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ABSTRACT

Multiple-input and multiple-output (MIMO) technique has emerged as a key

feature for future generations of wireless communication systems. It increases the

channel capacity proportionate to the minimum number of transmit and receive

antennas. This dissertation addresses the receiver design for high-rate MIMO commu-

nications in flat fading environments. The emphasis of the thesis is on the cases where

channel state information (CSI) is not available and thus, clever channel estimation

algorithms have to be developed to benefit from the maximum available channel

capacity. The thesis makes four distinct novel contributions. First, we note that

the conventional MCMC-MIMO detector presented in the prior work may deteriorate

as SNR increases. We suggest and show through computer simulations that this

problem to a great extent can be solved by initializing the MCMC detector with

regulated states which are found through linear detectors. We also introduce the

novel concept of staged-MCMC in a turbo receiver, where we start the detection

process at a lower complexity and increase complexity only if the data could not be

correctly detected in the present stage of data detection. Second, we note that in

high-rate MIMO communications, joint data detection and channel estimation poses

new challenges when a turbo loop is used to improve the quality of the estimated

channel and the detected data. Erroneous detected data may propagate in the

turbo loop and, thus, degrade the performance of the receiver significantly. This

is referred to as error propagation. We propose a novel receiver that decorrelates

channel estimation and the detected data to avoid the detrimental effect of error

propagation. Third, the dissertation studies joint channel estimation and MIMO

detection over a continuously time-varying channel and proposes a new dual-layer

channel estimator to overcome the complexity of optimal channel estimators. The

proposed dual-layer channel estimator reduces the complexity of the MIMO detector



with optimal channel estimator by an order of magnitude at a cost of a negligible

performance degradation, on the order of 0.1 to 0.2 dB. The fourth contribution of

this dissertation is to note that the Wiener filtering techniques that are discussed in

this dissertation and elsewhere in the literature assume that channel (time-varying)

statistics are available. We propose a new method that estimates such statistics using

the coarse channel estimates obtained through pilot symbols. The dissertation also

makes an additional contribution revealing differences between the MCMC-MIMO

and LMMSE-MIMO detectors. We find that under the realistic condition where

CSI has to be estimated, hence the available channel estimate will be noisy, the

MCMC-MIMO detector outperforms the LMMSE-MIMO detector with a significant

margin.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Higher data rates and better link reliability are required by the ever-growing

demand of wireless communications. The pioneering works by Winter, Telatar,

Foschini, etc. [1–3] have inspired the wireless industry with the idea of using multiple

antennas at both the transmit and receive side, i.e., multiple-input multiple-output

(MIMO) communication. It has been shown that the capacity of a MIMO system

increases linearly with the minimum of the number of transmit/receive antennas in a

rich scattering environment [2]. This sets a strong theoretical foundation for MIMO

technology. As a result, MIMO techniques have been widely incorporated in the

current evolving wireless standards [4,5], such as 3rd Generation Partnership Project

(3GPP) Long Term Evolution (LTE), Worldwide Interoperability for Microwave Ac-

cess (WiMAX) for Wireless Metropolitan Area Networks (WMANs), IEEE 802.11n

for Wireless Local Area Networks (WLANs), etc.

Although it has been claimed that the capacity gain (also referred to as multiplex-

ing gain) of MIMO systems is up to the minimum number of the transmit/receive

antennas, the bottleneck of such a system is the complexity of the receiver. In the

perspective of computational cost, one of the most challenging tasks of the MIMO

receiver is the MIMO detection, i.e., the tasks of resolving a large number of bits that

are transmitted simultaneously per channel use. From this point of view, we propose

to use the Markov chain Monte Carlo (MCMC) approach for MIMO detection, which

is referred to as the MCMC-MIMO detector hereafter.

Another challenge in pursuing the multiplexing gain of MIMO systems is the

reliable channel state information (CSI) at the receiver. Although CSI is required
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by coherent MIMO receivers regardless of the detection algorithms, it can never be

perfectly known at the receiver in reality. Therefore, an efficient channel estimation

algorithm is desired in practical MIMO systems. The main task of this dissertation

is to address channel estimation for large MIMO systems, i.e., the case where a large

number of bits per channel use are being transmitted.

1.1.1 Theoretical Background of MIMO

Shannon capacity [6] is the most essential theoretical foundation of modern com-

munications. It claims the maximum data rate that can be transmitted over the

channel with an arbitrary small probability of error. It has been shown by Telatar

in [2] that the capacity of MIMO channels increases linearly with the minimum of the

number of transmit and receive antennas. Here, we attempt to give a brief discussion

on the MIMO channel capacity. Throughout the discussion on capacity, let us consider

the narrowband MIMO system shown in Fig.1.1. The MIMO system is expressed as

y = Hx+w, (1.1)

where x ∈ CM×1 and y ∈ CN×1 represent the input and output of the MIMO channel,

respectively. w ∈ CN×1 denotes the complex Gaussian noise with zero mean and unit

variance (i.e., the covariance matrix of w is Cw = E[ww†] = IN). Assume there is

a total power constraint ρ, i.e.,
∑M

m=1 E[xmx
∗
m] = ρ. Since the noise variance is 1, ρ

can also be interpreted as the total signal-to-noise ratio (SNR).

The MIMO channel in Fig.1.1 is represented by a N×M complex-valued matrixH

with hnm representing the channel gain from transmit antenna m to receive antenna

n. This is consistent with the quasi-static channel model in our later discussions on

MIMO channel modeling and estimation. To find out the MIMO channel capacity,

different assumptions can be made on CSI. It is convenient to use CSIT and CSIR to

represent the CSI known to the transmitter and receiver, respectively. When CSI is

not available at either the transmit side or receive side, the zero-mean spatially white

(ZMSW) model is the most common assumption. In the ZMSW model, entries of

H are assumed to be independent and identically distributed (i.i.d.) zero mean,

unit variance, and complex circularly symmetric Gaussian random variables. In

general, different assumptions and knowledge on CSI lead to different MIMO channel
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Figure 1.1. MIMO system model

capacities and space-time signaling approaches. For example, waterfilling is the

optimum signaling strategy for CSIT and uniform power allocation is the optimum

strategy for CSIR.

To show that the MIMO channel capacity increases linearly with min{M,N}, we

assume CSIT and obtain the singular value decomposition (SVD) of H as

H = UΣV†, (1.2)

where U ∈ CN×N and V ∈ CM×M are unitary matrices (i.e., UU† = IN , V
†V = IM),

and Σ is the diagonal matrix of the singular values of H (i.e., Σ = diag{σ1, · · ·σRH
}).

Note that RH is the rank of H, which also implies the number of non-zero singular

values ofH. Since the rank of a matrix will never exceed the number of columns/rows,

we have RH ≤ min{M,N}. In a rich scattering environment, H will have full rank,

i.e., RH = min{M,N}.
Substituting (1.2) in (1.1) and multiplying the result from the left by U†, we

obtain

ỹ = U†y = U†(UΣV†x+w) = Σx̃+ w̃, (1.3)

where x̃ = V†x and ỹ = U†y are referred to as transmit precoding and receiver

shaping. w̃ = U†w and w have identical distribution, since multiplying by a unitary

matrix does not change the distribution of a noise vector. Thus, the transmit pre-

coding and receiver shaping convert the MIMO channel into RH parallel independent

subchannels, as shown in Fig. 1.2.
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Figure 1.2. Parallel decomposition of MIMO channel

The parallel decomposition of the MIMO channel for a fixedH implies that MIMO

capacity equals the sum of the capacities of each individual subchannel with the

transmit power optimally allocated among these subchannels. Assume the bandwidth

of the channel is B. Thus, we have

C = max
ρi:

∑
i ρi≤ρ

∑
i

B log2

(
1 + ρiσ

2
i

)
= max

ρi:
∑

i ρi≤ρ

∑
i

B log2

(
1 + γi

)
. (1.4)

Here, ρi denotes the power allocated to the i-th subchannel. Solving the constrained

optimization problem in (1.4) by the method of Lagrange multipliers, we find the

waterfilling solution for the MIMO channel with CSIT as

ρi
ρ

=

{
1
γ0

− 1
γi

, γi ≥ γ0,

0 , γi < γ0,
(1.5)

where γi = ρσ2
i denotes the SNR associated with the i-th subchannel at full power

and γ0 is a cutoff value. The resulting capacity of MIMO with CSIT is

C =
∑
i:γi≥γ0

B log2
γi
γ0
. (1.6)

When the CSI is not available at the transmitter, i.e., in the case of CSIR, we

derives the MIMO channel capacity in a different approach. This approach is based
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on the definition of capacity, which is the maximized mutual information between the

input and output of the MIMO channel. Mathematically, this is written as

C = max
p(x)

I(x;y) = max
p(x)

(
H(y)−H(y|x)

)
. (1.7)

Note that H(y|x) is the entropy of the noise w and thus is a fixed quantity. Hence,

the capacity of the MIMO channel depends on the entropy of y, which is determined

by Cy = E[yy†] = HCxH
† + IN . Similarly, Cx denotes the covariance matrix of the

MIMO channel input. It has been shown that the entropy of y is maximized when

y is a zero-mean circularly-symmetric complex Gaussian (ZMCSCG) random vector,

which requires that the input x must be ZMCSCG as well. Thus, we have

C = max
p(x)

I(x;y) = max
Cx:Tr{Cx}=P

log2

∣∣∣IN +HCxH
†
∣∣∣. (1.8)

Note that the capacity is achieved by maximizing the mutual information overCx with

the power constraint ρ. In the CSIR case, CSI is known to the receiver only. Thus,

the waterfilling solution is not available because the transmitter cannot optimize the

power allocation without knowing the singular values of H. Intuitively, the best

solution in this case is to transmit symbols from different antennas with the same

power. The uniform power allocation leads to Cx = ρ
M
IM and the mutual information

I(x;y) = B log2

∣∣∣IN +
ρ

M
HH†

∣∣∣. (1.9)

By SVD, we find

I(x;y) =

RH∑
i=1

B log2

(
1 +

γi
M

)
, (1.10)

where γi = ρσ2
i as we defined previously.

Although MIMO promises the linear capacity growth with min{M,N}, it has not

specified how to extract such an attractive gain. In fact, the ultimate goal of this

thesis is to develop a MIMO system that approaches this gain.

1.1.2 Spatial Multiplexing vs. Spatial Diversity

The core idea behind MIMO is the space-time signal processing where the data

rate is maximized considering CSIT or CSIR approaches, and/or considering the
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diversity of multilinks to improve the channel reliability. The first approach is called

spatial multiplexing, while the second approach is referred to asspatial diversity.

Spatial multiplexing transmits independent symbols from each of the multiple

transmit antennas and thus leads to an increase in the capacity. The idea behind

spatial multiplexing is to exploit the spatial dimension, which is an additional source

brought by multiple antennas. Assume the transmit antennas are located at different

positions such that they will be assigned different spatial signatures by the MIMO

channel. Thus, a receiver with multiple antennas can separate the different signals

through their spatial signatures. For rich scattering channels with sufficiently largely

separated antennas, spatial multiplexing provides a potential multiplexing gain up to

the minimum of the number of transmit and receiver antennas. In [3], the Bell-Labs

Layered Space Time (BLAST) high-speed wireless communication scheme was first

reported to exploit the spatial multiplexing of MIMO technology. To extract the

maximum multiplexing gain/degree of freedom, the transmitted data stream is split

into M substreams and launched by the M transmit antennas simultaneously. The

received signals are mixed spatially by the MIMO channel. At the receiver, the

’mixed’ data have to be recovered by a suitable detection scheme.

Received signal power in a wireless channel fluctuates with time/frequency/space,

which is called fading. Diversity is a technique which helps to stabilize a wireless

link and combat fading. The basic idea is to create multiple copies of the transmitted

signal for the receiver over the independent fading links. When the number of the inde-

pendent links increases, the probability that all of them fade simultaneously decreases.

In single antenna systems, diversity can be picked across time or frequency. In MIMO

communications, diversity is available in an additional dimension - space. When the

transmit/receive antennas are separated far enough to provide uncorrelated links,

spatial diversity refers to the fact that the probability of losing the signal decreases

exponentially with the number of uncorrelated links. To utilize the spatial diversity

in MIMO systems, suitable code design is desired at the transmitter. Space-time

code (STC), including space-time trellis code (STTC) [7] and space-time block code

(STBC) [8], is proposed to transmit redundant copies of a data stream to the receiver.

Although the data rate remains the same as in single-input single-output systems,
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the transmission reliability is enhanced by spatial diversity.

In summary, MIMO systems can provide two types of gains: spatial multiplexing

gain and spatial diversity gain. Spatial multiplexing is able to increase the data

rate by extracting the multiplexing gain of the MIMO systems. On the other hand,

spatial diversity utilizes the space-time processing in MIMO systems to combat fading

to increase the reliability of wireless links. Also, it has been noted that there is a

fundamental diversity-multiplexing trade-off [9]. Thus, a scheme maximizing one type

of gain might not guarantee the other type of gain is maximized. In [9], Zheng and Tse

verified that in the case of CSIR and a limited block length T ≥M+N−1 (i.e., quasi-

static channel that does not change over T symbol intervals), at asymptotically high

SNR, the optimal diversity gain dopt achieved by a scheme with given multiplexing

gain r is

dopt(r) = (M − r)(N − r), , 0 ≤ r ≤ min{M,N}. (1.11)

This implies that if we use all the transmit and receive antennas for diversity (i.e.,

r = 0), we may get the full diversity gain d =M ·N and the error probability will be

proportional to ρ−M ·N .

Furthermore, Lozano and Jindal [10] argued that in the context of most modern

wireless systems and for the operating points of interest, techniques utilizing the full

degree of freedom for spatial multiplexing outperforms the spatial diversity techniques

that explicitly sacrifice spatial multiplexing gain for spatial diversity gain. However,

this conclusion might be violated in other cases if the channel model, performance

metrics, and some key system features are chosen differently.

1.2 Overview of MIMO Systems

This dissertation addresses the problem of achieving high data rates in a compu-

tationally feasible manner. Thus, two technologies that are popular for the MIMO

transmitter are adopted: BLAST architecture and bit-interleaved coded modulation

(BICM).

In 1996, the first BLAST system was proposed by Foschini et al. [3] which has

diagonal layering space-time coding with sequential nulling and interference cancelling

decoding. This is also referred to as D-BLAST in later literatures. Although D-
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BLAST is able to achieve the full spatial diversity gain, it suffers from the boundary

wastage at the start and the end of each transmit packet, which becomes significant

when the packet size is small. In 1997, vertical-BLAST (V-BLAST) [11] was stemmed

from the work in [3]. V-BLAST overcomes the boundary wastage issue of D-BLAST

by simply demultiplexing the transmitted data onto the different antennas without

further preprocessing. However, the transmit diversity is vanished such that the

diversity gain of V-BLAST will not exceed the number of receive antennas.

For fading channels, channel coding is desired to improve the reliability of wireless

communication systems. BICM is a well-known coded modulation strategy that

combines the channel coding and symbol mapping through a bit-wise interleaver.

With a soft-input channel decoder, BICM yields excellent performance over Rayleigh

flat-fading channels. The performance can be further improved if turbo-principle is

applied such that the data detection (demapping) and channel decoding are oper-

ated in an iterative manner. Here, turbo principle refers to a general approach for

combining and serially performing two or more tasks of the receiver in an iterative

manner. The idea stemmed from turbo codes [12] founded by Berrou et al. and

has been extended to many fields other than channel coding theory. For MIMO

systems, BICM necessitates a turbo-loop between the soft-input soft-output (SISO)

MIMO-detector and channel decoder. Thus the overall system performance can be

improved significantly.

To give an overview of MIMO systems and make this dissertation self-contained,

the most related techniques are introduced in this section. Let us start with BLAST

architectures and their detection algorithms.

1.2.1 The V-BLAST Architecture

The V-BLAST [11] is a layered space-time architecture originally proposed and

implemented by Bell-Labs to achieve high data rates promised by MIMO technology.

Fig. 1.3 illustrates a high-level block diagram of a V-BLAST system.

In this scheme, a single data stream is demultiplexed into M substreams, denoted

by x1,x2, · · · ,xM , and each substream is then fed to its respective transmitter. The

M independent substreams are transmitted simultaneously by all transmitter anten-

nas (i.e., they share both frequency and time). Each received signal is a superposition
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Figure 1.3. V-BLAST high-level system diagram

of the signals transmitted by all M antennas. By appropriate signal processing,

which is called MIMO detection, in general, individual symbols are recovered. The

discrete-time baseband model of the V-BLAST system can be expressed as

y =

√
ρ

M
Hx+w, (1.12)

where y ∈ CN×1 and x ∈ CM×1 denote the received and transmitted symbols,

respectively. Each symbol in x is obtained from a finite constellation A. Since we

assume that the CSI is not available at the transmitter, uniform power allocation is

adopted with a total power power constraint: E[xmx
∗
m] = 1, , 1 ≤ m ≤ M . Note

that the representation of (1.12) is the same as the that of (1.1) except for the scaling

factor
√

ρ
M

due to the normalized power for the symbol constellation. w ∈ CN×1 is

the noise vector with components drawn from an i.i.d wi ∼ N (0, 1). H ∈ CN×M

denotes the channel matrix, where hi,j is the complex channel gain between the

j-th transmit antenna and the i-th receive antenna and ρ is interpreted as the total

signal-to-noise ratio (SNR). Note that (1.12) is a narrowband baseband model. In the

case of a wideband system, OFDM can be used to obtain a set of parallel narrowband

sub-MIMO systems. Thus, presentation in (1.12) can be viewed as a snapshot of the

OFDM-MIMO system at a particular frequency (subcarrier) and at a specific instant

of time.
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In the following, assuming the channel matrixH is perfectly known at the receiver,

we discuss the various detection techniques that have been proposed for V-BLAST.

1.2.1.1 Maximum Likelihood (ML) Detector

The ML detector is the optimal receiver in terms of minimizing the bit error rate

(BER). For the system defined in (1.12), the ML detector is given by

x̂ml = argmin
x∈AM

∥∥∥y −
√

ρ

M
Hx

∥∥∥2

. (1.13)

The minimizing problem in (1.13) requires an exhaustive search over all possible

vectors of transmitted symbols. The computational complexity of such an exhaustive

search is O(Mc
M) with Mc = |A| denoting the constellation size. As a result, the ML

detector results in an exponentially growing complexity with the number of transmit

antennas. This undesired feature of the ML detector is dealt with using various low-

complexity near-optimal approaches. Sphere decoding (SD) [13] is such an algorithm

withO(Mc
3) complexity founded by binary tree-search theory. On the other hand, the

Monte Carlo Markov chain (MCMC) detector, ignited in stochastic approximation, is

of interest to me. More detailed discussion on the MCMC detector will be provided

in Chapter 3.

1.2.1.2 Sphere Detector

Due to the exponentially growing complexity of the ML detector, suboptimal

detectors with lower complexity are highly demanded. The sphere detector (SD),

also referred to as sphere decoder, is an suboptimal solution to ML detector which

avoids the exhausting search by examining the points that lie inside a hypersphere.

(x− x̂)†H†H(x− x̂) ≤ r2, (1.14)

where x̂ =
√

M
ρ
(H†H)−1H†y is the constrained ML estimate of x and r is the pre-

defined radius of the sphere. On one hand, r has to be large enough to contain the

true ML estimate which is found by

x̂ml = argmin
x∈Λ

(x− x̂)†H†H(x− x̂), (1.15)
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where Λ is the lattice defined by having each M -dimensional element x taken from a

constellation of 2Mc consecutive integers. On the other hand, r should be as small as

possible such that the hypersphere only contains a few candidates.

1.2.1.3 Linear Detectors

Linear detectors are a class of suboptimal MIMO detectors with low (linear)

complexity. In general, they are operated by applying a certain type of filter, denoted

by G ∈ CM×N , to the received signal y.

• Zero-forcing (ZF) detector To recover the desired signal from each transmitted

antenna, the ZF detector treats the signals from other antennas as interference and

suppresses them by a filter Gzf

Gzf =

√
ρ

M
(H†H)−1H†, (1.16)

which is a pseudo-inverse of the channel matrix with appropriate scaling. The output

of the ZF sector is

zzf = x+Gzfw. (1.17)

Note that, here, the desired signal x is resolved, whereas the noise termw is multiplied

by Gzf, which may lead to noise enhancement. Therefore, the poor performance at

the low SNR region is a known disadvantage of the ZF detector.

• Minimum mean square error (MMSE) detector The noise enhancement

problem of the ZF detector can be solved by the MMSE detector, where

Gmmse =

√
ρ

M
(H†H+

M

ρ
IM)−1H†. (1.18)

The MMSE detector minimizes the mean square error (MSE) E[‖Gmmsey − x‖2].

Although the MMSE detector outperforms the ZF detector at low SNR, their perfor-

mance converges to the same point, which exploits a diversity of orderM−N+1 [14].

None of them could achieve the full diversity min{M,N}.

1.2.1.4 Nulling and Canceling (NC) Detector

In contrast to the linear detectors, the NC detector uses a sequential decision-

feedback approach to detect the symbol layers one after another. Although it promises

better diversity order than the pure linear detector, the NC detector suffers from
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Algorithm 1.1: MMSE-NC with ordering

for i = 1 to M do
Gmmse =

√
ρ
M
(H†H+ M

ρ
IM)−1H† (MMSE filter);

ki = argminj 6=i{gj,j} (ordering);

z = Gmmse(ki, :)H
†y (nulling);

y = y −
√

ρ
M
H(:, ki)Q(z) (quantization and canceling) ;

removing the ki-th column of H;

end

the error propagation, i.e., an incorrect decision in the detection of a symbol adds

interference to the next symbol to be detected. The ordered NC detector [11] is a

improved version of NC detector. It detects the symbol with the highest signal-to-

interference-plus-noise ratio (SINR) first, and proceeds with the detection of the next

symbol in the same manner. This algorithms is summarized in Algorithm 1.1.

1.2.2 Soft-input Soft-output (SISO) Detectors

To combat fading channels, wireless communication systems usually use channel

coding to improve the reliability of wireless communication systems. For such a coded

system, the optimal MIMO detector has to make decisions jointly on all the coded bits

in one code block using the correlations introduced by the channel encoder. Similarly,

the channel decoder should also take the likelihood information on all coded bits into

account. Generally, the complexity of such a joint detection/decoding is prohibitive

even with reasonable coding length. BICM and turbo principle are effective means

to solve this problem in an iterative manner.

A block diagram of the transceiver structure of the proposed system is shown

in Fig.1.4. An information bit sequence b is encoded by a channel encoder (e.g.,

convolutional code) of rate R. The coded bit sequence d is interleaved according to a

permutation function Π(·). Then everyMc = log2 |A| consecutive interleaved bits are

partitioned into a group and mapped to a complex-valued symbol on the constellation

A. After inserting pilot symbols, the resulting symbol sequence is formed to a signal

matrix X ∈ CM×T and sent through the MIMO channel. Here, the first Tp columns

of X consist of pilot symbols, and the rest of T −Tp columns consist of data symbols.

Although the transmitted signal and received signal are represented by matrices in
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Figure 1.4. BICM-MIMO system diagram

Fig. 1.4, we may treat them as a result of applying (1.12) T times.

As illustrated in Fig. 1.4, the receiver is operated in an iterative manner. It

consists of three operating modules, SISO detector, channel decoder, and channel

estimator (optional). The soft information, in terms of the a posteriori probabilities

(APPs), is interchanged between the three modules. We let λ1 and λ2 denote the

output APPs of the code bits produced by the SISO detector and channel decoder,

respectively. The corresponding symbol-wise APPs are represented by µ1 and µ2

(not shown in the figure). Note that we use subscript “1” and “2” to distinguish

the APP from the MIMO detector and the channel decoder. To prevent the error

propagation, extrinsic information (after subtracting the a priori probabilities in log

domain) λe1 and λe2 are exchanged between decoder/detector. At the first iteration,

channel estimate is initialized from the pilot symbols and we term this as training

mode in the later parts of this thesis. In the successive iteration, channel is refined

by using λ2 and Y. Subsequently, Ĥ and λe2 are fed to the SISO detector for data

detection. The SISO detector generates updated symbol probabilities λ1, and the

extrinsic information λe1 is passed back to the channel decoder for data decoding. In

this way, joint SISO detection, channel estimation, and data decoding is performed

iteratively. After a predetermined number of iterations, decisions are made at the

receiver output to obtain the estimated information bit sequence b̂.

The MIMO detector is a key component at the receiver in a BICM-MIMO system.
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The task of the SISO detector is to provide the soft information of the transmitted

symbols x = [x1 x2 · · · xM ]T from the revived signal y and the channel matrix

H or its estimate Ĥ. For simplicity, we assume channel gain H is given in this section.

1.2.2.1 Symbol-wise SISO (s-SISO) detector

Instead of obtaining explicit symbol values, the s-SISO detector computes the

APPs of each transmitted symbol xm, 1 ≤ m ≤ M according to the maximum a

posteriori (MAP) criterion

µ1(xm,j)
4
= P (xm = aj|y,H) =

∑
x−m∈AM−1

P (xm = aj,x−m|y,H), (1.19)

where aj (1 ≤ j ≤ 2Mc) is the j-th constellation point. x−m denotes the (M − 1)-

dimensional vector of transmitted symbols excluding the one from the m-th antenna.

Applying Bayes’ rule to (1.19), we find

µ1(xm,j) =
∑

x−m∈AM−1

p(y|xm=aj ,x−m,H)P (xm = aj,x−m)p(H)

= p(H) · P (xm = aj) ·
∑

x−m∈AM−1

p(y|xm=aj ,x−m)P (x−m). (1.20)

In (1.20), p(H) is the probability density function (PDF) of a given channel realization

H such that it can be modeled as a common factor for all j ∈ [0, 2Mc ]. P (xm = aj) =

µe2(xm,j) and P (x−m) are symbol probabilities computed from extrinsic APP obtained

from the channel decoder. Note that we use p(·) and P (·) to distinguish the PDF for

continuous variables and the probability mass function (PMF) for discrete variables,

respectively. Thus, we have

µ1(xm,j) ∝ µe2(xm,j) ·
∑

x−m∈AM−1

p(y|xm=aj ,x−m)P (x−m). (1.21)

For the iterative receiver, it is convenient to compute the APP in log-domain. By

taking the logarithm of (1.21) on both sides, it is obvious that the extrinsic APP

required by the channel decoder is the logarithm of the second multiplier on the

right-hand side of (1.21).

1.2.2.2 Bit-wise SISO (b-SISO) detector

The SISO detector can also be operated in bit-wise, which aims at computing

the log-likelihood ratio (LLRs) of the transmitted bits. Let xm = M(dm) denote
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the symbol mapping operator, where dm = [dm,1 dm,2 · · · dm,Mc ] denotes the

bits consisting of xm. We assume that the coded bits dm,k are equally likely and

statistically independent, which is a good approximation for a sufficiently long coding

and interleaving length. The APP of dm,k, , 1 ≤ k ≤Mc is defined as

λ1(dm,k)
4
=
p(dm,k = 1|y,H)
p(dm,k = 0|y,H)

=

∑
d∈D1

m,k
P (dm,k = 1,d−m,k|y,H)∑

d∈D0
m,k

P (dm,k = 0,d−m,k|y,H)
, (1.22)

where d−m,k denotes the coded bit vector excluding dm,k and Db
m,k denotes the set of

all possible transmitted bit vector d = [d1,1 · · · d1,Mc · · · dM,1 · · · dM,Mc ]

whose m-th element at bit position k equals b ∈ {0, 1}, i.e.,Db
m,k

4
= {d|dm,k = b}.

Applying Bayes’ rule to (1.22), we find

λ1(dm,k) =
P (dm,k = 1) ·

∑
d∈D1

m,j
p(y|x=M(d),H)P (d−m,k)

P (dm,k = 0) ·
∑

d∈D0
m,j
p(y|x=M(d),H)P (d−m,k)

= λe2(dm,k) ·

∑
d∈D1

m,j
p(y|x=M(d),H)P (d−m,k)∑

d∈D0
m,j
p(y|x=M(d),H)P (d−m,k)

. (1.23)

Based on (1.21) and (1.23) , the complexity of the optimal maximum a posteriori

MAP detector increases exponentially in M because there are 2(M−1)Mc terms in the

summation.

1.2.3 Soft-MMSE MIMO Detector

To reduce the complexity of the MAP MIMO detector and harvest the gain

brought by the turbo principle, the soft-MMSE MIMO detector is proposed in the

literature. It originates from [15], which proposed an equalizer using a priori infor-

mation for single antenna systems. A similar idea has been presented in [16]. The

details of the soft-MMSE MIMO detector is summarized as follows.

Consider a V-BLAST MIMO system shown in (1.12). A linear estimator of the

transmitted symbol xm(1 ≤ m ≤M) using the observation y is given by

x̂m = a†
my + bm, (1.24)

where am
4
= [a1 · · · aN ]

T ∈ CN×1 and bm ∈ C are the coefficients of the estimator.

The optimal coefficients are given by

am = E[y · y†]−1E[y · xm], (1.25a)
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and

bm = E[xm]− a†
mE[y], (1.25b)

which minimizes the MSE [17]. Given the a priori information µ, the mean and

variance of each transmitted symbol xm, denoted by x̄m and vm, respectively, are

obtained as

x̄m =
∑
a∈A

a · P (xm = a|µm), vm =
∑
a∈A

|a|2 · P (xm = a|µm)− |x̄m|2 , (1.26)

where A denotes the set of data symbol constellation points. Using x̄m and vm to

define

E[y] =

√
ρ

M
Hx̄, (1.27a)

E[y · xm] =
√

ρ

M
vmhm, (1.27b)

E[y · y†] = IN +
ρ

M
HVH† 4

= Σm, (1.27c)

where x̄ = [x̄1 · · · x̄M ]T, V = diag[v1 · · · vM ]T, and hm is the m-th column of

the channel matrix H. Thus, the MMSE estimate x̂m is given by

x̂m = x̄m +

√
ρ

M
vmh

†
mΣ

−1(y −
√

ρ

M
Hx̄). (1.28)

Note that x̂m depends on µm via x̄m and vm. To make x̂m independent from µm, we

set x̄m = 0 and vm = 1 in (1.28) and obtain the estimates x̂m (1 ≤ m ≤M) as

x̂m =

√
ρ

M
h†
m(Σ|vm=1)

−1(y −
√

ρ

M
Hx̄|x̄m=0). (1.29)

By the Gaussian assumption [15], p(x̂m|xm=aj), j = 1, · · · , 2Mc are Gaussian ran-

dom variables with the mean νm,j = E[x̂m|xm=aj ] and the variance σm,j = E[x̂mx̂
∗
m|xm=aj ].

Using x̄m and vm, the mean and variance of p(x̂m|xm=aj) are computed by

νm,j = ajKm

√
ρ

M
f †mhm, (1.30a)

and

σ2
m,j = K2

m(

√
ρ

M
f †mhm − vm

ρ

M
f †mhmh

†
mfm), (1.30b)

where fm =
√

ρ
M
Σ−1
m hm and Km = 1

1+(1−vm)
√

ρ
M

f†mhm
.
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Finally, the soft-MMSE MIMO detector computes the LLR values of xm (1 ≤

m ≤M) by

µ1(xm,j) =
1

πσ2
m,j

exp
{
− |x̄m − νm,j|2

σ2
m,j

}
. (1.31)

Compared with the symbol-wise MAP SISO MIMO detector, the soft-MMSE

MIMO detector is a suboptimal detector whose complexity grows linearly with the

number of transmit antennas. In the meantime, matrix inversion is required while

obtaining the MMSE coefficients. The performance of the soft-MMSE MIMO de-

tector is compared with the MCMC MIMO detector in later chapters under various

situations.

1.3 Dissertation Outline and Contributions

Chapter 2 provides an overview of channel modeling and estimation in wireless

communications. Since dealing with the radio propagation is one of the challenges in

practice, this chapter presents typical mathematical/statistical channel models that

are widely adopted in the literature. The models developed in this chapter will be

used in the later chapters of this thesis. Given a model of the radio propagation,

channel estimation algorithms are developed to acquire/track the behavior of the

channel. An overview of the conventional channel estimation approaches is presented

in Chapter 2.

Chapter 3 introduces the basic MCMC-MIMO detector. At the beginning of this

chapter, general Monte Carlo integration and importance sampling are presented.

The basic properties of the Markov chain are introduced as the background of the

MCMC method as well. Two well-known MCMC algorithms, Metropolis-Hasting and

Gibbs sampling, are then presented. The detail of the MCMC-MIMO detector and a

dilemma of the MCMC detector are discussed in the later parts of the chapter.

In Chapter 4, we assume perfect CSI is known at the receiver. Two solutions are

proposed to alleviate performance degradation of the MCMC-MIMO detector in the

high SNR regimes. One is regulated-MCMC, and the other is staged-MCMC. Instead

of random initialization, regulated-MCMC initializes MCMC with some deterministic

states found through a simple linear detector. Staged-MCMC is a novel concept in

a turbo receiver. It starts the detection process at a lower complexity and increases
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complexity only if the data are not correctly detected in the present stage of data

detection. The effectiveness of the proposed methods is shown through empirical

(simulation) results.

Chapter 5 emphasizes receiver design for the high-rate MIMO system over the

block fading channel. A novel decorrelation receiver is proposed. This method breaks

the correlation between soft-decision-directed channel estimation (SCE) and MIMO

detection, to achieve an excellent performance close to that of a genie-aided receiver.

The new design is applicable to systems with a large number of transmit anten-

nas, arbitrary modulation size, unknown fading correlations, and arbitrary detection

methods. It also provides us a more realistic performance benchmark when applying

the decorrelation design to genie-aided channel estimation. By simulations, it is

demonstrated that with the decorrelation design, MCMC-MIMO detector is superior

to the state-of-the-art LMMSE-MIMO detector.

Chapter 6 addresses receiver design for the high-rate MIMO system over time-

varying fading channels. To deal with the high complexity issue of the optimal

channel estimator, a novel dual-layer channel estimator is developed. In the first

layer, a set of coarse channel estimates is obtained through a low complexity process.

The second layer takes these coarse estimates and passes them through a smoothing

(Wiener) filter that accounts for the channel variation with time. The proposed

dual-layer channel estimator reduces the complexity of the MIMO detector by an order

of magnitude at a cost of a negligible degradation. Furthermore, we note that the

Wiener filtering techniques that are discussed in this dissertation and elsewhere in the

literature assume that channel (time-varying) statistics are available. We propose a

new method that estimates such statistics using the coarse channel estimates obtained

through pilot symbols. The effectiveness of the method is shown through simulations.

The thesis is concluded in Chapter 7. Suggestions for continuation of the research

presented in this thesis are also presented in this chapter.



CHAPTER 2

CHANNEL MODELS AND ESTIMATION

Channel modeling is important in wireless communication because an efficient

channel model is essential for the system analysis, design, and development. More-

over, a correct channel model is meaningful for parameter optimization, algorithm

testing, and performance evolution of communication systems. Therefore, the first

task of the chapter is understanding the channel modeling. Initially, a study of radio

propagation is presented, and several important criteria are introduced to characterize

wireless channels. Then, we attempt to conduct typical mathematical/statistical

channel models that are widely adopted in the literature. The models developed in

this chapter will be used in the later chapters of this thesis.

We note that channel esitmation is a vital part of receivers in wireless commu-

nication systems. In order to recover the message, the effect of the wireless channel

on transmitted information must be estimated. This is often performed based on

an approximated underlying model of the radio propagation channel and developing

channel estimation algorithms that can precisely track the variation of the channel.

We present an overview of the channel esitmation approaches from the literatures in

the second part of this chapter.

2.1 Radio Propagation

In communication systems, the performance is eventually determined by the medium

carrying the message signal. The medium, referred to as the communication channel,

can be classified into two groups: wired channel and wireless channel. If a solid

connection exists between the transmitter and receiver, the channel is called a wired

channel. When a solid connection does not exist, this connection is called a wireless

channel. The wireless channel may be further categorized by the environment en-
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countered, such as indoor, urban, suburban, underwater, etc. The random and severe

behavior of the radio propagation puts fundamental limitations to the performance of

wireless communication systems. A reliable communication system has to overcome

or take advantage of the propagation characteristics subject to the relative radio

environment. Therefore, characterization and modeling of the wireless channel is an

essential step for system design and it has been studied comprehensively.

In the content of wireless communications, the simplest channel is the classical

additive white Gaussian noise (AWGN) where the channel is characterized by a flat

gain of unity and an additive statistically independent white Gaussian noise. In

realistic wireless channels, three effects of the radio propagation have to be taken into

account: path loss, shadowing, and multipath fading. Path loss refers to the reduction

of the radio frequency (RF) energy through transmission. It decays exponentially

with the distance the RF wave travels. Shadowing is the attenuation caused by

absorption, reflection, scattering, and diffraction raised from the obstacles between

the transmitter and receiver. Multipath fading is caused by the multiple reflective

paths that result in signal spread across time.

In [18], the aforementioned three effects are categorized in two fading types :

large-scale fading and small-scale fading.

• Large-scale fading represents the average signal power attenuation varying over

relatively large distance (100-1000 meters) for path loss and distances pro-

portional to the length of the obstructing object (10-100 meters in outdoor

environments and less in indoor environments) for shadowing. In general,

the large-scale fading is described in terms of a mean path loss as a function

of transmission distance and a log-normally distributed variation due to the

shadowing.

• Small-scale fading refers to the dramatic changes in signal amplitude and phase

over small variations (as small as half a wavelength) in the spatial separation

between a receiver and transmitter. Small-scale fading is often called Rayleigh

fading because if there is no line-of-sight (LOS) signal component and the

number of multiple reflective paths is large, the envelop of the received signal

is statistically described by a Rayleigh distribution.
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The emphasis of this chapter and the relevant work in the rest of this thesis are related

to small-scale fading.

Considering the transmission of a bandpass signal at carrier frequency fc with

complex envelop sb(t), the mathematical model of the transmitted bandpass signal is

given by

s(t) = <{sb(t) · ej2πfct}. (2.1)

We are interested in the received bandpass signal affected by the multipath fading.

First, we consider the case where there is no relative motion in the environment.

Assuming each path is associated with a path length li and attenuation ai, the received

signal r(t) is the superposition of the copies of s(t) through all paths,

r(t) =
∑
i

ai · s(t−
li
c
) = <

{∑
i

ai · sb(t−
li
c
) · ej2πfc(t−

li
c
)
}
, (2.2)

where c is the speed of light. Let τi =
li
c
be the delay of the received copy through

the i-path. The complex envelope of the received signal is thus

rb(t) =
∑
i

ai · e−j2πfcτi · sb(t− τi) =
∑
i

ai · e−jψi · sb(t− τi), (2.3)

where ψi = 2π fcli
c

= 2π li
λ
is the phase shift due to the time delay imposed by the

i-path and λ = fc
c
is the wavelength corresponding to the carrier frequency fc.

Now, let us consider the effect of the relative movement in the environment. The

movement changes the i-path length as ∆li = −v cosϕit, where v is the speed of the

moving object and ϕi denotes the angle of arrival (AoA) of path i with respect to the

direction of the movement. Therefore, the complex envelope of the received signal in

(2.3), affected by the movement, is given by

rb(t) =
∑
i

ai · e−j2π
l+∆li

c · sb(t−
l +∆li
c

)

=
∑
i

ai · e−jψi · e−j2π cosϕi
v
λ
·tsb(t− τi +

v · cosϕi · t
c

). (2.4)

The delay v cosϕi·t
c

introduced by the movement is relatively small and can be ignored.

Furthermore, let us introduce the Doppler frequency fd = fc·v
c

= v
λ
and the Doppler

shift νi = fd cosϕi. Then, (2.4) is simplified to

rb(t) =
∑
i

ai · e−jψi · ej2πνitsb(t− τi) (2.5)
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Equation (2.5) can be interpreted as a system with time-variant impulse response

h(t, τ) =
∑
i

aie
−jψiej2πνitδ(t− τi) (2.6)

where δ(i) denotes the Dirac delta function, which has δ(i) = 1 when i = 0 and

δ(i) = 1 when i 6= 0.

Eq. (2.5) indicates that the multipath fading manifests itself in three aspects:

• The amplitude attenuation and the phase shift (Ai = ai · e−jψi)

• The delay of the envelope (τi)

• The carrier frequency shift (νi)

The first two aspects are related to the delay spread, which is the determined topology

of environment, and it is often characterized by the delay spread.

2.1.1 Frequency-Selectivity and Delay Spread

Let us first focus on the effect of the delay spread introduced by multipath prop-

agation; i.e., assume νi = 0. This reduces (2.5) to

rb(t) =
∑
i

Ai · sb(t− τi) = h(t) ∗ sb(t). (2.7)

where

h(t) =
∑
i

ai · e−jψi · δ(t− τi) =
∑
i

Ai · δ(t− τi). (2.8)

This can be viewed as a time-invariant linear system. In frequency domain, the

transfer function of the channel is

H(f) =
∑
i

Ai · e−j2πfτi . (2.9)

The effect of the time delay is indicated by delay spread. Delay spread, often

represented by the maximum excess delay τmax, equals the difference between the

arrival of the first and the last component of the received signal associated with a

single transmitted pulse. The effect of delay spread can be characterized by comparing

τmax with the symbol interval Ts. If τmax � Ts, it is said that the channel is

frequency-flat, since there is no frequency attenuation due to the delay spread. In
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this case, all copies of the received signal through different paths arrive within the

one symbol interval and they are not resolvable. On the other hand, when τmax > Ts,

the channel is frequency selective and suffers from intersymbol interference. As a

result, the channel is referred to as ISI channel. In the frequency selective/ISI channel,

multipath components are resolvable at the receiver and are compensated for through

the channel equalizer.

Although the equalizer is desired for the frequency selective channel, the OFDM

technique is able to convert the frequency selective channel into parallel independent

frequency flat channels if the subcarrier spacing is appropriately selected. Therefore,

in the following discussion of this dissertation, we assume the channel is frequency

flat, and the channel estimation algorithm is designed to capture the time variation

of channel gain for each subcarrier.

2.1.2 Time-Selectivity and Doppler Spread

We investigate the effect of Doppler spread due to the relative motion in the

environment. To simplify the analysis, we assume the delay spread is relatively small

such that it may be ignored, i.e., sb(t − τi) ≈ sb(t). Hence, the complex envelope of

the received signal is expressed as

rb(t) = sb(t) ·
∑
i

Ai · e−j2πνit = sb(t) · h(t). (2.10)

Eq.(2.10) implies that the effect of Doppler shift results in a multiplicative function

h(t) =
∑
i

Ai · e−j2πtνi . (2.11)

Here, h(t) is often referred to as complex gain (or channel gain). If a single tone signal

(at f0) is transmitted through this channel, the received signal would be spread within

the interval [f0 − fd, f0 + fd]. This is called frequency spread, and it is determined

only by the velocity of the motion in the environment. Similar to the discussion on

(2.9), the attenuation of the channel due to phase shift is different at different times,

i.e., time-varying. This is called the time-selectivity of the multipath channel. The

product of the Doppler frequency and symbol time fdTs, called normalized Doppler

frequency, is a widely accepted indicator of the time-selectivity.
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In Table 2.1, we present a few relevant (important) parameters from in LTE [19]

and WiMAX [20]. For the simulation in the later chapters, we set fdTs = 0.01 ∼ 0.02

for a relatively fast time-varying channel according to the values listed in this table.

2.1.3 Coherence Time and Coherence Bandwidth

As discussed previously, the delay spread in the time domain causes the frequency-

selectivity, while the Doppler spread in the frequency domain introduces the time-

selectivity. If both kinds of spread are present, the channel is dual-selective.

The Coherence bandwidth Wc is defined as the frequency bandwidth over which

the correlation between two samples of the channel response taken at the same time

but different frequencies falls bellow a predefined value. An appropriate value of Wc

is given by

Wc '
1

τmax

. (2.12)

The Coherence time Tc is defined as the period of time over which the fading

process is correlated (or equivalently, the period of time after which the correlation

between two samples of the channel response taken at the same frequency but different

time instants drops below a certain predetermined threshold). The coherence time is

related to Doppler spread fd by

Tc '
1

fd
. (2.13)

Comparing the Coherence time Tc to the symbol/frame duration T provides two

widely used concepts [21]:

• when T � Tc, the channel is said to be slow fading and approximated as

constant over T

• when T is comparable to Tc, the channel is said to be fast fading or time-varying

over T .

Table 2.1. The normalized Doppler frequency in LTE and WiMax

Standard Ts (µs) fd fdTs

LTE 66.7 5 - 900 0.0003 - 0.06
WiMax 102.4 5 - 300 0.0005 - 0.03
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In the latter case, it is necessary to consider the variation of the fading channel from

one symbol interval to the next. It is done by taking a specific channel model and

its correlation properties depends on the particular propagation environment and the

underlying communication scenario.

2.2 Channel Modeling

In general, the deterministic modeling of the multipath fading channel requires

the path delay τi, phase shift ψi, and Doppler frequency νi associated with each path.

This leads to a difficult model to work with. Simpler methods are obtained through

statistical description of channels. For example, in the presence of delay spread, the

channel H(f) given by (2.9) can be modeled as a Gaussian random process in the

frequency domain. In the presence of Doppler spread, the channel h(t) given by (2.11)

can be modeled as a Gaussian random process in the time domain. If both kinds of

spread are presented, the time-variant transfer function of the channel H(t, f) can be

modeled as a Gaussian random process in both time and frequency domains.

2.2.1 Rayleigh and Rician Fading

In the absence of a LOS component, the complex channel gain is expressed in polar

coordinates, i.e., h(t) = r · ejθ. The channel fading amplitude r can be viewed as a

random variable derived from r =
√
x21 + x22, where x1 and x2 are two zero-mean i.i.d.

random variables with the variance σ2
h. Accordingly, r has a Rayleigh distribution

with the PDF [22]

pr(r) =
r

σ2
h

e
−r2

2σ2
h , (r ≥ 0), (2.14)

where σ2
h is the variance of the complex Gaussian random process h(t), i.e.,

σ2
h =

1

2
E[|h(t)|2]). (2.15)

The phase shift θ has uniform distribution over [0, 2π), i.e.,

Pθ(θ) =
1

2π
, 0 ≤ θ < 2π. (2.16)

This is called Rayleigh fading.

In the presence of the LOS component, the channel fading amplitude r is modeled

as r =
√

(x1 + A)2 + x22, where i.i.d. random variables x1, x2 ∼ N(0, σ2
h) and A ∈ R
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is the amplitude of the LOS component. Thus, r has a Rician distribution and the

PDF of r is given by

pr(r) =
r

σ2
h

e
− r2+A2

2σ2
h · I0(

A · r
σ2
h

), r ≥ 0, (2.17)

where I0(·) is the zeroth-order modified Bessel function of the first kind. The Rician

distribution is often described in terms of a parameter K, which is defined as the

ratio between the power of the LOS component and the variance of the multipath

component, i.e., K = A2

2σ2
h
, or in decibels

K|dB= 20 log
( A√

2σh

)
. (2.18)

K is often referred to as the Rician factor to specify the Rician distribution. Note

that Rayleigh distribution is a special case of Rician distribution for K = 0.

2.2.2 Autocorrelation and Power Spectrum Density

A Gaussian random process is characterized by its mean and autocorrelation

function. Equivalently, the same information is carried by the power spectrum of

the process. Given a random channel with the impulse response h(τ, t), where t is

the time when the impulse is applied, its autocorrelation is defined as

γh(τ1, τ2; t,∆t) = E[h∗(τ1, t)h(τ2, t+∆t)], (2.19)

Most channels in practice are wide-sense stationary (WSS), where the joint statistics

of the channel measured at two different times t and t + ∆t depend only on the

time difference ∆t. Moreover, if the channel has uncorrelated scattering, i.e., the

channel responses associated with the multipath component of delay τ1 and delay τ2

are uncorrelated, the correlation function in (2.19) can be simplified as

γh(τ ; ∆t) = E[h∗(τ, t)h(τ, t+∆t)], (2.20)

where γh(τ ; ∆t) is the average output power associated with the channel as a function

of the delay τ = τ1 = τ2. This is called the wide-sense stationary uncorrelated

scattering (WSSUS) model.
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For ∆t = 0,γh(τ)
4
= γh(τ ; 0) is defined as the power delay profile or multipath

intensity profile [23]. Given γh(τ), the average and root mean square (RMS) delay

spread are typically defined as

µτmax =

∫∞
0
τγh(τ)dτ∫∞

0
γh(τ)dτ

, (2.21a)

and

στmax =

√∫∞
0
(τ − µτmax)

2γh(τ)dτ∫∞
0
γh(τ)dτ

. (2.21b)

The typical delay profiles specified in 3GPP LTE are summarized in Table 2.2.

In the case of Doppler spread only, τ = 0 in (2.20). Hence, we define

γh(∆t) = E[h∗(t)h(t+∆t)]. (2.22)

The power spectral density (PSD) or power density spectrum of the channel Doppler

spread is obtained by taking the Fourier transform of γh(∆t)

Sh(ν) =

∫ ∞

−∞
γh(∆t)e

−j2πν∆td∆t. (2.23)

Next, we present the autocorrelation function and the PSD of Jakes’ Model [24].

Jake’s Model is widely used in the literature and standards. It is obtained by taking

the following assumption. In the situation where a receiver with an omnidirectional

antenna is moving with a speed v, and a large number of reflections of the transmitted

signal arrive at the receive antenna from all directions with the same probability, one

will find that [24]

Sh(ν) =


2σ2

0

πfd
√

1−(ν/fd)2)
, |ν| ≤ fd,

0, |ν| > fd,
(2.24)

Table 2.2. Delay power profiles of the LTE channel models

Model Number of paths στmax τmax

Extended Pedestrian A (EPA) 7 45 ns 410 ns
Extended Vehicular A (EVA) 9 357 ns 2.51 µs
Extended Typical Urban (ETU) 9 991 ns 5 µs
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where 2σ2
0 is the total power at the receiving antenna. The spectrum given by (2.24)

is often called Jakes’ PSD, and sometimes referred to as Clarke’s PSD, since it was

first derived by Clarke [25].

Taking the inverse Fourier transform of Sh(ν), the autocorrelation function of

Jakes’ model is obtained by

γh(∆t) = 2σ2
0J0(2πfd∆t), (2.25)

where J0(·) is the zeroth-order Bessel function of the first kind, and fd is the Doppler

frequency shift.

In Fig. 2.1, the PSD and the autocorrelation function of Jakes’ Model are illus-

trated for fd = 100 Hz and 2σ2
0 = 1.

2.2.3 MIMO Channels

In MIMO communication systems, the spatial characteristics of the radio channel

have significant effect on the system performance. The large MIMO gain is achieved

when the spatial correlation between the gains among antenna pairs is low. Thus, ap-

propriate antenna separation or antenna arrays with polarization in orthogonal/near

orthogonal orientations are required. In this thesis, it is assumed that there is no

spatial correlation. This assumption is valid if the antenna spacing is greater than

half a wavelength of the carrier and the scattering environment is rich in multipaths.
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Figure 2.1. PSD and autocorrelation function of Jakes’ model
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An M × N MIMO system is presented in Fig.1.3. From the system-level per-

spective, the linear time-variant MIMO channel is represented by an N by M matrix

as

H(t, τ) =


h11(t, τ) h12(t, τ) · · · h1M(t, τ)
h21(t, τ) h22(t, τ) · · · h2M(t, τ)

...
...

. . .
...

hN1(t, τ) hN2(t, τ) · · · hNM(t, τ)

 , (2.26)

where hij(t, τ) is the time-variant impulse response of the channel between the j-th

transmit antenna and the i-th receive antenna. In the absence of spatial correlation,

the elements hij(t, τ) are modeled as a set of statistically independent random pro-

cesses. To be more specific, each hij(t, τ) is an i.i.d complex Gaussian process with

zero mean and unit variance.

For a multipath fading channel,

hij(t, τ) =
L∑
l=1

al(t)e
−j2πfcτl(t)δ(t− τl(t)), (2.27)

where L is the number of multipath components, al(t) and τl(t) are the complexed-

valued attenuation and the excess delay of the l-th component, and fc is the carrier

frequency.

As in the case of single links, MIMO channels may also be characterized as

frequency-selective or frequency-flat by comparing the maximum delay with the sym-

bol duration. If the maximum delay is small compared to the symbol period, the

dependence on τ vanishes. As a result, the channel is frequency-flat, and the channel

impulse response is reduced to a complexed-valued gain. On the other hand, if the

channel is time-invariant, the time index t of hij(t, τ) is omitted.

However, due to the mobility of the transmitter, receiver, and environmental

scatterers, wireless channels are always time varying. To develop channel estimation

algorithms, the quasi-static assumption is the most common one in the literatures.

It assumes that the channel gain is constant in a block of symbols and changes

independently in the next block. This is often referred to as block fading.

A more realistic channel model that is considered in this thesis is the continuous

flat fading channel according to the Jakes’ model. As it has been discussed, the time
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variation of a flat fading wireless channel can be captured by the normalize Doppler

shift fdTs. The autocorrelation of hij (0 ≤ j < M , 0 ≤ i < N) is given by

γh(∆t) = E[hij(t)h
∗
ij(t+∆t)] = J0(2πfd∆t), (2.28)

Note that the Doppler frequency shift fd is assumed to be the same for different

antenna pairs.

2.3 Channel Estimation

Channel estimation/acquisition is a major challenge for wireless communications

employing coherent reception [26]. It becomes more critical in MIMO systems because

the promising capacity of MIMO channels relies on the known CSI. Typically, the

CSI is estimated by using pilots or training symbols known at both the transmitter

and receiver. This technique is often called the pilot symbol assisted modulation

(PSAM) technique, and it has been widely adopted because of its feasibility and low

complexity for implementation. Solid analytical studies on PSAM technique have

been provided by [27, 28], etc., for single antenna systems over frequency-flat fading

channels. Extended discussions on PSAM for MIMO systems can be found in [29–31].

The optimal training sequence for frequency-flat quasi-static MIMO channels consists

of mutual orthogonal pilot symbols [29]. The channel estimation by means of least

square (LS) or linear minimum mean-square-error (LMMSE) approaches are studied

in [29,31] for quasi-static fading channels, and in [32] for time-varying fading channels.

The simple implementation of PSAM technique is at the expense of the reduction in

spectral efficiency. However, the spectrum is a limited resource such that spectral

efficiency is one of the most important concerns a system designer should account for.

Hence, the emphasis of this work is to improve the channel estimation performance

constrained to the equal power training sequence with minimum training length.

More powerful channel estimators can be developed by taking advantage of the

turbo principle and devising methods that detect data and channel iteratively. The

turbo principle in wireless communications refers to a general approach for combining

and serially performing two or more tasks of the receiver in an iterative manner. The

idea originated from turbo codes first presented in 1993 [12] and has been extended to

many fields other than channel coding theory. The quality of the channel estimation
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can be improved through iterations by taking advantage of the feedback information

from the channel decoder as the uncertain reference signal for channel estimation.

In this manner, the channel estimator is referred to as the decision-directed (DD)

channel estimator. This method can be further categorized into a hard-DD (HDD)

channel estimator and soft-DD (SDD) channel estimator according to the form of the

feedback information used for channel estimation.

Iterative channel estimation and data detection for quasi-static MIMO channels

has been discussed in [33, 34]. An analytical study on iterative data detection and

channel estimation for a frequency-flat quasi-static channel has been developed by

Buzzi et al. in [34]. However, this analysis only works for HDD channel estimation

with binary phase-shift keying (BPSK) modulation. To the best of our knowledge,

much of the available literature on receiver design is limited to the MIMO system

using BPSK or quadrature phase-shift keying (QPSK) for data transmission, and

claims that the extension to general modulation is straightforward. However, the

empirical or theoretical analysis for such an extension is in the absence.

For the time-varying channel, the DD channel estimation algorithm has been pro-

posed in [35] for single antenna systems transmitting BPSK symbols over a frequency-

flat time-varying channel. This algorithm was extended to QPSK transmission by Niu

and Ritcey in [36]. The important observation in [36] is the fact that for quadrature

amplitude modulation (QAM) constellations, the underlying correlation matrix of

the channel estimator is data dependent, and thus, its inverse has to be calculated

at every channel use. This, clearly, adds significant complexity to the receiver. The

turbo receiver and DD channel estimator were extended to MIMO channels in [37–39].

In their works, however, they take the decision values at the channel decoder output

as the actual transmitted symbols, i.e., ignoring possible errors in the decisions. This

inevitably leads to some loss in performance of the receiver.

The aim of this dissertation is to address a number of key technical challenges in

MIMO receiver designs that have not yet been reported. We emphasize joint data de-

tection and channel estimation algorithms for high-rate/large MIMO communication

systems. As discussed above, we note that the error propagation in turbo loops is a

serious problem that has to be dealt with. In particular, it becomes more pronounced
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in large MIMO systems, i.e., MIMO systems with a large number of transmit antennas

and/or modulation sizes. The challenges of developing robust joint channel estimation

and data detection algorithms for large MIMO systems are addressed in Chapters 5

and 6, for the cases of quasi-static and time-varying channels, respectively.

In Chapter 5, we develop a SDD channel estimation (SDD-CE) that generates

a linear MMSE channel estimate based on the soft information of the transmitted

symbols obtained from the channel decoder. The proposed SDD-CE provides robust

channel estimation for large MIMO systems by taking into account the uncertainty

of the data symbols. We also propose a SDD-MCMC detector that combines the

SDD-CE with a MCMC detector to achieve near optimal performance for large MIMO

systems. Furthermore, based on the SDD-MCMC detector, we develop a decorrelation

MCMC detector, termed DEC-MCMC, to further reduce the correlation between the

channel estimate and the random samples generated by the Gibbs sampler (GS). Our

results demonstrate that DEC-MCMC can better predict the channel estimation error

and thus yield superior performance to SDD-MCMC, especially under moderate or

fast fading scenarios. In addition, to address the complexity issue of MIMO detectors

for large systems, we propose an adaptive MCMC detector, termed ADA-MCMC, to

control the detection complexity by adjusting the parameters of the GS according to

the channel estimation error at each iteration of the proposed turbo loop. For MIMO

systems with 64QAM modulation, our results reveal that ADA-MCMC provides

comparable performance to its nonadaptive counterpart with a complexity reduction

of 50% or more.

In Chapter 6, we follow the philosophy of [40] and [33] and use soft decisions

from the channel decoder to combat the error propagation problem in time-varying

channels. We develop the optimal Wiener filter (OWF) for time-varying MIMO

channels. However, we note that when the system is large, the complexity of OWF

may be unaffordable in practice. Hence, we develop a near optimum channel estimator

with a much lower complexity. This method obtains the channel estimate through a

two-step procedure that we refer to as dual-layer. In the first layer, a set of coarse

channel estimates, for all time instants t, is obtained through a low complexity process

which ignores the channel correlation coefficients. The second layer takes these coarse
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estimates and pass them through a smoothing (Wiener) filter that accounts for the

channel correlation coefficients. This procedure, which we refer to as the dual-layer

Wiener filter (DLWF) channel estimator, is somewhat similar to the channel estimator

of [38] and [39]. However, there is a difference. While in [38] and [39] the hard

decisions of data symbols from the channel decoder are used to obtain the coarse

estimates of the channel, we propose to use soft estimates of the data symbols. Our

simulation studies, presented in Chapter 6, show that this modification makes a huge

difference in performance.

Another contribution of this thesis is the introduction of MIMO MCMC detectors

as an integral part of the developed turbo receiver. Our extensive simulations reveals

that, in turbo receivers, the use of the MIMO MCMC detector offers significant gains

over the more common detectors, such as soft-MMSE MIMO detectors. In this thesis,

we show that part of this gain comes from the fact that the MCMC MIMO detector

is more robust to channel estimation than is the soft-MMSE counterpart.



CHAPTER 3

MCMC DETECTOR WITH KNOWN CSI

As discussed in Chapter 1, the optimal MIMO detector, known as the maximum

likelihood (ML) detector, has a complexity that grows exponentially with the number

of bits per channel use. To avoid this complexity, researchers have proposed a

number of linear MIMO detectors, such as ZF equalizer, MMSE equalizer, and

MMSE equalizer with successive interference cancellation (SIC). Details of these

detectors were presented in Chapter 1. These methods reduce the complexity of

detectors at the cost of a significant loss in performance. Meanwhile, to achieve

near-capacity performance, more elegant detectors were proposed. The list sphere

decoding (LSD) [41] and other tree search methods [42] form a class of detectors

whose goal is to select a subset of the bit combinations at each channel use as a

candidate list that is used for the computation of the LLR values. The candidate

list here is obtained through a deterministic approach. Although the size of the list,

here, may be significantly smaller than the signal space (the number of all possible

bit combinations), it still grows exponentially with the number of bits per channel

use [42].

The Markov chain Monte Carlo (MCMC) method [43] is an alternative technique

that may also be used to generate a candidate list L such that x ∈ L yields small

values of ‖y −
√

ρ
M
Hx‖2 [44–46]. This method is different from the tree-search

methods in two ways: (i) it is a stochastic search; (ii) the size of L does not grow

exponentially with the number of bits per channel use. In fact, the complexity of the

MCMC-MIMO detector only grows slightly faster than linear.

The emphasis of this chapter is on the mathematical background of the MCMC

method and the MCMC that we use for the MIMO detector. The rest of this chapter
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is organized as follows. Section 3.1 introduces the Monte Carlo approximation and

importance sampling. Section 3.2 presents the properties of the Markov chain, such

as the irreducibility, aperiodicity, and basic limit theorem as a fundamental theorem

for the MCMC method. Section 3.3 introduces two examples of MCMC method:

Metropolis-Hasting algorithm and Gibbs sampling. The latter is the kernel of the

original MCMC-MIMO detector which is elaborated in Section 3.4.

3.1 Monte Carlo Method

In the context of this thesis, the first “MC” in MCMC stands for the Monte

Carlo method, which originates from the Monte Carlo approximation in computing

an integral and the related important sampling that is discussed below.

3.1.1 Monte Carlo Approximation

The problem of the ML detector in (1.13) may be viewed as an optimization

problem in the form of

x̂ = argmin
x∈(a,b)

f(x). (3.1)

On the other hand, the MAP detector in (1.19) can be thought of as an integration

problem as

θ =

∫ b

a

g(x)f(x)dx. (3.2)

When the underlying functions in (3.1) and (3.2) are simple, the solutions are often

obtained analytically. However, when the problem is too complicated to obtain a

closed-form solution, Monte Carlo approximation is an alternative option often used.

The key idea of Monte Carlo approximation is presented as follows.

For the integration problem in (3.2), if f(x) satisfies

1. f(x) ≥ 0, x ∈ (a, b) and

2.
∫ b
a
f(x)dx = C <∞,

then f∗(x) = f(x)
C

can be viewed as a PDF defined over the interval (a, b). Thus, the

integral in (3.2) is equivalent to

θ =

∫ b

a

Cg(x)f∗(x)dx = CEf∗ [g(x)]. (3.3)



36

The right-hand side of (3.3) is the excepted value of g(x) over distribution f ∗(x)

scaled by the unknown constant C. Monte Carlo approximation suggests drawing a

large number of samples (x1, x2, · · · , xNs) from f ∗(x) and evaluating θ as

θ̂ = C
1

Ns

Ns∑
i=1

g(xi). (3.4)

By the law of large numbers, it is obvious that θ̂ → θ as Ns → ∞ , i.e., the

approximation will approach the true value of the integral if a large number of samples

is evaluated.

For the optimization problem in (3.1), Monte Carlo approximation is more straight-

forward since it can be represented by

x̂ = argmax
x∈(a,b)

f ∗(x). (3.5)

Given the samples from f ∗(x), x̂ can be directly estimated by finding the higher

density area of x (e.g., plotting the histogram of samples and locating the peak).

3.1.2 Importance Sampling

Despite being called importance “sampling”, importance sampling has nothing to

do with drawing samples. It refers to a MC method of performing the integral in

(3.2). To be more specific, importance sampling is a variance reduction technique

that is commonly used for Monte Carlo approximation.

Instead of drawing samples from the distribution f∗(x), the samples are alterna-

tively drawn from a proposal distribution q(x) and the integral in (3.2) is computed

by the importance sampling method defined as follows.

Given {xi}Ns
i=1 are i.i.d. samples drawn from the proposal distribution q(x), θ =∫ b

a
g(x)f(x)dx can be approximated by

θ̂ = C · 1

Ns

Ns∑
i=1

g(xi)w(xi), (3.6)

where w(x) = f∗(x)
q(x)

is called the weighting factor.
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Eq.(3.6) is obtained from applying Monte Carlo approximation to

θ =

∫ b

a

g(x)
f(x)

q(x)
q(x)dx

=

∫ b

a

g(x)
Cf ∗(x)

q(x)
q(x)dx

= CEq{w(x)g(x)}. (3.7)

Obviously, (3.6) is an unbiased estimate since θ̂ → θ as Ns → ∞. Moreover, the

variance of theta can be calculated as

VARIS =

∫ b

a

g2(x)
f(x)

q(x)
f(x)dx− θ2. (3.8)

Comparing to the variance of Monte Carlo approximation:

VARMC =

∫ b

a

Cg2(x)f(x)dx− θ2, (3.9)

we have

VARMC − VARIS = C

∫ b

a

g2(x)
[
1− f ∗(x)

q(x)

]
f(x)dx. (3.10)

This implies that when q(x) satisfies q(x) ≥ f ∗(x), VARMC > VARIS, i.e., the variance

from importance sampling is less than the one from Monte Carlo approximation. In

particular, if q(x) = g(x)f(x)
θ

, (3.8) implies that VARIS = θ
∫ b
a
g(x)f(x)dx − θ2 =

θ2 − θ2 = 0. Hence, by choosing q(x) = g(x)f(x)
θ

, the variance of importance sampling

is minimized. Although the “optimal” distribution may not be available, since θ is

the unknown quantity to be estimated, it implies that the variance of importance

sampling can be significantly reduced by identifying a distribution that is a good

approximation to q(x) = g(x)f(x)
θ

.

Importance sampling requires the samples can be drawn efficiently from q(x)

or form an approximation to q(x). In addition, the weighting factor w(x) has to

be evaluated at the sample points {xi}Ns
i=1. While in most applications, standard

importance sampling is not available because the weighting factor w(x) = f∗(x)
q(x)

cannot

be evaluated in closed-form. In practice, f(x) and q(x) are often known up to a

constant, i.e., f̃(x) = zf · f ∗(x) where zf =
∫
f̃(x)dx and q̃(x) = zq · q(x) where
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zq =
∫
q̃(x)dx. In this manner, the weighting factor of importance sampling can be

expressed as

w(x) =
f ∗(x)

q(x)
=

f̃(x)/zf
q̃(x)/zq

=
f̃(x)/q̃(x)
1
zq

∫
f̃(x)dx

=
f̃(x)/q̃(x)∫

f̃(x)/q̃(x)(q̃(x)/zq)dx

=
w̃(x)∫

w̃(x)q(x)dx
, (3.11)

where w̃(x) = f̃(x)
q̃(x)

is called the normalized weighting factor, and the integral in the

denominator can be evaluated by Monte Carlo approximation as well. Accordingly,

the following procedure may be used to evaluate (3.2).

If {xi}Ns
i=1 are i.i.d. samples draw from a proposal distribution q(x), then θ can be

approximated by

θ̂ = C · 1

Ns

Ns∑
i=1

g(xi)ŵ(xi), (3.12)

where ŵ(xi) =
w̃(xi)

1
Ns

∑Ns
i=1 w̃(xi)

is the Monte Carlo approximation of the weighting factor

w̃ = f̃(x)
q̃(x)

.

3.2 Markov Chain Fundamentals

The key issue while applying Monte Carlo approximation is to draw samples from a

desired distribution. MCMC [47] is a method used to draw samples from a proposal

distribution by creating a Markov chain. Thus, it is necessary to understand the

fundamentals on the Markov chain before we introduce MCMC-MIMO detection.

Definition 3.1 Let P be a k × k matrix with elements {Pi,j : i, j = 1, · · · , k}. A

random process (X0, X1, · · · ) with finite state space S = {s1, · · · , sk} is said to be a

Markov chain with transition matrix P, if for all n, all i, j ∈ {1, · · · , k} and all

i0, · · · , in1 ∈ {1, · · · , k} we have

P (Xn+1 = sj|X0 = si0 , · · · , Xn = sin−1)

= P (Xn+1 = sj|Xn = si) = Pi,j. (3.13)

The elements of transition matrix P are called transition probabilities.
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Let the row vectors π(0),π(1), · · · denote the distributions of the Markov chain

at times 0, 1, · · · , so that

π(n) = (π1(n), π2(n), · · · , πk(n))

= (P (Xn = s1), P (Xn = s2), · · · , P (Xn = sk)). (3.14)

We call the vector π(0) the initial distribution. We also note that since π(n) repre-

sents a probability distribution, we have

k∑
i=1

πi(n) = 1. (3.15)

Given the initial distribution π(0) and the transition matrix P, one can find the

distributions π(1),π(2), · · · of the Markov chain at any time as follows.

Theorem 3.1 For a Markov chain (X0, X1, · · · ) with state space S = {s1, · · · , sk},

initial distribution π(0), and transition matrix P, for any n, the distribution π(n) at

time n satisfies

π(n) = π(0)Pn. (3.16)

For a Markov chain (X0, X1, · · · ) with state space S = {s1, · · · , sk} and transition

matrix P, we say that a state si communicates with another state sj, writing si → sj,

if there exists an n such that

(P n)i,j = P (Xm+n = sj|Xm = si) > 0. (3.17)

If si → sj and sj → si, we say states si and sj intercommunicate, and write si ↔ sj.

Definition 3.2 A Markov chain (X0, X1, · · · ) with state space S = {s1, · · · , sk} and

transition matrix P is said to be irreducible if for all si, sj ∈ S, si ↔ sj. Otherwise,

the chain is said to be reducible.

An intuitive way to verify that a Markov chain is irreducible is to look at its

transition graph, and check that from each state there is a sequence of arrows leading

to any other state. Fig. 3.1 shows the examples of irreducible and reducible Markov

chains.
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Figure 3.1. Transition graphs for (a) an irreducible Markov chain and (b) a reducible
Markov chain

Definition 3.3 The period of a state si ∈ S is defined as

d(si) = gcd{n ≥ 1 : (P n)i,i > 0}, (3.18)

where gcd{a1, a2, · · · } stands for the greatest common divisor of a1, a2, · · · .

Intuitively, a state si has a period di if any return to state si occurs in a time interval

that is a multiple of di. In Fig. 3.2, two examples are given to show the period of a

Markov chain.

Definition 3.4 An irreducible Markov chain is said to be aperiodic if the periods

of all of its states are 1. Otherwise the chain is said to be periodic.

Definition 3.5 Let (X0, X1, · · · ) be a Markov chain with state space S = {s1, · · · , sk}

Figure 3.2. Transition graphs for Markov chains with (a) period = 2 and (b) period
= 1
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and transition matrix P. A row vector π = (π1, · · · , πk) is said to be a stationary

distribution for the Markov chain, if it satisfies

(i) πi ≥ 0 for i = 1, · · · , k and
∑k

i=1 πi = 1, and

(ii) π = πP, i.e.,
∑k

i=1 πiPi,j = πj for j = 1, · · · , k.

Finally, we have the following fundamental theorem on the convergence of Markov

chains.

Theorem 3.2 Let X0, X1, · · · be an irreducible aperiodic Markov chain having a

stationary distribution π. Then for any initial distribution π(0),

lim
n→∞

π(0)Pn = π. (3.19)

This theorem is called the basic limit theorem (BLT). It claims that if an irreducible

aperiodic Markov chain has a stationary distribution, then from any initial distribu-

tion π(0), the Markov chain will eventually converge to its stationary distribution.

For all MCMC methods, how to generate an irreducible and aperiodic Markov chain

with a desired stationary distribution is the major question. The next section provides

an answer to this question.

3.3 Markov Chain Monte Carlo Method (MCMC)

As discussed in Section 3.1, to apply the Monte Carlo approximation to solve the

integration problem in (3.4) or the optimization problem in (3.5), a large number of

samples have to be drawn from a PDF f∗(x). There are two common algorithms for

obtaining sequences of samples from f ∗(x).

3.3.1 Metropolis-Hasting Algorithm

The Metropolis-Hasting (M-H) algorithm [48–50] draws a sequence of samples of x

from the PDF f∗(x) = f(x)
C

, where C =
∫
f(x)dx is unknown and is hard to calculate.

The M-H algorithm is summarized in Algorithm 3.1.

The M-H algorithm starts with an arbitrary initial value x = x0 that satisfies

f(x0) > 0. Then, using the current value x0, a candidate point x′ is generated

according to the conditional distribution q(x2|x1), which is the probability of returning
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Algorithm 3.1: Algorithm of Metropolis-Hasting

Input: f(x), and q(x2|x1)

begin
Initialization: x = x0;
for i = 1 to n do

Draw r.v. x′ from q(x′|xi−1);
Draw r.v. u from U(0, 1), where U(a, b) stands for uniform distribution
on (a, b);

Compute α = min
{
1, f(x′)q(x′|xi−1)

f(xi−1)q(xi−1|x′)

}
;

if u < α then
xi = x′ (accept);

else
xi = x (reject);

Output: x1, x2, · · · , xn

a value of x2 given a previous value of x1. This distribution is referred to as proposal

distribution or candidate-generating distribution. The candidate point x′ is accepted

with the probability defined by

α = min(1,
f(x′)q(x′|x)
f(x)q(x|x′)

). (3.20)

The above procedure is repeated n times to obtain a Markov chain {x1, · · · , xn}.

Assuming a sufficient burn-in process, i.e., that after the first k steps, the Markov

chain approaches its stationary distribution, the samples xk, xk+1, · · · , xk+n are the

samples used for Monte Carlo approximation.

3.3.2 Gibbs Sampling

The Gibbs sampling (GS) [51] is a special case of M-H algorithm with the accep-

tance probability α = 1, i.e., the candidate value is always accepted. In addition,

GS is efficient for drawing samples from an m-dimensional distribution, i.e., the state

space consists of vectors, which we refer to as state vectors. The key idea of GS

is to generate m components of the state vector sequentially from the m-univariate

conditional distribution rather than from their joint distribution. From this point

of view, GS is perfect for the MIMO detector where the state space is spanned by

super-symbols consisting of transmitted symbols from all antennas, or multiple bits
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Algorithm 3.2: Algorithm of GS

begin

Initialization: x = x(0) = (x
(0)
1 , · · · , x(0)m );

for i = 1 to n do
for j = 1 to m do

Draw x
(i)
j from f(xj|x(i)1 , · · · , x

(i)
j−1, x

(i−1)
j+1 , · · · , x

(i−1)
m ) ;

end

end

end

Output: x(k+1), · · · ,x(n)

that are transmitted per channel use. The GS algorithm for drawing samples from

the joint PDF f(x1, x2, · · · , xm) is summarized in Algorithm 3.2.

After each round of the inner j-loop, a state vector x(i) is obtained. This is called

one scan. After n scans, and assuming that the first k scans correspond to the burn

in period of the algorithm, the sequence of sample vectors x(k+1), · · · ,x(n) are the

desired samples with the joint PDF f(x). The GS algorithm shown in Algorithm 3.2

is the kernel of the MCMC-MIMO detector presented in the next section.

3.4 MCMC-MIMO Detector

The goal of the MCMC-MIMO detector is to use GS to generate a set of samples of

the transmitted symbol vector x according to a desired distribution, and then apply

Monte Carlo approximation to obtain the estimate (1.19).

3.4.1 MCMC-MIMO with Single-GS

In [46], the Monte Carlo Rao-Blackwellization-Uniform (MCRB-U) algorithm is

proposed and used as a solution to a low-complexity MCMC-MIMO detector. Next,

we introduce the MCRB-U algorithm as an application of the normalized importance

sampling that was introduced in Section 3.1.

Recall that the APP value µ1(xm,j), introduced in Chapter 1, equation (1.19), is

calculated as
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µ1(xm,j)
4
= P (xm = aj|y,µe,H)

=
∑

x−m∈AM−1

P (xm|x−m,y,µ
e,H)P (x−m|y,µe,H), (3.21)

where x−m = (x1, · · · , xm−1, xm+1, · · · , xM)T. Obviously, µ1(xm,j) is the expected

value Ef∗(x)[g(x)], where g(x) = P (xm|x−m,y,µ
e,H) and f(x) = f ∗(x) = P (x−m|y,µe,H).

However, it is hard to draw samples from f∗(x) efficiently. Thus, the direct Monte

Carlo approximation does not available. To solve this problem, let us make the

following assumptions:

(i) f̃(x) = f ∗(x) ,

(ii) q(x) = P (x|y,µe,H) , and

(iii) q̃(x) is a uniform distribution on the space I that includes the significant states

of q(x).

It is obvious that zf = 1 from assumption (i). From assumption (ii) and (iii), q̃(x) =

1
|I| , and the the normalization constant for q̃(x) is zq =

∫
q̃(x)dx = 1. Therefore,

the normalized weighting faction is w̃(x) = |I|f∗(x) = |I|P (x−m|y,µe,H). Hence,

(1.19) may be approximated by

µ̂1(xm,j) =

∑Ns

i=1 P (x
(i)
m = aj|x(i)

−m,y,µ
e,H)P (x

(i)
−m|y,µe,H)∑Ns

i=1 P (x
(i)
−m|y,µe,H)

, (3.22)

where x
(i)
m = (x

(i)
m ,x

(i)
−m) for i = 0, 1, · · ·Ns are i.i.d. samples drawn from the proposal

distribution q(x). Although we have
∑Ns

i=1 P (x
(i)
−m|y,µe,H) at the denominator, it

does not need to be calculated explicitly since it is a constant for all j = 1, · · · , 2Mc .

Let µ̂1(xm,j) =
µ̃1(xm,j)

K
, where K =

∑Mc

j=1 µ̃1(xm,j). By applying the chain rule,

µ̃1(xm,j) is evaluated as

µ̃(xm,j) =
1

P (y|µ,H)

Ns∑
i=1

P (y|xm = aj,x
(i)
−m,H)P (xm = aj)P (x

(i)
−m), (3.23)

where 1
P (y|µ,H)

is a constant for all m = 1, · · · ,M and j = 1, · · · , 2Mc such that it

can be combined with K to validate µ1(xm,j) for all j = 1, · · · ,Mc as a PMF.

The sequential MCMC-MIMO (s-MCMC) algorithm runs a single GS to generate

samples x(i), i = 1, 2, · · · , which are i.i.d. according to q(x), and then compute
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Algorithm 3.3: s-MCMC algorithm

Input: n, M , Mc, A, y, H, µe

begin
Initialization: x = x(0) and Ns = 0;
%Gibbs Sampling:
for i = 1 to I do

for m = 1 to M do

Draw x
(i)
m from p

(
xm|x(i)

−m,y,µ,H)
)
;

end

if x(i) 6= x(i′), ∀ i′ ∈ [0, I] then
Accept x(i);
Ns = Ns + 1;

else
Reject x(i);

end

end

% Monte Carlo approximation:
for m = 1 to M do

for j = 1 to 2Mc do
Compute λm,j according to (3.22);

end

end

end

the APP values according to (3.22). The s-MCMC algorithm is summarized in

Algorithm 3.3.

3.5 The Dilemma of MCMC-MIMO

MCMC suffers from a well-known drawback: it is often difficult to decide when

to terminate the algorithm and conclude the convergence on the Markov chain. That

is, how can one assure it is safe to stop the GS such that the samples are truly

representatives of the Markov chain stationary distribution? Although there is no

efficient tool for such decision making, the efficiency of the MCMC algorithm is more

important than the convergence rate in practice. When the full convergence of the

MCMC algorithm is not affordable, the parameter Ns is chosen to make the algorithm

run a certain number of steps, no matter whether it converges or not. In this manner,

the algorithms providing better approximation on (1.19) with less number of samples
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are highly demanded.

As shown in Algorithm 3.3, the s-MCMC algorithm is a combination of the GS

and the Monte Carlo approximation in the form of normalized importance sampling.

To assess the performance of the MCMC-MIMO algorithm, it is necessary to take

the following two aspects into account: the convergence property of the GS and the

efficiency/correctness of the Monte Carlo approximation. In fact, both aspects are

related to the proposal distribution q(x). First of all, the stationary distribution of

the Markov chain should be q(x). Second, q(x) shall be chosen carefully to have a

good Monte Carlo approximation. Thus, the proposal distribution q(x) plays a key

role in the convergence analysis of the MCMC method.

Recall that the samples to compute µ1(xm,j) in (3.22) are drawn from a uniform

distribution on I which includes the most significant samples. To be more specific, it

is required that the states in I have relatively large values of P (x(i)|y,µe,H), and are

equally likely to occur as well. The uniform hypothesis is supported by the additional

“acceptance-rejection” step after the sample x(i) being drawn in the GS. However,

it is not assured that I includes all significant samples because of the underlying

drawback of the GS explained as follows.

To guarantee the samples drawn in GS are from the correct distribution, it is

required that the Markov chain be ergodic. A sufficient condition for the ergodicity is

that all states in the space be communicable. However, when applying GS to generate

multivariate samples, one variable is drawn by conditioning on the other variables. As

a result, the successive samples are highly correlated and the Markov chain is likely

to keep visiting the same state with larger P (x|y,µe,H). Since P (x(i)|y,µe,H) is

proportional to P (y|x(i),H)P (x(i)), the probability P (x(i)|y,µe,H) is relatively large

if the SNR is high and/or the detector is overconfident on the prior information. It has

been confirmed by the observation of reducing size of I in high SNR regimes or later

iterations. In an extreme case, when P (x(0)|y,µe,H) is large and P (x(i)|y,µe,H) ≈ 0,

∀i 6= 0, x(0) will be recurrent all the time and is termed as a local mode. When

this happens, we say the Markov chain is sticking at a local mode and no longer

ergodic. Thus, the samples from the GS are not truly representatives of the desired

distribution. As a consequence, the performance of the MCMC-MIMO detector is
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degraded, especially in high SNR regimes.

A side effect of the highly correlated samples from the GS is that some significant

samples might be missed in I. Therefore, the assumption that q̃(x) covers the

significant region of q(x) will not be satisfied. As a result, the variance of importance

sampling will not be reduced as expected. When this happens, more samples (i.e.

a larger Ns in (3.22)) are required by importance sampling to obtain an accurate

approximation.

When the local mode is triggered, or I does not include all important samples, the

performance of MCMC algorithms are intend to be degraded. In the next chapter,

several algorithms are proposed to deal with the potential failure of the MCMC

algorithm.



CHAPTER 4

IMPROVING THE EFFICIENCY OF

MCMC-MIMO DETECTOR

Markov Chain Monte Carlo methods have recently been applied as front-end detec-

tors in multiple-input multiple-output (MIMO) communication systems. Moreover,

the near-capacity behavior of such detectors in low signal-to-noise ratio (SNR) regimes

have been demonstrated through computer simulations. However, it has also been

found that the MCMC-MIMO detectors degrade in high SNR regimes. This chapter

investigates into the source of this degradation and proposes a number of ad hoc

methods to resolve this undesirable behavior of the MCMC-MIMO detectors. The

effectiveness of the proposed methods is shown through empirical (simulation) results.

As noted in earlier chapters, the optimal MIMO detector, known as the maximum

likelihood (ML) detector, has a complexity that grows exponentially with the number

of bits per channel use. For example, in a MIMO system with 4 transmit antennas,

when 4 independent 16-QAM symbols are transmitted from the antennas, the number

of bits per channel use is 16. A true MIMO detector has to explore all 216 possible

combinations of the transmitted bits to extract the required soft information/LLR

values. To avoid this complexity, researchers have proposed a number of suboptimal

MIMO detectors. Examples are zero forcing (ZF) equalizer [3], minimum mean

square error (MMSE) equalizer [52], and MMSE equalizer with successive interference

cancellation (SIC) [11]. These methods reduce the complexity of detectors at the cost

of significant performance loss. Meanwhile, to achieve near-capacity performance,

more elegant detectors were proposed. The list sphere decoding (LSD) [41] and

other tree-search methods [42] form a class of detectors whose goal is to select a

subset of the bit combinations at each channel use as a candidate list that is used
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for the computation of the LLR values. The candidate list here is obtained through

a deterministic approach. Although the size of the list, here, may be significantly

smaller than the signal space (the number of all possible bit combinations), it still

grows exponentially with the number of bits per channel use [42].

The Markov chain Monte Carlo (MCMC) method in [43], also introduced in the

previous chapters, is an alternative search technique that may be used to generate

a candidate list [44–46]. This method is different from the tree-search methods in

two ways: (i) it is a stochastic search; (ii) the growth of the size of the list and

thus the complexity of the MIMO detector is not exponential with the number of

bits per channel use. In fact, the complexity of the MCMC-MIMO detector only

grows slightly faster than the linear. However, the past studies have shown that

while the MCMC-MIMO detector performs very well in low SNR (near capacity)

regime, it may suffer from an error floor, or even its performance may degrade as

SNR increases. The goal of this chapter is to investigate and identify the source of

this undesirable behavior of the MCMC-MIMO detector and propose a number of

methods that resolve this shortcoming. The content of this chapter was published

in [53].

4.1 System Model

The block diagram of anM -by-N MIMO system is shown in Fig. 4.1. At the trans-

mitter, the information sequence b is encoded by the channel encoder. The output

of the channel encoder after passing through the interleaver is divided into the blocks

of M ·Mc bits. These blocks form a vector sequence d(t), where t is the time index.

Each d(t) is then mapped to the transmit symbol x(t) = [x1(t), , x2(t), · · · , xM(t)]T.

We assume that each element of x(t) carriesMc ·M coded bits and thus is chosen from

a 2Mc-ary QAM/PSK constellation. We note that each value of t corresponds to one

channel use and during each channel use, M ·Mc coded bits are being transmitted. In

the sequel, since most of our derivations correspond to one channel use, i.e., a fixed

t, we drop the time index t, for brevity.

Assuming a flat fading channel, the received signal can be modeled as

y = Hx+w, (4.1)
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Figure 4.1. Block diagram of a MIMO system with soft detector

whereH is the channel gain matrix and w is the channel noise, a white Gaussian noise

vector. We assume that w has zero mean and the covariance matrix E[ww†] = σ2I.

We also note that x is the transmit vector that is obtained from a block of coded bits

represented by d.

4.2 Detection Methods

At the receiver, the MIMO detector provides the LLR values

λ1 (dk) = ln
p (dk = +1|y,λe2 (d))
p (dk = −1|y,λe2 (d))

, (4.2)

where dk is the k-th element of d, and λe2 (d) is the extrinsic information from the

channel decoder. Here, λ (dk) is defined as the bit-wise LLR. Note that in previous

chapters, as well as in Chapter 5 and 6 (to follow), we present the formulations in

terms of APPs of data symbols that are denoted by µ. The extrinsic information

λe1 (dk) = λ1 (dk) − λe2(dk) is then formed and passed to the channel decoder. By

exchanging the extrinsic information between the MIMO detector and the channel

decoder iteratively, the turbo principle is applied. This procedure reduces the bit-

error rate (BER) over successive iterations and allows one to achieve a near capacity

performance [41,46].

Using the max-log approximation, we obtain
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λe1 (dk) ≈ max
d∈D1

k

{
−‖y −Hx‖2

2σ2
+

1

2
dT
−kλ

e
2,−k

}

−max
d∈D0

k

{
−‖y −Hx‖2

2σ2
+

1

2
dT
−kλ

e
2,−k

}
, (4.3)

where D1
k is the set of d with dk = 1, D0

k is the set of d with dk = 0, d−k is obtained

from d by removing dk, and λe
2,−k is the vector of the extrinsic LLR values of d−k

from the channel decoder.

The key point and the main reason that has initiated the development of the

tree-search methods (including the LSD) and the MCMC-MIMO detector is that

the complexity of realization of (4.3) grows exponentially with the number of bits

in each channel use. In a MIMO system with M · Mc bits per channel use, each

of the sets D1
k and D0

k have the size of 2M ·Mc−1. Both the tree-search methods and

the MCMC-MIMO detector are designed to find small subsets of D1
k and D0

k that

with a high probability contain the desired terms that maximize both terms on the

right-hand side of (4.3).

The MCMC-MIMO detector uses a stochastic search method called Gibbs sam-

pler. The Gibbs sampler is a particular Markov chain process that searches the state

space defined by d. It walks through this space in a stochastic manner with the goal

of finding the samples of d that result in small values of ‖y−Hx‖2
2σ2 − 1

2
dT−kλ

e
2,−k. In

other words, the Gibbs sampler looks for important samples of d that maximize the

two terms on the right-hand side of (4.3). For details of the Gibbs sampler, when

applied to MIMO detection, we request the reader to refer to Chapter 3 and [46].

Also, for a comparison of the MCMC-MIMO detector and LSD, the reader may refer

to [45]. A hardware architecture for efficient implementation of the MCMC-MIMO

detector can be found in [54].

4.3 MCMC-MIMO Detector in High SNR Regimes

Studies performed in [46] have revealed that while the MCMC-MIMO detector

performs very well in low SNR regimes, it does not perform so well as SNR increases.

The source of this behavior was explored in Chapter 3. It was noted that at higher

values of SNR, some of the transition probabilities in the underlying Markov chain

may become very small. As a result, the Markov chain may effectively be divided into
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a number of nearly disjoint chains. The term nearly disjoint here means the transition

probabilities that allow movement between the disjoint chains are very small. As a

result, a Gibbs sampler that is started from a random point will remain within the

set of points surrounding the initial point and thus may not get a chance of visiting

sufficient points to find the maxima of the terms on the right-hand side of (4.3).

In [46], two solutions for solving this problem were proposed: (i) run a number of

parallel Gibbs samplers with different starting points; (ii) while running the Gibbs

samplers, assume a noise variance higher than what actually is and use the correct

noise variance while evaluating (4.3). These two methods turned out to be effective

for low and medium size SNRs, as is evident from the excellent results presented

in [45,46,55].

In many situations in practice, communication systems operate in SNR ranges

that are relatively high, many decibels away from the capacity. In such cases, if the

MIMO detector can obtain reasonably correct values for the LLRs, one would expect

to detect the transmitted information with a very low probability of error through

the channel decoder and without any need to run any extra iteration between the

MIMO detector and the channel decoder. However, simulations, some of which are

presented below, reveal that the above two measures are insufficient to remedy the

problem. In this chapter, we propose additional methods to resolve the problem of

the MCMC-MIMO detector in high SNR regimes. We also introduce a trivial, yet

novel, method for minimizing the receiver complexity.

4.3.1 Nonturbo Receiver

We note that, in the absence of the extrinsic information from the channel decoder,

the desired solutions that maximize the two terms on the right-hand side of (4.3) are

those that result in relatively small values for ‖y −Hd‖. Such solutions are known

and can be obtained using a ZF or MMSE equalizer. Through computer simulations,

we have found that by initializing one of the Gibbs samplers using either ZF or MMSE

solution and initializing the rest of the Gibbs samplers randomly, we obtain results

that are much better than those that would be obtained if all of the Gibbs samplers

were initialized randomly.

Fig. 4.2 presents a sample of our simulation results. Here, we simulate a 4-by-4
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Figure 4.2. BER results of a number of different implementations of the MCMC
detector

MIMO system. The channel code is the rate R = 1/2 convolutional code with the

generator polynomials 1 and 1+D2+D7. The data are transmitted in packets of length

1600 uncoded (3200 coded) bits. The channel H is random, but quasi static, meaning

that it is fixed over each packet. However, it is chosen independently for each packet.

The elements of H are complex-valued Gaussian i.i.d. zero mean random variables

with variance of unity. Each packet contains a preamble of length 16 that is used for

channel estimation, and the estimated channel is used for data detection. There are

M = 16 bits per channel use. The 16 bits are divided into 4 blocks of 4 bits and

mapped to 16-QAM symbols using Gray coding. For the results presented in Fig. 4.2,

there is no iteration between the channel decoder and the MIMO detector. The soft

information generated by the MIMO detector is passed to the channel decoder and

the output of the channel decoder is use to decide on the information bits. We use

the normalized SNR [55]

Eb
N0

∣∣∣∣
dB

=
Es
N0

∣∣∣∣
dB

+ 10 log10
Nr

NtRMc

. (4.4)
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There are four plots in Fig. 4.2. The first plot is obtained by running 5 parallel

randomly initialized Gibbs samplers. Each Gibbs sampler has depth of 5, i.e., it runs

over the elements of d 5 times. This will result in 5 × 5 = 25 samples for each of

the terms on the right-hand side of (4.3). The second plot is obtained by running

a single Gibbs sampler, initialized with the ZF solution, and for a depth of 25; so

the sample sets have the same size as in the first plot. The third and fourth plots

are generated using 5 parallel Gibbs samplers each of depth 5, with 4 of the Gibbs

samplers initialized randomly and the 5th one initialized with the solution obtained

from ZF and MMSE equalizers, respectively.

The following conclusions are drawn from the results shown in Fig. 4.2.

• The use of only randomly initialized Gibbs samplers results in a MIMO detector

that degrades at high SNR values.

• The use of a single Gibbs sampler initialized with the ZF (or MMSE) solution

results in a much improved performance.

• The combination of a number of randomly initialized Gibbs samplers and one

Gibbs sampler that is initialized with the ZF (or MMSE) solution further

improves the results.

• The level of improvement achieved through ZF and MMSE initializations is

about the same.

We have the following explanation to these observations. When Gibbs samplers are

initialized randomly, there is always a chance that none of the Gibbs samplers do not

approach the portions of the state-space defined by d that correspond to the maximum

terms on the right-hand side of (4.3). As a result, for a relatively large percentage

of the channel uses, the MIMO detector may generate incorrect LLR values. The

ZF (or MMSE) initialization has a very high likelihood of giving an initial d within

the vicinity of the points that maximize the two terms on the right-hand side of

(4.3). The randomized Gibbs samplers result in some level of improvement by adding

more samples to the list in the cases where ZF (or MMSE) fails in giving a good

initial point. The fact that both ZF and MMSE initialization results in the same
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improvement can be explained if we realize in high SNR, where such initializations

help, the solutions to both cases are about the same.

From the above results, we observe that although the combination of ZF (or

MMSE) and randomized initialization of the Gibbs samplers greatly helps in reducing

the BER in high SNR regimes, the BER curves presented in Fig. 4.2 still show some

error floor. A number of approaches can be taken to further improve the performance

of the receiver. One approach is to increase the number of Gibbs samplers and/or

increase their depth. Fig. 4.3 present a sample result that shows how this measure

helps. Here, by increasing the number of parallel Gibbs samplers from 5 to 15 and

the depth of each Gibbs sampler from 5 to 15 (a 9-fold increase in complexity), we

can achieve two orders of magnitude improvement in BER. However, the error floor

problem is not resolved.

The following additional measures may be used to improve on the above BER

curves and hopefully remove the error floor. (i) Add an additional code with error

correcting capability (such as a Reed-Solomon code) prior to the channel encoder.
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Figure 4.3. BER results that show the impact of the number of Gibbs samplers on
the receiver performance
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The presence of such code can get rid of the residual errors, as long as the number of

errors is sufficiently small. (ii) Run iterations between the MIMO detector and the

channel decoder. We pursue the latter approach next.

4.3.2 Turbo Receiver

To reduce the receiver complexity, we first note when SNR is high and sufficiently

accurate estimates of the LLR values are generated by the MIMO detector, error-free

recovery of a good majority of the packets occurs in the first iteration of turbo loop. In

other words, most of the packets are recovered after the first pass through the MIMO

detector and the channel decoder. We thus suggest by adding a parity check (e.g.,

a CRC check [56]) to each packet, one may examine the correctness of the detected

packet. If the packet is detected correctly, no further iteration of the receiver will

be executed. If not, soft information from the channel decoder is fed back to the

MIMO detector to continue with the second iteration. Similarly, if after the second

iteration, the parity check still does not confirm the correctness of the detected packet,

iterations continue until the packet is correctly detected or the detection process is

terminated after a maximum number of iterations is reached.

Other measures that we empirically (i.e., through computer simulations) found

improve the performance of the receiver are:

• After each iteration, one may use the soft information from the channel decoder

to randomize the initial settings of the Gibbs samplers for the next iteration.

• Although the latter method greatly helps, for some packets, it does not work,

no matter how many iterations of the turbo detector is executed. Detailed

exploration of the simulation results reveals that in such cases, the number of

bit errors increases with iteration number. In other words, the turbo system

can be subject to error propagation. We empirically found a good strategy for

solving this problem is to restart the detection process if the turbo loop fails to

detect the correct packet after a number of iterations. We refer to each restart

of the turbo loop as one stage and number the successive stages as 1, 2, 3, · · · .
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• As the receiver proceeds with a new stage, the number of parallel Gibbs samplers

and/or the depth of each Gibbs sampler is increased. This, obviously, is done

to improve the accuracy of the LLR values generated by the MIMO detector.

The simulation results presented in the next section reveal that the above measures

lead to a MIMO receiver in which BER converges to zero as SNR increases.

Unfortunately, any theoretical analysis of the MCMC-MIMO detector turns out

to be a very difficult task, and as of today, no such analysis is available. We thus

proceed with drawing some conclusions based on numerical studies. The numerical

results that are presented in this section are for the 4 × 4 MIMO system that was

introduced in Section 4.3.1. In addition, to be able to check successful detection of

data packets after each iteration of the turbo loop, a length 16 CRC parity checker

is added to the coded data bits. For each data packet, the turbo detector is run for

three stages; namely, Stage 1, Stage 2, and Stage 3. Stage 1 consists of at most 5

iterations and in each iteration, the Gibbs sampler operates based on 25 samples for

each bit; 5 Gibbs samplers, each of depth 5, are run. For Stage 2, the number parallel

Gibbs samplers is increased to 10, and their depth is extended to 10. The number

of iteration is also increased to 7. In Stage 3, the number parallel Gibbs samplers

is increased to 20, and their depth is extended to 20. The number of iteration is

increased to 9. The detection process stops when CRC check indicates a correctly

detected data packet, or when the three stages of the detection are completed without

successful detection of the packet. The simulations are run for 100,000 packets.

Table 4.1 presents the percentages of the successfully detected packets after each

iteration of the turbo loop, for Eb/N0 values of 10 to 26 dB. The cumulative percent-

ages of the successfully detected packets are also shown in Fig. 4.4. Referring to the

results in this table, the following observations are made:

• Most of the packets are correctly detected within the first stage.

• As SNR increases, the number of iterations required to correctly detect each

packet decreases.
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Figure 4.4. Cumulative percentages of the successfully detected packets at each
stage.

• At higher values of Eb/N0, a large percentage of the packets are correctly

detected within the first iteration. For instance, at Eb/N0 = 22 dB, 93.686%

of the packets are correctly detected within the first iteration. This number

increases to 95.311% at Eb/N0 = 24 dB and to 96.557% at Eb/N0 = 26 dB.

• For values of Eb/N0 ≥ 18 dB, all the packets are correctly detected before

completion of the third stage.

• At high SNR, since most of the packets are recovered within the first iteration,

the average complexity of the receiver is only slightly more than one iteration

of the turbo detector. However, the detection of some packets may require a

lot more complexity than the average. In other words, the receiver has to deal

with the issue of peak complexity. This, in practice, may be dealt with without

adding much to the computational power of the receiver, if the communication

channel can be tolerable to some data latency.
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4.4 Conclusion

We proposed a number of measures to overcome the poor performance of the

MCMC-MIMO detector in high SNR regimes. The proposed measures/solutions were

studied through computer simulations. They were found to be very effective and able

to solve the problem. Error-free detection of 100,000 packets, each of length 1600

uncoded information bits, was observed in the Eb/N0 range of 18 to 26 dB.



CHAPTER 5

JOINT CHANNEL ESTIMATION AND MCMC

DETECTOR FOR QUASI-STATIC RAYLEIGH

FADING CHANNELS

This chapter studies the problem of joint data detection and channel estimation for

block fading channels, where the channel is fixed over each block of data and varies

independently for the next data block. This study, which is mostly of theoretical

interest, is common and widely used in the literature. A more realistic channel model,

where the channel varies slowly with time, is considered in the next chapter.

5.1 Introduction

Joint data detection and channel estimation provides an effective means for im-

proving the receiver performance in wireless transmissions. Such a technique has

been investigated extensively for single antenna channels [35, 40, 57] and for multi-

ple antenna channels with a small number of antennas [16, 33, 58] and lower order

modulations. The application of such a technique to large antenna systems with

higher order modulations, targeted for high-rate communications, has remain largely

unexplored due to the following reasons: (1) The complexity of the optimal maximum

a posteriori (MAP) detector grows exponentially in the number of transmit antennas

and modulation size, which necessitates the use of suboptimal detectors with reduced

complexity. (2) The receiver performance becomes increasingly sensitive to channel

estimation error as the number of antennas and modulation size increases. Existing

channel estimation algorithms such as those based on the expectation-maximization

algorithm [59–61] become infeasible due to the increased system dimension. Chan-

nel estimation algorithms that are robust against data decision errors need to be

developed for large MIMO systems.
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This chapter aims to address the key technical challenges in the design of joint data

detection and channel estimation algorithms for high-rate communications. We are

interested in communication scenarios in which multiple transmit antennas, typically

three or four, together with higher order modulations, are employed to achieve a

desired transmission rate of above 10 bits/channel use. For such systems, MAP

detection becomes prohibitive due to its exponential complexity with respect to

system dimension. A central part of our design for low-complexity data detection is

based on the Markov Chain Monte Carlo (MCMC) method. In recent years, Markov

Chain Monte Carlo (MCMC) detection has emerged as an attractive statistical de-

tection method for multiple-input multiple-output (MIMO) channels. As discussed

in Chapter 3 and 4, the core of the MCMC detector is the Gibbs sampler (GS), which

is a statistical procedure used to generate random samples of the transmitted signals.

The MCMC detector adopts the GS to search for a small (to keep the complexity

low) but important (to achieve good performance) sample set that contains the likely

transmitted signal vectors. The MCMC-MIMO detector can achieve near-optimal

performance of the MAP detector with a substantially reduced complexity that is

linear in the number of transmit/receive antennas [45, 46, 53, 62, 63]. It outperforms

the linear MMSE detector [45], and also the tree-search-based sphere decoding de-

tectors [45, 63] with a complexity that is orders of magnitude less. While most of

the prior work on MCMC detection assumes that the channel state information

(CSI) is perfectly known at the receiver [45, 46, 53, 63], in this work, we investigate

MCMC detection for large MIMO channels with unknown CSI and show that MCMC

detection is a high-performance and low-complexity detection method for joint data

detection and channel estimation.

We consider an iterative receiver in which soft information, in terms of the like-

lihood of the transmitted symbols, are interchanged iteratively between the MCMC

detector, channel estimator, and a soft-input soft-output channel decoder. At each

iteration, joint MCMC detection and channel estimation is performed based on the

soft information from the channel decoder. A key issue that often arises in the

framework of joint data detection and channel estimation is the error propagation

due to developing channel estimation based on erroneous data decision, and then per-
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forming data detection based on biased channel estimation. This issue becomes more

pronounced with increasing number of transmit antennas and the modulation size

because higher order modulations are more sensitive to channel estimation error. To

address this design challenge, the proposed receiver adopts the soft-decision-directed

channel estimation (SCE), which generates a linear MMSE channel estimate based

on the soft information about the transmitted symbols. The SCE provides robust

channel estimation for large MIMO systems by taking into account the uncertainty

of the data symbols.

The main contributions of this work are summarized as follows:

1. We propose a SCE-MCMC detector that combines the SCE with MCMC detec-

tion to achieve near-optimal performance for large MIMO systems with higher

order modulations. Closed-form expressions of SCE and its channel estimation

error are derived for arbitrary modulation sizes. A new GS is designed for the

MCMC detector to generate random samples in accordance to SCE.

2. Based on SCE-MCMC, we develop a decorrelation MCMC detector, termed

DEC-MCMC, to further reduce the correlation between the channel estimate

and the random samples generated by the GS. Our results demonstrate that

DEC-MCMC can better predict the channel estimation error and thus yield

superior performance to SCE-MCMC, especially under moderate or fast fading

scenarios.

3. We propose an adaptive MCMC detector, termed ADA-MCMC, to control the

detection complexity by adjusting the parameters of the GS according to the

channel estimation error at each iteration of joint data detection and channel

estimation. For MIMO systems with 64QAM modulation, our results show that

ADA-MCMC provides comparable performance to its nonadaptive counterpart

with a complexity reduction of 50% or more.

4. For various channels examined in this work, the proposed DEC-MCMC demon-

strates substantial performance gain over DEC-MMSE, an improved version of

the state-of-the-art soft MMSE detector [15] that we derive following the design

principle of DEC-MCMC.
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MCMC detection for channels with imperfect CSI has been studied previously in

the literature. In [62], a noncoherent MCMC-MIMO detector is proposed under the

assumption that only the statistics of the CSI is available at the receiver. While the

noncoherent approach is theoretically optimal, it is difficult to extend it to systems

with more than two transmit antennas due to the slow convergence of the noncoherent

GS. In [64], a list-based MCMC-MIMO detector is designed for joint data detection

and channel estimation, in which the GS generates likely pairs of data samples and

channel estimates. This approach, however, is prone to error propagation as the

system dimension increases. MCMC detection for unknown frequency-selective fading

channels has been studied in [65–68]. As opposed to the MCMC detectors of [65–67],

the proposed MCMC detector in this work does not require a burning period or

utilize bit-counting for computing a posteriori probabilities. This work also differs

from the list-based approach in [68] that assumes a single transmit antenna and

adopts adaptive channel estimation algorithms to facilitate joint data detection and

channel estimation. The proposed design uses SCE, which differs from the Wiener

filtering-based approach [35, 57] in that it does not require prior knowledge on the

time correlation of the fading process.

The remainder of the chapter is organized as follows. In Section 5.2, we introduce

the system model and the principle of the iterative receiver. In Section 5.3, we

investigate the robustness of the MMSE detector and the MCMC-MIMO detector to

imperfect CSI. In Section 5.4, we present the proposed MCMC detection algorithms

in conjunction with SCE. In Section 5.5, we introduce the genie-aided channel esti-

mation MCMC as a more realistic performance benchmark for the proposed design.

Simulation results are provided in Section 5.6. Conclusions are given in Section 5.7.

5.2 System Model

5.2.1 MIMO Channel Model and Transmitter Structure

We consider a MIMO block fading channel with M transmit antennas and N receive

antennas that operates in a Rayleigh flat-fading environment. The channel between

each pair of transmit and receive antenna is assumed to remain constant for a block

of T symbol periods, where T is the coherence time, and is independent from block to



65

block. The channels between different antenna pairs are assumed to be statistically

independent. A block diagram of the transmitter structure of the proposed system

can be found in Fig. 5.1.

An information bit sequence b is encoded by a channel encoder of rate R. The

coded bit sequence d is interleaved according to a permutation function Π(·) and then

mapped to a symbol sequence using a 2Mc-ary constellation. After inserting pilot

symbols, the resulting symbol sequence is mapped to a sequence of signal matrices

X ∈ CM×T and sent through the MIMO block fading channel. Here, the first M

columns of X consists of pilot symbols, and the rest T −M columns consists of data

symbols. An average power constraint is imposed such that 1
M
E[x†

txt] = 1, where xt,

for all t ∈ {1, · · · , T} denotes the t-th column of X.

A discrete-time model for the received signal over a block fading channel of

coherence length T is given by

Y =

√
ρ

M
HX+W, (5.1)

where Y ∈ CN×T is the received signal matrix; ρ is the signal-to-noise ratio (SNR)

at each receive antenna; H ∈ CN×M is the channel matrix and each matrix element

is modeled as an i.i.d. complex Gaussian random variable with zero mean and unit

variance; W ∈ CN×T is the white complex Gaussian noise with zero mean and unit

variance.

5.2.2 Receiver Structure

The iterative receiver considered in this chapter is shown in Fig. 5.2. It consists of

three operating modules, MCMC detector, channel estimator, and channel decoder.

Figure 5.1. The block diagram of a coded MIMO transmitter
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Figure 5.2. The block diagram of an iterative MIMO receiver

Soft information, in terms of the probabilities of the transmitted symbols, are inter-

changed between these modules. We let µ1 and µ2 denote the output a posteriori

probabilities (APPs) of the transmitted symbols produced by the MCMC detector, and

by the channel decoder, respectively. The corresponding extrinsic information (after

removing the a priori probabilities) is denoted by µe
1 and µe

2, respectively. At each

iteration, given µ2 and Y, channel estimation is performed to obtain the estimated

channel Ĥ. Subsequently, Ĥ and µe
2 are fed to the MCMC detector for data detection.

The MCMC detector generates updated symbol probabilities µ1, and the extrinsic

information µe
1 is passed back to the channel decoder for data decoding. In this

way, joint MCMC detection, channel estimation, and data decoding is performed

iteratively. After a predetermined number of iterations, decisions are made at the

receiver output to obtain the estimated information bit sequence b̂. Details of joint

MCMC detection and SCE are provided in Section 5.4.

5.3 Robustness to Imperfect CSI

To investigate the impact of channel estimation on the overall system performance,

two different MIMO detectors are compared: the soft-MMSE MIMO detector pre-

sented in Chapter 1 and the MCMC-MIMO detector discussed in Chapter 3 and 4.

To the best of our knowledge, the literature on joint channel estimation and MIMO

detection are mostly limited to small systems, for instance, a 2 × 2 MIMO system

with BPSK modulation as in [33,35,38,39]. However, the interest of this dissertation

is large MIMO systems for high-rate communication. The most relevant results to
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large MIMO systems are presented in [16]. To achieve a favorable channel estimation,

the training transmission power level is boosted 2.5 dB over the payload part in [16].

Considering the amplifier efficiency and the power efficiency, in this thesis, we assume

equal power for both training and payload.

To evaluate the system performance with estimated channel gains without speci-

fying any particular channel estimation algorithms, we take the following procedure.

Let estimated channel gain ĥn,m be simulated as hn,m+ εm,n where hn,m is the actual

channel gain, and εm,n is a random variable with zero mean and the variance σ2
ĥ
. In

this manner, the channel estimates are unbiased and the MSE σ2
ĥ
indicates the quality

of channel estimation. Then, the receiver employs the imperfect CSI ĥn,m for MIMO

detection.

In Fig. 5.3, we compare three coded-MIMO systems: 2 × 2 MIMO system with

BPSK modulation (small), 3× 3 MIMO system with 16QAM modulation (medium),

and 4× 4 MIMO system with 64QAM modulation (large). A rate R = 1/2 convolu-

tional code of length 8000 with generator polynomial (117, 155)octal is used. The block

length is T = 10. Fig. 5.3 shows the curves of the BER versus σ2
ĥ
. The operating

SNR values shown in Fig. 5.3 are selected to be 5.5dB, 8dB, and 12.5dB for the small,

medium, and large systems, respectively. Thus, decent BERs (around 10−3 ∼ 10−4)

are obtained with perfect channel estimates (i.e., σ2
ĥ
= 0). Both the soft-MMSE

detector and the MCMC detector are considered. The parameters for the MCMC

detector are G = I = 4 for the small MIMO system and G = I = 10 for the other

two systems. We have the following observations.

• The BER curve experiences a flat-top as σ2
ĥ
increases. It is because the poor

channel estimation would cause severe error propagation such that the system

is not able to benefit from any turbo gain. The value of σ2
ĥ
, which the flat-top

begins with, indicates the system tolerance to channel estimation error. The

smaller the value is, the less error-tolerant the system will be. We observed that

the flat-top of the small system does not appear even at σ2
ĥ
= 0.3, and the BER

is around 3×10−2. It implies that for small MIMO systems, PSAM is sufficient

to obtain a good performance. However, the flat-top appears around σ2
ĥ
= 0.1
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Figure 5.3. Sensitivity of MIMO systems to imperfect CSI

for the medium system and σ2
ĥ
= 0.04 for the large system., and the resulting

BER is around 3× 10−1.

• The slope of the BER curve implies how robust the system is to the channel

esitmation error. A smaller slope implies the system is more robust to channel

estimation error. Obviously, the large MIMO systems shown in the figure are

the least robust. For instance, as σ2
ĥ
increases from 0.01 to 0.02, the BER of

the 3× 3 MIMO system with 16QAM raises from 0.001 to 0.002 , while that of

the 4× 4 MIMO system with 64QAM raises from 6× 10−4 to 1.43× 10−2.

• Given the same channel estimates, i.e., the same value of σ2
ĥ
, the MCMC

detector outperforms the soft-MMSE detector. Furthermore, the performance

degradation caused by the soft-MMSE detector with estimated channel is worse

in large MIMO systems. It demonstrates that the MCMC detector is more

favorable than the soft-MMSE detector when CSI is not available.

From the above observations, we conclude that the MCMC detector is more robust to

channel estimation error than the soft-MMSE detector, and the robustness decreases

as system size increases.



69

5.4 MCMC Detection with SCE

In this section, we describe the proposed MCMC detectors based on SCE. Several

versions of the MCMC detectors are developed, all of which, in conjunction with

SCE, generalize the idealized MCMC-MIMO detector described in Chapter 3 and 4

to provide robust detection performance under the challenging scenario of channel

uncertainty. We first present the SCE-MCMC detector in which the MCMC detector

is designed to exploit SCE and to take the channel estimation error into account

in the detection process. Closed-form expressions of the SCE and its estimation

error are derived for general constellation sizes. Based on SCE-MCMC, we de-

velop two advanced versions of MCMC detectors, termed the decorrelation MCMC

(DEC-MCMC), aiming to break the correlation between channel estimation and data

decisions, and the adaptive MCMC (ADA-MCMC), aiming to control the complexity

of the MCMC detector in accordance to the quality of the channel estimation, in

Sections 5.4.2 and 5.4.3, respectively.

5.4.1 SCE-based Markov Chain Monte Carlo Detection (SCE-MCMC)

The SCE-MCMC operates in two steps. First, we compute the SCE, denoted by

Ĥ, based on the entire block of received signal Y and the APP µ2 of the symbols in

X. This step takes advantage of the fact the channel remains the same within each

block. Second, the MCMC detector performs symbol detection over each column

of X. Thus, MCMC detection over different columns of X is conducted separately

once Ĥ is available. This design provides superior performance because SCE yields

a reliable channel estimate by effectively exploiting the APPs of all symbols in X,

and that enables the MCMC detector to successfully separate the interfering symbols

transmitted from the M transmit antennas simultaneously.

5.4.1.1 SCE for General Modulations

SCE has been studied in prior work [33,34,57] for small modulation sizes such as

BPSK. For the completeness of this work, in this section, we present the derivation

of SCE for general modulations, following similar techniques in [33].

The SCE estimates each row of channel matrix H separately. For each n =

1, · · · , N , let hrn denote the n-th row of H. The received signal at the the n-th receive
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antenna, denoted by yrn, can be written as

yrn =

√
ρ

M
hrnX+wr

n. (5.2)

The SCE is obtained by computing the linear minimum mean square error estima-

tor (LMMSE) of hrn based on µ2. The mean and variance of each transmitted symbol

xm,t for all 1 ≤ m ≤ M and Tp < t ≤ T , denoted by x̄m,t and vm,t, respectively, can

be computed according to (1.26). The LMMSE estimate ĥrn is derived as

ĥrn = yrnE
[
yrn

†yrn
]−1

E
[
yrn

†hrn
]

(5.3)

=

√
ρ

M
yrnΓ

−1X̄†(IM +
ρ

M
X̄Γ−1X̄†)−1

, (5.4)

where

Γ = IT +
ρ

M
E
[(
X− X̄

)†(
X− X̄

)]
(5.5)

depends on the second order statistics of the decision error X− X̄ and the SNR ρ
M
.

It can be shown that the diagonal elements of Γ are Γ(i, i) = 1+ ρ
M

∑M
m=1 vm,i for

all i ∈ {1, · · · , T}. The nondiagonal elements of Γ, as shown in [33], are approximately

zero under the assumption that decision errors of the symbol vectors transmitted at

different time instances are independent. Thus, we can approximate Γ as a diagonal

matrix and Γ−1 in (5.4) can be easily computed to obtain the LMMSE channel

estimate. After we apply (5.4) to compute ĥrn for all 1 ≤ n ≤ N , we stack these

vectors up to form the estimated channel matrix Ĥ.

5.4.1.2 MCMC Detection Based on SCE

In this section, we describe how to design a new GS for MCMC detection that

takes the SCE and its channel estimation error into account. The SCE Ĥ is fed to

the MCMC detector for data detection over each column of symbols in X. In the

following, we drop the time index t, and let y denote the received signal at all receive

antennas at a given time instance. Let Ξ = H − Ĥ be the channel estimation error

matrix. We can express y as

y =

√
ρ

M
Hx+w =

√
ρ

M
(Ĥ+Ξ)x+ y =

√
ρ

M
Ĥx+ w̃, (5.6)

where w̃ =
√

ρ
M
Ξx + w denotes the effective noise that takes into account both

channel noise and the channel estimation error. Eq.(5.6) is the channel model based
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on which the MCMC detector, and the respective GS, has to be built. To use this

channel model, we need to evaluate the statistics of the effective noise, w̃.

Let ξrn = hrn−ĥrn be the n-th row of ξ. Assuming that there is no spatial correlation

between each antenna pair, we have E[ξrnξ
r
m

†] = 0 for every n 6= m. The covariance

matrix of the effective noise w̃ can be computed as

Cw̃w̃(m,m) = 1 +
ρ

M
E
[
ξrmxx

†ξrm
†] = 1 +

ρ · ‖x‖
M

E
[
ξrmξ

r
m

†], (5.7a)

and

Cw̃w̃(m,n) =
ρ · ‖x‖
M

E
[
ξrmξ

r
n
†] ≈ 0. (5.7b)

To compute E
[
ξrnξ

r
n
†], we have

E
[
ξrnξ

r
n
†] = Tr

{
E
[
ξrn

†ξrn
]}

= Tr
{
E
[
hrn

†hrn
]
− E

[
hrn

†yrn
]
E
[
yrn

†yrn
]−1

E
[
yrn

†hrn
]}

= Tr
{
IM − ρ

M
X̄
(
Γ+

ρ

M
X̄†X̄

)−1
X̄†

}
= Tr

{(
IM +

ρ

M
X̄Γ−1X̄†)−1

}
, (5.8)

where (5.8) is obtained by applying the Woodbury matrix identity 1. It follows that

w̃ is approximately white with a variance of

σ2
w̃ = 1 +

ρ · ‖x‖
M

Tr
{(

IM +
ρ

M
X̄Γ−1X̄†)−1}

. (5.9)

Next, based on (5.6) and (5.9), treating Ĥ as the channel matrix, and σ2
w̃ as the

effective noise, we can follow the same principle of the MCMC detector described in

Chapter 3 and 4 to perform MIMO detection for each column of X. The density

function used for the GS to draw samples can be expressed as

p(y|x, Ĥ) =
1

(πσ2
w̃)

N
exp

{
− 1

σ2
w̃

∥∥∥∥y −
√

ρ

M
Ĥx

∥∥∥∥} . (5.10)

5.4.2 Decorrelation SCE-MCMC Detector (DEC-MCMC)

In this section, we propose an improved version of SCE-MCMC to address the issue

of error propagation arising from joint data detection and channel estimation. Recall

1(A+UCV)−1 = A−1 −A−1U(C−1 +VA−1U)−1UA−1
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that in SCE-MCMC, the APPs of all the data symbols in X are used to compute

Ĥ. When the APPs are erroneous, the resulting Ĥ is biased towards these wrong

data decisions. Subsequently, when performing MCMC detection, the GS generates

random samples according to a conditional density function that is determined by Ĥ

and the same set of APPs. The fact that these erroneous APPs are used twice in

SCE-MCMC causes error propagation and thus performance degradation.

This motivates the design of a new detector, termed the decorrelation SCE-MCMC

detector (DEC-MCMC), designed to reduce the correlation between the channel

estimation and the data samples generated by the GS. It operates as follows. Consider

an arbitrary column of X, say xt for t ∈ 1, · · · , T . Let X−t be the signal matrix

obtained by removing column xt from X. When detecting symbols in xt, the channel

estimate used by the MCMC detector is computed using the APPs of symbols in X−t.

Specifically, in (5.4), (5.5), and (5.9), we replace X, X̄, and Γ by X−t, X̄−t, and Γ−t,

respectively, to obtain the channel estimate and the variance of the effective noise as

follows:

ĥrn =

√
ρ

M
yrnΓ

−1
−t X̄

†
−t
(
IM +

ρ

M
X̄−tΓ

−1
−t X̄

†
−t
)−1

, (5.11a)

σ2
w̃ = 1 +

ρ

M
Tr

{(
IM +

ρ

M
X̄−tΓ

−1
−t X̄

†
−t
)−1}

. (5.11b)

The DEC-MCMC is presented in Algorithm 5.1. By DEC-MCMC, we ensure that the

APPs of symbols in xt do not contribute to the channel estimate that will be used to

detect these symbols, which effectively alleviates the problem of error propagation. In

Section 5.6, we provide numerical results to compare the performance of SCE-MCMC

and DEC-MCMC. It is shown that a key factor that contributes to the superior

performance of DEC-MCMC to SCE-MCMC is that the estimate of the effective

noise by DEC-MCMC, i.e., (5.11b), is more accurate than that of SCE-MCMC, i.e.,

(5.9). The latter tends to under-estimate the effective noise because of the high

correlation between the samples generated by the GS and the channel estimate. We

also note that the advantage of DEC-MCMC over SCE-MCMC is more pronounced

for small or moderate coherence lengths, in which case the contribution of the APPs of

a single column in X to the channel estimate is more significant. These two detectors

yield similar performance for larger coherence lengths due to the weaker correlation

between channel estimation and the random sample generation.
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Algorithm 5.1: DEC-MCMC algorithm

Input: n, M , Mc, y, µ
e
2, A = {a0, · · · , a2Mc−1};

begin
Initialization: Obtain X̄ according to the APP as in (1.26);
for t = Tp + 1 to T do

Set x̄m,t = 0 for all m ∈ {1, · · · ,M} tentatively ;

Estimate Ĥt and σ
2
w̃ by (5.11a ) and (5.11b);

Run G parallel GSs (as shown in Algorithm 3.3) for xt to obtain a
subset Lt;
Calculate APP of xm,t for all m ∈ {1, · · · ,M} and j ∈ {0, 2Mc − 1} by

µ1(xm,t = aj) = P (xm,t = a|yt, Ĥt,µ
e
2)

∝
∑
xt∈Lt
xm,t=aj

exp
{
− ‖yt −

√
ρ

M
Ĥtxt‖

}
P (xm,t = aj|µe

2);

(5.12)

end

end

5.4.3 Adaptive DEC-MCMC (ADA-MCMC) Detector

In this section, we propose an adaptive version of the DEC-MCMC detector to

further reduce the complexity of MCMC detection. The complexity of the MCMC

detector is determined by the total number of random samples generated by the GS

and the choices of G and I are closely related to the modulation size and the channel

estimation error. In general, under challenging detection scenarios, e.g., when the

modulation size is large and the channel estimation is inaccurate, we should choose

larger values of G and I, thus collecting more random samples, in order to achieve

satisfactory detection performance. For large modulation sizes, such as 64QAM, we

have observed that it is necessary to choose G = I = 20 at the beginning iteration,

when the channel estimation is most inaccurate, to optimize the performance of DEC-

MCMC, whereas G = I = 10 is sufficient for 16QAM for the same detector. To

reduce the complexity further for higher order modulations, we propose an adaptive

DEC-MCMC detector, termed the ADA-MCMC.

The main idea of ADA-MCMC is to adaptively choose G and I based on the

mean-square-error (MSE) of the channel estimate, i.e., select larger values of G and
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I when the MSE is large, and reduce G and I as the MSE decreases over iterations.

For simplicity, we set G = I and describe how to adaptively choose I(m), which is

the I value at the m-th iteration of joint data detection and channel decoding.

Let σ2(m) denote the MSE of the channel estimate at iteration m, and I(m) be

a linear function of σ(m) such that I(m) = kσ(m) + b. The constants k and b are

determined by considering the I values for two special cases.

1. At the initial iteration, the MSE is the largest due to pilot-only channel estimation.

The MSE is given by σ2
p = M/(M + ρTp) [29, 69]. This case requires a maximum

I value, and we set it empirically to be Imax.

2. In a genie-aided case, all the data decisions within a data block are error-free and

are all used for channel estimation. It gives the smallest channel estimation error

σ2
g = M/(M + ρT ). This case requires a minimum I value, and we set it to be

Imin.

We then substitute Imax and Imin into the linear function I(m) = kσ(m) + b to yield

Imax = kσp + b for the beginning iteration, and Imin = kσg + b for the genie-aided

case. By solving these two equations, we obtain k = Imax−Imin
σp−σg and b = Imax − kσp.

We evaluate the complexity saving of ADA-MCMC against DEC-MCMC using

the number of samples generated by the GS. Compared to DEC-MCMC with fixed

parameters Gmax and Imax, the percentage of the complexity saving of ADA-MCMC at

iteration m is given by η(m) =
(
1− G(m)I(m)

GmaxImax

)
× 100%. By letting η̄ = 1

L

∑L
m=1 η(m),

where L is the total number of iterations, we obtain the average complexity saving

η̄. In Section 6.6, we demonstrate that significant complexity saving of η̄ up to 60%

can be achieved by ADA-MCMC with negligible performance loss.

5.5 Genie-aided Channel Estimation MCMC
(GAD-MCMC) as a Performance Benchmark

While it is common to use the receiver performance under perfect CSI as a

performance benchmark, for large MIMO systems with higher order modulations, it

becomes difficult to approach this idealized benchmark due to the increased challenge

in data detection and channel estimation. In this work, we introduce a genie-aided
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channel estimation MCMC (GAD-MCMC) as a more realistic performance bench-

mark for the proposed design. It works as follows.

When detecting an arbitrary vector xt in X, we assume that all the symbols in

X−t are perfectly known. Accordingly, a LMMSE channel estimate can be computed

based on X−t and then used to detect xt. This represents the best channel estimation

possible for xt when all the remaining vectors in X are known2. Thus, GAD-MCMC

provides a realistic performance bound for joint data detection, channel estimation,

and data decoding.

GAD-MCMC can be considered as an idealized case of DEC-MCMC. In fact, the

performance of DEC-MCMC should approach that of GAD-MCMC as the quality of

the soft information provided by the channel decoder improves over iterations. This

is confirmed in Section 6.6 in which we show that DEC-MCMC can indeed approach

the performance of GAD-MCMC for a variety of channels considered in this work.

5.6 Simulation Results

In this section, we present simulation results to examine the performance of the

proposed receiver design. Performance of SCE-MCMC, DEC-MCMC, and ADA-

MCMC are provided for block fading channels with various coherence lengths. Com-

parisons of the proposed MCMC detectors with an improved version of the MMSE

detector is presented to demonstrate the substantial performance gain of the MCMC

detectors.

5.6.1 Comparisons of MCMC Detectors with Imperfect CSI

We first consider a 3×3 MIMO system with 16QAM modulation. A rate R = 1/2

convolutional code with generator polynomial (117, 155)octal is used. The code length

is 8000 bits. This system has a spectral efficiency of 12 bits/channel use. In Fig. 5.4,

we compare performance of DEC-MCMC, SCE-MCMC, together with two benchmark

curves corresponding to GAD-MCMC and PSA-MCMC. The channel estimation in

the latter employs the PSAM method, which performs only once at the first iteration,

2While it is possible to obtain a better channel estimate by assuming that the entire X is known,
and then use it for data detection, this approach suffers from data over-fitting, which leads to a
receiver performance that is even better than the case of perfect CSI.
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Figure 5.4. Performance comparison for a 3× 3 MIMO system with 16QAM, T =
10, G = I = 10.

and remains the same in the successive iterations. The MCMC parameters are G =

I = 10. A total of ten iterations of joint MCMC detection, channel estimation,

and data decoding is performed at the receiver. As shown in Fig. 5.4, DEC-MCMC

achieves the best performance. It performs closely to the GAD-MCMC at the bit-error

rate (BER) of about 10−3. It outperforms SCE-MCMC and PSA-MCMC by about

1 dB and 1.5 dB, respectively. The 1 dB gain of DEC-MCMC over SCE-MCMC

justifies the importance of reducing the correlation between channel estimation and

data decision. We note that the gap between PSA-MCMC and DEC-MCMC will

increase further as T increases.

To better understand the performance gap between DEC-MCMC and SCE-MCMC,

we examine the accuracy of the estimated effective noise variance, σ2
w̃t
, defined in

(5.11b) for DEC-MCMC. The estimated effective noise variance for SCE-MCMC can

be found by replacing X−t and Γ−t in (5.11b) by X and Γ. This quantity directly

affects the quality of random samples generated by the GS. In Fig. 5.5, at Eb/N0 = 9.5

dB, we plot σ2
w̃, obtained by taking the average of σ2

w̃t
over M +1 ≤ t ≤ T , and com-

pare it with the actual effective noise variance σ2
w̃,act = 1+ ρ

M
‖x‖

∑
1≤m≤M,1≤n≤N

|ĥn,m−

hn,m|2, as a function of iterations. For SDD-MCMC, due to the correlation be-
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Figure 5.5. Difference between actual MSE and estimated MSE of effective noise
for a 3× 3 MIMO system with 16QAM at Eb/N0 = 9.5 dB. T = 10.

tween data and channel estimation, σ2
w̃ fails to converge to σ2

w̃,act and remains an

under-estimate. For DEC-MCMC, σ2
w̃ converges to σ2

w̃,act at later iterations due to

decorrelation. This explains the superior performance of DEC-MCMC.

In Fig. 5.6, we examine the performance of the proposed schemes for a 4 × 4

MIMO system with 64QAM modulation. This system has a higher spectral efficiency

11 11.5 12 12.5 13 13.5 14 14.5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 (dB)

B
E

R

 

 

η̄ =30%

η̄ =39%

η̄ =47%

η̄ =49%

GAD−MCMC
SCE−MCMC
DEC−MCMC
ADA−MCMC

Figure 5.6. Performance comparison for a 4×4 MIMO system with 64QAM, T = 10.
G = I = 20 for GAD/SCE/DEC-MCMC. Gmax = Imax = 20 and Gmin = Imin = 10
for ADA-MCMC.
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of 24 bits/channel use. Due to the large system dimension, we increase the MCMC

parameters to G = I = 20 and adopt the ADA-MCMC to further reduce the detection

complexity. As shown in Fig. 5.6, the best performance is still achieved by DEC-

MCMC, which approaches the performance of GAD-MCMC at the BER of 10−4. It is

observed that DEC-MCMC outperforms SCE-MCMC by about 1.5 dB at BER=10−4.

For this system, PSA-MCMC outperforms SCE-MCMC by only 0.3 ∼ 0.4 dB, because

the performance of SCE-MCMC is degraded by the strong correlation between the

channel estimation and data decision. It is also shown in Fig. 5.6 that ADA-MCMC

performs closely to DEC-MCMC at a reduced complexity.

A detailed complexity analysis is provided in Fig. 5.7. Here, for each of the four

Eb/N0 points on the ADA-MCMC curve in Fig. 5.6, we show that η(m) increases as

a function of m. This reveals that as the quality of channel estimation improves over

iterations, the complexity saving becomes more significant. Note that η(m) increases

from 10% to about 60% after ten iterations. We also observe that η(m) increases

with Eb/N0, due to superior channel estimation at higher SNR.

5.6.2 Performance Comparison with MMSE Detector

In this section, we compare performance of the proposed DEC-MCMC detectors

with an improved version of the MMSE detector of [16]. We call this improved
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detector DEC-MMSE. We decorrelate the channel estimation and MIMO detection

in the same way as that of DEC-MCMC. It turns out that this improved MMSE

detector performs significantly better than its counterpart in [16].

In Fig. 5.8, we consider 4 × 4 MIMO systems with 64QAM modulation. Two

larger T values are considered: T = 20 and T = 50. Since the block lengths are

longer than the previous cases, the BER curves are less likely to show an error floor

at high SNR. It is shown that at BER= 10−4, DEC-MCMC provides a substantial

gain over DEC-MMSE by 1.5 dB for T = 20, and by about 1.7 dB for T = 50.

The complexity saving of ADA-MCMC over DEC-MCMC remains significant, with

η̄ ranging from 42% to 62%, at the cost of a slight performance degradation. The

gap between ADA-MCMC and DEC-MCMC increases to about 0.25 dB for T = 50

at BER=10−4. The performance of SCE-MCMC (not shown in the figure) is similar

to that of DEC-MCMC for these two T values because the contribution of the data

decisions of a single column towards SDD-CE diminishes as T increases.
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5.7 Conclusion

In this chapter, we developed joint MCMC detection and SCE algorithms that

achieved excellent performance for MIMO systems with high spectral efficiency. The

proposed algorithms are applicable to general communication scenarios with large

number of transmit antennas, and arbitrary modulation size. An analytical study

of the SCE algorithm was presented, based on which, new MCMC detectors that

explicitly take the channel estimation error into account were designed to facilitate

joint iterative data detection and channel estimation. The proposed DEC-MCMC

effectively reduces the correlation between channel estimation and data detection,

and thus yields a substantial performance gain for moderate or fast fading scenarios.

The ADA-MCMC is a novel adaptive MCMC detector that controls the complexity

of MCMC detection according to the channel estimation error. The proposed design

demonstrated significant performance gain over the soft MMSE detector for a variety

of channels considered in this work.



CHAPTER 6

JOINT CHANNEL ESTIMATION AND MCMC

DETECTOR IN TIME-SELECTIVE

RAYLEIGH FADING CHANNELS

In Chapter 5, we considered a channel model that remains constant over each

block of data and changes to another, independent, channel for the next data block.

This, of course, is unrealistic and is merely of interest to see how a given receiver

performs close to the theoretical capacity bound. In this chapter, we consider a more

realistic channel model that continuously varies with time. We also introduce novel

ideas that using the estimated fading statistics introduces negligible performance loss

compared to knowing the fading statistics exactly.

6.1 Introduction

Multiple-input multiple-out (MIMO) technique improves the wireless link reliabil-

ity and/or increases the channel capacity by a factor equal to the minimum number

of the transmit/receive antennas [2]. In the past, a vast amount of research has

been performed to address MIMO receiver design related to high data-rate and

high mobility in wireless communication systems [3, 11, 41, 45, 46, 52, 70]. In the

absence of channel state information (CSI), the receiver needs to provide a satisfying

channel estimate for coherent MIMO detection. For instance, conventional pilot

symbol assisted modulation (PSAM) channel estimation [29,31,32] is widely used and

discussed because of its simplicity for implementation. However, the performance of

PSAM channel estimation is limited by the power and number of channel uses spent

on training symbols.

More powerful channel estimators can be developed by taking advantage of the so-

called turbo principle and devising methods that detect data and channel iteratively.
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Such systems may generically be referred to as turbo receivers. Turbo receivers refine

the estimated channel and the quality of the detected data symbols as the iterations

proceed. Early work on turbo receivers is due to Valenti and Woerner [35,71], where

their study is performed for the case where data symbols are from binary phase-

shift keying (BPSK) modulation and the channel is single-input single-output and

frequency-flat fading. An extension of the turbo receiver of [35,71], for the case where

data symbols are from a QAM constellation, is presented in [36]. It has been observed

in [36] that this results in a very high complexity, as the underlying correlation matrix

of the channel estimator is data dependent and thus its inverse has to be calculated

at every channel use.

The goal of this chapter is to develop a low-complexity channel estimation al-

gorithm for turbo receivers, aiming to approximate the near-optimal performance

achieved by Wiener filtering at a much reduced complexity. We consider time-varying,

frequency flat channels and examine the performance of the proposed channel esti-

mation algorithm for MIMO communications with higher order modulations. We

propose a dual-layer Wiener filtering (DLWF) channel estimation algorithm. In the

first layer, the proposed algorithm computes a sequence of coarse channel estimates

based on a block-fading approximation. Subsequently, a smoothing filter is used in

the second layer to refine these coarse channel estimates. The smoothing filter is a

time-invariant Wiener filter whose coefficients are derived based on the second-order

statistics of the channel estimates.

We examine the performance of the proposed dual-layer channel estimation al-

gorithm using two state-of-the-art MIMO detectors: the soft-MMSE detector and

the Markov chain Monte Carlo (MCMC) detector. For large MIMO systems with

a high spectral efficiency of at least 10 bits/channel use, our results demonstrate

that the proposed DLWF algorithm, in conjunction with the MCMC-MIMO detector,

achieves a performance very close to that of the optimal WF filtering with a significant

complexity reduction. The MMSE detector, on the other hand, suffers a substantial

performance loss compared to that of the MCMC detector, when the same channel

estimation algorithm is applied. In this work, we also propose a simple method

to estimate the fading rate of time-varying channels. Computer simulation results
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reveal that the proposed fading rate estimator incurs only a negligible performance

loss compared to the case where the fading rate is perfectly known.

We note that similar ideas of dual-layer channel estimation exist in the literature

[35,36,38,39]. These work use short blocks of data decisions to obtain coarse estimates

of the channel at each channel use, and then these channel estimates are smoothed

through a Wiener filter for further refinement. The key differences between the

proposed DLWF and those of [35, 36, 38, 39] are as follows. First, the coarse channel

estimates obtained in [35, 36, 38, 39] are based on hard decisions. This suffers from

the problem of error propagation. In this work, we propose to use soft estimates of

the data symbols. Thus, our algorithm is able to compensate for decision errors as

well as additional errors caused by channel variation. Second, in [35, 36, 38, 39], the

filter coefficients used in the second layer ignore the coarse channel estimation error.

In this work, the smoothing filter designed in the second layer takes into account the

channel estimation error. Our simulation studies, presented in Section 6.6, show that

the proposed design yields a second layer filter that is better matched to the first

layer channel estimates; hence, a significant improvement in the receiver performance

is observed.

The rest of this chapter is organized as follows. In Section 6.2, we introduce the

channel model. The optimal (linear/Wiener filter) channel estimator is presented in

Section 6.3. The proposed low-complexity dual-layer channel estimation algorithm is

presented in Section 6.4. In Section 6.5, we present a simple method to estimate

the fading rate of the time-varying channel. Simulation results are presented in

Section 6.6. The conclusions of the chapter are drawn in Section 6.7.

6.2 System Setup

We consider a frequency-flat time-varying MIMO channel with M transmit an-

tennas and N receive antennas. A block diagram of the proposed system is shown in

Fig. 6.1.

An information bit sequence b is encoded by a channel encoder of rate R. The

coded bit sequence d is interleaved according to a permutation function Π(·) and

then mapped to a symbol sequence using a 2Mc-ary constellation. After adding Tp
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Figure 6.1. The block diagram of proposed MIMO system.

pilot symbols in every Td = Tc − Tp data symbols on each antenna, the resulting

symbol sequences, denoted by xm,t for m ∈ [1,M ] and t ∈ [1, Lpacket], are launched

by M transmit antennas. Here, the minimum training sequence Tp = M is used to

maximize the bandwidth efficiency. An average power constraint is imposed such that

1
M
E[x†

txt] = 1, where xt ∈ CM×1 denotes the symbols transmitted at time t.

The signal received by the n-th antenna at time instant t is

yn,t =

√
ρ

M
hT
n,txt + wn,t, for 1 ≤ n ≤ N (6.1)

where hn,t ∈ CM×1 denotes the channel gains between all transmit antennas and the

n-th receive antenna, ρ is the signal-to-ratio (SNR) at each receive antenna, and wn,t is

a white complex Gaussian noise with zero mean and unit variance. We also define the

MIMO channel gain matrix Ht =
[
h1,t h2,t · · · hN,t

]
. It is assumed that the elements

of Ht, hmn,t for m ∈ [1,M ] and n ∈ [1, N ], are a set of independent and identically

distributed (i.i.d.) complex Gaussian variables with zero mean and unit variance,

and have the correlation coefficients γτ = E[hmn,th
∗
mn,t+τ ] for τ = 0,±1,±2, · · · . Due

to the absence of spatial correlation, we drop the antenna index n in the sequel for

simplicity.

At the receiver, MIMO detection, channel estimation, and data decoding are

performed in an iterative manner, i.e., in a turbo loop. We let λ and µ denote the

a posteriori probabilities (APPs) of the transmitted symbols produced by the MIMO

detector, and by the channel decoder, respectively. The corresponding extrinsic
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information is denoted by λe and µe, respectively. At each iteration, given µ,

the mean and variance of each transmitted symbol xm,t, denoted by x̄m,t and vm,t,

respectively, are obtained as

x̄m,t =
∑
a∈A

a · P (x = a|µ), vm,t =
∑
a∈A

|a|2 · P (x = a|µ)− |x̄|2 (6.2)

whereA denotes the set of data symbol constellation points. Then, channel estimation

is performed to obtain Ĥt according to the statistics of soft decisions and the received

signal sequences. Subsequently, Ĥt and µe are fed to the MIMO detector for data

detection. The MIMO detector generates updated APPs λ, and then λe is passed

to the channel decoder. In this way, joint MIMO detection, channel estimation, and

data decoding is performed iteratively. After a fixed number of iterations, decisions

are made to obtain the estimated bit sequence b̂.

6.3 Optimal Channel Estimator

In prior work [35, 38], a Wiener filter channel estimator was derived for turbo

receivers by taking the decision values at the channel decoder output as the actual

transmit symbols, i.e., ignoring possible errors in the decisions. This leads to some

performance degradation compared to Wiener filter channel estimators that use soft

decisions [33, 40]. While [33, 40] considered only MIMO systems with BPSK modu-

lation, we can follow a similar approach to derive a Wiener filter channel estimator

for higher order modulations. For the completeness of the chapter, this derivation is

presented in this section.

We seek to find an estimate of the channel gain ht given the soft values (equiva-

lently, APPs) of the transmitted symbols and the correlation coefficients γτ . In the

sequel, we drop the antenna index n, and hence, consider the channel equation

yt =

√
ρ

M
hT
t xt + wt =

√
ρ

M
xT
t ht + wt. (6.3)

To develop an estimator for ht, the closet 2K + 1 samples of the received signal

surrounding time t are considered here. Accordingly, we define the received signal

vector y
(K)
t = [yt−K · · · yt · · · yt+K ]T and note that

y
(K)
t =

√
ρ

M
Stgt +wt, (6.4)
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where gt = [hT
t−K · · · hT

t · · · hT
t+K ]

T is an M(2K + 1) × 1 column vector obtained

by stacking channel vectors hk, for t − K ≤ k ≤ t + K, in a column, and St is a

(2K + 1)×M(2K + 1) matrix of the transmitted symbols defined as

S =


xT
t−K · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · xT
t · · · 0

...
. . .

...
. . .

...
0 · · · 0 · · · xT

t+K

 . (6.5)

Here, 0 is the 1×M zero vector.

The optimal channel estimator is a linear MMSE (LMMSE) filter [72] with the

input yt and coefficient matrix Ft =
[
ft,1 ft,2 · · · ft,M

]
. The estimated channel vector

is that obtained as

ĥt = F†
o,ty

(K)
t , (6.6)

where the superscript † denotes Hermitian and the subscript ‘o’ is added to emphasize

that Fo,t is the optimum choice of Ft. Following standard derivations of the LMMSE

estimator [33], it is straightforward to show that

Fo,t = Φ−1
ytyt

Θytht . (6.7)

where Φ−1
ytyt

= E[y
(K)
t (y

(K)
t )†] and Θytht = E[y

(K)
t h†

t ], and E[·] denotes expectation.

An important point to note here is that the matrices Φytyt and Θytht are data

dependent and thus vary with time. Hence, Fo,t must be calculated/updated at

each time instant. For large values of K, this can result in a very high complexity,

particularly if one notes that the (2K +1)× (2K +1) matrix Φytyt must be inverted

for every t.

For completeness of our derivation here, we note that

Θytht =

√
ρ

M
Υ

(K)
t X

(K)
t , (6.8)

where Υ
(K)
t is the (2K + 1) × (2K + 1) diagonal matrix with the elements of γ−K ,

· · · , γ0, · · · , γK , and X
(K)
t = [xt−K · · · xt · · · xt+K ]

T. Also, the elements of Φytyt

are given by

Φytyt(i, j) =
ρ

M
γi−j · 〈xi+t−K ,xj+t−K〉+ δ(i− j), (6.9)

where 〈xi+t−K ,xj+t−K〉, for i, j ∈ [0, 2K], denotes the inner product of xi+t−K and

xj+t−K , and δ(t) is the Kronecker-delta function.
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The above LMMSE estimator assumes that the transmit data symbols xt are

known. This, of course, cannot be true as the main goal of the receiver is obtain

estimates of the transmitted data. The works presented in [35, 38] take the decision

values at the channel decoder output as the actual transmitted symbols, i.e., ignoring

possible errors in the decisions. This inevitably leads to some loss in performance

of the receiver. A more sophisticated approach is to use the soft decisions from the

channel decoder instead of xt and modify the LMMSE estimator accordingly. As

discussed previously, this approach has been taken by some authors, e.g., [33, 40],

where it is noted that the LMMSE estimator gain matrix is given by

F̄o,t = Φ̄−1
ytyt

Θ̄ytht , (6.10)

where Θ̄ytht has the same form as Θytht in (6.8) with xt−K through xt+K replaced by

x̄t−K through x̄t+K , respectively, calculated according to (6.2). Also, the elements of

Φ̄yt,yt are found as

Φ̄ytyt(i, j) =
ρ

M
γi−j〈x̄i+t−K , x̄j+t−K〉+ (1 +

ρ

M

M∑
m=1

vm,i+t−K) · δ(i− j). (6.11)

In the rest of this chapter, we refer to (6.10), with the correlation matrix Φytyt

in (6.11), as the optimum Wiener filter (OWF) channel estimator. An important

point to note here is that the matrices Φ̄ytyt and Θ̄ytht are data dependent and thus

vary with time. Hence, F̄o,t must be calculated/updated at each time instant. For

large values of K, this can result in a very high complexity, particularly if one notes

that the (2K + 1) × (2K + 1) matrix Φytyt must be inverted for every t. On the

other hand, to approach the best performance that one can obtain from the turbo

receiver, a choice of 2K +1 (the size of the above matrices) in the order of 100 is not

unusual. This clearly implies that the implementation of the OWF channel estimator

can be computationally very involved. Hence, development of near-optimum channel

estimators (respectively, turbo receivers), but with a reasonable complexity, is of great

interest. Such an algorithm is developed in the next section.

6.4 Dual-layer Channel Estimator

In this section, we describe the proposed dual-layer channel estimator. The key

components of the proposed design are shown in Fig. 6.2. In the first layer, LMMSE
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Figure 6.2. Block diagram of the dual-layer channel estimator.

channel estimation is performed over a sliding window of length 2L + 1 to generate

a coarse channel estimate for the channel use at the center of the sliding window.

Subsequently, the sequence of coarse channel estimates generated from the first layer

is passed to a smoothing filter in the second layer to refine the channel estimation.

A distinct feature of our design lies in the correlation estimator in which we estimate

the second-order statistics of the coarse channel estimates in order to derive the

coefficients of the smoothing filter. This is in contrast to prior approaches [35, 36,

38, 39] in which such correlation is ignored. Furthermore, we note that the proposed

design does not require prior knowledge of the fading rate. Satisfactory performance

can be achieved using a simple fading rate estimator that we derive in Section 6.5.

In the remainder of this section, we describe each of these key components in detail.
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6.4.1 Layer 1: Coarse Channel Estimation

At this stage, for each time instant t, an estimate ȟt of the channel gain ht is

obtained using the received signal samples y
(L)
t = [yt−L, · · · , yt, · · · , yt+L]T and the

system model

yt+l =

√
ρ

M
xT
t+lht + vt+l + wt+l, for − L ≤ l ≤ L. (6.12)

In (6.12), vt+l =
√

ρ
M
xT
t+l(ht+l − ht) is treated as an additional noise term (beside

the channel additive white Gaussian noise wt), and L is an integer which is typically

much smaller than the parameter K of the OWF channel estimator. Beside the

received signal samples, the information that we use to obtain ȟt are (i) the soft

symbol information from the channel decoder, summarized in (6.2); (ii) the channel

statistics, characterized by the correlation coefficients γτ ; and (iii) the statistical

characteristics of the additive noise wt. Also, to simplify our derivations, we define

w′
t = vt + wt and, thus, rewrite (6.12) as

yt+l =

√
ρ

M
xT
t+lht + w′

t+l, for − L ≤ l ≤ L. (6.13)

Using (6.13), the estimator coefficient matrix, here, is obtained as

F̌t = Φ̌−1
t Θ̌t (6.14)

where

Θ̌t
4
= Θ̌ytht =

√
ρ

M
X̄

(L)
t (6.15)

Φ̌t
4
= Φ̌ytyt =

ρ

M
X̄

(L)
t

(
X̄

(L)
t

)†
+Qt, (6.16)

and Qt is the correlation matrix of the additive noise w′
t+l of (6.13) given by

Qt = I2L+1 +
ρ

M
E
{(

X
(L)
t − X̄

(L)
t

)(
X

(L)
t − X̄

(L)
t

)†}
+Ψt

≈ I2L+1 +
ρ

M
Diag{

M∑
m=1

vm,t−L, · · · ,
M∑
m=1

vm,t+L}+Ψt. (6.17)

Here, X
(L)
t = [xt−L · · · xt · · · xt+L]T consists of 2L+1 rows of transmit data symbols,

and X̄
(L)
t is defined on the soft decision of X

(L)
t correspondingly. Diag{a1, a2, · · · }

represents a diagonal matrix with a1, a2, · · · on its main diagonal. In (6.17), I2L+1 is



90

the identity matrix of size 2L+1, representing the correlation matrix of noise samples

wt; the second term arises from the decisions uncertainty, and it can be approximated

as a diagonal matrix with ρ
M

∑M
m=1 vm,i for i ∈ [t−L, t+L] on its main diagonal; and

the third term, Ψt, is the correlation matrix of the noise term vt+l of (6.12). In [73],

for a Jakes’ channel model, it has been shown that Ψt is a diagonal matrix with the

lth diagonal element

ψl =
ρE[‖xl‖2]

M
2[1− sinc(2πfdTsl)]. (6.18)

Summarizing the above results, we get

ȟt = F̌†
ty

(L)
t =

√
ρ

M

(
X̄

(L)
t

)† ( ρ

M
X̄

(L)
t

(
X̄

(L)
t

)†
+Qt

)−1

y
(L)
t (6.19)

where y
(L)
t = [yt−L · · · yt · · · yt+L]T. Computation of ȟt involves inversion of the

(2L+ 1)× (2L+ 1) matrix ρ
M
X̄

(L)
t

(
X̄

(L)
t

)†
+Qt with the typical choice of L = 10 to

20. The complexity of implementation of (6.19) can be reduced significantly, if we

use the matrix inversion lemma to rearrange (6.19) as

ȟt =

√
ρ

M

(
IM +

ρ

M

(
X̄

(L)
t

)†
Q−1
t X̄

(L)
t

)−1 (
X̄

(L)
t

)†
Q−1
t y

(L)
t (6.20)

=

√
ρ

M
∆t

(
X̄

(L)
t

)†
Q−1
t y

(L)
t . (6.21)

This requires trivial inversion of the diagonal matrixQ−1
t , and inversion of theM×M

matrix ∆t =
(
IM + ρ

M

(
X̄

(L)
t

)†
Q−1
t X̄

(L)
t

)−1
, with typical values of M = 2 to 4.

From (6.17) and (6.21), we see that both the variance and the expected value of

the soft decisions affect the LMMSE channel estimation. When a symbol decision

is less reliable, i.e., vm,t+l is large, the contribution of this symbol to the channel

estimate is less. Also, symbols that are far from the center of the sliding window also

contribute less to the channel estimation due to the larger value of ψl.

Using (6.15) and (6.16), the MSE of channel estimates in (6.21) is given by

ε̌2t =
1

M
Tr

{
IM − Θ̌†

tΦ̌
−1
t Θ̌t

}
=

1

M
Tr

{
IM −

√
ρ

M

(
X̄

(L)
t

)† ( ρ

M
X̄

(L)
t

(
X̄

(L)
t

)†
+Qt

)−1
√

ρ

M
X̄

(L)
t

}
=

1

M
Tr{∆t}. (6.22)
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6.4.2 Layer 2: Filtering the Coarse Channel Estimates

In the second stage, we design a filter which is applied to the coarse channel

estimates to reduce the residual estimation error. Since we assume there is no spatial

correlation between the antenna pairs, we apply an independent filter for the gain

between each antenna pair. We thus drop the antenna index and design the filter

coefficients for an arbitrary antenna pair.

Let ȟ
(K)
t =

[
ȟt−K , · · · , ȟt, · · · , ȟt+K

]T
. The filtered/improved channel estimate at

time t is obtained as

h̃t = a†
t ȟ

(K)
t (6.23)

where at ∈ C(2K+1)×1 denotes the coefficients of the filter. By minimizing the cost

function E{|ht − h̃t|2}, we obtain the optimum estimator coefficient vector as

ao,t = Φ−1
ȟtȟt

θȟtht
(6.24)

where Φȟtȟt
= E{ȟ(K)

t ȟ
(K)†
t } ∈ C(2K+1)×(2K+1) is the autocorrelation matrix of the

coarse channel estimates, and θȟtht
= E{ȟ(K)

t h∗t} ∈ C(2K+1)×1 is the cross-correlation

vector between the coarse channel estimates and the true channel gain at time t.

In the past, a number of works, e.g., [38,39], have reported similar filtering of the

coarse estimates. To the best of our knowledge, all these works replace the estimates

ȟt by the true channel gain ht to evaluate Φȟtȟt
and θȟtht

and accordingly calculate

the filter coefficient vector ao,t. We refer to channel estimators built based on this

procedure as mismatched-DLWF. Obviously, mismatched-DLWF incurs some loss in

performance of the receiver. Here, we seek for more accurate estimates of Φȟtȟt
and

θȟtht
and, hence, a better choice of ao,t. Our analysis presented in the Appendix leads

to the following results. The ith element of θȟtht
is given by

θȟtht
(i) = γi(1− ε̌2t+i), for −K ≤ i ≤ K, (6.25)

and the (i, j)-th element of Φȟtȟt
is given by

Φȟtȟt
(i, j) =

{
1− ε̌2t+i, for −K ≤ i = j ≤ K
γi−j

M
tr
{(

IM −∆t+i

)(
IM −∆t+j

)}
, for −K ≤ i 6= j ≤ K.

(6.26)

We note that Φȟtȟt
is a time-varying matrix and thus it has to be inverted once

for each time instant, t. To avoid this undesirable complexity, in (6.24), we replace
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Φȟtȟt
and θȟtȟt

by their average over the whole packet, denoted by Φ̄ȟȟ and θ̄ȟȟ,

respectively. Thus, Φ̄ȟȟ is inverted only once for the whole packet.

6.4.3 Variance of the Channel Estimation Error

The variance of the channel estimation error is required by the MIMO detector

in the turbo receiver. In the DLWF channel estimator, we obtained two different

channel estimates: the noisy channel estimates in layer one by (6.21) and the filtered

channel estimates in layer two by (6.23). The MSE of channel estimation in layer one

is given by (6.22), and the MSE of channel in layer two is found by

ε̃2t = 1− θ†
ȟtht

Φ−1
ȟtȟt

.θȟtht
. (6.27)

We also note that ε̃2t is under-estimated because of the independent assumption we

made on w′
t in the Appendix. Hence, using this value for the MIMO detector may

incur some loss in the performance of the receiver. We empirically found that using

the average of ε̌2t and ε̃2t as the channel estimation error leads to a much better

performance of the MIMO detector.

6.5 Estimation of the Temporal Correlation γτ

In Sections 6.3 and 6.4, we developed two channel estimation algorithms for MIMO

systems in the context of turbo receivers. For both algorithms, temporal correlation

of fading channels γτ is assumed to be known at the receiver. However, clearly, this

usually is not the case in practice. To present a more realistic measure of performance

of the proposed turbo receivers, here, we propose a method of estimating the channel

correlation coefficients γτ from the channel estimates obtained through pilot symbols.

For transmission, pilot symbols Xp ∈ CTp×M are inserted into data symbols

with spacing Tc. The topic of optimal training to maximize the achievable rate of

continuous flat-fading MIMO channels is discussed in [28,73,74], and it is beyond the

scope of this chapter. We simply take the minimum training length, i.e., Tp = M ,

and the pilot spacing Tc chosen according to the formula

Tc =

⌊
0.423

fd,maxTs

⌋
(6.28)

where Ts is the symbol interval, fd,max is the maximum Doppler rate of the channel,

and b·c denotes the floor operator. The pilot symbols are designed to be orthogonal,
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i.e., X†
pXp = TpIM . Hence, the channel estimate corresponding to the lth pilot symbol

is obtained as

ĥpl =

√
ρ

M

(
IM +

ρ

M
X†
pXp

)−1

Xpypl

=

√
ρM

M + ρTp
Xpypl (6.29)

where ypl denotes the associated received signal.

Next, we obtain an estimate of γTc , denoted by γ̂Tc , by averaging the correlation

between successive channel estimates over all antenna pairs and across time over the

received data packet. Using Lpacket to denote the packet length, we obtain

γ̂Tc =
1

(bLpacket/Tcc − 1)MN

N−1∑
n=0

bLpacket/Tcc−1∑
l=1

ĥ†
n,pl

ĥn,pl+1
. (6.30)

The normalized channel fading rate fdTs is then obtained as

f̂dTs =
1

2πTc
J−1
0 (γ̂Tc) (6.31)

where J0(·) is the zero-th order Bessel function of first kind [75]. Once fdTs is known,

γτ , for any τ can be calculated as

γτ = J0(2πf̂dTsτ). (6.32)

6.6 Simulation Results

We present simulation results for a medium MIMO system with M = N = 3

and 16 QAM modulation and a large MIMO system, also, with M = N = 3 but

with 64 QAM modulation. A rate R = 1/2 convolutional code of length 8000 with

generator polynomials (117, 155)octal is used. To simulate the time-varying fading

channel, we adopt the Jakes’ model with the normalized fading rate fdTs = 0.02.

This has the coherence time of approximately 21 symbol intervals. We thus set Tc

equal to this value (i.e., Tc = 21), for the medium MIMO system that we study.

However, our experimental study revealed that Tc should be set somewhat smaller

than the coherence time for larger MIMO systems. We set Tc = 17 for our large

MIMO set-up. We also set Tp = M , i.e., to its minimum value. At the initial

iteration, channel estimates are obtained from PSAM with interpolation.
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We investigate the performance of OWF and DLWF channel estimation algorithms

presented in Section 6.3 and Section 6.4 for both the soft-MMSE MIMO detector [16]

and the MCMC-MIMO detector [46]. We also present the results of mismatched-

DLWF for comparison. The number of iterations between channel estimation and

data detection is set equal to 20. We also use the Wiener filter parameters K = 50

and L = 5 (defined in the previous sections), for both OWF- and DLWF-based

receivers. These choices of K and L were found empirically for good performance

of both algorithms in our system setup. The bit-error-rate (BER) curves presented

below are based on a sufficiently long run of each case, to obtain reliable results. Each

point of the curves is finalized after observing at least 1000 frame errors.

6.6.1 Receivers with Soft-MMSE Detector

We first show the performance of various receivers with the soft-MMSE MIMO

detector. For comparison, we include two standard methods as references: known

CSI and PSAM. The BER results for the medium system (3 × 3 MIMO with 16

QAM symbols) are presented in Fig. 6.3. The presented BER curves are those of the

OWF channel estimator (Section 6.3), the DLWF channel estimator (Section 6.4),

and mismatched-DLWF. Here, we assume that the channel statistic (the Jakes’ model

parameter fdTs) is known. The following observations are made.

• The DLWF channel estimator suffers from a minor degradation when compared

to the OWF channel estimator. The performance loss is a small fraction of

decibel (≈ 0.15 dB). We measured the CPU time spent on DLWF and OWF

and found that the DLWF channel estimator is over an order of magnitude

(about 15 times) less complex than its OWF counterpart.

• The mismatched-DLWF performs about 0.9 dB worse than the DLWF. This

justifies the importance of deriving the smoothing filter based on the second-

order statistics of the coarse channel estimates.

• At the BER of 10−4, DLWF performs about 1.5 to 2 dB better than PSAM.

• There is a large gap between OWF/DLWF and the case of known CSI. This

is due to the limited performance of the soft-MMSE detector in the presence
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Figure 6.3. Performance comparison of a medium MIMO system with soft-MMSE
detector. Tc = 21. The normalized channel fading rate fdTs is known.

of channel estimation error. Later we will show that this gap will be reduced

when we replace the soft-MMSE detector by the MCMC detector.

Fig. 6.4 repeats the results of Fig. 6.3 for the case of the large MIMO system. The

BER results here are not as good as their counterparts in Fig. 6.3. The difference

between the OWF and PSAM, here, is about 1 dB or less. It turns out that the inferior

performance of the turbo receiver, when symbol constellations are very large (here,

64 QAM) is related to the disability of the soft-MMSE MIMO detector to resolve the

data symbols when channel estimate is inaccurate. It is interesting to note that the

mismatched-DLWF performance is inferior to that of PSAM. This we believe results

from a combined effect of error propagation and poor performance of the soft-MMSE

MIMO detector. Next, we show this problem is resolved if the soft-MMSE MIMO

detector is replaced by an MCMC-MIMO detector.
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Figure 6.4. Performance comparison of a large MIMO system with soft-MMSE
detector. Tc = 17. The normalized channel fading rate fdTs is known.

6.6.2 Performance Comparison for MCMC-MIMO Detector

The next set of results that we present follow the same setup as that of Figs. 6.3

and 6.4 with the soft-MMSE MIMO detector replaced by an MCMC-MIMO detector.

The MCMC-MIMO detector that we have used here follows [46]. In Fig. 6.5, we use

10 parallel Gibbs samplers and the depth of each Gibbs sampler is also 10. This

means we take 10×10 = 100 samples from the MCMC to calculate the log-likelihood

ratio (LLR) values of the information bits. In Fig. 6.6, the number of samples from

MCMC is increased to 20×20 = 400 due to the larger constellation size. The following

observations are made.

• Similar to the case of soft-MMSE, the DLWF channel estimator combined with

MCMC suffers from a small degradation (0.2 ∼ 0.5 dB) when compared to the

OWF channel estimator. The simulation time for DLWF is again over an order

of magnitude less than its OWF counterpart.

• Compared to DLWF, the mismatched-DLWF suffers from a much larger loss
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Figure 6.5. Performance comparison of a medium MIMO system with MCMC
detector. Tc = 21. The normalized channel fading rate fdTs is known.

(about 1 dB for small system and 2 dB for large system).

• At the BER of 10−4, the gain brought by the DLWF when compared to PSAM

is about 3 dB. This demonstrates that the iterative receiver with the MCMC-

MIMO detector efficiently takes the benefit brought by turbo principle.

• The performance gap between the OWF channel estimator and known CSI is

less than 1 dB at the BER of 10−4.

The results that are presented in Figs. 6.5 and 6.6 clearly show the significant

receiver gain that is obtained by using the MCMC-MIMO detector instead of the

soft-MMSE MIMO detector. This interesting observation reveals that in presence of

channel uncertainty, the MCMC-MIMO detector is significantly more robust than the

soft-MMSE MIMO detector.

To further compare the impact of replacing the soft-MMSE MIMO detector by its

MCMC counterpart, Fig. 6.7 compares the BER curves obtained using both detectors

for our large MIMO setup, taken from Figs. 6.4 and 6.6. We have presented the results
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Figure 6.6. Performance comparison of a large MIMO system with MCMC detector.
Tc = 17. The normalized channel fading rate fdTs is known.

for the cases of known CSI, PSAM, and the DLWF-based receiver. The cases of known

CSI and PSAM are where the channel (estimate) used for detection is fixed (i.e., no

channel refinement is made through iterations) and thus, the difference between the

two turbo receivers comes from the turbo loop decoding performance only after several

iterations. The DLWF-based receiver, on the other hand, refines the channel after

each iteration. The following observations are made.

• In general, the MCMC detector outperforms the soft-MMSE detector.

• When CSI is perfectly known, the difference between the system performance

resulting from the two MIMO detectors diminishes as SNR increases (equiva-

lently, as BER decreases). However, at lower values of SNR, where BER is high,

the MCMC detector outperforms the soft-MMSE detector by a gap of 1 dB or

greater.

• In the case of PSAM, when the CSI is imperfect, the system performance

resulting from the two MIMO detectors keeps a distance of about 1 dB, for
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Figure 6.7. Performance comparison of soft-MMSE detector and MCMC detector.
The normalized channel fading rate fdTs is known.

most of the SNR range. From this observation, we infer that, in presence of

channel estimation error, a turbo receiver equipped with an MCMC-MIMO

detector has a more robust performance than its soft-MMSE counterpart.

• In the case of the DLWF-based receiver (as well as the OWF receiver), where

channel estimation is refined at the successive iterations, the MCMC-based

receiver outperforms the soft-MMSE-based receiver by a much larger margin.

This may be explained as follows. The superior performance of the MCMC-

based receivers, over successive iterations, results in a more refined channel

estimate, and this in turn improves the overall system performance.

6.6.3 Estimation of Temporal Correlation

In Section 6.5, we proposed a method of estimating the temporal correlation

coefficients of the Jakes’ model of the channel using the channel estimates from the

pilot symbols. To verify the effectiveness of the estimated temporal correlation, we

let the normalized fading rate vary uniformly in the range [0.01, 0.02], and examine

the performance of the proposed turbo receivers with the estimated fading rate and
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compare the results with the case where the fading rate is known perfectly. The

results for the case of the DLWF channel estimator and the MCMC-MIMO detector,

for both the medium and large MIMO systems, are presented in Fig. 6.8. As seen,

the difference between the two results is indistinguishable. Only for the large MIMO

system, a small difference appears at BER of around 10−4.

6.7 Conclusions

In this chapter, we developed a novel low-complexity turbo receiver for flat fading

MIMO channels. Despite significant reduction in complexity, the proposed receiver

was found to perform very close to an optimal receiver that uses a data-dependent

Wiener filter for channel estimation. The difference in performance is only a fraction

of a decibel. We also examined the soft-MMSE and MCMC methods as two possible

choices for the MIMO detector part of the receiver. Computer simulations revealed

that, in presence of channel estimation error, MCMC performs significantly better

than the soft-MMSE detector. Furthermore, assuming a Jakes’ model for the channel,

we developed a simple method that uses the channel estimates from pilot symbols
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Figure 6.8. Performance of DLWF receiver with MCMC detector using estimate
correlation coefficients γτ .
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to estimate the fading rate of the channel. Numerical results revealed this simple

method is accurate enough to allow the turbo receiver to perform very close to what

it would perform when the channel fading rate was known perfectly.



CHAPTER 7

CONCLUSION AND FUTURE WORKS

This dissertation proposed a number of iterative receiver designs that address

several challenges in MIMO wireless communication systems. The main contributions

of the thesis are presented in Chapters 4, 5, and 6.

Chapter 4 took note of the fact that the conventional MCMC-MIMO detector

may deteriorate as SNR increases. We suggested and showed through computer

simulations that this problem to a great extent can be solved by initializing the

MCMC detector with regulated states, which are found through linear detectors. We

also introduced the novel concept of staged-MCMC in a turbo receiver. It starts the

detection process at a lower complexity and increases complexity only if the data

could not be correctly detected in the present stage of data detection. Computer

simulations revealed that this approach could drastically reduce the computational

complexity of MCMC detector, yet lead to a satisfactory performance.

Chapter 5 addressed the receiver design for MIMO block fading channels and

presented a novel decorrelation receiver to break the correlation between the soft-

decision-directed channel estimator (SCE) and MIMO detection. The new design

achieves an excellent performance close to that of a genie-aided receiver. We also

showed that for fast fading channels, the decorrelation receiver provides a significant

gain over the conventional receiver, where no attempt is made to break the correlation

between SCE and MIMO detection.

Chapter 6 addressed the joint MIMO detection and channel estimation for time-

varying fading channels. To be more realistic, a method of estimating the channel

correlation coefficients from the coarse channel estimates obtained through pilot sym-

bols was proposed. Given the estimated channel correlation coefficients, a dual-layer
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channel estimator was developed. This method reduces the complexity of the MIMO

detector by an order of magnitude at a cost of a negligible degradation in performance,

on the order of 0.1 to 0.2 dB.

Furthermore, our study revealed that under the realistic conditions where CSI has

to be estimated, hence the available channel estimate will be noisy, the MCMC-MIMO

detector outperforms the LMMSE-MIMO detector with a significant margin.

7.1 Future Work

7.1.1 Receiver Design for MIMO-OFDM

Orthogonal frequency division multiplexing (OFDM) and multiple-input multiple-

out (MIMO) techniques have been incorporated in virtually all the current and

evolving wireless standards, including WiFi, LTE, and WiMax [76]. OFDM converts

a broadband channel into a number of parallel narrowband subcarrier channels with

frequency-flat gains, and hence, simplifies the task of channel equalization – each

subcarrier channel can be equalized using a single tap equalizer. Moreover, OFDM

extension to MIMO channels is a straightforward task, and MIMO-OFDM also inher-

its the simple equalization/detection benefit of OFDM. The receiver designs proposed

in this dissertation have their potential to be applied to MIMO-OFDM systems with

appropriate modifications. Such a study should prove very useful for adoption of the

methods developed in this thesis to the more practical systems.

7.1.2 Receiver Design for Frequency-Selective Fading Channels

Although we developed a number of iterative receivers for MIMO systems in

this thesis, the assumption we made is that channel fading is frequency-flat. As

discussed in Chapter 2, the channel is frequency-selective when the maximum delay

spread is not significantly smaller than the symbol duration. Thus, the channel

becomes doubly dispersive. Transmission over doubly dispersive channels suffers

from time-varying intersymbol interference (ISI). When the CSI is known and time

invariant, the maximum likelihood sequence detector (MLSD) structure based on the

Viterbi algorithm (VA) is an optimal detector structure. However, when the channel is

unknown and time-varying, MLSD is computationally infeasible. A suboptimal design

with joint data detection and channel estimation is another interesting problem to
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study.

7.1.3 Receiver Design for Underwater Acoustic Channels

Underwater acoustic (UWA) channels are a special form of frequency-selective

time-varying channels with very fast fading rates. The methods developed in this

thesis are thus a great match to UWA channels and their applications to such channels

can be very productive.



APPENDIX

DERIVATION OF CORRELATION STATISTICS

IN CHAPTER 6

To preserve simplicity of derivations, let us omit the superscript (L) of y
(L)
t and

X
(L)
t . The elements of correlation vector θȟtht

= [θȟtht
(t−K) · · · θȟtht

(t) · · · θȟtht
(t+

K)]T are defined as

θȟtht
(i) = E

[
ȟt+ih

∗
t

]
=

1

M
E
[
h†
t ȟt+i

]
=

1

M
Tr

{
E
[
ȟt+ih

†
t

]}
, for −K ≤ i ≤ K.

(A.1)

Substituting (6.21) and yt+i =
√

ρ
M
Xt+iht+i+w′

t+i withw′
t+i = [w′

t+i−L · · · w′
t+i · · · w′

t+i+L]
T

into (A.1), we obtain
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(
1− ε̌2t+i
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. (A.2)

Here, ∆t+i =
(
IM + ρ

M
X̄†
t+iQ

−1
t+iX̄t+i

)−1
. Note that in (A.2), we assume that the noise

w′
t+i+l (−L ≤ l ≤ l) and ht are independent.

The elements of the correlation matrix Φȟtȟt
are defined as

Φȟtȟt
(i, j) = E

[
ȟt+iȟ

∗
t+j

]
=

1

M
E
[
ȟ†
t+jȟt+i

]
=

1

M
Tr

{
E
[
ȟt+iȟ

†
t+j

]}
, (A.3)

where −K ≤ i, j ≤ K.
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For the diagonal elements of Φȟtȟt
, i.e., i = j, we have E

[
yt+iy

†
t+i

]
= Qt+i +

ρ
M
X̄t+iX̄

†
t+i. Substituting (6.21) in to (A.3), we have
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For the off-diagonal elements of Φȟtȟt
, i.e., i 6= j, we have
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Substituting (6.21) and (A.5) into (A.3), we obtain

Φȟtȟt
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