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Abstract—Simulations that require massive amounts of 
computing power and generate tens of terabytes of data 
are now part of the daily lives of scientists. Analyzing 
and visualizing the results of these simulations as they are 
computed can lead not only to early insights but also to 
useful knowledge that can be provided as feedback to the 
simulation, avoiding unnecessary use of computing power. 
Our work is aimed at making advanced visualization tools 
available to scientists in a user-friendly, web-based environ­
ment where they can be accessed anytime from anywhere.

In the context of turbulent combustion for example, 
visualization is used to understand the coupling between 
turbulence and the turbulent mixing of scalars. Although 
isosurface generation is a useful technique in this scenario, 
computing and rendering isosurfaces one at a time is ex­
pensive and not particularly well-suited for such a web- 
based framework. In this paper we propose the use of a 
summary structure, called contour tree, that captures the 
topological structure of a scalar field and guides the user 
in identifying useful isosurfaces. We have also designed 
an interface which has been integrated with a web-based 
simulation monitoring system, that allows users to interact 
with and explore multiple isosurfaces.

I . I n t r o d u c t i o n

In many scientific disciplines, the use of simulations 
is commonplace. As computing power and storage be­
come more abundant, these simulations become more 
complex and data intensive. Simulations of turbulent lifted 
flames [1] for example, can take millions of CPU-hours 
and result in multiple terabytes of data. Running these 
simulations on resources such as the TeraGrid is very 
costly, and due to the high demand, cycles are scarce. 
Thus it is important that scientists be given the ability to 
analyze these results as they are computed, which can not 
only lead to early insights, but also to useful knowledge 
that can help them steer the simulation, to remedy potential 
errors and avoid wasting cycles, or zoom into areas of 
potential interest.

But doing so poses important challenges. First and 
foremost, it is not feasible to move the simulation results 
around since the I/O costs are prohibitive. It is thus 
important to push as much of the analysis and visualization

as possible to the high-performance computing (HPC) 
environment. This requires a tighter integration between 
the simulations and analysis, and the creation of workflows 
that support both tasks in an HPC environment. Another 
challenge comes from the complexity of the required 
analysis. Because complex simulations deal with large 
numbers of parameters, a potentially infinite number of 
summaries can be generated to help users explore different 
aspects of the results. Because computing these summaries 
is itself an expensive task, both due to the size of the raw 
data and complexity of summarization techniques, there is 
an increasing need for efficient techniques that help users 
quickly identify useful regions of the data and specific 
summaries to explore.

In this paper, we explore a web-based analysis and 
visualization solution to this problem in the context of 
turbulent combustion simulations. To understand the cou­
pling between turbulence and the turbulent mixing of 
scalars, such as temperature and species concentrations, 
it is important to generate isosurfaces that represent those 
interactions. Isosurfaces are one of the most widely-used 
visualization techniques and efficient to compute: the 
complexity of standard marching cubes, the most popular 
isosurface algorithm, is linear [2], Although it is possible 
to efficiently generate an isosurface for a given isovalue, 
computing and rendering a large number of isosurfaces, 
as required in this scenario, is expensive and incurs a 
high network overhead for transferring the results to a 
web browser. This makes such a solution impractical for 
a web-based analysis tool. To address this problem, we 
propose the use of a summary structure, called contour 
tree, that captures the topological structure of a scalar 
field and guides the user at identifying useful (important) 
isosurfaces, see Section III. We have also designed a user 
interface that allows users to interact with and effectively 
explore multiple isosurfaces (see Section IV). By applying 
the contour tree algorithm to find isosurface values in situ 
with the computation (Section III), it is possible to selec­
tively browse through multiple visualizations and quickly 
understand the complex data being generated during the
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Figure 1. cSimMon system architecture.

simulation. The contour tree tool has been integrated with 
the eSimMon dashboard system [3], which provides an 
environment for scientists to monitor, manage and explore 
simulation results (see Section II-A). In Section V, we 
present a case study where we show that integrating the 
dashboard with the interactive contour tree tool leads to 
an effective and efficient means to explore the turbulent 
combustion simulation results.

II. S y s t e m  O v e r v ie w

We have implemented and integrated our techniques 
with the eSimMon system. As Figure 1 shows, the central 
component of the eSimMon system is a Data store', a 
database that stores all of the information and collects 
all the provenance information about the simulations, 
including the lineage of data products. The Workflow 
Management System (WMS) orchestrates the jobs and 
populates the data store with the job information. The 
processes launched by the workflow management system 
may use the Adaptable I/O System (ADIOS) [4], which 
is a componentization of the I/O layer. The eSimMon 
Portal allows scientists to access their simulations from 
any location using the Web through a browser. We have 
added the process to compute the contour tree and the 
isosurface images so it could be launched by the WMS 
and developed a graphical interface which was added to 
the set of tools available through the eSimMon Portal.

A. The eSimMon Dashboard System

Monitoring petascale simulations typically requires that 
a diverse group of scientists look at the same massive 
amount of data from different angles. The eSimMon dash­
board provides an overview of the status of a simulation. It 
is a common access point to the simulation data for many 
different types of users, including simulation scientists, 
theoretical scientists, experimentalists, performance ana­
lysts, and visualization experts. These researchers not only 
have different expertise, but they also use different tools 
to monitor, analyze and visualize their data. The purpose 
of the eSimMon dashboard is to facilitate management, 
analysis, sharing and visualization of simulation data. In 
other words, the goal is to provide a single, easy-to-use 
graphical user interface for several scientists to converge

and collaborate on. To tackle ease of use, the workflow- 
dashboard system attempts to hide implementation details 
from its users and allow them to focus on scientific 
discovery. It does so using Web 2.0 technology [5] on the 
front end and provenance tracking in the back end during 
workflow execution.

The eSimMon is composed of two main sections: ma­
chine monitoring and simulation monitoring. The machine 
monitoring (home) page displays job queues from avail­
able U.S. Department Of Energy and National Energy 
Research Scientific Computing computers. In this view, 
users can also grant others access to their simulations runs. 
Thereafter, they can view the status of their runs (eligible, 
running, or blocked) as well as of their collaborators. Users 
also see a list of their past runs. From this first page, 
scientists can access the simulation monitoring section, 
shown in Figure 2, by clicking on a specific run or 
shot. For a running job, they see images of variables 
updating themselves as they are being generated by the 
workflow. When a job is no longer running, images from 
all time stamps are combined into a movie instead. In 
this latter case, users have more options to visualize and 
manipulate their data. They can annotate movies or make 
electronics notes on simulations. Other capabilities include 
visualization of the data as movies, or vector graphs, 
provenance information (e.g., full path of the raw data), 
downloading of the processed and/or raw data, and vi­
sualization of the source code or environment information 
(system provenance). There are different types of analytics 
tools currently integrated in the dashboard. These tools are 
built-in or incorporated as hooks into back end analysis 
software. 3D modules are also being integrated to provide 
more complex visualizations and interactivity.

The provenance information is key to link processes, 
output data and input data [6], The recorded information 
in our system includes the history about all data transfor­
mations (lineage of data), all operations executed (process 
provenance), and environment information combined with 
source code of executed simulations (system provenance) 
and all actions of the users on the data (activity prove­
nance) [7],

Provenance allows users to analyze and visualize the 
data by focusing on the scientific variables calculated in
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Figure 2. cSimMon dashboard. Tree on the left shows the scientific 
variables that can be dragged onto the canvas and shown as movies. The 
right hand side window is a vector graphics of a ID variable in Flash 
that can be edited.

the simulation, not by lilename(s). To accurately connect 
user’s actions and requests on the front-end to simu­
lation data eSimMon uses the provenance recorded in 
the dashboard database during the simulation monitoring 
workflow [8] execution. The recorded information includes 
the history about all data transformations (lineage of data), 
all operations executed (process provenance), and environ­
ment information combined with source code of executed 
simulations (system provenance) and all actions of the 
users on the data (activity provenance) [7], The workflow 
records the metadata in a MySQL database which is 
later queried by the dashboard to access files on disk. 
Provenance tracking is key in taking the scientist’s focus 
away from files to actual science. From the dashboard, 
users see a tree view of scientific variables generated by 
the simulation as shown on the left hand side of Figure 2. 
By simply dragging and dropping variables from the tree 
view to the main canvas, they can see that particular entity 
evolving through time in form of a flash movie. Users do 
not need to know or track which raw data file(s) was used 
to generate that movie. The link is made automatically by 
the dashboard.

III. T h e  C o n t o u r  T r e e

The contour tree is an efficient data structure that 
captures the topological structure of a scalar field. Thanks 
to simple, robust and fast algorithms [9], it has a wide 
spectrum of applications in scientific visualization, such 
as seed-set computation for fast isosurface extraction [10], 
topologically clean isosurface extraction [11] and auto­
mated transfer function design [12],

In this framework, we use the contour tree as an efficient 
indexing key to quickly access isosurfaces and query 
them in a flexible manner. This section details the formal 
definition of the contour tree as well as the simplification 
and isosurface query processes.

A. De nition
The contour tree is a special case of the more general 

concept of a Reeb graph [13], Let /' : M —> M be a scalar

field defined on a manifold M. One fundamental way to 
study the scalar field /  is to extract its level sets. For a 
given scalar w, the level set L(w) is defined as the inverse 
image of w onto M through f ,  L (w ) =  f ~ 1(w). We call 
each connected component of the level set L(w) a contour.

One aspect that is well understood in Morse theory [14] 
is the evolution of the homology classes of the contours of 
/  while w changes continuously in R. The points at which 
the topology of a contour changes are called critical points 
and the corresponding function values are called critical 
values. If all the critical points of /  are non-degenerate 
and have distinct values, then /  is a Morse function.

The Reeb graph 71(f) of /  is the quotient space induced 
by the equivalence relation “two points pi and p2 are 
equivalent if they belong to the same contour of f "
[13]. Adjacent contours are mapped in the Reeb graph 
to adjacent nodes and distinct contours are mapped to 
distinct nodes. Notice that branching in 71(f) only occurs 
at critical values of /  and we call the corresponding nodes 
critical nodes.

In other words, one can see the Reeb graph of a scalar 
field f  as a continuous contraction of /  contours as w 
changes continuously over M, as illustrated in Figure 3. A 
Reeb graph is called a contour tree when it has no loops. 
This is guaranteed in particular if M is simply connected. 
In practice, our input data is given as a regular grid where 
each vertex is associated with a scalar field value. As 
regular grids are by definition simply-connected, the Reeb 
graph will always be a contour tree. Then, the efficient 
algorithm presented by Carr et al. [9], with 0(nlog(n)) 
time complexity (where n  is the number of vertices), can 
be used.

As illustrated in Figure 3, the contour tree can provide 
useful visual insights on the structure of the scalar field 
and can help the users understand their data. However, 
with real-life simulation data, the number of critical points 
is usually very high and so is the number of arcs in 
the contour tree. Consequently, to have a progressive 
understanding of the scalar field, topological simplification 
hierarchies are computed.

B. Simpli cation hierarchy

Persistent homology [15] provides a sound theoretical 
framework for noise removal, progressive simplification 
and multi-scale topology abstractions. In practice, very 
simple algorithms have been used to compute multi-scale 
representations of the contour tree. Given an input scale 
threshold s, persistence based simplification consists of 
iteratively removing, by increasing order of function span, 
the arcs containing a leaf and whose function span (per­
sistence)i is lower than s. Consequently, simplifying the 
contour tree at several scale thresholds defines a progres­
sive hierarchy of contour trees, as illustrated in Figure 4, 
where the small details are progressively removed and the 
major features are progressively highlighted. Simplifica­
tion hierarchies then provide to the user a progressive 
understanding of the field, allowing him/her to zoom-in 
or zoom-out in the details of the topology abstractions.
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Figure 6. Contour Tree Widget’s interactive components: 3D View, Contour Tree View and Complexity Slider. Some examples of the possible 
interactions are also shown.

of every node corresponds to its value in the scalar field 
and any horizontal line crosses every arc at most once. 
The three horizontal lines colored in blue, green and 
yellow in the Contour Tree View correspond to default 
isovalues of the three isosurfaces displayed in the 3D 
View in semi-transparent blue, green and yellow respec­
tively. Note that each of these isosurfaces might contain 
multiple components. For example, in Figure 6, there are 
six components in the blue isosurface, three components 
in the green isosurface and thirteen components in the 
yellow isosurface because these are exactly the number of 
crossings of the blue, green, and yellow horizontal lines 
with the contour tree in the Contour Tree View.

As illustrated in the interaction boxes of Figure 6, 
by dragging the mouse on the 3D View, the user is 
able to rotate the camera used by the 3D View and see 
the isosurfaces from different angles. Another possible 
interaction is to select arcs from the contour tree in the 
Contour Tree View. At most one of these arcs can be 
selected at a time, causing it to be highlighted in magenta 
and the contour corresponding to the mean isovalue of 
that arc to be displayed in semi-transparent magenta in 
the 3D-View.

The Complexity Slider is used to switch the current 
contour tree in the Contour Tree View to a simplified or

to a more detailed version. It has an important role of 
giving the user a means to understand the dataset in a 
progression. By starting with a simpler contour tree, only 
the “largest” features from the dataset will be shown. This 
results in simpler 3D visualizations with fewer contours 
and less occlusion, which might lead to a better overall 
understanding of the dataset. By gradually raising the 
complexity of the contour tree using the Complexity Slider 
the user can understand where the “smaller” features 
appear and how do they relate to the “larger” features, as 
the 3D visualization become more complex. The meaning 
of a “larger” or “smaller” feature in our current imple­
mentation is related to the notion of persistence explained 
in Section III, and, as it was also mentioned there, other 
ways to characterize the “size” of the features (e.g., its 
volume) can be used in the simplification of the contour 
tree.

The Contour Tree Widget is designed to work with pre­
computed information. This design choice fits well the 
fact that it runs on the web and into the general model 
where we see its application: large simulations that are 
both time and space consuming where there is a relative 
small time and space overhead in computing useful extra 
information during the simulation that can lead to an early 
understanding o f (partial) results. The required “extra
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information” necessary to be able to use the Contour Tree 
Widget is obtained by computing the contour tree of a 
dataset, selecting a set of simplified versions of it and 
composing a set of associated isosurfaces visualizations.

Figure 7 shows the Contour Tree Widget integrated with 
the web interface of the eSimMon dashboard. Note the 
presence of other widgets exposing different aspects of 
the dataset being used in combination with the Contour 
Tree Widget.

V. Case Study: V isualizing Turbulent 
Combustion 

Combustion scientists in collaboration with computer 
scientists are interested in understanding the underly­
ing processes in internal combustion engines. Compared 
to current engines, next-generation combustion engines 
will function in non-conventional, mixed-mode, turbulent 
combustion regimes and are likely to be characterized 
by higher pressures, lower temperatures, higher levels 
of dilution, and utilization of alternative fuels that ex­
hibit a wide range of chemical and physical properties. 
Combustion processes in these environments result in 
complicated interactions that are poorly understood at a 
fundamental level, and are demanding for high-fidelity 
direct numerical simulation (DNS) approaches that capture 
these turbulence-chemistry interactions. These simulations 
are costly, requiring several million CPU hours on a 
terascale computer, up to several billion grid points, and 
generating tens of terabytes of data [1],

To solve the complex equations governing these sim­
ulations, the scientists use S3D [16], a massively par­
allel DNS solver based on a high-order, non-dissipative 
numerical scheme that was developed at Sandia National 
Laboratories. The tens of terabytes of raw data produced 
by S3D need to be analyzed and visualized to obtain 
physical insight and/or to validate models.

Among the generated data are NetCDF/HDF5 analysis 
files, containing both 2D slices and ID slices from the 
3D dataset. Each variable in the NetCDF file is either 
processed using a plot library (for xy  plots only) or 
AVS/Express [17] (for generating the images of colormaps 
and contours). The scientists use the Kepler workflow 
system [18] to manage the S3D workflow (shown in 
Figure 8), including movement and provenance of the 
generated data, and the eSimMon dashboard system de­
scribed in Section II-A to monitor and visualize the results 
during the execution of S3D. The types of visualization 
currently available are displayed in Figure 2. Although 
the dashboard provides useful tools for interacting with 
plots, 3D visualization is not explored. The scientists are 
limited to visualizing 2D slices of a 3D volume over 
time. As the datasets are very large, the scientists are 
not able to visualize all the space of isosurfaces and they 
have to carefully select which isosurfaces they want to be 
computed in high resolution. Our strategy is to use a low 
resolution version of the dataset and apply the concept 
of contour trees (see Section III) to not only display an 
overview of the dataset but also to guide them in finding 
interesting features in the visualization.

To achieve that, we extended the S3D workflow by 
adding a process to compute contour trees, simplify 
contour trees, extract isosurfaces, and generate multiple 
images of 3D visualizations necessary to feed the Contour 
Tree Widget explained in Section IV. This new process 
on the S3D workflow is launched in batch mode after the 
NetCDF processing pipeline displayed in Figure 8 is done.

A. Performance Analysis
The dataset used in this case study consisted of a regular 

grid of dimensions 45 by 112 by 96. In this case, the 
code written in C we used to compute the contour tree 
took 4.99s to finish in a desktop computer with an Intel



Core2 2.83 Ghz architecture and 8 Gb RAM. It is worth 
mentioning that this C code was optimized for tetrahedral 
meshes and not for the regular grids we used as input, so 
there is still margin for improvements. As mentioned in 
Section III the contour tree algorithm runs in 0(nlog(n)) 
where n  is the number of vertices of the mesh. In practice 
this means that it is feasible to extract contour trees for 
much larger datasets than the one from this case study, 
depending on the desired application. The running time 
to simplify the full contour tree into simpler versions is 
usually just a small fraction of the time to compute the 
full contour tree. In our dataset it took 0.06s to simplify 
the full contour tree into the simpler versions we used, 
this is less than 2% of the time it took to compute the 
complete contour tree.

As explained in Section III, we can use the contour 
tree to speed up the isosurface extraction. We used this 
approach in the dataset of this case study. The time to 
find the seeds for the isosurface extraction was always 
less than 0.00001s and the time to propagate the seeds to 
actually extract the largest isosurface in our dataset took 
0.38s and resulted in an isosurface with 277098 triangles.

The total time to compute all the extra information 
needed to run the Contour Tree Widget in this case study 
took less two minutes. In the end, the dataset was ready to 
be explored on the Web through four simplified versions 
of the contour tree indexing visualizations for almost 
one hundred potentially relevant isosurfaces and contours 
available in 26 different angles each. The space required 
for this extra data was 140Mb with images in a 1024 by 
1024 resolution.

VI. Conclusions

The use of remote high-performance computing fa­
cilities is becoming ubiquitous. Using these resources, 
scientists are able to generate unprecedented volumes of 
data, most of which simply can not be moved back to their 
sites. Advanced remote data analysis and visualization 
tools are thus essential in this scenario. In this work, we 
focus on describing a tool for exploring and identifying 
useful regions of large datasets. We used a summarization 
structure called contour tree, that captures the topological 
structure of a scalar field and helps the user identify 
useful (important) isosurfaces. We designed a specific user 
interface that allows users to interact with and explore 
multiple isosurfaces. In order to optimize interactivity, 
we used caching of the results (in particular images and 
movies) wherever possible. We implemented our work in 
the eSimMon dashboard system, and applied it in the 
context of simulation of combustion processes.

There is substantial future work to be pursued. First 
of all, we need to further improve the usability of the 
contour tree widget by doing expert studies. Also, we need 
to explore alternative ways to optimize the computation 
and rendering of the isosurfaces. Right now, everything is 
cached and transferred as precomputed images or movies, 
but as browsers support more flexible 3-D rendering func­
tionality, we might consider other rendering techniques.

We would also like to explore the use of state-of-the-art 
level of detail and streaming techniques.
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