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A b s t r a c t

This paper presents a method for designing the illumination in an environment using opti

mization techniques applied to a radiosity based image synthesis system. An optimization of 

lighting parameters is performed based on user specified constraints and objectives for the 

illumination of the environment. The system solves for the “best” possible settings for: light 

source emissivities, element reflectivities, and spot light directionality parameters so that the 

design goals, such as to minimize energy or to give the the room an impression of privacy, 

are met. The system absorbs much of the burden for searching the design space allowing 

the user to focus on the goals of the illumination design rather than the intricate details of 

a complete lighting specification. A software implementation is described and some results 

of using the system are reported.

The system employs an object space perceptual model based on work by Tumblin and 

Rushmeier to account for psychophysical effects such as subjective brightness and the visual 

adaptation level of a viewer. This provides a higher fidelity when comparing the illumination 

in a computer simulated environment against what would be viewed in the “real” world. 

Optimization criteria are based on subjective impressions of illumination with qualities such 

as “pleasantness” , and “privateness” . The qualities were selected based on Flynn’s work 

in illuminating engineering. These criteria were applied to the radiosity context through an 

experiment conducted with subjects viewing rendered images, and the respondents evaluated 

with a Multi-Dimensional Scaling analysis.
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Abstract

This paper presents a method for designing the illumination in an environment using optimiza
tion techniques applied to a radiosity based image synthesis system. An optimization of lighting 
parameters is performed based on user specified constraints and objectives for the illumination 
of the environment. The system solves for the “best” possible settings for: light source emis- 
sivities, element reflectivities, and spot light directionality parameters so that the design goals, 
such as to minimize energy or to give the the room an impression of privacy, are met. The 
system absorbs much of the burden for searching the design space allowing the user to focus 
on the goals of the illumination design rather than the intricate details of a complete lighting 
specification. A software implementation is described and some results of using the system are 
reported.

The system employs an object space perceptual model based on work by Tumblin and Rush- 
meier to account for psychophysical effects such as subjective brightness and the visual adap
tation level of a viewer. This provides a higher fidelity when comparing the illumination in 
a computer simulated environment against what would be viewed in the “real” world. Op
timization criteria are based on subjective impressions of illumination with qualities such as 
“pleasantness”, and “privateness”. The qualities were selected based on Flynn’s work in illumi
nating engineering. These criteria were applied to the radiosity context through an experiment 
conducted with subjects viewing rendered images, and the respondents evaluated with a Multi
Dimensional Scaling analysis.

1 I n t r o d u c t i o n

Historically, lighting design has been a black art. The lighting designer first received a design 

specification of the customer’s expectations and of the room’s function. The designer then made 

a lighting lay out and from experience would sketch what the room would look like from rough 

lighting calculations. With the advent of computer aided rendering, this process has been simplified 

allowing the designer to model lighting specifications with a CAD system and have it simulate the



lighting calculations giving the designer a quick design check of what the room would look like. 

This also allows the customer who has no experience with lighting units a realistic preview of the 

finished room early in the design cycle [26]. Progress in rendering to date has mainly focused on 

improving the realism of the physical simulation and the development of algorithms with faster 

performance. Though great advances have been made in these areas, little work has been done on 

addressing the design problems in creating better quality lighting. -

Lighting designers base their art on the belief that spatial lighting patterns are a visual communica

tive medium, in which some patterns of light suggest or reinforce shared attitudes and impressions 

to people of the same cultural background [lO]. In addition, the designer must be aware of the 

need to conserve the electrical energy used in implementing their designs. An over-reaction to the 

wasteful energy consumption of the 1960s and 1970s often led to buildings which were inadequately 

lit for their designed purposes, hampering the productivity of the residents. A better balance of 

goals between energy conservation and the quality of the lighting is needed [2l], With office and 

factory personnel costs ranging from $150 to $275 per square foot [20], an extra investment of $1 or 

$2 per square foot per year can potentially result in a large savings through improved productivity.

This paper proposes a Teleological [l] or goal based illumination design approach to help a lighting 

designer search the space of of possible lighting specifications. Though computers will never replace 

artists, the system may generate configurations not previous considered or optimize on an already 

considered configuration.

The approach described below allows the designer to concentrate on high level goals such as “vi

sual clarity” and specify constraints such as minimum lighting levels in specific locations. The 

system then determines optimal settings for the lighting parameters of the modeled environment 

by searching for the ’’best” possible settings for

• light source emissivities,

• surface reflectivities, and

• spot light directionality.

Unconstrained optimization techniques are employed in conjunction with classical radiosity [14, 

4, 3, 16] to simulate global illumination and our current implementation is thus limited to diffuse 

environments with fixed geometry. We have however, extended the basic radiosity system to include 

spot lights as well as diffuse area sources.

Creating an appropriate two-way link between the designer and the rendering system requires two 

important enhancements to basic rendering methods. First, since the designer is asked to iteratively 

evaluate the visual impression from a rendered image, the images must provide (as much as possible) 

a subjective match to a “real” environment. We have applied the work of Tumblin and Rushmeier

[28] on the psycho-physical quantities of subjective brightness as related to the adaptation of the 

viewer in order to map luminance values to brightness values for display on the CRT. This is an 

important and often overlooked step in providing an image with good subjective fidelity to the real 

environments.

Finally, the optimization objectives presented to the designer are based on John Flynn’s work

[10] from the architectural lighting community. His experiments allow one to quantify subjective
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impressions of lighting patterns. In our work, we have conducted experiments with subjects viewing 

computer generated images to create a mapping from Flynn’s criteria to quantifiable qualities in 

the radiosity simulations.

After a brief outline of the underlying technology supporting our work, we will describe a software 

system which implements the ideas discussed and report initial results from using the system.

2  P r e v io u s  W o r k

There are three bodies of technology and related literature that are central to the work reported 

here: numerical optimization, radiosity based image synthesis, and knowledge about human per

ception as it relates to subjective impressions of lighting and to subjective impressions from images 

presented on a CRT. We will briefly review each of these area concentrating on the pertinent 

subtopics in each that relate directly to our work.

2.1 Optim ization

The basic constrained optimization problem is to minimize (or maximize) the scalar quantity of an 

objective function of n system parameters X  = (a:*, x2, ..., xn) while satisfying a set of constraints. 

The j th constraint, Cj, may be posed as an equality or inequality:

C j(X ) - Kj = 0 or C j(X ) - K j < 0 (1)

Thus the full problem with m constraints can be stated as:

minimize f{x\, x2, x3, ..., xn)

subject to C\(K\, X\, x2, £3,..., xn) = 0 
C2(K2,X )  = 0 

C3(K3,X )  = 0

CV(A'7,X ) < 0 

CS(K8,X )  < 0

Cm(Km,X ) < 0

Constrained optimization problems arise in a wide variety of domains. One might want to find 

the optimal way to allocate a limited supply of resources to feed the most people or to maximize 

a return on investment of a limited amount of money. In the problem addressed in this work, 

a designer may want to minimize a cost associated with a choice of lighting while maintaining 

particular design criteria. For example, minimizing electricity consumption subject to the lighting 

level on desk tops remaining above a minimum value.



Unfortunately, there is no computational algorithm for optimization which will always find a global 

constrained minimum when the objective and the constraints are allowed to be general non-linear 

functions. Research on optimization techniques, has resulted in a number of very useful texts 

under a number of headings, such as Mathematical Programming [6, 17], Operations Research

[7], Optimal Control [19], and Optimization [22, 8, 13], The important aspects of a particular 

optimization problem, leading to a choice of algorithm include: •

• the nature of the objective function, e.g., linear vs. non-linear, convex vs. non-convex, 

differentiability, ■

• the nature of the constraints, e.g., linear vs. non-linear, equality vs. inequality, differentia

bility,

• abilities and needs, e.g., the ability to specify good starting guesses, to generate analytical 

derivatives, and the need for a global vs. local optimum, and

• the nature of the variables, e.g., continuous vs. discrete, and scalar vs. vector valued.

2.1.1 Constrained Optimization

The lighting optimization problem introduces non-linearities through the objectives, constraints, 

and the implicit constraints of the radiosity relationships themselves. Most methods for dealing with 

constraints involve a transformation from a constrained problem to an (approximately) equivalent 

unconstrained optimization, with the solution to the unconstrained problem found with one or 

more of the methods described in the following section.

Transformations from a constrained to unconstrained problem involve either removing a constraint 

by explicitly solving for one optimization variable, or by adding a new function into the objective. If 

the constraints are simple, and variables can be solved for as explicit expressions of other variables, 

then the first alternative is attractive, as variables can be directly removed from the optimization 

problem[24, 25]. Other techniques introduce new variables as in the Lagrange Multiplier methods 

[22] in which the new unconstrained problem is taken to be the sum of the objective and a linear 

combination of the constraints. Perhaps the simplest method involves converting the constraints to 

penalty functions, i.e., add a function of the constraint violations into the objective, and minimize 

the new problem.

The methodology employed in this work involves a combination of explicit replacement of variables, 

in this case the radiosities for their equivalent expressions, and penalty methods based on quadratic 

and quartic functions of the constraint violations. Note that the penalty method can not guarantee 

that the constraints will be exactly satisfied since the method leads to a solution in which a balance 

is reached between satisfying the constraints and minimizing the objective. This can, however, 

often be viewed as an advantage in a design setting.
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2.1.2 Unconstrained Optim ization

Once the constraints are removed or transformed, the problem reduces to finding a minimum of 

the objective. If the objective is continuous and differentiable, and has a bounded minimum, the 

minimum point will always be characterized by having a zero gradient. Zero gradients may, however, 

also occur at local minima and at saddle points on the objective hypersurface. Most optimization 

methods are performed iteratively from a starting point, X(0) in the multidimensional search 

space. Local information about the value, gradient, and Hessian (matrix of second order partial 

derivatives) of the function is gathered and a step direction is selected ,to move the solution to a 

new guess. A local minimum is considered to be found if the gradient is zero and the local region 

is convex, i.e., has a positive definite Hessian. Techniques for selecting a step direction vary, from 

simple gradient descent (a step in the negative gradient direction), to conjugate gradient methods 

(steps in a series of conjugate directions), to Newton’s Method which solves for a step direction as 

the inverse of the Hessian times the negative gradient.

V 2/- A X  = - V /

Where y 2 is the Hessian operator, V  is the gradient and /  is the objective function, and A X  

defines a multi-dimensional search direction, (or vector to the minimum in a quadratic problem).

By inverting the formula we can find the search direction (A X ) in terms of the inverse Hessian and 

the current gradient.

A X  = - (V 2/)'1 • V /

Although Newton’s method can have great success, difficulties occur in regions where the Hessian 

is not positive definite, and because the Hessian itself may be impossible to derive analytically and 

difficult to compute numerically. A number of Quasi-Newton methods have been used extensively in 

place of a direct application of Newton’s Method. These include the Davidon-Fletcher-Powell (DFP) 

and Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods. These methods iteratively estimate the 

inverse Hessian from a series of gradients [23, 22]. In general, they begin with an identity matrix 

as the Hessian, thus defaulting to a simple gradient descent for the first step and then modifying 

the inverse Hessian on succeeding iterations. A modification of the BFGS algorithm is used in the 

work presented here.

Due to non-linearities, the BFGS method does a series of one dimensional line searches until it 

converges on a local minimum. The inverse of the Hessian matrix of second partials is approximated 

from differences of the gradient and is used, along with the gradient, to select the direction of 

each line search. The inverse Hessian is updated at each step through the BFGS iteration step. 

Convergence is achieved when either the gradient vanishes or when two consecutive line searches 

converge to the same solution.

A final issue which should be addressed in unconstrained optimization methods, is the length of 

the step in the direction selected. This problem is, in essence, a reduced minimization problem, in 

which the search space is limited to a line in the hyperspace. The method adopted in this work 

first brackets the minimum and then estimates the minimum within the local region by a quadratic 

approximation.



2.2 R ad ios ity

For an automated illumination design system to be useful, it must be based on a realistic and 

physically based model of global illumination that takes into account the inter-reflections of light 

within an environment. For example, indirect light sources illuminate much of the environment 

only after being reflected off a wall or ceiling. It is important that these effects are captured in the 

illumination design system. The global illumination problem is still computationally intractable for 

the fully general case. Radiosity methods [4] have developed into an efficient and practical method 

for the restricted case of diffuse environments. •

Radiosity algorithms discretize the environment into a set of elements with an assumed functional 

form for the radiosity across the surface. The simplest and most common functional form is 

a constant value, called the radiosity. A balance of energy between elements must exist which 

imposes a set of interdependent constraints on the element radiosities in the environment:

B{ — -f pi F ijB j (2)

j

where _£?, is the radiosity of element i,

E{ is the emission of element i,

Pi is the reflectivity of element i,

is the form factor from element i to element j

The form factor is the fraction of light leaving one element (t) that arrives at another (j) and is 

given by:

f . „ = i  [  f
■A-i JPl£A, Jpj£Aj ij

where A, and Aj are the element surfaces,

Pi and pj are points on elements i and j  respectively,

S(pi,pj) returns 1 if pi and pj are mutually visible and 0 otherwise,

<pi is the angle between the normal vector at pi and the vector from pi to pj, 

(f>j is the angle between the normal vector at pj and the vector from pj to pi, 

rij is the distance from pt to pj.

When all such constraints are considered, a linear system of equations result:
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2.2.1 Gathering, Shooting, and Hierarchy

This system can be solved either by Gauss-Seidel iteration, “gathering” light into each element

[4], or by a “shooting” method that distributes the light from the brightness element to the other 

elements [3]. The solution to this system yields the element radiosities, J3,, for every element in 

the scene. A final image from any viewpoint can be constructed quickly by projection onto the 

view plane. The constant elements are most often blended by interpolation of radiosity values to 

the element vertices and then using Gouraud shading for display. Additional images can be formed 

from any view point without additional radiosity computations. ,

A direct solution to the radiosity equation appears to require at least n2 space and time, given n 

elements. Early radiosity methods [5] used substructuring techniques, decomposing the environment 

polygons into two levels of hierarchy to alleviate the problems of n2 time and space. The shooting 

based progressive radiosity method [3] avoids the space overhead by computing form factors on the 

fly and never explicitly storing the form factor matrix. More recently, Hanrahan et al. have shown 

that, in fact, the form factor matrix can be stored in 0(n) space by exploiting a block structure 

of the matrix yielding a very fast hierarchical radiosity algorithm [16]. Surfaces are hierarchically 

decomposed into smaller and smaller elements with the entries of the form factor matrix stored as 

links between nodes in the hierarchical subdivision. The space and time savings results from the 

fact that most interactions can be represented within a desired tolerance via a single link higher 

up in the hierarchy rather than many links at the lowest element level.

2.2.2 Spot Lights

Directional lighting effects such as spot lights can be added to the radiosity equation by replacing 

the cos(cf>i) term in the form factor equation with a different distribution function:

Fi'j = T  /  I S(Pi^Pj)s(<t>i) — ^T - dAidAj
* Jpi£Ai Jpj£Aj 'Krij

where s (</>;) is the directionality distribution weight for the light source as a function of the angle 

between the direction vector of the light (element i ) and the vector between the points pi and pj. 

We have assumed that the reflectivity of the source, element i, is zero and hence its radiosity is 

completely dominated by the emittance term. The light source distribution function s could be 

any radially symmetric function of angle and is commonly represented in the lighting industry by 

goniometric diagrams plotting energy distribution as a function of angular direction.

Here we restrict ourselves to distributions of the form

sn(<j>) = w(n)cosn{4>) (4)

for values n >=  1. This yields a continuously variable range of beam widths. It is useful to be able 

to change the beam width without affecting the total energy emitted by the light. This requires 

a normalization factor, w(n), in the emission function sn. The normalization factor w(n) must be 

chosen so that the total energy emitted over the hemisphere is constant, independent of n, as the
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beam width is adjusted. The value of the constant is chosen so that 1) = 1. That is,

sndio = 7r (5)Lhemisphere

where du is the differential solid angle on the sphere. Carrying out the integration in spherical 

coordinates yields the normalization weight, •

w( n) =  ^ 4 - ^  ( 6)

2.3 Human Perception

2.3.1 Radiance, Luminance, and Brightness

Radiosity methods solve the physics of the global transport of light in terms of the radiometric units 

of radiance (energy per unit time per unit solid angle). Human visual systems are not sensitive to 

all wavelengths of light and are not equally sensitive across the visible spectrum. A weighting of 

radiance values by the human luminous efficiency curve results in photometric units of luminance. 

The human visual system detects contrasts rather than absolute luminance values. Brightness is 

a measure of the subjective sensation produced by visible light. Brightness, measured in units of 

brils, relates linearly to human visual response. For example, if two light sources are compared and 

one appears to be twice as bright as the other, the brightness of the first, in brils, will be twice 

that of the second.

The human eye is sensitive to a luminance range of approximately ten orders of magnitude. How

ever, at any one time the eye can only detect a brightness range of 100 to 1 with good accuracy. The 

eye adjusts the iris to open and close, limiting the amount of light entering the eye to seek a state 

of equilibrium that is appropriate for general brightness conditions. Tumblin and Rushmeier [28] 

studied work by Stevens [27] who theorized that the adaptation level of a scene can be estimated 

by as the expected value (mean) of the logw of the luminances visible on the retina:

EXPpeietma{log10(L(p))} (7)

where L(p) is the luminance at a point p on the retina. Miller et al. also theorized that differing 

adaptation of the eye results in a family of curves relating luminance, X, and brightness, P, values 

in the form

logw(P) = aa * logio(L) + bb (8)

where P  is the brightness values specified in brils 

L is the luminance values specified in nits 

aa = 0.4 * logw(Lw) + 2.92

bb = -0.4 * (log10(Lw))2 + (-2.584 * logw(Lw)) + 2.0208

Lw is the white adapting luminance which can be approximated by the equation 

logw(Lw) = EXP{/ogio(£;)} + 0.84

8
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This perceptual model accepts luminance values in units of nits which in photometric units are 

related to lux by, 1 lux = 1 nit / 10,000. Thus solving for brils in terms of an element radiosity of 

B lux is

p  _ Q̂aa*Jo{?io(i?/10,000)+&&

Since the adaptation of the eye is affected only by what is visible to the retina, perceptual processing 

is usually done in screen space making the whole process view dependent. This assumes that the 

viewer adapts to a single view rather than to an entire environment,, i.e. the viewer remains 

transfixed on a single view of an environment long enough to adapt to the lighting level. In 

practice, we are constantly moving our head and eyes to scan a room and and hence adapt to the 

overall room lighting rather than to a single view. In our work we proposes a view independent 

approach to lighting design, therefore, the conversion from luminance units into perceptual units 

is performed in object space, at the element level. Each element is considered to contribute to the 

adaptation proportional to its physical size. This neglects the view dependent effects of perspective 

foreshortening and occlusion but has the advantage that it yields view independent results. We 

have found that the object space, view independent method gives results that are nearly identically 

to view dependent screen space methods for typical, single room, architectural models. Clearly if 

the environment being modeled consists of many separate rooms, only a single local region should 

be considered. The work of Funkhouser, Sequin, and Teller [12] would be of great value here. In 

addition to the view independence, calculating perception in object space has the added advantage 

of faster performance if the number of elements is much smaller than the number of screen pixels.

2.3.2 Subjective Impressions of Illum ination

In the 1970’s, John Flynn published a series of articles [l 1, 9, 10], introducing a methodology 

with which to quantify parameters that elicit a shared human behavioral response and subjective 

impression. In particular, Flynn examined how non-uniform, peripheral, and bright lighting affects 

impressions of visual clarity, spaciousness, relaxation, and privacy. Flynn created six different 

light settings for a conference room and subjectively associated each room with a non-uniform, 

peripheral, and brightness value so that each room corresponded to a point in a 3 dimensional 

space of the different lighting characteristics. Flynn also associated a set of semantic differential 

(SD) rating scales such as large-small and spacious-cramped with each category of impression. Test 

subjects were then asked to make pair wise comparisons of the differences between each room from 

the set of SD rating scales where 0 meant no difference and 10 meant a large difference.

The data gathered resulted in a 6x6 symmetric dissimilarity matrix comparing the 6 rooms for 

each subject tested and each SD comparison made, e.g. large-small. A multidimensional scaling 

program INDSCAL [2, 15], was used to determine how each subjected weighted the non-uniformity, 

peripheral and brightness values in making each SD comparison. A weighting of each dimension 

for each subject was determined that best fit the data. The results showed a correlation between 

the room positions hypothesized by Flynn and the positions computed by INDSCAL, supporting 

Flynn’s hypothesis that brightness, non-uniformity, and peripheral lighting reinforce particular 

impressions. In addition, there also was a correlation for the weights for each parameter among all 

the subjects, supporting the concept that particular lighting patterns elicit a shared impression. By
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this process, Flynn was not only able to demonstrate that there is a definite correlation between the 

measurable quantities (non-uniform, peripheral, and bright) and the subjective impressions (visual 

clarity, spaciousness, and relaxation), but was able to quantify how much each of the measurable 

dimensions affects each subjective impression.

As described shortly, we have adapted this work through an additional level of experimentation in 

which subjects reported impressions from computer generated images.

3 P r o b l e m  F o r m u l a t i o n  ‘

To pose the illumination design task as a constrained optimization problem we must identify:

• the variables involved in the optimization process

• the constraints that must be satisfied,

• and the objective function.

3.1 Optim ization Variables

In a normal radiosity based Tenderer, the element radiosities Bi are the unknowns to be computed 

in terms of fixed material and light property parameters. In the optimization setting the material 

and light properties are no longer fixed and must also be considered as variables. Constraints may 

be imposed on any of these variables and the objective function may involve any or all of them.

In the illumination design problem the optimization variables are light source specification pa

rameters (emissions, spot light directions, spot light focus), element radiosities, B i, and element 

reflectivities, p{. We consider two types of light sources. Ordinary diffuse light sources are diffusely 

emitting elements and are described by a single emissivity parameter E{. Directional lights are 

idealized spot lights which are described by a position, direction, and distribution pattern, (cos71 
distributions in our system). We assume that the light source position is fixed and only the direction 

and distribution pattern is allowed to change during optimization.

Every light source emission, E{, light direction vectors V,-, and cosine distribution exponent n;, 

element radiosity Bi and reflectivity pi have the potential to be a variable in the optimization 

problem. If all are treated explicitly as domain variables in the optimization an intractably large 

system will result. The 2?,’s can be eliminated by direct substitution of the radiosity equation, 

and typically only a small number of the elements will have variable emission, reflectivity or direc

tionality parameters. These remaining variables are called the “free” variables of the optimization 

problem.

3.2 Constraints .....................

Constraints fall into three categories.



Physical constraints specify the relationships between light emission and element radiosities that 

are dictated by the physics of light transport. The constraints are captured in the rendering equa

tion [18]. We assume perfect diffuse surfaces and a discretized environment yielding the radiosity 

approximation given in equation 2.

Design goals are constraints provided by the user. These may be either equality or inequality 

constraints and may apply to a single element, or a conglomeration of elements. For example that 

a particular element’s radiosity is a given constant, Bi = K  for some constant K  is an equality 

constraint on a single element that expresses a fixed radiosity for the element. Inequality constraints 

such as Kiow < B{ < Khigh can also be specified (in essence two inequality constraints) requiring 

the radiosity of element i to stay within the bounds Kiow and Khigh■ Further, a group of elements, 

not necessarily from the same patch, may have constraints applied to the maximum, or minimum 

radiosity of the group.

Barrier constraints are hard bounds on the allowable ranges of the optimization variables that 

must be satisfied to insure that the model is physically realizable. For example, light emissions 

must remain positive and element reflectivities must remain in the range 0 <=  pi <=  1. Barrier 

constraints are conceptually similar to inequality design goals. The main difference is that a barrier 

constraint must be satisfied in order to produce a valid model. Design goals are desires that may 

not need not be satisfied exactly.

3.3 Objective Function

In general, radioptimization problems are under constrained. There may be an infinite number 

of possible solutions that satisfy the problem constraints. The objective function is used to select 

between the many possible solutions.

Some examples of objective functions are:

• Minimize total energy to save money.

• Desired specific measurable lighting patterns, for example brightness, uniformity, and periph

eral vs. central lighting,

• Desired subjective impression of the illumination such as clarity, pleasantness, and privateness.

The simplest, directly measurable objective is the energy,

}energy — ^  ̂B{A{ (9)
i

A variation of Flynn’s work, described in the previous section was used to develop a way of quan

tifying subjective impressions. Flynn’s experiment was duplicated except, instead of having the 

subjects judge actual rooms with different lighting characteristics, they were shown rendered images 

of an identical room with different light patterns (see color plate 1). Once the data was collected, 

it was processed by INDSCAL with the brightness, non-uniform, and peripheral values for each 

room computed by the following functions.
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/brightness (-P? - )̂

fnon—uni f orm (P,A) 

/peripheral(P,A)

, P 4elements *
^̂ titall—elements ^

( 'jL/i€walls(PaVgti-Pi )2Aj 
\ ^/i£walls

E P Ai£horizontal—plane * * 
X3t£/io7,tzonfa/“p/ane

ÂjwallsPiAi

£ ■inwallsAi

where P,- is the brightness of element i ........................

A{ is the area of element i

Pav3,i is the average brightness of the elements around element i

The functions are defined in terms of perceptual values because humans subjectively quantify 

illumination by brightness not by actual luminance.

The results from INDSCAL showed that there was a correlation among the subjective impressions 

of visual clarity, privacy, and pleasantness. Taking a linear combination of the average weight of 

the subjects with similar responses imply that the clarity, privacy, and pleasantness can be roughly 

evaluated by the following linear combinations of brightness, non-uniform, and peripheral lighting 

values.

fclear(P,A) 

fpleasanti^Pj 

fprivatei^P?

0.89963fbrightne,s(P,A) - 0.38098f non— uniform (P, A) - 0.58060/pertp/i era i(P,A)

0.78437fbrightness{P,A) - 0.52679fnon—uniform(P, A) + 0.23984/pej.j-phera i(P ,A )

0.89064/f,ri3/l<ness(P, A) + 0.31562/non—uniform(P, A) - 0.08648fperiph era i(P, A)

In theory, any user specified function of the optimization variables could be used as an objective 

function. An alternative is to provide a fixed library of objective functions and allow the user to 

construct an objective function via linear combinations of the library functions. Each individual 

objective function in the library has a well defined and intuitive behavior. The user can then control 

the weights of the individual objectives to determine the final objective function. This allows the 

user control without an undo amount of complexity.

The objective functions with which we have experimented is thus the weighted sum

) = wYVenergy fenergy +
^̂ brightness fbrightness +
Wnon-uniform fnon—uni form +
^̂ peripheral fperipheral +
ĉ/ear fclear +

^̂ pleasant fpleasant +
p̂rivate fprivate +

(10)
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3.4 Conversion of the Constrained Problem to an Unconstrained Problem

The design goal constraints can be included in the objective function through the penalty method

[22] by penalizing deviations from constraints through explicit terms in the objective function. 

The penalty imposed on the objective is defined as the square of the constraint violation. For 

example, if the j th constraint, Cj, is an equality constraint specifying a particular radiosity1 to 

be a given constant, (B i■ = Kj), this will result in a penalty term fc} in the cost function given 

by fCj — — B{})2. Inequality constraints can be handled through a penalty function that

“turns on” when the constraint is not satisfied. For example, the inequality constraint Cj given by 

(Bi - < K j) results in a penalty term fc, = A,v (Kj — Bij )2 when Bi} is greater than Kj and is zero 

otherwise.

Barrier Constraints are handled in a similar fashion to impose hard physical restrictions on certain 

values, for example, the emission variables must always remain positive. Similarly, reflectivities 

must remain between 0 and 1. A barrier term is added to the objective function for each barrier 

constraint to avoid violations of these constraints. The barrier constraint Gj given by (X j > K j) 

for some free variable X j results in a barrier term fa- — (X j — Kj)~4 for X j > K j. In addition, 

the optimization search explicitly enforces the constraint (X j > K j) by clamping the X j to Kj -f e 

when X j drops below Kj, where e is a small positive constant. This will yield a large barrier term 

in the objective function tending to lead the search away from the barrier in the next iteration.

The remaining constraints are the “physical constraints” specified by the radiosity equation (equa

tion 2). These are dealt with by direct substitution. The radiosity equation implicitly defines each 

Bi in terms of all the E ,V , n and p’s. The 5,-s are calculated via a radiosity solution algorithm

[16]. The values for the Pi’s can then be computed directly from the i?,’s by equation 2.3.1. The 

Bi and P, values can be directly substituted into the objective function. This effectively eliminates 

all the B i’s and P^s from the set of optimization domain variables.

Thus the modified optimization problem is given by:

wenergy /energy +
brightness fbrightness +

Wnon—uni j  orm fnon—unif orm +
Ŵ peripheral fperipheral +
Ŵctear fclear +

pleasant fpleasant +
^Vprivate fprivate +

designgoals i j  fc3
E ; foj

+

where X  is a point in the multidimensional space spanned by the remaining free variables, E{, V,-, 

nt, and p,-.

Through the use of the penalty method, barrier functions, and substitution of physics constraints, 

the optimization problem can now be stated as a simple unconstrained, multidimensional mini

mization problem. Let X  be a multidimensional vector in the “design space” , the space spanned

1 Bii indicates the radiosity of the ith element, where i was selected by the j th constraint.
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by the free variables in the design. We must identify a point in the design space, X* such that the 

objective function /(X *) is (at least locally) minimized. There are many solution methods for such 

a minimization problem. We use the well known BFGS method described above [23].

4  I m p l e m e n t a t i o n  ■

4.1 Overview

The ideas discussed above have been implemented on SGI IRIS and IBM RS6000 workstations. 

The radiosity analysis portion of the work is based on Hanrahan et a/.’s hierarchical radiosity code. 

The user provides an initial model which is rendered as is to provide a baseline rendering. The user 

can select elements interactively from an image generated from the baseline solution to specify the 

free variables in the optimization process. These may be light source emissions, element reflectivities 

and spot light directionality parameters. The user can also specify the objective function weights 

WeneTgy, WbTightnessi Wnon-uniform, etc. to direct the optimization process. After all the design goals 

and objective weights are specified, the optimization process is run until convergence is achieved.

This process can be described in Pseudo code by:

Compute baseline rendering.

Establish constraints and objectives.

REPEAT

Evaluate partial derivatives.

Compute search direction A X  using BFGS.

Perform line search in the direction AX .

Display results, and allow user to modify constraints and objectives 

UNTIL convergence. ..............

4.2 Baseline rendering

The initial model is rendered with the hierarchical radiosity algorithm. During baseline rendering, 

the input model is subdivided into a hierarchical structure and links are established between nodes 

in the hierarchy to establish the block structured form factor matrix as described in [16]. Element 

radiosities are computed and an image is displayed, with interactive user control over the viewpoint 

and view direction.

4.3 Establishing Constraints and Objectives

Once an image is displayed the user can select elements directly from the screen with the mouse 

and set constraints via the user interface shown in color plate 2. In this example, the desk top has 

been selected as indicated by the green outline. Current illumination information for the selected
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element is displayed in the lower right corner of the interface. Through a set of buttons in the 

interface, the user can elect to impose a constraint on the element radiosity, and/or specify that 

the element reflectivity or emission should be a free variable in the optimization process. Spot 

lights are handled with a similar interface that allows the light direction vector and/or distribution 

parameter n to be marked as free variables in the optimization. The objective function weights can 

also be adjusted with slider bars in this interface. -

4.4 Partial Derivative Estimation

Evaluation of partial derivatives of the modified objective with respect to the free variables is 

required by the optimization process. Rapid derivative evaluation is critical to an efficient solution 

to the optimization problem. For each free optimization variable we must be able to evaluate the 

partial derivative of the modified objective function relative to the free variable. For example, to 

compute the partial derivative 

must evaluate:

d f jd E k

The partial of the constraint function /c- for an equality constraint Cj : (Bij = Kj) is:

d fc JdE k  = -2Atj ■ (K j - Bl})dBtj/dEk (13)

For an inequality constraint, the partial dfcJdEk  is zero when the constraint is satisfied and is 

given by equation 13 otherwise.

The partial of a barrier functions Jq . can also be expressed directly as:

d fc JdE k  = -4(Ej - Gj)-sdEi/dEk (14)

The partials of the form dEi/dEk are 1 if i = k and zero otherwise. The partials in the form 

dBi/dEk represent the “influence” that the free variable Ek has on each element radiosity Bi. 

These influence factors are equivalent to entries of the inverse of the form factor matrix. Once 

the influence factors are known, the scene can be rerendering with new light source emissivities 

without resolving the radiosity equations. Besides providing the partial derivatives necessary for 

the optimization process, explicit storage of the influence factors also allows interactive, near real 

time, user adjustments to the lighting.

of the objective function with respect to a light emission, Ek, we

wYV energy dEi/dEk Ai +
Ŵbrightness 9 j'brightness /9Efo +
"Wnon—uniforrr.i dfnon—uniform/dEfo +

peripheral & /peripheral ( dEfc +
ĉ/ear 0 fdear/8Ek +

Ŵpleasant d fpleasant / d Ê +
private  ̂/private! ̂  Ek +
design dEjfcJdEk +

dZj/oj/dEk



Figure 1: Estimation of d B i/d E k  by shooting a delta emission from source k.

Rather than perform an explicit inversion of the block structured system, the partial derivatives 
can be estimated by finite differences. A small “delta” emission, A Ej is shot from the variable 
emission light source as indicated in figure 1 and allowed to interreflect. The iterative shooting 
operation are very rapid since the form factor matrix was already computed during the baseline 
rendering and is stored as a network of links between elements in the hierarchy.

The result of shooting a small amount of energy through the network of links results in its effect 
on each element radiosity, A  Bi, thus providing all the derivative estimates A B i /A E j .  If the only 
free variables in the optimization are light emissions, these influence factors need only be evaluated 
once, due to linearity. On the other hand, if any element reflectance is allowed to be variable, light 
emission influence factors must be updated each time one or more element reflectance is changed.

The partial derivative of the objective with respect to a variable element reflectivity is handled in 
a similar fashion. The element reflectivity p^ is adjusted by a small delta Apk• The effect on all 
other elements can be evaluated by “shooting” the unshot radiosity due to the change in reflectivity: 
B k A p k ■ As for light sources, several shooting iterations may be necessary in order to account for 
multiple bounce effects. Once convergence has been achieved, the effect of A pk on element radiosity 
A  Bi is available and the influence factor estimate A B i /A p k  can be recorded.

Influence factors for spot light directionality variables, Vfc and nk are also approximated through 
finite differences. For example, a small change can be made to the direction vector A V ;t and 
the effect on each element radiosity can be determined by a series of shooting steps. The first 
shooting step, illustrated in figure 2 , shoots a delta emission from the modified spot light to all 
other elements. The delta emission is determined according to the change in the directionality 
parameter, in this case, E ik n̂^ 1̂  (cosn(<j>v+&v) — cosn(<f>v)) where <f)v is the angle between the original 
direction vector of the light and the direction of the element and <̂ V+Av is the angle between the 
new spot light direction vector and the direction of the element. Note that this delta emission
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Figure 2: Estimation of d B i/d V k  by shooting a delta emission from source k.

Figure 3: Estimation of dBi/dnk by shooting a delta emission from source k.

17



will be negative in some directions. Subsequent shooting steps proceed in the normal fashion in 
order to handle multiple bounce effects. The same technique can be used when the distribution 
pattern parameter n is changed as illustrated in figure 3. In this case the directionality weight is 
E lk( ^ c o s n(4>v) ~  (n+A2n +l>cosn(4>v)).

The cost functions that measure patterns of light or subjective impressions are defined in terms 
of perception. The partial derivatives of the functions examining lighting patterns with respect to 
light emission, Ek are:

d /brightness _ jt? HHi dEi ’
c\ — ** brightness ^  ~AAi

9fn  on— uni for
d E k

=  - W— r r ■)non—uni f orm
(Pavgj ~  Pi)2 M

i2 / n P \ { ^Z^i\r avg,i dEk dEk)

L Z i *  J

9  /peripheral _ dEk^J
d E k ~  peripheral

The partials of the subjective impressions are just a linear combination of the partial derivatives
of f  brightness ? fnon—uni f  orm,) and /peripheral •

9 /d e ar n onnco d/b rightness n r)cir.r.0 9/non—uniform „ r-oncn^/peripheral—  =  0.89963------^ - -----------  0.38098---------— ^----------  0 .58060— -------
d E k d E k 8 E k dEk

$ /pleasant ~ rjctAn̂ rd/b rightness n -~ „ nr.d /non—uniform . n oono a  ^ /peripherala tp------ =  0.78437----------------------0.52679---------- ----------------- (- 0 .23984------— -------
dEk dEk dEk dEk

d/private n or.nr. A d /brightness . n n-,rnnd/non—uniform n Aad /peripheral
— -̂=j-----  =  U.89064------— ----------h (J.31562-------- — -------------- 0 .08648------— -------

dEk dEk d E k dEk

The partials dPi/dEk  are derived by differentiating equation 2.3.1.

p .  __  ^ g a a * / o 5 i o ( j 5 i / 1 0 , 0 0 0 ) + 6 6

&P% _ -i Qaa*/o5io(S,/10,000)+66
d E k ~

A  TJ A  ■

LW d W k  +  dWk ( ° -4/o^ 0( ^ ' / 10’ 00°) “  * "(10 )(0 .8 a  +  2.584))

where a — adaption level =  E X  P {lo g w (L i)}  =  ^  !ogi° (Bi/io,ooo)A,
Ai

If the partials assume that the adaptation level is constant with regard to a change in emission 
Ek, d a /d E k  =  0 . If the change in adaptation is taken into account then differentiating alpha with 
respect to Ek gives

da A{ dBi

dWk = B iln {W ) Y ,M i)d E k
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4.5 Optimization

The optimization process uses the BFGS algorithm. The BFGS iteration step evaluates the objec
tive function and its gradient at the current location in the design space. The Newton step provides 
the search direction, A X , and a line search is performed in this direction. The line search first 
brackets the function minima in the direction A X  then converges to the solution by a sequence 
of quadratic fit steps. Each step in the line search involves another evaluation of the objective 
function and hence a reevaluation of the element radiosities given the current position in the design 
space. Again, these evaluations are rapid since the form factor matrix has already been computed. 
At each BFGS step, the element radiosities are evaluated and a new image is presented to the user. 
This allows the user to watch the optimization as it progresses.

5 E x p e r i e n c e s  a n d  R e s u l t s

Our first implementation of the Radioptimization system allowed an objective function based only 
on photometeric measures and did not take into account the psychophysical properties of lighting. 
The system could sucessfully optimize lighting but required quite a bit of unintuitive “tweaking” of 
the objective function weights in order to achieve lighting that had the right subjective appearance. 
These early experiences led us to investigate psychophysical objective functions.

Color plate 3 shows the effects that the subjective impressions have on an optimization. The left 
image constrains the table to have a small amount of illumination while preserving energy and 
creating an overall impression of visual clarity. To improve efficiency the optimization was run at 
a low resolution on a simplified model, without the chairs and television set. The optimization 
process took 1 minute and 21 seconds on an IBM Model 550 RISC System 6000. The image on 
the right has the same design goals as the left image except that it tries to elicit an impression of 
privateness. This optimization took 2 minutes and 11 seconds.

It took two or three hours of performing design iterations before developing an intuitive “feel” 
of the optimization process and the effects of the weights on the objective function. One of the 
problems with the design cycle is that there may be local minimums of the specified objective that 
are visually unattractive. For example in addition to the design goals mentioned above for color 
plate 3, we needed to add an addition constraint limiting the illumination of the ceiling because 
pointing the lights directly at the ceiling was an optimal way of increasing the overall brightness of 
the room.

One drawback of the system at this point is that it is not fast enough to allow a highly interactive 
feedback cycle for complex models. However since the system allows a designer to think in terms 
of their own design goals, it requires fewer design iterations to achieve the desired result.

6 C o n c l u s i o n s

This paper has presented a new method of designing illumination in a computer simulated en
vironment, based on teleological or goal directed modeling. We use a library of functions that
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approximate a room’s success in meeting certain lighting design goals such as minimizing energy 
or evoking an impression of privacy. In order to develop functions that evaluate the impression 
that a room evokes, we had a number of subjects order a set of images according to a particu
lar impression. Processing this data with INDSCAL, showed that there was a correlation among 
the subjects of what lighting patterns they considered to be visually clear, pleasant, and private. 
Once the lighting design goals have been set, the software system searches the space of lighting 
configurations for the illumination pattern that “best” meets the design specifications. The system 
absorbs much of the burden for search the design space allowing the user to focus on the goals of 
the illumination design rather than the intricate details of a complete illumination specification.

Our system explores one possible path in the application of optimization techniques to image syn
thesis design problems. Many other possibilities remain for future work. Constrained optimization 
techniques may be more suitable than the unconstrained penalty method technique used here when 
the weight of the design goals must be satisfied preciously. Discrete optimization methods may be 
appropriate in some instances, for example when emissivities are constrained to a finite set, e.g. 
{60 Watts , 100 Watts Geometric properties of the model, such as the position of the lights
or the size and position of the windows, could be allowed as free variables. More general image 
synthesis methods could be applied to account for non-diffuse effects such as glare.
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