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Ground-state degeneracy in the Levin-Wen model for topological phases
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We study the properties of topological phases by calculating the ground-state degeneracy (GSD) of the
two-dimensional Levin-Wen (LW) model. Here it is explicitly shown that the GSD depends only on the spatial
topology of the system. Then we show that the ground state on a sphere is always nondegenerate. Moreover,
we study an example associated with a quantum group, and show that the GSD on a torus agrees with that of
the doubled Chern-Simons theory, which is consistent with the conjectured equivalence between the LW model
associated with a quantum group and the doubled Chern-Simons theory.
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I. INTRODUCTION

In recent years, two-dimensional (2D) topological phases
have received growing attention from the science community.
They represent a novel class of quantum matter at zero
temperature whose bulk properties are robust against weak
interactions and disorders. Topological phases may be divided
into two families: doubled (with time-reversal symmetry, or
TRS, preserved) and chiral (with TRS broken). Either type
may be exploited to do fault-tolerant (or topological) quantum
computing.1–4

Chiral topological phases were first discovered in inte-
ger and fractional quantum Hall (IQH and FQH) liquids.
Mathematically, their effective low-energy description is given
by Chern-Simons theory5 or (more generally) topological
quantum field theory (TQFT).6 One characteristic property
of FQH states is ground-state degeneracy (GSD), which
depends only on the spatial topology of the system7–9 and is
closely related to fractionization10–12 of quasiparticle quantum
numbers, including fractional (braiding) statistics.13,14 In some
cases, the GSD has been computed, as in Refs. 15 and 12.

Chern-Simons theories are formulated in the continuum
and have no lattice counterpart. Doubled topological phases,
on the other hand, do admit a discrete description. An early
known example was Kitaev’s toric code model.1

More recently, Levin and Wen (LW)16 constructed a discrete
model to describe a large class of doubled phases. Their
original motivation was to generate ground states that exhibit
the phenomenon of string-net condensation17 as a physical
mechanism for topological phases. The LW model is defined
on a trivalent lattice (or graph) with an exactly soluble
Hamiltonian. The ground states in this model can be viewed as
the fixed-point states of some renormalization group flow.18,19

These fixed-point states look the same at all length scales and
have no local degrees of freedom.

The LW model is believed to be a Hamiltonian version of
the Turaev-Viro topological quantum field theory (TQFT) in
three-dimensional spacetime4,20,21 and, in particular cases, a
discretized version of the doubled Chern-Simons theory.22,23

Like Kitaev’s toric code model,1 we expect that the subspace
of degenerate ground states in the LW model can be used as a
fault-tolerant code for quantum computation.

In this paper, we report the results of a recent study on
the GSD of the LW model formulated on a (discretized)

closed oriented surface M . Usually the GSD is examined
as a topological invariant20,21,23 of the 3-manifold S1 × M .
In a Hamiltonian approach accessible to physicists, we will
explicitly demonstrate that the GSD in the LW model depends
only on the topology of M on which the system lives and,
therefore, is a topological invariant of the surface M . We
also show that the ground state of any LW Hamiltonian on
a sphere is always nondegenerate. Moreover, we examine the
LW model associated with quantum group SUk(2), which is
conjectured to be equivalent to the doubled Chern-Simons
theory with gauge group SU (2) at level k, and compute
the GSD on a torus. Indeed we find an agreement with
that in the corresponding doubled Chern-Simons theory.6,24

This supports the above-mentioned conjectured equivalence
between the doubled Chern-Simons theory and the LW model,
at least in this particular case.

The paper is organized as follows. In Sec. II, we present the
basics of the LW model, which is easy to read for newcomers.
In Sec. III, topological properties of the ground states are
studied, and the topological invariance of their degeneracy is
shown explicitly. In Sec. IV, we demonstrate how to calculate
the GSD in a general way. In Sec. V, we provide examples for
the calculation, particularly on a torus. Section VI is devoted
to summary and discussions. The detailed computation of the
GSD is presented in the appendices.

II. THE LEVIN-WEN MODEL

Start with a fixed (connected and directed) trivalent graph
� which discretizes a closed oriented surface M (such as a
torus). To each edge in the graph, we assign a string type j ,
which runs over a finite set j = 0,1, . . . ,N . Each string type j

has a “conjugate” j ∗ that describes the effect of reversing
the edge direction. For example, j may be an irreducible
representation of a finite group or (more generally) a quantum
group.25

Let us associate to each string type j a quantum dimension
dj , which is a positive number for the Hamiltonian that we
define later to be Hermitian. To each triple of strings {i,j,k},
we associate a branching rule δijk that equals 1 if the triple
is “allowed” to meet at a vertex, and 0 if not (in representa-
tion language, the tensor product i ⊗ j ⊗ k either contains
the trivial representation or not). This data must satisfy
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(here, D = ∑
j d2

j ) ∑
k

dkδijk∗ = didj ,

(1)∑
ij

didj δijk∗ = dkD,

where j = 0 is the unique “trivial” string type, satisfying 0∗ =
0 and δ0jj∗ = 1,δ0ji∗ = 0 if i �= j .

The Hilbert space is spanned by all configurations of all
possible string types j on edges. The Hamiltonian is a sum
of some mutually commuting projectors, H := −∑

v Q̂v −∑
p B̂p (one for each vertex v and each plaquette p). Here,

each projector Q̂v = δijk , with i,j,k on the edges incoming
to the vertex v. Q̂v = 1 enforces the branching rule on v.
Throughout the paper, we work on the subspace of states in
which Q̂v = 1 for all vertices. Each projector B̂p is a sum
D−1 ∑

s dsB̂
s
p of operators that have matrix elements (on a

hexagonal plaquette, for example)

j1
'

j2
'

j3
' j4

'

j5
'j6

'
j7

j8

j9 j10

j11

j12

B̂s
p

j1
j2

j3
j4

j5
j6

j7

j8

j9 j10

j11

j12

= vj1vj2vj3vj4vj5vj6vj ′
1
vj ′

2
vj ′

3
vj ′

4
vj ′

5
vj ′

6
G

j7j
∗
1 j6

s∗j ′
6j

′∗
1

×G
j8j

∗
2 j1

s∗j ′
1j

′∗
2
G

j9j
∗
3 j2

s∗j ′
2j

′∗
3
G

j10j
∗
4 j3

s∗j ′
3j

′∗
4
G

j11j
∗
5 j4

s∗j ′
4j

′∗
5
G

j12j
∗
6 j5

s∗j ′
5j

′∗
6
. (2)

Here, vj = √
dj is real. The symmetrized 6j symbols19 G are

complex numbers that satisfy

symmetry: G
ijm

kln = G
mij

nk∗l∗ = Gklm∗
ijn∗ = (

G
j∗i∗m∗
l∗k∗n

)∗
;

pentagon id:
∑

n

dnG
mlq

kp∗nG
jip
mns∗G

js∗n
lkr∗ = G

jip

q∗kr∗G
riq∗
mls∗ ;

and orthogonality:
∑

n

dnG
mlq

kp∗nG
l∗m∗i∗
pk∗n = δiq

di

δmlqδk∗ip. (3)

For example, these conditions are known to be satisfied16 if
we take the string types j to all be irreducible representations
of a finite group, dj to be the dimension of corresponding
representation space, and G to be the symmetrized Racah 6j

symbols for the group. In this case, the LW model can be
mapped26 to Kitaev’s quantum double model.1 More general
sets of data {G,d,δ} can be derived from quantum groups (or
Hopf algebras).25 We will discuss such a case later using the
quantum group SUk(2) (with k being the level).

III. GROUND STATES

Any ground state |�〉 (there may be many) must be a
simultaneous +1 eigenvector for all projectors Q̂v and B̂p.
In this section, we demonstrate the topological properties of
the ground states on a closed surface with nontrivial topology.

Let us begin with any two arbitrary trivalent graphs �(1) and
�(2) discretizing the same surface (e.g., a torus). If we compare
the LW models based on these two graphs, respectively, then
immediately we see that the Hilbert spaces are quite different
from each other (they have different sizes in general).

Γ(1) ⇒ Γ(2)

FIG. 1. Given any two trivalent graphs �(1) and �(2) discretizing
the same surface, we can always mutate �(1) to �(2) by a composition
of elementary f moves. In general, �(1) and �(2) are not required to
be regular lattices. These diagrams happen to be the same as Ref. 28,
but in a slightly different context.

However, we may mutate between any two given trivalent
graphs �(1) and �(2) by a composition of the following
elementary moves27 (see also Fig. 1 ):

f1. ⇒ , for any edge;

f2. ⇒ , for any vertex.

f3. ⇒ , for any triangle structure.

Suppose we are given a sequence of elementary f moves
that connects two graphs, �(1) → �(2). We now construct a
linear transformation H(1) → H(2) between the two Hilbert
spaces. This is defined by associating linear maps to each
elementary f move:

T̂1 :
j1

j2 j3

j5
j4

→
j5

vj5vj5
Gj1j2j5

j3j4j5

j1

j2
j5
'

j3

j4

T̂2 :
j1

j2

j3 →
j4j5j6

vj4vj5vj6√
D

Gj2j3j1
j∗6 j4j∗5

j1
j4

j2

j5
j3j6

T̂3 :
j1

j4

j2

j5
j3j6 → vj4vj5vj6√

D
G

j∗3 j∗2 j∗1
j∗4 j6j∗5

j1

j2

j3

(4)

The mutation transformations between H(1) and H(2) are
constructed by a composition of these elementary maps. As
a special example, the operator B̂p = D−1 ∑

s dsB̂
s
p is such a

transformation. In fact, on the particular triangle plaquette p

as in (4), we have B̂p=� = T̂2T̂3 by using the pentagon identity
(id) in (3).

Mutation transformations are unitary on the ground states.
To see this, we only need to check that the elementary maps
T̂1, T̂2, and T̂3 are unitary. First note that the following relations
hold: T̂

†
1 = T̂1, T̂

†
2 = T̂3, and T̂

†
3 = T̂2. We emphasize that

these are maps between the Hilbert spaces on two different
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graphs. For example, we check T̂
†

1 = T̂1 by comparing matrix
elements,

j1

j2 j3

j5
j4

T̂ †
1

j1

j2
j5
'

j3

j4
≡

j1

j2
j5
'

j3

j4
T̂1

j1

j2 j3

j5
j4

∗

=vj5vj5
Gj1j2j5

j3j4j5

∗

=vj5
vj5G

j4j1j5
j2j3j∗5

=
j1

j2 j3

j5
j4

T̂1

j1

j2
j5
'

j3

j4

(5)

where in the third equality we used the symmetry condition
in (3).

Similarly, for T̂
†

2 = T̂3 (or T̂
†

3 = T̂2), we have

j1

j2

j3
T̂ †

2

j1
j4

j2

j5
j3j6 ≡

j1
j4

j2

j5
j3j6

T̂2

j1

j2

j3
∗

=
vj4vj5vj6√

D
Gj2j3j1

j∗6 j4j∗5

∗

=
vj4vj5vj6√

D
G

j∗3 j∗2 j∗1
j∗4 j6j∗5

=
j1

j2

j3
T̂3

j1
j4

j2

j5
j3j6

(6)

Now we verify unitarity. First, T̂
†

1 T̂1 = id and T̂
†

2 T̂2 =
T̂3T̂2 = id by the orthogonality condition in (3) (note that since
we have not used any information about the ground states in
this argument, T̂1 and T̂2 are unitary on the entire Hilbert
space). For the unitarity of T̂3, we check T̂

†
3 T̂3 = T̂2T̂3 = 1.

The last equality only holds on the ground states since we
have already seen that T̂2T̂3 = B̂p=�, and B̂p=� = 1 only on
the ground states.

As another consequence of the above relations, the Hamil-
tonian is Hermitian since all B̂p’s consist of elementary T̂1,
T̂2, and T̂3 maps. Particularly, on a triangle plaquette, we have
B̂

†
p=� = (T̂2T̂3)† = T̂

†
3 T̂

†
2 = T̂2T̂3 = B̂p=�.

The mutation transformations serve as the symmetry
transformations in the ground states. If |�〉 is a ground state,
then T̂ |�〉 is also a ground state, where T̂ is a composition
of T̂i’s associated with elementary f moves from �(1) to �(2).
This is equivalent to the condition T̂ (

∏
p B̂p) = (

∏
p′ B̂p′)T̂ ,

which can be verified by the conditions in (3). (Here, p and
p′ run over the plaquettes on �(1) and �(2), respectively. Also
note that the B̂p’s are mutually commuting projectors, i.e.,
B̂pB̂p = B̂p, and thus

∏
p B̂p is the projector that projects

onto the ground states.)
These symmetry transformations look a little different

from the usual ones since they may transform between the
Hilbert spaces, H(1) and H(2), on two different graphs, �(1)

and �(2). In general, �(1) and �(2) do not have the same
number of vertices and edges. And thus H(1) and H(2)

have different sizes. However, if we restrict to the ground-

state subspaces H(1)
0 and H(2)

0 , then mutation transformations
are invertible. In fact, they are unitary, as we have just
shown.

The tensor equations on the 6j symbols in (3) give rise
to a simple result: each mutation that preserves the spatial
topology of the two graphs induces a unitary symmetry
transformation. During the mutations, local structures of the
graphs are destroyed, while the spatial topology of the graphs
is not changed. Correspondingly, the local information of
the ground states may be lost, while the topological feature
of the ground states is preserved. In fact, any topological
feature can be specified by a topological observable Ô that
is invariant under all mutation transformations T̂ from H(1) to
H(2): Ô ′T̂ = T̂ Ô (where Ô is defined on the graph �(1), and
Ô ′ is defined on the graph �(2)).

The symmetry transformations provide a way to charac-
terize the topological phase by a topological observable. In
the next section, we will investigate the GSD as such an
observable.

Let us end this section by remarking on the uniqueness
of the mutation transformations. There may be many ways
to mutate �(1) to �(2) using f1, f2, and f3 moves. Each
way determines a corresponding transformation between
the Hilbert spaces of the ground states, H(1)

0 and H(2)
0 .

It turns out that all of these transformations are actually
the same if the initial and final graphs, �(1) to �(2), are
fixed, i.e., independent of which way we choose to mutate
the graph �(1) to �(2). This means that the ground-state
Hilbert spaces on different graphs can be identified (up
to a mutation transformation), and all graphs are equally
good.

One consequence of the uniqueness of the mutation
transformation is that the degrees of freedom in the ground
states do not depend on the specific structure of the graph.
In this sense, the LW model is the Hamiltonian version of
some discrete TQFT (actually, Turaev-Viro-type TQFT; see
Ref. 21). The fact that the degrees of freedom of the ground
states depend only on the topology of the closed surface M is
a typical characteristic of topological phases.7–9,12,15

IV. GROUND-STATE DEGENERACY

In this section we investigate the simplest nontrivial
topological observable, namely, the GSD. Since

∏
p B̂p is the

projector that projects onto the ground states, taking a trace
computes GSD = tr(

∏
p B̂p).

We can show that GSD is a topological invariant. Namely,
in the previous section we mentioned that by using (3),

∏
p B̂p

is invariant under any mutation T̂ between the Hilbert spaces
H(1) and H(2): T̂ †(

∏
p′ B̂p′)T̂ = ∏

p B̂p. Taking a trace of both

sides leads to tr′(
∏

p′ B̂p′) = tr(
∏

p B̂p), where the traces are
evaluated on H(2) and H(1), respectively.

The independence of the GSD on the local structure of the
graphs provides a practical algorithm for computing the GSD,
since we may always use the simplest graph (see Fig. 2 and
examples in the next section).
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Expanding the GSD explicitly in terms of 6j symbols using (2), we obtain

GSD =
j1j2j3j4j5j6...

j1

j2 j3

j5
j4 (

p

B̂p) j1

j2 j3

j5
j4

= D−P
∑

s1s2s3s4···
ds1ds2ds3ds4 · · ·

×
∑

j ′
1j

′
2j

′
3j

′
4j

′
5...

dj ′
1
dj ′

2
dj ′

3
dj ′

4
dj ′

5
· · ·

∑
j1j2j3j4j5···

dj1dj2dj3dj4dj5 . . .

×
(
G

j2j5j1

s∗
1 j ′

1j
′
5
G

j ′
1j2j

′
5

s∗
2 j5j

′
2
G

j5j
′
1j

′
2

s∗
3 j2j1

) (
G

j3j4j
∗
5

s∗
1 j ′∗

5 j ′
4
G

j ′
4j

′∗
5 j3

s∗
2 j ′

3j
∗
5
G

j∗
5 j ′

3j
′
4

s∗
4 j4j3

)
. . . (7)

The formula needs some explanation. P is the total number
of plaquettes of the graph. Each plaquette p contributes a
summation over sp together with a factor of

dsp

D
. In the picture

in (7), the top plaquette is being operated on first by B̂s1
p1

, next

the bottom plaquette by B̂s2
p2

, third the left plaquette by B̂s3
p3

,

and finally the right plaquette by B̂s4
p4

. Although ordering of

the B̂s
p operators is not important (since all B̂p’s commute with

each other), it is important to make an ordering choice (for all
plaquettes on the graph) once and for all.

Each edge e contributes a summation over je and j ′
e together

with a factor of dje
dj ′

e
. Each vertex contributes three 6j

symbols.
The indices on the 6j symbols work as follows: since each

vertex borders three plaquettes where B̂s
p’s are being applied,

we pick up a 6j symbol for each corner. However, ordering
is important: because we have an overall ordering of B̂s

p’s, at
each vertex we get an induced ordering for the 6j symbols.
Starting with the 6j symbol furthest left, we have no primes
on the top row. The bottom two indices pick up primes. All of
these variables (primed or not) are fed into the next 6j symbol
and the same rule applies: the bottom two indices pick up a
prime with the convention ()′′ = ().

By the calculation of the GSD, we have characterized a
topological property of the phase using local quantities living
on a graph discretizing M of nontrivial topology.

V. EXAMPLES

(1) On a sphere. To calculate the GSD, we need to input
the data {Gijm

kln ,dj ,δijm} and evaluate the trace in (7). We start
by computing the GSD in the simplest case of a sphere.

(a) (b)

FIG. 2. All trivalent graphs can be reduced to their simplest
structures by compositions of elementary f moves. (a) On a sphere:
two vertices, three edges, and three plaquettes. (b) On a torus: two
vertices, three edges, and one plaquette.

Let us consider the simplest graph, as in Fig. 2(a). We
show in Appendix A that the ground state is nondegenerate
on the sphere without referring to any specific structure in the
model: GSDsphere = 1. In fact, for more general graphs, one
can write28 the ground state as

∏
p B̂p|0〉 up to a normalization

factor, where in |0〉 all edges are labeled by string type 0.
We notice that the GSD on the open disk (which is

topologically the same as the 2D plane) can be studied
using the same technique. This is because the open disk
can be obtained by puncturing the sphere in Fig. 2(a) at
the bottom. Although this destroys the bottom plaquette, we
notice that the constraint B̂p = 1 from the bottom plaquette is
automatically satisfied as a consequence of the same constraint
on all other plaquettes. The fact that GSDsphere (=GSDdisk) =
1 indicates the nonchiral topological order in the LW
model.

(2) Quantum double model. When the data are determined
by representations of a finite group G, the LW model is
mapped to Kitaev’s quantum double model.1,26 The ground
states corresponds one to one to the flat G connections.1 The
GSD is

GSDQD =
∣∣∣∣Hom[π1(M),G]

G

∣∣∣∣ , (8)

where Hom[π1(M),G] is the space of homomorphisms from
the fundamental group π1(M) to G, and G in the quotient acts
on this space by conjugation.

In particular, the GSD (8) on a torus is

GSDtorus
QD = |{(a,b)|a,b ∈ G; aba−1b−1 = e}/ ∼ |, (9)

where ∼ in the quotient is the equivalence by conjugation,

(a,b) ∼ (hah−1,hbh−1) for all h ∈ G.

The number (9) is also the total number of irreducible
representations31 of the quantum double D(G) of the group
G. On the other hand, the quasiparticles in the model are
classified1 by the quantum double D(G). Thus, the GSD on a
torus is equal to the number of particle species in this example.

(3) SUk(2) structure on a torus. More generally, on a torus,
any trivalent graph can be reduced to the simplest one with
two vertices and three edges, as in Fig. 2(b). On this graph, the
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GSD consists of six local 6j symbols.

GSD = D−1
∑

sj1j2j3j
′
1j

′
2j

′
3

dsdj1dj2dj3dj ′
1
dj ′

2
dj ′

3

×
(
G

j1j2j
∗
3

sj ′∗
3 j ′

2
G

j ′∗
3 j1j

′
2

sj2j
′
1

G
j2j

′∗
3 j ′

1
sj1j

∗
3

) (
G

j∗
2 j3j

∗
1

sj ′∗
1 j ′

3
G

j ′
3j

′∗
1 j∗

2

sj ′∗
2 j∗

1
G

j∗
1 j ′∗

2 j ′
3

sj3j
∗
2

)
.

(10)

Now let us take the example using the quantum group
SUk(2). It is known that SUk(2) has k + 1 irreducible rep-
resentations, and thus the GSD we calculate is finite. We
take the string types to be these representations, labeled
as 0,1, . . . ,k, and the data {Gijm

kln ,dj ,δijm} to be determined
by these representations (for more details, see Refs. 24,29,
and 30).

In Appendix B, we show that in this case [for the LW model
on a torus with string types given by irreducible representations
(irreps) of SUk(2)], we have GSD = (k + 1)2. We argue this
both analytically and numerically.

On the other hand, it is widely believed that when the string
types in the LW model are irreps from a quantum group at
level k, then the associated TQFT is given by the doubled
Chern-Simons theory associated with the corresponding Lie
group at level ±k.24,32 This equivalence tells us that in this case,
the LW model can be viewed as a Hamiltonian realization of
the doubled Chern-Simons theory on a lattice, and it provides
an explicit picture of how the LW model describes doubled
topological phases.

Along these lines, our result is consistent33 with the result
GSDCS = k + 1 for Chern-Simons SU (2) theory at level k on
a torus. This can be seen since the Hilbert space associated
to doubled Chern-Simons should be the tensor product of two
copies of Chern-Simons theory at level ±k.

VI. SUMMARY AND DISCUSSIONS

In this paper, we studied the LW model that describes
2D topological phases, which do not break time-reversal
symmetry. By examining the 2D (trivalent) graphs with
the same topology, which are related to each other by a
given finite set of operations (Pachner moves), we developed
techniques to deal with topological properties of the ground
states. Using them, we have been able to show explicitly
that the GSD is determined only by the topology of the
surface the system lives on, which is a typical feature of
topological phases. We also demonstrated how to obtain the
GSD from local data in a general way. We explicitly showed
that the ground state of any LW Hamiltonian on a sphere
is nondegenerate. Moreover, the LW model associated with
quantum group SUk(2) was studied, and our result for the
GSD on a torus is consistent with the conjecture that the LW
model associated with the quantum group is the realization
of a doubled Chern-Simons theory on a lattice or discrete
graph.

Finally, let us indicate a possible extension of the results
to more general cases. First, more generally in the LW model,
an extra discrete degree of freedom, labeled by an index α,
may be put on the vertices. Then the branching rule δα

ijk , when
its value is 1, may carry an extra index α. (In representation
language, this implies that given irreducible representations
i,j and k, there may be multiple inequivalent ways to obtain

the trivial representation from the tensor product of i ⊗ j ⊗ k.
The index α just labels these different ways.) The 6j symbols
accordingly carry more indices. (For more details, see the
first appendix in the original paper16 of the LW model.)
The expression (7) for GSD is expected to be generalizable
to these cases. Second, the spatial manifold (e.g., a torus)
on which the graph is defined may carry nontrivial charge,
e.g., labeled by iī in the SUk(2) case. This corresponds to
having a so-called fluxon excitation (of type iī) above the
original LW ground states. The lowest states of this subsector
in the LW model coincide with the ground states for the
Hamiltonian obtained by replacing the plaquette projector
B̂p = D−1 ∑

j dj B̂
j
p with B̂p = D−1 ∑

j sij B̂
j
p, where sij is

the modular S matrix (see Appendix B). The GSD in this
case is computable too, but we leave this for a future
paper.34
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APPENDIX A: GSD = 1 ON A SPHERE

In this appendix, we derive GSD = 1 on a sphere for a
general Levin-Wen model, without referring to any specific
structure of the data {d,δ,G}. All we will use in the derivation
are the general properties in Eqs. (1) and (3).

The simplest trivalent graph on a sphere has three pla-
quettes and three edges, as illustrated in Fig. 2(a). Following
the standard procedure as in (7), the GSD is expanded
as

GSDsphere =
j1j2j3

j1

j2

j3 B̂p2B̂p3B̂p1

j1

j2

j3

=
j1j2j3

j1

j2

j3
1
D

t

dtB̂
t
p2

1
D

s

dsB̂
s
p3

1
D

r

drB̂
r
p1

j1

j2

j3×

=
∑

j1j2j3j
′
1j

′
2j

′
3

1

D

∑
r

drvj1vj3vj ′
1
vj ′

3
G

j∗
2 j3j

∗
1

r∗j ′
1
∗
j ′

3
G

j2j1j
∗
3

r∗j ′
3
∗
j ′

1

× 1

D

∑
s

dsvj ′
1
vj2vj1vj ′

2
G

j ′
3j

′
1
∗
j∗

2

s∗j ′
2
∗
j∗

1
G

j ′
3
∗
j2j

′
1

s∗j1j
′
2

× 1

D

∑
t

dtvj ′
2
vj ′

3
vj2vj3G

j∗
1 j ′

2
∗
j ′

3
t∗j3j

∗
2

G
j1j

′
3
∗
j ′

2
t∗j2j

∗
3

, (A1)

where B̂p1 is acting on the top bubble plaquette, B̂p2 on the
bottom bubble plaquette, and B̂p3 on the rest of the plaquettes
outside the two bubbles.
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All 6j symbols can be eliminated by using the orthogonality
condition in Eq. (3) three times,∑

r

drG
j∗

2 j3j
∗
1

r∗j ′
1
∗
j ′

3
G

j2j1j
∗
3

r∗j ′
3
∗
j ′

1
= 1

dj2

δj ′
1j2j

′
3
∗δj1j2j

∗
3
,

∑
s

dsG
j ′

3j
′
1
∗
j∗

2

s∗j ′
2
∗
j∗

1
G

j ′
3
∗
j2j

′
1

s∗j1j
′
2

= 1

dj ′
3

δj ′
1j2j

′
3
∗δj1j

′
2j

′
3
∗ , (A2)

∑
t

dtG
j∗

1 j ′
2
∗
j ′

3
t∗j3j

∗
2

G
j1j

′
3
∗
j ′

2
t∗j2j3

= 1

dj1

δj1j2j
∗
3
δj1j

′
2j

′
3
∗ ,

and the GSD is a summation in terms of {d,δ}:

GSDsphere = 1

D3

∑
j1j2j3j

′
1j

′
2j

′
3

dj ′
1
dj ′

2
dj3δj1j2j

∗
3
δj ′

1j2j
′
3
∗δj1j

′
2j

′
3
∗ .

(A3)

Summing over j ′
1, j ′

2, and j3 using (1) finally leads to
GSDsphere = 1.

APPENDIX B: GSD ON A TORUS FOR SUk(2)

Let us consider the example associated with the quantum
group SUk(2) (with the level k as a positive integer) and
calculate the GSD on a torus.

There are k + 1 string types, labeled as j = 0,1,2, . . . ,k.
They are the irreducible representations of SUk(2). The
quantum dimensions dj are required to be positive for all j

in order that the Hamiltonian is Hermitian. Explicitly, they are

dj = sin (j+1)π
k+2

sin π
k+2

,

(B1)

D =
k∑

j=0

d2
j = k + 2

2 sin2 π
k+2

.

The branching rule is δrst = 1 if⎧⎪⎨
⎪⎩

r + s + t is even,

r + s � t, s + t � r, t + r � s,

r + s + t � 2k,

(B2)

and δrst = 0 otherwise. The explicit formula for the 6j symbol
can be found in Refs. 29 and 30. However, we do not need the
detailed data of the 6j symbol in the following computation
of the GSD.

Let us start with the formula (10), and reorder the 6j

symbols,

GSD = D−1
∑

sj1j2j3j
′
1j

′
2j

′
3

ds

(
vj1vj3vj ′

1
vj ′

3
G

j∗
2 j3j

∗
1

s∗j ′∗
1 j ′

3
G

j2j
′∗
3 j ′

1
s∗j1j

∗
3

)

×
(
vj ′

1
vj2vj1vj ′

2
G

j ′
3j

′∗
1 j∗

2

s∗j ′∗
2 j∗

1
G

j ′∗
3 j1j

′
2

s∗j2j
′
1

)
×

(
vj ′

2
vj ′

3
vj2vj3G

j∗
1 j ′∗

2 j ′
3

s∗j3j
∗
2
G

j1j2j
∗
3

s∗j ′∗
3 j ′

2

)
,

= D−1
∑

sj1j2j3j
′
1j

′
2j

′
3

ds

(
vj1vj3vj ′

1
vj ′

3
G

j∗
2 j3j

∗
1

s∗j ′∗
1 j ′

3
G

j∗
2 j∗

1 j3

sj ′
3j

′
1
∗

)

×
(
vj ′

1
vj2vj1vj ′

2
G

j ′
3j

′∗
1 j∗

2

s∗j ′∗
2 j∗

1
G

j ′
3j

∗
2 j ′

1
∗

sj∗
1 j ′

2
∗

)
×

(
vj ′

2
vj ′

3
vj2vj3G

j∗
1 j ′∗

2 j ′
3

s∗j3j
∗
2
G

j∗
1 j ′

3j
′
2
∗

sj∗
2 j3

)
, (B3)

where the symmetry condition in (3) was used in the second
equality.

Let us compare the formula in (B3) with that in (A1).
We set j = j ∗ for all j and drop all stars, since all ir-
reducible representations of SUk(2) are self-dual. Then we
find that the summation (B3) has the same form as the
trace of D−1 ∑

s dsB̂
s
p2

B̂s
p3

B̂s
p1

on the graph on a sphere as
in (A1),

trtorus

(
1

D

∑
s

dsB̂
s
p

)

=
j1j2j3

j1

j2

j3
1
D

s

dsB̂
s
p2

B̂s
p3

B̂s
p1

j1

j2

j3

= trsphere

(
1

D

∑
s

dsB̂
s
p2

B̂s
p3

B̂s
p1

)
, (B4)

where B̂s
p is defined on the only plaquette p on the torus [see

Fig. 2(b)], while B̂s
p1

B̂s
p2

B̂s
p3

is defined on the same graph on a
sphere as in (A1) [see Fig. 2(a)].

The GSD on a torus becomes a trace on a sphere. The
latter is easier to deal with since the ground state on a
sphere is nondegenerate. The counting of ground states on
a torus turns into a problem dealing with excitations on the
sphere.

In the following, we evaluate the summation in the
representation of elementary excitations. Let us introduce a
new set of operators {n̂r

p} by a transformation,

n̂r
p =

∑
s

sr0srsB̂
s
p, B̂s

p =
∑

r

srs

sr0
n̂r

p. (B5)

Here, srs is a symmetric matrix [referred to as the modular S

matrix for SUk(2)],

srs = 1√
D

sin (r+1)(s+1)π
k+2

sin π
k+2

, (B6)

and has the properties

srs = ssr , sr0 = dr/
√

D,∑
s

srssst = δrt , (B7)

∑
w

swrswsswt

sw0
= δrst .

Equation (B5) can be viewed as a finite discrete Fourier
transformation between {n̂r

p} and {B̂s
p}. By properties (B7),

we see that {n̂r
p} are mutually orthonormal projectors, and

they form a resolution of the identity

n̂r
pn̂s

p = δrs n̂
r
p,

∑
r

n̂r
p = id. (B8)
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In particular, n̂0
p = 1

D

∑
s dsB̂

s
p is the operator B̂p in the

Hamiltonian. The operator n̂r
p projects onto the states with a

quasiparticle (labeled by r type) occupying the plaquette p.
Expressed as common eigenvectors of {n̂r

p}, the elementary
excitations are classified by the configuration of these quasi-
particles.

Particularly, on the graph on a sphere as in (B4), the
Hilbert space has a basis of {|r1,r2,r3〉}, where only those
r1, r2, and r3 that satisfy δr1r2r3 = 1 are allowed. Each
basis vector |r1,r2,r3〉 is an elementary excitation with the
quasiparticles labeled by r1, r2, and r3 occupying the plaquettes
p1, p2, and p3. The configuration of quasiparticles is globally
constrained by δr1r2r3 = 1.34 Therefore, tracing operators {n̂r

p}
leads to

tr
(
n̂r2

p2
n̂r3

p3
n̂r1

p1

) = δr2r3r1 . (B9)

The application of this rule reduces the summation
(B4) to

tr

(
1

D

∑
s

dsB̂
s
p2

B̂s
p3

B̂s
p1

)

= tr

(
1

D

∑
s

ds

∑
r1r2r3

ssr1ssr2ssr3

sr10sr20sr30
n̂r2

p2
n̂r3

p3
n̂r1

p1

)

=
∑
r1r2r3

1

D

∑
s

ds

ssr1ssr2ssr3

sr10sr20sr30
δr1r2r3 . (B10)

Then we substitute (B1), (B2), and (B6) in and obtain

GSDtorus
SUk (2) =

k∑
r1,r2,r3=0

sin π
k+2δr1+r2+r3,2k

sin (r1+1)π
k+2 sin (r2+1)π

k+2 sin (r3+1)π
k+2

=
k∑

r=0

r∑
s=0

sin π
k+2

sin (r+1)π
k+2 sin (s+1)π

k+2 sin (r−s+1)π
k+2

= (k + 1)2. (B11)

(Here we omit a rigorous proof of the last equality.)
We can also verify GSD = (k + 1)2 by a direct numerical

computation. We take the approach in Ref. 30 to construct
the numerical data of 6j symbols. The construction depends
on a parameter, i.e., the Kauffman variable A (in the same
convention as in Ref. 30), which is specialized to roots of
unity. We make the following choice:⎧⎪⎨

⎪⎩
A = exp(πi/3) at k = 1,

A = exp(3πi/8) at k = 2,

A = exp(3πi/5) at k = 3.

(B12)

By this choice, the quantum dimensions dj take the values
as in (B1), and the 6j symbols satisfy the self-consistent
conditions in (3). Using such data of quantum dimensions
dj and 6j symbols, we compute the summation (10) at⎧⎪⎨

⎪⎩
GSD = 4 at k = 1,

GSD = 9 at k = 2,

GSD = 16 at k = 3,

(B13)

which verifies GSD = (k + 1)2 in the particular cases.
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