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ABSTRACT 

 
Recent advancements in mobile devices – such as Global Positioning System 

(GPS), cellular phones, car navigation system, and radio-frequency identification (RFID) 

– have greatly influenced the nature and volume of data about individual-based 

movement in space and time. Due to the prevalence of mobile devices, vast amounts of 

mobile objects data are being produced and stored in databases, overwhelming the 

capacity of traditional spatial analytical methods.   

There is a growing need for discovering unexpected patterns, trends, and 

relationships that are hidden in the massive mobile objects data.  Geographic 

visualization (GVis) and knowledge discovery in databases (KDD) are two major 

research fields that are associated with knowledge discovery and construction.  Their 

major research challenges are the integration of GVis and KDD, enhancing the ability to 

handle large volume mobile objects data, and high interactivity between the computer 

and users of GVis and KDD tools.   

This dissertation proposes a visualization toolkit to enable highly interactive 

visual data exploration for mobile objects datasets. Vector algebraic representation and 

online analytical processing (OLAP) are utilized for managing and querying the mobile 

object data to accomplish high interactivity of the visualization tool. In addition, 

reconstructing trajectories at user-defined levels of temporal granularity with time 

aggregation methods allows exploration of the individual objects at different levels of 
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movement generality.  At a given level of generality, individual paths can be combined 

into synthetic summary paths based on three similarity measures, namely, locational 

similarity, directional similarity, and geometric similarity functions.  A visualization 

toolkit based on the space-time cube concept exploits these functionalities to create a 

user-interactive environment for exploring mobile objects data.  Furthermore, the 

characteristics of visualized trajectories are exported to be utilized for data mining, which 

leads to the integration of GVis and KDD.   

Case studies using three movement datasets (personal travel data survey in 

Lexington, Kentucky, wild chicken movement data in Thailand, and self-tracking data in 

Utah) demonstrate the potential of the system to extract meaningful patterns from the 

otherwise difficult to comprehend collections of space-time trajectories.  
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1 INTRODUCTION 

 
1.1    Background 

Recent advancements in mobile devices –– such as Global Positioning System 

(GPS), cellular phones, car navigation system, and radio-frequency identification (RFID) 

–– have greatly influenced the nature and volume of data about individual-based 

movement in space and time (Golledge & Stimson, 1997).  These mobile devices are 

used in various applications: navigation systems that support the best route choice for 

vehicles; wayfinding to support navigation; real-time tracking of individuals, vehicles, 

animals, and other mobile objects; emergency management as responses to accidents, 

interruptions of essential services, and disasters (Brimicombe & Li, 2006).  This 

infrastructure provided by mobile devices, generally called Location-Based Services 

(LBS), is changing the lifestyles of people in urban areas dramatically (Li & Longley, 

2006).   

Individual-based information acquired by LBS is often utilized within 

applications of Geographic Information Science (GISci).  LBS are defined as the delivery 

of data and information services where the content of those services is customized to the 

current or some projected location and context of the user (Brimicombe & Li, 2006).  

They attract the attention of the GISci community because of their potential to provide 

the basis of location-aware information. Location-aware information enables individuals 

on the move to communicate with others using wireless mobile devices, and user-

solicited information –– real-time information such as weather forecast, traffic conditions, 
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and maps (Brimicombe & Li, 2006).  Although LBS have just started to be developed, 

much research has been done to cultivate and strengthen their implementability and 

demand (Laurini, Servigne, & Tanzi, 2001; Leonhardt, Magee, & Dias, 1996; Sage 2001).  

For example, some research proposes a tourism information system to support the 

decision making of tourists (Mountain & Raper, 2001; Zipf, 2002) while others focus on 

the user’s needs of location-aware services (Kaasinen, 2003).  Moreover, RFID tags can 

track patients in hospitals to enhance the operational efficiency of a health delivery 

network (Sangwan, 2005).  These applications generate locational information with 

respect to time for individuals in vehicles or objects with location recording devices. 

These individual-based spatio-temporal data are often called mobile objects data (MOD).   

MOD have a more complicated structure than traditional spatial data.  As stated 

above, what is common to all LBS is time-stamped locational data.  In other words, the 

user of mobile devices can record their locations across time as digital information stored 

in databases for future use.  In GIS, an object is represented as a point that is moving 

through space according to time.  Thus, the movement of an object is represented as a 

trajectory within three-dimensional space – two spatial dimensions and one time 

dimension (Pfoser 2002).   

Since mobile objects can change their locations continuously through time, dynamic 

representation of entities is required to handle the time component of MOD. However, 

most current GISci theories are based on a static place-based standpoint, or static 

approach, and thus, they are not well-suited in providing tools for incorporating the time 

dimension of geographic information (Mark 2003).  Although many efforts have been 

made to incorporate a time component in GIS (Peuquet & Duan, 1995; Yuan, 1999), 
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those methods are not adapted to analyze the dynamics of activity and travel behavior of 

disaggregate data, or MOD (Wang & Cheng, 2001).   

Because of their unique characteristics, the change from static-approach to 

dynamic-approach data representation brings many research challenges for MOD: high 

data volume, complex data relationships, and nonstandard data query and data analysis 

requirements (Shaw & Wang, 2000).  Individual-based data is very detailed and therefore, 

the data volume can be large.  Due to the prevalence of mobile devices, vast amounts of 

MOD are being produced and stored in databases (Mountain, 2005).  Tools and 

applications in current GISci are not designed with the needed capacity to handle the 

large volume data associated with MOD (Wang & Cheng, 2001).  Second, individual-

based data can have complex relationships among entities.   For example, each mobile 

object has its own trips and anchors but the movement or trip can be interrelated with 

other mobile objects.  This complex relationship among mobile objects must be 

represented or computed.  Third, to represent the complex relationships among the 

entities in individual-based data, a new database design is required for data query and 

data analysis of mobile objects (Wolfson, Xu, Chamberlain, & Jiang, 1998).   

In addition to the research challenges stated above, there is an urgent need to 

develop analytical methods for MOD in GISci.  Traditional spatial analytical methods 

were developed when data collection was difficult and computational power was low 

(Miller, 2009).  Traditional statistical methods such as spatial statistics, for example, 

require high computational loads.  Therefore, traditional methods that are based on small 

volumes of information are not applicable for large volume and diverse geographic 

information, including MOD.   Moreover, traditional spatial analytical methods are 
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confirmatory and the researchers need to have an a priori hypotheses.  Therefore, 

traditional spatial analytical methods cannot discover unexpected patterns, trends, or 

relationships that are embedded in large volume spatio-temporal data such as MOD.  A 

major challenge is to develop appropriate models and techniques to manage, analyze, and 

visualize such large datasets to extract meaningful patterns, trends, and relationships 

(Frihida, Marceau, & Theriault, 2004). 

Conceptual and technological frameworks have been developed to address useful 

patterns and relationship within large, multivariate spatio-temporal data including MOD 

(Frihida et al., 2004).  These are referred to as Geovisualization (GVis) and Knowledge 

Discovery in Databases (KDD): they are two major research fields that are associated 

with knowledge discovery and construction.   Although their approaches to knowledge 

discovery are different from each other, their primary goal is to find, relate, and interpret 

interesting, meaningful, and unanticipated features (objects or patterns) in large data sets 

(MacEachren, Wachowicz, Edsall, & Haug, 1999). The difference is that GVis relies 

upon human vision whereas KDD is based on computational methods. In addition, 

methods of GVis and KDD both require interactivity to be effective (MacEachren et al., 

1999). Neither a single visual exploration nor a single data mining run is helpful to find 

the interesting, unexpected knowledge embedded in data – repeated application of the 

methods are required.  

There are several research challenges in GVis and KDD to handle spatio-temporal 

datasets such as MOD.  One of the major research challenges is the integration of GVis 

and KDD: much KDD research emphasizes the importance of visualization, although 

GVis is mostly used as a technique to interpret and evaluate the results of analysis in 
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KDD (MacEachren et al., 1999).  Another research challenge is to incorporate large 

volume spatio-temporal datasets into GVis tools.  Although KDD tools are designed for 

large volume datasets, many GVis tools are not applicable for large datasets.  Efficient 

GVis tools that can handle massive volumes of spatio-temporal data are required.  In 

addition, interaction between human and machine is also a research challenge in GVis 

and KDD –– high interactivity of GVis tools is necessary to accomplish better intuitive 

knowledge discovery.   

There have been many efforts in GVis and KDD research to solve the problems 

stated above.  Some studies enhanced the interactivity of visualization tools by extracting 

features that characterize the mobile objects such as direction and velocity (Laube, Imfeld, 

& Weibel, 2005; Mountain, 2005; Smyth, 2001).  Other research proposed new methods 

of representation and visualization of mobile objects (Imfeld, 2000; Laube et al., 2005).  

Moreover, data mining methods were incorporated in visualization tools for further data 

exploration (Dykes & Mountain, 2003; Mountain, 2005).  This research expanded the 

capability of GISci to be applicable to handle spatio-temporal data, including MOD. 

In addition to the grand challenges in GVis and KDD for spatio-temporal datasets, 

some research problems describing the movement of mobile objects have been proposed 

(Laube et al., 2005).  They are as follows: 

• Uncertain and missing data 

• Interpolation issues 

• Analysis granularity for time component 

• Aggregation of mobile objects 

• Factors or characteristics of the motion attributes. 
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First, there are usually uncertain and missing data in real-world tracking data. 

However, existing methods are designed for complete data that are without uncertain or 

missing portions, and methods to deal with those incomplete data should be developed. 

Second, to solve the problem of uncertain and missing data, interpolation methods for 

missing tracking points of mobile objects are needed (Wentz, Campbell, & Houston, 

2003). Third, the sampling rate in time for the mobile objects should be the same so that 

the analysis will be performed with the data of the same time granularity. Since MOD 

collected by different devices may have different time sampling rates, compatibility 

between data from different data collection process should be discussed and solved to 

incorporate and analyze the data from various data sources. Fourth, similar to the spatial 

scale problem known as Modifiable Areal Unit Problem (MAUP), the time scale should 

also be considered in the analysis of MOD (Hornsby, 2001). If MOD are explored in 

different time granularity with the interactive visualization tools, different patterns or 

relationships can be detected from the data exploration. Therefore, aggregation methods 

for the time component should be developed. Fifth, more factors or characteristics of the 

mobile objects can be added to interactive data exploration. Previous works show that 

only a few characteristics – such as direction, speed, or velocity – are available to the 

user of the visualization tools to explore the data. There can be more characteristics or 

attributes of the trajectories of mobile objects and those factors should be added to the 

visualization tools.  It is not only that these five challenges still remain unsolved, but also 

that there is no standard method to deal with the problems. Although the interactive 

visualization tool must be data-driven or task-driven (Andrienko, Andrienko, & Gatalsky, 
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2005), these challenges are the tasks that can be applied to any kinds of MOD – a more 

integrated visualization tool that overcomes these three problems should be developed. 

 
1.2 Research Objectives 

This dissertation proposes methods to uncover patterns, trends, and relationships 

that are hidden in massive volumes of MOD data. Emergence of MOD data enables us to 

develop geographic theories from a people-based perspective instead of a place-based 

approach, which is basically a collection of functions of locations and was the 

mainstream when data were scarce and computational platforms were weak (Miller, 

2005a).  

A people-based perspective focuses on individual-based (or disaggregate) activity 

patterns and accessibility in space and time (Miller, 2005b). The mobility of individuals 

has increased due to the development of advanced transportation systems and settlement 

systems. In addition, telecommunication systems, The World Wide Web, and related 

internet technologies, including location-aware technologies and social medias, have 

been altering the nature of allocating space and time in people’s daily lives. As Miller 

(2005a) states; 

the world is shrinking in an absolute sense: transportation and communication 
costs have collapsed to an incredible degree over the last two centuries (Janelle, 
1969). The world is also shriveling as relative differences in transportation and 
telecommunications costs are increasing at most geographic scales (Tobler, 1999). 
The world is also fragmenting: people and activities are becoming disconnected 
from location (Couclelis & Getis, 2000). (p. 216) 
 

 A place-based approach is not well-suited in the era of massive mobility information that 

contains dynamic spatial, temporal, and attribute information of individuals.  
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As stated previously in this chapter, there is an urgent need to develop methods 

that can handle massive volumes of disaggregate level mobility data. Since there is no 

standard a priori knowledge about the nature of individual mobility information 

established yet, exploratory analysis rather than confirmatory analysis is appropriate to 

discover underlying patterns. Therefore, exploratory spatial data analysis such as data 

visualization and data mining plays a key role in this phase.  

This dissertation proposes a visualization toolkit as a means of exploratory visual 

and quantitative analysis for MOD data, which leads to research at a more detailed and 

deeper level, such as hypothesis creation of geographic theories, and assessment of 

geographic models that have not been discovered or developed. Insights from exploratory 

analysis have great potential in transforming MOD data into useful and meaningful 

geographic thoughts.  

The visualization toolkit in this dissertation also provides GVis tool components 

to overcome research problems for MOD, integration of GVis and KDD, handling large 

volumes of MOD, enhancement of interactivity of GVis tool, manipulation of time 

granularity, and aggregation and summarization of mobile objects.  The research 

objectives are as follows: 

• To create a highly interactive graphical user interface (GUI) for visual data analysis 

of mobile objects 

• To develop methods to visualize large volume MOD using vector algebra and online 

analytical processing (OLAP) 
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• To propose methods for aggregation and summarization of vector algebraic 

representation of MOD for better visual data exploration and knowledge discovery 

construction. 

A highly interactive visualization toolkit enables users to explore the data from 

various perspectives. The users manipulate data using spatial, temporal, geometric, and 

other geographical components of the data, which is explained in detail in Chapter 3. The 

ability to handle large volume data has been one of the major research challenges in 

GISci. Moreover, functionalities such as aggregation and summarization of MOD data 

enhance the interactivity of the data exploration and provide new insights in visual data 

exploration. Also, the integration of GVis and KDD is accomplished by incorporating the 

functionality of data mining in the toolkit. The toolkit consists of novel functionalities for 

pattern detection in MOD data towards knowledge construction of individual human 

activity in space and time.  

 
1.3 Structure of This Dissertation 

This dissertation consists of six chapters.  Chapter 1 introduces the current 

research challenges, proposing goals and objectives of this dissertation.  Chapter 2 

reviews literature of related research fields that contributed to GISci research for MOD: 

time geography, GVis, knowledge discovery in databases, and activity-based analysis.  

Since this research focuses on visualization and knowledge discovery, a large portion of 

the literature review is dedicated to these two research fields.  Chapter 3 describes 

techniques that are utilized in the visualization tool and management of MOD: vector 

algebra and OLAP.  It also proposes the methods for aggregation and summarization of 

vector representation of mobile objects; several similarity functions are presented.  
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Chapter 4 describes the MOD that are used in this dissertation: wild chicken data in 

Thailand; GPS tracked data of Lexington, Kentucky; and GPS self-tracking data of the 

investigator.  Chapter 5 presents the results of the visual data exploration and data mining, 

evaluating the versatility of the visualization tool to various MOD.  Chapter 6 then 

summarizes and concludes the dissertation and proposes the future agenda that this 

research suggests.   

 



 

 

 

2     LITERATURE REVIEW 

 
2.1.    Time Geography 

Time geography is the study of individual-based human behavior in space and 

time. It was originally introduced to the English-speaking world by Hägerstrand in 1970. 

Time geography focuses on constraints on human behavior rather than the prediction of 

human spatial behavior. The core notion of time geographic framework is that events 

comprising an individual’s existence have both spatial and temporal attributes. 

Three constraints limit the ability of individuals to move and participate in 

activities: capability constraint, coupling constraint, and authority constraint. Capability 

constraint refers to the person’s ability to trade time for space in movement. For example, 

the need for food or sleep constrains peoples’ movement because people need such things 

for everyday life. Coupling constraint relates to the possibility of two or more persons 

interacting. Authority constraint limits the movement of people to certain places or 

domains in space and time. For example, people cannot go inside a shopping mall when it 

is closed (Hägerstrand, 1970). 

There are two main concepts in time geography to visualize and analyze actual or 

potential movements in space and time – space-time path and space-time prism. The 

space-time path draws the locations of travel in space and time (Figure 2.1). The space-

time region is represented by three axes, x, y, and t. The space generated by x and y axes 

represents two-dimensional space, and the t axis represents time. In this region, the 

space-time path is depicted as a trajectory with a group of points that represent the 
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sequence of locations of individual movement in space and time. 

In addition to space-time path, the space-time prism provides the possible 

movement areas that an individual can access with a limited amount of time. Figure 2.2 

illustrates a basic prism without the activity time. The area bounded by the upper cone 

and lower cone is called the potential path space (PPS); this represents the area an 

individual can travel in space based on leaving the first location at time ti and arriving at 

the second location at time tj, traveling at the maximum velocity. Also, the area in two-

dimensional space projected from the PPS is called the potential path area (PPA). Using 

these basic time geographic entities, the possibility and limitation of individual 

movements can be determined. Figure 2.3 shows a more general case of the space-time 

prism. The first activity is at a fixed location xi, which ends at time ti, while the second 

activity location is at the fixed location xj, which starts the activity at time tj. The 

minimum time required for the individual to participate in the activity is represented as aij. 

Since this time geographic concept has been proposed, many efforts have been 

conducted to improve the analytical framework of time geography (Miller, 1991, 1999; 

Kwan & Hong, 1998). Recently, an analytical definition of time geography has been 

proposed to expand the availability of the time geographic concept in geographic 

information science (Miller, 2005c). In addition, detailed descriptions of time geographic 

concepts, such as error analysis and uncertainty analysis, have been discussed as well 

(Hall, 1983; Neutens, Witlox, Van De Weghe, & De Maeyer, 2007). Hornsby and 

Egenhofer (2002) developed a framework that enables space-time queries in multiple 

time granularity for space-time paths, space-time prisms, and when paths and prisms are 

combined. 
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A primary concern of time geography is individual accessibility. This includes 

issues such as pattern detection of accessibility in urban areas (Kwan, 1999; Lenntorp, 

1976, 1978), coupling possibility (Neutens, Schwanen, & Miller, 2009), and detection of 

gender differences in space-time movements (Kwan, 2003). In addition, a desktop 

software application of GIS to measure and visualize the PPA was developed to support 

the decision making of journeys using a public transportation system (O’Sullivan 

Morrison, & Shearer, 2000). Furthermore, the prediction of the travel behavior rising 

from cognitive maps was also attempted (Mondschein, Blumenberg, & Taylor, 2005). 

These efforts facilitate the development of applications using a time geographic 

framework and extend the scope of time geographic research. 

This dissertation applies the time geographic framework for the visualization of 

space-time paths in a three-dimensional view. Space-time queries with multitemporal 

granularity that are similar to Hornsby and Egenhofer (2002) are utilized as time 

aggregation methods. Querying and visualizing space-time paths at different time 

granularities extends the ability of exploratory pattern detection and knowledge discovery. 

This is an important aspect of Knowledge Discovery in Databases (KDD) and 

Geovisualization (GVis).  

 
2.2.     Knowledge Discovery in Databases and Geovisualization 

The volume, scale, and scope of digital geographic datasets are expanding at a 

tremendous rate from the advances in technologies and techniques. Due to the 

inadequacy of traditional spatial analysis methods for these massive geographic datasets, 

it is time to create a new paradigm to handle large volume, highly multivariate datasets 

that require high levels of computation power. Exploratory Data Analysis (EDA), KDD, 
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and GVis are the research fields that attempt to provide methods of exploration, analysis, 

and representation of a massive amount of data to extract deeply hidden patterns, trends, 

and relationships, and perform knowledge discovery. Although those three research fields 

have similar objectives, their foci are different from each other.  

 
2.2.1. Exploratory Data Analysis 

EDA seeks patterns and relationships in observational data, as well as 

explanations for such patterns and relationships. The basis of EDA is the idea that data 

analysis is essentially regarded as an interactive circular process where knowledge is 

constructed through the association of theory — such as spatial statistics — and 

observational data, or raw data (Tukey, 1977). In this sense, EDA sheds new light on 

scientific methods that have never been considered. In addition, scientists no longer have 

to rely on a priori assumptions about the data: they can generate new hypotheses rather 

than testing existing hypotheses with statistics (Wachowicz, 2005). It is an approach that 

searches for patterns and relationships in data and generates hypotheses simultaneously 

(Yuan, Buttenfield, Gahegan, & Miller, 2004). 

The need for EDA is growing as large volume datasets have been generated with 

a variety of applications such as marketing, transportation, finance, and medicine 

(Gahegan, 2005). In addition, continuous growth of spatio-temporal datasets in their size 

and complexity also facilitates the need for improvements in EDA techniques. One of the 

trends in scientific research is the development of interactive visualization tools. Some 

EDA methods utilize not only statistical analyses but also cartographic maps for data 

exploration (Guo, Liao, & Morgan, 2007; Wachowicz, 2005). Gahegan (2005) identified 

two reasons why visualization is useful in exploring such large datasets. First, a virtual 
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environment, such as three-dimensional immersive virtual reality, enables observers’ 

greater access to a large amount of data than figures and tables. Second, the process of 

visualization requires many data transformations, such as 3D-scatterplot and parallel 

coordinate plot (Gahegan, Takatsuka, Wheeler, & Hardisty, 2002) — these kinds of 

transformations fulfill roles such as querying and focusing operators, and facilitating the 

process of uncovering hidden patterns and structures in data. Furthermore, leveraging 

human vision in addition to computational methods may lead to deeper insight. This is 

why GVis is taking a leading role in the data exploration of massive datasets, including 

datasets with complex structure such as spatio-temporal data. It is difficult to distinguish 

EDA from GVis and KDD, but EDA is more suitable for very rich datasets, where the 

dimensionality of attributes is large, but the size of datasets is smaller. On the other hand, 

GVis and KDD are developed for large volume datasets (Wachowicz, 2005). 

 
2.2.2.     Geovisualization 

A knowledge discovery concept that integrates cartography and scientific 

visualization is GVis. It focuses on visual explorations and analysis of geographic 

information in the knowledge construction process (Kraak & MacEachren, 1999). GVis 

relates to researches in many disciplines such as cartography, scientific visualization, 

image analysis, information visualization, exploratory data analysis (EDA), and 

GIScience (Dykes, MacEachren, & Kraak, 2005). In addition, GVis tools allow the user 

to interact with spatial datasets to seek interesting patterns and structures that are 

embedded in the datasets to support the construction process of refined knowledge. It is 

also useful as a communication tool in a group for discussions and decision-making 

processes.  
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The Commission on Visualization and Virtual Environments of the International 

Cartographic Association (ICA) has proposed challenges in GVis and announced 

recommendations for actions. According to Dykes et al. (2005), there are four major 

research challenges in GVis, namely, representation, visualization-computation 

integration, interface design, and cognition-usability.  

Representation is a core theme in GVis. The challenge is to develop new forms of 

geographic representation based on the new technological advances in both hardware and 

data formats. Many geographic representation methods for GVis have been proposed, 

including interpolation methods such as triangular irregular network (TIN) and 

geostatistical interpolation methods, including kriging (DiBiase, 1990), cartographic 

animation (Lobben, 2003), spatialization (Skupin & Fabrikant, 2003), interactive color 

arrangements (Brewer, 1997), self-organizing maps for geographic information (Skupin 

& Hagelman, 2005; Yan & Thill, 2007), and virtual environments (Dykes, Moore, & 

Wood, 1999). Spatio-temporal data collected by emerging devices such as GPS and other 

remote sensors can be visualized to analyze spatiotemporal human movements (Laube, 

Imfeld, & Weibel, 2005; Mountain, 2005). 

Interactions among many variables in large datasets are so complex that purely 

visual data exploration by human vision cannot be successful. The aim of visualization-

computation integration is to develop knowledge construction tools through visual data 

exploration that enhance the user’s ability to discovering hidden patterns, trends, and 

relationships in complex geographic data, and explaining the results of data exploration. 

Integration of KDD and GVis to support visual data exploration by processing and 

analyzing datasets before visualization is one of the challenges in this integration 
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research agenda. This effort is often accomplished and implemented through the interface 

design for GVis. 

Development and improvement of GVis interface design is requisite to facilitate 

the use of hands-on GVis tools by the public, providing better opportunities for 

interactions with large volume geographic data for knowledge discovery. Interface design 

ranges from simple color arrangement tools (Brewer, 1997) to complex analysis such as 

the combination of visualization and multivariate statistics by GeoVista Studio toolkit 

(http://www.geovistastudio.psu.edu/jsp/index.jsp), exploratory data analysis toolkits for 

activity/travel data (Buliung & Kanaroglou, 2004) and remotely-sensed data analysis of 

individual motions (Laube et al., 2005). Although there are some efforts to create the 

interactive properties of GVis with the purpose of creating more understandable tools, 

there are few tools that validated the efficiency of visualization methods. Therefore, the 

cognition and usability of GVis must be addressed. 

The cognitive aspects of GVis focus on human-computer interaction (HCI) such 

as perception and reaction of people to the visual representation in GVis tools. Research 

with experiments or surveys attempt to explain the human perception of fundamental 

geographic notions such as distance, proximity, and scale – these notions are evaluated 

for testing cognitive aspects of visualization (Fabrikant, 2001; Fabrikant, Montello, 

Ruocco, & Middleton, 2004; Montello & Fabrikant, 2003). In addition, experiments and 

surveys are often conducted to evaluate the usability of GVis tools (Dêmsar, 2007; 

Fuhrman et al., 2005; Lobben, 2008). 
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2.2.2.1. Research Challenges in GVis 

Although GVis has great potential to contribute to knowledge discovery and 

construction, GVis research has just begun and there are still many research challenges. 

The ICA research agenda provides four “GVis research challenges” (MacEachren & 

Kraak, 2001). The next four sections explain those research challenges.  

2.2.2.1.1. Experimental and multimodal “maps.” Emerging technologies such 

as Virtual Reality reflect the demands of experiential and multisensory interaction (Dykes 

et al., 2005). Development of GVis technologies for these modes of information access is 

one of the research challenges. There is a general assumption in current GVis research 

that the abstraction, summarization, or aggregation of information is essential to discover 

meaningful knowledge, while virtual reality explores a more experiential representation 

of information for knowledge discovery. Developing technologies that can utilize the 

potential of virtual realism and multisensory representation is important for GVis 

research in order to incorporate the power to visualize and analyze geographic 

information in a more realistic view (Wood, Kirschenbauer, Döllner, Lopes, & Bodum, 

2005). Practical applications for immersive environments are navigation systems with 

mobile devices (Coors, Elting, Kray, & Laakso, 2005), and training of fieldworkers 

(Dykes et al., 1999). Data representation of geographic data and spatio-temporal data 

requires powerful rendering techniques due to the size and complexity of those datasets. 

Therefore, the capability of handling large datasets is another research challenge. 

2.2.2.1.2. Large datasets. Large volume, complex geographic data demands new 

techniques, tools, and approaches for better knowledge discovery with GVis. Although 

the concept of GVis is to draw upon human visual ability to discover patterns, trends, and 
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relationships from complex data, existing GVis tools are not applicable to large volume 

datasets. A key issue here is the  development and  integration of GVis methods with 

geocomputational techniques (discussed later in this chapter) (Gahegan, Wachowicz, 

Harrower, & Rhyne, 2001). Since data exploration of complex datasets, such as spatio-

temporal datasets or mobile object data (MOD), requires exploratory functionality from 

many perspectives, visualization methods combined with geocomputational methods, 

including self-organizing maps and neural networks, have been proposed (Guo, Gahegan, 

MacEachren, & Zhou, 2005).  

2.2.2.1.3. Group work. Multiuser systems have become more available due to the 

advances of telecommunication technologies, providing more opportunities for group 

work. However, GVis research has been driven mostly by individual experts, resulting in 

tools and methods for individual use (Dykes et al., 2005). There is a growing demand for 

developing techniques to support collaborative GVis for better decision-making in 

applications such as the decision making process in a time of emergency or crisis 

(MacEachren & Cai, 2006). There are several research challenges in this field 

(MacEachren & Brewer, 2004):  

• Developing a theoretical understanding of the cognitive and social aspects of both 

local and remote collaboration mediated through display objects in a geospatial 

context (Fuhrman & Pike, 2005; MacEachren & Cai, 2006) 

• Development of approaches to multiuser system interfaces that support, rather than 

impede, group work (Gahegan et al., 2001; MacEachren, 2005) 

• Understanding ways in which the characteristics of methods and tools provided to 

support collaboration influence the outcome of group work (Hopfer & MacEachren, 
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2007) 

• Initiation of a concerted effort focused on integrating, implementing, and 

investigating the role of the visual, geospatial display in collaborative science, 

education, design, and group decision support  (Brodlie, 2005). 

As stated above, works with multidisciplinary efforts are important aspects to 

achieve these goals. In addition, it is important to develop and evaluate human-centered 

tools and methods for collaborative works that enhance effective human-computer 

interaction for better decision making.  

2.2.2.1.4. Human-centered approach. Another significant challenge is the 

incorporation of human-centered approaches to GVis methods and tools, which leads to 

the integration of technological advances of GVis and efforts in human spatial cognition 

and the potential of visual representations to enable thinking, learning, problem solving 

and decision making (Fabrikant & Skupin, 2005).  This is a field that is closely related to 

information visualization, whose goals is to provide compact graphical presentations and 

user interfaces for interactively manipulating large numbers of items, possibly extracted 

from far larger datasets. Plaisant (2005) proposed research challenges towards universal 

usability of information visualization tools: 

• Development of tools that can handle large volume datasets 

• Development of tools that are accessible to a wider group of diverse users 

From a GVis perspective, Slocum et al. (2001) proposed research challenges in 

the context of cognitive usability: 

• Development of geospatial virtual environments 

• Dynamic representation methods 
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• Metaphors and schemata in interface design 

• Difference in individual work and group work 

• Collaborative GVis 

• Evaluating the effectiveness of GVis methods 

GVis research topics are interrelated to each other since some of the challenges 

overlap with other research challenges that MacEachren and Kraak (2001) proposed. For 

example, research on spatialization has been utilizing the basic notions of geography — 

such as distance and scale — to understand the cognitive aspect in visualization 

(Fabrikant et al., 2004; Montello & Fabrikant, 2003) as well as the browsing ability of 

spatialized large datasets (Fabrikant, 2000). Classification of interactivity types in GVis 

and discussion on the benefits of those interactivity types provide insights for better user-

centered tools (Crampton, 2002). To understand the cognitive aspect of GVis tool users, 

evaluation of interactivity and visualization methods is important as well (Brewer, 1997; 

Dykes, 2005; Fabrikant, 2001; Fuhrman et al., 2005; Lobben, 2008; Tobón, 2005). In 

addition, there are needs for the development of both theories and applications for 

universal access and usability for geographic data, requiring new approaches and 

methods to support personalization of GVis tools for particular users and groups of users 

for GVis tasks (Brodlie, 2005; MacEachren & Kraak, 2001).  

Although GVis seeks tools and methods to find patterns and trends in data with 

visual exploration, computational methods are also useful to evaluate the results or 

findings from visual exploration. In the next section, Knowledge Discovery in Databases 

(KDD) focuses on computational methods in data exploration, which can complement 

GVis methods. 
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2.2.2.  Knowledge Discovery in Databases 

KDD is a strategy for analyzing large volume datasets that are stored in databases. 

It is defined as ‘the non-trivial process of identifying valid, novel, potentially useful, and 

ultimately understandable patterns in data’ (Fayyed, 1996). A need of techniques for the 

emerging large volume datasets – along with the improvement in information technology 

and subsequent development of monitoring techniques — accelerated the development of 

KDD (Miller & Han, 2009; Wachowicz, 2005). The purpose of KDD is to seek hidden 

information, trends, characteristics, or structure in the data and create knowledge based 

on the findings from the search process.  KDD was originally developed by several 

disciplines such as statistics, machine learning, pattern recognition, numeric search, and 

scientific visualization as an approach for exploring massive datasets that are too 

complex and difficult for human abilities to handle (Miller & Han, 2009).  Although data 

mining is the more popular word for knowledge discovery, KDD is a broader process 

than data mining.   

There are different descriptions of KDD process, including the nine-step process 

proposed by Fayyed (1996) as follows: 

• Developing an understanding of the application domain, the relevant prior knowledge, 

and the goal of the end-user 

• Creating a target data set: selecting a data set, or focusing on a subset of variables or 

data samples, on which discovery is to be performed 

• Data cleaning and preprocessing: operations such as noise or outlier removal, 

strategies for handling missing data fields, and so on 

• Data reduction and projection: finding useful features to represent the data depending 
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on the goal of the task 

• Choosing the data mining task: determination of the goal of KDD such as 

classification, regression, clustering, and so on 

• Choosing the data mining algorithm(s): choice of method(s) to be used to seek for 

patterns and trends in datasets 

• Data mining 

• Interpreting mined patterns, possible return to any of the steps above 

• Consolidating discovered knowledge: incorporating this knowledge into the 

performance system, or simply documenting it and reporting it to users. 

Although the process above suggests a linear process for KDD, KDD is an 

interactive process that often requires iterative tasks; therefore, KDD does not often 

follow a linear progression (Fayyad, 1996; MacEachren et al., 1999). The KDD tasks — 

such as segmentation, dependency analysis, deviation and outlier analysis, trend detection, 

generalization, and so on— are tied to specific methods — classification, clustering, 

querying, and so on: see Miller and Han (2009) and MacEachren et al. (1999) for more 

detailed descriptions of KDD tasks and methods.  

Data warehousing is a system that integrates data from several sources.  It 

contains large volume datasets that were collected from many different sources and is 

often maintained separately from the operational databases (Shekhar, Lu, Tan, Chawla, & 

Vatsavai, 2009).  The advantage of utilizing a data warehouse is to provide an integrated 

system of dispersed heterogeneous databases so that decision makers receive benefits 

from decision support tools that can provide aggregated and summarized data (Bédard & 



24 
 

Han, 2009). In short, the goal of data warehousing is to extract useful knowledge from 

massive and detailed data dispersed in heterogeneous datasets.  

Data warehousing technologies provide functionalities to manipulate datasets for 

data exploration. One of the common tools for summarization and integration of datasets 

is online analytical processing (OLAP). OLAP provides interactive functionality for 

multidimensional summarization of data with simple functions such as drill-down, drill-

up, and drill-across that are built into the data warehousing tools so that the user can 

explore multidimensional data at arbitrary granularity levels. 

The data cube is an effective OLAP method for summarization of highly 

multivariate data.  The data cube is an operator that allows the user to aggregate the data 

with all the dimensions that user needs.  Its extension to geographic data is known as the 

map cube. A map cube can handle all the geographic components of spatial data such as 

raster format, vector format, network component, reference systems, and so on (Shekhar 

et al., 2009).  

Although most KDD research focus on nonspatial data, advancement of 

technology enabled us to collect a large amount of complex and highly multidimensional 

geographic data, including spatio-temporal data, which has led to the development of 

geographic KDD methods (Andrienko, Andrienko, Fischer, Mues, & Schuck, 2006; 

Frihida et al., 2004; Mennis & Peuquet, 2003). In geographic information science (GISci), 

data mining and knowledge discovery techniques applied to explore spatial data are often 

called Geographic Knowledge Discovery (GKD).  

KDD methods for nonspatial data are not directly applicable to geographic 

information because of the data’s nature of high dimensionality, inherent spatial 
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dependency and heterogeneity, the complexity of spatio-temporal objects and rules, and 

its diverse data types (Miller & Han, 2009).  Geographic information usually has high 

dimensionality because it has its locational information, which needs at least two 

dimensions, as well as high levels of attribute information.  Second, spatial dependency 

represents the notion that attributes at proximal locations are more closely related to each 

other.  On the other hand, however, spatial heterogeneity derives from the uniqueness of 

geographic locations.  These characteristics are usually treated as something cumbersome 

in statistical analysis but they are useful information for exploring geographic phenomena.  

Third, it is more complex and difficult to handle spatio-temporal objects and relationships 

than handling nongeographic objects and relationships.  In addition, handling time in 

spatial entities is also a complex task (Hornsby & Egenhofer, 2002).  Fourth, since digital 

geographic datasets are stored in several different formats, such as vector and raster 

format, there is the need to create methods to handle different data formats at the same 

time for knowledge construction (Golledge, 2002).  

Spatial data mining is also a powerful technique to extract trends or 

characteristics from large volumes of geographic information.  It encompasses the 

application of computational tools to seek for hidden characteristics in spatial and 

temporal databases (Miller & Han, 2009).  In contrast to traditional data mining, spatial 

data mining focuses on the spatial aspects of the data such as locational information of 

individuals and sometimes the temporal aspects as well.  Common spatial data mining 

techniques include spatial segmentation, spatial clustering, spatial trend detection, 

geographic characterization and generalization, spatial outlier detection, and so on (see 

Miller & Han, 2009 for a more detailed description).  Studies have also been conducted 
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with activity diary datasets, such as text mining, that contain location, time, the type of 

activity, and the duration of activity (Kwan, 2000), and also with GPS-based datasets 

used to explore patterns in spatio-temporal human movements (Smyth, 2009).  There is 

also an effort to discover outliers in the data using distance as the geographic criteria for 

detecting outliers in individual trajectory datasets (Ng, 2001).   

The space-time cube is an extended approach of the map cube, especially for 

disaggregated spatio-temporal data.  It defines a graphic environment that allows the 

exploration of data from three axes; x and y axis as the representation of geographic 

space, and z axis as the time component (Kraak, 2003).  Space-time trajectories can be 

visualized after necessary data are queried from the databases and processed by the cube 

methods (Figure 2.4).  

 
2.2.3.   Integration of GVis and KDD 

It is clear that both GVis and KDD aim to find, relate, and interpret interesting, 

meaningful, and unknown patterns and relationships in complex and large datasets such 

as spatio-temporal datasets (Wachowicz, 2005). KDD research often claims the 

importance of visualization in the process. On the other hand, computational methods 

expand the capability of visual data exploration not only for map making, including 

automation, optimization of the workflow, and ability to easily vary design (Buckley & 

Hardy, 2007), but also deeper and better knowledge construction.   

Gahegan et al. (2001) proposed some research challenges for the integration of 

GVis and KDD in terms of data, system, visual techniques, modes of inference, and 

collaboration. In those research challenges, The International Cartographic Association 

(ICA) focuses on three issues, namely, the geographic properties of data, the construction 



27 
 

of knowledge, and visualization. First, designing useful visualization techniques for large 

volume and highly multivariate spatial and spatio-temporal data is an ongoing challenge. 

Representation of spatial and time components of data should be investigated. Second, 

since there is no universal language for geographic representation, better conceptual 

structures are required for computationally based geographical models. It is urgent to 

specify geographically oriented concepts to identify, and develop, a means of 

representing them in current GIS or database schema. A definition of computational and 

visualization methods to detect, observe, and communicate follows below. Third, it is 

important to create visualization environments that allow the user to interact with tools 

that construct meaning. The challenge here is to construct an environment that can 

seamlessly address all mining and knowledge construction activities (Gahegan et al., 

2001).  

Wachowicz (2005) proposed the GeoInsight approach for the integration of GVis 

and KDD — this is based on the framework of MachEachren and Kraak (2001). The 

GeoInsight concept defines integration in three levels: conceptual, operational, and 

implementational. The goals are as follows: 

• the conceptual level for defining the goals of a knowledge construction process; 

• the operational level for integrating the methods developed independently in each of 

the fields; 

• the implementation level for combining a variety of tools within a singular system 

environment. 

The conceptual level is used to define the goals of a knowledge discovery process. 

This is because unclear goals can lead to a choice of inappropriate methods in a 
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knowledge construction process. The goals based on a knowledge discovery process are 

related to the answers of the following questions: 

• What kind of spatio-temporal data is meant to be explored? 

• What particular kinds of outcomes are required from the process? 

• Who are the users interested in the knowledge construction process? 

The answers determine the kind of knowledge to be constructed and how the 

knowledge is constructed as well. In this conceptual level, no decision is made about the 

selection of data mining tasks or algorithms, nor about the choice of visual representation 

or visualization tools to be used. The main focus is to understand the prior experience and 

the goals of a user, and only after this can we define how the knowledge discovery 

process will be constructed. 

The operational level specifies appropriate methods, and combinations of 

methods, for achieving conceptual goals. In the GeoInsight approach, task analysis 

(Kirwan & Ainsworth, 1992) is utilized to support the task-method-operation concept. 

Tasks are the main stages of a KDD process. Methods define ‘how’ the tasks can be 

performed to achieve the conceptual goal. An operation is a statement of ‘what’ is to be 

accomplished by structuring a hierarchical or sequential organization of actions. The 

main goal of the task-method-operation concept is to facilitate the human-centered 

approach and enhance the interactive and intuitive properties in the knowledge discovery 

process.  

The implementation level deals with selecting the execution of algorithms to 

perform the data mining tasks, and also the operations to build effective visual 

representations and interactive forms. The main concern is to create an integrated 
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computer environment with the necessary components for data exploration for each user 

— the goal here is to integrate different functionalities into a single computer 

environment. 

The GeoInsight concept aims to develop a more complete integration between 

GVis and KDD, facilitating the development of a more flexible, interactive, and human-

centered knowledge construction process for spatio-temporal data. Spatio-temporal data 

and MOD are complex in structure and increasing in size, requiring robust methods and 

tools for data exploration, which is discussed in the next section. 

 
2.2.4.    GVis and KDD with MOD 

As stated in the introduction chapter of this dissertation, MOD are increasingly 

available due to the development of mobile devices. Many scientists have been proposing 

tools and methods for visualizing and analyzing MOD for better knowledge discovery. 

However, there are many issues that relate to the nature of MOD, such as data acquisition 

and storage methods, representation methods, computational methods to analyze MOD, 

and interface design for GVis tools. 

First, data acquisition methods and storage methods of mobile objects need 

careful attention in terms of data accuracy and efficient query functionality for further use 

of the data. Locational errors and locational uncertainty problem can affect the outcome 

of analysis, such as visualization, data mining, and statistics (Kuijpers & Othman, 2009). 

Since locational error always exists in the MOD collected by tracking devices, some 

researchers have proposed methods to mitigate the effects of errors from data acquisition 

methods (Laube, Duckham, & Wolle, 2008; Lee, 2004; Nittel, Duckham, & Kulik, 2004). 

In addition, MOD often have missing observations due to limitations in tracking 
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techniques, resulting in the requirement of assessment or interpolation of locations at the 

missing time periods (Moreira, Ribeiro, & Saglio, 1999; Wentz et al., 2003), as well as 

noise reduction methods by mathematical approaches (Neutens et al., 2007; Okabe et al., 

2006) or by explicit database representation (Jonsen, Myers, & Flemming, 2003; Pfoser, 

Jensen, & Theodoridis, 1999). Of equal importance are database design and data storage 

techniques for MOD; this is because of its nature to change position and shape according 

to time (Pfoser, 2002; Song & Roussopoulos, 2001; Wolfson, Xu, Chamberlain, & Jiang, 

1998). 

Database design for mobile objects is also important. One of the major actions for 

databases — querying — plays an important role for aggregation and summarization of 

MOD (Wolfson et al., 1998). Efforts on the development of mobile object databases 

(Güting, 2005), and indexing methods for mobile objects (Pfoser, 2002), have led to the 

fast and efficient extraction of useful information from the database for further usage on 

MOD, such as representation modeling and computational analysis. 

A second research trend in MOD is data representation methods. Representation 

of MOD is tightly connected to database design since the visualization of data is tied to 

the structure of data. One of the major approaches for MOD representation is time 

geography, which was introduced previously in this chapter. Miller (2005c) extended the 

theoretical framework of Hägerstrand (1970) so that it can be utilized analytically. 

Similar approaches with the concept of time granularity have been developed in order to 

query and visualize mobile objects with arbitrary time resolution, which expands the 

possibility of exploratory data analysis (Erwig, Guting, Schneider, & Vazirgiannis, 1999; 

Hornsby & Egenhofer, 2002). Hendricks et al. (2003) applied the data representation 
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method by Hornsby and Egenhofer (2002) to model wayfinding behavior. Other efforts 

of modeling mobile object are application-specific simulations (Bian, 2004; Westervelt & 

Hopkins, 1999). 

Third, geocomputational techniques are essential to find patterns, trends, and 

relationships in large volume and complex datasets of mobile objects. Geocomputational 

techniques focus on specific tasks, such as cluster detection and outlier detection, while 

interactive visualization tools rely on the user’s ability to detect patterns (Dykes & 

Mountain, 2003; Huang, Chen, & Dong, 2008; Imfeld, 2000; Laube, Dennis, Forer, & 

Walker, 2007). Geocomputational methods often utilize characteristics of mobile objects 

that can be calculated from data – such as direction, speed, sinuosity, and so on 

(Hendricks, Egenhofer, & Hornsby, 2003). In addition, algorithms to detect similarity 

and dissimiliary between mobile objects also detect nominal patterns or outliers in the 

movements (Cheng & Li, 2006; Ng, 2009; Shirabe, 2006). Computational methods such 

as Self-Organizing Maps (SOM) are utilized to visually uncover patterns of interaction in 

movements (Skupin, 2008; Yan & Thill, 2005). SOM is also a useful approach to 

summarize MOD with many variables, such as demographic data visualized in a two-

dimensional view (Skupin & Hagelman, 2005). Moreover, topological relationships 

between mobile objects have been proposed to store spatial partition information for 

these data (Tøssebro & Mads, 2004), leading to better organization of MOD. Other 

methods include fractal analysis and random walk analysis for pattern detection of animal 

and insect movement (Bascompte & Vila, 1997; Kareiva & Shigesada, 1983; Nams, 

2005; Whittington, Clair, & Mercer, 2004), pattern detection by applying methods to 

abstract the movement data (Hornsby & Cole, 2007), development of queries for pattern 
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detection (Mousa & Rigaux, 2005; Sistla, Wolfson, Chamberlain, & Dao, 1997) and 

human interaction possibility analysis (Yu, 2006). Computational and visual techniques 

are often incorporated into GVis tools that enable interaction with the user of those tools 

by providing more functionality for data exploration. 

Fourth, GVis tools for mobile objects provide opportunities to visualize and 

analyze MOD in order to find patterns, trends, and relationships. Tools also provide 

flexibility of analysis (interaction) so that the user of tools can manipulate the 

functionality of tools, such as visualization methods, parameter settings for 

computational methods, and so on. Many tools incorporate interactivity and capability to 

incorporate large volume individual-based spatiotemporal datasets (Buliung & 

Kanaroglow, 2004; Kapler & Wright, 2004; Shaw, Yu, & Bombom, 2008). For example, 

decomposition of data with specific characteristics of mobile objects such as direction, 

speed, and so on is utilized to detect similarity or dissimilarity between mobile objects 

(Andrienko & Andrienko, 2008; Dykes & Mountain, 2003; Laube et al., 2005). 

Most tools consist of both visualization components and KDD components in 

order to enhance the interactive properties for better data exploration (Andrienko & 

Andrienko, 2008; Wood et al., 2005). Concurrent development of a number of methods 

and techniques to analyze MOD, as explained above, leads to a deeper understanding of 

individual-based mobile objects movement in space and time (Andrienko & Andrienko, 

2007; Mountain, 2005; Yu, 2006). Although these tools suggest the importance of 

interactive properties and analytical functionalities of GVis tools, there is no standard 

agreement about effective methods for visual exploration and pattern detection process. 

Moreover, these tools are not yet applicable to group work in GVis, which is one of the 
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major challenges for GVis. 

In this dissertation, one of the main objectives is to develop an interactive GVis 

toolkit that will provide high levels of user interaction to explore MOD. The toolkit 

focuses on detecting similarities between individual mobile objects, and the user can 

change the settings of several parameters, facilitating deeper explorations of datasets. The 

toolkit in this dissertation also links the summarized and visualized trajectories to data 

mining techniques. The toolkit in this research can have applications such as 

transportation, epidemiology, and evacuation planning. As an example, the next section 

describes a major application area, namely, activity-based analysis in transportation.  

 
2.3. Activity-based Analysis 

Recent decades witnessed a new wave in travel demand analysis in transportation 

research. Through the so-called ‘activity-based’ approach, which focuses on individual 

activities, scheduling and spatial choices started receiving attention as a method to 

overcome the shortcomings of conventional transportation analysis – the Urban 

Transportation Modeling System (UTMS), or four-step models. In the late 1950s, four-

step models were the dominant mode of travel demand modeling at the level of the traffic 

zones, especially traffic analysis zones (TAZ), indicating that four-step models treat 

traffic zones as aggregate collections of individuals. Four sequential steps generate the 

estimated travel demand: trip generation, trip distribution, modal split, and trip 

assignment. Although this four-step model has been widely accepted and used, the major 

drawback of these models is the lack of behavioral content (Wang & Cheng, 2001).  

Activity-based analysis exploits characteristics of disaggregate-level information. 

It receives attention as an approach to overcome shortcomings in the four-step approach 
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towards better travel demand prediction. First, the activity-based approach focuses on the 

decisions of individuals and households for specific activities. The information required 

is where, when, how, for how long, and with whom such activities will occur (Frihida, 

Marceau, & Theriault, 2004). Second, dynamic representation of individual-based travel 

demand modeling is essential in order to incorporate the activities that occur at different 

locations and different times: four-step models are static. Each vehicle simultaneously 

appears on the road network, ignoring the realistic space-time conditions (McNeally, 

1998). Thus, there is much research on the integration of the activity-based approach and 

Geographic Information Systems (GIS), since GIS can incorporate a time component in 

activity modeling, for which the efforts have just begun. Third, it is important to 

incorporate interdependencies among these decisions as well as interdependencies 

between household members. Linkage between activities and individual people often 

occur in daily lives. For example, people may add another unplanned activity between 

two planned activities  — a person may stop by a coffee shop for a few minutes. Another 

example is that people suddenly change their schedules due to unanticipated incidents. 

The activity-based approach attempts to incorporate these factors in the sequence of 

activities, and the interaction among individuals, while a conventional four-step model 

does not. The characteristics of both an activity-based approach and a conventional 

modeling approach, proposed by McNeally (1998), are listed in Table 2.1. The activity-

based approach is more applicable to the recent social and urban trends, such as nucleus 

and single-parent families, urban sprawl, the rising number of personal vehicles, the 

information-based economy, globalization, telecommuting, and environmental concerns 

(Frihida et al., 2004).  
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Although the activity-based approach has shown the potential toward better travel 

demand modeling, there are diverse issues to be addressed. According to Pas (1995), they 

are: 

• demand for activity participation; 

• activity scheduling in time and space; 

• spatial-temporal, interpersonal, and other constraints; 

• interactions in travel decisions over time; 

• interactions among individuals; and 

• household structure and roles. 

Wang and Cheng (2001) classified the existing activity-based studies. One trend 

is to examine observed activity and travel behavior empirically. The purpose is to 

formulate hypotheses about activity and travel behavior. Indices, such as Representative 

Activity Pattern (RAP), reveal the overall patterns of activity decisions in order to 

acquire more detailed and accurate travel trips (McNeally, 1998). Other studies examine 

one of the aspects of activity-based analysis such as interaction and scheduling (Bowman 

& Ben-Akiva, 2001). KDD and GVis are also key strategies to find patterns in travel 

demand survey data (Frihida et al., 2004). A single approach cannot lead to the 

understanding of individual activity and travel behavior, requiring more focus on the 

examination of characteristics in the activity-based approach to the development of 

efficient activity-based models. 

Another trend is the development of activity-based models. These models aim to 

incorporate individual-based activities and travel behavior into a framework that can 

predict human activity and travel patterns in a more flexible way, reflecting schedule 
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changes in  the travel environment (Wang & Cheng, 2001). This stream of studies relates 

to the approaches in time geography where time geographers attempt to create methods 

representing space-time behavior of individuals for further analyses (Miller, 2005c; Yu, 

2006). Incorporation of time in an activity-based approach with the integration of GIS 

framework is critical even though current GIS is still inadequate in handling data analysis 

of flows, complex movements, and temporal changes (Goodchild, 2000; Shaw & Wang, 

2000). The relational database approach to develop queries for activity-based analysis 

succeeds in handling spatio-temporal data of travel behavior to some degree; however, its 

complexity and high computational burden are still under consideration (Frihida et al., 

2004). Some studies proposed an object-oriented paradigm to tackle this issue, adding 

more flexibility in the modeling process in that the models consist of several entities such 

as people, activity, trip, activity plan, and activity scheduling (Frihida et al., 2004). In 

addition to the issue of incorporating time into activity-based analysis, the volume of the 

activity-data is also a great challenge because the amount of information in activity-based 

analysis is often large. Development of tools and methods to handle large volume 

datasets is another issue in the modeling process (Buliung & Kanaroglou, 2004).  

Findings in this dissertation can contribute to studies of the activity-based 

approach by providing useful information and knowledge about individual-based spatio-

temporal movements. Collaboration of GVis, KDD and activity-based modeling can lead 

to the development of more efficient and robust models and tools for activity-based 

approaches.  
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2.4. Summary 

Research fields introduced in this chapter have significant roles in understanding 

the movements, activities, and relationships of mobile objects. Time geography can 

provide a useful framework for conceptualizing and analyzing mobile objects. KDD and 

GVis provide tools to uncover patterns and trends in the datasets in an exploratory 

manner. The next chapter introduces the interactive visualization tool in this research. 

Many interactive properties with visualization methods enhance the flexibility of visual 

exploration for effective knowledge construction. 
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Figure 2.1. Space-time path. 

 
Figure 2.2. Space-time prism. 
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Figure 2.3. A general space-time prism. 

 

 
Figure 2.4. Space-time cube. 
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Table 2.1. Characteristics of activity-based analysis and conventional model process. 

Characteristics of Activity-based Approach Characteristics of Conventional 

Model Process 

Travel is based on activity participation of 

individuals and households. 

Trip-based versus activity-based. 

Activity participation involves generation, 

spatial choice, and scheduling. 

Unlinked daily household trip 

generation rates applied with zonal 

demographics to expand to zonal 

trip-ends. 

Activity and travel behavior is delimited (or 

even defined) by constraints. 

Distribution of unlinked trip ends 

accomplished via aggregate 

interaction models with general 

network impedances. 

Linkages exist between activities, locations, 

times, and individuals. 

Conventional 4-step process 

models network-level traffic 

effects via static assignment. 

Alternate decision paradigms are probable All disaggregate spatial and 

temporal information (chaining 

and time-of-day) is lost. 

 



 

 

 

3   METHODOLOGY 

 
3.1.     Overview 

This chapter describes the methodology of this dissertation. The discussion 

consists of five sections that explain the functionalities of the visualization toolkit 

developed in this dissertation: 1) vector algebra; 2) time aggregation methods; 3) 

similarity functions; 4) data summarization; and 5) data mining. This dissertation 

develops a highly interactive graphical user interface (GUI) for exploratory spatial data 

analysis (ESDA) of mobile objects, which aims to propose methods to analyze individual 

and collective mobility patterns of mobile object data that have been produced at a 

tremendous rate on a daily basis.  

First, vector algebra is a simple and less computationally expensive method to 

draw and visualize trajectories of mobility data. Fast rendering of trajectory visualization 

facilitates a smooth and more interactive environment of exploratory data exploration 

with the GUI software. In addition, due to its simplicity, vector algebra is efficient at 

visualizing a massive number of mobility data at once, which also enhances the fast and 

smooth interaction between the visualization toolkit and the users. 

Second, time aggregation methods allow exploration at different levels of 

movement generality: the user of the tool can explore mobility data with the temporal 

scale of their interest. Temporal granularity is a critical parameter for visual data 

exploration as well as data mining and statistical analysis, since it can cause substantial 

differences in the results of visualization and analysis (Hornsby, 2001). In addition, since 
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spatial as well as temporal information are essential components of mobile object data, 

data exploration with arbitrary spatial and temporal scales have a potential to provide 

new insights and findings that lead to the development of geographic theories and models.  

Third, by using time aggregation methods at a given level of generality, 

individual trajectories can be combined into synthetic summary trajectories or classified 

into groups based on locational, directional, and geometric similarity. The degree of 

similarity required to detect similar mobility patterns is left to the user of the toolkit, 

which is another interactive property in data exploration. In addition, summarizing 

massive mobility data is efficient because mere visualization of large volume mobility 

data becomes so cluttered that it is hard to identify any obvious patterns and trends in 

space and time among the individuals. Therefore, the summarized space-time trajectories 

can help overcome the problem and facilitate the search for patterns and trends hidden in 

large mobility datasets (Shaw, Yu, & Bombom, 2008).  

Fourth, data summarization methods provide summary information for visualized 

trajectories that are queried and analyzed by the data aggregation methods. This 

component is related to confirmatory statistical analysis in geography. In particular, 

directional statistics are utilized to summarize the visualized mobility data that 

complements the visual exploration. A GUI screen provides directional statistical 

information such as the number of trajectories, average velocity of trajectories, and 

average direction of trajectories. In addition, axis conversion – another interactive 

property in the visualization toolkit – allows the user to explore the data from different 

viewpoints. The main screen in the toolkit displays trajectories using x and y coordinates, 

which represents the two-dimensional space, and the third axis – time, which is denoted 
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as t. The user can choose two of three axes, namely, x, y, and t, to visualize trajectories in 

a three-dimensional view.  

Fifth, the functionality to export mobility properties to data mining analysis is 

also added to the toolkit, which is an attempt to integrate the geovisualization approach 

and knowledge discovery in databases approach. Geometric similarity information that is 

produced by one of the similarity functions explained above is examined to explore the 

spatial and attribute information of mobility data. This dissertation focuses on decision 

tree analysis as a means of discovering significant properties of trajectories to explain the 

detected patterns.   

Several techniques enhance the interactive properties of the visualization toolkit. 

C# programming language is the main language to develop the toolkit. In addition, 

Microsoft SQL Server 2005 provides the functionality for data storage and query, which 

manages the transactions between the interface and the database. The sections below 

explain each component of the visualization toolkit in detail.  

 
3.2.     Vector Algebra 

Data exploration of large volume datasets requires simple and fast visualization 

techniques so that users of the toolkits can explore the data smoothly and easily. This is 

because the visualized trajectories must be updated and redrawn frequently whenever the 

user changes parameters in the toolkit. Therefore, a simple and straightforward method to 

represent the space-time path is essential. In addition, the toolkit should be able to easily 

calculate several values that characterize MOD, such as direction, distance, magnitude, 

and so forth to provide information including directional statistical information and the 

outputs for data mining. This functionality gives us more options for exploratory data 
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analysis because those values have the potential to explain and represent the overall trend 

in movement of the mobile objects (Shirabe, 2006).  

Vector algebra is a very simple line geometry that contains essential components 

for mobile objects, such as length, direction, start point, and end point. It is a collection of 

two-dimensional vectors that contain an x coordinate and y coordinate of each observed 

location. The toolkit delineates trajectories as either a straight line or a polyline of 

connected vectors (Figure 3.1) based on temporal, spatial, and shape aggregation 

methods that are explained in the next two sections.  

 
3.3.     Aggregation Methods 

This dissertation develops time aggregation and similarity measures to enhance 

the discovery of multiscale patterns in MOD. The time aggregation methods allow the 

user to state a time interval of interest and a time granularity within that interval to 

reconstruct individual trajectories at different levels of movement generality.  Given 

these reconstructed trajectories, the user can apply similarity measures to aggregate 

individual trajectories based on location and geometry to generate synthetic trajectories 

that reflect collective movement patterns at the selected scale. The following sections 

explain the details of each component.  

 
3.3.1. Time Aggregation Methods 

Since the resolution of time in spatial objects can cause substantial differences in 

the results of visualization and analysis (Hornsby, 2001), it is a critical parameter for 

visual data exploration as well as data mining and statistical summarization. This 

temporal resolution is often called time granularity. Adding functionality to change time 
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granularity gives us the possibility to explore the data at different time scales. 

Visualization with coarse time granularity is more appropriate to explore broad scale 

movement while visualization with refined time granularity is more suitable for detailed 

movement of the mobile objects. This indicates that time granularity can affect the 

visualization results of the movement of the mobile objects dramatically (Hornsby & 

Egenhofer, 2002). Although Hornsby and Egenhofer (2002) presented a conceptual 

model for this issue, there are few practical methods available for mobile objects.  

In this research, two time components determine time granularity in order to 

aggregate the trajectories of mobile objects; time range and time interval (Figure 3.2). 

Time range is the time period that is queried from databases and visualized. For example, 

if the user wants to visualize parts of trajectories for the time between 10:00 a.m. and 

11:00 a.m., then ‘one hour’ is the time range. On the other hand, time interval is the time 

granularity, the minimum time unit that divides time range equally. For example, if the 

time range is 1 hour and the time interval is 10 minutes, the number of time stamps is six. 

Time range determines the scale of the visualized time period and time interval works as 

a variable of time granularity.  

The user can change these two time parameters for data visualization and 

exploration. Assume the actual trajectories from the database as in Figure 3.2-a. As the 

time interval increases, the three trajectories become exactly the same, as shown in 

Figure 3.2-c. This occurs because the three trajectories start and end at a similar origin 

and destination. This example shows the impact and importance of selecting an 

appropriate time resolution for visual data exploration.  
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3.3.2. Similarity Functions 

In addition to the capability of exploring time components, aggregation methods 

with respect to spatial similarity functions and shape similarity functions measure the 

similarity of trajectories. They are locational similarity, directional similarity, and 

geometric similarity. The similarity functions aggregate some trajectories before 

visualization. Each similarity function returns a value that represents the similarity of two 

or more trajectories. The user of the toolkit manually determines the threshold value to 

detect similar trajectories so that the degree of aggregation is left to the user: this is 

another interactive property of this visualization toolkit.  

Once the similarity functions calculate the similarity index values, a density-based 

clustering method, DBSCAN (Density-Based Spatial Clustering of Application with 

Noise) (Han & Kamber, 2006), algorithm discovers the clusters of trajectories – these 

clusters determine the number of groups that contains more than two trajectories that are 

similar to each other. DBSCAN is a hierarchical clustering method that discovers clusters 

with arbitrary shapes. This method is described below.  

 
3.3.2.1.Locational Similarity  

This function measures the locational difference between two trajectories, 

quantifying the similarity of two trajectories in terms of the spatial component. It enables 

the user to aggregate the trajectories that are close to each other. One method is to 

calculate the Euclidean distance between two locations of mobile objects at the same time 

stamp (Steiner et al., 2000). In addition, the technique of Spectral Angle Mapper (SAM) 

has potential to measure the locational difference in the sequence of time (Dennison, 

Halligan, & Roberts, 2004). Another example is to apply clustering analysis to create 
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generalized space-time paths (Shaw, Yu, & Bombom, 2008). This research utilizes the 

Euclidean distance method proposed because of its simplicity: 
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where x and y are coordinates of nodes of the trajectories, a and b are the identifiers of 

trajectories, i is the order of the nodes, di is distance between the node of trajectory a and 

the node of trajectory b, and n is the number of nodes. Since the number of nodes in each 

trajectory is same, which is defined by time range, the locational difference in distance at 

each time stamp is measured (Figure 3.3). The sum of the distances is the locational 

distance, which is D(a,b). If D(a,b) is zero, it indicates that two trajectories are exactly same.  

Once calculation of the similarity values for pairs of trajectories is complete, a 

density-based clustering method DBSCAN discovers the clusters of trajectories. The user 

changes the value of D(a,b) – the threshold value – for data exploration. The DBSCAN 

algorithm calculates a D(a,b) value for each pair of trajectories and if more than two 

vectors are similar, the algorithm combines those two vectors into one vector. The 

location of the aggregated vector is the average location of the two trajectories (Figure 

3.4, Figure 3.5).  

In the example of Figure 3.5, locational aggregation of two trajectories A and B 

are represented. The calculation for more than three trajectories is as follows; 
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where Ai represents vectors for trajectories that contain timestamps, C is the vector for 

the aggregated trajectories, ia1  through i
na  are each timestamps of the ith trajectory of Ai, 

c1 through cn are each timestamps of C, and n is the number of trajectories to be 

aggregated.  

Figure 3.4 illustrates this aggregation process. In Figure 3.4-b, there is one cluster 

with two vectors aggregated into one vector, visualized as a wider trajectory (Figure 3.4-

c). This aggregation makes visualization clearer so that the trends of mobile objects can 

be detected intuitively.  

 
3.3.2.2. Directional Similarity 

Another measure of similarity is the direction of each trajectory. Directional 

statistics measure the similarity among trajectories. Directional statistics are a collection 

of methods to discover the trends with respect to direction. Several research fields such as 

the wind direction analysis (Klink, 1998) and ecological field surveys (Cain, 1989) utilize 

this method. Directional statistical measurements such as mean direction, variance, and 

mode direction provide the overall tendency and variability of directional trends of the 

datasets (Klink, 1998).  

Furthermore, there are two different directional models in directional statistics, 

namely, the cardinal directional model and the egocentric model (Klippel et al., 2004). 
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The cardinal directional model describes directions used mainly in cartography such as 

north, south, east, and west; it is an objective view, or absolute view, to define the 

direction. In contrast, the egocentric directional model describes an individual object’s 

heading based on directions such as straight, left, right, back, and so on, which provides 

object-centered directional information. As is obvious in Figure 3.6, these two directional 

models provide different outputs even when the dataset is same. 

This research utilizes both cardinal direction and egocentric direction – the user of 

the toolkit can choose either of the directional approaches. The directional statistical 

approach classifies trajectories and highlights the trajectories in the same group in the 

same color. The average cardinal direction of each trajectory is the sum of the degrees at 

each segment between one timestamp and another timestamp (Figure 3.6). This requires 

two steps. First, each segment of a trajectory converts itself to be a unit vector to extract 

the directional information only. Second, the algorithm calculates the sum of all of the 

unit vectors. The degree of the summed vectors is the average cardinal direction. On the 

other hand, the algorithm calculating the average egocentric direction uses two segments 

from two contiguous timestamps of a trajectory, calculating the change in direction from 

the first segment to the second (Figure 3.7). This sum is the average egocentric direction.  

Directional statistics help to see the similarity of directions of vectors. After 

classifying vector directions in several groups, the vectors in the same group will be 

rendered in the same color. This functionality extends the range of data exploration to 

examine directional trends and spatial distribution of vectors. 
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3.3.2.3. Geometric Similarity  

The third and last measure of similarity is the geometry of mobile objects. 

According to Vlachos et al. (2002), there are several issues involved in measuring 

geometric similarity. They are as follows: 

• Different sampling rates or different speeds 

• Similar motions in different locations 

• Outliers 

• Different lengths 

• Efficiency 

The first issue relates to the sampled data. There may be some missing portions of 

the data in sampling, leading to an inconsistent sampling rate (Vlachos, Kollios, & 

Gunopulos, 2002). Moreover, the speed of one mobile object can be faster than another 

one. The similarity function, therefore, has to deal with the missing values or inconsistent 

speeds. The second issue refers to the fact that the geometry may be similar but the 

locations of two or more mobile objects are different, i.e., one trajectory may be a simple 

displacement of the other. The similarity function should be consistent regardless of the 

locations of mobile objects. The third issue deals with outliers. Anomalies in the sensors 

of location-aware devices or human failure can cause this problem. If there are some 

outliers, some measures may return extreme values, even though there are only a few 

outlier observed locations (Vlachos et al., 2002). The fourth issue, length of the mobile 

objects, is a problem that relates to scale. Even though the geometry of mobile objects is 

similar, their scale might be different due to differences in trajectory lengths. Therefore, 

the similarity function should be a scale-free function, so that it can calculate the 
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similarity of mobile objects with different scales. The fifth issue is the efficiency of the 

similarity function. The similarity function has to be adequately expressive but 

sufficiently simple, so as to allow for efficient computation.  

There has been much research to cope with these challenges. This includes 

Dynamic Time Warping (DTW) (McIntosh & Yuan, 2005) and the Longest Common 

Subsequence (LCSS) method (Vlachos et al., 2002). DTW focuses on the most dissimilar 

parts of the objects, resulting in high sensitivity to noise in the data. On the other hand, 

LCSS considers the common portions of the objects. In spatio-temporal analysis, DTW 

stretches portions of the sequences to compare transition of locations along the temporal 

axis, so the dominant features, patterns of high and low values, are optimally aligned 

(McIntosh & Yuan, 2005). Since one of the trajectories always has its location so that the 

two trajectories overlap each other for calculation, it is not suitable for large volume 

datasets because it is computationally expensive.  

There are some other techniques to tackle the issue of measuring similarity: 

fractal analysis and shape-based analysis for time-series datasets (Kim, Yoon, Park, & 

Kim, 2002). Analysis of the movements of animals and insects often use fractal analysis 

(Bascompte & Vila, 1997; Turchin, 1996; With, 1994). In addition, although the latter 

kind of research deals with shape-based retrieval, it only deals with time-series analysis 

for non-spatial data, such as stock data – it is not applicable to mobile objects.  

Another method to extract geometric similarity is to integrate multiple indices of 

the object of interest. The combination of characteristics derived from the spatial or 

spatio-temporal objects generates new perspectives for pattern detection in data. For 

example, McIntosh and Yuan (2005) developed six indices that characterize spatio-
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temporal objects. They applied the DTW method to temporal sequences of the six indices 

to examine the similarity among spatio-temporal events. Another example is Wentz 

(2000) that proposed three indices to identify and differentiate one spatial object from 

others. Identification and differentiation of spatial objects based on indices of their shape 

provides more flexibility to measure shape since those indices address the specific 

definition of shape.  

This research proposes a geometric similarity function with five indices that 

characterize the trajectory of a mobile object. This geometric similarity function requires 

three steps: calculation of five indices, conversion of the trajectory into a single point in 

an attribute space, and measurement of similarity with a simple distance function. First, 

the function extracts five characteristic values of trajectories. They are sinuosity, 

direction, velocity, locality, and spatial range. All five indices are essential since a single 

index cannot differentiate one trajectory from others. Second, the five indices transform 

the trajectory from a polyline into a single point in an attribute space. The attribute space 

has five dimensions corresponding to each index, which simplifies the representation of 

trajectories. Third, the geometric function calculates the Euclidean distance between two 

points: this distance represents the similarity or dissimilarity of trajectories. Figure 3.8 

illustrates this in a three-dimensional space for clarity. 

If Dg is zero, it indicates that two trajectories are exactly the same in terms of 

geometry. In the toolkit, minimum Dg values can be set by the user as the threshold value 

to detect groups of similar trajectories for aggregation. Movements of mobile objects that 

are similar to each other are rendered in the same color in the visualization (Figure 3.9).  
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Since this similarity function remains unaffected by differences in location, scale, 

and the length of travel, this method of calculating geometric similarity can resolve some 

of the research challenges stated above. Moreover, this method is simple and efficient 

because the basis of this calculation is to measure the Euclidean distance among points 

that represents trajectories. The calculation of five indices is also computationally 

efficient. The following sections describe the five indices.  

3.3.2.3.1. Sinuosity. Sinuosity measures the winding nature of the movement. It 

is the ratio of the total length of the trajectory and the Euclidean distance between the 

origin and destination. Therefore, the definition of sinuosity is: 

 

p

E

d
dS =       (3.3) 

 
where S is the sinuosity, dp is the total length of the trajectory and dE is the Euclidean 

distance between the origin and the destination. If the trajectory is a straight line, the 

value of S will be one, indicating the trajectory is not sinuous at all. If the origin and the 

destination are the same location, sinuosity value is zero. The lower the value is, the more 

sinuous the trajectory. The minimum value of this measure is zero and the maximum 

value is one.  

3.3.2.3.2. Direction. This is the egocentric direction discussed in the section on 

directional similarity. Average egocentric direction indicates where the mobile objects 

are heading as a whole from an object-centered view of the mobile object. Calculation of 

directional property a trajectory is: 
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360
DDirection=      (3.4) 

 
where D  is the average direction of a trajectory. The value of Direction ranges from zero 

to one since the value of egocentric direction is normalized.  

3.3.2.3.3. Velocity. Velocity indicates how fast a mobile object moves during the 

time period relative to the maximum velocity in the dataset. Definition of velocity of each 

trajectory is as below: 

 

maxV
VVelocity =      (3.5) 

 
where V is the average velocity of a trajectory, and Vmax is the velocity of one of the 

fastest paths in the sample. This value ranges from zero to one. If the value is close to one, 

it suggests that the object is moving faster over space relative to the sample.  

3.3.2.3.4. Locality. Locality is the ratio of the distance between the origin and the 

destination, and the distance between the origin and the farthest location from the origin. 

This measure provides information on how far a mobile object moved from the origin in 

the whole movement of a trajectory relative to the origin-destination distance (Figure 

3.10). This could help distinguish between different types of movements such as 

purposeful trips and leisurely tours. It can also distinguish trips that begin and end at the 

same location from ones that do not. In detail, it represents how far the objects moved 

from the origin compared with the distance between origin and destination: 
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where LOD is the Euclidean distance between the origin and the destination, and LOF is the 

distance between the origin and the farthest recorded location from the origin. If the value 

is smaller, it indicates that the locations of the origin and the destination are close to each 

other, and vice versa. As for the cases of other indices, this value ranges from zero to one.  

3.3.2.3.5. Spatial range. Spatial range measures the spatial extent of the 

movement. This measure tells how much space is covered by a trajectory. The value is 

the area of a convex hull that contains a trajectory divided by the area of the convex hull 

that contains all the trajectories that spread all over the study area. The definition of 

spatial range is as follows: 

 

all

path

A
A

RangeSpatial =     (3.7) 

 
where Apath is the area of a convex hull that contains an individual trajectory (Figure 3.11) 

and Aall is the area of a convex hull that contains all the visualized trajectories (Figure 

3.12). The value ranges from zero to one since this value is normalized by the area that 

contains all the trajectories. Therefore, for example, if the trajectory is a straight line, 

Apath is zero; if Apath is as large as Aall, the value is one. A spatial range closer to zero 

indicates that the trajectory covers relatively little territory, while a spatial range closer to 

one indicates a more expansive territory for the object.  A convex hull provides a 

relatively accurate measure of spatial range (relative to other measures such as the 

minimum bounding rectangle) with reasonable computational cost.  The Graham scan 
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algorithm has the worst-case time complexity of 0(n log n); this is scalable (Sedgewick, 

1990).  

3.3.2.3.6. Clustering algorithm for similarity measures. Trajectories that are 

considered to be similar to each other are aggregated based on a clustering method. The 

trajectories in one cluster are considered to be trajectories with similar characteristics in 

either location, direction, or geometry. In the locational similarity function, the average 

distance between two trajectories is calculated: the two trajectories are aggregated if the 

average distance is smaller than the clustering threshold, which is defined by the user of 

the toolkit. In directional and geometric similarity functions, the trajectories are 

considered to be in one cluster (or similar movement group) if the directional value or 

geometric similarity value is smaller than the clustering threshold. The clustering 

algorithm used in this toolkit grows clusters according to a density-based connectivity 

analysis – it is called a density-based clustering method (DBSCAN) (Han & Kamber, 

2006).  The DBSCAN procedure is as follows: 

• The neighborhood within a radius ε  of a given object is called the ε -neighborhood 

of the object. 

• If theε -neighborhood of an object contains at least a minimum number, MinPts, of 

objects, then the object is called a core object (Figure 3.13). 

• Given a set of objects, D, we say that an object p is directly density-reachable from 

object q if p is within theε -neighborhood of q, and q is a core object. 

• An object p is density-reachable from object q with respect toε  and MinPts in a set of 

objects, D, if there is a chain of objects p1, …, pn, where p1 = q and pn = p such that 

pi+1 is directly density-reachable from pi with respect toε  and MinPts, for ni≤≤1 ,
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Dpi ∈ . 

• An object p is density-connected to object q with respect toε  and MinPts in a set of 

objects, D, if there is an object Do∈  such that both p and q are density-reachable 

from o with respect toε  and MinPts (Figure 3.14). 

This dissertation customizes DBSCAN in three ways. First, the distances for 

finding neighbor points are the values calculated between pairs of trajectories by three 

similarity functions (location, direction, and geometry). For example, the locational 

similarity function calculates the average difference in location between two trajectories. 

In this way, the value of locational similarity between two objects is the distance to be 

used in DBSCAN. Second, ε , one of two parameters to run the algorithm (MinPts and 

ε ), is a user-defined value – as stated above, these two parameters are arbitrary values in 

DBSCAN and affect the results dramatically. ε  is the threshold value to detect similar 

trajectories: the user can try arbitrary values to explore similarity. In data exploration, the 

user may not know the appropriate values for this threshold value ε . Thus, simple 

statistical values – maximum x coordinate value, minimum x coordinate value, maximum 

y coordinate value, minimum y coordinate value – are provided for the data to help guide 

the user. On the other hand, the algorithm in this research sets MinPts as one by default, 

indicating a cluster can be created by at least two objects – even a pair of trajectories that 

are similar to each other can be a group. Third, another parameter is utilized in DBSCAN 

in this research – maximum searching radius, MaxE (Figure 3.15). This MaxE determines 

the farthest distance to generate clusters from core objects – it is set as a double value of 

ε  by default. The shape of clusters is constrained by this parameter to include objects 

that are within MaxE in one cluster. These parameters, with a combination of similarity 
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functions that are explained in next three sections, provide the interactivity of the 

visualization toolkit in this research. 

The DBSCAN algorithm requires parameters, the radius ε  and MinPts, to be 

determined by the user of the algorithm. This is regarded as a disadvantage of DBSCAN 

in comparison with other density-based clustering methods such as OPTICS (ordering 

points to identify the clustering structure) of which the algorithm determines those 

parameters, and DENCLUE (clustering based on density distribution functions), which 

requires a set of density distribution functions that require longer computation. However, 

since ε   is the threshold value of similarity functions in this dissertation, this parameter 

can be left as a user-defined parameter, which fits perfectly with the purpose of this 

dissertation.  The parameter MinPts is set at two because this is the minimum number of 

trajectories that are considered to be in one cluster. DBSCAN algorithm is the most 

appropriate clustering method for this dissertation.  

 
3.4.     Data Summarization 

Data summarization methods provide summary information of the visualized 

trajectories in the toolkit. There are two components for the summarization methods – 

directional statistics and axis conversion. Directional statistics provides overall statistical 

information about the trajectories while axis conversion allows the user of the toolkit to 

visualize the data from different viewpoints.  

 
3.4.1. Directional Statistics 

Directional statistics provide the overall information of visualized trajectories 

such as the number of trajectories, mean direction, and mean velocity, which is displayed 
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in the visualization toolkit. These values provide information on trends in the visualized 

trajectories.  

 
3.4.2. Axis Conversion 

Axis conversion allows the user to explore the visualized trajectories from several 

different viewpoints. Visualization is in a three-dimensional view by default, allowing the 

user to rotate, zoom-in, zoom-out and pan the visualized trajectories at any viewpoint 

using three axes – x, y, and t (time). One option is a typical viewpoint for visualizing 

spatial data – two-dimensional space for x and y coordinates. In addition, to examine the 

change of x coordinates or y coordinates according to t, the user can select two more 

specific viewpoints in the toolkit: an x-t viewpoint and y-t viewpoint (Figure 3.16). In this 

way, if the user chooses x and t coordinates, the toolkit visualizes the overall movements 

in the x direction according to the time dimension. On the other hand, if the user chooses 

y and t coordinates, the toolkit delineates overall movements of the y direction according 

to the time dimension.  

 
3.4.3. Data Mining of Geometric Similarity  

Data mining techniques within the software WEKA (Witten & Frank, 2005) 

utilize geometric similarity indices calculated by geometric similarity functions for 

further data exploration of geometric similarity. WEKA consists of major data mining 

methods such as association rule mining, classification, and clustering. There is a 

component in the toolkit to export the indices from geometric similarity functions, as 

well as some other values, into the WEKA format. The indices are ID for each trajectory 

(Trajectory ID), ID for groups of the geometric cluster (cluster ID), sinuosity, velocity, 
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spatial range, locality, egocentric direction, cardinal direction, average value of the x 

coordinate, and average value of the y coordinate. The user can choose the variables to be 

exported by checking the check box in the ‘Export’ section of the toolkit. This option 

offers the user another perspective for data exploration by providing data mining analyses 

that can afford the means for pattern detection and prediction of the data from nonspatial 

data, which will be the integration of Knowledge Discovery in Databases (KDD) and 

other visualization toolkits. 

 
3.5.     Data Exploration Process 

3.5.1. Data Preparation and Import Data into Databases 

The next six sections explain the basic process of data exploration with the 

visualization toolkit developed in this research. The first step of the data exploration 

process is data preparation. There are five required values, namely an ID to identify each 

mobile object, date and time of the tracked location, x coordinate, and y coordinate. Data 

should be in a text format with a tab delimited form. Second, the toolkit imports the text 

data into databases in SQL Server 2005. The user selects the type of datasets, browses to 

the text file, and clicks “Import” to store the information in a database. 

The database has seven values for each record of locations. These are the 

following: 

• ID: the identifier used to keep all the records in the database unique. This is the 

primary key for the database. The data type is big integer, which can store larger 

values than integer. 

• trajectoryID: the identifier for each mobile object. Records that have the same 

trajectoryID represent records containing locations for one mobile object. The data 
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type is integer. 

• DateAndTime: the field to store both date and time. The data type is datetime. 

• Date: this field contains date information only. The data type is text with a maximum 

length of 15. 

• Time: this field contains time of day information only. The data type is text with a 

maximum length of 15. 

• xCoordinate: the x coordinate for each record. The data type is real. 

• yCoordinate: the y coordinate for each record. The data type is real. 

The algorithm in the toolkit decomposes the date field in the text data into date 

and time, respectively, and stores them in the database as independent fields. 

 
3.5.2. Query Data Using Time Aggregation Methods 

Query functions with time aggregation methods retrieve data that are necessary 

for data exploration. This requires three steps. First, the user chooses one of three query 

types – date query, time query, or advanced query (the combination of date and time 

query). Second, the user specifies the time range. This determines the start time and end 

time of the query. Third, the user determines the time interval, which is the resolution of 

time. After all these three steps are complete, the toolkit starts a query when the user 

clicks the button “Query.” Then, the toolkit will ask the user to save the queried data as a 

text file.  

 
3.5.3. Visualize Queried Trajectories 

The user can visualize queried data in the visualization screen on the toolkit. The 

user selects queried data as a text file by clicking the “Browse” button. The “Read Data” 
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button starts loading the data onto the visualization screen. Visualization starts with the 

“Start/Stop” button. The toolkit also provides directional statistical information when the 

data is loaded. Once the visualization is started, the user is able to use axis conversion 

with the buttons in the “Axis Conversion” section. 

 
3.5.4. Applying Similarity Functions to the Visualized Trajectories 

Similarity functions calculate the similarity values among mobile objects using 

the queried data from the databases. The user should complete four steps for the 

calculation of similarity. First, the user browses a text file of queried data by clicking the 

“Browse” button. The user can acquire information such as maximum x coordinate value, 

minimum x coordinate value, maximum y coordinate value, and minimum y coordinate 

value by clicking the “Statistics1” button. Second, the user chooses one of three 

similarity functions. Third, the user specifies a threshold to detect similar mobile objects. 

Finally, clicking the “Calculate Similarity” button calculates the similarity values. The 

toolkit asks the user to save the data with similarity information as a text file. 

 
3.5.5. Visualize Trajectories with Similarity Information 

The bottom-left components of the visualization toolkit deal with the visualization 

of data processed by the similarity functions. The user visualizes the data by clicking the 

“Browse” button, “Read Data” button, and “Start/Stop” button, in this order.  

 
3.5.6. Export Geometric Similarity Values into WEKA Format 

The toolkit can export information of geometric similarity into the WEKA data 

format in three steps. First, in the “Export” section of the toolkit, the user chooses the 

data by clicking the  “Browse” button. Second, variables that the user wants to export are 
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selected by checking checkboxes of each variable. Third, clicking the “Export to WEKA 

Format” button executes the export action. The saved data are in a WEKA data format 

with the extension “.arff.” The user can import the exported WEKA data directly in 

WEKA by double-clicking the exported file. The software WEKA is launched, ready to 

begin data mining. 

 
3.6.     Summary 

This chapter introduced the components of the visualization toolkit developed in 

this dissertation. Visualization with vector algebra enables a simple but efficient 

representation. In addition, aggregation methods for time, location, direction, and 

geometry, with user-defined threshold values, provide interactivity and flexibility in data 

exploration in order to detect patterns in terms of similarity among trajectories of mobile 

objects. Moreover, exporting geometric similarity information to WEKA datasets 

connects data mining with Geovisualization. The next chapter of this dissertation 

describes the datasets used to illustrate the visualization toolkit.  
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Figure 3.1. An example of visualized vectors in two-dimensional space. 

 

 

Figure 3.2. Time range and time interval. 
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Figure 3.3. Locational similarity. 

 

 

     a. trajectories         b. detection of a cluster        c. aggregation of trajectories 

Figure 3.4. An example of locational vector aggregation. 
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Figure 3.5. Locational aggregation. 

 

 

 

Figure 3.6. Directional statistics and classification of trajectories as vectors. 
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Figure 3.7. Calculation of egocentric direction. 

 

 

 

Figure 3.8. An example of a space-time path as a point using three indices. 
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Figure 3.9. Example of geometric vector classification. 

 

 

a: the distance between the origin and the destination 

b: the distance between the origin and the farthest time stamp 

Figure 3.10. Locality. 
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Figure 3.11. Convex hull of paths. 

 

 

Figure 3.12. Spatial range. 
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Figure 3.13. Core objects. 
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Figure 3.14. Density-reachability and density-connectivity. 
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Figure 3.15. DBSCAN in this research. 
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Figure 3.16. Axis conversion. 



 

 

 

4     DATA 

 
4.1.     Overview 

This research utilizes datasets consisting of three types of mobile objects data 

(MOD): 1) GPS travel survey data in the state of Kentucky, 2) wild chicken movement 

data in Thailand, and 3) self-tracking movement data of the investigator in the state of 

Utah. Characteristics of movements in each dataset differ from one another because of 

the difference in tracking devices, spatial and time resolution of the tracking method, 

study area, and so on. In addition, inherent constraints in movements can cause 

differences. For example, a road network restricts the movement of vehicles to the 

network, while an animal’s movement is more flexible, indicating more free movement 

all over the study area. Thus, data exploration with three different datasets identifies the 

effectiveness of the visualization toolkit.  

 
4.2.     Personal Travel Data Survey in Lexington, Kentucky 

Two organizations of the Federal Highway Administration – the Office of 

Highway Information Management and the Office of Technology Application – 

conducted a project whose purpose was the development and field test of an automated 

data collection device that included Global Positioning System (GPS) technology. The 

Lexington Area Metropolitan Planning Organization, the principal planning agency for a 

two-county area in central Kentucky, volunteered to participate in this project in 1996. 
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The size of study area is approximately 461 square miles with a total population of 

approximately 350,000.  

The original data consist of four types, namely, activity data, screening interview 

data, postdiary interview data, and GPS data. This research utilizes GPS data only. The 

date of the recorded timestamps ranges from September 16th to December 30th in 1996. 

There are 327,407 timestamps, 89 households, 173 people, and 2,256 trips in total. The 

DIGIT Lab of the Department of Geography at the University of Utah created databases 

to integrate the information from the four types of data and eliminated the noisy 

timestamps for further use. The resulting data contain 290,231 timestamps, 88 

households, 163 people, and 1,984 trips. The attribute fields of GPS data in the databases 

are household ID, driver’s ID, trip number, sequence number, date, time, longitude, 

latitude, and speed in miles per hour. This research uses the driver’s ID, longitude, 

latitude, date, and time information.  

 
4.3.     Wild Chicken Movement Data in Thailand 

The second dataset in this research is movement data of wild chickens in Thailand. 

The Human-Chicken Multirelationship Research (HCMR) Project conducted a survey to 

collect this data in Chiang Rai, Thailand using Wireless Fidelity (WiFi) positioning 

system (Okabe et al., 2006). A small WiFi tag that bundled a chicken’s body recorded the 

location and time. The report shows that the effectiveness and usefulness of WiFi 

technology can contribute to the growing need to understand the spatial movement of 

animals through their trajectories (Turchin, 1998).  

The WiFi data tracking system consisted of six devices, namely, tags to stick to 

the chickens’ legs, activator, receiver, Power over Ethernet (PoE), WiFi access point, and 
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a management engine. The functionality of each device is as follows. Tags wirelessly 

transmited the information of location and time. The weight of the tag was 35 grams and 

the size was 62mm×40mm×17mm. The receiver caught the signals from the tags and 

transmited the information to the management engine. Three kinds of antennas were used 

in the study – 360 degrees, 135 degree, and 60 degrees – due to differences in directional 

characteristics. The management engine processed the signal information to track the 

location of tags. Spatial resolution was 1 meter and time resolution was 1 second. 

The study area was the 200 square-meters of land under cultivation inside the 

Chiang Rai Livestock Research and Technology Transfer Center. There were eight 

concrete one-storied houses in the area: two of them were residential houses and six of 

them were vacant houses. Two of the vacant houses were used as a room to install the 

management engine and a preparation room, respectively. The only residents were people 

who lived in the two houses. Thus, the chickens could move freely all over the study area. 

There were 18 chickens used in this survey – they were the chickens that the 

Chiang Rai Livestock Research and Technology Transfer Center owns. There were three 

chicken houses in the field: each chicken house contained one cock and five hens. The 

survey ran from November 2nd until November 9th in 2005. Preparation of the WiFi 

positioning system took place on the 2nd, 3rd, and 4th until 4:30 p.m., which coordinated 

the adjustment of the positioning system with the release of the chickens into the field. 

Actual data collection started at 4:30 p.m. on the 4th until 9:15 a.m. on the 9th. Okabe et al. 

(2006) reported the locational error in the data, indicating that there are directional 

patterns in errors. Outliers with extreme locations were eliminated from the data.  
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This research utilizes the data from November 5th to November 8th. To examine 

the movement pattern throughout the entire day, this research leaves the data collected on 

November 9th out of consideration, since movement was only recorded in the morning for 

this date. The attribute information is x coordinate, y coordinate, date, and time.  

 
4.4.     Self-tracking Data in Utah 

The third dataset is the self-tracking GPS dataset of the investigator. It is a 

collection of daily movement data mostly in Salt Lake County, Utah from January 1st, 

2007 until December 31st, 2008. A GPS device (Garmin eTrex C) records the timestamps 

of everyday movement from the morning until the end of the day. Recording starts when 

the investigator first leaves his home and ends when he returns home, which is the last 

travel destination of the day. The time resolution is 2 seconds, meaning the GPS records 

the location and time every 2 seconds. According to the display on the GPS device, the 

minimum spatial error in recording is 4 meters. Since it is impossible to track the 

timestamps when the investigator is inside buildings, the GPS only collects movement 

outside the buildings. This limitation of tracking causes some issues in data collection. 

The GPS device used for this dataset sometimes causes errors in tracking and 

generates some missing parts in data. Occasionally, the GPS cannot capture the signals of 

satellites because of obstacles such as the density of buildings, bridges, trees, and so on. 

Thus, some timestamps are missing or are recorded in unrealistic locations when the 

investigator stays at an area where the density of the buildings is high, or an area where 

there are many obstacles above the investigator. This happens mostly in the downtown 

area of Salt Lake City where tall buildings exist. Another problem is user-error. Some 

portions of trajectories are missing because either the investigator forgets to turn on the 
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GPS device or the battery of the GPS device runs out. Thus, there are some days for 

which only a part of entire movement is recorded. 

Due to the errors and mistakes above, data cleaning is necessary to choose only 

days with complete trajectories. In addition, the movement of the investigator outside of 

the State of Utah is also eliminated. Elimination of incomplete trajectories and error 

locations results in 273 days of complete trajectories. The attributes selected are latitude, 

longitude, date, and time. 

 
4.5.     Summary 

This dissertation utilizes three different datasets for visual data exploration. Each 

dataset contains unique movements of mobile objects that can be differentiated from the 

movements of other mobile objects. Personal travel data in the state of Kentucky 

collected the movement data of a comparatively large number of people. Since each 

participant in the survey provided individual movement data for just a few days, an 

example of effective analysis may be to seek for the overall patterns or dynamics of the 

entire study area as a collection of individual movement. Self-tracking data recorded the 

long-term daily movement of one individual. Unlike the other datasets, this dataset 

contains movement that starts and ends at the same location for more than 2 years. Data 

exploration to investigate the variation in location at different times of a day is a 

possibility with this dataset. Although human movements are often limited to road 

networks, movements of chickens in Thailand are not limited to a road network. It is 

interesting to find original patterns in flexible movement in contrast to the network-

constrained movement. Chapter 5 reports the results of the data exploration with the 

visualization toolkit in this research.  



 

 

 

5     RESULTS 

 
5.1. Overview 

This chapter illustrates the toolkit’s functionalities by showing results from 

querying the database at different levels of temporal granularity, and aggregating the 

trajectories based on trajectory similarity at the specified granularity. This chapter will 

explore results based on the toolkit components described in the Methodology chapter. 

Unless otherwise mentioned, this chapter will focus on the Thailand wild chicken dataset, 

and use the other datasets to reinforce these results. Note that we only focus on the 

functionality of the visualization toolkit aggregation methods, and not on the behavioral 

aspects of wild chickens or humans represented by the other databases.  

 
5.2. Aggregation Methods 

This section presents results from two aggregation methods: time aggregation and 

similarity-based aggregation. As described in the Methodology chapter, the time 

aggregation methods allow the user to state a time interval of interest and a time 

granularity within that interval to reconstruct individual trajectories at different levels of 

movement generality. Given these reconstructed trajectories, the user can then apply 

similarity functions to aggregate individual trajectories based on location, direction, and 

geometry to generate synthetic trajectories that reflect collective movement patterns at 

that scale. 
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5.2.1. Time Aggregation Methods 

Figures 5.1 and Figure 5.2 show the effects of time granularity on trajectory 

reconstruction. Figure 5.1 illustrates the reconstructed trajectory collection for three 

different time ranges (6:00 –9:00, 6:00 – 12:00, and 6:00 – 17:00) at the native time 

interval provided by the data (1 second). Figure 5.2 illustrates the reconstructed trajectory 

collection at three time intervals for a fixed time range from 6:00 to 17:00.  As Figure 5.1 

suggests, it is difficult to extract distinct patterns at the highest level of temporal 

granularity. Even at a relatively low time range, the trajectory collection is generally an 

undistinguished mass. This problem becomes more acute as the time range increases. 

Figure 5.2 indicates that changing the time interval can mitigate this problem to a 

substantial degree: the trajectories are more generalized and patterns are more easily 

discernable as the time intervals become coarser. The visualization toolkit allows the user 

to visualize the trajectory collection at the time range of interest and interactively change 

the time interval until an appropriate granularity level is achieved for the data and 

questions at hand. 

This visual simplification is similar with other datasets. Figure 5.3 is the example 

of Lexington GPS mobility patterns with four different time granularities: 1 second, 10 

seconds, 1 minute and 10 minutes. As is the case of Figure 5.2, a coarser time interval 

simplifies visualized trajectories, except for the central part where trajectories are dense. 

Although oversimplification with an extremely high value of time interval can obscure 

the movement patterns, the appropriate time interval value can simplify the visualization 

and uncover patterns in trajectory datasets. 
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5.2.2. Similarity Functions 

5.5.2.1. Locational Similarity  

After the user has selected the time range and interval, the toolkit allows for the 

aggregation of similar trajectories to detect clearer patterns from the data. In addition to 

the time aggregation methods illustrated in the previous sections, similarity functions can 

uncover patterns in the trajectories. Figure 5.4 compares the visualization from Figure 5.1 

(three images of the top row) and the trajectory similarities based on a relatively relaxed 

locational similarity threshold of 10.0 (three images of the bottom row). Note that as the 

time range increases, visualization of the disaggregated data becomes more complicated, 

and it becomes hard to detect visual patterns without the use of similarity functions. 

However, obvious patterns emerge when applying a similarity function. The locational 

similarity function detects three distinct groups in all three time ranges. To validate the 

consistency of this trend, we assessed the number of groups of visualized data while 

systemically increasing the time range by 1 hour in each step. The number of groups of 

this dataset is constantly three throughout the day, except for 4 groups emerging between 

6:00 and 8:00. This implies the stability of mobility patterns across time in this dataset.  

Although the locational similarity function facilitates the pattern detection process, 

it can also oversimplify the visualization since it aggregates similar trajectories into a 

single one. Figure 5.5 shows the result from the Lexington mobility data of trajectories 

aggregated by the locational similarity function. As the locational similarity value 

increases, small and short-length aggregated trajectories in different groups concentrate 

in one area, which makes patterns difficult to discern. Some datasets are sensitive to the 

similarity measures, thus the user must carefully choose the threshold value of the 
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similarity functions in order to find nominal patterns. 

It is also possible to compare aggregated trajectories across different time ranges 

to explore for recurrent or stable patterns across longer time frames. Figure 5.6 illustrates 

mobility patterns across different dates using the same time ranges. The top row shows 

the movement for 1 day only (November 5th, 2005) with respect to different time ranges, 

while the bottom row illustrates mobility patterns for those same time ranges aggregated 

across all 4 days (November 5th, 2005 to November 8th, 2005). This functionality allows 

the user to explore for recurrent behavior (i.e., mobility behavior that occurs within the 

same time ranges across different days or similar time periods). In both cases, there are 

three groups of similar movement that are remarkably stable whether we view these 

patterns within 1 day or across multiple days. This suggests the existence of recurrent 

mobility patterns in this database. 

The locational similarity function is useful for finding patterns of movement in 

urban areas. Figure 5.7 illustrates the daily movement of the investigator in the morning 

and the afternoon time period. In each image, the investigator’s house is at the bottom-

left location and the University of Utah is at the top-right location. The locational 

similarity function successfully detects similar trajectories from the investigator’s home 

to the University of Utah, detecting the generic commuting patterns of the investigator. 

The investigator uses four major routes to commute to the University of Utah. The 

locational similarity function detects four aggregated trajectories that depart from the 

bottom-left and end at the top-right. Each aggregated trajectory represents a summarized 

route for commuting to the University of Utah. 

The combination of time aggregation methods and similarity functions enables 
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comparisons of movement at the same cyclical time period in different years. Figure 5.8 

is the comparison of the investigator’s daily movement over a 4-month period (from 

September to December) in 2007 (top row images) and 2008 (bottom row images). The 

locational similarity function is applied to both datasets. Although the time-of-year 

period is the same, detected patterns are distinctly different: movement in 2007 has 

several clusters and is wide in the rage of movement, while the movement in 2008 has 

fewer clusters with simpler movement patterns. 

The time range can also focus on detailed movement throughout 1 day. Figure 5.9 

shows three different 1-hour periods for the movement of wild chickens. Some clustered 

movement can be found in the visualization without similarity functions (top row images) 

while clusters clearly appear with locational similarity functions (bottom row images). 

Visualization with shorter time ranges enables the user to focus on detailed movement: 

the user can find patterns relatively easily. Similarity functions, in this case, show the 

clusters that can also be found in the visualization without similarity functions to 

reinforce the visual exploration. 

The time range can also illustrate interesting patterns of human mobility. Figure 

5.10 shows two different 1-hour segments of the investigator’s movement. Visualization 

without applying the similarity function (top row images) already shows the frequent 

routes on the road network by the density of trajectories at similar locations. In addition, 

visualization with the locational similarity function (bottom row images) detects clusters, 

which clearly appear to summarize the movement in each time range. 

Figure 5.11 shows the visualization of chicken movement across all 4 days using 

two different time intervals and two different threshold values for locational similarity. 
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The four visualizations, arranged as a quadrant at the left side of Figure 5.11, show the 

movement of chickens at a time interval of 5 seconds. In contrast, four visualizations in a 

quadrant on the right side of Figure 5.11 show the same data at a time interval of 10 

minutes. The upper row shows results from a locational similarity threshold of 0.1 (a 

value that requires high similarity for trajectory aggregation) while the lower row shows 

results from a locational similarity threshold of 10.0 (a value that requires less similarity). 

Figure 5.11 distinguishes trajectories with locational similarity using different colors. 

Note the affects of time interval granularity on the ability to discern patterns. The 

individual trajectories in the upper row are dense and difficult to disentangle into clear 

patterns. The individual trajectories in the lower row, at a coarser temporal interval level, 

are more visually manageable. Also note the affects of locational similarity thresholds on 

the visual patterns. The upper row indicates the difficulty in finding general patterns 

when requirements for locational similarity threshold are high: no trajectories are 

candidates for aggregation. However, the bottom row shows three distinct groups that 

emerge when the locational similarity is less severe. In addition, these similarity groups 

remain stable across the two levels of temporal interval granularity. This suggests, in this 

case, we discovered synoptic mobility patterns that are robust and can be effectively 

summarized using a coarser time interval that provides a simple and more easily 

understood view of the data, compared to a finer temporal interval. 

 
5.2.2.2. Directional Similarity  

The second similarity function is based on directional information. The 

directional similarity function detects similar trajectories with respect to two types of 

directions (egocentric direction and cardinal direction) and renders the trajectories in the 
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same cluster into the same color (unlike the locational similarity function, the directional 

similarity function does not aggregate trajectories). Figure 5.12 shows the comparison of 

1-day (November 5th, 2005) and 4-day (from November 5th to November 8th, 2005) 

directional mobility patterns of wild chickens. Visualization without the directional 

similarity function (left-most column images) and visualization with egocentric similarity 

values of 1.0, 10.0, and 30.0 are in Figure 5.12. A relaxed directional similarity value 

(right-most column images) detects a few clusters at similar locations (mostly in red and 

green) while a strict directional similarity value detects more clusters with some outliers. 

Similar patterns can be found in two different time ranges, implying consistency within 

the movement patterns of chickens with respect to direction. 

Figure 5.13 and Figure 5.14 show movement patterns with egocentric similarity in 

two different time ranges (6:00 – 9:00 and 6:00 - 12:00) in different date ranges. Figure 

5.13 illustrates the 4-day (from November 5th to November 8th, 2005) movement 

patterns while Figure 5.14 illustrates 1 day’s (November 5th, 2005) movement patterns. 

As time range increases from 6:00 – 9:00 to 6:00 - 12:00 in Figure 5.13, visualization 

without similarity functions becomes complicated. However, notable patterns appear 

when a directional similarity function is applied. As is the case of Figure 5.12, a relaxed 

egocentric similarity value detects a few clusters while a strict similarity value detects 

clusters in more detail. In addition, data with a longer time range (6:00 – 12:00) have 

more outliers. Similar results are shown in Figure 5.14, but more detail cluster formation 

can be detected because there are fewer trajectories. Also, more outliers are detected with 

a strict similarity value. 
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5.2.2.3. Geometric Similarity 

The third similarity function is based on geometric characteristics. The geometric 

similarity function renders the trajectories in the same cluster into a same color. Figure 

5.15 illustrates mobility patterns of wild chickens in three different time ranges (6:00 – 

9:00, 6:00 – 12:00, and 6:00 – 17:30). Geometric similarity function with a strict 

threshold (0.1) shows both clustered trajectories and outliers (middle row images) while 

visualization with a relaxed threshold (0.5) shows that almost all the trajectories are 

summarized by only a few groups. The stricter the geometric similarity threshold, the less 

the number of clusters that appear. In addition, the trajectories in the same cluster are 

often moving closer to each other with respect to location. 

Figure 5.16 shows the result of Lexington GPS data with a variety of geometric 

similarity from 0.01 to 0.5. As in the case of the wild chicken data, as the threshold value 

increases, more clusters are detected, but the number of clusters decreases at a certain 

threshold value, i.e., visualization with a threshold of 0.05 detects more clusters than 

visualization with a threshold of 0.5. This occurs because some clusters are integrated 

into one single cluster as the threshold value becomes more relaxed to create a cluster 

that contains a higher number of trajectories. 

Figure 5.17 shows mobility patterns with the geometric similarity function in 

three different time ranges: 6:00 – 7:00, 12:00 – 13:00, and 16:00 – 17:00: these are three 

different 1-hour movements within a day. As the geometric similarity value increases, the 

system detects more clusters. Although the geometric similarity function colors 

trajectories in the same cluster, it does not aggregate the trajectories as with the location 

similarity function. The geometric similarity function successfully displays the clusters 
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that can be easily found by visual exploration. For these data, the summary trajectories 

are persistent across all three time ranges; this suggests distinct spatial behavior types that 

are stable across time. 

Figure 5.18 illustrates trajectory collections at a moderate geometric similarity 

threshold combined with different levels of temporal granularity and spatial projections 

to the two-dimensional plane. The time range is fixed at 10 seconds. Again, note the 

affect of temporal granularity on the visual legibility of the individual mobility patterns, 

even with trajectory aggregations. Mobility patterns at the 10-minute granularity provide 

an elegant synoptic view of three groups with similar movement with respect to trajectory 

geometry: these patterns are much easier to detect compared to results at the finer level of 

temporal granularity. However, in this case, the discovered mobility patterns are 

substantially different at the two levels of temporal granularity. This suggests a higher 

sensitivity of geometric similarity to temporal granularity than locational similarity. It 

also suggests the value of exploring these aggregations at different levels of temporal 

interval granularity in order to determine the robustness of the discovered patterns. It is 

also notable that differences are more apparent with respect to movement in the y-

dimension over time. 

 
5.3.    Data Summarization 

Data summarization enhances the effectiveness of visual exploration in two 

components: directional statistical information and axis conversion. Statistical 

information summarizes the information of visualized data while axis conversion 

provides functionality to view the data from various viewpoints. 
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5.3.1. Directional Statistics 

The statistical information reported by the system has two parts: geographic 

extent of x and y coordinates of visualized trajectories (statistics 1), and summarized 

information of trajectories (statistics 2): number of trajectories, number of detected 

clusters, mean velocity, and mean direction (Figure 5.19). These two components are 

useful respectively. For example, outliers or errors of recorded location can be found with 

the combination of visualization and statistics 1 information (Figure 5.20). The user can 

edit the data to remove the errors and visualize the data without outliers. In addition, 

numbers of clusters are easily found by statistics 2 information, even though the 

visualized trajectories appear to be complicated (Figure 5.21). Visual exploration can be 

leveraged with the assistance of statistical information. 

 
5.3.2. Data Mining of Geometric Similarity Indices 

Another functionality of the visualization toolkit is a data mining functionality 

that enables the user to export geometric similarity indices (sinuosity, velocity, egocentric 

direction, cardinal direction, locality, spatial range) that can be analyzed in other data 

mining software. This research utilizes the data mining software WEKA for decision tree 

analysis, which is one of the classification methods, with the purpose of discovering the 

rules that describe the movement of wild chickens. The decision tree algorithm J48 is 

used to create a tree to discover attributes that influence cluster detection with the 

geometric similarity function. J48 is based on the C4.5 algorithm: C4.5 is one of the most 

widely used algorithms for decision tree induction (Han & Kamber, 2006). 

This decision tree analysis is conducted on datasets with different time 

aggregation and geometric similarity aggregation settings. For example, Table 5.1 shows 
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the data mining result of wild chicken data in various time ranges: three 1-hour period 

movements (top three rows in the table, i.e., 6:00 - 7:00, 12:00 - 13:00, and 16:00 - 

17:00) and three incremental time ranges (bottom three rows in the table, i.e., 6:00 - 9:00, 

6:00 - 12:00, and 6:00 - 17:30). Time interval and geometric similarity threshold are 

constant in all the time range cases: the time interval is 10 seconds and the geometric 

similarity threshold is 0.5. The root node identifies the prominent factor in the resulting 

decision tree: egocentric direction is the root node in all cases. This indicates that 

egocentric direction is the most significant index to determine the movement patterns. In 

addition, the percentage of correctly classified instances is higher when the time range 

becomes longer (bottom three rows): longer time movement may be more predictable 

than short time movement. Furthermore, similarity tendency is obvious with the number 

of clusters detected in visualization (this is the number of clusters detected by the 

geometric similarity function) and the percentage of correctly classified instances. The 

fewer number of clusters we have, the higher percentage classified correctly. 

Table 5.2 summarizes the results of decision tree analysis of self-tracking data 

with several time ranges: the same decision trees were generated as in the case of wild 

chickens. The number of observations in this case (88 to 273 observations) is greater than 

wild chicken cases (18 observations). As with the case for wild chickens, egocentric 

direction is the root node in all of the examined cases. This is constantly obvious in the 

cases of the Lexington data in Table 5.3, which summarizes results of the decision tree 

analysis of the Lexington mobility data with several time ranges. In addition, the 

percentage of correctly classified instances is constantly higher than 90.00%, except for 

one case, even though the number of instances and number of clusters detected by the 
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geometric similarity measure are higher. Egocentric direction may be one of the critical 

variables to be considered in discovering mobile object movement patterns. 

Time interval is another variable that can affect the data mining result. Table 5.4 

summarizes the decision tree analysis results of wild chicken data with two different 

geometric similarity thresholds (0.1 and 0.5) and five different time intervals (5 seconds, 

10 seconds, 1 minute, 10 minutes and 30 minutes). Table 5.5 illustrates the results with 

self-tracking data with four geometric similarity values (0.1, 0.5, 1.0, and 2.0). In the 

results of wild chicken cases, datasets with relaxed geometric similarity (0.5) and with 

coarser time interval (10 minutes and 30 minutes) did not obtain any results because there 

is only one cluster as a result of geometric similarity aggregation. In addition, the dataset 

with a relaxed geometric similarity measure (0.5) received a higher percentage score of 

correctly classified instances. This similar trend can be found in the cases of self-tracking 

data. This occurs due to the decrease in the number of clusters as the geometric similarity 

threshold increases; it is simpler to classify the instances with a fewer number of clusters. 

Moreover, the dataset with this geometric similarity (0.5) received the same results even 

though the time interval changed from 5 seconds to 1 minute, indicating consistency in 

movement patterns. Furthermore, egocentric direction is the root node of decision trees in 

wild chicken cases. However, other indices such as spatial range and sinuosity are the 

root nodes in the cases of self-tracking mobility data and the cases of Lexington data 

(Table 5.6). This implies the possibility of the time interval having a significant influence 

on the results of data mining. 

Examination of the decision tree itself is another important aspect of decision tree 

analysis. Decision trees of self-tracking data in four different time ranges (0:00 – 9:00, 
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0:00 – 12:00, 0:00 – 18:00, 0:00 – 24:00) illustrate that the size of the tree grows as the 

time range stretches with an increasing number of leaves. As is shown in Table 5.2, the 

root node is egocentric direction. The next most important explanatory factor is sinuosity 

in all the cases except for the case of the time range of 0:00 – 24:00: in this case, the 

spatial range is a factor in the second level. This implies the consistency of the mobility 

patterns because egocentric direction and sinuosity are the two key factors that describe 

the movement of self-tracking data. 

Decision trees for the self-tracking data in another four different time ranges (6:00 

– 9:00, 9:00 – 12:00, 12:00 – 15:00, 15:00 – 18:00) show a tendency similar to the 

decision trees of self-tracking data in four different time ranges (0:00 – 9:00, 0:00 – 

12:00, 0:00 – 18:00, 0:00 – 24:00): egocentric direction is the root node and sinuosity is 

at the second level in most cases. As the time ranges change, the size of the tree and 

number of leaves varies. For example, the tree shape in the time range of 6:00 – 9:00 and 

12:00 – 15:00 are exactly same: there may be similar mobility patterns with respect to 

geometry occurring in these two time ranges. In addition, the size of the tree in the time 

range of 6:00 – 9:00 and 12:00 – 15:00 are small in contrast with other time ranges. This 

may explain why the complexity of the movement differs from one time range to another: 

the percentage of correctly classified instances in the tree of the time range of 6:00 – 9:00 

(96.59%) and 12:00 – 15:00 (96.39%) are higher than the other two time ranges – time 

range of 9:00 – 12:00 (90.96%), and that of 15:00 – 18:00 (91.01%) (see Table 5.2). 

Decision trees of self-tracking data with three geometric similarity thresholds (0.1, 

0.5, and 1.0) show that the size of trees becomes smaller since the number of clusters 

detected by geometric similarity functions becomes smaller: a relaxed similarity function 
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threshold (1.0) includes a larger number of trajectories in one cluster and therefore, the 

function detects fewer clusters. In these three cases, the shapes of decision trees are quite 

different from each other: the root node is not egocentric direction all the time. Clearly, 

threshold values can greatly impact the results of data mining. 

 
5.4.     Summary 

This chapter described the functionality of the visualization toolkit with examples 

from three mobile object datasets. Vector algebra, time aggregation methods, and 

similarity functions provide effective visual exploration of the mobile objects data. In 

addition, data summarization methods such as axis conversion and statistical information 

support the user of the toolkit for more comprehensive understanding of the visualized 

mobile objects. Furthermore, data mining with WEKA enables the exploration of rules 

that describe the movement patterns. Chapter 6 discusses the contributions of this 

research, contribution to other research efforts, and future research challenges. 
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Figure 5.1. Visualization with three different time ranges. 

 
Figure 5.2. Visualization with three different time intervals. 
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Figure 5.3. Visualization of Lexington data with different time intervals. 
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Figure 5.4. Time ranges and locational similarity. 
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Figure 5.5. Oversimplification with locational similarity. 

 

 
Figure 5.6. Locational similarity and time ranges across different dates. 
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Figure 5.7. Locational similarity with self-tracking data within 1 day. 

 

 
Figure 5.8. Comparison of movement at the same period in 2 different years. 
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Figure 5.9. Locational similarity and time range within 1 day. 
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Figure 5.10. Locational similarity and self-tracking movement in the morning time period. 
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Figure 5.11. Temporal granularity and locational similarity. 
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Figure 5.12. Egocentric directional similarity and time ranges across different dates. 
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Figure 5.13. Egocentric directional similarity and time ranges in the morning across 
different dates. 
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Figure 5.14. Egocentric directional similarity and time ranges in the morning within 1 

day. 
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Figure 5.15. Time range and geometric similarity. 
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Figure 5.16. Geometric similarity and Lexington data. 

 

 
Figure 5.17. Geometric similarity and three different time ranges within a day. 
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Figure 5.18. Axis conversion and geometric similarity. 
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Figure 5.19. Statistical information. 

 

 
Figure 5.20. Outlier detection and refined visualization. 
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Figure 5.21. Number of clusters detected with statistical information. 
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Table 5.1. Result of decision tree of wild chicken data with various time ranges. 

time range 

number of 

clusters in 

visualization 

number 

of leaves

size 

of tree

correctly 

classified 

instances 

(%) 

root node 

6:00 - 7:00 4 4 7 66.66 egocentric direction 

12:00 - 13:00 4 5 9 44.44 egocentric direction 

16:00 - 17:00 3 2 3 77.77 egocentric direction 

6:00 - 9:00 3 3 5 83.33 egocentric direction 

6:00 - 12:00 2 2 3 94.44 egocentric direction 

6:00 - 17:30 2 2 3 94.44 egocentric direction 
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Table 5.2. Result of decision tree of self-tracking data with various time ranges. 

time 

range 

number of 

instances 

number of 

clusters in 

visualization

number 

of 

leaves 

size of 

tree 

correctly 

classified 

instances (%) 

 root node 

6:00 - 

9:00 
88  4 4 7 96.59  

egocentric 

direction 

9:00 - 

12:00 
155  7 11 21 90.96  

egocentric 

direction 

12:00 - 

15:00 
194  5 4 7 96.39  

egocentric 

direction 

15:00 - 

18:00 
178  8 10 19 91.01  

egocentric 

direction 

18:00 - 

21:00 
182  4 4 7 98.90  

egocentric 

direction 

21:00 - 

24:00 
100  6 10 19 87.00  

egocentric 

direction 

0:00 - 

9:00 
91  4 5 9 91.20  

egocentric 

direction 

0:00 - 

12:00 
173  6 5 9 95.95  

egocentric 

direction 

0:00 - 

15:00 
242  4 4 7 98.34  

egocentric 

direction 

0:00 - 

18:00 
258  5 7 13 94.18  

egocentric 

direction 

0:00 - 

21:00 
268  4 4 7 96.26  

egocentric 

direction 

0:00 - 

24:00 
273  7 7 13 95.23  

egocentric 

direction 
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Table 5.3. Result of decision tree of Lexington data with various time ranges. 

time range 
number of 

instances 

number of 

clusters in 

visualization

number 

of leaves

size of 

tree 

correctly 

classified 

instances 

(%) 

root node 

6:00 - 9:00 60  4 10 19 66.67  sinuosity 

6:00 - 12:00 95  3 8 15 54.73  
egocentric 

direction 

6:00 - 18:00 134 16 26 51 47.76  
egocentric 

direction 

6:00 - 24:00 141 13 25 49 65.24 
egocentric 

direction 
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Table 5.4. Decision tree analysis of wild chicken data with time interval and geometric 
similarity  threshold. 

time 

interval 

# of clusters in 

visualization 

# of 

leaves 
size of tree 

correctly 

classified 

instances (%) 

root node 

5 seconds 3 5 9 33.33 
egocentric 

direction 

10 seconds 2 4 7 44.44 velocity 

1 minute 2 3 5 77.77 
egocentric 

direction 

10 minutes 3 5 9 50 velocity 

30 minutes 3 5 9 38.88 sinuosity 

5 seconds 2 2 3 94.44 
egocentric 

direction 

10 seconds 2 2 3 94.44 
egocentric 

direction 

1 minute 2 2 3 94.44 
egocentric 

direction 

10minutes 1 1 1 - -

30 minutes 1 1 1 - -
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Table 5.5. Decision tree analysis of self-tracking data with various time intervals. 

geometric 

similarity 

threshold 

number of 

instances 

number of 

clusters in 

visualization 

numb

er of 

leaves

size of 

tree 

correctly 

classified 

instances (%) 

root node 

0.1  273 10 13 25 94.13  
spatial 

range 

0.5  273 7 7 13 95.23  
egocentric 

direction 

1.0  273 2 3 5 98.90  sinuosity 

2.0  273 1 1 1 - -

 

Table 5.6. Decision tree analysis of Lexington data with various geometric similarity 

thresholds. 

geometric 

similarity 

threshold 

number of 

clusters in 

visualization 

number 

of leaves

size of 

tree 

correctly 

classified 

instances (%)

root node 

0.01  1 1 1 95.00 -

0.05  12 17 33 60.28 sinuosity 

0.1  13 25 49 65.24 egocentric direction 

0.5  4 8 15 84.39 sinuosity 

 

 



 

 

 

6      DISCUSSION AND CONCLUSION 

 
Chapter 6 reviews the major contents of this research (section 6.1.) and its 

scientific contributions to related research fields (section 6.2). Section 6.3 discusses 

future research challenges and possible improvements and enhancements with respect to 

the research objectives stated in the beginning of this research. This chapter ends with 

some concluding remarks. 

 
6.1. Summary 

This research aimed to create a highly interactive visualization toolkit to uncover 

interesting patterns in large volume mobile objects data (MOD). Functionalities such as 

time aggregation methods with similarity functions synthesize and summarize the overall 

movement trends in the data. Various combinations of time aggregation parameters and 

similarity function thresholds successfully detected clusters that extract similar mobility 

patterns at a specific time scale. In addition, vector representation, statistical information, 

and axis conversion supported visual data exploration to understand the movement 

patterns with complicated visualized mobile objects. Moreover, this toolkit connected 

MOD to data mining software for further data exploration. Results from decision tree 

analysis vary based on the combination of time aggregation parameters and similarity 

function thresholds. 
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6.2. Contributions 

The research presented contributes to the scientific and mobile object databases 

communities in several main areas: 1) high interactivity of visualization toolkit for 

knowledge discovery in MOD; 2) synthesis of time aggregation and similarity measures; 

and 3) ability to handle large volume MOD. The toolkit created in this research allows 

the user to explore MOD in various ways: the user can determine parameters for each 

functionality of the toolkit. This high interactivity of a visualization toolkit enables visual 

and geocomputational analysis in flexible and ad-hoc ways. Existing data summarization 

techniques such as online analytical processing (OLAP) and time aggregation methods 

(Hornsby & Egenhofer, 2002), and data mining analysis are combined with similarity 

functions that are presented in this research for deeper data exploration that are especially 

suitable for MOD. 

The second contribution is a synthesis of time aggregation methods and similarity 

measures. Time aggregation methods and similarity measures are often treated as 

different topics in mobile objects research. However, it is important to handle both 

aspects since the analysis mobile objects requires temporal, spatial, and shape 

information to be analyzed at the same time. Combination of time aggregation methods 

and similarity functions reveal that the careful choice of time aggregation parameters and 

similarity thresholds significantly influence the visual results. It is important to utilize 

both a temporal aspect and a similarity aspect for the advanced and detailed analysis of 

mobility patterns. In addition, because the geometric similarity function requires 

geometric components only, it has the ability to compare the similarity of two or more 

mobile objects at different location and spatial scales. Geometric similarity measure 
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provides a robust way to measure similarity regardless of differences in location and 

scale: these two elements are major barriers for geographic analysis that are difficult to 

overcome. 

The ability to handle large volume MOD is the final contribution. The 

visualization toolkit presented demonstrated results for three kinds of mobile objects that 

are small (18 objects of wild chickens) to large (273 objects of self-tracking data) in size. 

The visualization toolkit successfully analyzed all three kinds of data, starting from 

querying the data from the databases and ending with data mining analysis in WEKA 

software. In addition to the ability to handle datasets computationally, the toolkit 

facilitated the visual exploration of large volume datasets with time aggregation and 

similarity functions that provide summarized and simpler visualized MOD. The toolkit 

provides essential features for the exploratory data analysis of MOD. 

 
6.3. Future Research Development 

Future research challenges that derive from this research can be summarized in 

four categories: 1) consideration of behavioral contexts of mobile objects; 2) 

development of other similarity measures; 3) validation of visual exploration; and 4) 

evaluation of the effectiveness of the methods to other MOD.  

 
6.3.1. Consideration of Behavioral Contexts of Mobile Objects 

Chapter 5 of this research demonstrated the functionalities of the visualization 

toolkit and resulting outcomes from the computational and visual exploration. However, 

this research focuses only on the effectiveness of functionalities in the toolkit to show the 

ability to find mobility patterns: behavioral contexts of mobile objects that can be 
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explained from the found patterns are neglected. Studying the relationship between 

behavioral aspects of mobile objects and detected patterns is a broader research question. 

It is common knowledge in behavioral science and transportation research fields 

that specific types of behavior, such as commuting behavior and recreational behavior, 

have unique characteristics. It is important to analyze the mobility data of specific types 

of behavior with the toolkit developed in this research to analyze the outstanding patterns 

in the behavior. For example, time aggregation methods can extract the commuting 

behavior in the morning time range and the evening time range, respectively, with the 

time interval of interest. Visualization of each time range will provide the mobility 

patterns of each commuting behavior in several time scales. In addition, similarity 

functions will detect similar mobility patterns and outliers in the commuting behavior. 

There may be certain routes in the urban area that many mobile objects pass at a similar 

time period. The locational similarity function can detect this behavior. On the other hand, 

outliers that are not clustered by similarity functions may lead to the discovery of new 

routes for commuting that can mitigate traffic congestion. Analysis of specific types of 

behavior is a next step for this research. 

Detection of specific types of behavior from large volume datasets is another 

possible extension with the toolkit described in this research. As mentioned in the 

previous paragraph, certain types of behavior, such as commuting behavior, occur at the 

certain time periods, such as in the morning or in the evening. It is possible to assume 

when those specific types of behavior occur and try to extract them using time 

aggregation methods. Following analysis with similarity functions can provide the 

patterns of the extracted mobility data. Functionalities in the toolkit in this research can 
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contribute to behavioral sciences in the new era of data-rich research. 

 
6.3.2. Development of Other Similarity Measures 

Although the similarity functions in this research are scalable and effective at 

detecting similar mobility patterns, there are many ways to assess trajectory similarity. 

Other ways of measuring locational, directional, and geometric similarity should be 

explored, as well as other definitions of trajectory similarity distinct from the two 

dimensions explored in this research. 

One possible way is to examine the properties that can be extracted from 

trajectories. There are other characteristics that can be calculated from trajectories other 

than the five properties identified in this research, such as average travel distance, 

average x coordinate location and y coordinate location of a trajectory, and so on. 

Behavioral characteristics such as number of activities, number of visiting locations, and 

activity duration time are also possibilities. It is important to evaluate these 

characteristics as potential key factors to uncover interesting patterns in MOD. 

The investigator has extended this work to create a toolkit that enables visual 

exploration of trajectory properties in the attribute space in conjunction with the 

geographic space (see Figure 6.1). This toolkit allows for how the values of each property 

of a trajectory may change over time (the visualization component at the center in the 

toolkit described in Figure 6.1). The bottom graphs illustrate the changes of each value 

with respect to time. Visualization components on the left side show two-dimensional 

and three-dimensional geographic views of trajectories. The user can incorporate any 

other characteristics of trajectory to examine the change in values using this toolkit, 

which may lead to the discovery of key factors that describe mobility patterns of MOD. 
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6.3.3. Validation of Visual Exploration 

In addition, it is difficult to validate the patterns detected solely by visualization 

because found patterns are based on human visual intuition. Since intuitive 

comprehension can be misleading, it is urgent to develop methods to validate the detected 

patterns. 

Utilizing geocomputational techniques is one of the solutions to complement the 

results from visual exploration. Pattern detection techniques such as classification and 

clustering may be useful to find rules in MOD, which provides a different perspective 

other than the visual intuitive interpretation of data. In this research for example, data 

mining analysis with decision trees aimed to find the rules that describe mobility patterns, 

which provided that the egocentric direction is the most important explanatory factor in 

many cases. Data mining analysis and visual exploration complement each other in 

knowledge discovery and validation of the visual exploration. 

 
6.3.4. Evaluation of the Effectiveness of the Methods to Other MOD 

Furthermore, it is important to test the effectiveness of the granularity and 

aggregation methods to other special cases of mobility patterns such as individual 

people’s movement inside buildings, migrating birds, and so on. Since each mobile object 

has its unique constraints, unique movement patterns may be detected. Applied analysis 

using time and similarity aggregation methods will reveal the usability and weakness of 

aggregation methods in different applications, which can lead to the development of more 

powerful methods to analyze MOD. 
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6.4.     Conclusion 

As the volume and complexity of MOD increases with the growing usage of 

digital mobile devices, there is a high demand for developing new techniques to handle 

and analyze the emerging data. Existing techniques are incomplete due to their lack of 

ability to handle large volume data. This research developed a highly interactive 

visualization toolkit for large volume MOD for exploratory visual and geocomputational 

data exploration that can lead to knowledge discovery in individual-based mobility 

patterns. 

Existing research provides techniques to analyze MOD, such as time aggregation 

methods with OLAP, similarity measures to detect similar mobility patterns, and so on. 

However, these techniques are often computationally expensive and not well integrated. 

The toolkit developed in this research responds to a need for a more synthetic way to 

analyze MOD; it accomplishes this by integrating various techniques into one toolkit. 

Visualization with computational techniques enhances the range of exploratory data 

analysis. The toolkit also has the ability to handle large volume datasets, which 

overcomes one of the major research challenges in the literature. 

Although the toolkit detected some interesting patterns, the true success of the 

toolkit is whether the data exploration will lead to meaningful knowledge discovery for 

applied fields such as transportation planning, behavioral modeling, and evacuation 

planning in a time of disaster. These fields can benefit from the pattern detection process 

proposed in this research for hypothesis generation, model creation, and planning. 

Development of methods to bridge  visualization  and  knowledge  discovery   techniques  
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with applied geographic phenomena will facilitate the decision-making processes that 

lead to better policy making and planning.  
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