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ABSTRACT 

 

This dissertation reviews the global status of all avian scavenging birds, including 

vultures, and synthesizes in-depth fieldwork on the endangered Egyptian vulture 

Neophron percnopterus in the Middle East and Horn of Africa. Chapter 1 provides a 

succinct review of the ecology, status, and importance of vultures globally. Chapter 2 

evaluates what ecological factors contribute to extinction risk for all 106 avian scavenger 

species globally. Combined, these chapters show that vultures, which are the only 

obligate vertebrate scavengers, have experienced the most rapid decline in conservation 

status of any group of birds over the past decade and comprise the most threatened avian 

functional guild in the world. By quickly locating and consuming carrion, vultures 

outcompete and control problematic facultative scavengers (like feral dogs and rats), 

insects, and microorganisms. When vulture populations decline, carrion becomes 

increasingly available to other organisms, in a form of terrestrial eutrophication. 

Furthermore, vultures' highly specialized digestive systems efficiently eradicate diseases 

when consuming carrion, whereas facultative scavengers are more susceptible to 

contracting and transmitting diseases among themselves and to humans. Diet, geography, 

body mass, clutch size, and taxonomy are all strong predictors of extinction risk, but 

dietary toxins are by far the most important anthropogenic threat to avian scavengers. 

Chapters 3 and 4 build on extensive fieldwork in the Middle East and the Horn of Africa 

and satellite-tracking of the endangered Egyptian vulture to illuminate habitat 

preferences, migration routes, and critical sites to target conservation actions. In Chapter 



 

3, Egyptian vulture habitat use was investigated within home ranges and core use areas. 

Overall, vultures strongly selected for anthropogenic features, including highways and 

powerlines in arid areas. In Chapter 4, the most important migratory bottlenecks and 

stopover sites for the Egyptian vulture on the Red Sea Flyway were identified. 

Discouragingly, none of the area within the major migratory bottlenecks was protected 

and only <13% of the area within the major stopovers was protected. This demonstrates a 

very concerning gap in the protected area network. Combined, Chapters 3 and 4 provide 

clear guidelines where investment is urgently needed to help conserve endangered 

vultures in the Middle East and Horn of Africa. 
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Abstract 

Vultures are the most endangered avian foraging guild (scavengers) and their loss 

from ecosystems can trigger trophic cascades, mesopredator release, and human rabies 

epidemics, indicating their keystone species status. However, vultures’ extremely large 

home ranges, often crossing international borders, make conservation challenging. We 

provide a case study of how satellite-tracking data can be used to identify habitat 

preferences and critical sites to target conservation actions of wide-ranging species. We 

satellite tracked 16 endangered Egyptian vultures, Neophron percnopterus, in the Middle 

East and Horn of Africa. We used Brownian bridge movement models to calculate home 

ranges and core use areas (utilization distributions), and we analyzed habitat use in a 

resource selection framework. While median individual home ranges in both summer and 

winter were very large (5,106 km2 and 2,333 km2, respectively), summer and winter core 

use areas of all tracked Egyptian vultures were quite small by comparison (542 km2, 185 

km2, respectively). This was caused by home ranges overlapping at critical sites where 

Egyptian vultures feed and roost and where conservation actions could focus. Our 

resource selection model successfully identified these core use areas and predicted the 

space use of Egyptian vultures throughout little studied regions. Overall, Egyptian 

vultures strongly selected for anthropogenic features, including highways and powerlines 

in arid areas. We used these results to identify protected areas and Important Bird Areas 

(IBAs), to rank them in order of importance, and to summarize the sites’ conservation 

status.  
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Introduction 

Vultures are the most endangered avian foraging guild (scavengers), with nine 

species Critically Endangered, three Endangered, four Near Threatened and six Least 

Concern (Buechley and Şekercioğlu 2016a; BirdLife International 2017). As vultures are 

lost from ecosystems, trophic cascades and mesopredator release (Buechley and 

Şekercioğlu 2016a; b) and human rabies epidemics (Markandya et al. 2008) can ensue, 

indicating their keystone species status (Mills, Soule and Doak 1993). Vultures’ 

extremely large home ranges (e.g. García-Ripollés, López-López and Urios 2011), which 

often cross international borders and even continents (e.g. Oppel et al. 2015), make 

conservation of these species particularly challenging. Nonetheless, advances in satellite 

tracking technology are enabling a revolution in our understanding of bird movements, 

migrations, and overall ecology (Bridge et al. 2011). Herein, we provide a case study of 

how vulture satellite-tracking data can be used to identify habitat preferences and critical 

sites to target conservation actions of wide-ranging endangered species.  

Egyptian vulture, Neophron percnopterus, is an obligate scavenger that is largely 

a human commensal. It is distributed across southern Europe, central and southern Asia, 

the Middle East and Africa, with resident and long-distance migrant populations 

((BirdLife International 2017). Migrants spend the Palearctic winter in areas that overlap 

largely with resident populations. In 2007, the Egyptian vulture was uplisted from Least 

Concern to Endangered due to widespread and sharp population declines, range 

contractions, and extinctions of populations, caused by inadvertent poisoning, 

electrocutions, collisions with wind turbines, reduced food availability, and persecution 

(BirdLife International 2017).  



 

 

17 

Egyptian vulture has been the focus of considerable research and conservation 

effort, mostly in Europe (e.g. López-López et al. 2014), and India (e.g. Cuthbert et al. 

2006). Studies have illuminated Egyptian vulture movements and winter ecology of 

migrants (e.g. García-Ripollés et al. 2010), impacts of supplementary feeding (e.g. 

Monsarrat et al. 2013), ecosystem services (Gangoso et al. 2013), and population status 

and causes of declines (e.g. Cuthbert et al. 2006). Nonetheless, little is known about the 

status and ecology of the species across large swaths of its range, which hinders 

conservation planning. Sparse information from poorly known areas suggests that 

relatively large populations occur in some places, where threats are poorly understood. 

For example, Arkumarev et al. (2014) state that “the Afar region in Ethiopia is sheltering 

the most significant known wintering congregation of Egyptian vultures in eastern 

Africa… [approximately] 3% of the global population.” Meanwhile, the population in 

Turkey is estimated to be 1,500 to 3,000 pairs (Mendez, Donazar and Godoy 2015), 

likely larger than that of Spain (with an estimated 1,300 pairs (Cortés-Avizanda et al. 

2009)). Recent surveys in Oman have identified some of the largest winter congregations 

ever recorded, with over 750 individuals counted at a single site in 2016 (J. Eriksen, 

personal communications).   

We present results from the first multi-year (2013-2017) satellite tracking study of 

Egyptian vultures in the Middle East and the Horn of Africa—areas that are strongholds 

for the species but which have been minimally studied. We investigate differences in 

home range characteristics between age classes and breeding and nonbreeding 

individuals. We develop a resource selection model, and use it to generate predictive 

maps of Egyptian vulture space use. By overlaying them with maps of protected areas 
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and Important Bird Areas (IBAs), we highlight priority sites for conservation action. We 

then discuss the implications of our results for the conservation of this endangered 

species.   

 

Methods 

Vulture capture 

During 2012-2015, we captured Egyptian vultures and fitted satellite transmitters 

to them in Turkey, Armenia, Ethiopia, and Djibouti. Permits were acquired for each 

country and year of capture. Egyptian vultures were captured near municipal waste 

dumps, where they reliably congregate (Al Fazari and McGrady 2016) using padded leg-

hold traps with weakened springs to minimize the risk of injury (Bloom 1987). We 

trapped all individuals either after egg-laying or during the nonbreeding season, so as to 

minimize any potential influence on breeding (Lebeau et al. 2015). Captured individuals 

were measured, and checked for overall health. All were in good physical condition when 

tagged.  

Egyptian vultures were fitted with solar-powered Global Positioning System 

Platform Transmitter Terminal (GPS PTT) transmitters (Microwave Telemetry, Ecotone 

Telemetry, North Star Telemetry, or DynaTrak), attached as backpacks with 8 mm Teflon 

ribbon (Bally Ribbon Mills, U.S.A). Transmitters weighed 24-45 g, <3% of body mass, 

as recommended (Klaassen and Hake 2014). Two transmitters from Microwave 

Telemetry, three from Ecotone, and one from DynaTrak used the Global System for 

Mobile Communications (GSM) network to transmit data. The other 10 units (five 

Microwave and five North Star) used the Argos Satellite Data Collection Relay System 
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Collect and Localization by Satellite (CLS America, USA). Two Microwave GSM units 

had maximum fix rates of one point per minute; all others had a maximum fix rate of one 

location per hour. Data were automatically downloaded and incorporated into the 

Movebank database (www.movebank.org).   

 

Processing GPS telemetry data 

Prior to analyses, all telemetry data were inspected and visualized in Movebank to 

check for outliers or potential dropped transmitters that continued to transmit. Using the 

Movebank facility, we removed erroneous fixes and only used the first location point for 

each individual in each hour to standardize the rate across transmitters, and reduce spatial 

and temporal autocorrelation (Walter et al. 2011). We also censored the first and last 

three days of data from each unit, so as to exclude data influenced by capture, transmitter 

failure, or death.  

We segregated movement data on the summer range, winter range, and during 

migration, using piecewise regression to calculate migration start and end dates for those 

that migrated (Liminana et al. 2007). The data were subset by individual and calendar 

year, and a piecewise regression was fit to a plot of latitude x time. The point at which the 

regression splits delineated the summer, winter, and migrating stages. Migration data 

were excluded from analyses because migrating individuals may have been moving 

through large areas of otherwise unsuitable habitat, and so did not fit a resource selection 

framework. We identified whether adults were breeding in any given year by reviewing 

movement patterns during the breeding season, including regular, repeated visits to 

identified nest sites, and resightings of tagged adults in the field in Turkey and Armenia. 
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After processing our dataset, we had data on 16 individuals tracked over 28 summers and 

23 winters. 

 

Home ranges  

We calculated 95% Brownian bridge movement model (BBMM) home ranges 

(Horne et al. 2007; Fischer, Walter and Avery 2013) for each animal, year, and season 

(summer or winter). Two individuals that were captured in Djibouti and Ethiopia did not 

migrate, so their home ranges were not split into separate seasons but calculated for the 

entire study period. The data for these individuals were included in the “winter” life-stage 

resource selection model, as their ranges overlapped extensively with those that were 

tagged in Turkey and Armenia that overwintered in the Horn of Africa (n=12).  

 

Utilization distributions 

We identified core use areas for both summer and winter seasons by developing a 

population-level utilization distribution (UD) (Palm et al. 2015; Watts et al. 2015). To do 

so, the probability distributions from each individual BBMM home range estimate was 

weighted by the number of location points and summed (Watts et al. 2015). Finally UDs 

were standardized to a value range from zero to one. We then produced a map of the final 

population-level UD for summer and winter to identify core use areas.  

 

Environmental data 

We created a geographic information system (GIS, using quantum geographic 

information system (QGIS: www.qgis.org)) with environmental data across the range of 



 

 

21 

point locations in the Middle East and the Horn of Africa. Due to the extremely large 

home ranges of Egyptian vultures—across several countries—and our desire to directly 

compare models of habitat selection between summer and winter, environmental data 

were limited to global data sources. Based on our knowledge of Egyptian vulture ecology 

and studies of space use (Oppel et al. 2015), we selected potential covariates likely to 

influence habitat selection. See the full list of covariates in Table 3.1.  

After selecting these covariates, they were processed as follows. We reclassified 

the 23 global land cover types in our study areas to five categories to reduce model 

complexity and make the categories more ecologically relevant. Categories were 

“cropland” (composed of the GlobCover classes: 11, 14, 20, 30), “forest” (40, 50, 60, 70, 

90, 100, 160, 170), “desert” (150, 200), “grassland” (120, 140), “savannah” (110, 130, 

180), and “other” (190, 210, 220) (Oppel et al. 2015). We then produced raster layers for 

each category separately, by calculating the distance from each raster cell to each cover 

class (Burnham and Anderson 2002). We also included a tree density index (Crowther et 

al. 2015). Annual precipitation was calculated from monthly precipitation data. We 

included all paved road classes listed in OpenStreetMap (OSM) and merged them into a 

single highway layer. For powerlines, we included only the major transmission lines 

because Egyptian vultures are known to use large metal pylon transmission lines for 

perching and roosting, whereas small distribution lines are infrequently used (i.e. 

Arkumarev et al. 2014, Buechley personal observation). The “city” vector layer was 

defined by OSM as “the largest urban settlements in the territory,” normally with “a 

population of at least 100,000 people” and the “town” layer is defined as “a second tier 

urban settlement of local importance, often with a population of 10,000 people” 
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(OpenStreetMap 2016). We included both settlement types because our field observations 

suggest that Egyptian vultures avoid cities and congregate around towns to feed at 

garbage dumps. Using these line and point vector layers, we produced rasters by 

calculating the distance from each cell to each feature. Finally, we calculated a raster of 

terrain ruggedness from the digital elevation model (DEM), which can indicate nesting or 

roosting habitat. We then coarsened the resolution of both the DEM and ruggedness 

layers (from 90m), and resampled the livestock and human population density rasters 

(from 1km) to match the spatial resolution of the land cover data (300m). This 300m 

resolution was suitable for Egyptian vulture habitat use because the species is highly 

mobile and it was a good compromise between spatial resolution and computational size.  

 

Model development, selection and predictions 

We analyzed Egyptian vulture resource selection based on the second order 

selection procedure (Johnson 1980). We defined available habitat as occurring within the 

95% minimum convex polygon (MCP) for all tracked individuals in each season. 

Distribution of habitats within the 95% MCP was determined by extracting covariate data 

systematically at 1km2 density within this area (Benson 2013). Sampling environmental 

data at this density was satisfactory because it captured the diversity of covariate data at a 

small spatial resolution for a wide-ranging species. “Used” habitat was based on GPS 

locations from each tagged individual that fell within their 95% BBMM home ranges. 

After extracting covariate data for each used and available point, we standardized 

all covariate data to aid with model convergence and allow comparisons between the 

relative influence of variables (Crandall, Bedrosian and Craighead 2015). We then 
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assessed the correlation of covariates by creating a correlation matrix using corrplot (Wei 

2013), and assessed the variance inflation factors (VIF) using the usdm package (Naimi 

2015) in R. We used a cutoff of |r| = 0.60 (Crandall, Bedrosian and Craighead 2015) as an 

indication of strong co-linearity, and had no co-linearity issues. 

We used generalized linear models (GLMs) (Boyce et al. 2002) to model resource 

selection. We used an information theoretic approach (Burnham and Anderson 2002) for 

model selection by comparing the performance of models against one another following a 

manual backwards-stepwise model selection  process (Domenech et al. 2015), as 

described in Hosmer and Lomeshow (2000). We modeled each covariate in isolation to 

determine if it had a significant effect (p<.25) on habitat selection. If it did not, it was 

excluded from any further modeling processes. We then built a global model with all 

covariates, and removed nonsignificant variables one by one in a backwards-stepwise 

manner until all remaining variables were significant (p<0.05). We checked that the final 

model outperformed each candidate model, as well as the null model, using Aikake 

Information Criterion, adjusted for small sample sizes (AICc) (Bolker et al. 2009; 

Monsarrat et al. 2013) with the AICcmodavg package (Mazerolle and Mazerolle 2011) in 

R. We then calculated 95% confidence intervals for all coefficients in the final model to 

confirm their significance.  

To test the predictive accuracy of our final models, we conducted k-fold internal 

cross validation with five folds following Boyce et al.’s (2002) methods. We stratified the 

k-fold selection to include roughly proportional numbers of both used and available 

points in each fold. To test if each of the five training models accurately predicted the 

final resource selection function (RSF) score of the points in the excluded fold, we 
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created a predictive map in the GIS based on each subset model, and binned the RSF 

values from the excluded points into 10 equal-area categories, based on their probability 

of occurrence. If the model performs well, there should be an increasing number of points 

from the excluded fold in the higher predictive bin categories. We tested for significance 

using the Spearman-rank correlation (Boyce et al. 2002; Crandall, Bedrosian and 

Craighead 2015). Lastly, we used the two final models (one for each season) to create a 

predictive map of the likelihood of Egyptian vulture occurrence over the 95% population-

level MCPs.  

 

Prioritizing conservation areas 

To understand the importance of protected areas to Egyptian vultures and rank 

their relative importance, we overlapped both the population-level UDs and the predictive 

models (PM) of habitat use with protected areas (protectedplanet 2016) and Important 

Bird Areas (IBAs) (BirdLife International 2017), and summed use of each area using the 

zonal statistics plugin in QGIS, which summarizes the values of cells (Egyptian vulture 

use) within polygons (protected areas). This resulted in two values for each protected 

area: observed use and predicted use. We then calculated the relative importance of each 

protected area and IBA in relationship to the top site in each category. We list all of the 

protected areas that fall within the 95th percentile in each category (SI 1).  

 

Results  

We collected data from 16 individuals, tagged in Turkey (n=10), Armenia (n=3), 

Ethiopia (n=2), and Djibouti (n=1). Four of these were captured in their second calendar 



 

 

25 

year, three in their third year, one in its fourth year, one in its fifth year, and six were full 

adults. Two of the individuals tagged in the Horn of Africa did not migrate, but the third 

migrated and summered in Syria, Iraq, Iran, Turkey, Armenia, and Azerbaijan—in areas 

largely overlapping with those tagged in Turkey and Armenia. In total we analyzed 

31,266 location fixes in the summer range (mean relocations/individual = 2,233 (n=14), 

range 105 – 12,281) and 49,939 location fixes in the winter range (mean 

relocations/individual = 3,567 (n=14), range 63 – 11,496) (Table 3.2). 

Individuals caught as sub-adults (years 2-4, n=9) transmitted for a mean of 15.0 

months (range 1 – 36); individuals caught and tagged as adults (5+ years, n= 7) 

transmitted for a mean 20.3 months (range 4 – 40). This is consistent with the expectation 

that adults would have higher annual survival, but is confounded by the different types of 

transmitters used. The DynaTrak transmitter (n= 1) transmitted for only 4 months, 

Ecotone transmitters (n= 3) transmitted for a mean of 7.7 months (range 3 – 16 months), 

NorthStar transmitters (n= 5) transmitted for a mean of 20.4 months (range 13 – 30), and 

Microwave transmitters (n= 7) transmitted for a mean 21.1 months (range 1 – 40) (Table 

3.2).  

 

Home ranges 

Home ranges varied greatly by individual, season, and age class. The smallest 

recorded 95% BBMM home range was 218 km2 for an adult in winter; the largest was 

125,864 km2 for a fourth year bird in summer. Home range size decreased with age; sub-

adults had larger (and more variable) home ranges (mean = 26,570 km2, SD = 36,739) 

than adults (mean = 2,853 km2, SD = 3,401) (t(10)=-2.13, p = 0.058), and nonbreeding 
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adults (mean = 3,450 km2, SD = 3,844) had larger home ranges than breeding adults 

(mean = 1,421 km2, SD = 1,419) (t(15)=-1.59, p = 0.133). Summer home ranges were 

marginally larger (mean = 19,391 km2, SD = 34,500) than winter home ranges (mean = 

4,950 km2, SD = 6,238) (t(14)= 1.54, p = 0.146).  

 

Utilization distributions 

While individual home ranges were generally very large, the core-use areas of the 

study population, as identified by the utilization distribution (UD), were roughly a 

magnitude smaller by comparison (Table 3.3). The 95% UD for the summer and winter 

were 542 and 184 km2, respectively. This was caused by overlap in home ranges of 

multiple individuals at roosting and feeding sites (Figure 3.1).  

 

Second order resource selection 

Final models for both summer and winter seasons are summarized in Table 3.4. 

All model parameters in both season models were significant based on 95% confidence 

intervals that did not intersect zero. The average Spearman-rank correlation coefficient 

across RSF bins for the summer and winter models were 0.964 (p < 0.001) and 0.891 (p = 

0.001), respectively, indicating that both models were highly effective at predicting 

Egyptian vulture resource selection. Furthermore, in the summer model, 95% of points 

withheld during k-fold cross validation fell within the top five RSF bins (ranked by 

probability of use), with 71% in the top bin; in the winter model, 97% were within the top 

five RSF bins, with 38% in the top bin (Figure 3.2). The ability of the models to 

accurately classify withheld points indicates strong support for their predictive power 
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(Boyce et al. 2002). The final predictive maps of space use within the 95% population-

level MCPs are shown in Figure 3.3.  

 

Prioritizing conservation areas 

We identified protected areas and IBAs within the 95% population-level MCPs in 

both life-stages (summer and winter) and ranked them in order of observed and predicted 

importance. After identifying the relative importance of all protected areas and restricting 

the list to the top 95th percentile sites in each category (summer observed, summer 

predicted, winter observed, winter predicted), we identified a total of 27 important IBAs 

(16 summer, 11 winter) and 24 protected areas (12 summer, 12 winter). The median IBA 

has an area of 100,000 ha (range = 4,639-1,603,000 ha), while the median protected area 

is 180,650 ha (range = 2,200-4,536,600 ha). The status of most of the IBAs has not been 

recently assessed, and for those that have, 55% have a “very high” or “high” Threat 

Score, 86% have an “unfavorable” or “very unfavorable” Condition Score, and 100% 

have a “low” or “negligible” Action Score (Table 3.5) (BirdLife International 2017). 

Finally, only 19% of the IBAs we identified list the Egyptian vulture as a “trigger 

species”—species that are either threatened with extinction or that congregate in large 

numbers within an IBA. We found no information on the status of the protected areas 

identified.  
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Discussion 

Egyptian vulture space use  

While mean individual Egyptian vulture home ranges were vast, the 95% 

utilization distributions (UD) for our population in both summer and winter seasons were 

an order of magnitude smaller (Table 3.3). This is a striking result, indicating a very high 

level of concentrated overlap in space use by individuals of the population. This is 

important, indicating that conservation actions could focus on these relatively small areas 

where Egyptian vultures congregate to feed and roost. 

In addition to documenting the specific locations of concentrated use for our study 

population from the UDs, our resource selection models predicted Egyptian vulture 

habitat use throughout our study regions. Our second-order resource selection model 

successfully identified core use areas of our study population in both summer and winter 

ranges and successfully predicted points withheld during k-fold cross validation with a 

high level of accuracy.  

In the summer model, anthropogenic factors played a large role in driving 

selection. Egyptian vultures strongly selected for proximity to highways and powerlines 

in arid areas. In particular, large metal power distribution pylons are heavily used by 

Egyptian vultures for both perching and roosting and our model indicates that their 

presence ly influences how individuals establish home ranges and core-use areas on a 

broad spatial scale. This is consistent with our observations of the species in eastern 

Turkey and Armenia. For example, we have noticed that Egyptian vultures are much 

more likely to feed at refuse dumps that have large pylons in the immediate vicinity. 

Egyptian vultures’ strong selection for proximity to highways is not necessarily because 



 

 

29 

they are using them specifically (e.g. feeding on roadkill), but rather that highways serve 

as a proxy for human modification of the environment: where there are roads, there are 

likely to be people, garbage dumps, etc. Egyptian vultures also showed strong selection 

for proximity to towns in the model. In support of this, we often see the largest 

congregations of the species in the region at refuse dumps on the outskirts of towns. 

Egyptian vultures have long been known to be human commensals to varying degrees 

(e.g. Gangoso et al. 2013), and our summer model strongly indicates that they behave 

accordingly in this region. In terms of climactic and habitat variables, Egyptian vultures 

selected for arid areas, relatively low elevations, rugged areas, low tree density, and 

grassland, desert, and savannah habitats. It is interesting that individuals showed fairly 

strong avoidance of croplands, which make up a large proportion of the available habitat 

in the region, but this may be a correlate of selection for arid regions less suitable for 

crops.  

The final winter model had some similarities and noteworthy differences from the 

summer model. While anthropogenic factors largely drove selection in summer, climatic 

factors primarily drove selection in winter. Individuals primarily selected for desert 

habitats at low elevations with low annual precipitation. They also selected for proximity 

to grasslands and, somewhat surprisingly, proximity to forests. This may be explained by 

their affinity for roosting in small patches of riparian forests in otherwise harsh deserts. 

Overall, they selected for areas with low tree density, which is consistent with Egyptian 

vultures reliance on vision to locate carrion. These habitat associations are somewhat 

different than those described for Egyptian vultures in Sahelian Africa in Oppel et al. 

(2015), which found Egyptian vultures to favor savannah over deserts and crops over 
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grassland. However, our results are consistent with the Arkumarev et al. (2014) study of 

Egyptian vultures roosting location in relationship to habitat variables in northeastern 

Ethiopia. They found more roosting in harsher, desert environs with minimal vegetation 

cover, which is consistent with our model and observations in Ethiopia, Djibouti, and 

Somalia (Buechley, Şekercioğlu and McGrady, personal observations). As in the 

summer, individuals in our study selected for proximity to powerlines and towns, 

although these factors were much less important in the winter model. Egyptian vultures 

frequently perch and roost on large metal power transmission pylons in Ethiopia, 

Djibouti, and Somalia (Arkumarev et al. 2014; Buechley, Şekercioğlu and McGrady, 

personal observations), and feed extensively at garbage dumps on the outskirts of towns 

(Buechley, Şekercioğlu and McGrady, personal observations). However, our model 

indicates that these behaviors may be less of a driving factor for resource selection in the 

winter than the summer. Although, there are many villages and nomadic herdsmen in the 

Horn of Africa—factors that we were unable to capture in the model. Based on detailed 

study of GPS locations overlayed on satellite imagery, we noticed that points often 

congregate around such small villages and cattle corrals, and we therefore believe that 

Egyptian vultures are highly human commensal in their winter range, as well. Unlike the 

summer model, they did not select for proximity to highways in the winter. This may be a 

somewhat spurious result, in that their primary winter range is in very harsh areas with 

little human development and few roads. Finally, they favored rugged areas in both 

seasons. 
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Prioritizing conservation areas 

Identifying priority conservation areas is a top goal for the conservation of the 

Egyptian vulture in the Middle East and Africa (Dobrev et al. 2015), as it is for many 

endangered species. Using both population-level utilization distributions and final model 

predictions, we highlight protected areas and Important Bird Areas (IBAs) within both 

the summer and winter regions with both observed and predicted importance for Egyptian 

vultures. The list of sites that we identify should be considered a starting point for future 

research and conservation work in these regions, not a definitive list of the most 

important areas. For example, we recommend that future research in Iran could 

investigate Egyptian vulture occurrence at Kiamaki Wildlife Refuge (the protected area 

with the top predicted importance in the summer range), while conservation actions in 

Ethiopia could focus on the Afdem-Gewane Reserve (the protected area with the greatest 

observed use). In general, the most important protected areas and IBAs we documented 

for Egyptian vultures were located in Ethiopia, Turkey, Azerbaijan, Armenia, Iran, and 

Eritrea. 

 

Protected area status 

While protected areas carry at least some political designation of protection for 

landscapes and wildlife within their boundaries, the levels of funding, stewardship, and 

enforcement can vary greatly between protected areas (Leverington et al. 2010). 

Protected areas in developing countries often suffer from lack of funding and staffing and 

evaluation of protected area status and effectiveness are often lacking (Leverington et al. 

2010), as is the case in this study. We were unable to find any reporting on the status of 
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the 24 protected areas we identified. Of the eight countries with key sites for Egyptian 

vulture conservation identified herein, four (Djibouti, Somalia, Turkey, Yemen) are 

among the least protected worldwide (Şekercioğlu et al. 2011a; Şekercioğlu et al. 2011b) 

with less than 5% of land cover falling within the World Database on Protected Areas 

(Juffe-Bignoli et al. 2014; Hsu 2016). Of the 27 IBAs we identified as important, 59% 

had no status or threat assessments at all. Of those that were assessed, the majority had 

high to very high threat scores (55%), unfavorable to very unfavorable conditions (86%), 

and low or negligible conservation actions taking place (100%) (Table 3.5). These results 

are similar to those by Horns et al. (2016), who identified and evaluated the status of 

IBAs throughout the Middle East and Africa that were used by migrant songbirds. 

Furthermore, only 19% of the IBAs we identified list the Egyptian vulture as a “trigger 

species”. Under Birdlife International’s Global IBA Criterion A1, a species should be 

listed as a trigger species for an IBA if…“[t]he site is known or thought regularly to hold 

significant numbers of a globally threatened species, or other species of global 

conservation concern” (BirdLife International 2017). Accordingly, we recommend that 

all 27 of the IBAs we identify here list the Egyptian vulture as a trigger species.  

 

Conservation recommendations 

While protected areas are an important tool in endangered species conservation, 

our resource selection models indicate that Egyptian vulture conservation must also take 

place outside of currently protected areas. Indeed, selection for anthropogenic factors, 

such as powerlines, highways, and towns, indicates that the species will not be protected 

by conservation actions in protected areas alone. To the contrary, the most important 
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immediate conservation actions should focus on widely documented acute threats, 

including dietary toxins (including poisons, lead from spent ammunition, and 

Nonsteroidal Anti-inflammatory Drugs), changing sanitary policies and management of 

dumps that are a major food source, electrocution on powerlines, and collision with wind 

turbines (e.g. Cuthbert et al. 2006, Angelov et al. 2012, Oppel et al. 2016, Blanco et al. 

2017).  

Overall, our resource selection models and field observations in wintering and 

summering areas highlight Egyptian vultures’ association with human settlements and 

infrastructure, in particular, their reliance on garbage dumps for food and their use of 

powerlines for perching and roosting. Dumps provide a major food source for many 

species, but are also likely a major source of dietary toxins (Garcia-Fernandez et al. 1995; 

Martínez-López et al. 2015). We recommend that waste management policies and 

activities be reviewed on a flyway scale with Egyptian vultures and other wildlife in 

mind. Additionally, Egyptian vultures’ reliance on large pylons indicates that these 

structures are providing a resource to the species in the form of perching and roosting 

platforms. However, this benefit may come at a considerable risk. Powerline 

electrocution and collision is known as one of the primary causes of mortality in the 

species (e.g. Angelov et al. 2012). While the large metal transmission pylons that we 

regularly see Egyptian vultures perching on in both Turkey, Armenia, Ethiopia, and 

Djibouti (Figure 3.4) are expected to pose relatively little risk of electrocution because of 

the large distances between lines (Lehman, Kennedy and Savidge 2007), we recommend 

more research to identify whether such pylons are beneficial, or actually comprise an 

ecological trap. Going forward, dangerous powerlines should be modified, while newly 



 

 

34 

constructed powerlines should use existing bird-safe designs. 

 

Conclusions 

Conservation of wide-ranging endangered species poses significant challenges. 

However, combining research on known causes of mortality with resource selection 

models and utilization distributions derived from telemetry data can help prioritize 

specific sites for conservation actions. In this case study of the wide-ranging endangered 

Egyptian vulture, utilization distributions and predictive resource selection models show 

highly concentrated space use, indicating target areas where future conservation actions 

could be focused.   
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Figure 3.1. Maps of A) the individual-level 95% Brownian bridge movement model 
(BBMM) home ranges and B) population-level utilization distribution (UD) for the 
“winter” life stage. In addition to the 95% UD, we also included the 99%, 99.9% and 
99.99% UD’s to aid in visualizing the core areas that were used by Egyptian vultures.  
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Figure 3.2. The averaged proportion of Egyptian vulture locations withheld during 5-fold 
cross validation that were classified into each RSF bin. A lower RSF bin (i.e. 1) indicates 
a low probability of use, and a higher bin (i.e. 10) indicates a high probability of use. 
Both summer and winter models predicted space use well, with more withheld locations 
falling in high bin categories. 
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Figure 3.3. Predicted Egyptian vulture habitat use within A) summer and B) winter 95% 
population-level MCPs. Note that the summer model was strongly influenced by linear 
anthropogenic features (e.g. powerlines and highways). 
 
 

 
 
Figure 3.4. Egyptian vultures strongly selected for proximity to powerlines in both 
summer and winter ranges. We observed large congregations roosting on large metal 
power transmission pylons in both regions, such as those pictured here. 
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Table 3.1. Environmental covariates included in the resource selection models.  

 

 

Table 3.2. Summary of tracking dataset. 
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Table 3.3. Home range sizes (95% Brownian-bridge movement model (BBMM)) of 
Egyptian vultures by age and season and combined utilization distribution (UD) core-use 
areas. Home range values are medians, with the inter-quartile range in parentheses. UD 
contour levels are the area within which 50%, 75%, 95%, 99% of the utilization occurred 
by the population.  
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Table 3.4. Standardized coefficient estimates (β), standard errors (SE), and 95% 
confidence intervals (CI) for covariates used in the final second-order resource selection 
model of Egyptian vulture space use. A negative β for a “distance-to” (e.g. Dist2Grass) 
metric indicates selection for proximity to that covariate.  

 
 

 

Table 3.5. Status of 27 IBAs identified as being important for Egyptian vultures within 
our study regions based on observed and predicted use.  
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Abstract 

Migrant birds face a number of threats throughout their annual cycle, including 

habitat change, persecution, collision with energy infrastructure, and climate change. A 

key challenge for the conservation of migrants is the identification of important habitat, 

including migratory concentration areas, because species survival rates may be 

determined by events in geographically very limited areas. While migrant birds differ 

extensively in their ecology, many species often congregate at the same geographic 

bottlenecks during migration. Remote-tracking technology is facilitating the 

identification of such critical habitat, although the strategic identification of important 

sites and incorporation of such knowledge in conservation planning remains limited. Here 

we identified 75 complete migration tracks from 45 individuals of an endangered, 

obligate-soaring migrant (Egyptian vulture, Neophron percnopterus), that traversed three 

continents along the Red Sea Flyway. This flyway is the second most important in the 

world, yet is perhaps the least studied globally. Egyptian vulture is an obligate soaring 

migrant and is expected to be an excellent indicator of migratory concentration areas for 

soaring birds generally. Using dynamic Brownian bridge movement models, we 

quantified migration paths and use areas to identify the most important migratory 

bottlenecks and stopover sites on the flyway. These areas each accounted for <5% of the 

overall movement range of the tracked birds, yet >20% of all tracks passed through the 

bottlenecks, and >50% of the overall vulture time spent on migration fell within the 

stopovers. The most important sites were located at the Gulf of Iskenderun (Turkey), the 

Suez Canal zone (Egypt), and the southeastern Red Sea coast and Bab-el-Mandeb Strait 

(Saudi Arabia, Yemen, Djibouti). It is discouraging, however, that none of the area within 
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the major migratory bottlenecks was protected and only <13% of the area within the 

major stopovers was protected. This demonstrates a very concerning gap in the protected 

area network for migratory soaring birds along the Red Sea Flyway. Because reducing 

threats at migratory concentrations can be a very efficient approach to protect 

populations, our work provides clear guidelines where conservation investment is 

urgently needed to benefit as many as 37 migratory soaring-bird species, including 8 

species at risk of extinction, that regularly use the Red Sea Flyway.  

 

Introduction 

Approximately 19% of all bird species are migratory, of which 11% are 

threatened or near-threatened with extinction (Kirby et al. 2008). Migrant birds face a 

number of threats throughout their annual cycle, including habitat change, persecution, 

collision with energy infrastructure, and climate change (Kirby et al. 2008). Conservation 

of migratory species is particularly challenging, because it may be ineffective if focused 

solely on one portion of the species’ range (Runge et al. 2014). If species concentrate 

within small geographic areas during migration, impacts at these sites could have 

population-level effects (Runge et al. 2014). A key challenge for the conservation of 

migratory birds, then, is the identification of important habitat throughout the annual 

cycle, including breeding and wintering grounds, as well as migratory stopovers and 

bottlenecks (Runge et al. 2014, Horns et al. 2016)1. The increasing availability and 

miniaturization of remote-tracking technologies is facilitating a boom in the study of the 

full annual cycles of migratory birds, which allows the identification of such critical 

                                                
1Migratory stopovers are areas where individuals rest, feed, or stage during migration. Migratory 
bottlenecks are areas where multiple individuals concentrate during migration due to geographical, 
meteorological, or other factors. 
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habitat (Bridge et al. 2011, Vickery et al. 2014). However, the incorporation of such 

knowledge in conservation planning remains limited (Runge et al. 2014).  

While uniquely challenging, conservation of migratory birds is critically 

important. Migratory birds perform many valuable ecosystem services (Whelan et al. 

2008), such as seed dispersal (Howe and Desteven 1979, Nathan et al. 2008), or control 

of agricultural pests (Kellermann et al. 2008, Philpott et al. 2009), and thus link spatially 

disparate ecological communities (Bauer and Hoye 2014). Detrimental effects that occur 

at any stage along the flyway and reduce the populations of migratory birds may 

therefore have ecosystem consequences across continents if migratory birds no longer 

fulfill their roles in these ecological communities. One guild of birds that has a keystone 

status (Mills et al. 1993) are scavengers like vultures, as declines in vulture populations 

can result in trophic cascades and mesopredator release (Buechley and Şekercioğlu 

2016a, 2016b) and human rabies epidemics (Markandya et al. 2008). Vultures are the 

most endangered group of birds, with nine species Critically Endangered, three 

Endangered, and four Near Threatened (BirdLife International 2017, Buechley and 

Şekercioğlu 2016a). The long-distance migrations of some vulture species (e.g. García-

Ripollés et al. 2010, Mandel et al. 2008) indicate that population declines could have 

negative consequences for ecosystems across continents connected by migrations. 

One of the vulture species that exhibits regular intercontinental migrations is the 

Egyptian vulture (Neophron percnopterus), an obligate scavenger distributed across 

southern Europe, central and southern Asia, the Middle East and Africa (BirdLife 

International 2017). In 2007, the Egyptian vulture was uplisted from Least Concern to 

Endangered due to widespread and sharp population declines, range contractions, and 
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extinctions of populations caused by inadvertent poisoning, electrocutions, collisions 

with wind turbines, reduced food availability, and persecution (Cuthbert et al. 2006, 

Virani et al. 2011, Ogada et al. 2015, Velevski et al. 2015). The Egyptian vulture has 

been the focus of considerable research and conservation effort, mostly in Europe (e.g., 

López-López et al. 2014), and India (e.g. Cuthbert et al. 2006), with some studies 

illuminating the migration routes and winter ranges of birds breeding in Europe 

(Buechley et al. In Review, Ceccolini et al. 2009; García-Ripollés et al. 2010; López-

López et al. 2014b, Meyburg et al. 2004, Oppel et al. 2015). Nonetheless, little is known 

about the status and ecology of the species in Central Asia, the Middle East, and North 

Africa, and there is little information on concentration areas during migration, which 

hinders conservation planning. Indeed one of the primary recommended actions for future 

research and conservation of the species is to identify migratory bottlenecks and 

stopovers, and then work to mitigate threats therein (Dobrev et al. 2015, Oppel et al. 

2015).  

Furthermore, Egyptian vulture is an excellent model species to identify migratory 

habitat for soaring birds generally. It is an obligate soaring migrants—meaning that it 

relies heavily on thermal or orographic uplift to migrate (Bildstein, 2006; Mandel et al., 

2008). Their migratory routes are therefore largely shaped by geographic features, and in 

particular avoidance of water crossings (García-Ripollés et al. 2010, Oppel et al. 2015), 

which are characteristics shared by many migrants (Bildstein 2006). The species is 

therefore an excellent indicator of migratory concentration areas for soaring birds 

generally, as is evidenced by observed congregations of the species at many known 

migratory bottlenecks (Shirihai and Christie 1992, Welch and Welch 1988).  
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This study was located at the intersection of Europe, Asia, and Africa, in a region 

recognized as the Red Sea Flyway (UNDP, 2006). The Red Sea Flyway is the second 

most important flyway for migratory birds in the world and the most important route for 

Palearctic birds migrating to and from Africa, yet it is perhaps the least studied major 

flyway in the world (UNDP, 2006). Well over one million migratory soaring birds of at 

least thirty-seven species regularly use this flyway, including eight species at risk of 

extinction (UNDP 2006, Welch and Welch 1988). Nearly the entire world populations of 

the Critically Endangered Northern Bald Ibis, the Critically Endangered Sociable 

Lapwing, and Levant Sparrowhawk (Accipiter brevipes) concentrate here on migration, 

as well as >90% of the lesser spotted eagle (Aquila pomarina) population, app. 60% of 

Eurasian honey zuzzard (Pernis apivorus) and the endangered steppe eagle (Aquila 

nipalensis), and app. 50% of short-toed eagle (Circaetus gallicus), booted eagle 

(Hieraaetus pennatus), and white stork (orthern Ciconia ciconia) populations (BirdLife 

International 2017, UNDP 2006). Several of these species are the focus of extensive 

research and conservation programs in Europe and Asia, yet their trajectories may be 

limited by threats faced on migration. Furthermore, approximately 50% of the global 

population of the Egyptian vulture uses the Red Sea Flyway (UNDP 2006), making this 

arguably the most important region for research and conservation of the species. 

We use data from 45 Egyptian vultures that were tracked over a period of eight 

years (2010-2017) across Eastern Europe, the Middle East and North and East Africa, 

and that migrated along the Red Sea Flyway (Figure 4.1). Using dynamic Brownian 

bridge movement models, we quantified migration paths and use areas to identify the 

most important migratory bottlenecks and stopover sites on the flyway. We then evaluate 
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the percentage of these key sites that are included in the protected area network and 

highlight gaps in protection. Because reducing threats at migratory concentrations can be 

a very efficient approach to protect populations, our work provides clear guidelines 

where conservation investment is urgently needed to benefit as many as 37 migratory 

soaring-bird species, including 8 species at risk of extinction, that regularly use the Red 

Sea Flyway.  

 
Methods 

Vulture capture and tagging 

From 2010-2016, 45 Egyptian vultures were trapped and fitted with satellite 

transmitters in Bulgaria, Greece, Turkey, Armenia, Ethiopia, and Djibouti. Tagging in 

Bulgaria and Greece, hereafter referred to as the “Balkans”, was done by the LIFE+ 

project “The Return of the Neophron” (LIFE10 NAT/BG/000152). Twenty-nine birds 

were tagged in the Balkans, the majority of which were juveniles tagged in the nest prior 

to fledging (n= 24). The other five birds were adults: three were captured with a 

manually-triggered net trap at a feeding site, and two were found poisoned in Greece and 

were tagged and released after rehabilitation. Tagging in Turkey, Armenia, Ethiopia, and 

Djibouti, hereafter simplified as “Middle East,” because all of these birds exhibited 

similar summer and winter ranges, was led by the University of Utah, USA. Sixteen birds 

were tagged in the Middle East, including seven adults and 9 sub-adults (ages 2-4). All 

birds in the Middle East were captured near municipal waste dumps, where they reliably 

congregate (Al Fazari and McGrady 2016) using padded leg-hold traps with weakened 

springs to minimize the risk of injury (Bloom, 1987). All captured birds were measured, 

checked for overall health, and were in good physical condition when released. Permits 
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were acquired for each country and year of capture.  

In the Balkans, all birds were fitted with 45g solar-powered Microwave Telemetry 

GPS transmitters, while birds in the Middle East were tagged with Microwave Telemetry, 

Ecotone Telemetry, North Star Telemetry, or DynaTrak GPS transmitters. All 45 units 

were attached as backpacks with 8 mm Teflon® ribbon, and can operate continuously for 

many years because the solar panel is sufficient to re-charge the battery. Transmitters 

weighed 24-45 g, accounting for <3% of body mass, as recommended (Klaassen et al. 

2014). Six transmitters attached in the Middle East used the GSM network to relay GPS 

fix data. The other 39 units across both tagging regions used the Argos Satellite Data 

Collection Relay System (CLS America, USA). Two units in the Middle East recorded 

positions at a temporal resolution of one point per minute; all others recorded positions 

only up to once per hour. All data were automatically downloaded and incorporated into 

the Movebank database (www.movebank.org).   

 

Processing GPS telemetry data 

Telemetry data were censored to remove erroneous locations using the “longest-

consistent track” filter in Movebank (2016). To roughly standardize the temporal 

resolution of the data across all units, we excluded all but the first location point for each 

individual in each hour from the two units that recorded data at higher resolution.  

 

Individual-level migration parameters 

To identify concentration areas during migration, we first segmented the raw 

tracking data for each individual to extract those data associated with long-distance 
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migration. We identified migration parameters (migration start date, end date, duration, 

and distance) with a method based on net displacement (ND) (Figure 4.2). ND measures 

the straight line distance between the first location (i.e. the trapping location) and all 

subsequent relocations for an individual animal (Beatty et al. 2013, Bunnefeld et al. 

2011). We calculated daily ND values for each bird with the first relocation recorded 

each day. We specifically used one point per day because we were interested in broad 

scale movement patterns to define migration phenology.   

We then fit a nonlinear model based on the three-parameter logistic growth model 

(Pinheiro and Bates 2000) to the ND values for each bird. The migration distance (δ), or 

the distance of migration between the winter and summer range, varied among migration 

events to account for individuals that returned to different wintering and/or summering 

areas each year (Bunnefeld et al 2011). In addition, the migration midpoint (θ), or the 

point at which half of the migration distance was completed, and scale parameters (φ), or 

the temporal duration of migration, also varied among migration events to account for 

heterogeneity in migration patterns among years and seasons. We identified the migration 

start date as θ - 3φ and the migration end date as θ + 3φ to correspond to approximately 

5% and 95% of asymptotic height, respectively. Although previous researchers have used 

θ ± 2φ (Beatty et al. 2013) or θ ± φ (Bunnefeld et al. 2011), the objective of this study 

was to identify important stopover areas during migration. Consequently, we wanted to 

liberally define the migration period to include all potential information on bird 

movements during the migration period.   

We conducted further visual inspection of empirical ND data and migration 

parameters from fitted models to validate migration events (Figure 4.2). Our criterion for 
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a validated migration event involved a bird moving from traditional wintering grounds to 

summering grounds or vice versa. We identified numerous immature birds that wandered 

widely throughout North Africa, which included long distance movements during the 

migratory season. We identified such forays as nonmigratory movements and excluded 

them from further analyses. In addition, we identified several vultures that initiated a 

migration event, but did not complete the migration event. For these individuals, we only 

made inferences on migration start date. We performed all operations in R, using the nls 

function (R Core Team 2017) and the adehabitatLT package (Calenge 2013).  

 

Identifying migratory stopovers and bottlenecks 

Egyptian vultures are diurnal soaring migrants that rest frequently during 

migration. At the population level, the areas that would be most important for 

conservation activities are those where one or more individuals spend a lot of time during 

migration (stopover sites) or where multiple individuals migrate through a relatively 

narrow area where they may be exposed to certain threats (bottlenecks). We used 

dynamic Brownian bridge movement models to analyze space use and corridors during 

migration, which allowed us to quantify the use of geographic areas by the tracked 

population. The Brownian bridge movement model is based on a probabilistic model of 

the movement path between relocations (Horne et al. 2007). This model uses the time 

between successive points, the uncertainty inherent in the location coordinates, and an 

uncertainty component that describes how much the animal’s trajectory deviated from a 

straight-line movement (Brownian motion variance, σ2
m), within a random walk 

framework to estimate the probability of use of a given geographic area (Horne et al., 
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2007). The Brownian bridge movement model is particularly useful for delineating 

migration tracks of animals because it produces a probabilistic estimate of the path of 

migration between points, and facilitates identification of sites used as stopovers and 

migration corridors (Fischer et al. 2013, Sawyer et al. 2009).  

The dynamic Brownian bridge movement model (dBBMM), which we use here, 

is a further refinement of the Brownian bridge movement model that identifies distinct 

movement patterns (e.g. active migration versus stopover) and assigns a variable 

Brownian motion variance along the movement path given that an animal’s behavior 

varies predictably between distinct patterns (Kranstauber et al. 2012). This classification 

is accomplished by searching over temporal “windows” of the data to identify changes in 

the amount of displacement between points. The dBBMM accurately distinguishes 

between stopover sites with local movements and long-distance movement corridors, and 

is thus ideal for evaluating avian migrations for species that do not fly nonstop such as 

diurnal soaring raptors (Palm et al. 2015). The output of the dBBMM is a utilization 

distribution (UD), which summarizes the area and relative intensity of use (Worton, 

1989). We used the UDs resulting from the dBBMM to identify migration stopover sites 

and bottlenecks throughout the study area.  

We used the migration start and end dates as identified from the individual-level 

net displacement models (including all points from the first and last day of each 

migration segment) and calculated UDs for each individual and migration based on the 

dBBMM in the move package (Kranstauber and Smolla 2015) in R. We set the grid size 

for all UD calculations to a 10km2  resolution, which provided relatively high resolution 

mapping over the very large extent of Egyptian vulture migrations (across 3 continents), 
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while maintaining computational efficiency. We set the window size and margin, which 

control the Brownian motion variance parameter, and which must be odd numbers, at 25 

and 9 subsequent hourly locations, respectively, which corresponded to a window size of 

approximately one day (Kranstauber et al. 2012, Palm et al. 2015). This choice was based 

on the biological rhythm of a diurnal soaring migrant such as the Egyptian vulture, where 

daily movements are interspersed by nocturnal rest periods of ~8 hours, and these 

window and margin sizes should thus identify changes in σ2
m both within and across days 

over the course of each migration trajectory.  

To identify migratory stopover sites, we weighted each individual UD by the 

migration duration, by multiplying all pixels in the UD by the number of days spent on 

that migration trajectory (Palm et al. 2015). This effectively converted the proportional 

UD to a common curency (number of days) that could be used across migratory journeys 

of different duration. We then summed all individual UDs to create a global UD for all 

tracked individuals over the entire study area, and normalized it so that the cumulative 

pixel values summed to 1 (Palm et al. 2015, Sawyer et al. 2009). The resulting UD 

provided an estimate of the proportional use of each 10km2 grid cell by all tracked 

individuals over the entire study area. We then identified the 50%, 75%, and 99% 

probability densities (i.e. the smallest area within which EV spent x% of time) of the UD. 

Following Palm et al., (2015), we assumed that the 50% probability were high use areas 

and the 75% probability were moderate use areas. The 99% probability effectively 

represents the range map for all Egyptian vultures tracked in this study.  

To identify migratory bottlenecks, we summed the number of migration routes—

as identified from the 99% probability densities for each individual migration 
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trajectory—that overlapped in each 10km2 grid cell over the entire study area (Sawyer et 

al. 2009). We then divided this by the total number of migration routes in the study to 

produce a raster where each cell had a value indicating the proportion of all migration 

tracks that passed through it. As many as 35% of all migration tracks intersected any 

given 10km2 grid cell. We assumed that areas with 10-20% of migratory paths were 

migration corridors (of medium importance), and >20% were migration bottlenecks (of 

high importance). While >20% intersection may not seem a high cutoff for a 

“bottleneck,” note that this represents migration tracks from Egyptian vultures tagged 

across 6 countries and three continents intersecting a relatively tiny 10km2 grid cell. To 

visualize how migratory bottlenecks differed between seasons, we subset the data by 

season and repeated the above processes. 

We used all migration paths in both stopover and bottleneck analyses, including 

those of incomplete migrations (e.g., when a bird died on migration), because we deem 

all trajectories to contribute important information about the migration ecology of the 

species. Furthermore, 16 of 45 birds were tracked for more than one migration event and 

each migration trajectory was included because many birds used different migration paths 

between seasons and years. However, although individuals contributed up to seven 

migration trajectories, this constituted just 7.7% of all migration tracks, and no individual 

had an overly large influence on the location of stopover sites or bottlenecks. 

 

Conservation gaps and priorities 

Because the inadequate protection of important migration routes is a recognized 

deficiency for long-distance migrants (Runge et al. 2014), we calculated the area and 
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percentage of Egyptian vulture use areas that fell within existing protected or recognized 

areas of importance. In this analysis, we included both protected areas (PAs) in The 

World Database of Protected Areas (IUCN and UNEP-WCMC, 2012), obtained from 

protectedplanet.net (Feb. 22, 2017), and Important Bird Areas (IBAs) (BirdLife 

International 2017). The PA database includes sites that are designated or proposed 

nationally and under regional and international agreements (IUCN and UNEP-WCMC 

2012). IBAs are recognized for their importance for birds, but do not provide any formal 

protection unless they are inscribed as protected areas in national legislation (BirdLife 

International 2017).  

 

Results 

Individual-level migration parameters 

Two birds from the Balkans died prior to migrating and two birds tagged in 

Ethiopia and Djibouti never migrated out of Africa. Of the 41 remaining migratory 

individuals, there were 22 juveniles, 7 sub-adults (2nd through 4th years) and 12 adults. 

Individual-level net displacement models identified 75 complete migration events, and 17 

incomplete events. Incomplete migration events were associated with either mortality or 

transmitter failure during migration. Of the 41 individuals, twenty-three were tracked for 

just one migration event; two were tracked for two migrations, ten for three, three for 

five, one for six, and two for seven. Because Egyptian vultures aged over the course of 

the study, our sample included 22 juvenile (1st year), 25 immature (2nd-4th years), and 41 

adult (5+ years) migration events.  
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Migratory stopovers and bottlenecks 

Egyptian vultures tracked in this study had a large range (99% probability UD) 

across Eastern Europe, the Middle East, and North and East Africa, encompassing nearly 

four million km2 (Figure 4.3). Moderate use areas (75% probability UD) were mainly 

concentrated along the eastern Mediterranean and Red Sea coasts. High use areas (50% 

probability UD) were highly concentrated along the southeastern Red Sea coast (Saudi 

Arabia and Yemen), the Sinai Peninsula (Egypt), and the Bosporus Strait (Turkey). High 

use areas encompassed just 4.7% of the overall range. Most birds did not spend more 

than a night at any given stopover site, and therefore the high use areas primarily 

represent sites that were used by many individuals during migration. 

Similarly, migration corridors (areas with between 10% and 20% of migration 

tracks) were concentrated along the eastern Mediterranean and Red Sea coasts (Figure 

4.4). Migration bottlenecks (areas with >20% of migration tracks) were very concentrated 

in a very small area representing just 0.6% of the overall range, and were located at the 

Gulf of Iskenderun (Turkey), the Suez Canal zone (Egypt), and the southeastern Red Sea 

coast and Bab-el-Mandeb Strait (Saudi Arabia, Yemen, Djibouti). There was a striking 

difference in the bottlenecks between spring and autumn, with the major bottlenecks 

located along the southeastern Red Sea coast (Saudi Arabia and Yemen) in autumn, and 

the northwestern Red Sea coast (Egypt and Israel) in spring (Figure 4.5). 

 

Conservation gaps and priorities 

Overall, 9.3% of the entire range of the tracked Egyptian vultures in this study 

(99% probability UD) was in protected areas (Table 4.1). A higher proportion of 
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moderate (11.7%) and high-use areas (12.6%) were in protected areas, indicating that 

Egyptian vultures are disproportionately utilizing the protected area network during 

migration. However, only 8.3% of migration corridors (10-20% of migration paths) and 

none (0.0%) of the migration bottlenecks (>20% migration paths) fell within protected 

areas, demonstrating an important shortcoming in the protected area network for 

migratory soaring birds along the Red Sea Flyway. Important Bird Areas (IBAs), which 

are recognized for their importance but do not receive any formal protection, covered an 

additional 6.7% of high-use areas and 13.1% of migration bottlenecks, and could provide 

a framework for increasing protection of migratory birds along the Red Sea Flyway (see 

Table 4.1).  

 

Discussion 

Our approach identified key migration concentration areas along the Red Sea 

Flyway, and revealed that only a very small proportion (<13%) of these important areas 

are currently protected. We also showed that Egyptian vultures migrating through those 

concentration areas disperse over very large breeding and nonbreeding ranges across 

Europe, Asia, and Africa, and that conservation management in these relatively small 

migration concentration areas could have a very large effect on migratory soaring birds 

and the ecosystem services they provide across three continents. 

 

Migratory stopovers and bottlenecks 

We quantitatively identified migratory stopover sites and bottlenecks (Figures 4.3 

and 4.4). Migratory stopovers provide valuable information on where Egyptian vultures 
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staged during migration, and were more dispersed over the study region than bottlenecks. 

However, migratory stopovers (Figure 4.3) overlapped extensively with migratory 

bottlenecks (Figure 4.4), because most birds did not rest for extended periods on 

migration, and areas where multiple migrations passed through a small area showed up as 

relatively high use. Migrants can be exposed to anthropogenic threats even in areas where 

they do not rest or forage, for example through collision with wind turbines or power 

lines, or through direct persecution, which is rampant around the eastern Mediterranean 

(Brochet et al. 2016). Thus, targeted conservation actions within relatively small areas 

could be highly effective if threats to soaring migratory birds can be reduced or 

eliminated in those areas. 

The most important migratory bottlenecks identified in this study are situated in 

three main areas: 1) the southeastern Red Sea coast including the Bab-el-Mandeb Strait 

(Saudi Arabia, Yemen, Djibouti), 2) the northern tip of the Gulf of Suez (Egypt), and 3) 

the eastern corner of the Gulf of Iskenderun (Turkey) (Figure 4.4). Additional important 

migratory corridors occur at the Bosporus and Dardanelles straits (Turkey) and in central 

and northern Jordan. Not all of these areas were used equally during spring and autumn 

migration: migration bottlenecks occurred at geographic barriers where birds encountered 

a water barrier they were unwilling to cross (Agostini et al. 2015). These geographic 

barriers funneled birds to different areas in spring and autumn. For example, the Egyptian 

vulture population in the Middle East exhibited a clockwise migration strategy where 

most individuals migrated southwest in the autumn through the Arabian Peninsula until 

they encountered the Red Sea coast, which they followed south until they crossed into 

Africa via the narrow Strait of Bab-el-Mandeb. In spring, the same birds typically 
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migrated northeast, and followed the opposite shore of the Red Sea via North Africa and 

the Sinai Peninsula (although some birds also returned via Bab-el-Mandeb in the spring). 

This behavior led to strong geographic differentiation between the migratory bottlenecks 

and corridors between spring and autumn. Migratory bottlenecks in spring were located 

along the western Red Sea coast, the Sinai Peninsula, southern Israel, and northern Jordan 

/ southern Syria, whereas in autumn, the major bottlenecks were located along the eastern 

Red Sea coast, the Straight of Bab-el-Mandeb, and the Gulf of Iskenderun (Figure 4.4). 

Whether the different route choice is a consequence of the visual navigation process via 

landlines (e.g., the Red Sea coast), or whether typical wind patterns over the Sahara and 

the Arabian peninsula make this clockwise migration strategy more efficient will require 

additional research (Vansteelant et al. 2017).  

 

Conservation prioritization 

By overlapping existing protected areas (PAs) and Important Bird Areas (IBAs) 

with migration stopovers and bottlenecks, we identified conservation gaps for the species 

during migration. Overall, only 11.7% of moderate use and 12.6% of high use areas 

during migration fell within the protected area network. But, as compared to 9.3% 

protection across the entire range, this indicates at least some level of focused protection 

of these important stopover sites. Discouragingly however, none of the area within 

migratory bottlenecks and only 8.1% of the area within migratory corridors was protected 

(Table 4.1). This demonstrates a very concerning gap in the protected area network for 

Egyptian vultures, as well as the numerous other soaring birds that utilize the Red Sea 

Flyway and that are known to concentrate at bottlenecks with the Egyptian vulture (e.g., 
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Hilgerloh et al. 2011, Oppel et al. 2014, Welch and Welch 1989).  

In addition to those areas that fall within the protected area network, Important 

Bird Areas (IBAs) recognize an additional 6.7% of high use areas, 6.0% of migratory 

corridors, and 13.1% of migratory bottlenecks for their importance to birds (Table 4.1). 

However, IBAs in Central Asia, the Middle east and North and East Africa are in 

particularly dire conditions, with the majority having high to very high threat scores and 

unfavorable to very unfavorable conditions, and with low to negligible conservation 

actions taking place (BirdLife International 2017, Buechley et al. In Review, Horns et al. 

2016). While IBAs are not formally protected, the IBA network along the Red Sea 

Flyway could provide a platform by which to conserve migratory birds if measures are 

taken to officially protect these sites. However, simply designating areas as protected 

does not guarantee protection or effective conservation measures either (Leverington et 

al. 2010). For effective conservation of the Egyptian vulture and other migratory soaring 

birds along the Red Sea Flyway, we encourage increased support for conservation efforts 

in migratory stopovers and bottlenecks. Our quantitative determination of migratory 

bottlenecks corroborates extensive evidence on the importance of certain sites for 

migratory soaring birds, and underscores the importance of conducting research, 

monitoring and conservation for soaring migrants at three sites in particular: 1) the 

southeastern Red Sea coast and the Bab-el-Mandeb Strait (Welch and Welch 1988), 2) 

the Suez Canal zone (Hilgerloh et al. 2011), and 3) the Gulf of Iskenderun (Oppel et al. 

2014, Sutherland and Brooks 1981). 

As a first step, we recommend initiation and/or continuation of migration 

monitoring at these major bottlenecks. Counts of birds at migratory bottlenecks can 
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provide information on the populations and trends of species, and are particularly 

valuable in areas where information on the breeding and/or wintering populations is 

sparse (Dunn and Hussell 1995), which is the case for most species using the Red Sea 

Flyway (UNDP 2006). Observations at the migratory bottlenecks identified here may 

provide the best means of estimating and monitoring populations of the Egyptian vulture, 

and could inform the status of the 36 other species of migratory soaring bird, including 8 

species at-risk of extinction, that regularly use the Red Sea Flyway. Furthermore, 

presence of ornithologists at migratory concentrations can help to identify and mitigate 

threats to species at these sites. 
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Table 4.1. Summary of the total area (km2) of Egyptian vulture use areas, and the 
percentage of each use category that  fell within protected areas (PAs) and Important Bird 
Areas (IBAs). “PAs + IBAs” shows the total area within both PAs and IBAs. “Low use” 
is the 99% probability utilization distribution (UD), “moderate use” is the 75% 
probability UD, and “high use” is the 50% probability UD. “Migration corridors” include 
areas where 10–20% of all migration paths intersected, and “migration bottlenecks” 
include areas where >20% migration paths intersected.  

 
 
 
 

 
 
Figure 4.1. Overview map for 75 complete migration events from 45 Egyptian vultures 
across Eastern Europe, the Middle East, and North and East Africa, along the Red Sea 
Flyway. All labeled countries were visited by tagged individuals (n= 38).  
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Figure 4.2.  Example plot of empirical net displacement values from an adult Egyptian 
vulture that was monitored from August 2015 to February 2017. Breeding and 
nonbreeding ranges for this individual are approximately 3,500 km apart and connected 
via regular, seasonal migrations.  
 
 
 

 
 
Figure 4.3. Utilization distributions (UDs) for all individuals in the study. Blue indicates 
low use areas (99% probability UD), yellow indicates moderate use areas (75% 
probability UD), and red indicates high use areas (50% probability UD).   
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Figure 4.4. An overview of migration paths (areas with <10% of all migration paths), 
corridors (10-20% of all migration paths), and bottlenecks (>20% all migration paths) for 
all individuals and seasons.  
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Figure 4.5. An overview of migration paths (areas with <10% of all migration paths), 
corridors (10-20% of all migration paths), and bottlenecks (>20% all migration paths) for 
all individuals in the study, split between spring and autumn seasons. Note the very 
different migratory bottlenecks between the two season.  
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