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Abstract

Quantification and visualization of uncertainty in car-
diac forward and inverse problems with complex geome-
tries is subject to various challenges. Specific to visualiza-
tion is the observation that occlusion and clutter obscure
important regions of interest, making visual assessment
difficult. In order to overcome these limitations in uncer-
tainty visualization, we have developed and implemented
a collection of novel approaches. To highlight the utility of
these techniques, we evaluated the uncertainty associated
with two examples of modeling myocardial activity. In one
case we studied cardiac potentials during the repolariza-
tion phase as a function of variability in tissue conductivi-
ties of the ischemic heart (forward case). In a second case,
we evaluated uncertainty in reconstructed activation times
on the epicardium resulting from variation in the control
parameter of Tikhonov regularization (inverse case). To
overcome difficulties associated with uncertainty visual-
ization, we implemented linked-view windows and interac-
tive animation to the two respective cases. Through dimen-
sionality reduction and superimposed mean and standard
deviation measures over time, we were able to display key
features in large ensembles of data and highlight regions
of interest where larger uncertainties exist.

1. Introduction

Forward and inverse problems in electrocardiography
provide a means for studying the electrical properties and
patterns that arise within the heart and/or torso from the in-
tegrated electrical activity of cardiac myocytes. In the for-
ward case, electrical inferences are made based on given
source models and associated conducting media that con-
tain these sources. Inverse solutions, in contrast, use re-
mote observations to deduce the electrical function of the
cardiac sources. Solutions to forward and inverse prob-
lems, however, require several assumptions that, due to

such characteristics as the complex nature of cardiac struc-
ture or the inherent need to regularize the inverse, generate
uncertainty in the results.

To understand the uncertainty associated with cardiac
forward and inverse problems, visualization techniques
are often applied; however, visualization of 3-dimensional
data presents its own set of complexities. Obstruction and
clutter can obscure or even hide regions of interest. To
overcome these difficulties in visualization and to thus bet-
ter understand variations in the uncertainty of electrocar-
diographic models, we have developed new 3-dimensional
techniques to visually analyze simulation uncertainty.

In order to explore uncertainty visualization, we consid-
ered two electrocardiographic simulation cases—one for
forward and one for inverse simulation. We first investi-
gated the uncertainty associated with bidomain conductiv-
ities in the static forward model of an ischemic heart. In
the second case, we explored variability in reconstructed
activation times, computed by way of Tikhonov inverse, as
a function of an unknown λ value. To more thoroughly
investigate the uncertainties in our models, we have de-
veloped new visualization systems that overcome many of
the difficulties of 3-dimensional rendering and provide a
means of interactive exploration of high-dimensional data.

2. Methods

While both forward and inverse problems in electrocar-
diography seek to capture electric activity from the heart,
they are different in formulation and solution approach.
Each, therefore, required unique and specific uncertainty
quantification and visualization approaches.

2.1. Static ischemic forward model

To generate data for the static ischemia model, we ex-
tracted cardiac and ischemic zone geometries from exper-
imentally induced ischemic studies using approaches de-
scribed previously [1, 2]. Fiber directions, acquired by
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Table 1. Ratio applied to tensor conductivity values within
the ischemic region to simulate the diseased state.

Conductivity Ischemic Ratio
σil 1/10
σit 1/1000
σel 1/2
σet 1/4

diffusion tensor imaging (DTI), were also assigned.
In order to simulate ischemia, anisotropic conductivity

values within the ischemic region were decreased (see Ta-
ble 1) and a potential difference of 30 mV was applied to
the transmembrane potential, Vm, to represent the weak-
ened activity during the plateau phase of the ischemic ac-
tion potential, which corresponds to the ST segment of the
ECG [3]. A linear transition region (border zone) from the
diseased to healthy tissue was also applied [4].

Cardiac activity under these conditions was represented
by the bidomain passive current flow equation [3]

∇ · (σi + σe)∇Ve = −∇ · σi∇Vm, (1)

where σi and σe represent the intracellular and extracel-
lular conductivity tensors, respectively, and Ve represents
the unknown extracellular potentials.

There have been many studies attempting to document
the conductivity values of the heart [5, 6]; however, these
values remain elusive and, therefore, provide a source of
uncertainty for the model. We selected a range of con-
ductivity values from the literature [7] onto which we ap-
plied generalized polynomial chaos-stochastic collocation
methods (gPC-SC) [8]. Conductivity values were treated
as uniformly distributed, stochastic processes within the
conductivity range provided. gPC-SC was used to reduce
the stochastic governing equations into a finite set of de-
terministic simulation parameters, reducing computational
complexity and allowing us to extract the mean and prob-
ability density function of the resulting solution ensemble.

2.2. Activation time inverse solutions

The activation-based inverse problem aims to estimate
the spread of electrical activation over the epicardium from
measurements of electric potentials on the body surface
during the QRS complex. Prior to computing the inverse
solution, body surface potentials were generated by solv-
ing a distinct forward model from the one described in the
previous section. This forward model was composed of a
nonlinear function, x(τ), which mapped a set of activation
times to transmembrane potentials (TMPs) from a discrete
set of electrical sources along the heart surface, and a lin-
ear mapping, A, a matrix that computes body surface po-

tentials from TMPs. This problem is not only non-linear
but also ill-conditioned and hence requires regularization.
A simple, yet effective approach to regularization uses the
Tikhonov [9] method, resulting in the following non-linear,
least squares (NLLS) optimization problem, which is non-
convex [10]:

τλ = argmin‖Axτ − b‖2Frob + λ‖Lxτ‖2Frob, (2)

where b are the body surface potentials, L is a regulariza-
tion matrix, and λ is a regularization parameter that con-
trols the trade-off between data fidelity and solution regu-
larity.

We have previously used a convex relaxation of the
above problem and discovered uncertainty in the solutions
possibly due, in part, to the inherent sensitivity of the prob-
lem to signal noise, geometric errors, forward model as-
sumptions (e.g. source amplitudes), and inverse problem
parameters (e.g. L and λ) [10, 11]. In this study, we
focused on the uncertainty generated by the selection of
λ. We chose 50 evenly-spaced values within the interval
[0.09, 0.11] on which we performed a perturbation analy-
sis. For each λ, a solution was found for the convex relax-
ation, from which activation times were computed; from
these values, we calculated statistics of the activation time
(mean and standard deviation) for each source on the heart
surface. This spatial distribution of mean and standard de-
viation of the activation time gave a measure of the uncer-
tainty of the solution associated with λ selection.

2.3. µView: myocardial uncertainty viewer

To enable uncertainty visualization for the volumetric
ischemic simulations we created a five-way, linked-view
tool (µView), examples of which are shown in Figure 1.
Simulation results, acquired in Section 2.1, were com-
bined and dimensionality reduction was applied to provide
a means of displaying large ensembles (high dimensional)
data. Figures 1A and 1B show standard deviations and iso-
value separation, respectively as two forms of dimension-
ality reduction used to visualize these data. Other methods
were also employed to explore the data including: mean,
minimum and maximum isosurfaces, and clustering based
on several correlation metrics. Mean and standard devi-
ation visualizations applied simple statistical measures at
each node of the simulation with increased intensity rep-
resenting increased values. Isovalue separation scanned
each node of the simulation set and determined how many
nodes were above (red) and below (blue) the assigned iso-
value. The spectrum of color between these two extrema
reflected nodes that had values, within the solution ensem-
ble, that were both above and below the threshold. Mini-
mum and maximum isosurfaces use the isovalue results to
highlight only the surfaces produced by the isovalue ex-
trema. Clustering applied k-means methods to bin similar
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Figure 1. Uncertainty Visualization of the Cardiac Ischemia Forward Model. (A) Standard deviation and (B) isolvalue
rendering of cardiac forward model show regions of interest near the ischemic zone (outlined in pane 1 ). The five-way
linked view contains the following viewing modalities: 1 volumetric, 2 2D parameter space, 3 - 5 2D slicing planes.

nodes together. Similarities were determined by L2 norm,
Pearson’s correlation, or histogram difference.

To overcome difficulties associated with 3D rendering,
the following visual techniques were applied: volume ren-
dering (Figure 1A 1 ), a 2D view of parameter space ( 2
) and three orthogonal 2D slicing planes (panes 3 - 5 ).
Volume rendering and 2D slicing planes are standard vi-
sualization techniques used to display data values at each
point within the myocardium. The parameter space view,
in order to reduce the high dimensional data while preserv-
ing important features, uses principle component analysis
to contract the solution space into a 2D representation – al-
lowing the user to explore features not otherwise visible in
the spatial domain. The shape of the resulting image is ar-
bitrary and is a result of the selected principle components.
For more information on the technical aspects of how these
methods are applied, please see our prior work [12].

2.4. Uncertainty animation

Static isochronal maps of activation times are the most
common visualization method for activation-based simu-
lations of the spread of excitation in the heart. Such com-
pression of an entire heart beat into a single image is one
of the advantages of activation mapping that supports its
utility in research and clinical applications. However, in
the setting of visualizing uncertainty, the need to view ad-
ditional parameters and their variation over both time and
parameter space provides new challenges. To address this
challenge, we have expanded the static, single image of
activation to become an interactive animation over time.
Similar to visualizing an animation of the moving activa-
tion wavefront, each frame of our animation shows spa-
tial regions that are within one standard deviation of the
current mean activation time and allows the user to move
forward and backward in time as well as adjust view pa-
rameters. Figure 2 shows a single time instant from such

an animation in which regions in yellow correspond to ar-
eas with low standard deviation values, i.e., represent the
mean activation time values. Other regions, spanning from
red to purple, display larger values of the standard devia-
tion and indicate the spatial distributions of uncertainty for
this particular time instant. Examples of this uncertainty
animation can be found at http://www.sci.utah.
edu/˜kpotter/research/heartActivation/

3. Results

Visualizing the results of varied conductivity parameters
in the forward problem and the regularization parameter of
the inverse problem allowed us to identify regions of in-
terest within simulation results. In the ischemic forward
model, isosurfacing, min/max isosurfacing and clustering

Figure 2. Spatial Distribution of Activation Times and
Standard Deviations. Animations of uncertainty in the spa-
tial distribution of activation times on heart surfaces at 30
ms. Color maps show the spatial location and the differ-
ence between the present time and the mean activation time
(within one standard deviation).
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allowed us identify regions near the ischemic zone by scan-
ning the solution space of the simulation. Though inde-
pendent of the physical space, these methods were able to
scan the solution space and provide the viewer with a sense
of uncertainty with respect to a specified isovalue or num-
ber of bins. By projecting these findings onto the physical
space we were able to observe at what location, the cho-
sen solution parameters differed. Standard deviation val-
ues were able to illustrate regions of uncertainty, within the
areas of interest, as a sense of a range of variance within
the solution ensemble.

By animating the activation based inverse solution, we
were able to identify regions on the surface of the heart that
exhibited higher temporal and spatial uncertainty. During
a single frame of the animation (such as is seen in Figure
2) the standard deviation in some regions span a small dis-
tance (1/10 of the LV circumference) where other regions
show spatial variation as large as 1/4 of the LV circumfer-
ence. The temporal discrepancy in activation times within
these spatial regions is as high as 36.4 ms.

3.1. Discussion

By using several uncertainty visualization techniques,
we were able to highlight regions of interest in ischemic
forward simulations and activation-based inverse solu-
tions. Questions stemming from discrepancies in experi-
mentally measured conductivity values for cardiac tissue
generated small uncertainties in the forward solution. Re-
gions in or near the ischemic zone exhibited greater stan-
dard deviations, while regions near the epicardium (where
DTI-defined fiber directions exhibited more random direc-
tional behavior) had wider discrepancies between min and
max isosurfaces (not shown). These results remain incon-
clusive and will require further investigation. Likewise,
for the inverse case, some spatial regions were shown to
exhibit higher standard deviations than others based on dif-
ferent, user selected regularization parameters, λ, that mer-
its additional study.
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