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Figure 1: Engine block rendered with volume stipple renderer.(fcgc =  0.39, kgs =  0.51, kgc =  1.0). (a) is the default rendering and 
(b) shows boundary and silhouette enhancement, as well as silhouette curves.(fc,c =  0.279, fc,., =  0.45,fc.,c =  1.11)

A b s t r a c t

Simulating hand-drawn illustration techniques can succinctly ex­
press information in a manner that is communicative and infor­
mative. We present a framework for an interactive direct volume 
illustration system that simulates traditional stipple drawing. By 
combining the principles of artistic and scientific illustration, we 
explore several feature enhancement techniques to create effective, 
interactive visualizations of scientific and medical datasets. We also 
introduce a rendering mechanism that generates appropriate point 
lists at all resolutions during an automatic preprocess, and modifies 
rendering styles through different combinations of these feature en­
hancements. The new system is an effective way to interactively 
preview large, complex volume datasets in a concise, meaningful, 
and illustrative manner. Volume stippling is effective for many ap­
plications and provides a quick and efficient method to investigate 
volume models.
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1 In t r o d u c t i o n

Throughout history, archaeologists, surgeons, engineers, and other 
researchers have sought to represent the important scientific data 
that they have gathered in a manner that could be understood by 
others. Illustrations have proven to be an effective means to achieve 
this goal because they have the capability to display information 
more efficiently by omitting unimportant details. This refinement 
of the data is accomplished by directing attention to relevant fea­
tures or details, simplifying complex features, or exposing features 
that were formerly obscured [31]. This selective inclusion of detail 
enables illustrations to be more expressive than photographs.

Indeed, many natural science and medical publications use sci­
entific illustrations in place of photographs because of the illus­
trations’ educational and communicative ability [10]. Illustrations 
take advantage of human visual acuity and can represent a large 
amount of information in a relatively succinct manner, as shown in 
Figures 2 and 3. Frequently, areas of greater emphasis are stippled 
to show detail, while peripheral areas are simply outlined to give 
context. The essential object elements (e.g., silhouettes, surface 
and interior) can achieve a simple, clear, and meaningful image. 
By controlling the level of detail in this way, the viewer’s atten­
tion can be directed to particular items in the image. This principle 
forms the basis of our stipple rendering system.

Stipple drawing is a pen-and-ink illustration technique where 
dots are deliberately placed on a surface of contrasting color to ob­
tain subtle shifts in value. Traditional stipple drawing is a time­
consuming technique. However, points have many attractive fea­
tures in computer-generated images. Points are the minimum el­
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Figure 2: Idol stipple drawing by George Robert Lewis [10].

ement of all objects and have connatural features that make them 
suitable for various rendering situations, no matter whether sur­
face or volume, concrete or implicit. Furthermore, points are the 
simplest and quickest element to render. By mimicking traditional 
stipple drawing, we can interactively visualize modestly sized sim­
ulations. When initially exploring an unknown volume dataset, this 
system provides an effective means to preview this data and high­
light areas of interest in an illustrative fashion. The system creates 
artistic rendering effects and enhances the general understanding 
of complex structures. Once these structures are identified, the user 
may choose another volume rendering technique to generate a more 
detailed image of these structures. It is the use of non-photorealistic 
rendering (NPR) techniques that provides the stipple volume ren- 
derer with its interactivity and illustrative expressiveness. We refer 
to this type of NPR technique as illustrative rendering.

NPR is a powerful tool for making comprehensible, yet sim­
ple images of complicated objects. Over the past decade, the 
field of NPR has developed numerous techniques to incorporate 
artistic effects into the rendering process [8, 27]. Various ap­
proaches have been used, including pen-and-ink illustration, sil­
houette edges, and stroke textures. Most of the research in the 
field of non-photorealistic illustration has concentrated on strokes, 
crosshatching, and pen and ink techniques [9, 14, 26] and most of 
the current research still concentrates on surface renderings, which 
requires surface geometry. We chose to directly render volume 
datasets without any additional analysis of object or structure re­
lationships within the volume. Volume stippling not only maintains 
all the advantages of NPR, but it also makes interactive rendering 
and illustration feasible on useful-sized datasets because of two at­
tributes of points: fast rendering speed and innate simplicity.

In our system, the volume resolution is initially adjusted for op­
timum stipple pattern rendering, and point lists are generated corre­
sponding to the gradient magnitude and direction. Next, a render­
ing mechanism is introduced that incorporates several feature en­
hancements for scientific illustration. These enhancements include 
a new method for silhouette curve generation, varying point sizes, 
and stipple resolution adjustments based on distance, transparency, 
and lighting effects. By combining these feature enhancements, 
datasets can be rendered in different illustration styles.

Figure 3: Cicadidae stipple drawing by Gerald P. Hodge [10].

2  R e l a t e d  W o r k

Non-photorealistic rendering has been an active area of research, 
with most of the work concentrating on generating images in var­
ious traditional styles. The most common techniques are sketch­
ing [30], pen-and-ink illustration [6, 23, 24, 31],silhouette render­
ing [14,19, 21, 25], and painterly rendering [1, 4]. Pen-and-ink ren­
dering uses combinations of strokes (i.e. eyelashing and crosshatch­
ing) to create textures and shading within the image.

Lines, curves, and strokes are the most popular among existing 
NPR techniques. Praun et al. [20] presented a real-time system for 
rendering of hatching strokes over arbitrary surfaces by building 
a lapped texture parameterization where the overlapping patches 
align to a curvature-based direction field. Ostromoukhov [17] il­
lustrated some basic techniques for digital facial engraving by a 
set of black/white and color engravings, showing different features 
imitating traditional copperplate engraving. Hertzmann et al. [9] 
presented a method for creating an image with a hand painted ap­
pearance from a photograph and an approach to designing styles 
of illustration. They demonstrated a technique for painting with 
long, curved brush strokes, aligned to the normals of image gra­
dients, to explore the expressive quality of complex brush stokes. 
Winkenbach and Salesin [32] presented algorithms and techniques 
for rendering parametric free-form surfaces in pen and ink.

Deussen et al. [5] used points for computer generated pen-and- 
ink illustrations in simulating the traditional stipple drawing style. 
Their method is to first render polygonal models into a continuous 
tone image and then convert these target images into a stipple rep­
resentation. They can illustrate complex surfaces very vividly, but 
their method is for surface rendering, not volumes, and is too slow 
for interactive rendering.

NPR techniques have only recently been applied to the visual­
ization of three-dimensional (volume) data. Interrante developed 
a technique for using three-dimensional line integral convolution 
(LIC) using principal direction and curvature to effectively illustrate 
surfaces within a volume model [12]. Treavett and Chen also used 
illustration techniques to render surfaces within volumes [28, 29]. 
In both cases the results were compelling, but the techniques are 
surface-based visualization techniques, rather than direct volume 
rendering techniques that can show not only surfaces, but also im­
portant details of the entire volume.
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Several NPR techniques have recently been applied to volume 
rendering. Ebert et al. [7] showed the power of illustrative render­
ing techniques for volume data; however, the renderer was based 
on ray-casting and too slow for interactivity or quick exploration 
of the data. Our current work builds upon enhancement concepts 
from that work yet. Furthermore, interactive volume rendering has 
garnered a significant amount of attention [15] and NPR meth­
ods have been applied to obtain interactive performance while pro­
ducing effective volume renderings [2, 3]. Treavett et al. [29] 
implemented artistic procedures in various stages of the volume- 
rendering pipeline. Techniques such as brush strokes, control vol­
umes, paint splatting, and others were integrated into their render­
ing system to produce a variety of artistic effects to convey tone, 
texture and shape.

However, tone, texture, and shape can be effectively conveyed 
by simply controlling the placement and density of points. Though 
not a primary focus in illustrative rendering systems until recently, 
points have been used as rendering primitives before. Levoy and 
Whitted [13] first demonstrated that points could be used as a dis­
play primitive and that a discrete array of points arbitrarily dis­
placed in space, using a tabular array of perturbations, could be 
rendered as a continuous three-dimensional surface. Furthermore, 
they established that a wide class of geometrically defined objects, 
including both flat and curved surfaces, could be converted into 
points. The use of points as surface elements or “surfels” can pro­
duce premium quality images, which consist of highly complex 
shape and shade attributes, at interactive rates [18, 34].

The main difference between previous stipple and point render­
ing research and ours is that our system interactively renders vol­
umes with points instead of just surfaces with points. Within vol­
ume rendering, the closest related technique is splatting [33, 22], 
which traditionally does not incorporate the effectiveness of il­
lustration techniques. In the remainder of this paper, we show 
the effectiveness of a simple point-based interactive volume stip­
pling system and describe how a number of illustrative enhance­
ment techniques can be utilized to quickly convey important vol­
ume characteristics for rapid previewing and investigation of vol­
ume models.

3  T h e  S t i p p l e  V o l u m e  R e n d e r e r

The clarity and smoothness displayed by stippling, coupled with the 
speed of hardware point rendering, makes volume stippling an ef­
fective tool for illustrative rendering of volume data. As with all sci­
entific and technical illustration, this system must perform two key 
tasks. First, it must determine what to show, primarily by identify­
ing features of interest. Second, the system must carry out a method 
for how to show identified features. The stipple renderer consists 
of a point-based system architecture that behaves as a volume ren- 
derer and visually extracts various features of the data by selective 
enhancement of certain regions. Volume gradients are used to pro­
vide structure and feature information. With this gradient informa­
tion, other features can be extracted such as the boundary regions 
of the structure. We can illustrate these volumes using stippling 
techniques with a particular set of features in mind. To effectively 
generate renderings of volume datasets at interactive rates, the sys­
tem has two main components: a preprocessor and an interactive 
point renderer with feature enhancement.

4  P r e p r o c e s s i n g

Before interactive rendering begins, the preprocessor automatically 
generates an appropriate number of stipple points for each volume 
based on volume characteristics, including gradient properties and 
basic resolution requirements. This preprocessing stage handles a

number of calculations that do not depend on viewpoint or enhance­
ment parameters, including the calculation of volume gradient di­
rection and magnitude, the initial estimation of stipple density from 
volume resolution, and the generation of an initial point distribu­
tion. Furthermore, the voxel values and gradients are all normal­
ized.

4 .1  G r a d i e n t  P r o c e s s i n g

Gradient magnitude and direction are essential in feature enhance­
ment techniques, especially when rendering CT data [11]. Some 
feature enhancements are significantly affected by the accuracy of 
the gradient direction, especially our light enhancement. Noisy 
volume data can create problems in generating correct gradient di­
rections. Additionally, first and second derivative discontinuity in 
voxel gradients can affect the accuracy of feature enhancements. 
Initially, we tried a traditional central difference gradient method. 
However, Neumann et al. [16] have presented an improved gra­
dient estimation method for volume data. Their method approx­
imates the density function in a local neighborhood with a three­
dimensional regression hyperplane whose four-dimensional error 
function is minimized to get the smoothed dataset and estimated 
gradient at the same time. We have implemented their method for 
better gradient estimation.

4 .2  I n i t ia l  R e s o l u t i o n  A d j u s t m e n t

When viewing an entire volume dataset, as the volumes' size in­
creases, each voxel's screen projection is reduced. Even if we as­
sign at most one point per voxel, areas with high gradient magnitude 
still appear too dark. We use a simple box-filter to initially adjust 
the volume resolution, so that the average projection of a voxel on 
the screen is at least 5x5 pixels. This adjustment improves the stip­
pling pattern in the resulting images.

We define as the maximum number of stipples that each
voxel can contain during the rendering process. After reading the 
dataset, we approximately calculate the maximum projection of a 
voxel on the screen and set the maximum number of points in the 
voxel to be equal to the number of pixels in the voxel projection. 
This reduces redundant point generation and increases the perfor­
mance of the system. The following formula is used:

^max — kmax * A vol/{ X res * Yrcs * -^res)  ̂ (1)

where is the rendered area, is a scaling factor, and the 
volume has resolution . This is a heuristic
formula because the scale of the X, Y and Z axes are not ordinarily 
the same. Figure 4 shows several resolutions of a dataset. In each 
case, most of the details of the dataset are preserved.

4 .3  I n i t ia l  P o i n t  G e n e r a t i o n

In several illustrative applications, units (such as points, particles or 
strokes) are distributed evenly after random initialization. Due to 
constantly changing scenes, these individual units are redistributed 
in every frame. This process is very time-consuming and leads to 
problems with frame-to-frame coherence. To alleviate this prob­
lem, we approximate a Poisson disc distribution to initially posi­
tion a maximum number of stipples. According to the statistics of 
the gradient magnitude distribution, we generate stipples near the 
gradient plane for the voxels whose gradient magnitude is above a 
user specified threshold. We place stipples randomly, around the 
center of the voxel, between two planes, p1 and p2, that are paral­
lel to the tangent plane, p0, and are separated by a distance chosen 
by the user. Next, we adjust the point locations in this subvolume 
so that they are relatively equally spaced, approximating the even
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distribution of points in a stipple drawing. After this preprocess­
ing step is performed and the stipple positions are determined, any 
processing that is subsequently performed (i.e. feature enhance­
ments, motion), simply adjusts either the number of stipples that 
are drawn within each voxel or their respective size. We always 
select the stipples that will be drawn from a pre-generated list of 
stipples for each voxel, therefore, maintaining frame-to-frame co­
herence for the points.

5  F e a t u r e  E n h a n c e m e n t s

Scientific illustration produces images that are not only decorative, 
but also serve science [10]. Therefore, the rendering system must 
produce images accurately and with appropriately directed empha­
sis. To meet this requirement, we have explored several feature 
enhancements in an attempt to simulate traditional stipple illustra­
tions. These feature enhancements are based on specific character­
istics of a particular voxel: whether it is part of a boundary or sil­
houette, its spatial position in relation to both the entire volume and 
the entire scene, and its level of illumination due to a light source. 
In particular, silhouette curves (common in stipple drawings) are 
very useful for producing outlines of boundary regions and signifi­
cant lines along interior boundaries and features.

To enable the use of all of our feature enhancements, each voxel 
has the following information stored in a data structure:

number of points

gradient

voxel scalar data value 

point size

point list containing the x, y, z location of each point

Our feature enhancements, calculated on a per frame basis, deter­
mine a point scaling factor according to the following sequence: 
boundary, silhouette, resolution, light, distance, and interior. For 
different datasets, we select a different combination of feature en­
hancements to achieve the best effect.

The basic formula for the point count per voxel, is the fol­
lowing:

(2)

where is the maximum number of points a voxel can con­
tain, calculated according to Equation 1 from the volume’s pro­
jected screen resolution, and

T  = Tb * Ts * Tr * Td * Tt * Ti (3)

and are the boundary, silhouette, resolution, 
distance, interior transparency, and lighting factors, respectively, 
described in the following sections. Each factor is normalized in 
the range of zero to one. If some feature enhancements are not se­
lected, the corresponding factors will not be included in Equation
(3).

Besides the point count of a voxel, the point size is also an im­
portant factor to increase visualization quality. The basic point size 
of a voxel is calculated by the following equation:

(4)

where is a user specified maximum point size. Voxels with 
larger gradient magnitude contain larger points, achieving the effect 
of smooth point size changes within the volume. The point size for 
each voxel is calculated in a manner similar to Equation 2.

5 .1  B o u n d a r i e s  a n d  S i l h o u e t t e s

In traditional stipple drawings, boundaries are usually represented 
by a high concentration of stipples that cluster on surfaces. In 
a scalar volume, the gradient of a voxel is a good indication of 
whether the voxel represents a boundary region. Boundary and 
silhouette enhancements are determined using volume illustration 
techniques [7] . The boundary enhancement factor for a voxel 
at location is determined from the original voxel scalar value, 
and the voxel value gradient magnitude using the following
formula:

(5)

where kgc controls the direct influence of the voxel value, kgs in­
dicates the maximum boundary enhancement, and controls the 
sharpness of the boundary enhancement. By making the stipple 
placement denser in voxels of high gradient, boundary features are 
selectively enhanced. This feature extraction can be further im­
proved with silhouette enhancement techniques.

In manual stipple drawings, the highest concentration of stipples 
is usually in areas oriented orthogonally to the view plane, form­
ing the silhouette edge. The silhouette enhancement factor is 
constructed in a manner similar to the boundary enhancement fac­
tor. The parameters , , and are controlled by the user to 
adjust each part’s contribution, as shown in the following formula:

(6)

where is the eye vector.
Using the boundary and silhouette enhancement factors, we can 

effectively render the outline of the features in the volume. There­
fore, points are dense on the outline of the objects, while sparse 
on other boundaries and in the interior. We render more points on 
and inside the volume boundaries and can, consequently, incorpo­
rate light and transparency information to more effectively enhance 
the rendering. Figure 1(b) shows the engine block volume rendered 
with stipples. Boundary areas, particularly those in silhouette, are 
enhanced, showing these features clearly.

5 .2  R e s o l u t i o n

Traditionally, the number of stipples used to shade a given feature 
depends on the viewed resolution of that feature. By using a res­
olution factor, we can prevent stipple points from being too dense 
or sparse. The resolution factor adjusts the number of points in 
each voxel and produces the effect that the features become larger 
and clearer when the volume moves closer to the viewpoint. It also 
helps increase rendering performance by eliminating unnecessary 
rendering of distant points. In order to implement resolution en­
hancement, we use the following formula:

r p  __ r ( D n e a r  d j )  (7 )
r "" [(DneaT + d0y  ( )

where is the location of the near plane, is the distance
from the current location of the volume to the near plane, is the 
distance from the initial location of the volume to the near plane 
(we use this position as the reference point), and controls the 
rate of change of this resolution enhancement. When equals 0, 
there is no enhancement. The bigger the value, the more obvious 
the effect. The point size also varies with the change in resolution 
so that point sizes are small when the resolution is low and large 
when resolution is high. In Figure 4, the same model is viewed 
at three different distances, but the resulting stipple density is the 
same for each.
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(kre=1.1)

5 .3  D i s t a n c e

In resolution enhancement, we use the location of the whole vol­
ume in the scene. The location of different volume elements within 
the overall volume presents a different challenge. Distance is an 
important factor that helps us understand the relationship between 
elements within the volume. As in traditional illustration, we can 
enhance depth perception by using the position of a voxel within the 
volume box to generate a factor that modifies both the point count 
and the size of the points. We use a linear equation with different 
powers to express the function of the distance attenuation to 
generate this factor via the following equation:

Td = l  + { - ) kd'  (8)
a

Where is the original distance range in the volume, is the
depth of the current voxel, and controls the contribution of the 
distance attenuation for each voxel. fcde may change from negative 
to positive to enhance different parts in the volume. Figure 5 shows 
an example of distance attenuation. Comparing this image to that in 
Figure 1(b), it is clear that more distant parts of the volume contain 
fewer and smaller points. This is most apparent in the back, right 
section of the engine block.

5 .4  I n t e r i o r

Point rendering is transparent in nature, allowing background ob­
jects to show through foreground objects. By doing explicit inte­
rior enhancement, we exaggerate this effect, allowing us to observe 
more details inside the volume. Generally speaking, the point count 
of the outer volume elements should be smaller than that of the in­
terior to allow the viewing of interior features. In our system, the 
number of points varies based on the gradient magnitude of a voxel 
to the center of the volume, thus achieving a better transparency 
effect:

Tt =  llVVif*" (9)

controls the falloff of the transparency enhancement. With this 
equation, the voxels with lower gradient magnitude become more 
transparent. In addition, point sizes are adjusted by the transparency 
factor. In Figure 6, the density of the leaves changes from sparse to 
dense when the gradient magnitude changes from low to high. The 
structure of the tree is more evident with interior enhancement.

Figure 5: Distance attenuation of the engine block volume.( 
)

5 .5  L i g h t i n g

Achieving compelling lighting effects within the stipple renderer 
presents several challenges. First, when using noisy volumes, the 
gradients are not adequate for expressing the shadings of some 
structures correctly. Second, because structures often overlap in 
the volume, it can still be difficult to identify to which structure a 
point belongs in complex scenes. Finally, the problem of captur­
ing both the inner and outer surfaces at the same time, while their 
gradient directions are opposite, must be correctly handled. These 
issues can all significantly reduce the quality of the lighting effects. 
Therefore, when lighting the volume, only the front oriented voxels 
(where the gradient direction is within ninety degrees of the eye di­
rection) are rendered. The following equation is used to generate a 
factor to modify the point count of the voxels:

T}, = 1 - ( L  -V V i)kl' (10)

where is the light direction and controls the contribution of 
the light.

In Figure 7, light is projected from the upper right corner in the 
image and smaller vessels have been removed with parameter set­
tings to better highlight the shading of the main features. The main 
structures and their orientation are much clearer with the applica­
tion of lighting effects.

5 .6  S i l h o u e t t e  C u r v e s

Manual stipple drawings frequently contain outlines and other 
curves which supplement the shading cues provided by the stip­
ples. These silhouette curves are generally drawn at two places: the 
outline of the objects and obvious interior curves. Searching for 
potential silhouette curves in the vicinity of each voxel could easily 
create a performance bottleneck by requiring a search in, at least, 
the 3x3x3 subspace around each voxel. We have implemented this 
more exhaustive search, as well as an alternative technique using 
the Laplacian of Gaussian operator (LOG) as a volumetric edge de­
tection technique.

This (LOG) edge detection technique provides virtually identical 
results and simplifies the boundary computation, so it is much faster 
to calculate per frame. In a preprocess, we compute the LOG value
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(without interior enhancement) (with interior enhancement)

Figure 6: Stipple rendering of bonsai tree volume.( )

(without silhouette curves)

Figure 8: Stipple rendering of the foot volume.(

(with silhouette curves)

)

for each voxel, then during rendering, we determine the silhouette 
voxels using the following criteria:

1.

( E - W ,2. < The

3.

The ye. andwhere is the eye (or view) vector, and 
T h grad are user controllable threshold values.

To “sketch” silhouette curves, the voxels that satisfy the above 
conditions have a line segment drawn through the center of the 
voxel in the direction of Silhouette curves can be ren­
dered at 20 to 30 frames per second and significantly improve im­
age quality. Figure 8 shows the effectiveness of silhouette curves in 
highlighting structures, especially the bones of the foot dataset.

6  P e r f o r m a n c e

We are able to interactively render reasonably-sized volume 
datasets using illustrative enhancement with our system on mod­
ern PCs. The total number of point primitives in a typical data set 
ranges from 5,000 to 2,000,000, and the silhouette curves range 
from 1,000 to 300,000. Performance results of our stipple system 
are presented in Table 1. These running times were gathered from a 
dual processor Intel Xeon 2.00 GHz computer with a Geforce 3 Ti 
500 display card. The preprocessing time varies from seconds to a 
minute. The frame rates can be improved by further reducing cache 
exchange and floating point operations. Nonetheless, the measured

frame rate does provide the user with a level of interactivity neces­
sary for exploring and illustrating various regions of interest within 
the volume datasets. Through the use of sliders, the user is able to 
quickly adjust the parameters to select the desired feature enhance­
ment and its appropriate level. The user is able to rotate, trans­
late, and zoom in or out of the volume while maintaining consistent 
shading. The system has very good temporal rendering coherence 
with only very subtle temporal aliasing occurring during rotation 
near silhouette edges and illuminated boundaries as new points are 
added based on the silhouette and illumination enhancement factor. 
We have implemented a simple partial opacity point rendering to 
fade the points which alleviates this problem.

Dataset resolution stipples silhouettes both
iron 64x64x64 30.0 60.4 29.9
head 256x256x113 4.0 26.1 3.5

engine 256x256x128 4.0 20.3 3.6
leg 341x341x93 5.0 30.5 4.6

lobster 301x324x56 8.7 30.5 7.5
foot 256x256x256 5.9 30.5 5.0

aneurysm 256x256x256 15.1 30.5 12.1
bonsai 256x256x256 4.3 20.6 3.9

Table 1: Running times (frames per second) for separate rendering 
techniques.
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(with lighting)

Figure 7: Stipple rendering of the aneurysm volume.( )

7  C o n c l u s i o n s  a n d  F u t u r e  W o r k

We have developed an interactive volumetric stippling system that 
combines the advantages of point based rendering with the expres­
siveness of the stippling illustration style into an effective interac­
tive volume illustration system, as can be seen above in Figure 9.

This system utilizes techniques from both hand drawn illustra­
tion and volume rendering to create a powerful new environment 
in which to visualize and interact with volume data. Our system 
demonstrates that volumetric stippling effectively illustrates com­
plex volume data in a simple, informative manner that is valuable, 
especially for initial volume investigation and data previewing. For 
these situations, the volume stipple renderer can be used to deter­
mine and illustrate regions of interest. These regions can then be 
highlighted as important areas when traditional rendering methods 
are later used for more detailed exploration and analysis. Initial 
feedback from medical researchers is very positive. They are enthu­
siastic about the usefulness of the system for generating images for 
medical education and teaching anatomy and its relation to mathe­
matics and geometry to children.

Many new capabilities have recently become available on mod­
ern graphics hardware that could significantly improve the perfor­
mance of our system. Programmable vertex shades can allow us to 
move many of our feature enhancements onto the graphics card. 
This is especially true for those that are view dependent. Pre­
processed points can be stored as display lists or vertex arrays in the 
graphics card’s memory, which avoids the expensive vertex down­
load each time a frame is rendered. Vertex programs can be used to 
evaluate the thresholds of feature enhancements by taking advan­
tage of the fact that we are using vertices rather than polygons. Ti- 
tleholding involves simple formulae and can be easily implemented 
in a vertex program. When a vertex falls below the enhancement 
threshold its coordinates can be modified to a position off screen,

Figure 9: Head volume with silhouette, boundary, and distance en­
hancement and silhouette curves.(fcgc =  0.4, kgs = 0.0, kgc =
10.0, ksc = 0.5, kaa = 5.0, ksc = 1.0;77iCf,c =  0.9 ,Thgl„j = 

)

effectively culling it. This culling technique is not possible, in gen­
eral, for polygons since there is currently no connectivity informa­
tion available in vertex programs.

We plan to extend our work to improve the interactivity of the 
system and compare the performance to other NPR volume ren- 
derers to assess the effectiveness of using a point-based rendering 
system. Furthermore, we will continue to explore additional feature 
enhancement techniques. Though it was too soon to include the re­
sults in this paper, initial investigation into using color within our 
stipple rendering system has already begun. Additionally, it may be 
interesting to investigate the implementation of a stipple renderer 
using a texture-based volume rendering architecture which modu­
lates the alpha values per-pixel in the fragment shader portion of 
the pipeline.
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