5-km altitude 
vertical velocity is shown with black contours (-5, -1, 1, 5, 10, and 15 m s-1). Relative 
wind vectors at the same altitude as the color filled variables are shown in white.
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Figure 4.20. Example horizontal cross-sections at 1350Z in the DHARMA-2M 
simulations showing color filled (a) surface-based CAPE [J kg-1], and (b) bulk 
Richardson shear [m2 s-2] over a 90 km by 90 km section of the model domain. 2.5-km 
altitude vertical velocity is shown with black contours (-5, -1, 1, 5, 10, and 15 m s-1).
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Figure 4.21. Example vertical cross-sections through a strong “right-moving” deep 
convective updraft in the DHARMA-2M simulation at 1350Z showing (a) thermal
buoyancy acceleration [1x10' m s-2], (b) water loading buoyancy acceleration [1 x 10- m
s-2], (c) total buoyancy acceleration [1x10-1 m s-2], (d) pressure perturbation [hPa], (e)
vertical pressure perturbation gradient acceleration [1x10-1 m s-2], and (f) vertical 
vorticity [1x10-2 s-1]. Zero lines are shown in dashed black, vertical velocity (1, 5, 10, 15, 
20, 25, and 30 m s-1) is contoured in solid black, and Dw/Dt (every 0.02 m s-2) is 
contoured in white. Cell motion is primarily from left to right and into the cross-sections 
(northwestward).



CHAPTER 5

RAIN MICROPHYSICS

5.1 Overview

Chapter 4 showed that deep convective updrafts appear to be too strong in both 

CRM and LAM simulations, which would be expected to impact stratiform regions in 

different ways than the convection did in reality. Stratiform rain biases in simulations of 

MCSs using one-moment schemes have been shown in previous studies (e.g., Morrison et 

al. 2009; Luo et al. 2010; Bryan and Morrison 2012). They show that excessive 

evaporation often leads to a low bias in simulated stratiform rain rates for one-moment 

rain schemes, while two-moment schemes perform much better due to their ability to 

predict number concentration, which eliminates excessive small raindrops. These studies 

generally stop short of extensively comparing two-moment simulations of stratiform rain 

properties to those observed to see if two-moment schemes have biases as well. As was 

shown in Chapter 3, both one-moment and two-moment schemes show low biases in 

stratiform rain rate for TWP-ICE CRM and LAM simulations. No TWP-ICE in situ ice 

observations exist in well-developed stratiform regions, but several observationally 

retrieved rain microphysics datasets exist, including those from a disdrometer, multiple 

vertical profilers, and CPOL, that are used in this chapter to explain this discrepancy with 

previous studies and characterize simulated rain microphysics errors. Hypotheses are



then generated that connect these errors to stratiform ice and convective regions. All 

figures and statistics discussed in this chapter use simulation output and observational 

retrievals from the MCS event alone.

5.2 Sampling

Vertical profiler retrievals are a major part of this chapter, but comparing them to 

simulations is difficult. A vertical profiler only observes precipitation that passes over 

the profiler’s location, whereas a three-dimensional model domain has more than 30,000 

surface grid points. This introduces a large difference in the total number of samples in 

addition to differences in sample volume (i.e., the profiler does not observe a ~1-km2 

footprint at any given time but rather a smaller footprint over a short time period). 

Furthermore, not all samples are independent as successive profiles or point 

measurements in a large stratiform region will be highly correlated with one another. To 

circumvent this issue, mean profiles of variables are obtained at all grid points in each 

model by only including samples where simulated radar reflectivity is greater than or 

equal to 5 dBZ for the dual-profiler retrieval profile depth between 1.5 and 4 km. 

Furthermore, only “deep” stratiform profiles are considered. For Doppler velocity 

profiles, a radar reflectivity of at least 5 dBZ is required at approximately a 4.5-km 

altitude for the profile to be included in statistics. Profiles in this distribution that do not 

contain at least 40 sample times are discarded to avoid contamination from outliers. This 

is much more important in the LAM simulations than the CRM simulations because a 

significant number of LAM profiles have low sample sizes. The number 40 was chosen 

because it leads to median simulation sample sizes that are similar in magnitude to the
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observationally derived sample size. For the LAM simulations, an additional restriction 

that discards all profiles outside of the CPOL domain is enforced. From each final 

simulation distribution, the 1st, 10th, 50th, 90th, and 99th percentile profiles are obtained 

and the underlying profiles determine the model spread. A single temporal mean profile 

obtained from the observational retrievals is then compared to these percentiles and the 

spread for a given model. Differences due to sample volume in observational retrievals 

and simulations are assumed to be minimal in stratiform regions, which by definition 

vary slowly in space and time. As was discussed in Chapter 2, the dual-profiler retrieval 

resolution varies with height but is slightly higher than model output. Six-panel figures 

comparing the dual-profiler retrievals to CRM output will be shown throughout this 

chapter. DHARMA-S, UKMO-2, MESONH-2, and SAM-S were left out of these figures 

because they are very similar to DHARMA-B, UKMO-1, MESONH-1, and SAM-B, 

respectively.

Having only samples in time and not in space, the dual-profiler retrieval is not 

representative of stratiform rain properties in the entire domain for this one event. This is 

clearly shown in Figure 5.1. This does not mean that it shouldn’t be used, but that it 

should be put into proper context. The CPOL retrievals at a 2.5-km altitude show higher 

occurrences of radar reflectivity over 30 dBZ and rain rates over 2 mm hr-1, even if 

CPOL retrieval uncertainty is taken into account. The dual-profiler retrievals also show 

larger D 0 values and smaller Nw values at most percentiles. These differences could be 

due to sampling differences and retrieval errors. Figure 5.2 shows the CPOL retrievals 

for the grid point closest to the profilers’ location. The two retrievals agree much better 

in this comparison, which indicates that much of the difference in Figure 5.1 is due to
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differences in samples. The differences that remain in Figure 5.2 are likely due to 

differences in sampling volume and retrieval technique, especially the larger dual-profiler 

samples of D 0 greater than 1.6 mm and log(Nw) greater than 3.5. Physically, these results 

make sense. The most well-developed and long-lived stratiform region was centered to 

the north of Darwin during the MCS event. Having many samples outside or on the edge 

of this stratiform region should yield fewer samples of high radar reflectivity and rain 

rate. Although not as obvious, they also yield fewer samples of low Do and high Nw, 

which may be due to less depletion of small raindrops through evaporation and raindrop 

breakup that may be occurring in strong stratiform rain.

5.3 Stratiform Radar Reflectivity and Rain Rate 

As shown in Chapter 3, stratiform rainfall is underestimated in CRM and LAM 

simulations and the distribution of 2.5-km stratiform radar reflectivity substantially 

differs from observations. Figure 5.1 shows that dual-profiler retrieved radar reflectivity 

and rain rate distributions are missing higher values that appear in the CPOL retrieval. 

Since the dual-profiler retrievals that are heavily used in this chapter are not entirely 

representative, it is worth comparing the radar reflectivity and rain rate profiles derived 

from the profilers to the CRM and LAM simulations.

Figure 5.3 shows that the median of most CRM simulated mean radar reflectivity 

profiles is less than that in profiler observations. The lone exception is UKMO-2M, 

which has a median profile that almost matches the observationally retrieved profile. The 

dual-profiler retrieved mean profile, however, does fit within the distributions of all but 

the DHARMA-B simulation. Interestingly, the observed profile remains nearly constant
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with height whereas simulations with one-moment rain schemes that assume ^ = 0 

(DHARMA-B and MESONH-1) decrease toward the surface. Two-moment rain 

schemes in DHARMA-2M, UKMO-2M, and SAM-B, on the other hand, produce 

increasing values toward the surface. UKMO-2 using a one-moment scheme with 

^ = 2.5 is the only simulation with a near constant radar reflectivity profile. LAM 

simulations in Figure 5.4 have higher radar reflectivities consistent with the results in 

Chapter 3, and therefore the observed profile fits well within the distribution of mean 

profiles in all of the simulations. Consistent with the CRM simulations, two-moment 

schemes in WRF-M and WRF-M2 show radar reflectivity slightly increasing toward the 

surface, while one-moment WRF-W shows radar reflectivity remaining approximately 

constant or slightly decreasing.

Figures 5.5 and 5.6 show distributions of CRM and LAM simulated stratiform 

rain rate profiles, respectively, with the dual-profiler retrieved mean profile in solid 

black. The dual-profiler retrieved profile fits within the distribution of possible profiles 

for every simulation, and some simulations such as UKMO-1 and WRF-W produce 

higher mean rain rates in a majority of profiles. This may appear to contradict the results 

in Chapter 3, but one must consider the profiler samples in the context of the CPOL 

samples. The profiler was in a location that missed a long period of well-developed 

stratiform rain that covered the CPOL domain to the north of the profiler location. As 

shown in Figure 5.2, dual-profiler retrievals of radar reflectivity, rain rate, D 0 and log(Nw) 

agree much better with CPOL retrievals over the profiler location than with CPOL 

retrievals for the entire domain that show many more samples of high stratiform rain 

rates. The mean 2.5-km altitude CPOL stratiform rain rate for the MCS event is 1.85 mm
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hr-1 with an uncertainty range from 1.11 to 3.14 mm hr-1. This means that the mean 2.5­

km altitude dual-profiler retrieval is approximately the same as the lower uncertainty 

bound of the mean CPOL stratiform rain rate over the whole pentagonal forcing domain, 

and this is supported by Figures 5.1 and 5.2. This also means that only WRF-W 

produces mean stratiform rain rates close to mean CPOL derived stratiform rain rates at 

2.5 km.

5.4 Stratiform Doppler Velocity 

In stratiform regions, the vertical velocity is small (i.e., \w\ < 1 m/s) and hence, S- 

band Rayleigh Doppler velocity is primarily a function of precipitation-sized particle fall 

speed. Simulated Doppler velocity is calculated from model output in an idealized 

manner similar to radar reflectivity so that a comparison can be made with observations, 

as is described in Section 2.3. While the one-moment schemes underestimate Doppler 

velocity in Figure 5.7, the two simulations (UKMO-1 and UKMO-2) that assume ^ = 2.5 

are 1 m s-1 closer to observations than the simulations using ^ = 0, indicating a n  value 

greater than 0 may better approximate the stratiform rain size distribution. Simulations 

using various versions of the Morrison two-moment microphysics scheme predict 

Doppler velocity well at some height levels, but this is somewhat unexpected because all 

simulations underestimate radar reflectivity. Furthermore, the Doppler velocity profile 

shape is best approximated by one-moment schemes despite the lower than observed 

values. Observed Doppler velocity decreases linearly from 7.5 m s-1 at 4 km to 6.5 m s-1 

at the surface due to increasing atmospheric density. In two-moment schemes, the 

Doppler velocity either remains constant or increases toward the surface indicating that
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the rain size distribution is shifting too much toward larger raindrops, which is 

characteristic of excessive size sorting.

As shown in Figure 5.8, the dependence of LAM rain Doppler velocities on the 

prediction of rain number concentration is similar to that in the CRM simulations. The 

only one-moment scheme, WSM6, under-predicts the Doppler velocity by 1 to 1.5 m s-1, 

although it does produce higher Doppler velocities than DHARMA-B and MESONH-1, 

the two CRM simulations with one-moment rain and ^ = 0. This is consistent with 

higher reflectivities and rain rates in WRF-W than in DHARMA-B and MESONH-1. 

WRF-W is also the only LAM simulation to reproduce the Doppler velocity vertical 

profile slope that shows the effect of air density dominating over any changes to raindrop 

size. WRF-T produces values similar to observed at all altitudes, but has the problem of 

incorrect slope that all two-moment rain schemes have, which is likely related to size 

sorting problems. WRF-M and WRF-M2 have this same issue but only from the melting 

level down to the 2.5-km height level before Doppler velocities begin decreasing toward 

the surface. This is likely a result of overly high Doppler velocities reaching limiting 

values in these simulations and air density effects taking over once those values are 

reached.

5.5 Stratiform Liquid Water Content 

Figure 5.9 shows that simulations using one-moment schemes have profiles close 

to the retrieved mean LWC profile, which varies from 0.06 to 0.09 g m-3, while those 

using two-moment schemes are furthest from observed values varying from 0.03 to 0.05 

g m-3 between 1.5 and 3 km. Combined with the comparisons in Section 5.7, this
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suggests that low rain rates are manifested in fall speeds for one-moment schemes with 

^ = 0 (DHARMA-B, MESONH-1) and LWC for two-moment schemes (DHARMA-2M, 

UKMO-2M, SAM-B), whereas LWC in one-moment schemes with ^ = 0 are closer to 

observed and fall speeds in two-moment schemes are closer to observed. As might be 

expected, one-moment schemes with ^ = 2.5 such as UKMO-1 fall in between. 

Considering that reflectivity and rain rates are lower in CRM simulations than 

observations and lower observed reflectivities and rain rates are correlated with higher 

observationally retrieved D 0 and lower Nw, lower LWC should be expected in simulations 

while Doppler velocity remains fairly unchanged if they are to be consistent with 

observational retrievals.

Stratiform rain water content at the surface is compared to those retrieved by the 

Joss-Waldvogel disdrometer, but this disdrometer (described in Section 2.4.3) does not 

report raindrops smaller than 0.308 mm or larger than 5.258 mm. Therefore, simulated 

rain water content that is compared with the disdrometer is calculated for that limited 

range of sizes using incomplete gamma functions. Figure 5.10 shows that disdrometer 

observed liquid water contents have a median value of 0.07 g m-3 at the surface for 

raindrops larger than 0.308 mm, whereas median simulated values vary between 0.015 

and 0.05 g m-3. Radar reflectivity calculated from the disdrometer observations is within 

1-2 dBZ of both the approximately co-located and coincident CPOL distribution at an 

altitude of 0.5 km and the 0.5-km altitude S-band profiler distribution. When the 

coincident requirement is dropped, then reflectivity distributions are very similar to those 

in Figure 5.2, so the disdrometer observations fit with the profiler and CPOL 

observations. This also means that the disdrometer sample is biased toward lower
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stratiform reflectivities and rain rates at higher percentile values of these variables, as 

were the CPOL and S-band distributions at the location of the disdrometer in Figure 5.1. 

If the disdrometer location were more representative of all stratiform regions within the 

pentagonal domain in Figure 2.1, one could imagine that the disdrometer LWC 

distribution would have more samples at values greater than 0.1-0.2 g m-3. That stated, 

lower percentiles are probably fairly representative assuming LWC varies as reflectivity 

and rain rate vary because lower percentiles of reflectivity and rain rate are similar for the 

disdrometer location and the entire pentagonal domain, as shown in Figure 5.1.

DHARMA-B, MESONH-1, and SAM-B have the highest median LWC of about 

0.04-0.05 g m-3. DHARMA-B and MESONH-1 are the simulations with the lowest 

mass-weighted rain fall speeds and this is reflected in the Doppler velocity in Figure 5.7, 

and therefore LWC would have to be higher than observed if it were to balance the fall 

speeds and reproduce observed rain rates. The disdrometer normalized CDF fits within 

the spread of 100 randomly selected simulated normalized CDFs for those simulations in 

Figure 5.10. The simulations (DHARMA-2M and UKMO-2M) with more realistic 

Doppler velocities of 6-7 m s-1 at the surface have much lower median LWC between

0.015 and 0.02 g m-3, which cannot be accounted for by sampling and supports results 

drawn from the dual-profiler retrieval. The disdrometer normalized CDF does not fit 

within the spread of 100 randomly selected simulated normalized CDFs for these 

simulations in Figure 5.10.

The LAM LWC profiles in Figure 5.11 tell a slightly different story. Most WRF- 

W mean profiles have higher LWC than the mean observationally retrieved profile, while 

the median of WRF-T and WRF-M mean profiles are similar to the mean observationally
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retrieved profile. In the case of WRF-W, the median LWC values are slightly greater 

than 0.1 g m-3, significantly higher than the other simulations, despite being the only 

simulation to use a one-moment rain scheme (WSM6). The observationally derived 

profile would fall between the 1st and 10th WRF-W percentile profiles. Even with slightly 

lower than observed Doppler velocities, higher LWC values than observationally 

retrieved give WRF-W rain rates higher than those in the dual-profiler retrievals and 

similar to CPOL retrievals. Unfortunately, WRF-W, WRF-T, and WRF-M greatly under- 

predict stratiform area, as shown in Chapter 3. For the only simulation that produces 

stratiform area close to observed (WRF-M2), stratiform LWC is clearly lower than 

observed and falls in line with two-moment rain schemes used in the CRM simulations 

with LWC decreasing toward the surface. Comparisons to disdrometer observations in 

Figure 5.12 confirm the profiler comparison. WRF-W produces the highest LWCs 

followed by WRF-M, then WRF-T, and finally WRF-M2, which generally produces 

much lower LWC. The observationally derived profile, however, fits within the spread 

of 100 randomly selected normalized CDFs containing 40 or more samples for all 

simulations. However, some variables such as raindrop size, discussed next, and 

previously discussed Doppler velocity show greater disagreement between simulations 

and observationally derived values.

5.6 Stratiform Raindrop Size 

Figure 5.13 shows simulated and CPOL observationally retrieved histograms of

2.5-km altitude stratiform median volume diameter (D0) and the logarithm base-10 of the 

normalized size intercept (log(Nw)). These variables are defined in Section 2.4.2. For
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this figure and similar figures to follow, simulated values are calculated at the native 

simulation grid spacing, whereas CPOL retrievals are on a 2.5-km spaced horizontal grid. 

Simulated values were not calculated for 2.5-km grid spacing because it would require 

numerical solutions for size distributions that are no longer gamma distributions at that 

grid spacing. This difference in grid spacing should create minimal differences.

One-moment rain schemes with ^ = 0 (diamonds; up and down pointing 

triangles) in CRM simulations perform the worst with typical D 0  values around 0.6 mm 

that are significantly less than typical observed values of 1.2 mm. Typical Nw values for 

these schemes are 8*103 or 1*104 mm-1 m-3 (log(Nw) = 3.9 or 4) when most 

observationally retrieved log(Nw) values fall between 2.5 and 4 with a peak around 3.3. 

UKMO-1 and UKMO-2 (left and right pointing triangles), which use ^ = 2 .5 , produce 

greater D0 values by about 0.2 mm over the one-moment schemes that use ^ = 0. 

UKMO-1 and UKMO-2 also do better predicting N w with most values falling between 3 

and 3.7. Two-moment rain schemes (circles, square, and x ’s) in CRM simulations are 

able to produce larger drops like those observed with distributions that are slightly too 

broad. Two-moment schemes represent the spread of observed Nw values better than 

UKMO-1 and UKMO-2, although their distributions are shifted to slightly lower values 

than observed. These two-moment issues may be due to a combination of excessive size 

sorting (Wacker and Seifert 2001; Morrison et al. 2009) and a fixed p  value of 0.

Vertical profiles of mass-weighted mean diameter (Dm), defined in Section 2.4.4 

and shown in Figure 5.14 also look very different in one-moment and two-moment 

schemes and yield insight into the evolution of stratiform raindrops as they fall toward

4 + w
the surface. Recall that for a gamma distribution, Dm = ------ —  D0 . For one-moment

3.67 + w
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schemes with p  = 0 in CRM simulations, D m remains fairly constant at 0.8 mm, far lower 

than the observationally retrieved 1.4 mm. This can lead to excessive mass-relative 

evaporation in drier subcloud environments as discussed in Morrison et al. (2009). For 

the humid TWP-ICE active monsoon, this is not as important, but the mass-weighted fall 

speed is reduced by having too many small droplets, which produces the lower than 

observed rain rates despite LWC that is closer to observationally retrieved values. 

Increasing p  to 2.5 in UKMO-1 and UKMO-2 increases D m to about 1 mm, closer to the 

observed value. If the dual-profiler retrieval were more representative of the entire 

CPOL domain, the one-moment schemes would be even closer to observations because 

observed Dm would be smaller based on Figures 5.1 and 5.2.

Although not shown, dual-profiler retrieved p  values in stratiform regions yield 

median values of 2 to 3 and mean values of 4 to 5 with only slight changes with height 

between 1.5 and 4 km altitudes. This indicates that a microphysics scheme with either a 

variable p  parameter or one greater than 0 such as the UKMO value of 2.5 will likely 

better represent stratiform rain because it is better able to represent the dispersion 

(narrowness) of the stratiform rain size distribution. Two-moment schemes also have 

LWCs that compare well with observations at 4 km, but have N w values (not shown) that 

are too high and Dm values in Figure 5.14b, d, and f  that are too low. Moving down from 

4 km to 1.5 km, D m increases by 0.2-0.3 mm to match observational retrievals in 

agreement with the comparison with CPOL retrievals at 2.5 km in Figure 5.13, while Nw 

(not shown) and LWC in Figure 5.9 decrease to less than those in observational 

retrievals. The D m and Nw changes with height are likely more a function of size sorting 

than evaporation based on the humid subcloud environment and minimal change in one-
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moment schemes with ^ = 0. The accumulation of reflectivity, rain rate, Doppler 

velocity, LWC, and raindrop size comparisons suggests that stratiform rain rates are too 

low at 2.5 km because they are too low at 4 km. This implies that there is likely not 

enough ice water content in CRM simulations just above the melting level, as is 

discussed further in Section 5.9.

Figure 5.15 shows LAM and CPOL observationally retrieved stratiform rain D 0 

and log(Nw) distributions at a 2.5-km altitude. The difference between the one-moment 

WSM6 microphysics scheme in WRF-W (triangles), which strongly peaks at 0.6 mm, 

and the two-moment Morrison scheme in WRF-M (diamonds) and WRF-M2 (dashed 

line), which broadly peak around 1.3 mm, is similar to the difference between the one- 

moment and two-moment schemes in the CRM simulations. WRF-T (squares) is unique 

in that it uses a two-moment rain formulation but has few samples of D 0  greater than the 

observationally retrieved peak of 1.2 mm, whereas WRF-M and WRF-M2 have many 

samples greater than 1.5 mm. The reasons for this difference in two-moment schemes are 

still unclear and need to be further investigated, but may be related to an initially higher 

rain number concentration in WRF-T just below the melting level due to its unique snow 

scheme that was discussed in Chapters 3 and 4. Smaller Do in WRF-T is associated with 

N w values in Figure 5.15b that almost match those retrieved with CPOL, whereas Nw 

values in WRF-M and WRF-M2 are generally lower than the CPOL retrieved values, 

which is consistent with the large D 0  values and the CRM statistics from runs using the 

Morrison two-moment scheme. As in the CRM simulations, a one-moment rain scheme 

such as WSM-6 in WRF-W that assumes a constant size intercept performs poorly with 

respect to stratiform raindrop size.
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A comparison of the spread of time-mean profiles of D m in the LAM simulations 

and the time-mean dual-profiler retrieved profile between 1.5- and 4-km altitudes are 

shown in Figure 5.16. Consistent with the CRM results, WRF-W with one-moment rain 

shows very little spread and little change in Dm with height as is produced in the 

observational retrieval, but with an offset of 0.5 mm to lower values. The rest of the 

WRF simulations employ two-moment schemes that show Dm increasing from 4 km 

down to 1.5 km, also consistent with CRM results and the conclusion that excessive size 

sorting is occurring. D m values reach larger sizes in the WRF-M2 simulation because it 

does not have the same artificial limit on the slope parameter (A) that WRF-M has, but 

instead uses a raindrop breakup parameterization described in Morrison et al. (2012). As 

was hypothesized from the comparisons in Figure 5.15, 4 km WRF-T Dm values are less 

than those in WRF-M and WRF-M2, a major reason for the difference at 2.5 km.

5.7 Convective Raindrop Size 

The size of raindrops in convective updrafts is important because raindrop fall 

speeds determine whether the rain will be lofted and frozen or whether it will fall out of 

the updraft. Furthermore, as shown in Morrison et al. (2012), the size of rain in 

convective downdrafts affects the evaporative cooling rate, which impacts the strength of 

the downdraft and cold pool. Dual-profiler DSD retrievals do not give a large enough 

sample size to be used in convective regions, but the CPOL retrievals at a 2.5-km altitude 

yield sample sizes large enough to be compared with simulated convective rain DSD 

properties. Figure 5.17 shows histograms of CRM simulated versus CPOL retrieved 

convective D 0 and log(#w) values for the entire MCS event. There is a stark contrast
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between one-moment and two-moment microphysics schemes as was the case for the 

stratiform statistics. However, the one-moment schemes (diamonds; up and down 

triangles) with p  = 0 perform well in approximating the observed D 0 distribution in 

convective regions, whereas they performed poorly in stratiform regions. It is not all that 

surpris!ing that one-moment rain schemes do well in convective regions because most of 

them fix Nw close to 8*103 or 1*104 mm-1 m-3 (log(Nw) = 3.9 or 4) and ju = 0, which 

guarantees a preponderance of small raindrops (see solid black line in Figure 1.1) as 

might be expected on average in high rain rates due to raindro!p breakup (Srivastava 

1971; McTaggart-Cowan and List 1975; Tokay and Short 1996). Despite being slightly 

worse in replicating CPOL derived Nw, UKMO-1 and UKMO-2 using a one-moment 

scheme with p  = 2.5 best approximates the CPOL derived D 0 distribution. The 

observational retrieval actually shows a majority of Nw values greater than 1*104 mm-1 

m-3, whereas two-moment schemes predict most N w values an order of magnitude less 

than that. Two-moment schemes produce a D 0 distribution that is too broad with too 

many samples below 0.8 mm and above 1.8 mm values. The two-moment Do values 

between 0.2 and 0.8 mm occur in convective updrafts where large amounts of cloud 

water are converting to raindrops. The sharp Do peak between 1.8 and 1.9 mm in some 

two-moment simulations is due to the use of limits on A, which prevents excessively 

large raindrops in the absence of a raindrop breakup scheme. Recent versions of the 

Morrison scheme, such as the one used in DHARMA-2M and WRF-M2, have been 

updated to include a raindrop breakup formulation (Morrison et al. 2012) in which Do is 

relaxed to an equilibrium value of 2.2 mm. This does not have nearly as significant an 

effect on distributions of D 0 and Nw as do differences in the number of prognostic
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moments or the value of u  The primary difference between the newer version of the 

Morrison scheme and older versions is that the extreme peak between 1.8 and 1.9 mm 

due to artificial limits on A in the absence of a raindrop breakup parameterization is 

removed.

Figure 5.18 shows LAM simulated and CPOL retrieved Do and log(Nw) 

distributions for convective regions at a 2.5-km altitude. As in CRM simulations, the 

LAM simulations that use two-moment rain schemes have convective D 0  distributions 

that are too broad. Whereas the small D 0  values are primarily associated with conversion 

of large cloud water contents to rain, the large D 0  values may be due to excessive size 

sorting (see Wacker and Seifert (2001) and Morrison et al. (2009)) and insufficient 

balancing of raindrop formation, collision-coalescence, and breakup processes. It is also 

not possible to rule out effects from melting ice on initial raindrop size and influences of 

CCN on cloud water amount and droplet size, which can affect rain formation and 

collision-coalescence. WRF-T (squares) produces many more small raindrops than 

WRF-M (diamonds) and WRF-M2 (dashed line) as occurred in stratiform regions, while 

the A limits in WRF-M and WRF-T produce sharp peaks in the Do distribution. Whereas 

the CRM simulations that used one-moment schemes closely resembled the CPOL 

derived Do distribution that peaks around 1.4 mm, the distribution in WRF-W (triangles) 

peaks at a lower value of 1 mm even though CPOL derived convective Nw values tend to 

be higher than the constant value of 8*103 mm-1 m-3 (log(Nw) = 3.9) in WRF-W. 

Convective Nw distributions in two-moment schemes have too many low values, 

consistent with the large D 0 values. The sensitivity of convective D 0 and N w values to 

different convective raindrop breakup parameterizations needs to be further tested in
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tropical environments to rule out other factors and isolate the role of excessive size 

sorting.

5.8 Correlating Radar Reflectivity, Rain Rate, and Raindrop Sizes

Comparing distributions of individual variables is informative, but investigating 

their variability versus one another yields additional information. Figures 5.19 and 5.20 

show that both CPOL retrieved and simulated convective radar reflectivity increases as 

D 0 increases. Two-moment schemes shaded in 5.19b-d and 5.20 typically produce larger 

values of Do for a given radar reflectivity between 30 and 50 dBZ. One-moment schemes 

with ^ = 0 (dashed) produce the best fit, but are also slightly offset to higher D 0 for a 

given radar reflectivity, which is consistent with CPOL retrievals producing N0 values 

larger than what is assumed in the constant size intercept one-moment schemes. When ^  

is increased to 2.5 in a one-moment scheme (shaded in 5.19a), simulated values move 

farther away from CPOL retrieved values. For the two-moment schemes, it is unclear 

whether this discrepancy with observational retrievals is primarily due to representation 

of raindrop formation and breakup or excessive size sorting, but judging from results in 

the previous sections, a good deal of it is probably due to excessive size sorting.

Figures 5.21 and 5.22 show that for a given convective rain rate, D 0 is generally 

larger in two-moment schemes as well. Observational retrievals show Do asymptote to 

between 1.5 and 2 mm at high rain rates, but simulations with two-moment schemes 

asymptote to higher values at lower rain rates relative to CPOL retrievals. As was the 

case for radar reflectivity, one-moment schemes with ^ = 0 (dashed) perform best, but 

also produce values of D 0 that are too large at high rain rates, again likely owing to higher



size intercepts in observational retrievals produced by raindrop breakup that constant size 

intercept one-moment schemes cannot replicate.

The relationship between stratiform radar reflectivity and D 0  is represented better 

by some two-moment schemes than was convective radar reflectivity and D 0 , as shown in 

Figures 5.23b-d and 5.24. The primary issue in most two-moment schemes is the 

overproduction of low stratiform radar reflectivities. For the two-moment schemes that 

do produce high stratiform reflectivities in 5.23b and 5.24b, Do is larger in simulations 

than observational retrievals, likely due to excessive size sorting. As opposed to 

convective regions, one-moment schemes with ^ = 0 (dashed) generally yield the worst 

fit to observational retrievals in stratiform regions with smaller radar reflectivities for a 

given D 0 value than observationally retrieved. Increasing i  to 2.5 in a one-moment 

scheme in Figure 5.23a shows much better agreement with CPOL retrievals, indicating as 

previous results and other studies have, that i  is generally greater than 0 in stratiform 

regions due to a lack of very small raindrops and less dispersion. As was mentioned in 

Section 5.6, dual-profiler retrievals produce median values of ^ between 2 or 3 at all 

height levels between 1.5 and 4 km with mean values between 4 and 5.

Two-dimensional histograms of stratiform rain rate versus Do in Figures 5.25 and 

5.26 reinforce conclusions drawn from Figures 5.23 and 5.24. For a given rain rate, D 0 is 

too small in one-moment schemes with ^ = 0, but increasing the value of i  to 2.5 

produces better results. The two-moment schemes that reproduce the radar reflectivity 

versus D 0  relationship but had to!o many low radar reflectivities also reproduce the rain 

rate versus D 0  relationship but with too many low rain rates, an exception being the 

Thompson scheme in the WRF-T simulation. As mentioned in previous sections, this
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may be related to the unique snow formulation used in the Thompson scheme. For the 

two-moment schemes that produce higher reflectivities, D 0  is too large for a given rain 

rate, likely due in part to excessive size sorting. Incorrect initial size of raindrops 

produced by melting snow could also be an issue for WRF-M and WRF-M2. As shown 

in Figure 5.15, these simulations have larger raindrops at 4 km than other simulations 

using two-moment schemes.

Although not shown, two-dimensional histograms of radar reflectivity and rain 

rate versus log(Nw) produce the same conclusions as those drawn above. Two-moment 

schemes can also replicate the shift from smaller Do and Nw in stratiform regions to larger 

D 0 and Nw in convective regions, although the values are different in observational 

retrievals and simulations. This distinct shift that clearly separated convective and 

stratiform regions was shown in Bringi et al. (2009).

5.9 Link to Ice Water Content Aloft 

Figure 5.27 shows that stratiform rain rates at a 4-km altitude are well correlated 

to stratiform ice water content (IWC) at a 5.5-km altitude for all simulations. The slope 

of their relationship varies based on the microphysics scheme used but increasing 5.5-km 

IWC increases 4-km rain rate in all cases. DHARMA-B is an outlier from other 

simulated relationships because it uses the Grabowski (1999) microphysics scheme that 

uniquely combines cloud ice and snow and places a substantial portion of the IWC into 

the cloud ice mode yielding much slower fall speeds for a given IWC than are produced 

by other simulations. One-moment schemes produce higher 4-km rain rates for a given

5.5-km IWC than two-moment schemes, which is likely related to the size sorting issues
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in the two-moment schemes. With all CRM simulations and WRF-M2 under-predicting 

stratiform rain rate just below the melting level, it is clear that increasing IWC just above 

the melting level will yield greater rain rates. Further evidence for this assertion is shown 

by the WRF-W, WRF-T, and WRF-M simulations (5.27g-i), which give stratiform rain 

rates closest to observed and also have the highest stratiform IWCs at 5.5 km.

It is interesting to note that the SAM simulations, which use hail rather than 

graupel and are more stable in the upper troposphere than other simulations, as shown in 

the environmental MSE profiles in Figure 4.14, produce more stratiform IWC than other 

CRM simulations using two-moment schemes. Faster fallout of hail than graupel allows 

a greater amount of snow to form as shown in Figure 4.7, and the greater stability aloft 

relative to other simulations may allow for more convective detrainment of condensate 

and buoyancy into stratiform regions at midlevels, but this is purely speculation. To have 

insufficient IWC at the melting level in stratiform regions does suggest that convective 

detrainment and representation of the large-scale environment including model forcing 

methodology are possible sources for the low bias in stratiform rain rate. Del Genio et al. 

(2012) found that free tropospheric relative humidity had a significant impact on the 

growth and maintenance of stratiform regions, while several others (Tao et al. 1995; 

Ferrier et al. 1996; Morrison et al. 2009; Luo et al. 2010) have pointed out that strong 

convection that primarily detrains in the upper troposphere does not transfer condensate, 

buoyancy, and momentum to stratiform regions at midlevels as effectively as weaker 

convection that detrains at lower levels. Unfortunately, diagnosing this detrainment in 

three-dimensional simulations is much more difficult than the primarily studied idealized 

two-dimensional squall line simulations.
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To examine possible effects of environmental humidity and vertical velocity on 

stratiform IWC, mean profiles of these variables are separated into convective, stratiform, 

and nonclassified regions and plotted in Figures 5.28 and 5.29. Figure 5.28 confirms the 

assertion in Del Genio et al. (2012) that the ECMWF analysis has a dry bias. Relative to 

the variational analysis at 18Z on 1/23 shown in black in 5.28a-c, the ECMWF analysis 

in the CPOL domain at 18Z on 1/23 shown in black in 5.28d-f is drier throughout the 

troposphere. This dry bias is clearly present in nonclassified regions of all LAM 

simulations in 5.28f. WRF-M2 (dashed line), which produced much more stratiform area 

than the other WRF simulations but with lesser mean rain rates, differs from the other 

WRF simulations in that it is significantly more humid in the upper troposphere above 10 

km. It’s also slightly more humid in convective and stratiform regions between 10-km 

and 15-km altitudes. This may lessen sublimation rates of detrained ice in the upper 

troposphere and produce some growth of ice above 12 km where conditions are slightly 

supersaturated with respect to ice on average. As was mentioned in Chapter 4, WRF-W 

(triangles) has a significant dry bias above 8 km, which could be leading to smaller and 

weaker convective updrafts. The causes for this are unknown, but could be related to 

interactions of the WSM6 scheme with other parameterizations in the outer domains. 

CRM simulations produce relative humidity (RH-RHi) profiles that are close to those in 

the variational analysis, but tend to be slightly drier at low levels. It is unclear how this 

relates to convective properties, but RHi values aloft are similar between CRM 

simulations and the variational analysis.

Despite similarities in RHi aloft, CRM simulations show a wide range of mean 

stratiform vertical velocity profiles in Figure 5.29b. With the exception of DHARMA-B,
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simulated mean stratiform vertical velocity profiles switch from negative to positive 

between 6 and 9 km. LAM simulated vertical velocities also switch over from negative 

to positive vertical velocity at 7 km, nearly 2 km above the melting level. No 

immediately clear correlations exist between convective updraft properties and stratiform 

vertical velocity profiles. CRM mean vertical velocity profiles in nonclassified regions 

show a lot of variability with magnitudes similar to those in stratiform regions. Generally 

positive vertical velocity in the upper troposphere may be related to deposition in anvils 

with RHi greater than 100 percent and significant amounts of cloud ice (not shown) at 

those levels. LAMs exhibit much lower vertical velocities in nonclassified regions. 

Higher vertical velocities in both nonclassified and stratiform regions in WRF-M and 

WRF-M2 that used the Morrison microphysics scheme may be related to more cloud ice 

and greater RHi in those simulations. Differences in CRM and LAM simulated mean 

convective vertical velocity profiles are partially due to differences in convective area,

i.e., simulations with more convective area have lesser mean vertical velocity, but all 

profiles have a similar shape. Unfortunately, there are no clear connections between 

humidity, vertical velocity, and stratiform IWC just above the melting level. If anything, 

humidity and vertical velocity in nonconvective regions appear more related to stratiform 

area than to stratiform precipitation intensity.

This does not mean that convective properties are not having an impact on 

stratiform properties common to all CRM and LAM simulations. An immediately 

obvious problem using the CRMs to simulate the MCS case is that the domain size with 

assumed periodic lateral boundary conditions is unable to resolve the mesoscale 

circulations associated with the observed squall line and stratiform region. This inhibits a
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mesoscale potential vorticity anomaly and strong mesoscale updraft from forming, which 

likely reduces stratiform rainfall by effectively reducing RHi and increasing cloud base. 

As shown in Figures 5.28b and 5.28e, many simulations produce mean stratiform RHi 

profiles above the melting level that are subsaturated. This leads to mean sublimation of 

stratiform ice before it ever reaches the melting level and mean downward motion 

beginning at 7-8 km in Figures 5.29b and 5.29e rather than at the melting level or below 

the melting level, where cloud base would be expected to be found in a more well- 

developed stratiform region, as shown in Chen and Frank (1993) and discussed more 

broadly in Houze (2004). Because the CRMs are forced to reproduce overall rainfall, too 

little stratiform rainfall requires too much convective rainfall. Over-predicted stratiform 

area and under-predicted rain rates, however, are found throughout the simulated six-day 

active monsoon period as are convective biases, so unresolved mesoscale circulations are 

only one piece of the puzzle for the MCS event.

There is also the impact of convective updraft tilting on detrainment. The 

simulated left moving supercellular convection tends to be downshear tilted, which limits 

detrainment to stratiform regions relative to upshear tilted updrafts as one would have 

expected during the squall phase that occurred in observations. This is related to the 

propagation speed of the convective cells. Supercell propagation is controlled by the 

midlevel negative pressure perturbations and is slower than the advecting winds at 

midlevels. Despite reverse environmental vertical shear above 5 km, this slow movement 

creates downshear updraft tilting. The observed system clearly developed into a fast 

moving squall line with a trailing stratiform region indicating upshear updraft tilting, 

which reduces precipitation efficiency relative to downshear tilting as discussed in Ferrier

175



et al. (1996), while maximizing detrainment to stratiform regions. Therefore, convective 

mode may not only play a role in convective updraft properties as discussed in Chapter 4, 

but also play a role in detrainment to stratiform regions. This deserved further attention 

in future research.

Lastly, there is the issue of large IWCs in convective updrafts being advected over 

large regions and inflating the size of convective areas using the Steiner et al. (1995) 

convective-stratiform separation algorithm. This is especially noticeable in WRF 

simulations that produce areas of slower moving convection near the center of the 

mesoscale cyclonic rotation that develops, which leads to an accumulation of large 

amounts of ice in that region. This ice melts and often produces radar reflectivity echoes 

of over 40 dBZ at 2.5 km, which is immediately classified as convective. In reality, the 

dynamics in such regions are likely closer to stratiform than convective, and not 

including them in stratiform statistics may lower mean stratiform rain rates. This effect 

appears to be secondary to other effects however, and correcting for it would not 

completely make up for the large differences in observed and simulated stratiform 

rainfall.

5.10 Discussion

Stratiform rain is not only dependent on the rain microphysics, but also the 

amount of ice aloft, which is a function of convective detrainment. Therefore, there is no 

perfect fix for the distribution of stratiform rain without getting convective regions and 

large-scale forcing correct. Observational retrievals of rain DSDs do in fact show that 

there is not enough stratiform ice melting into rain in simulations, without distinguishing
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features between one-moment and two-moment microphysics schemes. This finding is 

somewhat different from results shown for simulations of mid-latitude continental squall 

lines (e.g., Morrison et al. 2009; Bryan and Morrison, 2012) in which two-moment rain 

schemes outperformed one-moment schemes because of excessive evaporation in the 

one-moment schemes. Subcloud relative humidity is much higher in this case, which 

limits excessive evaporation in one-moment schemes. This takes the focus off of one- 

moment schemes and shifts it on to both one-moment and two-moment schemes. Fall 

speeds are reasonable in some two-moment simulations and over-predicted in others, but 

LWC is too low, whereas LWC is reasonable in several one-moment schemes that set 

p  = 0, but fall speeds are too low. One-moment schemes with p  = 2.5 produce LWC 

that is slightly too low and fall speeds that are slightly too low, a result that falls in 

between the one-moment and two-moment scheme results with p  = 0. WRF simulations 

that produce the highest stratiform rain rates that are closest to observed also have the 

highest stratiform IWC. Therefore, it appears that low b iased stratiform rain rates are due 

to low biased stratiform IWC. Consistency in CPOL and dual-profiler retrievals gives 

confidence in this conclusion. As is discussed in Luo et al. (2010), the issue with 

stratiform IWC may be related to simulated convective updrafts being too strong, which 

produces too much convective detrainment at high levels above 10 km rather than 

between 5 and 10 km. Morrison et al. (2009) also showed greater detrainment of 

buoyancy and condensate from convective regions to stratiform regions in weaker 

convection. Stronger convective modes in simulations could be playing a role in 

amplifying convective precipitation efficiency and increasing the contribution of 

convective updrafts to the overall upward mass flux aloft at the expense of stratiform
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development. Additionally, the CRM simulations are not able to resolve mesoscale 

circulations on the scale of their domain size, while stratiform area in LAM simulations is 

limited by low biases in relative humidity in the ECMWF analysis. Lastly, the Steiner 

algorithm is defining some unrealistically large convective regions in some simulations 

because of the large IWCs produced in convective updrafts being lofted high and being 

advected over large regions. If this were not occurring, presumably more area would be 

identified as stratiform and perhaps improve some of the simulated stratiform statistics.

Despite the need for improvements in convective dynamics and microphysics, 

there are still potential improvements based on observational retrievals of stratiform rain 

that can be implemented and tested in cloud-resolving simulations. Among these are a 

three-moment bulk scheme allowing variable p, a two-moment bulk scheme with 

variable diagnostic p, and a two-moment bulk scheme with p  greater than 0. UKMO 

simulations using ^  = 2.5 generally produce the best agreement with stratiform 

observational retrievals. One-moment simulations using ^ = 0 produce too many small 

raindrops and two-moment simulations using ^ = 0 produce excessive size sorting. Both 

can be at least partially solved by increasing p. Several observational studies (Waldvogel 

1974; Tokay and Short 1996; Bringi et al. 2003, 2009) also show typical p  values can be 

substantially greater than 0, especially in stratiform regions. This has impacts on fall 

speed, processes such as evaporation, and reflectivity used to define convective and 

stratiform regions. The problem with a three-moment bulk rain scheme is that it 

increases computing time with the addition of a prognostic variable. There are several 

diagnostic p-X relationships based on observations that exist in the literature that would 

minimally increase computing time (e.g., Zhang et al. 2003; Milbrandt and Yau 2005;
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Cao et al. 2008; Seifert 2008), but these need to be tested more extensively in addition to 

^  = 2.5 two-moment bulk schemes in simulations of a variety of convective systems.

Raindrop size is also problematic in convective regions. Morrison et al. (2012) 

showed strong dependence of mid-latitude squall line simulations on the parameterization 

of raindrop breakup due to its influence on rain evaporation in convective downdrafts, 

which then affect downdraft and cold pool intensity. Comparisons of simulated and 

observationally retrieved convective D0 and Nw distributions at a 2.5-km altitude show 

that simulations employing two-moment rain schemes tend to have too many large 

raindrops. Almost certainly, some of this is due to excessive size sorting, but it is unclear 

whether this is the dominant cause or whether microphysical processes such as raindrop 

formation and breakup are greater causes. Of course, at this altitude, D0 and Nw 

distributions are going to be sensitive to the location of cloud water conversion to 

rainwater and the relation of rain mass and number concentration fall speeds to vertical 

velocity. Furthermore, in the rain forming environment of a convective draft, many 

situations often do not yield equilibrium between collision-coalescence and raindrop 

breakup (McFarquhar et al. 2010). Morrison et al. (2012) show that altering the raindrop 

breakup parameterization in a two-moment simulation of a mid-latitude continental squall 

line significantly alters the evolution of the squall line. The parameterization in the 

current Morrison microphysics scheme in the WRF-ARW model relaxes D 0  to an 

equilibrium 2.2 mm, which is greater than any values in the CPOL retrieval. These 

points suggest that the parameterization of raindrop breakup should be tested further in 

different large-scale environments and model setups to test whether 2.2 mm is a
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reasonable value and if so, the reasons that observational retrievals and/or simulations 

produce values far different than this equilibrium value.
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Figure 5.1. Normalized cumulative distributions of stratiform (a) radar reflectivity, (b) 
rain rate, (c) median volume diameter (Do), and (d) normalized size intercept (log(Nw)) 
for CPOL retrievals (solid black) and dual-profiler retrievals (dashed black) at an altitude 
of 2.5 km. Orange lines indicate uncertainty in CPOL retrievals. Dual-profiler retrievals 
were sampled every 10 minutes but CDFs are similar when all one-minute stratiform 
samples are included.
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Figure 5.2. Normalized cumulative distributions of stratiform (a) radar reflectivity, (b) 
rain rate, (c) median volume diameter (Do), and (d) normalized size intercept (log(Nw)) 
for CPOL retrievals (solid black) at the grid point closest to the profiler location and 
dual-profiler retrievals (dashed black) at an altitude of 2.5 km. Orange lines indicate 
uncertainty in CPOL retrievals. Dual-profiler retrievals were sampled every 10 minutes 
but CDFs are similar when all one-minute stratiform samples are included.



183

DHARMA-B

Mean dBZ

UKMO-1

Mean dBZ

MESONH-1

Mean dBZ

DHARMA-2M

5 10 15 20 25 30 35 
Mean dBZ

UKMO-2M
4.0 

3.5

3.0

'5 2.5 x
2.0

1.5

(C1) : 1 ^

, 1 [ j
E - . J —

1 I T"

5 10 15 20 25 30 35 
Mean dBZ

SAM-B

10 15 20 25 30 35 
Mean dBZ

Figure 5.3. Temporal mean deep stratiform radar reflectivity profiles for (a) DHARMA- 
B, (b) DHARMA-2M, (c) UKMO-1, (d) UKMO-2M, (e) MESONH-1, and (f) SAM-B. 
The solid black line represents the temporal mean profile derived from dual-profiler 
retrievals with the standard error represented by horizontal bars. Simulations have a 
population of mean profiles, one at each horizontal grid point in the model, and are thus 
represented by a distribution. Mean profiles are discarded from the distribution if they do 
not have at least 40 samples. The median of this distribution is represented with symbols. 
The 1st, 10th, 90th, and 99th percentiles are shown in dark gray with the filled area 
encompassing all valid profiles.
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Figure 5.4. Temporal mean deep stratiform rain radar reflectivity profiles for (a) WRF- 
W, (b) WRF-T, (c) WRF-M, and (d) WRF-M2. The solid black line represents the 
temporal mean profile derived from dual-profiler retrievals with the standard error 
represented by horizontal bars. Simulations have a population of mean profiles, one at 
each horizontal grid point in the model, and are thus represented by a distribution. Mean 
profiles are discarded from the distribution if they do not have at least 40 samples. The
median o f this distribution is represented with symbols. The 1st, 10th, 90™, and 991
percentiles are shown in dark gray with the filled area encompassing all valid profiles.
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Figure 5.5. Temporal mean deep stratiform rain rate profiles for (a) DHARMA-B, (b) 
DHARMA-2M, (c) UKMO-1, (d) UKMO-2M, (e) MESONH-1, and (f) SAM-B. The 
solid black line represents the temporal mean profile derived from dual-profiler retrievals 
with the standard error represented by horizontal bars. Simulations have a population of 
mean profiles, one at each horizontal grid point in the model, and are thus represented by 
a distribution. Mean profiles are discarded from the distribution if they do not have at 
least 40 samples. The median of this distribution is represented with symbols. The 1st, 
101'
all valid profiles.

90th, and 99th percentiles are shown in dark gray with the filled area encompassing
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Figure 5.6. Temporal mean deep stratiform rain rate profiles for (a) WRF-W, (b) WRF- 
T, (c) WRF-M, and (d) WRF-M2. The solid black line represents the temporal mean 
profile derived from dual-profiler retrievals with the standard error represented by 
horizontal bars. Simulations have a population of mean profiles, one at each horizontal 
grid point in the model, and are thus represented by a distribution. Mean profiles are 
discarded from the distribution if they do not have at least 40 samples. The median of
this distribution is represented with symbols. The 1st, 10th, 90th, and 99th percentiles are
shown in dark gray with the filled area encompassing all valid profiles.
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Figure 5.7. Temporal mean deep stratiform Doppler velocity profiles for (a) DHARMA- 
B, (b) DHARMA-2M, (c) UKMO-1, (d) UKMO-2M, (e) MESONH-1, and (f) SAM-B. 
The solid black line represents the temporal mean profile derived from dual-profiler 
retrievals with the standard error represented by horizontal bars. Simulations have a 
population of mean profiles, one at each horizontal grid point in the model, and are thus 
represented by a distribution. Mean profiles are discarded from the distribution if they do 
not have at least 40 samples. The median of this distribution is represented with symbols. 
The 1st, 10th, 90th, and 99th percentiles are shown in dark gray with the filled area 
encompassing all valid profiles.
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Figure 5.8. Temporal mean deep stratiform rain Doppler velocity profiles for (a) WRF- 
W, (b) WRF-T, (c) WRF-M, and (d) WRF-M2. The solid black line represents the 
temporal mean profile derived from dual-profiler retrievals with the standard error 
represented by horizontal bars. Simulations have a population of mean profiles, one at 
each horizontal grid point in the model, and are thus represented by a distribution. Mean 
profiles are discarded from the distribution if they do not have at least 40 samples. The 
median of this distribution is represented with symbols. The 1st, 10th, 90th, and 99th 
percentiles are shown in dark gray with the filled area encompassing all valid profiles.
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Figure 5.9. Temporal mean stratiform rain water content profiles for (a) DHARMA-B, 
(b) DHARMA-2M, (c) UKMO-1, (d) UKMO-2M, (e) MESONH-1, and (f) SAM-B. The 
solid black line represents the temporal mean profile derived from dual-profiler retrievals 
with the standard error represented by horizontal bars. Simulations have a population of 
mean profiles, one at each horizontal grid point in the model, and are thus represented by 
a distribution. Mean profiles are discarded from the distribution if they do not have at 
least 40 samples. The median of this distribution is represented with symbols. The 1st, 
10th, 90th, and 99th percentiles are shown in dark gray with the filled area encompassing 
all valid profiles.
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Figure 5.10. Normalized cumulative distributions of stratiform liquid water content for 
raindrops between 0.308 mm and 5.258 mm. Dark gray lines and symbols represent six 
different CRM simulations: (a) DHARMA-B, (b) DHARMA-2M, (c) UKMO-1, (d) 
UKMO-2M, (e) MESONH-1, and (f) SAM-B. The solid black line represents 
disdrometer observations, and the light gray lines represent 100 randomly selected 
distributions with at least 40 samples for each simulation shown.
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Figure 5.11. Temporal mean stratiform rain water content profiles for (a) WRF-W, (b) 
WRF-T, (c) WRF-M, and (d) WRF-M2. The solid black line represents the temporal 
mean profile derived from dual-profiler retrievals with the standard error represented by 
horizontal bars. Simulations have a population of mean profiles, one at each horizontal 
grid point in the model, and are thus represented by a distribution. Mean profiles are 
discarded from the distribution if they do not have at least 40 samples. The median of
this distribution is represented with symbols. The 1st, 10™, 90™, and 99th percentiles are
shown in dark gray with the filled area encompassing all valid profiles.
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Figure 5.12. Normalized cumulative distributions of stratiform liquid water content for 
raindrops between 0.308 mm and 5.258 mm. Dark gray lines and symbols represent four 
different LAM simulations: (a) WRF-W, (b) WRF-T, (c) WRF-M, and (d) WRF-M2. 
The solid black line represents disdrometer observations, and the light gray lines 
represent 100 randomly selected distributions with at least 40 samples for each simulation 
shown.
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Figure 5.13. Histograms of stratiform rain (a) median volume diameter (Do) and (b) 
normalized size intercept (log(Nw)) at a 2.5-km altitude for each CRM simulation 
(symbols defined in Table 2.1) and the CPOL retrieval (thick orange line). Observational 
uncertainty (see May et al. (2011)) is shown with dashed orange lines.
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Figure 5.14. Temporal mean stratiform rain mass-weighted mean diameter (Dm) profiles 
for (a) DHARMA-B, (b) DHARMA-2M, (c) UKMO-1, (d) UKMO-2M, (e) MESONH-1, 
and (f) SAM-B. The solid black line represents the temporal mean profile derived from 
dual-profiler retrievals with the standard error represented by horizontal bars. 
Simulations have a population of mean profiles, one at each horizontal grid point in the 
model, and are thus represented by a distribution. Mean profiles are discarded from the 
distribution if they do not have at least 40 samples. The median of this distribution is
represented with symbols. The 1st, 10th, 90th, and 99th percentiles are shown in dark gray 
with the filled area encompassing all valid profiles.
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Figure 5.15. Histograms of (a) stratiform rain median volume diameter (Do) and (b) 
normalized size intercept (log(Nw)) at a 2.5-km altitude for each LAM simulation 
(symbols defined in Table 2.3) and the CPOL retrieval (thick orange line). Observational 
uncertainty (see May et al. (2011)) is shown with dashed orange lines. LAM output is 
limited to the CPOL domain.
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Figure 5.16. Temporal mean stratiform rain mass-weighted mean diameter (Dm) profiles 
for (a) WRF-W, (b) WRF-T, (c) WRF-M, and (d) WRF-M2. The solid black line 
represents the temporal mean profile derived from dual-profiler retrievals with the 
standard error represented by horizontal bars. Simulations have a population of mean 
profiles, one at each horizontal grid point in the model, and are thus represented by a 
distribution. Mean profiles are discarded from the distribution if they do not have at least 
40 samples. The median of this distribution is represented with symbols. The 1st, 10th, 
90th, and 99th percentiles are shown in dark gray with the filled area encompassing all 
valid profiles.
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Figure 5.17. Histograms of convective rain (a) median volume diameter (Do) and (b) 
normalized size intercept (log(Nw)) at a 2.5-km altitude for each CRM simulation 
(symbols defined in Table 2.1) and the CPOL retrieval (thick orange line). Observational 
uncertainty (see May et al. (2011)) is shown with dashed orange lines.
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Figure 5.18. Histograms of (a) convective rain median volume diameter (D0) and (b) 
normalized size intercept (log(Nw)) at a 2.5-km altitude for each LAM simulation 
(symbols defined in Table 2.3) and the CPOL retrieval (thick orange line). Observational 
uncertainty (see May et al. (2011)) is shown with dashed orange lines. LAM output is 
limited to the CPOL domain.
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Figure 5.19. Two-dimensional histograms of convective radar reflectivity versus median 
volume diameter at a 2.5-km altitude are gray filled for (a) UKMO-1, (b) UKMO-2M, (c) 
DHARMA-2M, and (d) SAM-B. The dashed line represents one-moment rain schemes 
in DHARMA-B and MESONH-1. CPOL retrievals are contoured in black. Contour 
intervals are 0.5, 1, 2, 4, and 8%.
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Figure 5.20. Two-dimensional histograms of convective radar reflectivity versus median 
volume diameter at a 2.5-km altitude are gray filled for (a) WRF-T, (b) WRF-M, and (c) 
WRF-M2. The dashed line represents the one-moment rain scheme in WRF-W. CPOL 
retrievals are contoured in black. Contour intervals are 0.5, 1, 2, 4, and 8%.
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Figure 5.21. Two-dimensional histograms of convective rain rate versus median volume 
diameter at a 2.5-km altitude are gray filled for (a) UKMO-1, (b) UKMO-2M, (c) 
DHARMA-2M, and (d) SAM-B. The dashed line represents one-moment rain schemes 
in DHARMA-B and MESONH-1. CPOL retrievals are contoured in black. Contour 
intervals are 0.5, 1, 2, 4, and 8%.
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Figure 5.22. Two-dimensional histograms of convective rain rate versus median volume 
diameter at a 2.5-km altitude are gray filled for (a) WRF-T, (b) WRF-M, and (c) WRF- 
M2. The dashed line represents the one-moment rain scheme in WRF-W. CPOL 
retrievals are contoured in black. Contour intervals are 0.5, 1, 2, 4, and 8%.
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Figure 5.23. Two-dimensional histograms of stratiform radar reflectivity versus median 
volume diameter at a 2.5-km altitude are gray filled for (a) UKMO-1, (b) UKMO-2M, (c) 
DHARMA-2M, and (d) SAM-B. The dashed line represents one-moment rain schemes 
in DHARMA-B and MESONH-1. CPOL retrievals are contoured in black. Contour 
intervals are 0.5, 1, 2, 4, and 8%.
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Figure 5.24. Two-dimensional histograms of stratiform radar reflectivity versus median 
volume diameter at a 2.5-km altitude are gray filled for (a) WRF-T, (b) WRF-M, and (c) 
WRF-M2. The dashed line represents the one-moment rain scheme in WRF-W. CPOL 
retrievals are contoured in black. Contour intervals are 0.5, 1, 2, 4, and 8%.
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Figure 5.25. Two-dimensional histograms of stratiform rain rate versus median volume 
diameter at a 2.5-km altitude are gray filled for (a) UKMO-1, (b) UKMO-2M, (c) 
DHARMA-2M, and (d) SAM-B. The dashed line represents one-moment rain schemes 
in DHARMA-B and MESONH-1. CPOL retrievals are contoured in black. Contour 
intervals are 0.5, 1, 2, 4, and 8%.
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Figure 5.26. Two-dimensional histograms of stratiform rain rate versus median volume 
diameter at a 2.5-km altitude are gray filled for (a) WRF-T, (b) WRF-M, and (c) WRF- 
M2. The dashed line represents the one-moment rain scheme in WRF-W. CPOL 
retrievals are contoured in black. Contour intervals are 0.5, 1, 2, 4, and 8%.
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Figure 5.27. Two-dimensional histograms of 4-km simulated stratiform rain rate and 5.5­
km simulated stratiform IWC for (a) DHARMA-B, (b) DHARMA-2M, (c) UKMO-2, (d) 
UKMO-2M, (e) MESONH-1, (f) SAM, (g) WRF-W, (h) WRF-T, (i) WRF-M, and (j) 
WRF-M2. Contour intervals are 0.01, 0.02, 0.05, 0.1, 0.2, and 0.5%.
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Figure 5.28. Mean convective, stratiform, and nonclassified RH-RHi profiles in the (a-c) 
CRM simulations (symbols defined in Table 2.1) and variational analysis (solid black) at 
18Z on 1/23 and (d-f) LAM simulations (symbols defined in Table 2.3) and the ECMWF 
analysis (solid black) within the CPOL domain at 18Z on 1/23. The variational analysis 
and ECMWF profiles are domain means (not separated in convective, stratiform, and 
nonclassified regions). RH  is shown for temperatures warmer than 0°C and RHi is shown 
for temperature colder than 0°C.
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Figure 5.29. Mean convective, stratiform, and nonclassified vertical velocity profiles in 
the (a-c) CRM simulations (symbols defined in Table 2.1) at 18Z on 1/23 and (d-f) LAM 
simulations (symbols defined in Table 2.3) within the CPOL domain at 18Z on 1/23. The 
variational analysis vertical velocity was interpolated to model height levels and included 
in the CRM profiles. Note the x-axes for convective and stratiform regions differ.



CHAPTER 6

CONCLUSIONS 

6.1 Summary

Specific TWP-ICE CRM and LAM simulation biases found in this research and 

published in Varble et al. (2011), namely a high bias in convective area and radar 

reflectivity aloft as well as a low bias in stratiform rainfall, are not entirely surprising. 

Such results had been found in previous literature discussed in Section 1.2.4, especially 

for simulations using one-moment bulk microphysics schemes. Differences between 

simulations are more correlated with hydrometeor size distribution assumptions than 

differences in hydrometeor water contents. Unlike in past studies, two-moment schemes 

did not outperform one-moment schemes for this study despite the clear advantage of 

two-moment schemes in representing sedimentation of different sized hydrometeors and 

effects of phase changes on hydrometeor size distributions. One likely reason for the 

difference from past studies is that the humid maritime environment of this case differs 

from most mid-latitude continental cases, which limits major issues in one-moment 

schemes, such as excessive evaporation. Another issue in increasingly complex 

microphysics schemes is the lack of high quality observations to constrain the schemes. 

While more complex schemes should be more realistic in theory, they also have more



freedom to be wrong, which is one of the reasons that arbitrary thresholds are often put in 

place, which can be seen in statistics such as those in Chapter 5.

Results from detailed comparison with observational retrievals show, however, 

that causes for simulation biases are likely much more complicated than simply 

improving ice microphysics schemes as has been commonly emphasized in some 

previous literature; rather, they depend on achieving the correct interplay between model 

forcing, resolution, and physics complexity to yield proper interactions between 

dynamics and microphysics that produce appropriate convective modes. Mode not only 

encompasses instantaneous structural properties, but also involves convective life cycle. 

Both are important in determining system precipitation coverage and the proportioning of 

convective to stratiform precipitation, which in the case of mesoscale systems alters the 

large-scale environment.

This conclusion is based upon comparison of many different CRM and LAM 

simulations with observational retrievals of convective vertical velocity and raindrop size 

distributions. Without significant sample sizes of in situ convective region properties, it 

is difficult to prove that simulated convective updrafts are stronger than observed, but a 

significant amount of indirect evidence has been shown to support this conclusion 

including comparisons with a dual-Doppler retrieval and comparison of convective 

vertical velocity and condensate values with relevant published literature. This does not 

appear to be due to unresolved eddies based on results of a 100-m horizontal grid spaced 

and 192 vertical level quarter domain DHARMA-2M simulation. Therefore, it appears to 

be linked to some mixture of model forcing biases and interactions between dynamics 

and microphysics that are able to shift convective feedbacks and mode from those that
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occurred in reality. Interactions between convective dynamics and microphysics are 

sensitive to the microphysics and subgrid scale turbulence parameterizations, both of 

which could be factors in the difference between simulations and observations.

Both the intensity of simulated convection and the inability of the CRM setup to 

resolve mesoscale circulations are likely linked to the under-prediction of ice water 

content just above the melting level in simulations with appropriately large areas of 

stratiform precipitation, which reduces simulated stratiform rain rates. This occurs 

because moistening of mid and upper levels by means of mesoscale ascent and 

convective detrainment are not adequate and lead to ice sublimation and mesoscale 

descent in many stratiform regions above the melting level. For the LAM simulations 

that do have some higher stratiform rain rates, stratiform ice water content is higher but 

stratiform area is far too low. This is partially due to dry biases in the ECMWF forcing, 

but also due to the convection, which dominates vertical mass flux in the upper 

troposphere, detrains near the tropopause, and does not efficiently transfer condensate 

and buoyancy to stratiform regions. These convective issues are present in CRM 

simulations as well, but the dry bias is not present in those simulations. Instead, the 

domain size with periodic lateral boundary conditions prevents mesoscale circulations 

from forming that are necessary for producing a large and well-developed stratiform 

region.

A unique aspect of this research was the comparison of CRMs and LAMs, which 

has not been thoroughly done to date, at least for the topics considered in this research. 

While some differences were apparent, such as the location and timing of convection and 

the amount of stratiform area, these differences make sense in the context of the different
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model forcings and boundary conditions. Many other model biases relative to 

observations that relate to microphysics and convective dynamics were present in both 

model setups, an important finding because such biases could have possibly been 

attributed to idealized model forcing without such a comparison.

Despite the differences in CRM and LAM forcing biases, lack of mesoscale 

circulations due to limited CRM domain sizes and dry biases in LAM simulations, and 

the apparent differences in convective strength, these simulations do show that there are 

specific microphysics assumptions that could be improved without much of an increase in 

computing time. These microphysics scheme alterations are not simply changes to 

tunable parameters to achieve agreement in one variable, but changes that should produce 

improvement and be more physically realistic. As pointed out in de Rooy et al. (2012), 

implementation of potential improvements in GCM convective parameterizations often 

lead to worse simulations because the parameterizations have become so full of 

unphysical tunable parameters that are set to compensate for errors. The same can be 

said of some model physics variables such as hydrometeor conversion thresholds and 

collection efficiencies used in cloud-resolving simulations. The following are changes in 

hydrometeor properties based on intercomparison of many simulations with observations 

guided by past observational results that could improve bulk microphysics schemes with 

some that have been preliminarily tested, as will be discussed in Section 6.4:

1. Inclusion of a fast falling dense precipitating ice species (i.e., hail), or a variable 

dense precipitating ice density such as that in Milbrandt and Morrison (2013) with 

a fall speed relationship that covers a larger range of fall speeds than is currently 

done in most schemes. This would better represent the faster fall speeds of frozen
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raindrops, which are very common, and alter the amount of dense ice in the upper 

troposphere. Setting the graupel p parameter to greater than 0 may prevent 

excessively large graupel from occurring and improve radar reflectivity 

comparisons, but it is unclear whether this is more realistic.

2. A rain p parameter greater than 0, such as 2.5 used in the UKMO model, or a 

diagnostic p-X relationship based on observations such as that in Cao et al. (2008). 

This may improve excessive size sorting issues in two-moment rain schemes and 

produce more realistic fall speeds. It would also likely affect evaporation rates, 

but the impacts of such effects are unknown at this time.

3. Inclusion of a more aggressive raindrop breakup parameterization to prevent very 

large diameters from occurring in convective rain. Such parameterizations have 

major impacts on mesoscale convective systems in mid-latitude continental 

situations (e.g., Morrison et al. (2012)) through alteration of evaporation rates, but 

have not been thoroughly tested in the deep tropics.

4. Implementation of a nonspherical snow mass-diameter relationship that allows 

density to decrease with size, as used in the MESONH or Thompson schemes, 

where mass is proportional to D 19 and D2, respectively. Such relationships are 

based on observations in Locatelli and Hobbs (1974) and Field et al. (2005). It is 

important that this is used in schemes that diagnostically vary the size intercept or 

predict number concentration to avoid low biased radar reflectivities in regions of 

snow aggregation.
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This research is not free from caveats. It is limited in that it focuses primarily on 

one event that isn’t even an ideal case for CRM simulations, but it was the only case that 

could be compared with LAM simulations, which was valuable in finding common errors 

to the two approaches. Other cases need to be modeled in the future to test the 

universality of conclusions drawn by this research and past studies. This research is also 

limited by the definitions used for convective and stratiform regions as well as convective 

drafts. Although the convective and stratiform separation technique is one of the most 

commonly used ones that was based on Darwin radar data, it may not be as appropriate 

for simulations as it is for observations because some simulations, such as the WRF-M 

simulation, produce large regions with reflectivity greater than 40 dBZ that are 

automatically classified as convective using the Steiner et al. (1995) separation algorithm 

but are clearly not convective based on the vertical velocity field. These regions are a 

result of very large IWCs accumulating in certain regions and high biases in reflectivity 

when assuming p = 0 due to excessive size sorting and a greater number of large 

raindrops relative to narrower distributions with p  greater than 0 that are expected in 

stratifor!m regions based on the results in Chapter 5 and previous observational studies. 

Lastly, this research is limited by uncertainties in observational retrievals, especially 

when very few in situ measurements were obtained. Retrieval uncertainties were 

mentioned throughout previous chapters, but these are estimations and not perfect. 

Furthermore, as was shown in Chapter 5, there are representativeness errors due to 

sample sizes, sampling volumes, and dependency of measurements in space and time. 

These were not handled in depth in this research because of the focus on large differences
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between observationally derived and simulated properties. Although the 

recommendations for microphysics scheme alterations are partially based on these large 

differences, only preliminary results have been obtained from simulations using the 

scheme alterations. These altered schemes need to be tested more intensively for this 

case and other cases with different convective morphologies and large-scale 

environmental conditions to show whether they work universally or whether they are 

suited for only specific conditions.

6.3 Implications

The first implication of this research is that properly modeling the relationship 

between convective system properties and the large-scale environment is significantly 

more complex than closing the knowledge gap in mixed phase and ice microphysics. 

While it is obvious that atmospheric dynamics impacts cloud microphysics through 

saturation and cloud microphysics impacts atmospheric dynamics through latent and 

radiative heating, these two topics have often been treated separately in studies evaluating 

mesoscale model simulations. Often, this is because trustworthy co-located and 

coincident observations relevant to dynamics and microphysics within the context of 

scanning remote sensing that could help constrain these interactions simply do not exist 

in sufficient sample sizes, especially in climatically important locations such as the deep 

tropics. This convective dynamics and microphysics problem will be difficult to solve 

until large numbers of aircraft penetrations of deep convection in multiple life cycle 

stages are performed at temperatures between 10°C and -40°C because remote sensing 

retrievals of microphysics properties such as LWC and IWC are not trustworthy in
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heavily precipitating conditions. The distributions of basic variables such as vertical 

velocity and total condensate are not well understood, much less microphysics processes 

in the mixed phase region. Penetrating aircraft exist, but there needs to be a push in the 

atmospheric sciences community to penetrate weak to moderate tropical convection that 

contains vertical velocities of similar magnitude to hydrometeor fall speeds. These, after 

all, are the types of convective systems that are so hard to simulate with cloud-resolving 

models and the types of systems relevant to large-scale tropical circulations.

With the research results shown in this dissertation comes a word of caution to 

those that tune microphysics schemes to match specific moments of hydrometeor size 

distributions such as Rayleigh reflectivity. While this as an appealing approach to 

improving simulations because of its relative ease, it is dangerous in that it can cover up 

the true causes of model biases. Such methods curtail progress in improving 

predictability of weather and climate because many of these models are currently used to 

improve GCM parameterizations and satellite retrievals. With quickly increasing 

horizontal resolution in GCMs, microphysics schemes now used in CRMs, LAMs, and 

LES simulations will be used in GCMs in the not too distant future, so now is the time to 

improve them.

6.4 Future Work

Out of intercomparing numerous CRM and LAM simulations of TWP-ICE active 

monsoon convective systems with observations, several aspects of bulk microphysics 

schemes arose as possibly contributing to model biases. Some differences in large-scale 

convective and stratiform areas between CRMs and LAMs appear related to differences
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in large-scale forcing and initial conditions. Many other biases within convective and 

stratiform regions relating to rain rate, radar reflectivity, convective vertical velocity, and 

rain DSDs appear related to bulk microphysics assumptions and to the resolved 

interactions between dynamics and microphysics.

Code has already been written by Hugh Morrison at the National Center for 

Atmospheric Research to test out the suggested bulk microphysics scheme alterations 

outlined in Section 6.1. This code has been implemented and tested in the Morrison 2- 

moment bulk microphysics scheme in WRF version 3.3.1. Fine-tuning and analysis of 

these new simulations is still being performed at the current time. Preliminary results are 

as follows:

1. Altering the snow m-D relationship from m = —psD3, where m is mass, D is
6

diameter, and ps is bulk snow density, to m = 0.01855D19 taken from Locatelli 

and Hobbs (1974), used in Brown and Francis (1995) and the MESONH scheme, 

and similar to the m-D relationship used in Field et al. (2005) and the Thompson 

scheme, lowers the excessively high snow radar reflectivities aloft in convective 

and stratiform regions as was expected.

2. A diagnostic rain gamma shape parameter (p) that varies as a function of the 

gamma slope parameter (X) using the relationship in Cao et al. (2008) increases 

stratiform area and decreases convective area because it reduces some radar 

reflectivities that were greater than 40 dBZ to less than 40 dBZ. It also improves 

excessive size sorting of raindrops, but does not completely solve that issue. It 

also may be shifting DSDs too much toward smaller sizes, especially in 

convective regions, but this needs to be studied more. Finally, because the
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distribution of raindrop sizes changes, it has a non-negligible effect on 

evaporation and freezing rates. These changes are still being studied.

3. The latest Morrison scheme in WRF has a new raindrop breakup parameterization 

based on the one that gave the best results out of a number of them tested for an 

idealized mid-latitude continental squall line in Morrison et al. (2012). WRF-M2 

had this parameterization and it produced very little difference in convective 

DSDs. More aggressive drop breakup formulations will be tested in future work 

to see if better agreement can be found between simulated and observationally 

retrieved DSDs. If better agreement is found, the effects of such changes in the 

raindrop breakup parameterization will be studied. Changes had a substantial 

effect on convective downdrafts and cold pool strength in mid-latitude 

environments, but this effect may be lessened in more humid tropical situations.

4. For two simulations that are exactly the same except for the precipitating dense 

ice representation in the Morrison scheme, hail does indeed reduce reflectivity in 

the upper troposphere relative to graupel because it falls out faster. Recall that 

hail in this context refers to precipitating ice with the same density as pure ice 

rather than precipitating ice with a density of 400 kg m-3. More importantly, 

though, it has a fall speed relationship of v = 114.5D05 rather than v = 19.3D037 in 

the Morrison scheme. Where hail does exist, reflectivity is often higher, and more 

snow is produced in the updrafts when hail is used. Because hail takes longer to 

melt and it falls out over a smaller region than graupel, it tends to increase the 

strength of convective downdrafts, which probably has a non-negligible effect on 

cold pool strength, but these possible effects have yet to be studied.
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5. Analysis nudging has a significant impact on mesoscale precipitation structure. 

Winds, temperature, and water vapor can all be nudged in any domain and at any 

chosen altitudes in the WRF simulations with a nudging strength that can be set to 

any value. Without any nudging, two-way nested WRF simulations of this MCS 

case are likely too random because of the large domains involved and 

accumulating errors related to numerical approximations, which makes it difficult 

to attribute differences between simulations to changes in the microphysics. A 

two-way nested WRF run using the same setup as WRF-M was performed 

without nudging in D2-D4, for example, and the simulation produced results that 

were more different from WRF-M than WRF-W or WRF-T were. With too much 

nudging, however, biases in the analysis used to force the simulations are too 

dominant. More research is needed to test the sensitivity of simulations to this 

nudging to find optimum methods for applying it. Assimilation of surface and 

sounding meteorological observations may also reduce errors due to the analysis 

biases, which are known to be quite significant at times in data sparse regions 

such as the oceanic tropics. For a smaller non-MCS case, a CRM setup with 

periodic boundary conditions would be a better option because many of the errors 

associated with the LAM setup would be avoided. For an MCS case that is not a 

fairly meridionally symmetric squall line, however, a CRM with a horizontal 

domain size of a few hundred kilometers by a few hundred kilometers is generally 

to small to allow mesoscale circulations necessary to simulating the evolution of 

the stratiform region to develop.

220



Sensitivity to horizontal resolution is also being studied with a quarter domain (88 

km by 88 km) DHARMA-2M simulation with ~100-m horizontal grid spacing and 192 

vertical levels. This simulation was performed by Ann Fridlind at NASA Goddard 

Institute for Space Studies. Preliminary results show that grid spacing of ~100 m is 

insufficient to significantly reduce high vertical velocities and condensate amounts aloft, 

although they are reduced some in the upper troposphere when the grid spacing is 

degraded to ~900 m. The higher resolution does appear to affect the transition time from 

congestus to deep convection, as was found in Khairoutdinov and Randall (2006), but 

detrainment by more numerous smaller congestus clouds at midlevels leads to broad 

regions of rising motion in which new shedding thermals thrive. This is different from 

convective updrafts in the ~900 m horizontal grid spaced and 96 vertical level 

DHARMA-2M simulations in which updrafts are more or less continuous throughout the 

troposphere because large eddies are not resolved. Future work will involve greater 

investigation into the high resolution DHARMA-2M run and the suite of WRF 

simulations testing microphysics alterations of the Morrison two-moment bulk scheme.

Interactions between dynamics and microphysics that were singled out as being 

especially important will be tested in new model simulations. For example, the impact of 

latent heat release from the freezing of rain on the upper tropospheric vertical velocities 

can be studied by running simulations that do not include this latent heat release, and 

altering the fall speed relationship can test the impact of rain fallout. Sensitivity to 

representation of the large-scale environment should also be tested by altering analysis 

nudging techniques and assimilating soundings into LAM simulations to better represent 

zonal variability in instability and shear. Even with all of these test possibilities, the large

221



number of nonlinear processes interacting in systems full of buffers and feedbacks makes 

it difficult to single out specific processes as especially important to larger scale 

precipitation structures. An important tool for attacking this problem in future research 

will be the use of Lagrangian methods to track parcel properties as they move through 

convective updrafts in a variety of model complexities.

Although not in my immediate upcoming plans, future research should focus on 

quantifying errors due to model forcing methodology and work to test sensitivity to 

subgrid scale turbulence parameterizations by using higher order turbulence closures, 

none of which were used in the simulations for this case. As was mentioned in Section 

2.1.1, multiday CRM simulations are subject to imbalances between surface fluxes and 

radiative flux divergence that cause model MSE drift. It is unclear how such imbalances 

affect cloud and precipitation properties. It is clear, however, that many errors are 

common to all CRM and LAM simulations. Among these errors was convection that was 

too strong, which in DHARMA-2M is only slightly weakened by resolution of large 

eddies. It is possible that grid spacing down to 10 m may be necessary to resolve 

important turbulent structures that can impact convective feedbacks and modes through 

interactions with dynamics and microphysics, but before doing that, it would be 

worthwhile to test different turbulence parameterizations against each other in various 

model setups to see if noticeable differences emerge.

While TWP-ICE was focused on the relationship between convective properties 

and the large-scale environment, observations and retrievals relevant to characterizing 

convective drafts were limited. The recent 2011 Mid-latitude Continental Convective 

Clouds Experiment (MC3E) centered on the ARM Southern Great Plains site in north-
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central Oklahoma also shares the focus of relating convective properties to the large-scale 

environment. Far more observational datasets are available from MC3E to make more 

progress toward evaluating and identifying areas for improvement in cloud-resolving and 

limited area model simulations of deep convective systems. This is a good opportunity to 

test the conclusions drawn in this dissertation with different convective environments by 

comparing MC3E simulations and observational retrievals against those from TWP-ICE.
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