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ABSTRACT 

This paper introduces novel applications of 
the short-time unbiased sprectral estimation 
(STUSE) algorithm, which adds biased estimates to 
yield unbiased spectral estimates. It is shown 
that STUSE algorithm is an effective tool for 
estimating time delays and magnitude-squared 
coherence (MSC) functions between two stationary 
signals received at spatially separated sensors, 
especially when one of the signals is a delayed 
version of the other. Computer simulation 
results are presented to compare the performances 
of the STUSE algorithm and the conventional 
weighted overlapped segment averaging (WOSA) 
method for spectrum estimation. 

1. INTRODUCTION 

The purpose of this paper is to introduce 
the use of the STUSE algorithm [1,2] for 
estimating time delays and MSC functions between 
stationary signals, received at spatially 
separated sensors. Estimating the time delay 
between the arrival times of the same signal at 
spatially separated sensors has applications in 
sonar, radar, acoustics, biomedical engineering 
and other areas [9]. The MSC function between 
two signals is a measure of linearity between 
them [10] and finds applications in time delay 
estimation (TDE) [3,11], system analysis [8], and 
measuring signal-to-noise ratio [4]. 

A common approach to time delay estimation 
is to find the time lag at which the cross
correlation function between the received signals 
x 1(k) and x2(k) is maximum [3]. The cross
correlation function, 

(la) 

is computed as 

(lb) 

where E{o} denotes statistical expectation of 

{o}, F-1{o} denotes the inverse Fourier transform 
(1FT) of {o}, and G12(f) is the cross-power 
density spectrum (cross-PDS) of xl(k) and x2(k). 

CHI944-8/83/0000-0060 $1.00 © 1983 IEEE 

60 

The MSC function of two signals xl(k) and 
x 2(k) is defined as [4] 

where G11 (f) and G22 (f) are the auto-PDS's of 
x1(k) and x2(k), respectively. 

(2) 

From (1b) and (2) it can be seen that 
computing the auto- and cross-PDS's plays a key 
role in measuring time delays and MSC functions. 
One of the widely used spectral estimation method 
is the WOSA method [5,6], in which the cross-PDS 
between two signals xl(k) and x2(k) is computed as 

where carets denote estimated quantities, * 
denotes complex conjugates, and ~ n(f) 
represents the 2M-point discrete Fourier 
transform (DFT) of the n-th weighted segment of 
xi(k) defined as 

Xi,n(f) = F{xi(nR + k)w(k)} (3b) 

for 0 ~ k ~ L - 1, 0 ~ n ~ N - 1, 
i = 1 or 2, and M ~ L, 

where w(k) is a window function of length L, R 
denotes the number of samples between successive 
segments (i.e., L - R samples are overlapped) and 
N is the number of segments. In (3a) rww(O) is 
the autocorrelation function of the window 
function at zero lag. Here rww(m) is defined as 

L-l 
rww(m) - 2M L w(k) w(k-m); - M ~ m ~ M - 1 

k=O 
(3c) 

It has been shown [1,2,6] that the expected 

values of G
12

(f) and C
12

(m) computed using the 
WOSA algoriffim are given by 

( 4a) 

and 

(4b) 



where 0 denotes complex convolution and Gww( f) is 
the auto-PDS of the window function. 

From (4a) and (4b) we, can see that, for 

G12 (f) and ~12(m) to be unbiased IW(f)1 2 should 
be a delta function. However, for all finite 

length linear windows, IW(f)1 2 exhibit low-pass 
characteristics and the estimates in (4a) and 
(4b) are biased. The implications of these 
biases are two-fold; in the frequently domain, 
convolution of the cross-PDS with the auto-PDS of 
the window results in reduced spectral resolution, 
and in the time domain, multiplication of the cross
correlation function with the autocorrelation 
function of the window results in a correlation 
function estimate which is gradually tapered to 
zero as the lag approaches the window length in 
either direction. 

Similarly, when one of the signals is a 
delayed version of the other, it has been shown 
[12] that the MSC function estimates via WOSA 
method are biased. This bias, due to misalignment 
of data or rapidly changing phase, has been shown 
to be [7] 

B(0,;{-~+(Q.)2}h (01 2 (5) 
Y L L 12 

where D is the time delay between two signals. 

The bias in (5) can be reduced by realigning 
the data [7] to yield zero delay (i.e., D = 0) 
and/or increasing the analysis window length L. 
Recently, a new spectrum estimation technique has 
been proposed, in which the influences of the 
finite window length on a spectral estimate can 
be removed by linearly combining biased estimates 
[1,2]. This method has been referred to as the 
STUSE algorithm [1]. After discussing the STUSE 
algorithm in the next section, the performance of 
the STUSE algorithm for estimating the MSC and 
cross correlation functions will be demonstrated 
in Section 3 via computer simulations. 

2. STUSE Algorithm 

The STUSE algorithm for computing the cross
PDS of xl(k) and x2(k) can be summarized as 
follows; 

G
12

(0 - N ___ ~2 [N~l 
rww(O) q=ql n=O 

] 

. 21T f R * J N q 
Xl,n(f) X2,n+q(f) e ( 6a) 

where 

~ (m) 
ww 

(6b) 

In (6a) the exponential term takes care of the 
time delay between the n-th and (n+q)-th 
segments. In (6a), it is assumed that the cross
correlation function of xl(k) and x2(k) is zero 
for Iml > M. i.e., 
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We will later on see, how the algorithm can be 
modified if (7) does not hold. Comparing (6a) 
and (3a), we can see that the STUSE algorithm 
becomes the WOSA method if ql = q2 = O. 

As for the case of the WOSA method, we can 
show that the expected values of the cross
correlation function and cross-PDS estimates 
using the STUSE algorithm are given by 

G (0 
E{G

12
(0} G (00~ ( Sa) 

12 r (0) 

and ww 

r (m) 
E{c

12 
(m)} = c

12
(m) • ww 

Iml .. M (Sb) 
~ (0) 

ww 

where G (f) denotes the Fourier Transform ww 
of r (m) in (6b). Thus, from (6b) and (Sb) we 
can ~e that, if ql' q2 ~nd R are carefully 
chosen to have constant r (m) for Iml .. M, the 

A ww 
estimates G12(f) in (6a) a~d the corresponding 

crosscorrelation function c 12(m) obtained using 
the STUSE algorithm are unblased. 

It has been shown [1] that any band limited 
window function should be applied at or above the 
Nyquist decimation rate of the window to yield 
unbiased estimates. For example, 0 < R .. L/4 for 
Hamming window [1]. Also, for the estimated 
cross correlation function to be unbiased in 
-M .. m .. M, we can see that ql and q2 should be 
chosen such that 

- q 1 = q 2 = l2~ J ( 9 ) 

where ~.~ denotes the largest integer smaller 
than (0). If the above conditions are met, we 
have 

r (m) 
and ww 

~ (0) 
ww Iml .. M (lOa) 

G (0 r (0) 6(0 (lOb) 
whereww ww 

1 f = 0 6(f) = {O: elsewhere , (lOc) 

thus yielding unbiased estimates of cross-PDS and 
crosscorrelation function, as can be seen by 
substituting (lOb) and (lOa) in (Sa) and (Sb), 
respectively. 

If (7) is not satisfied, the algorithm 
should be modified in the following manner. 
For q = ql' ••• , q2' let us define 

G (q) (0 
12 - N 

N-l 
* ~ Xl,n(f) X2,n+q(f), 

n=O 
and 

Now compute G12(f) as 

(lla) 

(lIb) 

(l2) 



Note that Iml in (12) may be larger than M and 
thus the FFT length in (lIb) may be more than 
2M. In (12), the time shift qR corresponds to 
the exponential term in (6a). 

In the next section, we demonstrate the 
effectiveness of the STUSE algorithm for TDE and 
MSC function estimates via computer simulation 
results. 

3. SIMULATION RESULTS 

Time Delay Estimation 

TDE-1 

and 

Consider a multipath TDE problem defined by 

3 
1: s(k - D.) 

i=-3 1 

x 2(k) = s(k), for k = 0,1, ••• ,499 (13) 

where s(k) is zero mean white Gaussian signal 
with unit variance. There are seven delay 
parameters, Di = 10i due to seven different 
paths, to be estimated here. Figure 1a displays 
a crosscorrelation function estimate via the WOSA 
method, where 75% overlapping and a 32 sample 
Hamming window were used and a 64 point FFT was 
taken for each segment. The sequence of arrows 
in Fig. 1a is the theoretical cross correlation 
function between x1(k) and x2(k). From Fig. 1a 
we can see that the WOSA method yields biased 
estimates of the cross correlation function, 
missing altogether the peaks at ±30 samples delay 
and almost missing the ones for ±20 samples 
delay. 

Figure 1b shows a cross correlation function 
estimate using the STUSE algorithm, where R = 8, 
-q1 = q2 = 3 and the other parameters are the same 
as those used for the WOSA method. Comparing Figs. 
1a and 1b it can be observed that using the STUSE 
algorithm significantly reduces the bias in the 
estimated crosscorrelation function. 

TDE-2 

To demonstrate the use of the ST~SE 
algorithm when (7) is not satisfied, consider the 
following set of signals; 

s(k + 40) + s(k + 10) + s(k) 
+ s(k - 10) + s(k - 45) 

s(k), for k = 0,1, ••• ,499 (14) 

where s(k) is, as before, white Gaussian signal 
with zero mean and unit variance. Figure 2a 
displays the crosscorrelation function between 
x1(k) and x2(k) obtained using (6a) where a 32 
point Hamming window and 64 point FFT's were used 
with -q1 = q2 = 3 and R = 16; i.e., taking care 
of the shifts in the frequency domain. It can be 
seen that the crosscorrelation function in Fig. 
2a has spurious peaks at -24 and +19 sample 
delays. These peaks are due to the wrapping 
around of the cross correlation function for time 
delays greater than 32 samples. 
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Figure 2b displays the crosscorrelation 
function estimate of x1(k) and x2(k) obtained 
using (12). All the parameters used were the 
same as before. From Fig. 2b it can be seen that 
one can obtain correct estimates of cross
correlation functions using the STUSE algorithm, 
even when the cross correlation functions are 
nonzero for time lags greater than the window 
lengths in either direction. A 

Figures 2(c) - (i) show plots of c1~q) (m - qR); 
Iml ~ 50 for q = 3, 2, ••• , -3 respectively. The 
sequence of plots heuristically demonstrates how the 
STUSE algorithm obtains unbiased crosscorrelation 
function estimates, using a sequence of biased 
estimates. 

MSC Function Estimation 

The set up in Fig. 3 was used to generate 
signal sequences x1(k) and x2(k) used to compute 

IY12(f)12. In Fig. 3, s(k) is white Gaussian 
signal with zero mean and unit variance. Two 
different simulation examples were run. The 
results presented in each case are the averages 
over 60 independent runs using 500 data points 
each. 

MSC-1 

H1(z) = H2(z) = 1 and w1(k) and w2(k) are 
mutually independent additive white Gaussian noises 
with zero mean and unit variance. The actual and 
estimated MSC functions using the STUSE and WOSA 
algorithms are displayed in Fig. 4a where 32 point 
Hamming window, 64 point FFT's, 75% overlap and -q2 
= q1 = 2 were used. It can be seen that the WOSA 
algorithm yields biased estimates, while almost 
unbiased MSC function estimates were obtained using 
the STUSE algorithm using only 5 shifts (different 
values of q) when one of the signals is a delayed 
version of the other. 

Figure 4b shows plots of the quality ratio 
of the estimates, defined as 

(15) 

where var (.) and av (.) represent the variance 
and average value of (.), respectively. Figure 
4b suggests that the MSC function estimates using 
the STUSE algorithm are more stable than those 
obtained using the WOSA algorithm, at least when 
the delays involved are reasonably large. 

MSC-2 

This is the same example that was considered 
in [8] for comparing seismometers with MSC 
functions. H1(z) 1, 

-1 
z 

H2 (z) = -----:-----;;-
1 - z-l + 0.8z-2 and w2(k) = 0 for all k 

and w1(k) was white Gaussian noise with zero mean 
and unit variance. The other parameters were the 
same as those used for the last experiment. 
Figure Sa displays the true MSC function along 



with the estimates using the STUSE and WOSA 
algorithms. The quality ratios of the two 
estimates are plotted in Fig. Sb. Once again, it 
can be seen that the estimate using the STUSE 
algorithm is less biased and has a better quality 
ratio than that using the WOSA algorithm. 

4. CONCLUSIONS 

Preliminary results of using the STUSE 
algorithm for estimating time delays and MSC 
functions between two stationary signals are 
presented. The effectiveness of the algorithm 
was demonstrated specifically (1) when the delay 
parameter to be estimated is relatively large 
compared to the window length and (2) when one of 
the signals, whose MSC function is to be 
estimated, is a delayed (possibly noisy) version 
of the other. It was pointed out that to use 
(6a), the crosscorrelation function between xl(k) 
and x2(k) should be zero for lags of magnitude 
greater than half the FFT length. If this 
condition does not hold, or if one does not have 
prior knowledge of the cross correlation function, 
equations (10a)-(12) should be used in computing 
the PDS using the STUSE algorithm. 

Simulation results show that when large 
delays are involved, the quality ratio of the MSC 
function estimates using the STUSE algorithm is 
smaller than those using the WOSA algorithm. 
However, this will not be the case if the delays 
are small, since the improvement in quality ratio 
was mainly contributed by reduction in the bias 
due to misalignment. 

While it may be necessary to use large 
values of q (shift) to obtain completely unbiased 
estimates, it was demonstrated that, smaller 
values of q will provide considerably unbiased 
estimates. Further theoretical aspects of the 
STUSE method are being investigated. 
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Fig. 1. Cross correlation function 
estimates for example TDE-1 via 

m 

(a) WOSA method and (b) STUSE algorithm 
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Fig. 2. (a) - (b): Cross correlation function 
estimate for example TDE-2 (a) using (6a) and 
(b) using (12). (c) - (i) : Plots of 

~i~)(m-qR) for several values of q 

I (,2( I) 12 
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Fig. 4a. MSC function estimates for example 
MSC-l. (1) True MSC function (2) Estimate using 
STUSE algorithm (3) Estimate using WOSA method. 

Q(!) 

Fig. 4b. Quality ratio of the estimates in 
example MSC-l using (1) STUSE algorithm and 
(2) WOSA method 
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Fig. 3. Block diagram for generating signals 
used for MSC function estimation 
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Fig. 5a. MSC function estimates for example 
MSC-2. (1) True MSC function (2) Estimate usi~!o 
STUSE algorithm (3) Est imate using WOSA method. 
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1·5;-· ----------------------------, 
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Fig. 5b. Quality ratio of the estimates in 
example MSC-2 using (1) STUSE algorithm and 
(2) using WOSA method 


