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ABSTRACT 
 
 
 

Lipid membranes organize eukaryotic cells into functional compartments called 

organelles. Material is delivered to and from organelles in a regulated fashion. Vesicles 

bud from a source compartment, move across the cell and fuse with a target membrane. 

SNARE proteins, with Sec1/Munc18 (SM) proteins, drive the fusion of vesicles with 

their target by bridging the apposing membranes and forcing them together. The 

SNARE/SM fusion complex is essential for all vesicle fusion. Each trafficking pathway 

utilizes a different set of SNARE/SM family members.  

In the nervous system the secretory pathway is responsible for the release of 

neurotransmitters, which pass signals between neurons. The neuronal SNAREs include 

synaptobrevin, syntaxin, and SNAP-25. However, it is not clear that these are the only 

SNAREs responsible for neurotransmitter release. In fact countless studies have reported 

residual neurotransmission in the absence of each of these proteins, raising the question 

what is the mechanism responsible for residual fusion in neuronal SNARE knockouts?  

In Chapter 2, I explore this question by focusing on the neuronal SNARE SNAP-

25. We characterize the snap-25 genetic locus in C. elegans and examine the physiology 

of neurons lacking the SNAP-25 protein. We find that SNAP-25 plays an important role 

in docking and fusing synaptic vesicles but is not strictly essential for either one. We 

reveal that the conserved SNARE protein, SNAP-29 is capable of substituting for SNAP-



 

 

25 in synaptic vesicle fusion. We demonstrate that the SNAP-29 protein is natively 

expressed in neurons and localized at synapses. Our observations suggest that the 

canonical neuronal SNAREs may not act alone in releasing neurotransmitters. 

Finally, I explore the mechanism by which the neuronal SM protein (Unc18) 

facilitates fusion. Unc18 binds SNAREs in three configurations. A binary complex with 

syntaxin is important for trafficking. At nerve terminals, UNC-18 interacts with an N-

terminal peptide on syntaxin and with the SNARE four-helix bundle. Our experiments 

demonstrate that the N-peptide of syntaxin is a passive tether facilitating Unc18’s 

transition from the binary syntaxin interaction to a direct interaction with the ternary 

SNARE complex. Future work is required to elucidate the fusogenic properties of 

Unc18’s interaction with the ternary complex.
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CHAPTER 1 
 
 
 

INTRODUCTION 
 
 
 

Membrane organization requires fusion 

Lipid membranes form the outer barrier of eukaryotic cells and divide their 

contents into compartments called organelles. Each organelle contributes specialized 

functions to cell viability. The endoplasmic reticulum is a protein factory, the 

mitochondria a power plant, and the lysosome a recycling center. These functions are 

interdependent and require material to be shipped in and out of organelles. Lipid bound 

vesicles do most of the shipping in a cell. They transport cargo by budding from donor 

compartments and fusing with acceptor membranes. This dissertation explores the 

molecular nature of vesicle fusion at synapses. 

For lipid membranes to function as effective barriers, it is imperative that they 

resist spontaneous fusion with inappropriate compartments. Indeed, cellular membranes 

intrinsically repel one another, and protein machinery is used to overcome this resistance. 

Prior to membrane contact (>2nm), negatively charged phospholipids cause electrostatic 

repulsion of apposing membranes. At this distance, steric clash of membrane proteins not 

involved in fusion also deters membrane approach (Chernomordik and Kozlov, 2003; 

Cohen and Melikyan, 2004). At closer distances (<2 nm), immediately prior to contact, 

membranes experience a host of repulsive forces collectively termed “hydration forces,” 



 

which resist dehydration of the fluid/lipid interface (Leikin et al., 1993). Specialized 

fusion proteins provide force to draw apposing membranes together and deform lipids to 

decrease the contact surface area and lessen “hydration forces” (Chernomordik and 

Kozlov, 2003; Cohen and Melikyan, 2004).  

Proteins mediate the fusion of many different compartments in eukaryotic cells. 

Vesicle fusion is driven by SNARE proteins, which bridge the two membranes and 

mechanically induce fusion by conformational change (Broadie et al., 1995; Nickel et al., 

1999; Weber et al., 1998). Vesicle trafficking throughout a cell maintains the form and 

function of the endoplasmic reticulum, Golgi, and lysosome, and thus SNARE proteins 

are the central players in most membrane dynamics in a cell (Figure 1.1). However, some 

organelle maintenance occurs by SNARE-independent fusion. In these reactions, 

alternative players span apposed membranes and provide kinetic energy by 

conformational change. 

 
 

 

Figure 1.1 Vesicle trafficking is responsible for dynamic membrane remodeling 
throughout the cell’s endomembrane system. Different SNARE family members mediate 
vesicle fusion at each location in a cell. Synaptobrevin family members (blue) reside on 
vesicles and syntaxin (red) and SNAP-25 (green) family members are anchored to target 
membranes (Adapted from Jahn et al., 2003 and Bonifacino and Glick, 2004).  
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Most SNARE-independent fusion is driven by membrane spanning GTPases. In 

mitochondria, inner and outer envelope fusion is mediated by the GTPase Fzo1 (Hales 

and Fuller, 1997; Hermann et al., 1998; Rapaport et al., 1998). Similar molecules are 

localized to the outside surface of mitochondria called mitofusins. These molecules 

bridge the cytosol to execute homotypic fusion via antiparallel coiled coils (Koshiba et 

al., 2004). Homotypic fusion also occurs in the endoplasmic reticulum, and like the 

mitochondria relies on a GTPase (atlastin) for forcing membranes together (Hu et al., 

2009; Orso et al., 2009).  

The task of fusion is a particularly interesting challenge in the case of viral 

infection of a host cell. This is the only case where the proteins begin on only one side of 

apposing membranes. Here, the viral fusion proteins are equipped with highly 

hydrophobic peptides called “fusion peptides,” which penetrate the membrane of the host 

cell. Once both membranes are firmly anchored, the viral fusion machinery undergoes a 

dramatic conformational change driving the membranes together (Eckert and Kim, 2001). 

Thus, all known fusion reactions require membrane spanning protein complexes and 

exothermic conformational changes to overcome the repulsion of membranes. 

 
 

SNAREs mediate vesicle fusion 

Molecular exchange between organelles and with the extracellular milieu relies on 

transportation by carrier vesicles. These small (30 nm) membrane bound spheres were 

initially observed in the first electron micrographs of neurons (De Robertis and Bennett, 

1954; De Robertis, 1955; Palay, 1954). At the same time, electrophysiological 

observations of spontaneous endplate potentials at the frog NMJ (neuromuscular 
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junction) determined that bio-active molecules are released in quantal “packets” (Fatt and 

Katz, 1952). This work revolutionized our understanding of how a cell secretes 

neurotransmitters. We now recognize that similar “packets” are responsible for 

trafficking processes throughout cells. Vesicle biogenesis occurs at the Golgi apparatus. 

Vesicles divide and mature in order to be delivered to their correct target membrane 

where fusion ultimately releases their cargo. Vesicles are responsible for modulating 

receptor residence on the cell surface and secretion of endocrine and exocrine hormones, 

as well as releasing small molecules such as neurotransmitters.  

Much of our understanding of cargo trafficking by vesicles comes from seminal 

work on the cellular secretion pathway. Two investigators approached this problem in 

very different ways. Randy Schekman used a forward genetic screen to isolate yeast cells 

defective in secretion, identifying 23 genes critical for vesicle processing and fusion 

(Novick et al., 1980). Meanwhile James Rothman’s group developed a cell-free fusion 

assay, which was inhibited by the compound NEM (N-ethylmaleimide) (Balch et al., 

1984; Block et al., 1988). Through careful experimentation they identified NSF (NEM 

sensitive factor) as the target of NEM (Wilson et al., 1989). This protein in concert with 

SNAP (Soluble NSF attachment protein), proved important for unwinding and activating 

a four-protein complex involved in fusion ( Söllner et al., 1993b; Mayer et al., 1996; 

Nichols et al., 1997). The discovery that SNAP binds SNARE proteins gave them their 

name (SNAP attachment protein receptors) (Söllner et al., 1993a). Through very different 

approaches, Schekman and Rothman identified SNARE proteins and important accessory 

factors required for vesicle fusion. Schekman’s work is only a single example of the 

many studies that identified vesicle trafficking genes by forward genetics. Together, the 
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combination of genetics and biochemistry has proven a powerful partnership in 

elucidating the molecules and mechanisms responsible for SNARE mediated fusion.  

SNAREs make up a large conserved family of membrane-associated proteins. 

They are composed exclusively of alpha-helical segments, each protein with a 60–70 

amino acid amphipathic helix called the “SNARE motif.” SNARE motifs are 

unstructured in solution, but readily assemble into a parallel four helix coiled-coil with 

other SNAREs (Fasshauer et al., 1997; Sutton et al., 1998). SNARE proteins are 

membrane associated. With only a few exceptions, a single SNARE family protein 

resides on the vesicle and is called the “v-SNARE.” The other three SNARE motifs 

reside on the target membrane and are called “t-SNAREs” (Fasshauer et al., 1998; 

Kloepper et al., 2007). SNARE motifs zipper together to form a parallel four-helix bundle 

called the “core complex” (Figure 1.2). The membrane distal N-termini nucleate the 

complex and wind down towards the C-termini, drawing the apposed membranes 

together. Following fusion, disassembly is achieved by enzymatic melting via the 

cofactors NSF and SNAP proteins (Mayer et al., 1996; Nichols et al., 1997).  

The SNARE core complex is highly stable and requires boiling with sodium 

dodecyl sulfate for disassembly (Fasshauer et al., 2002; Hayashi et al., 1994). The 

stability of SNAREs can be attributed to strong hydrophobic interactions between “layer 

residues” that run the length of the core complex. One exception occurs halfway down 

the length of every SNARE motif. Here, invariant charged residues form an ionic 

interaction in the center of the core complex that has been termed the “0 layer” 

(Fasshauer et al., 1998). The conservation of the 0 layer residues provides an effective 

evolutionary categorization for classifying the relatedness of SNAREs in evolution  
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Figure 1.2 The SNARE complex forms a parallel four-helix bundle to bridge the vesicle 
and target membranes. Synaptobrevin (blue) is anchored to the vesicle by a 
transmembrane domain. Syntaxin (red) is inserted into the plasma membrane by a 
transmembrane domain. SNAP-25 (green) is associated with the target membrane by 
palmitoylation and contributes two alpha-helices to the complex. Inset displays the four 
residues that define the 0 layer.  
 
 
 
(Kloepper et al., 2007). Three of the SNARE motifs contain glutamine residues and are 

referred to as Qa-, Qb-, and Qc-SNAREs. The fourth SNARE motif (the R-SNARE) has 

an arginine at the zero-layer, which interacts with all three glutamines (Fasshauer et al., 

1998). Despite the conservation, the functional role of the zero-layer remains mysterious. 

It may keep SNAREs in register or facilitate SNARE disassembly following fusion, but 

these models have not been supported in vivo. (Fasshauer et al., 1998; Hanson et al., 

1997; Lauer et al., 2006; Scales et al., 2001).  

6



 

In summary, SNAREs are believed to be central to all vesicle fusion reactions in 

cellular trafficking. Four parallel SNARE motifs zipper together, nucleated at their N-

termini, to bridge apposing membranes and catalyze fusion.  

 
 

Neuronal secretion is fast and regulated 

The secretion of neurotransmitter at nerve terminals is the most tightly regulated 

fusion reaction known. At synaptic junctions, a presynaptic depolarization opens voltage-

gated calcium channels allowing for small bursts of elevated intracellular calcium. 

Synaptotagmin binds Ca2+ and triggers the full zippering of prenucleated SNARE 

complexes. Vesicle contents are released, and neurotransmitters diffuse a short distance 

across the synaptic cleft. Neurotransmitters bind postsynaptic receptors triggering a new 

electrical signal. Synapses stall fusion in preparation for coordinated transmitter release, 

which can occur in under a millisecond (Bruns and Jahn, 1995; Schikorski and Stevens, 

2001). This regulation involves accessory factors that modify SNARE-mediated fusion.  

Three neuronal SNARE proteins are highly conserved across metazoans. The R-

SNARE, synaptobrevin or VAMP (Vesicle Associated Membrane Protein), resides on the 

vesicle membrane, and the Q-SNAREs, syntaxin (Qa) and SNAP-25 (Qbc) are associated 

with the plasma membrane. SNAP-25 is a particular focus of this dissertation, and I will 

give it special attention throughout. SNAP-25 is a 206-amino acid 25-kD protein. It is 

unique among the other SNAREs as it contributes two 70-amino acid SNARE motifs 

joined by a long flexible linker. SNAP-25 was first identified by Oyler and colleagues 

where they found SNAP-25 mRNA enriched at presynaptic terminals in the hippocampus 

(Oyler et al., 1989). Subsequent studies reported that SNAP-25 is expressed in 
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neuroendocrine cells (Jacobsson et al., 1994) and motor neurons (Jacobsson et al., 1996). 

SNAP-25 is anchored to the plasma membrane by palmitoylation of a “cysteine quartet” 

(Gonzalo and Linder, 1998; Gonzalo et al., 1999; Hess et al., 1992; Lane and Liu, 1997). 

The linker motif immediately adjacent to the palmitoylation residues is thought to be a 

critical advancement toward fast calcium-evoked transmission (Nagy et al., 2008). 

Synaptic vesicles proceed through three ordered stages in the release of neurotransmitter 

into the synaptic cleft (Figure 1.3). (1) Docking is defined ultrastructurally and includes 

all vesicles contacting the plasma membrane (Hammarlund et al., 2007; Schikorski and 

Stevens, 2001). (2) Maturation indicates fusion competence. This stage involves vesicle 

priming, which is defined molecularly as the initial N-terminal nucleation of SNARE 

proteins (Südhof, 1995). Functionally speaking, “fusion competent” vesicles occupy the 

RRP (readily releasable pool) (Rosenmund and Stevens, 1996). (3) Fusion occurs in 

response to calcium influx and is believed to require the previous two steps. 

 
 

 

Figure 1.3 Synaptic vesicles proceed through three stages to release neurotransmitter. 
Vesicle docking is defined by contact between the vesicle and target membrane and 
likely requires all three SNARE proteins. Priming describes a state in which vesicles are 
prepared for immediate fusion upon stimulation. In this state, SNAREs zippering has 
begun, but is not allowed to wind to completion. Fusion occurs when SNAREs zipper 
completely.   
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Docking  

The original SNARE hypothesis proposed that SNAREs confer localization by 

docking vesicles at the membrane (Rothman, 1994; Söllner et al., 1993a). This was later 

dismissed when ablation of syntaxin and synaptobrevin by genetics and clostridial toxins 

showed no defect in vesicle docking (Broadie et al., 1995; Hunt et al., 1994; Marsal et al., 

1997; O'Connor et al., 1997). Instead, these experiments suggested that SNAREs are 

necessary for the downstream stages of priming and fusion. However, advances in 

electron microscopy and sample preparation have allowed more stringent criteria for 

defining docking (Hammarlund et al., 2007). Furthermore, new approaches to identifying 

“docked” vesicles including a cell-free biochemical assay (Chieregatti, 2004; Chieregatti 

et al., 2002), TIRF (total internal reflection microscopy) (Wu et al., 2012), and cell-free 

docking of unilamellar vesicles (Parisotto et al., 2012) have contributed to our 

perspectives on docking. Unfortunately, the field is still divided as to which molecular 

players constitute the functional docking machinery. 

The question of molecular docking can be divided into two questions: (1) what 

vesicle molecule(s) are required for docking? and (2) what plasma membrane molecule(s) 

are required for docking? The evidence from C. elegans suggests that synaptobrevin on 

the vesicle is required for docking, and syntaxin on the plasma membrane is required for 

docking (Hammarlund et al., 2007, 2008; Palfreyman, 2009). These observations support 

the original model that SNAREs dock synaptic vesicles. TIRF microscopy on cultured 

PC12 cells lends further support to this model by demonstrating that all three SNARE 

proteins are required, and docking appears to rely on trans-SNARE pairing by the 

traditional zippering model (Wu et al., 2012).  
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However, other groups report that the vesicle anchor for docking is 

synaptotagmin.  Dense core granules and cell-free unilamellar vesicles appear to dock via 

t-SNAREs and synaptotagmin. Synaptobrevin is not required, and thus SNARE zippering 

occurs downstream of docking (De Wit et al., 2009; Mohrmann et al., 2013; Parisotto et 

al., 2012). This docking appears to require Munc18, which could serve as a membrane 

anchor on the plasma membrane. A bimolecular syntaxin/Munc18 complex may serve 

this function, which would suggest that SNAP-25 is dispensable for docking (Verhage 

and Sørensen, 2008). Alternatively, SNAP-25 may interact directly with rabphilin or 

synaptotagmin to dock synaptic vesicles (De Wit et al., 2009; Mohrmann et al., 2013; 

Parisotto et al., 2012; Tsuboi and Fukuda, 2005).  

 
 

Maturation  

Vesicles must pass through a maturation step to become fusion competent. Two 

parallel lines of research have approached this phenomenon by molecular and functional 

criteria independently. The definition of vesicle priming arose from a series of 

experiments in endocrine cells that specifically disrupted SNARE interactions in a 

manner that assigned N- and C-terminal interactions to SNARE nucleation and fusion 

respectively (Chen et al., 2001b; Hay and Martin, 1992; Melia et al., 2002; Xu et al., 

1999a). The term priming in the strictest sense describes this molecular interaction 

(Südhof, 1995); however, it is loosely used in the literature to describe fusion 

competence.  

As early as 1961, electrophysiologists recognized the heterogeneity of vesicle 

release events and referred to different populations of synaptic vesicles as representing 
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different “pools” (Birks and MacIntosh, 1961). The RRP represents those that are 

immediately available for fusion by hypertonic conditions, high-frequency electrical 

stimulation or caged calcium release (Rosenmund and Stevens, 1996; Schneggenburger 

et al., 1999). Whether this pool represents docked vesicles (Rizzoli and Betz, 2005) or 

primed vesicles (Becherer and Rettig, 2006) is uncertain and may depend on the model 

system or even the specific synapse studied. 

 
 
Fusion  

Under the zippering model for fusion, primed SNAREs are arrested in the 

nucleated form, stalling fusion until initiated by a trigger (Chen et al., 2001a; Fasshauer 

and Margittai, 2004; Fiebig et al., 1999; Hanson et al., 1997; Hua and Charlton, 1999; 

Lin and Scheller, 1997; Melia et al., 2002; Pobbati et al., 2006; Sørensen et al., 2006; Xu 

et al., 1999b). Complexin serves as a brake, blocking the fusion of primed vesicles and 

accumulating a release-ready reserve (Hobson et al., 2011; Ishizuka et al., 1995; Martin 

et al., 2011; McMahon et al., 1995; Pabst et al., 2002; Takahashi et al., 1995). UNC-13 

localizes primed vesicles near calcium channels and increases Ca2+ sensitivity via 

calmodulin (Hu et al., 2013). Synaptotagmin is believed to be the Ca2+ sensor and 

therefore the trigger for fusion (Fernandez-Chacon et al., 2001; Geppert et al., 1994). 

However, the precise mechanism by which synaptotagmin initiates fusion is mysterious. 

It is anchored to synaptic vesicles via a transmembrane domain and contains two C2 Ca2+ 

binding domains. Synaptotagmin’s role as a fusion trigger appears to involve Ca2+ 

dependent interaction with the SNARE proteins and penetration of the synaptic plasma 

membrane (Bai et al., 2002; Chapman et al., 1995; Fernandez-Chacon et al., 2001; 
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Gerona et al., 2000; Herrick et al., 2006; Lynch et al., 2007; Rhee et al., 2005). Upon 

triggering, SNAREs completely zipper to the C-termini, executing fusion upon calcium 

instruction.  

Synaptic vesicle fusion events are classified by the nature of the fusion stimulus 

(Neher and Sakaba, 2008). At rest, in the absence of a trigger, vesicle fusion is referred to 

as “spontaneous.” When a depolarization induces Ca2+ influx into the cell, fusion events 

are fast and “synchronous.” Following synchronous fusion, elevated release probability 

persists as a result of a slower mechanism for Ca2+ evoked release—termed 

“asynchronous release.” Synchronous and asynchronous fusions are considered “evoked” 

events and require Ca2+. Finally, some synapses are modulated by graded membrane 

potentials resulting in more gradual Ca2+ dynamics. These synapses are referred to as 

“tonic synapses” in contrast to “phasic” synapses, which respond with synchronized 

release (Atwood and Karunanithi, 2002; Millar et al., 2005). Tonic synapses include 

mossy fibers, retinal bipolar cells, and many invertebrate NMJs. SNARE proteins are 

required for all of these forms of fusion. However, each SNARE family member may 

interact differently with accessory proteins providing a molecular signature to different 

vesicle pools (Raingo et al., 2012; Ramirez and Kavalali, 2012; Ramirez et al., 2012). 

These results are discussed at length when we consider the different SNAREs and 

potential redundancy at synaptic terminals.  

 
 

SNAREs: an addressing system for fusion? 

The original “SNARE hypothesis” proposed that SNAREs serve as an addressing 

system for directing trafficking of vesicles to their appropriate destinations (Rothman, 
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1994). Under this model, each vesicle adorns v-SNAREs that only interact with a single 

set of cognate t-SNAREs on the appropriate target membrane. “Cognate” SNARE pairing 

describes the selective nature of SNAREs for a specific set of partners. The simplest test 

of this model is to survey SNARE proteins for interaction in vitro. The results from these 

experiments are inconsistent with the SNARE hypothesis. Co-immunoprecipitation 

experiments demonstrate that Golgi and plasma membrane t-SNAREs interact 

promiscuously with other v-SNAREs (Fasshauer et al., 1999; Tsui and Banfield, 2000). 

Analysis by circular dichroism spectroscopy suggests that multiple SNARE combinations 

form thermal-stable complexes with affinities close to those observed with cognate pairs 

(Scales et al., 2000; Yang et al., 1999). Finally, the ability of SNAREs to fuse artificial 

liposomes may provide the strictest in vitro criteria for specificity. Indeed, most SNARE 

pairs have proven to be selective by this assay (McNew et al., 2000; Parlati et al., 2002). 

However, SNAP-47 is capable of replacing SNAP-25 in fusing proteoliposomes (Holt et 

al., 2006).   

 The most compelling evidence for SNARE promiscuity comes from studies of 

genetic null mutations in living organisms or tissues. Null analysis of neuronal SNARE 

genes rarely results in the complete abrogation of neurotransmission, suggesting that 

substitution by other SNARE orthologs is sufficient for fusion. The following discussion 

explores the evidence for redundancy with each of the three canonical neuronal SNAREs.  

 
 

Synaptobrevin  

In flies, synaptobrevin nulls lack evoked release, but some spontaneous fusion 

persists (Deitcher et al., 1998) In worms, synaptobrevin nulls arrest as larva but exhibit 
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some locomotion prior to termination (Nonet et al., 1998). Deletion of mouse 

synaptobrevin-2 reduces neurotransmission. Evoked release is decreased nearly 100-fold, 

but spontaneous and hypertonic release is only affected 10-fold (Schoch et al., 2001). 

This has been attributed to cellubrevin in chromaffin cells (Borisovska et al., 2005) 

suggesting that spontaneous and evoked fusion may be differentially regulated by the R-

SNAREs for endocrine fusion. However, cellubrevin does not appear to contribute to 

synaptic fusion when assayed in hippocampal culture (Deák et al., 2006). Instead, it 

appears that the Qb SNARE Vti1a drives spontaneous fusion at central synapses 

(Ramirez et al., 2012), and VAMP-4 may be responsible for maintaining an 

asynchronous pool in neurons (Raingo et al., 2012). 

 
 

Syntaxin  

In flies and worms, syntaxin is strictly required for neurotransmitter release 

(Broadie et al., 1995; Hammarlund et al., 2007; Schulze et al., 1995). However, the 

syntaxin knockout mouse has only subtle defects in neurotransmission (Fujiwara et al., 

2006). This is likely due to redundancy from Syntaxin 1B. Acute proteolysis of syntaxin 

by botulinum toxin reduces neurotransmission to approximately 10% in squid giant 

synapses (Marsal et al., 1997; O'Connor et al., 1997) and hippocampal culture (De Wit et 

al., 2006) 

 
 

SNAP-25 

Most agree that SNAP-25 is not strictly required for spontaneous release in 

mammals (Bronk et al., 2007; Delgado-Martinez et al., 2007; Tafoya et al., 2006; 
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Washbourne et al., 2002). In fact, Washbourne and colleagues reported higher rates of 

minis at the diaphragm NMJ, and Delgado and colleagues reason that SNAP-25 may only 

be required for evoked release. By most reports, SNAP-25 is strictly required for evoked 

fusion. However, one group observed Ca2+ evoked responses in snap-25 null 

hippocampal neurons, suggesting that synchronous fusion may be possible in the absence 

of SNAP-25 (Bronk et al., 2007). Studying SNAP-25 in flies has been hampered by a 

very closely related SNAP-25 paralog unique to flies called SNAP-24. SNAP-24 almost 

completely replaces SNAP-25 function in neurons, making flies an unfavorable model for 

exploring SNAP-25 function (Niemeyer and Schwarz, 2000; Vilinsky et al., 2002). 

In addition to SNAP-25, mammals express three related Qbc-SNAREs, SNAP-23, 

SNAP-29, and SNAP-47. Of these, SNAP-23 is the most carefully studied. 

Overexpressing SNAP-23 is sufficient to restore tonic fusion in SNAP-25 null neurons 

(Delgado-Martinez et al., 2007) and chromaffin cells (Sørensen et al., 2003). In both 

studies, SNAP-23 overexpression produced an electrophysiological phenotype that did 

not match that of snap-25 null cells. These observations suggest that SNAP-23 is unlikely 

responsible for the residual fusion in snap-25 null cells. The authors of these reports 

concluded that SNAP-29 or SNAP-47 may drive the residual neurotransmission at snap-

25 null synapses, but these speculations have not been tested in vivo.  

 
 

SNAP-29 at synaptic terminals 

The Qbc-SNARE, SNAP-29, provides an interesting challenge to the specificity 

model for SNARE function. SNAP-29 is a close relative to SNAP-25 (32% identical in 

mammals), but is ubiquitously expressed in all tissues assayed in metazoans (including 
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brain, heart, kidney, liver, lung, pancreas, placenta, skeletal muscle, spleen, and testis). 

As a result, SNAP-29 was initially proposed to serve a vital role in cellular trafficking 

associated with the Golgi and late endosome (Steegmaier et al., 1998; Wong et al., 1999). 

SNAP-29 resembles SNAP-25 as it contains two SNARE motifs joined by a long 

unstructured linker. However, unlike SNAP-25, SNAP-29 lacks a membrane binding 

palmitoylation motif. SNAP-29 is believed to be a cytosolic protein that associates with 

membranes via protein interaction (Hohenstein and Roche, 2001; Steegmaier et al., 1998; 

Wong et al., 1999). 

SNAP-29 appears to be a promiscuous SNARE interactor. SNAP-29 was first 

identified by its interaction with Syntaxin-3 in a yeast two-hybrid screen (Steegmaier et 

al., 1998). Steegmaier et al. further demonstrated that SNAP-29 interacts with many of 

the Qa family members by in vitro binding assays, including Syntaxin 1a, 3, 4, 7, 13, and 

17. Others have shown that SNAP-29 binds to the Golgi Syntaxin 6 (Schardt et al., 2009; 

Wendler et al., 2001; Wong et al., 1999). This interaction is especially provocative; 

Syntaxin 6 is a Qc-SNARE and is more closely related to the SNAP-25 family than the 

syntaxin family of proteins. Therefore, the interaction of SNAP-29 with syntaxin 6 is not 

only promiscuous but homotypic. Furthermore, SNAP-29 forms high affinity ternary 

SNARE complexes with any combination of one of five R-SNAREs (VAMP 2, 4, 7, 8 or 

rSec22b) and three Qa-SNAREs (Syntaxin 1a, 4 or 13) (Yang et al., 1999). 

The role of SNAP-29 in the nervous system is particularly unclear. SNAP-29 

forms ternary complexes with the synaptic Qa-SNARE Syntaxin1A and Synaptobrevin 2 

with higher thermal stability than any other SNAP-25 family member (Scales et al., 2000; 

Yang et al., 1999). SNAP-29 is expressed in central and peripheral neurons and localizes 
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at presynaptic terminals. Furthermore, SNAP-29 is enriched in synaptic vesicle 

purifications (Holt et al., 2006; Su et al., 2001). These observations all suggest that 

SNAP-29 may actively participate in SNARE mediated fusion of synaptic vesicles. 

Indeed, SNAP-29 can substitute for SNAP-25 in secretion of epinephrine from PC12 cell, 

although SNAP-23 was reported to be a more effective substitute (Scales et al., 2000).  

SNAP-29 has also been implicated in a rather heretical function for a SNARE 

family member. SNAP-29 was shown to bind the outside of preformed neuronal SNARE 

complexes, stabilizing the ternary SNARE bundle by competing for the binding site of 

alpha-SNAP (Su et al., 2001). This group went on to demonstrate that SNAP-29 

overexpression consistently decreases evoked release at cultured hippocampal synapses 

(Pan et al., 2005). However, this defect is relatively subtle. In conclusion, SNAP-29 is a 

promiscuous SNARE with controversial roles in mediating synaptic vesicle fusion. 

 
 

UNC-18 is required for fusion 

SNARE proteins are often considered the minimal machinery for fusion (Weber 

et al., 1998). However, all known SNARE interactions are accompanied by the Sec-

1/Munc18 (SM) family of proteins, and SM proteins are required for vesicle fusion 

(Verhage et al., 2000). The mammalian SM proteins responsible for neurotransmission at 

synapses are known as Munc18, named after the C. elegans protein UNC-18 (Hosono et 

al., 1992). I will use the name Unc18 in reference to synaptic proteins of all species, and 

refer to the greater protein family as SM proteins. SM proteins have been implicated in 

the vesicle cycle at docking, priming, and fusion stages (Toonen and Verhage, 2007).  
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 SM proteins are required for trafficking syntaxin. Mutants lacking SM proteins 

consistently show a two-fold depletion of syntaxin at the plasma membrane in yeast, 

invertebrates, and mammals (Bryant and James, 2001; Medine et al., 2007; Rowe et al., 

2001; Voets et al., 2001; Weimer et al., 2003). Furthermore, multiple groups have 

demonstrated that Unc18 proteins are required for docking of synaptic vesicles and dense 

core vesicles (Gulyás-Kovács et al., 2007; Voets et al., 2001; Weimer et al., 2003). 

However, the docking defect may be an indirect effect via its binding partner syntaxin 

since recent evidence suggests that syntaxin is required for docking (Hammarlund et al., 

2007; Wu et al., 2012). It is possible that Unc18 mutants are defective for docking due to 

a depletion of membrane bound syntaxin (Gerber et al., 2008; Verhage et al., 2000). 

Therefore, the role of Unc18 proteins in docking vesicles remains unresolved, but it 

likely serves a positive role in exocytosis downstream of docking. 

 Once vesicles move into position at the plasma membrane, syntaxin assumes the 

open conformation and allows SNARE proteins to form the SNARE complex (Chen et 

al., 1999, 2001a; Fiebig et al., 1999; Nicholson et al., 1998). It is believed that these 

“primed” vesicles represent the RRP, which can be measured using electrophysiological 

methods. Structural experiments with yeast and mammalian protein suggest that Unc18 

stabilizes a SNAP-25/syntaxin “acceptor” complex facilitating SNARE priming 

(Burkhardt et al., 2008; Weninger et al., 2008). Furthermore, in mouse chromaffin cells, 

different Munc18 variants can rescue priming to different levels, independent of docking 

(Gulyás-Kovács et al., 2007). These results suggest that Unc18 may prime vesicles once 

they reach the plasma membrane. However, it is possible that Unc18 serves as an 

instrument for executing the fusion event itself. By analyzing the kinetics of individual 
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fusion events in cultured endocrine cells, Fisher et al.  proposed that Munc18 contributes 

to the formation of a fusion pore (Fisher et al., 2001). Finally, in support for a role in 

fusion, pre-incubation of SNAREs with Unc18 increases the rate of fusion in liposome 

fusion assays (Shen et al., 2007). 

 Unc18's numerous functions in vesicle exocytosis have been attributed to its 

multiple SNARE binding modes. Of the Unc18/SNARE interactions, the most thoroughly 

studied is thought to inhibit SNARE assembly. Unc18 forms a high-affinity clamp on 

syntaxin, locking it in a “closed” (fusion incompetent) state (Dulubova et al., 1999; 

Misura et al., 2000). This interaction is necessary for trafficking syntaxin to the plasma 

membrane (McEwen and Kaplan, 2008; Medine et al., 2007). Once at the synaptic 

terminal, UNC-13 is required to overcome the closed state of syntaxin and permit 

SNARE assembly (Richmond et al., 2001).   

 The high-affinity interaction of Unc18 with syntaxin appears to be a recent 

evolutionary development, reserved only for neuronal SM proteins. However, two 

additional binding modes between syntaxin and Unc18 are conserved throughout all SM 

proteins (Toonen and Verhage, 2007). These interactions occur following the “opening” 

of syntaxin.  

The first mode (the N-peptide interaction) involves the binding of the extreme N-

terminus of syntaxin with a hydrophobic pocket in Unc18 (Bracher and Weissenhorn, 

2002; Hu et al., 2007; Shen et al., 2007). The N-peptide of syntaxin is required for Unc18 

to bind the assembled SNARE complex in vitro (Dulubova et al., 2007; Rickman et al., 

2007; Shen et al., 2007). Ablation of the N-peptide interaction in transgenic human 

embryonic kidney cells disrupts secretion (Khvotchev et al., 2007). Furthermore, 
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introducing a point mutation in syntaxin’s N-peptide eliminates Unc18’s fusogenic 

influence on SNARE mediated liposome fusion (Shen et al., 2007). However, these 

observations do not explain the functional significance of the N-peptide interaction. Some 

models suggest that it sends an activation signal to Unc18; however, others propose the 

N-peptide simply tethers Unc18 to SNAREs. In the third chapter, we describe evidence 

that supports the latter.  

In the final SNARE binding mode, Unc18 interacts with the partially assembled 

trans-SNARE complexes (Dulubova et al., 2007; Khvotchev et al., 2007; Rickman et al., 

2007). The structural contacts of this interaction have not yet been determined. The 

functional significance of Unc-18's interaction with the SNARE complex can be best 

understood by looking to yeast SM proteins. The yeast SM orthologs do not bind closed 

syntaxin and only interact with syntaxin's N-peptide and the assembled core complex. 

These interactions promote fusion and occur downstream of docking (Bracher and 

Weissenhorn, 2002; Carr et al., 1999; Grote et al., 2000). 

 Taken together, we favor the following model (Figure 1.4). Unc18 binds closed-

syntaxin for trafficking to the synapse. This interaction is supported by the N-peptide. 

When syntaxin opens to nucleate SNARE priming, the N-peptide holds Unc18 near the 

complex. Finally, Unc18 binds the trans-SNARE complex with support from the N-

peptide to promote vesicle fusion.  

 
 

Outline of the dissertation 

The work presented herein explores two discrete problems that hamper our 

understanding of SNARE function and vesicles fusion: (1) it is unclear whether the Qbc-  
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Figure 1.4 A molecular model for the function of Unc18/SNARE interactions. 1) Unc18 
and syntaxin cochaperone one another in a binary complex supported by the closed 
interaction and N-peptide interaction. 2) The N-peptide holds Unc18 near the complex 
when syntaxin is open. 3) Unc18 binds trans-SNAREs to drive fusion. This interaction is 
supported by the N-peptide.   
 
 
 
SNARE SNAP-25 is strictly required for docking and fusing synaptic vesicles, or if 

alternative mechanisms or proteins contribute to fusion, and (2) the N-peptide of Unc18 

is important for vesicle fusion, but its functional mechanism has been mysterious.  

In Chapter 2, I analyze neurosecretion in the absence of the Qbc-SNARE SNAP-

25 in C. elegans. Our results suggest that SNAP-25 is required for normal docking of 

synaptic vesicles at the presynaptic plasma membrane and executing efficient fusion. 

However, significant levels of docking and fusion persist, implicating a SNAP-25 

independent mechanism for secretion at the C. elegans NMJ. We demonstrate that these 

fusion reactions require the neuronal R-SNARE synaptobrevin and are thus SNARE-

mediated. Furthermore, we show that overexpressing syntaxin and synaptobrevin is not 

sufficient for increasing fusion. Only overexpression of the Qbc-SNARE SNAP-29 in 

neurons is sufficient to rescue SNAP-25 null animals and increase fusion. 
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In the third chapter, I investigate the functional significance of the N-peptide 

interaction with Unc18. My experiments in C. elegans, paired with liposome fusion 

studies, exclude some of the most provocative models of the N-peptide interaction and 

demonstrate that this interaction is required for loading Munc18 onto the four-helix 

SNARE bundle.  

Finally, in the fourth chapter, I discuss the implications of this work, the questions 

it raises, and preliminary results for new lines of investigation.  
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CHAPTER 2 
 
 
 

SNAP-29 SUBSTITUTES FOR SNAP-25 IN  
 

FUSING SYNAPTIC VESICLES  
 
 
 

Abstract 

SNARE proteins make up the core molecular machine responsible for vesicle 

fusion. The canonical model for synaptic vesicle fusion suggests that a single set of 

cognate SNARE proteins, including synaptobrevin, syntaxin, and SNAP-25, drives fusion 

for neurotransmitter release. In this study, we analyze neurotransmission in snap-25 null 

neurons in the nematode C. elegans. We report that neurotransmission is strongly 

depressed, but some productive transmitter secretion remains. Synaptic vesicles dock and 

fuse in the absence of SNAP-25 protein. These fusion events are calcium sensitive and 

require the canonical R-SNARE, snb-1. Importantly, we demonstrate that neuronal 

overexpression of snap-29, and not the other Qbc-SNARE aex-4, is sufficient for 

rescuing the viability of snap-25 null animals. Overexpression of snap-29 restores 

neurotransmission in these animals by increasing tonic fusion but not evoked 

neurotransmitter release. We show that SNAP-29 is expressed in C. elegans neurons and 

is localized at synapses. These data are the first to directly implicate SNAP-29 in synaptic 

vesicle fusion. 

 



 

Introduction 

Vesicle fusion is executed by a conserved family of proteins called SNARE 

proteins. SNAREs are anchored to apposing membranes and span the cytoplasm to form 

a parallel four-helix bundle termed the “core complex” (Lin and Scheller, 1997; Sutton et 

al., 1998). The vesicle contributes a single SNARE motif, which twists together with 

three helices associated with the target membrane (known as v-SNAREs and t-SNAREs, 

respectively) (Broadie et al., 1995; Nickel et al., 1999; Weber et al., 1998). The canonical 

SNARE proteins responsible for fusion of synaptic vesicles include the v-SNARE 

synaptobrevin and the t-SNAREs syntaxin and SNAP-25. Synaptobrevin and syntaxin are 

type II transmembrane proteins, each contributing a single helix to the complex. SNAP-

25 is unique in that it contributes two parallel SNARE motifs anchored to the plasma 

membrane by palmitoylation of four cysteine residues in the central linker (Vogel and 

Roche, 1999). Together these proteins are considered the minimal machinery for fusion 

as they are capable of fusing liposomes in vitro (Weber et al., 1998). 

The original SNARE hypothesis postulated that SNAREs are responsible for 

docking vesicles at the appropriate target membrane (Rothman, 1994). Subsequent 

studies contradicted this theory (Broadie et al., 1995; Bronk et al., 2007; Hunt et al., 

1994; Marsal et al., 1997; O'Connor et al., 1997). However, with more advanced imaging 

techniques, the consensus is shifting to support the role of SNAREs in docking vesicles 

(De Wit et al., 2006; Gutierrez et al., 1997; Hammarlund et al., 2007, 2008; Wu et al., 

2012). However, all but one of these studies have focused specifically on syntaxin and 

synaptobrevin, and there is little evidence to directly confirm or deny a role for SNAP-25 
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in docking vesicles. Therefore, to clearly demonstrate that docking requires the SNARE 

core-complex, it is important to examine docking at SNAP-25 null synapses.   

The canonical synaptic vesicle SNAREs are sufficient for fusion in vitro (Weber 

et al., 1998), but genetic ablation in vivo rarely eliminates fusion. In the case of the 

neuronal t-SNARE SNAP-25, all studies report some degree of spontaneous fusion in its 

absence (Bronk et al., 2007; Delgado-Martinez et al., 2007; Sørensen et al., 2003; Tafoya 

et al., 2006; Washbourne et al., 2002). In fact, Delgado-Martinez and colleagues suggest 

that spontaneous fusion rates in hippocampal culture are the same with and without 

SNAP-25 when normalized for the density of synapses. Moreover, Washburn et al. 

reported that the spontaneous neurotransmitter release rate at neuromuscular junctions 

(NMJs) of SNAP-25 knockout mice was higher than at wild-type synapses. Most studies 

conclude that SNAP-25 is strictly required for evoked fusion; however, one report 

observed small Ca2+-evoked responses in the absence of SNAP-25 (Bronk et al., 2007). 

These studies and others attribute the residual activity at SNARE null synapses to 

genetic substitution by homologous non-neuronal SNAREs. Mammalian neurons express 

3 Qbc homologs, SNAP-23, SNAP-29, and SNAP-47. SNAP-23 appears to be capable of 

substituting for SNAP-25 to some degree; however, in each report the authors concluded 

that SNAP-23 cannot account for the residual activity observed in the mouse SNAP-25 

knockout (Delgado-Martinez et al., 2007; Scales et al., 2000; Sørensen et al., 2003). The 

ability of SNAP-29 and SNAP-47 to support synaptic vesicle fusion has not been directly 

tested. However, SNAP-29 binds syntaxin and synaptobrevin with affinities approaching 

that of SNAP-25 and better than any other Qbc-SNARE homolog (Yang et al., 1999). 
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Furthermore, both SNAP-29 and SNAP-47 are enriched on purified synaptic vesicles 

(Holt et al., 2006; Su et al., 2001; Takamori et al., 2006).   

Here, we have tested the requirement of SNAP-25 for neurotransmission at C. 

elegans NMJs. Worms lack SNAP-23 and SNAP-47 and only express the Qbc homolog 

SNAP-29 in the nervous system. Worms require SNAP-25 to develop beyond the second 

larval stage (L2), but null larvae are capable of locomotion, suggesting some level of 

productive neurotransmission. We engineered tissue-specific rescued animals and 

analyzed vesicle docking and fusion at the NMJ. We observed a reduction in vesicle 

docking and fusion in null neurons, but residual vesicle docking, tonic fusion, and evoked 

neurotransmission remain in the absence of SNAP-25. Residual fusion is calcium 

sensitive and requires the R-SNARE snb-1. We found that overexpression of snap-29 in 

neurons rescued the viability of snap-25 null animals and increased tonic 

neurotransmission. However, evoked fusion was unchanged. We confirmed that SNAP-

29 is natively expressed throughout the nervous system of C. elegans and report that it is 

localized to synaptic varicosities.  

Our results add to a growing body of evidence across many systems suggesting a 

SNAP-25 independent mode of synaptic vesicle secretion. We show that SNAP-29 is 

sufficient for fusion in C. elegans and suggest that it likely supplements 

neurotransmission in other systems.  
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Results 

The C. elegans snap-25 gene (ric-4) encodes the neuronal  

Qbc-SNARE SNAP-25  

Mutations in the C. elegans snap-25 (ric-4) locus were first isolated in screens for 

animals with reduced neurotransmission (Miller et al., 1996; Nguyen et al., 1995). We 

report a comprehensive list of snap-25 alleles, including updated molecular information 

on published and unpublished isolates (Table S2.1). We have confirmed the presence of 

two alternatively spliced snap-25 transcripts by 5’ RACE (rapid amplification of cDNA 

ends). They agree with the EST (expressed sequence tags) data available on 

wormbase.org and are annotated as snap-25A and snap-25B (Figure 2.1A). ok173 (kindly 

provided by Robert Barsted) and ox528 (generated in house by mosDel [Frøkjaer-Jensen 

et al., 2010]) are two novel alleles that delete over 80% of the coding locus. We believe 

they represent complete nulls. ox45 is a point mutation in the start codon of snap-25 exon 

1A, which selectively eliminates this isoform. The ox45 mutation results in dramatically 

reduced expression of the gene and represents a recessive loss of function hypomorph 

(M. Nonet, personal communication).  

The C. elegans snap-25 gene encodes a highly conserved member of the neuronal 

Qbc family of proteins. The C. elegans protein is 70% similar to that of the human 

homolog and the SNARE motifs are particularly well conserved (Qb: 65% identity, 79% 

similarity; Qc: 58% identity, 82% similarity) (Figure 2.1B). snap-25 null worms (ox528 

and ok173) arrest at the second larval stage (L2). We have fully rescued these animals 

(Figure 2.1C) by expressing a genomic fragment of snap-25 under a neuron-specific 

promoter from the synaptotagmin gene (Psnt-1) (Figure S2.1). C. elegans snap-25 has 
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previously been reported to be expressed pan-neuronally (Hwang and Lee, 2003). Our 

rescue data confirms that the lethal phenotype is specific to mutations in the snap-25 

locus and that neurons are the critical tissue for SNAP-25 function. 

Although snap-25 null worms are subviable, the larvae are notably healthier than 

worms with null mutations in the cognate t-SNARE syntaxin (unc-64) (Figure 2.1C). 

snap-25 null animals grow larger and are capable of locomotion. Single snap-25 larva 

move many millimeters across a plate over the course of 2 days, while unc-64 larvae are 

paralyzed upon hatching (Figure 2.1D). Locomotion in the snap-25 null worms is the first 

evidence that neurotransmission may not strictly require SNAP-25 protein.  

 
 

Tissue specific rescue of the snap-25 null  

In order to study snap-25 null neurons in living animals, we engineered two strains 

with tissue-specific snap-25 rescue (Figure S2.1A). Worms only require 

neurotransmission in acetylcholine neurons of the head for viability. Therefore, we 

expressed snap-25 under the vesicular acetylcholine transporter promoter (Punc-17) 

driving snap-25 expression throughout the cholinergic nervous system. We will refer to 

this strain as “ACh-only.” These animals are viable and develop to adulthood but lack 

snap-25 expression in all GABA neurons. Additionally, we used a modified Punc-17 

promoter lacking an enhancer required for motor neuron expression. We will refer to this 

strain as “head-only.” The “head-only” strain lacks snap-25 expression in all motor 

neurons. Both strains are strongly uncoordinated but appear grossly similar to SNARE 

mosaics we have engineered for syntaxin (Hammarlund et al., 2007; Rathore et al., 2010) 

(Figure S2.1B).  
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Figure 2.1. snap-25 encodes a conserved neuronal Qbc-SNARE. (A) The snap-25 locus 
is composed of 5 exons with alternative splicing of the first exon resulting in snap-25a 
and snap-25b. Alleles ok173 and ox528 delete the genomic region indicated with 
brackets. Each results in a null allele. ox45 is a hypomorph selectively deleting snap-25a 
by a point mutation in the start codon. (B) The SNAP-25 SNARE motifs are well 
conserved. (Worm similarity to mouse Qb/Qc: 86% / 80%. Identity to mouse Qb/Qc: 
75% / 53%). Layer residues are indicated by position number. (C) Confocal images 
depicting strains at terminal stage. snap-25 (ox528) arrests at L2. Syntaxin nulls (js115) 
arrest at L1. A neuronally expressed snap-25 transgene fully rescues ox528 and animals 
develop to adulthood. (D) Worm locomotion diagrams demonstrate that snap-25 nulls are 
capable of locomotion. Single worms were placed on individual plates. Black lines 
represent tracks at 24 hrs. Red lines represent tracks at 48 hrs. Tracks were superimposed 
to start at the corners of the orange triangle for clarity. 
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Synaptic vesicle docking is decreased in the  

absence of SNAP-25 

We examined the ultrastructure of presynaptic terminals of NMJs and found that 

SNAP-25 is required for normal docking but not absolutely essential (Figure 2.2). We 

used the “ACh-only” strain for these experiments, providing an internal control by 

comparing acetylcholine and GABA synapses. At acetylcholine synapses, the numbers of 

“total vesicles,” “docked vesicles,” and “tethered vesicles” were the same between wild-

type and “ACh-only” strains (Figure 2.2A–B). This is expected since snap-25 is 

expressed in acetylcholine neurons of both of these strains. Only the hypomorph (ox45) 

showed a reduction in docked ACh vesicles (approximately 50%), implicating snap-25 in 

docking.  

Examining GABA terminals provided more evidence for SNAP-25 mediated 

docking (Figure 2.2C–D). In the absence of SNAP-25, synapses had a 50% reduction of 

docked vesicles compared to rescued GABA synapses. The hypomorph (ox45) was also 

defective for docking (approximately 50% less than the wild type). Tethering was normal 

at GABA synapses in all strains. Finally, we saw a small reduction in the total number of 

synaptic vesicles in the pan-neuronal rescued strain and hypomorph.  

The SNAP-25 null docking data resemble our previous ultrastructural observations 

of syntaxin null synapses; however, in that case synaptic vesicle docking was almost 

completely abolished (Hammarlund et al., 2007, 2008). It is possible that syntaxin is able 

to dock synaptic vesicles without a Qbc-SNARE forming a bridge to molecules on the 

vesicle prior to interaction with SNAP-25. Alternatively, a homologous Qbc protein may 

replace SNAP-25, allowing for docking via a noncanonical four-helix bundle. 
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Figure 2.2 Synaptic vesicle docking is reduced at snap-25 null synapses. (A) Electron 
microscopy of GABA neuromuscular junctions in ventral nerve cords. Panels 1 and 2 
show synapses of ox528 rescued with the wild-type and “ACh-only” transgenes 
respectively. The third panel displays a GABA terminal from the hypomorph (ox45). 
Dense projections are labeled (dp). Scale bar: 100 nm. (B) Quantification of the total 
vesicles/profile, docked vesicles/profile and tethered vesicles/profile. Docking is reduced 
in the hypomorph only (50%). (C) Representative micrographs of acetylcholine terminals 
as described in A. (D) Quantification as in B. Vesicle docking is reduced 50% in the 
snap-25 null and hypomorph terminals, compared to the rescue and wild type 
respectively. 
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Synaptic vesicle fusion is reduced at SNAP-25 null NMJs  

We recorded miniature postsynaptic currents at C. elegans NMJs. We found that the 

frequency of tonic fusion events (minis) was significantly reduced (15% of wild type), 

but not completely abolished (Figures 2.3A and 2.3C). This important result indicates 

that residual vesicle fusion remains in the absence of SNAP-25. SNAP-25 independent 

minis were indistinguishable in kinetics and amplitude from those at wild-type synapses 

and pan-neuronal expression of snap-25 fully rescued the frequency defect. The snap-25 

hypomorph produced intermediate activity. This observation is consistent with the many 

accounts of SNAP-25 independent spontaneous fusion reported (Bronk et al., 2007; 

Delgado-Martinez et al., 2007; Tafoya et al., 2006; Vilinsky et al., 2002; Washbourne et 

al., 2002; Sørensen et al., 2003). In addition, Ca2+ evoked synchronous fusion also 

remained in the absence of SNAP-25 (Figures 2.3B and 2.3C). The mean amplitude of 

Channelrhodopsin-2 (ChR2) mediated evoked currents from snap-25 null synapses was 

74% lower than that of wild-type synapses. Neuronal expression of snap-25 fully rescued 

evoked release. The observation of SNAP-25 independent evoked release was surprising, 

as most studies report that SNAP-25 is strictly required for Ca2+ evoked fusion (Delgado-

Martinez et al., 2007; Sørensen et al., 2003; Tafoya et al., 2006; Washbourne et al., 

2002). However, our observations are consistent with those of Bronk and colleagues, who 

reported small evoked currents in hippocampal cultures (Bronk et al., 2007). 

To test whether the reduced function of snap-25 synapses was specific to vesicle 

secretion and not a secondary consequence of nervous system development, we analyzed 

gross neuronal architecture, synapse density, and postsynaptic responses (Figure S2.2). 

We found that GABA neurons appeared normal in snap-25 null (ox528) larvae and adult  
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Figure 2.3 Tonic mini rates are reduced in snap-25 null neurons. (A) Representative 
traces of miniature currents recorded from the C. elegans neuromuscular junctions. The 
wild type is compared with the pan-neuronal and “head-only” rescued null (ox528) as 
well as the hypomorph (ox45). (B) Representative traces of channelrhodopsin-2 evoked 
post-synaptic currents from strains described in A. (C) Quantification of the mini 
frequency, mini amplitude, and evoked amplitude. Pan-neuronal expression of snap-25 
(Psnt-1::snap-25) rescued the mini frequency of the null (ox528) (Rescue, 61.7 ± 9.1 
minis/sec; n = 8 vs. “head-only,” 10.8 ± 2.7 minis/sec; n = 10 ; p<0.0001) The average 
rate of fusion at rescued synapses (Psnt-1::snap-25) was not significantly different from 
the rate at wild-type synapses (70.5 ± 7.2 minis/s; n = 14). The average rate of fusion 
measured from the hypomorph (ox45) (22.2 ± 2.4 minis/s; n = 8) was significantly lower 
than that measured from the wild type (p<0.0001). Mini amplitude was statistically 
equivalent across all strains. Psnt-1::snap-25 rescued the ChR2 evoked amplitude of the 
null (ox528) (Rescue, 2084 ± 164 pA; n = 9 vs. “head-only,” 600 ± 180; n = 10 ; 
p<0.0001). The average evoked amplitude recorded from rescued synapses was not 
significantly different from that recorded at wild-type synapses (2279 ± 179 pA; n = 9). 
The average evoked amplitude measured in the hypomorph (ox45) (1158 ± 111; n = 8) 
was significantly lower than that measured in the wild type (p = 0.0001). Significance 
calculated by one-way ANOVA with Bonferroni correction for multiple comparisons.     
* p<0.05, ** p<0.01, *** p<0.001. 
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 “head-only” animals. The density of GABA synapses in “head-only” animals was 

indistinguishable from wild-type and rescued strains, as assayed by a SYD-2::GFP (alpha 

liprin, which marks presynaptic dense projections). Finally exogenous application of 

GABA induced postsynaptic currents that were indistinguishable between “head-only” 

(ok173) and wild-type strains. 

 
 

Substitution by SNAP-29 bypasses the requirement  

for SNAP-25  

Most studies have concluded that homologous substitution accounts for SNAP-25 

independent fusion at null synapses. However, before advancing to this conclusion, we 

considered a broad spectrum of possible models to explain residual fusion at the C. 

elegans NMJ: (1) unintended expression of snap-25 in cholinergic motor neurons of the 

“head-only” strain, (2) SNARE independent fusion, (3) fusion by syntaxin/synaptobrevin 

binary complexes, and (4) substitution by homologous Qbc-SNAREs. 

Our tissue-specific rescue strategy required that we engineer animals that only 

express snap-25 in cholinergic head neurons. We used a previously defined promoter to 

exclusively express snap-25 in the head; no fusion is observed when the syntaxin null 

(js115) is rescued by expression with the Punc-17 “head-only” promoter (Hammarlund et 

al., 2007; Rathore et al., 2010). However, it is formally possible that our transgene 

expresses some snap-25 in cholinergic motor neurons, causing low-level SNAP-25 

dependent fusion at “head-only” NMJs. To test this, we selectively blocked ACh 

receptors by applying the drug d-tubocurare (dTBC) to our recording bath. If low-level 

expression accounted for residual current, we would expect that all of the current would 
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be eliminated when “head-only” animals were bathed in dTBC. Instead, we found that 

applying dTBC decreased tonic release frequency by approximately 50% in the “head-

only” strain and wild-type controls (Figures 2.4A and 2.4B). Similar results were 

obtained in recordings from the equivalent ok173 null strains. Furthermore, the drug was 

100% effective at eliminating ACh activity, as all minis were gone when applied to a 

GABA receptor null (unc-49) (Figure S2.3). Therefore, a significant amount of current at 

“head-only” NMJs is due to GABA neurotransmission. It is very unlikely that inadvertent 

snap-25 expression in cholinergic neurons is responsible for fusion in this strain.  

SNARE independent vesicle fusion has never been demonstrated in vivo, but we 

considered it a formal possibility. We engineered a worm strain with targeted degradation 

of the v-SNARE snb-1. We constitutively expressed the zinc endopeptidase tetanus toxin 

light chain (TeTx) in GABA neurons under the promoter from the vesicular GABA 

transporter (Punc-47). TeTx specifically cleaves synaptobrevin with high efficacy. If the 

residual fusion in “head-only” animals requires synaptobrevin, we predicted that GABA 

mediated current would be eliminated. We found that cutting synaptobrevin with TeTx 

strongly reduced mini rates in the wild type (66% decrease) and nearly abolished tonic 

fusion events at SNAP-25 null synapses (90% decrease) (Figures 2.4C and 2.4D). 

Furthermore, the application of dTBC completely eliminated fusion in both strains. Once 

again, dTBC was used to eliminate acetylcholine current and isolate GABA specific 

vesicle fusion. Our results confirm that all GABA neurotransmission requires 

synaptobrevin in wild-type and “head-only” strains. Furthermore, the fact that Punc-

47::TeTx reduced minis by 90% in the “head-only” strain suggests that the majority of 

the SNAP-25 independent minis are from GABA synapses. Most importantly, residual 
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Figure 2.4 snap-25 independent minis are predominantly GABAergic and require the 
neuronal R-SNARE snb-1. (A) Representative miniature currents. The wild type is 
compared with the “head-only” rescued null (ox528). dTBC was applied directly to NMJs 
by perfusion of the recording chamber. Traces represent activity after stabilization (>60 
sec dTBC application). (B) Quantification of average min frequencies before and after 
drug application. The frequency of minis at wild-type synapses (57.4 ± 15.3 minis/sec; n 
= 7) decreased by 48% with the application of dTBC (27.6 ± 7.4 minis/sec; n = 7; p = 
0.0216). Likewise, SNAP-25 independent minis in the “head-only” strain (12.9 ± 4.2 
minis/sec; n = 7) decreased in frequency by 37% with dTBC application (8.1 ± 3.1 
minis/sec; n = 7; p = 0.0182). (C) Representative minis in strains expressing 
GABA::TeTx in the wild-type compared to “head-only” genetic backgrounds. (D) 
Quantification of the average mini frequencies before and after dTBC application. 
Expression of TeTx in GABA neurons of the wild type caused a nonsignificant decrease 
in mini frequency (56%; wt: 57.4 ± 15.3 minis/sec; n = 7 vs. TeTx: 25.4 ± 5.4 minis/sec; 
n = 8; p = 0.0574). Applying dTBC nearly abolished fusion (1.1 ± 0.5 mins/sec; n = 8; p 
= 0.0026). Expressing GABA::TeTx in “head-only” animals decreased mini frequency 
(“head-only”: 12.9 ± 4.2 minis/sec; n = 7 vs. “head-only” + TeTx: 0.77 ± 0.18 minis/sec; 
n = 6; p = 0.0225). The addition of dTBC eliminated fusion (0.07 ± 0.07 minis/sec; n=6; 
p= 0.0023). Significance of TeTx expression calculated by unpaired t-test. Significance 
of dTBC application calculated by paired t-test. * p<0.05, ** p<0.01 
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minis are SNARE mediated. 

Is it possible that SNARE mediated fusion can occur via syntaxin and 

synaptobrevin alone? In fact, neuronal syntaxin and synaptobrevin interact in a binary 

coiled-coil with a force that may contribute to vesicle fusion (Liu et al., 2006, 2009, 

2011). Furthermore, the binary complex is sufficient in vitro for driving fusion of 

liposomes and native vesicles with planar lipid bilayers (Bowen et al., 2004; McNally et 

al., 2004; Liu, 2005; Woodbury and Rognlien, 2000) but not in liposome mixtures 

(Schuette, 2004; Tucker et al., 2004). Therefore, binary fusion driven by syntaxin and 

synaptobrevin is supported by considerable evidence, but remains untested in vivo.  

To test the binary fusion model and homologous substitution model, we reasoned 

that overexpression of the alternative fusion components may bypass the requirement for 

SNAP-25. First, we overexpressed worm syntaxin and synaptobrevin homologs (unc-64 

and snb-1). Transgenic extrachromosomal arrays were generated by microinjection of 

unc-64 and snb-1 under pan-neuronal expression (Psnt-1). These arrays rescued syntaxin 

(js115) and synaptobrevin (js124) null animals, confirming that the transgenes are 

functional. However, when injected into the balanced snap-25 null (ox528/oxTi417), we 

found no increase in the fitness of arrested snap-25 null larvae. 

Finally, we considered that one or more snap-25 homologs might be capable of 

synaptic vesicle fusion. Worms express two alternative Qbc-SNAREs, aex-4 and snap-

29. Both have comparable identity to snap-25 at the whole protein level (22%), but the 

SNARE motifs of SNAP-29 have significantly higher identity (approximately 30%) 

(Table S2.1). We overexpressed aex-4 and snap-29 in the neurons of snap-25 (ox528) 

animals from multicopy extrachromosomal arrays. Pan-neuronal (Prab-3) aex-4 
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expression gave no fitness advantage. Prab-3::snap-29 overexpression (S29-OEx) 

rescued viability of snap-25 (ox528) null animals. Rescued animals are smaller than the 

wild type, but grow to adulthood and produce moderate brood sizes (Figure 2.5A). S29-

OEx dramatically increased mobility. Age matched (first-larval stage) animals with S29-

OEx move many millimeters per hour—similar to locomotion rates of the wild type. In 

contrast, the snap-25 null moved very little during a 2-hour assay (Figure2.5B).  

Does S29-OEx increase fusion at synapses? We recorded minis from 

neuromuscular junctions of snap-25 null animals rescued with S29-OEx and found that 

synaptic vesicle fusion occurred at an average rate of 48 events/sec, 70% of wild-type 

activity (Figures 2.5C and 2.5D). The fusion was significantly more active than that 

observed at “head-only” SNAP-25 null synapses. Therefore, S29-OEx is correlated with 

an increase in mini frequency above snap-25 null synapse rates. Minis were 

indistinguishable from the wild type in kinetics and amplitude. These data suggest that 

SNAP-29 may be substituting for SNAP-25 in neurotransmitter release. An alignment of 

SNAP-25 with SNAP-29 SNARE motifs shows some divergence, yet the hydrophobic 

“layer-residues” responsible for SNARE pairing are highly conserved, suggesting that 

substitution may be possible (Figure 2.5C). To test the relevance of this result to synaptic 

physiology we proposed the following criteria: (1) SNAP-29 must be natively expressed 

in neurons and present at synapses, (2) SNAP-29 must be sufficient for increased vesicle 

fusion in genetically paired experiments, and (3) SNAP-29 must be required for normal 

vesicle fusion. 
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Figure 2.5 Neuronal overexpression of snap-29 rescues viability, locomotion, and minis 
in snap-25 null worms. (A) Confocal images depicting strains at terminal stage. The wild 
type is shown in comparison to the snap-25 null (ox528) rescued by overexpression of 
Prab-3::snap-29 from an extrachromosomal array. Animals grow to adulthood, but are 
uncoordinated and smaller than the wild type. (B) Locomotion diagrams demonstrate that 
neuronal snap-29 overexpression rescues the locomotion phenotype of snap-25 null 
(ox528) larvae (L1). Rescued animals move across plates at near wild-type rates. Eight 
L1 animals of each genotype were placed on single plates. Black lines indicate tracks 
after 30 min. Red lines indicate tracks from 30 to 60 min. Patterns with the broadest 
distribution were selected from each strain. (C) Representative mini recordings.  (D) 
Quantification of mini frequency and amplitude. Overexpression of SNAP-29 in the 
snap-25 null (ox525) resulted in a strain with mini rates near that of the wild type (wild 
type, 70.54 ± 7.2 minis/sec; n = 14 vs. ox528 ; S29 OEx, 48.33 ± 9.8 minis/sec; n = 6 ; p 
= 0.0981). The frequency of minis in this strain was significantly greater than the “head-
only” rescued strain (10.8 ± 2.7 minis/sec; n = 10 ; p<0.0056). Mini amplitude was 
equivalent in all three strains. (E) The SNAP-29 SNARE motifs are aligned with those 
from SNAP-25. The amino acid sequence has considerable divergence, however 
hydrophobic “layer residues” are preferentially conserved (Indicated by numbers). 
Significance calculated by one-way ANOVA with Bonferroni correction for multiple 
comparisons. ** p<0.01 
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SNAP-29 is expressed in C. elegans neurons and localized  

to synaptic varicosities 

 Previous work has demonstrated that snap-29 is expressed ubiquitously in worms 

and mammals (Sato et al., 2011; Steegmaier et al., 1998). We wanted to examine the 

native expression pattern of SNAP-29 in the C. elegans nervous system. We used fosmid 

recombineering to make a translational GFP fusion of SNAP-29 in its native genomic 

context. The resulting fosmid contained 25 kilobases of 3-prime sequence followed by 

GFP::SNAP-29 and 8 kilobases of 5-prime genomic DNA. Transgenic animals 

expressing this fosmid presented with diffuse fluorescence in many tissues including the 

intestine, muscle, coelomocytes, and neurons. In order to examine the nervous system 

expression alone, we took advantage of the fact that neurons in C. elegans are the only 

tissue that is insensitive to RNAi. We grew these animals on anti-GFP feeding RNAi and 

selectively knocked down fluorescence in non-neuronal cells. The resulting images show 

pan-neuronal expression of SNAP-29 from its native genomic locus (Figure 2.6A).  

snap-29 is strongly expressed in motor neurons of the dorsal and ventral cord. In 

order to test the localization of SNAP-29 protein in neurons, we engineered transgenic 

animals with GFP::snap-29 expressed under the GABA specific promoter (Punc-47). 

Images of the ventral nerve cord of these animals demonstrate that GFP::SNAP-29 is 

punctate and co-localizes with the synaptic vesicle marker tagRFP::SNB-1 (Figure 2.6B). 

It is worth noting that SNAP-25 localization is not restricted to synapses to the same 

extent (Figure 2.6C). In conclusion, SNAP-29 is expressed and localized appropriately 

for synaptic vesicle fusion.  
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Figure 2.6 SNAP-29 is expressed in C. elegans neurons and localizes to synapses. (A) 
The native snap-29 locus (33kb) was recombineered to include a translational fusion with 
GFP and expressed from an extrachromosomal array. Non-neuronal expression is 
knocked down by anti-GFP feeding RNAi. GFP::SNAP-29 is visible throughout the 
nervous system in a young adult hermaphrodite. The worm is oriented rostral left and 
dorsal up. (B) Three panels display the ventral nerve cord of a single young 
hermaphrodite expressing fluorescent protein-fusions in the GABA nervous system 
(Punc-47). GABA expression allows visualization of individual synapses. In the top 
panel, GFP::SNAP-29 appears punctate in the cord. Arrowheads indicate select puncta. 
Very faint expression can be seen in axon commissures (*). In the middle panel, SNB-
1::tagRFP marks synapses. Select puncta are indicated with arrowheads. The bottom 
panel displays a merged image. GFP::SNAP-29 puncta colocalize with SNB-1::tagRFP. 
(C) The expression of mCherry::SNAP-25 in GABA neurons (Punc-47) is diffuse. No 
puncta are distinguishable, and the protein is present in single axon commissures (*). 
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SNAP-29 is sufficient for tonic currents but not  

synchronous fusion  

Does S29-OEx directly stimulate synaptic vesicle fusion? We overexpressed 

snap-29 under the pan-neuronal promoter Prab-3 in wild-type animals, “head-only” 

transgenics, and the hypomorph (ox45). We found that mini rates were significantly 

higher with S29-OEx at snap-25 null and hypomorph synapses; however, wild-type mini 

rates were unchanged (Figures 2.7A and 2.7B). Next we tested whether SNAP-29 effects 

evoked fusion. We observed no change in the evoked current with or without S29-OEx at 

snap-25 null synapses. Remarkably, S29-OEx decreased the amplitude of evoked 

currents in the wild type and hypomorph (Figures 2.7C and 2.7D). This observation 

suggests that SNAP-29 is incapable of evoked fusion and may compete with SNAP-25 by 

committing vesicles to the synchronous fusion pool. 

 Does SNAP-29 play a role in neurotransmission at normal synapses? Mini rates at 

5 mM Ca2+ showed no increase with S29-OEx. It is possible that fusion is exhausted in 

these conditions. Therefore, we recorded tonic currents at multiple Ca2+ concentrations. 

We found that at lower calcium concentrations, S29-OEx resulted in an elevation of mini 

rates above wild-type frequencies (Figure 2.8). However, in the wild-type background 

these results fall short of statistical significance. We have recently found that perfusing 

multiple calcium solutions to generate paired recordings is a better approach. These 

experiments are ongoing, but already provide more compelling evidence that SNAP-29 

can participate in fusion at wild-type synapses. These data also provide evidence that 

SNAP-25 independent minis are sensitive to Ca2+. Once again, the recording strategy 

lacks statistical leverage, but our revised approach will better address this issue.  
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Figure 2.7 Overexpression of neuronal snap-29 increases tonic fusion rates and decreases 
evoked fusion amplitude. (A) Representative miniature currents from the “head-only” 
strain with and without overexpression of Prab-3::snap-29. (B) Quantification of the 
tonic mini rate. The wild-type mini frequency (70.5 ± 7.2 minis/s; n = 14) was unchanged 
with S29-OEx (68.3 ± 12.9 minis/s; n = 8). S29-OEx approximately tripled the rate of 
minis in the absence of SNAP-25 (“head-only”: 10.8 ± 3.0 minis/s; n = 10 vs. “head-
only”+S29OEx: 34.7 ± 6.4 minis/s; n = 8; p = 0.0023) and in the hypomorph (ox45: 22.3 
± 2.4 minis/s; n = 8 vs. ox45+S29OEx: 57.8 ± 9.1 minis/s; n = 7; p=0.0015). (C) 
Representative ChR2 evoked currents in wild-type and null synapses with and without 
S29-OEx. (D) Quantification of the evoked fusion amplitude. S29-OEx caused a 
significant decrease in the evoked amplitude in the wild type (2279 ± 179 pA; n = 9 vs. 
1383 ± 154 pA; n = 7; p = 0.0026) and the hypomorph (1158 ± 111 pA; n = 8 vs. 335 ± 
58 pA; n = 7; p < 0.0001). S29-OEx had no effect on the “head-only” rescued strain. 
Significance of S29-OEx calculated by unpaired t-test. * p<0.05, ** p<0.01,                  
*** p<0.001. 
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Figure 2.8 snap-29 overexpression does not significantly increase the tonic fusion rate of 
fusion at wild-type synapses. (A) Representative miniature currents from the wild-type 
and ox528 “head-only” strain at 1 mM and 0.1 mM extracellular Ca2+ (B) Quantification 
of the tonic mini rate at decreasing calcium concentrations. Reducing the extracellular 
[Ca2+] decreased mini rates in all strains but only to a significant degree when reduced to 
0.1mM. Low extracellular [Ca2+] revealed a small but insignificant increase in fusion 
rates due to S29-OEx at wild-type synapses. S29-OEx approximately doubled the fusion 
rate at all Ca2+ concentrations in the “head-only” ox528 strain.  
 
 
 
Is SNAP-29 required for normal fusion rates at wild-type  

and SNAP-25 null synapses?  

 Thus far we have demonstrated that SNAP-29 is sufficient for synaptic vesicle 

fusion. In addition, it is important to distinguish whether or not SNAP-29 is necessary for 

normal fusion rates at wild-type and snap-25 null synapses. In order to address this, we 

must knock-out snap-29; however, this experiment presents particularly difficult 

challenges. snap-29 null alleles are cell-lethal, eliminating the possibility of chronic 

snap-29 loss-of function strains. An effective alternative would be to knock down SNAP-
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29 protein by acute means. With this strategy, we might directly test the requirement of 

SNAP-29 for normal vesicle fusion in the snap-29 “head-only” and wild-type animals. 

We are currently exploring multiple recently published methods for acute protein 

degradation of SNAP-29 (Cho et al., 2013; Iwamoto et al., 2010; Neklesa et al., 2011).  

 
 

 Discussion 

The results presented here demonstrate that synaptic vesicle docking and fusion is 

decreased but not eliminated in the absence of SNAP-25 at C. elegans NMJs. We have 

characterized the C. elegans snap-25 locus and described the morphological and 

functional consequences of snap-25 mutations. SNAP-25 is required for survival, but 

nulls are motile, suggesting some residual neurotransmission. snap-25 mutant synapses 

are defective in docking clear-core vesicles compared to rescued animals (50%). Tonic 

fusion is reduced (85%), and evoked fusion is reduced (75%); however, both forms of 

exocytosis remains. We find that neuronal S29-OEx rescues snap-25 null animals. 

Finally, S29-OEx in neurons supports tonic but not evoked fusion. 

The role of SNARE proteins in docking synaptic vesicles has a long contentious 

history. However, evidence is mounting that SNAREs are required for docking (De Wit 

et al., 2006; Gutierrez et al., 1997; Sutton et al., 1998; Wu et al., 2012). A null mutation 

in C. elegans syntaxin (unc-64), which lacks a functional homolog, completely eliminates 

docking of synaptic vesicles (Broadie et al., 1995; Hammarlund et al., 2007) and dense 

core vesicles (Hammarlund et al., 2008; Vogel and Roche, 1999). We show that SNAP-

25 hypomorphic and null alleles decrease docking by 50%. Although docking is not 

eliminated, it is clear that SNAP-25 plays an important function in docking some 
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population of synaptic vesicles. Since syntaxin is strictly required for docking at these 

synapses, it is possible that syntaxin engages in docking by two mechanisms—SNAP-25 

dependent and independent. The second mechanism may involve UNC-18. However, 

given the evidence for SNARE-mediated docking (De Wit et al., 2006; Hammarlund et 

al., 2007, 2008; Wu et al., 2012), we speculate that that the remaining docking observed 

in this study is likely due to substitution by SNAP-29.  

 SNAP-25 independent spontaneous fusion is consistently observed across taxa 

and cell types. To date, six studies have reported spontaneous release in the absence of 

SNAP-25 (Bronk et al., 2007; Delgado-Martinez et al., 2007; Sørensen et al., 2003; 

Tafoya et al., 2006; Washbourne et al., 2002). Most have attributed this to 

nonphysiologically relevant substitution by another protein, but it remains unclear what 

other SNARE protein(s) are substituting for SNAP-25 and whether this substitution 

serves a physiological function. In addition, evoked release has been observed at snap-25 

null hippocampal synapses, but responses are infrequent and very small (Bronk et al., 

2007). We confirm that SNAP-25 independent evoked release occurs at the C. elegans 

NMJs, adding support to the observations of Bronk et al., which until now stood alone. 

In this investigation we consider SNAP-25 independent fusion with open minds, 

taking into consideration rather heretical models for residual activity. In particular, we 

consider that fusion may occur by a syntaxin/synaptobrevin binary complex. A 

significant body of literature supports the notion that syntaxin and synaptobrevin interact 

in a binary complex and fuse liposomes in vitro (Bowen et al., 2004; Laage et al., 2000; 

Liu, 2005; Liu et al., 2006, 2009, 2011; Margittai et al., 1999; McNally et al., 2004; 

Miller et al., 1996; Nguyen et al., 1995; Pevsner et al., 1994; Woodbury and Rognlien, 
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2000; Yang et al., 2008; Yersin et al., 2003). Still, no experiments have tested this model 

in vivo. The experiments reported here involved overexpression of the C. elegans 

syntaxin and synaptobrevin genes. The fact that these transgenes did not bypass a 

requirement for SNAP-25 is not conclusive evidence against binary fusion. However, we 

expect that the residual fusion is a result of SNAP-29 substitution. If knocking down 

SNAP-29 protein by acute degradation eliminates fusion, we will be more comfortable 

dismissing the binary fusion model completely. 

We demonstrate that SNAP-29 is capable of facilitating synaptic vesicle fusion in 

vivo. We confirm that snap-29 is expressed ubiquitously in C. elegans including 

throughout the nervous system. Furthermore, we show that GFP::SNAP-29 is localized at 

presynaptic terminals in C. elegans, supporting reports of synaptic localization at 

hippocampal synapses (Su et al., 2001). Notably, multiple studies have shown that 

SNAP-29 copurifies with synaptic vesicles (Holt et al., 2006; Su et al., 2001).  

This study is the first to directly show that SNAP-29 is sufficient for increasing 

tonic fusion in wild-type and snap-25 null neurons. Moreover, overexpressing SNAP-29 

in neurons rescues the viability of snap-25 null animals. This observation is consistent 

with the fact that tonic fusion is the most important form of neurotransmitter release at 

the C. elegans neuromuscular junction. These findings are consistent with published 

reports on mammalian SNAP-29. SNAP-29 binds syntaxin and synaptobrevin with 

remarkable affinity. In fact, mammalian SNAP-29 is more stable in complex with 

synaptobrevin and syntaxin than SNAP-23 (Yang et al., 1999). Indeed, the addition of 

SNAP-29 protein is capable of increasing the fusion of epinephrine filled vesicles from 

PC12 cells, although not as well as SNAP-23 (Scales et al., 2000).  
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We report that SNAP-29 does not support synchronous fusion of synaptic 

vesicles; on the contrary, SNAP-29 significantly decreases evoked amplitude when snap-

25 is expressed at native levels (in the wild type) or reduced levels (in the hypomorph). 

We suggest a competition-model to reconcile the positive effect SNAP-29 has on tonic 

fusion with the negative effect it has on synchronous fusion. SNARE complexes formed 

with SNAP-29 may commit synaptic vesicles to the tonic pool, decreasing the number of 

vesicles available for synchronous fusion. This would explain why evoked fusion is 

unchanged with overexpression of SNAP-29 in the absence of SNAP-25 but decreased in 

the presence of SNAP-25. However, it is possible that SNAP-29 directly interacts with 

canonical SNARE complexes to decrease evoked fusion. In fact, SNAP-29 has been 

reported to decrease SNARE recycling by competing with alpha-SNAP in cultured 

neurons (Pan et al., 2005; Su et al., 2001). However, this study only reports a defect in 

evoked currents with repetitive stimulation. Furthermore, it is difficult to reconcile their 

model with the fusogenic properties we report here.  

In conclusion, this study provides an additional example of SNAP-25 independent fusion 

at synapses. We speculate that this dependable alternative to the canonical SNARE 

mediated release may have some functional role at native synapses. We demonstrate that 

SNAP-29 is effective at fusing synaptic vesicles; however, we have not yet proven it is 

required for normal fusion.  
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Methods 

Strains 

The wild-type C. elegans strain was Bristol N2. All strains were maintained at 22 

°C on standard nematode growth medium plates seeded with the bacterial strain OP50. 

Strains used in this study are summarized in Table S2.3  

 
 
Plasmids and genetics  

snap-25 was rescued by the constructs summarized in Figure S2.1. To build the 

rescuing construct, the native snap-25 locus was amplified in fragments and cloned into 

Gateway ENTRY vectors. We were unable to amplify across a 3.5 kb region of the first 

intron and thus omitted that region. The ENTRY clones included Psnt-1::snap-25(exon1) 

[4-1]; snap-25genomic_stop [1-2]; snap-25_3’UTR [2-3], and the resulting expression 

clone was Psnt-1::snap-25(minigene)::snap-25_UTR. A similar strategy was use to build 

the tissue specific rescuing constructs; however, in this case we elected to exclude all 

snap-25 specific regulatory elements. We amplified snap-25 cDNA from a worm cDNA 

library. The resulting expression clone was Punc-17 or Punc-17∆::snap-25cDNA::let-

858UTR. All constructs were built with this strategy. All transgenes, except those listed 

as “overexpression,” were expressed as MosSCIs at the specified chromosomal locus. 

Overexpression of snap-29, aex-4, and syntaxin/synaptobrevin was achieved by injecting 

25 ng/ul of the expression clone(s) and 2 ng/ul Pmyo-2::mCherry, diluted in 1 kb 

promega ladder for stuffer. 
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Imaging  

Worms were immobilized by 25 mM sodium azide and imaged on a confocal 

microscope (Pascal LSM5; Carl Zeiss Inc.) with a plan-Neofluar 40× 1.3-numerical 

aperture oil objective (Carl Zeiss). Images of agar and food in the background were 

removed using Photoshop (Adobe Systems) for clarity. 

 
 
Electrophysiology  

Electrophysiological recordings were performed as previously described 

(Richmond and Jorgensen, 1999; Richmond et al., 1999) with minor adjustments. Briefly, 

the animals were immobilized with cyanoacrylic glue (Gluture; WPI, Inc.), and a lateral 

incision was made to expose the ventral medial body muscles. The preparation was 

treated with collagenase (type IV; Sigma-Aldrich) for 15 s at a concentration of 0.5 

mg/mL. The muscle was voltage-clamped using the whole-cell configuration at a holding 

potential of −60 mV. All recordings were performed at 21 °C using an EPC-9 patch-

clamp amplifier (HEKA) run on an ITC-16 interface (HEKA). Data were acquired using 

Pulse software (HEKA). Data analysis and graph preparation were performed using 

Pulsefit (HEKA), Mini Analysis (Synaptosoft), and Stata64 (Stata Co.). Bar graph data 

are presented as the mean ± standard error of the mean. 

 
 
Electron microscopy 

Electron microscopy and synaptic morphometry were performed as previously 

described (Watanabe et al., 2013). Briefly, 10 young adults from each genotype were 

frozen in parallel using a high-pressure freezer (HPM 010, Bal-Tec). The frozen samples 
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were transferred into vials containing 1% osmium tetroxide (EMS), 1% glutaraldehyde 

(EMS), 1% milliQ water, and anhydrous acetone. Following the freeze substitution and 

fixation, the samples were embedded into epon-araldite plastic (Ted Pella). 250–300 

contiguous sections were cut and mounted onto formvar-coated single-slot grids and 

imaged using a transmission electron microscope (H-7100, Hitachi) equipped with a 

digital camera (SC100, Gatan). Synaptic vesicles, dense projections, and plasma 

membrane were traced in imageJ using a pen tablet (21UX, Wacom), and their x- and y-

coordinates were exported as text files. The number of vesicles and distance from 

vesicles to dense projections or plasma membrane were calculated using Matlab scripts 

we developed (Watanabe, Davis, and Jorgensen, unpublished). We defined a synapse as 

profiles containing a dense projection in this study. Docked vesicles are those that are in 

the physical contact with membrane. Tethered vesicles are those that are close (within 30 

nm) but are not in contact with membrane.  
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Supporting Information 
 
 

 

 
 
Figure S2.1. Transgene design and rescue. (A) snap-25 transgenes are aligned to the 
relevant exon structure in the wild-type locus. The rescuing construct was made with the 
Psnt-1 promoter the wild-type gene. A 3.5 kb region of the first intron was omitted. 
Tissue specific strains were made with Punc-17 variants followed by snap-25 cDNA and 
the let-858 3’UTR. (B) Confocal images depict representative terminal stage animals. 
The wild-type transgene fully rescues the ox528 null. The “head-only” transgene rescues 
viability, but animals are small and uncoordinated resembling the hypomorph (ox45). 
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Figure S2.2. The nervous system develops normally in the absence of SNAP-25. (A) 
Soluble GFP is expressed in the GABA nervous system (Punc-47) of homozygous wild 
type and snap-25 null (ox528) larvae (L1). Neurons in the wild type look 
indistinguishable from those in the null. (B) Punc-47::GFP is expressed in the wild-type 
and the “head-only” strains. The gross morphology of the GABA nervous system is the 
same. (C) Alpha liprin is expressed in GABA neurons (Punc-47::syd-2::GFP) and marks 
dense projections. The synapse number and distribution in the rescued null and “head-
only” strains look indistinguishable from the wild type. (D–E) Quantification and 
representative traces of postsynaptic responses to exogenous GABA. The post synaptic 
response to GABA from the “head-only” strain (ok173) is similar to that of the wild type.  
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Figure S2.3. snap-25 (ok173) independent minis are predominantly GABAergic. (A) 
Representative miniature currents. The GABA receptor null (unc-49) is compared with 
the wild type and the “head-only” rescued null (ok173). dTBC was applied directly to 
NMJs by perfusion of the recording chamber. Traces represent activity after stabilization 
(>60 sec dTBC application). (B) Quantification of average min frequencies before and 
after drug application. Application of dTBC completely eliminated fusion at unc-49 
synapses (42.1 minis/s; n = 8 vs. 0.07 minis/s; n = 8) The frequency of minis at wild-type 
synapses (52.4 minis/s; n = 8) decreased by 48% with the application of dTBC (25.4 
minis/s; n = 8). Likewise, SNAP-25 independent minis in the “head-only” (ok173) strain 
(10.3 minis/s; n = 5) decreased in frequency by 40% with dTBC application (6.2 minis/s; 
n = 5).  
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Table S2.1. Qbc-SNARE protein identity in C. elegans 

SNAP-25 Homologs Identity (%) 

Full protein sequence Qbc-SNAREs   
SNAP-25b SNAP-29 22 
SNAP-25b AEX-4 22 
SNAP-25a SNAP-29 19 
SNAP-25a AEX-4 20 

SNARE motif only (Qb/c) Qbc-SNAREs 
  

SNAP-25aQb SNAP-29Qb 30 
SNAP-25aQb AEX-4Qb 23 
SNAP-25aQc SNAP-29Qc 32 
SNAP-25aQc AEX-4Qc 31 

SNARE motif only (Qb) Qb-SNAREs   
SNAP-25Qb GOS-28 12 
SNAP-25Qb MEMB-1 14 
SNAP-25Qb MEMB-2 10 
SNAP-25Qb SEC-20 13 
SNAP-25Qb VTI-1 19 

SNARE motif only (Qc) Qc-SNAREs   
SNAP-25Qc NBET-1 27 
SNAP-25Qc SYX-6 25 
SNAP-25Qc USE-1 7 
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Table S2.2 snap-25 alleles 
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Table S2.3 C. elegans strains 
Strain Genotype 

N2 wild type 
EG5425 oxIs364[Punc-17::ChR2::mCherry] X 
NM2715 jsIs826[Punc-47::TeTxLC::GFP] X 
EG8160 oxEx1986[Prab-3::snap-29 ; Pmyo-2::mCherry]   
EG8164 oxIs364[Punc-17::ChR2::mCherry] X ; oxEx1990[Prab-3::snap-29 ; 

Pmyo-2::mCherry] 
EG1306 oxIs12[Punc-47:GFP, lin-15+] X ; lin-15(n765ts) X                              
EG6497 oxSi302[Punc-47::syd-2::tagRFP-T unc-119(+)] IV 
EG45 snap-25 (ox45) V 
EG8133 snap-25 (ox45) V ; oxIs364[Punc-17::ChR2::mCherry] X 
EG8163 snap-25 (ox45) V ; oxEx1989[Prab-3::snap-29 ; Pmyo-2::mCherry]   
EG8167 snap-25 (ox45) V ; oxIs364[Punc-17::ChR2::mCherry] X ; 

oxEx1993[Prab-3::snap-29 ; Pmyo-2::mCherry]      
EG7757 oxSi652[Punc-17::snap-25a(cDNA); unc-119+; 5605] II ; snap-25 

(ox528 [Prps-27::neoR]) V 
EG7759 oxSi498[Punc-17(deltaCord):: snap-25acDNA; CBunc-119+ 10882] 

IV ; snap-25 (ox528 [Prps-27::neoR]) V 
EG8018 oxSi649[Psnt-1:: snap-25minigene; unc-119+] II ; oxSi302[Punc-

47::syd-2::tagRFP-T unc-119(+)] IV ; snap-25(ox528 [Prps-
27::neoR]) V 

EG8019 oxSi652[Punc-17:: snap-25a(cDNA); unc-119+] II ; oxSi302[Punc-
47::syd-2::tagRFP-T unc-119(+)] IV ; snap-25(ox528 [Prps-
27::neoR]) V 

EG8020 oxSi649[Psnt-1::snap-25minigene; unc-119+] II ; snap-25(ox528 
[Prps-27::neoR]) V ; oxIs364[Punc-17::ChR2::mCherry] X 

EG8036 oxSi498[CBunc-119;Punc-17(deltaCord):: snap-25a(cDNA), 10882] 
IV ; snap-25(ox528 [Prps-27::neoR]) V ; oxIs364[Punc-
17::ChR2::mCherry] X 

EG8161 oxSi649[Psnt-1::snap-25minigene; unc-119+] II ; snap-25 (ox528 
[Prps-27::neoR]) ; oxEx1987[Prab-3::snap-29 ; Pmyo-2::mCherry] 

EG8162 oxSi498[CBunc-119;Punc-17(deltaCord)::snap-25a(cDNA), 10882] 
IV ; snap-25(ox528 [Prps-27::neoR]) ; oxEx1988[Prab-3::snap-29 ; 
Pmyo-2::mCherry]    

EG8165 oxSi649[Psnt-1::snap-25minigene; unc-119+] II ; snap-25 (ox528 
[Prps-27::neoR]) V ; oxIs364[Punc-17::ChR2::mCherry] X ; 
oxEx1991[Prab-3::snap-29 ; Pmyo-2::mCherry]    

EG8166 oxSi498[CBunc-119;Punc-17(deltaCord)::snap-25a(cDNA)] IV ; 
snap-25(ox528 [Prps-27::neoR])V ; oxIs364[Punc-
17::ChR2::mCherry] X ; oxEx1992[Prab-3::snap-29 ; Pmyo-
2::mCherry]    

EG8181 oxSi498[CBunc-119;Punc-17(deltaCord)::snap-25a(cDNA)] IV ; 
snap-25(ox528 [Prps-27::neoR]) V ; oxEx2001[Prab-3::aex-4 ; 
Pmyo-2::mCherry] 
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Table S2.3 Continued 
Strain Genotype 

EG8187 oxSi498[CBunc-119;Punc-17(deltaCord)::snap-25acDNA, 10882] IV 
; snap-25 (ox528 [Prps-27::neoR]) V ; jsIs826[punc-
47::TeTxLC::GFP] X 

EG8230 snt-1(md290) II ; oxSi498[CBunc-119;Punc-17(deltaCord)::snap-
25acDNA, 10882] IV ; snap-25 (ox528 [Prps-27::neoR]) V 

EG8269 snap-25 (ox528 [Prps-27::neoR]) / oxTi417[Peft-3:mCherry:tbb-
2UTR] V 

EG8270 snap-25 (ox528 [Prps-27::neoR]) / oxTi417[Peft-3:mCherry:tbb-
2UTR] V ; oxIs12[Punc-47:GFP, lin-15+] X                           

EG8271 snap-25 (ox528 [Prps-27::neoR]) V ; oxEx2011[Prab-3::snap-29 ; 
Pmyo-2::mCherry]    

EG5567 oxIs554[Punc-17::snap-25a(cDNA)::let858] IV ; snap-25(ok173) V   
EG6891 unc-119(ed3) III ; oxSi498[CBunc-119;Punc-17(deltaCord)::snap-

25acDNA, 10882] IV ; snap-25(ok173) V                           
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CHAPTER 3 
 
 
 

SYNTAXIN N-TERMINAL PEPTIDE MOTIF IS AN INITIATION  
 

FACTOR FOR THE ASSEMBLY OF THE  
 

SNARE-SEC1/MUNC18 MEMBRANE  
 

FUSION COMPLEX 
 
 
 
 
 
 
 
 
 
 

 
Rathore, S.S., Bend, E.G., Yu, H., Hammarlund, M., Jorgensen, E.M., and Shen, J. 
(2010). Syntaxin N-terminal peptide motif is an initiation factor for the assembly of the 
SNARE-Sec1/Munc18 membrane fusion complex. Proc. Natl. Acad. Sci. USA 107, 
22399–22406. 
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CHAPTER 4 
 
 
 

PERSPECTIVES 
 
 
 

Summary 

SNARE proteins in conjunction with SM proteins are responsible for vesicle 

fusion throughout all eukaryotic cells. This dissertation describes my research using the 

model organism C. elegans to explore some of the central mysteries of synaptic vesicle 

exocytosis. My results from analyzing SNAP-25 null synapses are consistent with 

traditional SNARE-mediated fusion models. SNAP-25 is a central player in exocytosis 

and important for docking synaptic vesicles and executing fusion. However, we report for 

the first time that SNAP-29 is capable of substituting for SNAP-25 in tonic but not 

evoked neurotransmission. These data add to mounting evidence that alternative SNARE 

interactions may be responsible for specific forms of neurotransmitter release from 

neurons.  

The role of SM proteins in mediating exocytosis is poorly understood. The N-

terminus of syntaxin binds Unc18 proteins and is required for fusion, but the mechanical 

significance of this interaction has been unclear. We used an in vitro fusion assay to test 

the requirements of the Unc18/N-peptide interaction. We found that the N-peptide 

interaction is not responsible for passing a catalytic message between syntaxin and 

Unc18. Rather, it serves as a passive tether to keep Unc18 near the fusion complex. Using 



chimeric proteins, we provided further support for this model at the neuromuscular 

junction in C. elegans.  

My work on SNAP-25 and Unc18 is presented in Chapters 2 and 3 as 

experimental narratives with conclusive evidence. In this final chapter, I highlight 

observations that lack clear understanding and discuss the models and experiments that 

we are considering to resolve these mysteries. First, I summarize our understanding of 

unc-18 function and present the key challenges that we face in unveiling its role in fusion. 

Then, I expand on the snap-25 null experiments to discuss how the lack of specificity 

might contribute to SNARE mediated fusion at the synapse. Finally, I describe 

preliminary results that suggest a novel role for SNAREs in vesicle recycling at synapses.  

 
 

Mechanics of the SNARE/Unc18 machine 

SNARE mediated fusion has an appealing aesthetic: the winding of helices draws 

membranes together and forces fusion. However, this is an overly simplified view of the 

fusion apparatus. The SM proteins accompany every SNARE mediated fusion reaction 

explored (Carr and Rizo, 2010; Rizo and Südhof, 2012; Südhof and Rothman, 2009; 

Toonen and Verhage, 2007). Furthermore, ablation of SM proteins eliminates fusion 

including that of neuronal secretion (De Wit et al., 2009; Verhage et al., 2000; Weimer et 

al., 2003). At one time SNAREs were considered the “minimal machinery” for fusion 

(Weber et al., 1998); however, that has now been revised to include SM proteins since the 

addition of SM proteins accelerates the rate of fusion twenty-fold (Shen et al., 2007). 

Therefore, SM proteins are now considered obligate SNARE partners in driving vesicle 

fusion. Still, the biophysical mechanism of Unc18 function remains mysterious.  
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The functional role of SM proteins in facilitating fusion has largely been clouded 

by their diverse and divergent modes of interaction with SNARE proteins. The yeast 

secretory SM protein Sec1 binds the SNARE four-helix bundle but lacks an interaction 

with the Habc domain or N-peptide (Carr et al., 1999). In contrast, the ER/Golgi SM 

proteins Sly1 and Vps45 were first reported to exclusively interact with the N-peptide of 

syntaxin (Bracher and Weissenhorn, 2002; Dulubova et al., 2002; Yamaguchi et al., 

2002). However, another study shows Sly1 binds the ternary SNARE complex (Peng and 

Gallwitz, 2002). The neuronal SM protein Munc18 binds syntaxin in the closed state with 

very high affinity (Misura et al., 2002), largely masking the interactions with both the N-

peptide and the four-helix SNARE complex (Burkhardt et al., 2008; Dulubova et al., 

2007; Khvotchev et al., 2007; Shen et al., 2007), but despite this confusing history, there 

now appears to be a unified acceptance that most SM proteins share the N-peptide and 

SNARE complex interactions (Rizo and Südhof, 2012; Südhof and Rothman, 2009). The 

interaction with closed syntaxin, despite being high affinity, appears to be a late 

evolutionary addition to neuronal SM proteins.   

My work on Unc18, as described in Chapter 3, demonstrated that the syntaxin N-

peptide is necessary for the transition from a binary interaction with closed-syntaxin to 

association with the four-helix bundle. We were able to rule out more elaborate models 

involving conformational coupling or allosteric modulation as observed with Sly1 (Arac 

et al., 2005). Instead, the N-peptide appears to serve as a tether, keeping Unc18 near the 

fusion apparatus in transition from the closed interaction to direct association with the 

SNARE core complex. It is possible that this interaction has evolved to deal with a very 

crowded molecular environment. Many proteins bind the SNAREs complex including 
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synaptotagmin, complexin, tomosyn, Munc13, and others. It seems likely that the high 

affinity binary interaction with syntaxin draws Unc18 to sites of fusion. When syntaxin 

opens and Unc18 is released, the N-peptide tethers Unc18 to the complex. This in turn 

allows the low affinity SNARE interaction to take place at the time of fusion.  

How does Unc18 binding to the core complex stimulate fusion? Multiple models 

attempt to address this question (Figure 4.1). Many believe that SM proteins facilitate 

efficient trans-SNARE zippering. Consistent with this, SM proteins bind to trans-

SNAREs incorporated in liposomes, but poorly bind cis-SNARE complexes (Shen et al., 

2007). This model is further supported by the dramatic increase in SNARE-mediated 

fusion of liposomes with the addition of Munc18. This stimulation occurs with SNAREs 

and SM proteins alone and require no other molecular factors (Shen et al., 2007). 

 In a second model, some argue that SM proteins displace a fusion-inhibitor such 

as complexin. Indeed, Munc18 has been implicated in binding to the same residues as 

complexin (Chen et al., 2002; Shen et al., 2007). Alternatively, SM proteins may guide 

the tethering HOPS (homotypic fusion and vacuole sorting) complex and protect the 

assembled SNAREs from melting by NSF (Collins et al., 2005; Starai et al., 2008). 

Removing a negative factor is an appealing model and could be applied to other 

molecules. However, this mechanism cannot stand alone, as such regulators are not 

included in liposome fusion assays.  

In a third model, some have speculated that SM proteins may serve as bulky 

substrates, which prevent SNARE transmembrane domains from drifting into the fusion 

stalk (Dulubova et al., 2007; Rizo et al., 2006). Two surfaces of Unc18 are rich in basic 

residues that may in fact interact with the vesicle and plasma membranes (Rizo and 

93



 
 

Figure 4.1 Three models for the function of Unc18’s interaction with the SNARE core 
complex. (1) Unc18 may assist in fusion by facilitating SNARE-zippering. (2) Unc18 
may provide a bulky substrate holding SNAREs away from the fusion pore. This may 
involve interaction directly with the apposed membranes and could provide antagonizing 
force on membranes inducing curvature. (3) Unc18 may protect the SNAR bundle from 
unwinding by the ATPase NSF. Unc18 is colored in teal. SNAREs are represented as 
simple bars: synaptobrevin (blue), syntaxin (red), and SNAP-25 (dark and light green). 
 
 
 
Südhof, 2012). Given membrane contact and rotational freedom around the SNARE  

complex, one can even imagine that SM proteins might be driven towards the fusion pore 

as the SNARE complex twists—like a nut on a screw. This highly speculative model is 

attractive, as it would result in increased curvature on both membranes. These models are 

not mutually exclusive, and each should be considered and tested independently.   

An important step towards testing these models will be defining the interaction 

interface of Unc18 with the trans-SNARE protein complex. Such a structural picture will 

reveal its Unc18’s orientation relative to the vesicle and plasma membrane as well as 

other SNARE regulatory proteins. However, this is a difficult task, as SNARE proteins 

must be anchored in apposing membranes to maintain the trans configuration. Two 

groups have made inroads into this problem. In one study, investigators made targeted 

mutations to Munc18 that they predicted to specifically disrupt core complex binding 

(Deák et al., 2009). They reported two mutations that specifically disrupted SNARE core 
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complex binding without changing the affinity of Munc18 with closed-syntaxin. 

Remarkably, they found that the rescue of neurotransmission correlated with the mutants’ 

ability to bind SNARE complexes.  

In a second study, investigators focused on the yeast SM protein Sec1, which only 

binds the trans SNARE complex. They randomly mutagenize Sec1 and looked for yeast 

clones with temperature sensitive growth defects. Many of the mutations isolated 

specifically disrupt Sec1 binding to the SNARE bundle (Hashizume et al., 2009). The 

mutations from these studies identified residues in neighboring grooves on the respective 

SM proteins (Figure 4.2). Determining where these residues map onto the SNARE bundle 

would provide powerful information for testing the molecular role of Unc18 in fusion.  

In an effort to identify the SNARE residues that interact with these Unc18 amino 

acids, we are conducting high-throughput suppressor screens in C. elegans. We have 

selected a subset of the mutations identified by Deák and Hashizume that involve charge 

reversals. These mutations are expected to have strong negative consequences on binding 

that could be repaired by a compensatory mutation on their interaction partners. We have 

engineered six of these mutations into the C. elegans genome. The resulting animals are 

uncoordinated and grow at slower rates than the wild type. We will expose large 

populations of these animals to mutagen, screen for healthier animals, and sequence the 

SNARE loci for compensatory mutations. We have recently had success with this 

approach, determining that many amino acid contacts formed in a protein complex 

including the bar domain FCHO and adaptor protein AP2 (Hollopeter, unpublished). The 

Unc18 suppressor screens are especially appealing as they may reveal important residues 

that interact at different stages in the fusion process.  

95



 

Figure 4.2 The surface of Munc18 as extracted from the binary complex with syntaxin 
(PDB 3c98). Two groups have identified surface residues on SM proteins that bind the 
SNARE core complex. Select residues identified in a temperature sensitive Sec1 screen 
are colored in orange (Hashizume et al., 2009). The three residues designed to disrupt 
binding of Munc18 to the SNARE complex are colored in yellow (Deák et al., 2009). We 
have made the equivalent mutations in C. elegans.  
 
 
 

SNAREs and specificity 

Different SNAREs are selectively expressed in subsets of cells, localized to 

specific membranes, and have varying degrees of affinity for other SNARE partners. 

These characteristics have largely informed our views of the division of labor amongst 

the SNARE family of proteins. However, functional differences lie beyond the resolution 

of cellular localization and biochemical crosstalk between noncognate SNAREs suggests 

that they do not simply interact with a single set of partners. Therefore, defining the 

precise functional role of each SNARE protein at the synapse requires genetic 

perturbations paired with electrophysiological characterization.  
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SNARE proteins may be differentially associated with specific forms of 

neurotransmitter release. The canonical neuronal SNAREs, syntaxin, synaptobrevin, and 

SNAP-25 are necessary for normal levels of vesicle fusion. However, as discussed in 

Chapter 1, these SNAREs appear to be more strictly required for evoked fusion than for 

spontaneous release (Deitcher et al., 1998; Delgado-Martinez et al., 2007; Schoch et al., 

2001; Washbourne et al., 2002). Our results from SNAP-25 null neurons in C. elegans 

are consistent with this pattern. These observations beg the question, which other 

SNAREs are supplementing fusion at the synapse? We provide the first report of SNAP-

29 serving as a functional Qbc SNARE for neurotransmitter release. Overexpression of 

SNAP-29 substitutes for SNAP-25 to the extent that rescued animals are highly motile 

and have near normal rates of tonic vesicle fusion. Interestingly, SNAP-29 

overexpression has no effect on evoked fusion. In a similar manner, the Qb SNARE VtiI 

preferentially supports spontaneous release in hippocampal culture (Ramirez et al., 2012). 

The effect is mild in the synaptobrevin null background but appears dramatic in the 

synaptobrevin 2 knockouts. In addition, the R-SNARE VAMP4 is preferentially 

associated with the asynchronous release mechanism (Raingo et al., 2012). 

The molecular preference of SNARE proteins for spontaneous or evoked fusion 

may be associated with separate populations of vesicles. Large populations of synaptic 

vesicles fill each nerve terminal. However, upon stimulation, only a fraction of vesicles 

take up external tracers. These actively recycled vesicles are referred to as the “Recycling 

pool” (Fernandez-Alfonso and Ryan, 2008; Harata et al., 2001; Rizzoli and Betz, 2005a). 

The population of vesicles that does not respond to even intense stimulation paradigms 

make up the “Resting Pool” (Fernandez-Alfonso and Ryan, 2008).  
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Vesicle pools are attractive candidates to explain a different source of evoked and 

spontaneous neurotransmitter release. Indeed, the recycling pool disproportionately takes 

up external tracers under stimulated conditions, and the resting pool internalizes markers 

at rest (Chung et al., 2010; Fredj et al., 2009; Mathew et al., 2008; Sara et al., 2005). 

However, these results have been refuted in other studies (Groemer and Klingauf, 2007; 

Hua et al., 2010; Wilhelm et al., 2010). Nonetheless, it appears as though these pools 

each have a unique molecular identity as all look the same morphologically and are 

evenly distributed throughout synaptic terminals (Rizzoli and Betz, 2005b). Both VtiI and 

VAMP7 are found disproportionately on resting-pool vesicles. Optically tracking fusion 

with pH sensitive proteins demonstrates that they fuse spontaneously and do not 

contribute to evoked release (Hua et al., 2011; Ramirez et al., 2012).  

These observations suggest that neuronal SNAREs have evolved a division of 

labor that specifies different modalities of neurotransmitter release. Our work now 

implicates SNAP-29 in spontaneous neurotransmission, but not evoked. Our report of 

coordinated locomotion in animals with SNAP-29 and no SNAP-25, demonstrates that 

these fusion events are regulated. However, we have yet to clearly define SNAP-29 

neurotransmission in C. elegans. First, we need to determine if the SNAP-29 mediated 

minis depend on synaptobrevin or if they are recruiting an alternative R-SNARE. To this 

end, we will cross Punc-47::TeTx into SNAP-29 overexpression strains. Second, we will 

use acute protein degradation to test if SNAP-29 is required for fusion in wild-type 

animals. These experiments will selectively eliminate the population of fusion events 

under native control of SNAP-29.  

98



Finally, the SNAP-25 independent fusion in the “head-only” transgenics cannot 

be completely explained by SNAP-29. We see no evidence for SNAP-29 evoked 

neurotransmission, yet some evoked current remains in the absence of SNAP-25. 

Therefore, we are considering overexpression and knock-down of other candidate 

SNAREs involved in synchronous release. Ultimately, with the help of others, we hope to 

clearly define the functional repertoire of each SNARE protein at the synapse.  

 
 

A role for SNAREs in synaptic vesicle recycling 

The recycling of vesicle proteins and lipids is an essential aspect of maintaining a 

functional synapse distant from the cell soma (Figure 4.3). Following the full collapse of 

a vesicle into the plasma membrane, vesicle-specific lipids and proteins are gathered and 

marked by adaptor proteins. AP-2 recruits clathrin, which forms a uniform spherical coat 

internalizing a nascent vesicle (Saheki and De Camilli, 2012). Clathrin-mediated 

endocytosis assembles a complete vesicle with all of the necessary machinery required 

for transmitter refilling and fusion. However, this process is relatively slow proceeding 

with a time constant of approximately 15 seconds (Granseth et al., 2006; Balaji and Ryan, 

2007).  

 Neurons are capable of exocytosis at alarming rates, necessitating a rapid 

mechanism to reclaim vesicle material, maintain cell morphology, and clear sites of 

fusion. Under conditions of rapid exocytosis (up to 500 Hz at the calix of held synapse), 

large folds of membrane are internalized by ultrafast bulk-endocytosis (Cousin, 2009; 

Smith et al., 2008) (Figure 4.3). This form of endocytosis has received less attention; 

however, it has been observed in diverse cell types including the worm and frog  
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Figure 4.3 The synaptic vesicle cycle proceeds by slow clathrin-mediated endocytosis 
and ultra-fast bulk-endocytosis. Slow endocytosis is driven by the vesicle coat clathrin, 
which produces vesicles with selective protein constituents. Ultrafast endocytosis occurs 
under intense stimulation and results in large endosomes. These endosomes are resolved 
by clathrin-mediated budding. It is not known if target membrane is recycled back to the 
plasma membrane. 
 
 
 
neuromuscular junctions (Kittelmann et al., 2013; Miller and Heuser, 1984; Richards et 

al., 2000; Watanabe et al., 2013), retinal bipolar cells (Holt et al., 2003), and mammalian 

central synapses (Clayton et al., 2010; Watanabe, in press). Synaptic vesicle biogenesis 

occurs from endosomes by a clathrin-mediated process but is thought to rely on the 

alternative adaptor proteins AP-3 and AP-1 (Blumstein et al., 2001; Faundez et al., 1998; 

Glyvuk et al., 2010). 

 How do SNARE proteins participate in vesicles recycling? Their role in clathrin-

mediated endocytosis has been carefully considered. Following fusion, “spent” Cis-

SNAREs are disassembled on the plasma membrane (Littleton et al., 2001) (Figure 4.4). 

The adaptor protein AP180 and accessory factor CALM recognize synaptobrevin and 

recruit it to zones of retrieval (Dittman and Kaplan, 2006; Koo et al., 2011; Nonet et al., 

1999; Zhang et al., 1998). Clathrin binds AP180 in association with AP2, internalizing a  
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Figure 4.4 SNARE melting and vesicle resolution. Following vesicle fusion, SNARE 
proteins are dissociated or “melted” by the ATPase NSF. This may occur on the plasma 
membrane (A) or endosomal compartments (B).  
 
 
 
nascent vesicle (Traub, 2003). This model is elegant in its simplicity, producing vesicles 

with a select population of v-SNAREs.  

In contrast, little is know about the path SNAREs take through endosome 

intermediates. Bulk-endocytosis occurs very rapidly and appears to involve a passive 

collection of membrane at adherence junctions (Watanabe et al., 2013). Therefore, it 

seems unlikely that proteins are sorted prior to internalization. In turn, endosomes may be 

rich in plasma membrane constituents. Syntaxin and SNAP-25 may reside on endosomes 

as ternary complexes with synaptobrevin or monomeric proteins. The machinery for 

melting SNAREs is soluble and found throughout soluble and membrane fractions in 
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neurons (Burgalossi et al., 2010). Although there is no direct evidence for cis-SNARE 

melting on endosomes, such a mechanism is likely. This would free up synaptobrevin to 

follow the classical clathrin mediated budding process and result in a population of 

vesicles rich in target proteins. This “branching” of the synaptic vesicle cycle is 

speculative, but provides the most parsimonious explanation for resolving unsorted 

endosomes. Furthermore, this population of vesicles may contribute to the “resting pool” 

of vesicles that does not respond to stimulation.    

 Through our studies of SNAP-25 null synapses, we have made a series of 

observations that implicate SNAP-25 in synaptic vesicle recycling. The first clue came 

from experiments with synaptic markers. While synapse density appears normal in the 

absence of SNAP-25 (Figure S2.2C), we found that fluorescent markers targeted to 

synaptic vesicles revealed abnormal synaptic morphology in SNAP-25 mutants (Figure 

4.5). Two fluorescently labeled vesicle markers (UNC-47 and SNG-1) display swollen 

elongated puncta in GABA neurons in the snap-25 “head-only” and hypomorph strains. 

Diffusion of synaptic vesicle markers is often attributed to defects in synaptic vesicle 

endocytosis (Dittman and Kaplan, 2006). Might SNAP-25 be required for internalizing 

synaptic vesicles? In fact, one group has recently implicated SNAP-25 and syntaxin in 

synaptic vesicle endocytosis at hippocampal synapses (Zhang et al., 2013) and at calyx of 

Held synapses (Xu et al., 2013). We reasoned that a defect in endocytosis would result in 

an increase in the surface residence of the pH sensitive vesicle marker SNB-1::pHuorin. 

(Dittman and Kaplan, 2006). However, instead we observed a decrease in the fraction of 

synaptobrevin on the plasma membrane at SNAP-25 null synapses (Figure 4.6). These 

data indicate that the membrane internalization process is functional in the absence of  
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Figure 4.5 Presynaptic morphology is abnormal in the absence of SNAP-25. (A) The 
vesicular GABA transporter is fused to GFP marking vesicles at presynaptic motor 
neuron terminals (Punc-47::unc-47::GFP). Two representative images of the ventral 
nerve cord of wild-type animals are compared to images from “head-only” animals. 
SNAP-25 null terminals display broader, more robust fluorescence (B) A representative 
line scan mapping the intensity of pixels/distance. Pucta are defined as maxima (red) 
above 25% of the local dynamic range (blue), between points that drop below 10% of the 
local dynamic range (gray). Green lines mark the width at 50% maximum value. (C) The 
average “area” under the curve for any puncta as defined in B. SNAP-25 null synapses 
have significantly more robust puncta than the wild type (UNC-47::GFP). Both the 
SNAP-25 null (ox528) and hypomorph (ox45) have more robust puncta than the wild 
type with the synaptic marker SNG-1::mCherry.  
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Figure 4.6 Synaptobrevin::pHluorin surface residence is decreased in the absence of 
SNAP-25. (A) Worms expressing pan-neuronal snb-1::pHluorin were dissected and 
imaged under different bath conditions. Fluorescence intensity was normalized to the 
high and low values of each series. Wild-type (blue) and rescued (green) neurons 
responded to pH in a similar manner. The “head-only” strain (red) displayed low 
fluorescence intensity until basic conditions were co-applied with NH4+, which exposes 
vesicle lumen to the bath conditions. (B) Quantification of the surface fraction of snb-
1::pHluorin. Average fluorescence intensity at pH7.3 (surface value) was divided by the 
intensity at pH 7.3 + NH4+ (total value). The “head-only” strain had significantly less 
snb-1 on the surface than the wild type or the rescue. 
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SNAP-25 but suggest that vesicles and vesicle proteins are more abundant and diffusely 

localized in mutant strains.    

At first glance, these observations are in conflict with our ultrastructural analysis 

of ox528 and ox45 mutant synapses. As presented in Chapter 2, we saw no increase in the 

number of synaptic vesicles/profile in SNAP-25 mutants. However, when we analyzed 

the length of synaptic regions by EM, we found that both snap-25 null and hypomorph 

synapses were significantly longer (Figure 4.7A), indicating that vesicles are spilling out 

beyond the normal confines of the synapse. Furthermore, we observed a significant 

increase in the number of large synaptic vesicles in snap-25 mutant synapses (Figure 

4.7B). Increases in large vesicle number have been observed in many endocytosis 

mutants including AP180, AP2, and dynamin (Gu et al., 2013; Nonet et al., 1999; 

Watanabe et al., 2013), as well as in unpublished cases with synaptojanin and endophilin 

(E. M. Jorgensen, personal communication).  

Finally, we note anecdotal observations of large endosomal structures in snap-25 

mutants. We saw an increased frequency of large clear vacuoles or endosomes in both the 

hypomorph (ox45) as well as the null allele (ok173) (Figure 4.7C). Abnormalities were 

particularly common in ok173; however, these data are tenuous as we were unable to 

rescue the defect. Taken together our fluorescent imaging and ultrastructural observations 

suggests that SNAP-25 null synapses have a defect in the synaptic vesicle cycle. 

Membrane is internalized as vesicles or possibly through bulk endocytosis. These 

structures are acidified as evident by SNB-1::pHluorin assays. However, the total vesicle 

numbers are increased and expand a greater distance from the dense projection.  
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Figure 4.7 Ultrastructural morphology of SNAP-25 null synapses suggests a recycling 
defect. (A) Quantification of the average length of acetylcholine and GABA synaptic 
varicosities. In cholinergic neurons the wild-type, rescue, and “ACh-only” strains 
displayed equivalent terminal length. The hypomorph (ox45) had significantly longer 
varicosities. At GABA synapses, the wild-type and rescue strains had statistically the 
same synapse length. The SNAP-25 null and hypomorph synapses were nearly twice as 
long. (B) Quantification of the number of large vesicles per profile in acetylcholine and 
GABA neurons. At acetylcholine terminals, the hypomorph had twice as many large 
vesicles compared to the wild type. At GABA terminals, both the rescued strain and the 
“ACh-only” strain show a dramatic increase in large vesicles. The lack of rescue here is 
disconcerting. (C) A single section from the ventral nerve cord of the hypomorph strain. 
Two large vesicles are seen in neighboring synapses (arrowheads). One very large 
vacuole fills a third neuron (*).  
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These phenotypes appear unique to SNAP-25. Full reconstructions of syntaxin 

null synapses show no change in vesicle number or size, and endosome abnormalities 

have not been observed (Hammarlund et al., 2007). However, it is important to consider 

that syntaxin null synapses are completely incapable of fusion. These phenotypes may be 

a result of vesicle recycling following fusion and therefore may be masked in the 

syntaxin null. Therefore, we are considering the role of both syntaxin and SNAP-25 in 

vesicle recycling.   

The mechanism responsible for these defects remains mysterious. At some level, 

this phenotype requires a homeostatic response such that the cell allocates more 

membrane and vesicle proteins to axon terminals. However, we expect this is a secondary 

defect and not a direct result of SNAP-25’s absence. Therefore, we are considering two 

apposing models to explain the increase in vesicles and endosomes at SNAP-25 null 

synapses. (1) SNAP-25 is required for the recycling of synaptic vesicles. In this model, 

synaptic vesicles are internalized, but they lack the appropriate molecular identity to fuse 

or signal to the cell body to stop making synaptic vesicles. (2) SNAP-25 is required for 

the recycling of target membrane vesicles. In this model, SNAP-25 is required for 

returning plasma membrane components to the cell surface after internalization.   

 
 

SNAP-25: required for the recycling of synaptic vesicles? 

Target-SNARE proteins are not traditionally believed to be important for synaptic 

vesicle recycling. However, both syntaxin and SNAP-25 are found on purified synaptic 

vesicles (Takamori et al., 2006), and both t-SNAREs have recently been implicated in 

rapid and slow endocytosis (Xu et al., 2013; Zhang et al., 2013). Furthermore, SNAP-25 
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binds the endocytosis protein intersectin as well as dynamin in a complex with syntaxin 

(Okamoto et al., 1999; Peters et al., 2004). Finally, the SNAP-25 chaperone cysteine 

string protein alpha is tightly associated with synaptic vesicles and is found in complex 

with the endocytosis protein Hsc70.  Therefore, there is ample indirect evidence linking 

SNAP-25 to endocytosis.  

Our data suggest that vesicles are internalized and acidified in the absence of 

SNAP-25. However, for some reason the cell produces an abundance of vesicles 

overfilling the nerve terminals. This is not observed in syntaxin nulls (Hammarlund et al., 

2007) nor has it been reported in other synaptic vesicle fusion mutants including unc-18, 

unc-13, or synaptobrevin. It is therefore possible that SNAP-25 is required for 

establishing the proper identity of a synaptic vesicle. This could result from a requirement 

of SNAP-25 for sorting vesicle lipids or proteins prior to internalization and may involve 

adaptors like intersectin or dynamin. This model is relatively vague and difficult to test. 

However, one prediction is that the vesicle constituents would differ in synapses lacking 

SNAP-25. We are currently developing a strategy to isolate synaptic vesicles from C. 

elegans. If effective, we will be able to do comparative proteomics on synaptic vesicles 

isolated from C. elegans and with and without native SNAP-25 expression.  

 
 

SNAP-25: required for the recycling of target-membrane  

vesicles? 

The large number of vesicles accumulating at SNAP-25 null terminals may not be 

synaptic vesicles. Instead, they may represent a population of  “target vesicles” incapable 

of fusion with the plasma membrane. Such fusion events are important during 
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development for axon outgrowth and transmembrane protein trafficking. However our 

data and others suggest that SNAP-25 is not required for these developmental processes 

(Figure S2.2) (Washbourne et al., 2002). Instead these vesicles may be a byproduct of 

endocytosis. If t-SNAREs and other plasma membrane proteins are internalized during 

endocytosis as discussed above, there must be a mechanism for returning them to the 

plasma membrane.  

In Figure 4.8 I present three possible models for SNARE mediated target-

membrane return. Only the second model is consistent with the SNAP-25 null phenotype, 

and I will narrate it in detail here. Following selective clathrin-mediated resolution of 

synaptic vesicles, target membrane components are concentrated on vesicles. These 

vesicles for all intents and purposes have plasma membrane identity including the t-

SNAREs syntaxin and SNAP-25. Synaptobrevin has a high surface residence at nerve 

terminals and binds the t-SNAREs in an “upside-down” ternary SNARE complex. This 

mechanism may be in place to deal with periods of rapid release. However, even in the 

absence of rapid release, some target vesicle return may be at play. In the absence of 

SNAP-25, these vesicles may accumulate at synapses as dead-end products explaining 

the ultrastructural phenotype we have observed at mutant synapse.   

The most important prediction of this model is that t-SNAREs are internalized at 

synaptic terminals. Furthermore, intense stimulation, or the chronic absence of SNAP-25 

would be expected to increase the accumulation of syntaxin inside the cell. We are 

currently testing these predictions. We have designed pH sensitive syntaxin reporter 

proteins (syntaxin::pHluorin) to determine the surface residence of syntaxin at synapses. 

Furthermore, since presynaptic terminals appear so large in SNAP-25 mutants, we expect  
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Figure 4.8 The fusion of “target” vesicles must occur by one of three possibilities. (1) 
Synaptobrevin drives canonical fusion. In effect, plasma membrane components could 
“hitchhike” on synaptic vesicles and return to the plasma membrane without a dedicated 
pathway. (2) SNAP-25 and syntaxin pair on vesicles and fuse with synaptobrevin 
residing on the plasma membrane via an “upside-down” SNARE configuration. (3) An 
alternative set of SNARE proteins resides at the synapse to drive these fusion events. 
This model seems unlikely as it necessitates a new set of three or four cognate SNARE 
proteins that are recycled in parallel with the neuronal SNAREs. 
 
 
 
that we may be able to determine whether syntaxin resides inside terminals with 

traditional confocal imaging. However, we are also pursuing fluorescent EM experiments 

to test the localization of syntaxin and SNAP-25 on endosomes in normal conditions and 

following stimulation. These experiments will allow us to query the participation of 

SNAREs in the synaptic vesicle cycle of wild type and snap-25 mutant strains. 

 
 

Conclusions 

 In summary, this work demonstrates that SNAP-25 is involved in docking and 

fusion of synaptic vesicles. An alternative SNARE interaction involving synaptobrevin 

drives SNAP-25 independent fusion. SNAP-29 is capable of fusing synaptic vesicles, but 

the requirement of SNAP-29 for normal levels of exocytosis remains untested. Unc18 is 

also required for fusion, but the mechanism of action remains mysterious. Our work 

shows that the N-peptide of syntaxin binds to Unc18 in order to load it onto the SNARE 
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core complex. Following complete fusion, SNAP-25 may play a unique role in the 

recycling of synaptic vesicles or plasma membrane components.  
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