
NOVEL APPLICATIONS OF NATURAL LANGUAGE

PROCESSING AND MACHINE LEARNING TO

EXTRACT INFORMATION FROM CLINICAL

TEXT AND AUTOMATE CANCER STAGE

COLLECTION IN A CENTRAL

CANCER REGISTRY

by

Abdulrahman Khalifa AAlAbdulsalam

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Biomedical Informatics

The University of Utah

May 2018



Copyright c© Abdulrahman Khalifa AAlAbdulsalam 2018

All Rights Reserved



The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Abdulrahman Khalifa AAlAbdulsalam

has been approved by the following supervisory committee members:

Wendy W. Chapman , Chair(s) 12/14/2017
Date Approved
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ABSTRACT

The primary objective of cancer registries is to capture clinical care data of cancer

populations and aid in prevention, allow early detection, determine prognosis, and assess

quality of various treatments and interventions. Furthermore, the role of cancer registries

is paramount in supporting cancer epidemiological studies and medical research. Existing

cancer registries depend mostly on humans, known as Cancer Tumor Registrars (CTRs),

to conduct manual abstraction of the electronic health records to find reportable cancer

cases and extract other data elements required for regulatory reporting. This is often a

time-consuming and laborious task prone to human error affecting quality, completeness

and timeliness of cancer registries.

Central state cancer registries take responsibility for consolidating data received from

multiple sources for each cancer case and to assign the most accurate information. The Utah

Cancer Registry (UCR) at the University of Utah, for instance, leads and oversees more

than 70 cancer treatment facilities in the state of Utah to collect data for each diagnosed

cancer case and consolidate multiple sources of information.

Although software tools helping with the manual abstraction process exist, they mainly

focus on cancer case findings based on pathology reports and do not support automatic

extraction of other data elements such as TNM cancer stage information, an important

prognostic factor required before initiating clinical treatment.

In this study, I present novel applications of natural language processing (NLP) and

machine learning (ML) to automatically extract clinical and pathological TNM stage infor-

mation from unconsolidated clinical records of cancer patients available at the central Utah

Cancer Registry. To further support CTRs in their manual efforts, I demonstrate a new

approach based on machine learning to consolidate TNM stages from multiple records at

the patient level.
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CHAPTER 1

INTRODUCTION

The recent adoption of Electronic Health Record (EHR) systems across many health-

care institutions significantly improved the ability to capture, store and organize clinical

data, enabled many clinical applications, and facilitated data reuse for medical research.1,2

However, the amount of clinical data is increasing dramatically and is mostly realized in

unstructured narrative text format that is difficult to process automatically by computers

and derive useful knowledge.3 In addition, being the preferred medium of documentation

and communication by clinicians, narrative clinical text is predominantly the most abundant

form and contains the greatest amount of information in the EHR.4–6

Natural Language Processing (NLP) is an emerging area of research that focuses on

processing and analyzing free text written in human language using rule-based algorithms

and state of the art in statistical Machine Learning (ML). NLP has enjoyed a great amount of

progress within the past decade, leading to many successful applications within the medical

domain.7,8 Earlier attempts included efforts aimed at automatically acquiring diagnoses

from radiology and imaging reports9,10, collecting problem lists of patients.11,12, extracting

medications and clinical findings from clinical narratives13,14, and finding personal data such

as names, addresses and phone numbers for the purpose of deidentifying clinical records to

protect patient privacy and allow sharing and exchange of clinical information.15

Success in earlier attempts has motivated further research into far more complex prob-

lems which heavily depend on information extracted from clinical text. Recently, for

instance, researchers investigated the utility of NLP and ML to to classify patients as

to whether they have a certain condition based on their past medical records16–18 and

to find patients satisfying specific clinical criteria for medical research and clinical trial

recruitment.19 More ambitious studies involve automatically summarizing longitudinal

patient records either visually or textually which require analysis at a much deeper level
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based on temporal information and semantic relations between concepts.20,21

NLP applications based on statistical machine learning require access to human experts

to create annotated corpora that can be used as a gold standard for the development and

evaluation of algorithm in a supervised learning framework. Obtaining manual annotations

from experts is difficult and expensive especially in the medical domain where strict privacy

laws are in place and clinicians’ time is scarce and costly.22

Throughout the past decade researchers have developed and shared numerous NLP

tools and resources that can be readily used to process free text especially for the English

language. While the majority of contributions focus on text written for the general domain

such as news articles, there is a growing body of researchers who have tackled clinical text

and associated medical applications.23 The availability of many existing NLP resources

and associated corpora in the medical domain was largely possible because of the recent

uptake in NLP shared tasks which is instrumental in advancing the state-of-the-art in NLP

technology.22 In this study, we leverage existing resources and corpora developed in NLP

challenges or shared tasks and apply them to novel NLP applications.

1.1 Background and Significance

Cancer is the second leading cause of death in the United States and recently became

the leading cause of death in 21 states, surpassing heart diseases. About 600,920 cancer

deaths were estimated to occur in 2017, which is about 1,650 people per day.24 The overall

5-year survival rate for cancer is estimated at 69% notwithstanding the fact that this is an

overestimated figure because of an increased rate of screening (over-diagnosis).25 The total

expenditure for cancer care in the United States was estimated to have reached $125 billion

in 2010.26 The burden of cancer on public health has mobilized national and international

institutions to develop strategies to combat, prevent and control cancer.27,28

Cancer registries are a vital resource in the fight against cancer, paving the way for access

to critical clinical care information at the population level. Various cancer clinical care

data elements are captured by local and national registries. The role of cancer registries is

paramount in supporting cancer epidemiological studies and medical research, in particular

estimating cancer incidence and survival rates at the population level. The data collected

serve many objectives including ultimately the control of cancer and improvement of patient
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care.28 In the United states, both the National Cancer Institute (NCI) Surveillance,

Epidemiology, and End Results (SEER) program and Center for Disease Control and

Prevention (CDC) National Program of Cancer Registries (NPCR) are responsible for the

support and management of cancer registries at the national level. Utah Cancer Registry

(UCR) is a member of SEER program which collects primarily incidence and survival data

.29 The North American Association of Central Cancer Registries (NAACCR) maintains

data dictionaries and defines coding standards used by cancer registries in the United States

and Canada.30

Certified Tumor Registrars (CTR) are tasked with identifying reportable cancer cases

and manually performing coding of data required for cancer registries. Existing cancer

registry departments depend on CTRs to manually curate the electronic records, find

reportable cancer cases, and extract all associated data elements such as date of diagnosis,

staging information and treatment. This is often a time-consuming and laborious process

that is prone to human error and affects quality, completeness and timeliness of cancer

registry data.31 Coding guidelines and data standards are essential to standardization

across different registries. Given the overwhelming amount of information contained in

these manuals and the complexity of the coding rules for each cancer site, registrars are

required to undergo 3 years of training by completing an associate degree and undertaking

a clinical practicum before they can become certified for the task.32 Although computer

software helping registrars with their tasks exist, it is mostly limited to cancer case findings

and depends on availability of pathology reports and, to the best of our knowledge, do not

extend their operations to aid in the extraction of other vital data elements such as cancer

stages.33

Cancer registry databases suffer from incomplete and slow data reporting due to the

manual and laborious process used for data collection. A study based on surveys conducted

across European cancer registries as part of the EUROCOURSE project and covering a

population of more than 280 million people found that the median time to complete case

ascertainment for the relevant year was 18 months, with an additional 3-4 months to publish

data to national databases.34,35 Though delay in completion is primarily related to clinical

processes to evaluate the patients extent of disease, reduced time to ascertainment is very

desirable. The Utah cancer registry has a similar time-lag with consolidation of cases
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diagnosed in 2014 only completed in 2016.

Cancer stage information is critical for assessing prognosis and selection of treatment

plans and guidelines require staging before initiating any treatment.36 The American Joint

Committee on Cancer (AJCC) manual specifies criteria (known as TNM) for staging each

cancer site depending on tumor characteristics (T), number and location of lymph nodes

involvement (N), and metastatic nature (M). The AJCC TNM manual is a dynamic resource

that is evolving and continually revised to incorporate the most recent cancer knowledge.

For instance, for the upcoming 8th edition of the AJCC manual, new factors will be included

to determine T stage such as biological markers that are associated with specific cancer sites.

Therefore, in addition to laborious manual effort required to abstract cancer stage, there is

a learning curve for registrars when assigning stage information due to the dynamic nature

of the coding instructions.

Natural Language Processing coupled with Machine Learning are promising technologies

to increase the efficiency of cancer registry data abstraction processes. In the domain of

cancer, several studies showed effectiveness of NLP and ML to mine the electronic health

record for cancer-related information from a variety of report types37 and automatically

discover reportable cancer cases based on analysis of pathology records.33 We hypothesize

that NLP and ML will be effective technologies in aiding human registrars to assign cancer

stage based on analysis of multiple unconsolidated records received from reporting hospitals

at central cancer registries.

1.2 Research Aims

The overall objective of this research study is to develop novel applications of Nat-

ural Language Processing (NLP) and Machine Learning (ML) to automatically extract

cancer-related information from records collected at central cancer registry and determining

the AJCC TNM cancer staging for each patient. Most previous studies have focused on

extracting the AJCC TNM stage information exclusively from pathology reports. This

would not support cancer registry efforts adequately since clinical staging is assigned prior

to initiation of treatment and many patients do not immediately undergo resection of their

tumor and pathology examination. Furthermore, the collection of the AJCC TNM stages

from different registry sources requires the additional laborious and time-consuming task of
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consolidating multiple data at the central cancer registry. In this study, we demonstrate the

best classification approach using machine learning to automate cancer stage consolidation

from multiple records.

1.2.1 AIM I

1.2.1.1 Justification

NLP applications are usually built from multiple processing components aligned in

a pipeline fashion where each component analyzes its input and delivers output to the

next component. Existing NLP components and tools can be used to build prepossessing

pipeline to transform narrative text to structured units and assign features for further

downstream analysis. Adapting and Reusing existing NLP components could substantially

reduce development efforts while maintaining a baseline with good performance.

1.2.1.2 Specific Aim I.1

Measure accuracy of reusing existing NLP components and terminology resources to

extract risk factors from textual discharge summaries of diabetic patients.

1.2.1.3 Specific Aim I.2

Demonstrate that a baseline system constructed from existing NLP components devel-

oped for similar previous tasks can achieve good performance without extensive feature

engineering or retraining of modules.

1.2.1.4 Significance

This aim is completed as part of a study38 for the 2014 i2b2 cardiovascular risk factor

identification task39 using discharge summaries of diabetic patients. The study was an initial

preliminary work to experiment with existing clinical NLP resources such as cTAKES40 and

the potential to be adapted as baseline for a new task in finding various clinical information

from clinical notes. Much of the NLP pipeline can be reused for other tasks especially

the prepossessing components such as sentence detection, tokenization, finding sections,

lemmatization (finding word root) and UMLS concept mapping. The study showed that

relying on existing NLP resources and adapting them for new tasks helped speed up the

development efforts considerably (1-2 months) while maintaining good performance. The
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proposed NLP system achieved results comparable to the best systems submitted for the

task and scored an overall F1-measure of 87.47% in the task which included a total of 49

submissions from 20 teams.

1.2.2 AIM II

1.2.2.1 Justification

Recent NLP applications adopt statistical machine learning frameworks to solve infor-

mation extraction tasks such as named entity recognition, and relations finding. There are

many statistical machine learning algorithms that have been proposed in the literature.

Among the most prominent are Support Vector Machine (SVM) and Conditional Random

Fields (CRF) algorithms. The SVM approach transforms the input into multidimensional

vector space representation and finds the separation line or plane with maximum marginal

distance between learning instances. The CRF approach uses Markov chain processes to find

the sequence of class labels with highest probability given the observed sequence of input.

Both algorithms depend heavily on carefully selected feature representations to improve

performance. The best machine learning approach and features for a given NLP task are

not obvious upfront and closely examining each approach for a specific task can be useful.

1.2.2.2 Specific Aim II.1

Evaluate accuracy of SVM and CRF structured machine learning approaches to auto-

matically extract cancer-related information, time expressions and relations between them

from clinical records of Colorectal Cancer patients.

1.2.2.3 Specific Aim II.2

Compare performance of SVM and CRF and provide future direction for further im-

provement for similar tasks.

1.2.2.4 Significance

This aim was completed as part of a study41 for the 2016 Clinical TempEval task.42

The study compared two popular machine learning approaches in information extraction:

sequential classification based on Conditional Random Field (CRF) and large margin classi-

fication based on Support Vector Machine (SVM). The results showed that the CRF-based
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approach slightly outperformed the SVM-based system and that an ensemble-based strategy

where predictions from multiple classifiers are combined could yield better results for the

time expressions extraction subtask. Our submissions achieved competitive results in each

subtask with an F1 score of 75.4% for TIMEX3 subtask, F1 score of about 89.2% for EVENT

subtask, F1 score of 84.4% for event relations with document time (DocTimeRel), and F1

score of 51.1% for narrative container (CONTAINS) relations subtask.

1.2.3 AIM III

1.2.3.1 Justification

Central cancer registries receive multiple records from different sources for each newly

diagnosed cancer case. Cancer tumor registrars manually perform chart abstraction to find

relevant information to stage each cancer case and carry out coding of other data elements

required for regulatory reporting. Due to increasing load on the registrars and personnel

costs, there is a pressing need to automate the manual abstraction process and support

registry’s work to improve timeliness and quality of data. NLP and machine learning

technologies could be used to build tools for automatic extraction and classification of

relevant cancer stage information from clinical text available at records in a central cancer

registry.

1.2.3.2 Specific Aim III.1

Develop a reference standard composed of human annotated TNM stage mentions found

in text fields of sample records from the Utah Cancer Registry for colon, lung and prostate

cancer cases. The reference standard was used for training and evaluation of a new NLP

system.

1.2.3.3 Specific Aim III.2

Evaluate accuracy of NLP to automatically extract TNM stage mentions from text in

the reference standard and compare against the manual annotations performed by human

registrars.
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1.2.3.4 Specific Aim III.3

Evaluate accuracy of a CRF-based machine learning approach to classify TNM mentions

to clinical or pathological stages.

1.2.3.5 Significance

Automated extraction and classification of TNM stage mentions from unstructured text

fields within records at Utah Cancer Registry achieved high accuracy when compared to

manual human annotations from the reference standard. The automated extraction using

NLP achieved very high sensitivity of about 95.5%–98.4% across the three cancer sites while

automatic classification of TNM mentions using the CRF approach achieved sensitivity of

about 83.5%–87%.

1.2.4 AIM IV

1.2.4.1 Justification

Consolidation of multiple cancer stages for each cancer case is performed manually by

registrars at each central cancer registry. This process has become time-consuming and

more expensive with rising cancer cases diagnosed each year. Automated consolidation

using machine learning could potentially support registrars’ manual effort and reduce costs

while maintaining good data quality.

1.2.4.2 Specific Aim IV.1

Develop and evaluate accuracy of machine learning algorithms for consolidating multiple

cancer TNM stages.

1.2.4.3 Specific Aim IV.2

Validate the performance of machine learning algorithms for TNM stage consolidation

through comparison to the consolidation decisions made by cancer registrars for three cancer

sites: colon, lung and prostate.

1.2.4.4 Specific Aim IV.3

Evaluate accuracy of deriving a cancer stage group for each case using TNM stages

consolidated by the machine learning algorithm.
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1.2.4.5 Significance

Automatic consolidation of cancer stages using machine learning for the cancer registry

could achieve high accuracy for some cancer sites and may be practical and useful in the

context of manual human review assistance. The cross validation and testing experiments

showed that consolidation of M stage for the three cancer sites could achieve very high

accuracy (93.9%–96.8%) while consolidation of T and N stages varied for different sites with

the best performance observed for colon cancer cases (83.6%–91.2%), followed by prostate

cancer cases (73.5%–81.4%) and lowest for lung cancer cases (60.4%–71.1%). Deriving a

stage group from consolidated TNM stages on the testing subset showed high accuracy for

colon cancer (88.4%) followed by lung cancer (84.5%) while accuracy for prostate cancer

was lower (67.1%).
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[13] Özlem Uzuner, Imre Solti, and Eithon Cadag. Extracting medication information from
clinical text. Journal of the American Medical Informatics Association, 17(5):514–518,
2010.
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a b s t r a c t

The 2014 i2b2 natural language processing shared task focused on identifying cardiovascular risk factors
such as high blood pressure, high cholesterol levels, obesity and smoking status among other factors
found in health records of diabetic patients. In addition, the task involved detecting medications, and
time information associated with the extracted data. This paper presents the development and evaluation
of a natural language processing (NLP) application conceived for this i2b2 shared task. For increased effi-
ciency, the application main components were adapted from two existing NLP tools implemented in the
Apache UIMA framework: Textractor (for dictionary-based lookup) and cTAKES (for preprocessing and
smoking status detection). The application achieved a final (micro-averaged) F1-measure of 87.5% on
the final evaluation test set. Our attempt was mostly based on existing tools adapted with minimal
changes and allowed for satisfying performance with limited development efforts.

� 2015 Elsevier Inc. All rights reserved.

1. Introduction

The 2014 i2b2 (Informatics for Integrating Biology and the Bed-
side) challenge proposed several different tasks: clinical text de-
identification, cardiovascular risk factors identification, software
usability assessment, and novel data uses. Our efforts focused on
the second track, identifying risk factors for heart disease based
on the automated analysis of narrative clinical records of diabetic
patients [1]. The annotation guidelines for the task defined eight
categories of information associated with increased risk for heart
disease: (1) Diabetes, (2) Coronary Artery Disease (CAD), (3) Hyper-
lipidemia, (4) Hypertension, (5) Obesity, (6) Family history of CAD,
(7) Smoking and (8) Medications associated with the aforemen-
tioned chronic diseases. Each category of information (except fam-
ily history of CAD and smoking status) had to be described with
indicator and time attributes. The indicator attribute captures indi-
cations of the risk factor in the clinical text. For instance, Diabetes
could be identified using a mention of the disease (i.e. ‘‘patient has
h/o DMII”), or a hemoglobin A1c value above 6.5 mg/dL (i.e. ‘‘7/18:
A1c: 7.3”) while CAD could be identified using a mention (i.e.
‘‘PMH: significant for CAD”), or an event (i.e. ‘‘CABG in 1999”).
The time attribute specifies the temporal relation to the Document

Creation Time (DCT). It could take any one of the following values:
before DCT, during DCT or after DCT. We refer the reader to [2] for a
complete description of the annotation guidelines. For this chal-
lenge, we built a natural language processing (NLP) application
based on the Apache UIMA (Unstructured Information Manage-
ment Architecture) [3] and reusing existing tools previously devel-
oped to address similar tasks in previous i2b2 challenges. In this
paper, we present our approach to extract relevant information
from clinical notes, discuss performance results, and conclude with
remarks about our experience adapting existing NLP tools.

2. Background

Extracting information from clinical notes has been the focus of
a growing body of research these past years [4]. Common charac-
teristics of narrative text used by physicians in electronic health
records (e.g., telegraphic style, ambiguous abbreviations) make it
difficult to access such information automatically. Natural Lan-
guage Processing (NLP) techniques are needed to convert informa-
tion from the unstructured text to a structured form readily
processable by computers [5,6]. This structured information can
then be used to extract meaning and enable Clinical Decision Sup-
port (CDS) systems that assist healthcare professionals and
improve health outcomes [7]. Among the earliest attempts to
develop NLP applications in the medical domain, the LSP (Linguis-
tic String Project) [8], and MedLEE (Medical Language Extraction

http://dx.doi.org/10.1016/j.jbi.2015.08.002
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and Encoding system) [9] were prominent examples. More recent
applications include MetaMap [10] developed by the National
Library of Medicine to map terms in biomedical text with concepts
in the UMLS (Unified Medical Language System) Metathesaurus
[11]. cTAKES [12] was developed at the Mayo Clinic and is
described as ‘‘large-scale, comprehensive, modular, extensible,
robust, open-source” application based on Apache UIMA. It can
be used to preprocess clinical text, find named entities and perform
additional advanced NLP tasks such as coreference resolution. Tex-
tractor [13] is another UIMA-based application that was originally
developed at the University of Utah to extract medications, their
attributes, and reasons for their prescription from clinical notes.

When extracting information from clinical notes, NLP applica-
tions must take local contextual and temporal information into
account for improved accuracy. Contextual information is impor-
tant to determine if concepts are affirmed or negated (e.g., ‘denies
any chest pain’), or if the subject of the information is the patient or
someone else (e.g., ‘mother has diabetes’). Popular algorithms for
negation detection in clinical notes include NegExpander [14]
and NegEx [15]. Temporal information is critical to establish
chronological order of events described in patient notes and to
resolve mentions of procedures or laboratory results to specific
time points for accurate analysis [16,17]. The ConText algorithm
[18] proposed by Chapman et. al. is an extension of NegEx that
allows analysis of contextual information like negation (negated,
affirmed), temporality (historical, recent, hypothetical), and expe-
riencer (patient, other). The development of NLP applications typ-
ically requires significant efforts and relies on annotated clinical
text for training and testing. Widely accessible and shared anno-
tated corpora in the medical domain are still rare, mainly because
of strict patient privacy rules. This scarcity has been an obstacle to
developing state-of-the-art NLP approaches for clinical text [19].
To address this obstacle and enable direct comparison of NLP
approaches in the clinical domain, i2b2 shared NLP tasks have been
organized almost annually since 2006. The challenges started with
an automated de-identification [20] and smoking status detection
[21] challenges. In 2008, the i2b2 challenge focused on identifying
information about obesity and 15 co-morbidities [22]. In 2009, the
third i2b2 challenge [23] was focused on identifying medications
and associated information such as dosage and frequency. This
was followed by challenges for medical concept extraction, asser-
tion and relations classification in 2010 [24], followed by corefer-
ence resolution tasks in 2011 [25] and a temporal relations
classification in 2012 [26].

To reduce development efforts, many authors have reused NLP
tools or resources such as ConText, sentence boundary detectors
and part-of-speech taggers from OpenNLP project [27], the Stan-
ford parser [28], or the Weka machine learning framework [29],
but the majority of their applications were still new developments.
Reusing larger components or even existing NLP applications could
allow for further development effort reduction. A good example
was the application developed by Wellner et al. [30] for the 2006
i2b2 de-identification task. It was based on the adaptation of two
applications originally designed for recognizing named entities in
newswire text. The process involved running two applications
out-of-the-box as a baseline and then gradually introducing a
few task-specific features, using bias parameters to control feature
weights, and adding lists of common English words during devel-
opment to improve performance. With minimal effort, they were
able to obtain very high performance for the task. Although their
attempt used applications out-of-the-box as baselines, they had
to re-train the models with new task-specific features to achieve
high performance. Our attempt focused on adapting existing tools
that were developed to solve similar tasks in the past, and do it
without feature engineering and re-training of machine learning
models.

3. Methods

3.1. Datasets

The i2b2 NLP shared task organizers distributed two annotated
datasets (SET1 and SET2) to be used for development and training.
These sets were released separately, with a few weeks interval.
SET1 was composed of 521 de-identified clinical notes and SET2
was composed of 269 de-identified notes; therefore, a total of
790 documents were available for training. The test set was
released three days before final submission and consisted of a total
of 514 de-identified clinical notes.

3.2. NLP application overview

As already mentioned, our application was based on the Apache
UIMA framework, with components adapted from two existing
applications. Because of the various nature of information to be
extracted in this task, we experimented with different approaches
for different categories of information. For example, Textractor’s
dictionary-based lookup component was used to detect mentions
of chronic diseases, in addition to mentions of CAD events as
defined in the annotation guidelines. The results of the lookup
module were then filtered using lists of UMLS Metathesaurus con-
cept identifiers CUIs for disease and risk factor concepts defined for
the task. Smoking status was identified using the existing classifier
available from cTAKES. Medications and the various test results
(hemoglobin A1c, glucose, blood pressure, cholesterol, etc) were
identified using pattern matching with regular expressions. Family
history of CAD was detected by modifying the contextual analysis
of the detected CAD mentions using ConText’s ‘experiencer’
analysis.

The application pipeline is depicted in Fig. 1 and described
below. The analysis of clinical text begins with a preprocessing
stage that consists in segmenting the text into sections, splitting
it into sentences, tokenizing and assigning part-of-speech tags to
the input text with cTAKES. This is followed by running the smok-
ing status classifier from cTAKES ‘‘out-of-box” to classify each
patient record to a smoking status category: CURRENT, PAST, EVER,
NEVER, UNKNOWN. The existing cTAKES SMOKER label was chan-
ged to EVER, as defined for this i2b2 task.

Fig. 1. Overview of NLP application pipeline with adapted components from
cTAKES and Textractor.

A. Khalifa, S. Meystre / Journal of Biomedical Informatics 58 (2015) S128–S132 S129

15



The text analysis then continues with rule-based pattern
matching modules for detecting medications and laboratory test
results. Medications were detected with a manually curated termi-
nology of synonymous terms and abbreviations linked to each
medications category. These lists were compiled using UMLS
Metathesaurus terminologies and lists of common abbreviations
found in clinical narratives (manually built by local domain
experts); and then manually grouping the concepts into medica-
tion categories. The number of terms used for each medications
varied widely, ranging from as few as 3 (e.g. for metformin) to
more than 50 (e.g. for beta blockers and aspirin). Laboratory test
results and vital signs were detected using regular expressions
and the associated values were compared with abnormality
thresholds defined in the guidelines. For instance, the phrase
‘‘Cholesterol-LDL 08/26/2091 148” indicates an LDL cholesterol
concentration of 148 mg/dL, which is above the normal concentra-
tion of 100 mg/dL and should therefore be included as a risk factor.
Special attention was paid to avoid incorrect values that were part
of other numeric expressions (e.g., dates) by restricting regular
expression matches to reasonable value ranges and imposing
specific conditions on number boundaries (see examples in
Table 1). Two regular expressions were used for each relevant lab-
oratory test or vital sign indicator; one for capturing the term and
the other for numerical value associated with the laboratory test or
vital sign.

The application then proceeded with the UMLS Metathesaurus
lookup module from Textractor. This module uses Apache
Lucene-based [31] dictionary indexes to detect disease and risk
factor terms. Before the dictionary lookup, acronyms were
expanded and tokens normalized by removing unwanted stop-
words. The lookup module then matched terms that belonged to
one of the predefined UMLS semantic types for diseases (i.e.,
T019, T033, T046, T047 and T061). Matching was performed at
the token level first, and then expanded to match at the noun
phrase chunk level. All detected concepts were then filtered based
on their CUIs to only include concepts belonging to one of the five
disease and risk factor categories identified in the guidelines: CAD,
Diabetes mellitus, Obesity, Hyperlipidemia, and Hypertension.

Finally, the application performed contextual analysis of all
extracted and filtered information to exclude negated concepts,
verify that the patient was the experiencer, and produce time attri-
butes for each concept in relation to the DCT. Negation and expe-
riencer analysis was performed using a local implementation of
the ConText algorithm, as available in Textractor. Detection of fam-
ily history of CAD was handled by considering all extracted CAD
concepts with an experiencer other than the patient (e.g., ‘‘mother
has history of CAD”) as a present family history of CAD. If all CAD
concepts were identified as belonging to the patient, or if no CAD
concepts were found in the clinical note, then family history of
CAD was set to not present.

We experimented with various uses of ConText’s temporal anal-
ysis (i.e., concepts classified as recent, historical or hypothetical) in
order to map them to the corresponding time attribute values (i.e.,
before DCT, during DCT or after DCT). However, initial results on
the training data using this approach were not satisfying. As an
alternative approach, we used the most common time value found

for each category of information in the training data. For example,
chronic diseases such as CAD and most medications were mostly
continuing (i.e., existed before, during, and after the hospital stay
or visit) and therefore annotated with all three time attribute val-
ues in the reference standard. As another example, laboratory test
results varied with examples like hemoglobin A1c and glucose
tests that were mostly ‘before DCT’, and others like hypertension
that were mostly ‘during DCT’.

4. Results

After development and refinement based on the training corpus
(SET1 and SET2), the NLP application processed the testing corpus
when made available, and the application output was sent to the
shared task organizers for analysis. The application output was
compared with the reference standard using the evaluation script
provided by the shared task organizers and all extracted informa-
tion classified as true positive (i.e., output matches with the refer-
ence standard), false positive, or false negative. Metrics used
included recall, precision, and the F1-measure (details in [1]). The
results for each class of information are presented in Table 2. For
overall averages, both macro- and micro-averages are included.
Each separate class-indicator combination is reported using
micro-averages only. The evaluation script contained an option to
calculate results separately for each class of information using
the --filter option. It also allowed computing specific class
and indicator attribute values such as the class DIABETES and indi-
cator attribute value of mention using the option --conjunctive.
Results for each disease category are presented for mention and
each disease-specific indicators separately as in the annotation
guideline. The SMOKING category results are presented as status

Table 1
Examples of regular expressions used for matching test mentions and values.

Laboratory/test Regular expression for mention Regular expression for value

Glucose (for Diabetes mellitus) (fasting)? (blood)? (glucose|nbGLU(-poc)?nb|nbBGnb|(blood)
sugar(s)?|nbFSnb|nbBSnb|fingerstick|nbFGnb)

(?<!/|nd)(ndndnd?)(-ndndnd)?(?!/|nd|nw)

Blood pressure (for Hypertension) (?<!nw)((s)?BP[s]?|b/p|((blood|systolic)[]+pressure[s]?)|
hypertensive)[:]? (?!nw)

(?<!/|nd)(ndndnd)/(ndndnd?) (?!/nd|nd)

Table 2
Macro- and micro-averaged overall results including the micro-averaged breakdown
of final results for every class of information given in terms of Precision, Recall and F1-
measure.

Indicator Precision Recall F1-measure

CAD Mention 0.883 0.9651 0.9222
Symptom 0.2095 0.4429 0.2844
Event 0.6457 0.5899 0.6165
Test 0.4557 0.6102 0.5217

Diabetes Mention 0.9512 0.9887 0.9696
A1C 0.8611 0.7561 0.8052
Glucose 0.1486 0.3333 0.2056

Hyperlipidemia Mention 0.9899 0.827 0.9011
High cholesterol 0.5714 0.3636 0.4444
High LDL 0.84 0.7241 0.7778

Hypertension Mention 0.9918 0.9891 0.9904
High BP 0.8571 0.5231 0.6497

Obesity Mention 0.7562 1.0 0.8612
BMI 0.9231 0.7059 0.8

Smoking 0.8638 0.8672 0.8655
Medication 0.8282 0.8911 0.8585
Family history of CAD 0.9494 0.9494 0.9494
Macro-average 0.8494 0.8914 0.8699
Micro-average 0.8552 0.8951 0.8747
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only, and MEDICATION results are aggregated for all the categories
correctly identified in the clinical records. All results in the table
were computed for all three values of time attribute for each class
and no attempt made to separate ‘before DCT’, ‘during DCT’ and
‘after DCT’ results for each class.

As shown in Table 2, the application achieved an overall micro-
averaged F1-measure of 87.47% and a macro-averaged F1-measure
of 86.99%. In most disease categories, accuracy was highest for
mentions of disease with micro-averaged F1-measures of 92.22%,
94.94%, 96.96%, 90.11%, and 99.04% for CAD, family history of
CAD, Diabetes, Hyperlipidemia, and Hypertension, respectively.
Medications, mentions of Obesity and Smoking status identifica-
tion accuracy reached micro-averaged F1-measures of 85.85%,
86.12% and 86.55%, respectively. Accuracy was lower with other
information categories such as laboratory tests, CAD events and
symptoms with F1-measures ranging from 20.56% to 80%.

5. Discussion

As presented above, the application accuracy for mentions of
the various diseases, smoking status, medications and family his-
tory was higher than accuracy for any other indicator type defined
in the annotation guidelines (e.g., laboratory tests, CAD events and
symptoms). The dictionary lookup approach with terminological
content from the UMLS Metathesaurus for detecting disease men-
tions was successful for this task. Similarly, the smoking status
classifier from cTAKES successfully identified and classified smok-
ing status information (F1-measure of about 87%) despite the fact
that the model was used out-of-the-box, without any training on
the new corpus for the current i2b2 NLP task. The identification
of medications and their attributes reached an F1-measure of about
86% when using regular expressions and manually curated lists of
terms, demonstrating the feasibility of this approach for the type of
narrative notes used in this shared task. The precision obtained for
medications was lower (83%) than recall (89%) and hence affected
the final F1-measure. This is mainly due to the way we chose to
generate the time attribute by using the continuing times scenario
(i.e., generating ‘before DCT’, ‘during DCT’ and ‘after DCT’ temporal
information tags for every medication detected in the notes). Obvi-
ously, there will be false positives associated with this approach
when medications strictly occur for either one or two of the time
values in the clinical notes. In addition, since the medication term
lists were created manually, some spelling variations and terms
could have been missed, therefore producing some false negatives
and affecting overall recall. An example of spelling variation is the
term ‘nitroglycerine’ in the nitrate group category, which appeared
in both corpora as ‘nitroglycerin’. The latter was not in the nitrate
list used by our application and hence caused some false negatives.
An example of completely missed terms was sublingual nitroglyc-
erin mentioned as ‘SL NTG’. Among disease mentions, the Hyper-
lipidemia class had the lowest recall (83%) and Obesity had the
lowest precision (76%). The former was mostly due to some clinical
reports containing annotations for Hyperlipidemia mentions
appearing as ‘elevated serum cholesterol’, ‘elevated lipids’ and
‘high cholesterol’ that were missed by our application because of
inaccurate chunking. In addition, we did not have the correspond-
ing CUI codes for some of them in our dictionary lookup module.
There were at least two cases in the testing corpus where Hyper-
lipidemia was mentioned directly following a word with no space
in between such as ‘hemodialysisHyperlipidemia’ which our appli-
cation missed also. The low precision with Obesity was caused by
including the UMLS concept ‘overweight’ in our list of CUIs for
Obesity. Although ‘overweight’ was used as indicator for obesity
in one record in the reference standard corpora, its use produced
many false positives since ‘overweight’ often does not indicate

obesity. There were also false positive mentions of Obesity pro-
duced by our application in cases where ‘obese’ was mentioned
without indicating Obesity (e.g., ‘‘abdomen is slightly obese” and
‘‘Abdomen: Moderately obese”). The other indicators for diseases
and risk factors were quite challenging and our approach using
regular expressions at the lexical level was not always effective.
With the exception of hemoglobin A1c laboratory tests (for Dia-
betes), BMI (for Obesity), and cholesterol LDL (for Hyperlipidemia),
the application performance was modest with an F1-measure rang-
ing from 21% for the blood glucose indicator up to 65% for the
blood pressure indicator. Some of the challenges with these indica-
tors are summarized below:

� Lexical and spelling variations: Some laboratory indicators for
diseases are mentioned with many lexical variations and acro-
nyms. Table 1 shows the regular expressions used to capture
blood glucose for diabetes and blood pressure for hypertension.
As shown, glucose can be described with a variety of terms like
BG, BS, FS and FG; and blood pressure can be described with
terms like BP and b/p. This is an example of some of the limita-
tions with our approach. and a comprehensive strategy to deal
with this issue to enable better accuracy would be needed.

� Extracting laboratory numerical results accurately:When the
application finds matching terms for laboratory or test indica-
tors, it must proceed with extracting associated numerical val-
ues and compare them to threshold levels for abnormality.
Extracting numerical values may be straightforward when they
immediately follow the term and are expressed as single units
such as in the phrase ‘‘FSBG was 353”. However, other phrases
can be more challenging like ‘‘FG 120–199; now 68–172,
although 172 = outlier, mostly in the 70–130”. In this case,
ranges of values are expressed with ‘�’, and multiple units are
expressed with temporal and frequency modifiers (i.e. ‘now’
and ‘mostly’).

� Training data sparseness: The number of training examples
available was sometimes too low to allow for the variety needed
for adequate application generalization. For instance, in the case
of cholesterol indicator for Hyperlipidemia, the total number of
available annotations was only 9 in the whole set of 790 train-
ing documents. In contrast, there were about 33 annotations
available for the LDL indicator.

� Complex time analysis. Test and laboratory indicators require
more sophisticated time attribute analysis and this is another
limitation of our approach. Unlike chronic disease mention
annotations which were mostly characterized with ‘continuing’
time attribute (i.e. before, during and after DCT), most of the
laboratory and vital sign annotations were characterized by a
variety of time attribute values. For instance, hemoglobin A1c
and glucose tests were usually conducted in a prior visit and
hence mostly annotated with ’before DCT’ while blood pressure
(BP) was mostly measured during the patient visit and hence
had mostly ’during DCT’ time value. To examine the impact of
time attributes on performance of our application, we followed
the ‘‘fixed” evaluation procedure described in [32] and pro-
duced results for some indicators after replacing the value of
time attribute with ‘before DCT’ in all annotations from our
application output and in the testing reference standard (see
Table 3). This evaluation considers true positives, false positives
and false negatives for each individual annotation while ignor-
ing the time attributes (i.e. application output is not penalized
for incorrect time values). As shown in Table 3, the performance
of our application improved when the time component was
ignored in the evaluation (compare with results from Table 2).
Our decision to use the most common time attribute values
for each of these indicators caused a loss in precision and recall
contributing to lower overall F1-measure score.
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6. Conclusion

Our rapid approach, adapting resources from existing applica-
tions for the 2014 i2b2 challenge, allowed for performance similar
to other more sophisticated application developed for this task
which used additional manual annotations or multiple machine
learning classifiers [1]. We think that existing NLP resources should
be reused, and most can be adapted and used at least as baseline
for future tasks in the clinical domain. Improvements for future
attempts shall focus on a comprehensive strategy to tackle spelling
errors and variations, acronyms disambiguation, and more refined
temporal analysis. Use of standard terminologies, as available in
the UMLS Metathesaurus, should be the basis for these clinical
information extraction tasks as they already contain well-defined
concepts associated with multiple terms. Finally, regular expres-
sions and pattern matching can be useful for extracting informa-
tion such as name-value pairs from short phrases (e.g.
‘Cholesterol- LDL 08/26/2091 148’). However, longer phrases con-
taining complex syntactic structures require the use of advanced
parsing techniques to identify constituents and relations between
them. In the future, we plan to explore advanced techniques such
as dependency parsing or semantic role labeling to reduce errors
appearing with long phrases requiring deeper contextual analysis
to be accurately extracted. For instance, in the following sentence:
‘‘Prior to her bypass surgery on the right leg, she underwent a Per-
santine MIBI which showed only 1 mm ST depressions and was
considered not diagnostic”; it is important for an application to link
the negated phrase ‘‘was considered not diagotstic” with the noun
phrase ‘‘Persantine MIBI” to conclude that although the patient had
the MIBI test performed, the result was not diagnostic and there-
fore the test indicator (i.e. ‘MIBI’) ruled out CAD.
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Abstract

The 2016 Clinical TempEval continued the
2015 shared task on temporal information
extraction with a new evaluation test set.
Our team, UtahBMI, participated in all sub-
tasks using machine learning approaches with
ClearTK (LIBLINEAR), CRF++ and CRF-
suite packages. Our experiments show that
CRF-based classifiers yield, in general, higher
recall for multi-word spans, while SVM-based
classifiers are better at predicting correct at-
tributes of TIMEX3. In addition, we show
that an ensemble-based approach for TIMEX3
could yield improved results. Our team
achieved competitive results in each subtask
with an F1 75.4% for TIMEX3, F1 89.2%
for EVENT, F1 84.4% for event relations
with document time (DocTimeRel), and F1
51.1% for narrative container (CONTAINS)
relations.

1 Introduction

Extracting temporal information from unstructured
clinical narratives is an important step towards the
accurate construction of a patient timeline over the
course of clinical care (Savova et al., 2009), identify-
ing and tracking patterns of care that are crucial for
decision making (Augusto, 2005; Wang et al., 2008)
and identifying cases or cohorts with temporal crite-
ria for medical research (Raghavan et al., 2014). In
the medical domain, more emphasis has been placed
on utilizing temporal information from structured
databases (Combi et al., 2010). However, recent
developments in Medical Natural Language Pro-
cessing (NLP) research has stimulated work in ex-

tracting information from unstructured clinical text
(Meystre et al., 2008; Velupillai et al., 2015a) and fa-
cilitated future directions to extracting temporal in-
formation (Zhou and Hripcsak, 2007).

The i2b2 series of NLP challenges focused in
2012 on extracting events (problems, treatments and
tests), time expressions (date, duration, time and fre-
quency) and temporal relations (before, after, over-
lap) from a set of annotated discharge summaries.
The best performing systems used supervised ma-
chine learning approaches, except for time expres-
sion identification and normalization where rule-
based followed by hybrid approaches were most
successful (Sun et al., 2013b; Sun et al., 2013a).

In 2015, the SemEval challenge included a Clin-
ical TempEval task (Bethard et al., 2015) with sim-
ilar objectives to the 2012 i2b2 challenge. The
TimeML event and temporal expressions specifica-
tion language (Pustejovsky et al., 2010) was adapted
to define events, time expressions and relation an-
notations suitable for the clinical domain (Styler et
al., 2014). The THYME (Temporal Histories of
Your Medical Event) corpus is used in the Clinical
TempEval challenge. The annotations in this cor-
pus introduce the use of narrative containers concept
(Pustejovsky and Stubbs, 2011) to reduce the com-
plexity of finding temporal relations between every
possible pair, and allow rapid discovery through au-
tomatic inferences. Each event and time expression
is, when possible, assigned a narrative container that
defines their temporal span. Groups of events and
times within a narrative container can then be linked
as one unit with other containers; eliminating the
need to explicitly link every pair of events and times.

1256

20



The additional pairs can be derived easily from min-
imal links between pairs within different narrative
containers.

We present in this paper the methods used and re-
sults obtained from experiments with SVM-based
linear classifiers and CRF-based sequential classi-
fiers for the Clinical TempEval task. We comple-
ment the paper with a discussion and insights that
potentially could help future efforts in this domain.

2 Methods

2.1 Task & Materials

The 2016 Clinical TempEval challenge included 6
subtasks: TIMEX3 1) span detection and 2) attribute
classification, EVENT 3) span detection and 4) at-
tribute classification, 5) relation between each event
and document creation time classification (known as
DocTimeRel), and narrative container or 6) CON-
TAINS relations between pairs of events and times
classification. Our team participated in both phases
provided in the challenge (phase 1: plain text only
of the test set and phase 2: reference annotations
for TIMEX3 and EVENTS including attributes were
given for the relation classification subtasks) For a
detailed description of the subtasks and evaluation
metrics we refer the reader to (Bethard et al., 2015;
Bethard et al., 2016).

The THYME corpus used in this task consists of
treatment and pathology notes for colon cancer pa-
tients from the Mayo clinic. Three datasets were
provided: train (=293 documents), dev (=147) and
test (=151). We used the dev set to benchmark dif-
ferent approaches during system development and
as a guideline to manually select the best perform-
ing features. All final models used for predictions
were trained using the combined train+dev datasets.
The test set was used for the final evaluation. Each
subtask was addressed separately using a machine
learning classifier and groups of almost similar fea-
tures with slight changes such as surrounding con-
text window sizes. cTAKES (Savova et al., 2010)
was used to pre-process each clinical note to gen-
erate morphological, lexical and syntactic-level an-
notations, which were used as features for train-
ing the classifiers. The ClearTK machine learning
package (Bethard et al., 2014) was used to build
Support Vector Machine (SVM) LIBLINEAR (Fan

et al., 2008) classifiers, while CRFsuite (Okazaki,
2007) and CRF++ (Kudo, 2005) were used to build
Conditional Random Field (CRF) sequential clas-
sifiers. Both cTAKES and ClearTK utilize the
Apache Unstructured Information Management Ap-
plications (UIMA) framework (Ferrucci and Lally,
2004) which makes it easy to integrate modules from
both applications and pipeline output from cTAKES
to ClearTK using the XML Metadata Interchange
(XMI) format.

2.2 Input Preparation/Feature Extraction

Each clinical note in the corpus was previously seg-
mented into sections with a [start section
id=...] and [end section id=...] mark-
ers that were easy to identify and annotate using
regular expressions. Therefore, we built a UIMA
module to segment each clinical note into section
boundaries; each annotated with their respective sec-
tion ID. cTAKES clinical pipeline (version 3.2.2)
was used to extract lexical and syntactic features.
These include sentence boundaries, tokens, lemmas,
part-of-speech tags, syntactic chunk tags (e.g. Verb
Phrase-VP, Noun Phrase-NP), token type as defined
by cTAKES (see figure 1), as well as dependency
parse and semantic role labels used for relation clas-
sification. Furthermore, ClearTK feature extractors
were used to generate word shape features (e.g. cap-
ital, lower, numeric), character patterns and charac-
ter N-gram features for the linear classifiers. The
CRFsuite package comes with built-in feature ex-
tractor functions for word shapes, character pat-
terns and N-gram which were used for the TIMEX3,
EVENT and DocTimeRel CRF classifiers. Table 1
outlines the features used in each subtask.

For the CRF packages, the features had to be
transformed into a flat, tab-separated structure with
columns of tokens and associated features each
placed in one line. Sentences are designated by
empty lines following a sequence of lines of tokens
(see Figure 1 for an example).

2.3 SVM-based Approach

The LIBLINEAR package within ClearTK was used
to train all linear classifiers with default settings
(C=1.0; s=1; Loss=dual L2-regularized) except for
TIMEX3 (grid search performed on the training set
indicated a better value for C=0.5). We re-used
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CRFsuite CRF++ LIBLINEAR
Feature Type TIMEX3 EVENT DocTimeRel DocTimeRel TIMEX3 EVENT DocTimeRel CONTAINS
Window Size (preceding, following) −2, +2 −2, +2 −2, +2 −5, +5 −5, +5 −2, +2 −5, +5 −5, +5
Token ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Token (lowercased) ∗ ∗ ∗ ∗ ∗
Lemma ∗ ∗ ∗ ∗ ∗
Part of Speech (POS) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Chunk Type ∗ ∗ ∗ ∗
Token Type (WORD, NUMERIC, . . . ) ∗ ∗ ∗ ∗ ∗
Word Shape (ALL-CAP, INITIAL-CAP, . . . ) ∗ ∗ ∗ ∗
Section ID ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Character Pattern ∗ ∗ ∗ ∗
Character Ngram ∗ ∗ ∗ ∗
EVENT and attributes Tags ∗ ∗
TIMEX3 and attributes Tags ∗ ∗
HeidelTime Token ∗
TIMEX position in sentence ∗
Number of tokens between relation pair ∗
Semantic role arguments ∗
C Parameter 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0

Table 1: List of features used (indicated with asterisk) for each subtask with different machine learning approaches.

token lemma pos chunk token_type section_ID ...
# # NN B-NP SymbolToken 20112 ...
1 1 LS I-NP NumToken 20112 ...
Dilated dilat JJ I-NP WordToken 20112 ...

Figure 1: Example of the flat input used for the CRF ap-

proaches: features in columns separated by tabs.

the approach taken in the 2015 Clinical TempEval
(Velupillai et al., 2015c) for TIMEX3, EVENT and
DocTimeRel subtasks, with minor changes in the
used features. For TIMEX3, one separate classi-
fier was created for each class (e.g., DATE, TIME).
For EVENT, one classifier was created for detect-
ing the text span, and one separate classifier for each
attribute (i.e., MODALITY, DEGREE, POLARITY
and TYPE). In addition, we added a classifier in this
pipeline, for event relations with the document time
(DocTimeRel). The main feature additions in this
year’s challenge were a section ID feature for all
classifiers; and a binary feature— whether or not
a token was classified as temporal expression of an
adapted version of HeidelTime (Strötgen and Gertz,
2010) — for the TIMEX3 subtask.

For the narrative container (CONTAINS) rela-
tions subtask, we trained four models to predict re-
lations between pairs of 1) event-event and 2) event-
time within a sentence; and 3) event-event and 4)
event-time across consecutive sentences. This ap-
proach has been previously shown to be most ef-
fective in predicting temporal relations (Xu et al.,
2013). The candidate pairs were selected1 using

1cTAKES Temporal module was very useful in facilitating
experiments for the TLINK relations.

the following strategy: All possible combinations of
pairs between events and events-times within a sen-
tence were generated for training and classification.
For event-event pairs across consecutive sentences;
only the first and last event from the current sentence
were paired with the first and last from next (or sub-
sequent) sentence. For event-time pairs across sen-
tences; each time phrase in the current sentence is
paired with the first and last events from the preced-
ing and following sentences. This approach suffers
from the limitation of allowing many examples with
the negative class (i.e., pairs without a relation) to be
selected; and hence causes class imbalance that may
affect classifier training. (Tang et al., 2013) demon-
strated that using heuristics to select candidates that
are more likely to be part of a relation could produce
superior results for temporal relation classification.
Another possible remedy is to introduce scaling pa-
rameters to adjust the weight of each class during
training, such that data samples from the positive
class get more weight while the negative class sam-
ples get less weight (Lin et al., 2015). Due to time
constraints, we were unable to experiment with ei-
ther of these approaches.

2.4 CRF-based Approach

For the sequential classification, we used the CRF-
suite for TIMEX3, EVENT and DocTimeRel sub-
tasks in phase 1, and CRF++ for the DocTimeRel
subtask in phase 2. All CRF trained models used
default settings (C=1.0; algorithm=L-BFGS). Dur-
ing phase 1, we employed a cascaded approach: we
trained CRFsuite models to 1) predict textual spans
of TIMEX3 and EVENT tokens separately; 2) pre-
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span span+class
P R F1 P R F1

MAX 0.840 0.758 0.795 0.815 0.735 0.772
CRFsuite 0.798 0.714 0.754 0.771 0.690 0.729
LIBLINEAR 0.810 0.690 0.745 0.792 0.674 0.728
CRFsuite+LIBLINEAR 0.761 0.769 0.765 0.733 0.741 0.737
memorize (Baseline) 0.774 0.428 0.551 0.746 0.413 0.532

Table 2: TIMEX3 subtask results on the test set.

dict TIMEX3 and EVENT attributes using the pre-
dictions in step 1), and 3) predict DocTimeRel and
CONTAINS relations using the predictions in steps
1-2. The prediction labels were encoded using the
standard IOB2 format of Inside, Begin, and Outside.
For instance, prediction labels for the phrase “see
him this afternoon .” will be encoded as “O O
B-TIME I-TIME O” where “this afternoon” is a
TIMEX3 expression in this context. CRF classifiers
are probabilistic graphical models that take into ac-
count a previous window of prediction labels and as-
sign the most likely sequence of labels based on es-
timates obtained from the training data. Therefore,
they usually perform better in tasks that require as-
signing labels to sequential data. This is particularly
true for the TIMEX3 subtask where the majority of
time phrases span multiple tokens.

3 Results

The performance we obtained for the various sub-
tasks on the test set are shown in Tables 2, 3, 4.
We also include the results from two baseline sys-
tems (memorize — for EVENT, TIMEX3 and Doc-
TimeRel, and closest — for CONTAINS relations)
provided by the workshop organizers, as well as the
maximum score achieved in each subtask from all
submissions (Bethard et al., 2016). Note that for
the narrative container subtask, we report the offi-
cial score and corrected score we obtained after dis-
covering and correcting a bug affecting the LIBLIN-
EAR models that prevented predictions of event-
time relations.

CRF achieved a better performance (F1 %75.4)
than the linear classifier (F1 %74.5) when detecting
TIMEX3 spans because of higher recall (R %71.4).
The LIBLINEAR model resulted in higher preci-
sion (P %81). Our initial analysis indicates that
this is partly due to many CRF predictions over-
lapping with the reference annotations rather than
matching exactly. When using a strict match evalu-
ation approach, these overlaps are counted as false

positives. For example, the CRF approach gen-
erated TIMEX3 labels for expressions like “at the
time” and “in the past” while the reference standard
included TIMEX3 annotations for only “the time”
and “past”, respectively. Combining the predictions
from both models (by taking the union set of out-
puts and discarding duplicated predictions) allowed
for improved performance (F1 %76.5) suggesting
that an ensemble-based strategy could yield supe-
rior results for this subtask. Additional analysis will
be needed to understand which class of TIMEX3
phrases each model is better at predicting and ap-
ply a more sophisticated ensemble method such as
weighted average.

The results for the EVENT subtasks were almost
identical between the two approaches (CRF or LIB-
LINEAR), except when classifying the modality and
type attributes where CRF performed better. Com-
bining the predictions from both models did not al-
low for any performance improvements. Note also
that the baseline results for this subtask are very
high.

For the DocTimeRel subtask, the CRFsuite model
reached an F1 of %74.5 in phase 1, while the CRF++
model reached an F1 of %84.4 in phase 2; allow-
ing for significant improvement over the perfor-
mance of the LIBLINEAR model (F1 %81.8). For
the CONTAINS relations classification subtask, the
LIBLINEAR models achieved an F1 of %42.2 in
phase 1 when using CRF predictions of TIMEX3
and EVENT; and F1 of %51.1 in phase 2. Note that
for phase 2 we also included the prediction of Doc-
TimeRel relations from CRF as an input feature to
the LIBLINEAR models.

4 Discussion

Several important issues need to be addressed for fu-
ture improvement in this task or other similar tasks.
We outline some of these issues below, along with
an analysis from the reference standard annotations
and the system prediction errors.

The CRF-based classifiers detected TIMEX3
mentions with higher accuracy. As mentioned pre-
viously, many of these mentions were overlapping
with the reference standard annotations. Our out-
put included 352 false positive errors when using a
strict match evaluation. Among these errors, about

1259

23



span span+modality span+degree span+polarity span+type
P R F1 P R F1 P R F1 P R F1 P R F1

MAX 0.915 0.891 0.903 0.866 0.843 0.855 0.911 0.887 0.899 0.900 0.875 0.887 0.894 0.870 0.882
CRFsuite 0.902 0.883 0.892 0.850 0.832 0.841 0.898 0.879 0.889 0.885 0.867 0.876 0.875 0.857 0.866
LIBLINEAR 0.897 0.886 0.892 0.841 0.831 0.836 0.892 0.881 0.887 0.879 0.869 0.874 0.854 0.843 0.849
memorize (Baseline) 0.878 0.834 0.855 0.810 0.770 0.789 0.874 0.831 0.852 0.812 0.772 0.792 0.855 0.813 0.833

Table 3: EVENT subtask results on the test set.

DocTimeRel CONTAINS
P R F1 P R F1

Phase 1: End-to-End with plain text only
MAX 0.766 0.746 0.756 0.531 0.471 0.479

CRFsuite 0.753 0.737 0.745
LIBLINEAR 0.741 0.732 0.736 0.553 0.341 0.422
LIBLINEAR† 0.502 0.215 0.301

memorize/closest (baseline) 0.620 0.589 0.604 0.403 0.067 0.115

Phase 2: Includes manual annotations of TIMEX3 and EVENT
MAX - 0.843 - 0.823 0.564 0.573

CRF++ 0.844 0.843 0.844
LIBLINEAR 0.818 0.818 0.818 0.657 0.418 0.511
LIBLINEAR† 0.562 0.254 0.350

memorize/closest (baseline) - 0.675 - 0.459 0.154 0.231

Table 4: Relation classification results on the test set.
†Indicates official scores before bug correction.

228 were overlapping (but not matching perfectly)
with reference annotations, and the remaining 124
errors were due to other reasons. If counting these
overlapping errors as true positives instead of false
positives, as in a partial match evaluation, signifi-
cant accuracy improvements could be observed (P:
0.929, R: 0.833, F1: 0.878)2. Contributions from
last year’s TempEval task have pointed out the is-
sue of TIMEX3 annotations inconsistency in the
reference standard (Tissot et al., 2015). After ex-
amining the 228 overlapping false positive errors
further, we noticed through empirical analysis that
many were due to either missing or added preposi-
tions (e.g., ‘at’, ‘in’, ‘for’, ‘about’) and determin-
ers (‘a’, ‘the’). Further examination revealed that,
as pointed out by the previous authors, there is an
inconsistent trend in the reference standard annota-
tions. For example, the reference standard contains
the following TIMEX3 phrases (underlined words
indicate words not annotated in the reference stan-
dard): “in the past”, “in the last three days”, “for
many years”, “for two years”, “at this time”, “at this
time”, “about 27 years ago” and “about 30 years
ago”. These irregularities will make it difficult for
any machine learning model to generalize well be-
yond the given dataset and most likely will indicate
overfitting for higher performance models (Velupil-

2This score was obtained using the --overlap option
from the official evaluation script.

lai et al., 2015b). The reported inter-annotator agree-
ment for TIMEX3 span annotations of F1 77.4%
(Bethard et al., 2015) further supports these assump-
tions. Therefore, future work should focus on cre-
ative ways to deal with this inconsistency and en-
able more generalizable solutions. Apart from the
overlapping errors due to reference standard incon-
sistencies; other types of errors may indicate room
for future improvement. We believe that training
multiple classifiers and combining the outputs us-
ing ensemble-based approach could yield superior
results as manifested from combining predictions of
CRF and LIBLINEAR models.

For the DocTimeRel subtask, the CRF-based clas-
sification approach also allowed for significant im-
provements, particularly in phase 2. Table 5 shows
the confusion matrix and evaluation scores obtained
on the dev set for each category of DocTimeRel rela-
tion using CRF++ model when trained on the train-
ing set. The final scores achieved (R 83.3%) on
the dev set, are comparable to the scores achieved
(R 84.3%) on the test set. This allows us to make
consistent conclusions about classifier performance
on one set (dev) that can be expected to apply on
the other set (test). The lowest accuracy (R 48.6%)
was observed with the BEFORE/OVERLAP cate-
gory. A possible explanation for this lower accu-
racy is the small number of training samples avail-
able in this category (2160 instances in the training
set out of 38885). The confusion matrix shows that
this category gets almost a balanced error rate be-
tween the BEFORE (297) and OVERLAP (271) cat-
egories. In addition, the highest number of misclas-
sified instances occur in OVERLAP (972) and BE-
FORE (858) categories where one category is con-
fused for the other. Future work should focus on im-
proving classification in the BEFORE and OVER-
LAP categories.

The performance achieved using LIBLINEAR
models in the CONTAINS relations subtask (F1
42.2%–51.1%) is a significant improvement over
last year’s attempt using a CRF model (F1 12.3%–
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S Y S T E M

AFTER BEFORE BEFORE/OVERLAP OVERLAP TOTAL

R
E

FE
R

E
N

C
E AFTER 1686 157 5 289 2137

BEFORE 110 6667 145 972 7894

BEFORE/OVERLAP 12 297 548 271 1128

OVERLAP 231 858 145 8579 9813

TOTAL 2039 7979 843 10111 20972

SCORE (P/R/F1) 0.827/0.789/0.807 0.836/0.845/0.840 0.650/0.486/0.556 0.848/0.874/0.861 0.831/0.833/0.831

Table 5: Confusion matrix and scores for each category of DocTimeRel relation obtained on the dev set using CRF++ classifier.

26.0%) (Velupillai et al., 2015c). We think that
studying different strategies for candidate pair se-
lection or experimenting with different class weights
to reduce effects of negative class predictions could
allow for improvement in this subtask. In addi-
tion, although we used two separate models to pre-
dict relations between event pairs within and be-
tween consecutive sentences, we restricted the way
we chose candidates across sentences (first and last
from current sentence are paired with first and last
from next sentence). This restriction was used to
avoid an increase in the number of pairs without
a relation (i.e., negative class pairs); in addition to
the increased computational runtime penalty. How-
ever, this means that any candidate pairs spanning
across many sentences will be missed by our classi-
fier. This is especially true for some event and time
phrases that are usually at the beginning of a sen-
tence (mostly introducing a section header) and act
as narrative containers for many events in the next
few sentences. For instance, our classifier missed the
‘HISTORY’ narrative container appearing as part of
the section header “PAST MEDICAL HISTORY”,
which is usually a relation source for many events
discussed within the section. One example from
the dev set shows that the ‘HISTORY’ event CON-
TAINS following events (e.g., medical conditions in
a numbered list) spanning from the next first sen-
tence down to the eleventh sentence. Future work
could focus on using carefully hand-crafted rules to
capture these pairs to increase recall. We think that
the most successful approach for this subtask could
use hybrid approaches combining rules and machine
learning classifiers to improve recall and retain high
precision, respectively.

5 Conclusion

Temporal information extraction and reasoning from
clinical text remains a challenging task. Our analysis

of different machine learning approaches have been
informative, and resulted in competitive results for
the 2016 Clinical TempEval subtasks. We plan to
develop hybrid and ensemble-based approaches in
the future to further improve performance on this,
and other clinical corpora.
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4.1 Abstract

Cancer stage is one of the most important prognostic parameters in most cancer sub-

types. The American Joint Committee on Cancer (AJCC) specifies criteria for staging each

cancer type based on tumor characteristics (T), lymph node involvement (N), and tumor

metastasis (M) known as TNM staging system. Information related to cancer stage is typ-

ically recorded in clinical narrative text notes and other informal means of communication

in the Electronic Health Record (EHR). As a result, human chart-abstractors (known as

certified tumor registrars) have to search through voluminous amounts of text to extract

accurate stage information and resolve discordance between different data sources. This

study proposes novel applications of natural language processing and machine learning to

automatically extract and classify TNM stage mentions from records at the Utah Cancer

Registry. Our results indicate that TNM stages can be extracted and classified automati-

cally with high accuracy (extraction sensitivity: 95.5%–98.4% and classification sensitivity:

83.5%–87%).

4.2 Introduction

Cancer is the second leading cause of death in the United States and recently became the

leading cause of death in 21 states, surpassing heart diseases. In the United States, about

595,690 cancer deaths are estimated to have occurred in 2016, which is about 1,630 people

per day.14 The burden of cancer on public health has mobilized national and international

institutions to develop strategies to combat, prevent and control cancer.12,17

One of the resources vital to the fight against cancer is cancer registries that collect

critical information at the population level. Human abstractors, known as Certified Tumor

Registrars (CTRs), are tasked with identifying reportable cancer cases and manually col-

lecting data required for cancer registries. This is often a time-consuming and laborious

process that is prone to human error and affects quality, completeness and timeliness of

cancer registry data. A study based on surveys conducted across European cancer registries

as part of the EUROCOURSE project and covering a population of more than 280 million

found that the median time to complete case ascertainment for the relevant year was 18

months, with an additional 3-6 months to publish data to national databases .1,22 Though

delay in completion is primarily related to clinical processes to evaluate the patient’s extent
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of disease, reduced time to ascertainment is very desirable. The Maryland Cancer Registry

reported 13% of cases with missing staging information .6 A similar study in the Ottawa

Regional Cancer Centre found missing staging information in 10% of lymphoma cases and

38% of breast cancer cases.20 In a prostate cancer study in Connecticut, about 23% of

cases in the registry had incorrectly coded staging information.7 A study conducted in

Los Angeles County Cancer Surveillance Program (CSP) database found that 77% of cases

with testicular cancer were coded with inaccurate stage group.3 While there is a range of

accuracy of stage determination, an automated or semiautomated process consisting of a

systematic review of relevant text information could potentially improve accuracy.

The American Joint Committee on Cancer (AJCC) manual specifies criteria for staging

each cancer site depending on primary tumor characteristics (T), number and location of

lymph nodes involvement (N), and metastatic nature (M). Information about the cancer

stage is critical for assessing prognosis and selection of treatment plans. Clinical guidelines

require clinicians to assign TNM stages prior to initiating any treatment.2 The clinical

TNM stage is determined based on the results of physical exams, imaging (such as x-rays

or CT scans), and tumor biopsies. The pathological TNM stage is determined based on

surgery to remove a tumor or explore the extent of the cancer.

Natural Language Processing (NLP) coupled with Machine Learning (ML) are promising

technologies to increase the efficiency of cancer registry data abstraction processes. NLP

and statistical machine learning have been successfully applied in several medical domains

to extract various types of information from clinical text. Their potential for increased

efficiency and manual process automation has been demonstrated.10 In the domain of

cancer, several studies showed effectiveness of NLP and ML to mine the electronic health

record for cancer-related information from a variety of report types15 and automatically

discover reportable cancer cases based on analysis of pathology records.4 In the study

presented here, we use state-of-the-art Natural Language Processing (NLP) and Machine

Learning (ML) to automatically extract TNM stage mentions from patient records collected

at the Utah Cancer Registry. The TNM mentions are classified as either pathological or

clinical depending on contextual information and will subsequently be used to automatically

consolidate stage information and assign a stage group for each cancer case within the

registry.
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4.3 Related Work

Most previous studies have focused on extracting AJCC TNM stage information ex-

clusively from pathology reports.5,8, 9, 11,19 This would not support cancer registry efforts

adequately because clinical staging is assigned prior to initiation of treatment and many pa-

tients do not immediately undertake resection of tumor and pathology examination. Newer

editions of the AJCC TNM manual specifically include separate clinical stage (designated

with cT, cN, and cM) and pathological stage (designated with pT, pN, pM) to reflect

this time-sensitive staging mechanism. Cancer registries require the use of both clinical

and pathological stage information to find the most accurate stage group. The former

is primarily based on clinical examination tests and findings (e.g., imaging reports such

as CT-scan) and cannot, by definition, be assigned based on information from pathology

reports.

McCowan et al.9 focused their work on extracting T and N stages from lung cancer

pathology reports. The pathology reports were first preprocessed to standardize input

followed by document-level bag-of-word classifiers to detect relevant reports that contain

enough information for the T and N stage classification. They then used a series of

rule-based and support vector machine (SVM-based) classifiers at the sentence level to

detect phrases with relevant T and N stage information based on factors found in the

TNM stage guidelines such as tumor dimension and lymph node involvement. The highest

T and N stages detected by the sentence-level classifiers were assigned to each patient.

Their approach achieved accuracies of 74.3% and 86.6% for T and N stage classification,

respectively, when trained on a dataset of 710 cases, and evaluated on a held-out dataset

of 179 cases. The authors used the manually-assigned TNM pathologic stages as the

gold standard to measure accuracy of their system. Since the approach to perform stage

classification heavily relies on factors associated with lung cancer that were obtained using

expert manual annotations, it would be difficult to generalize to other cancer sites without

retraining the whole system on new annotations. Nguyen et al.11 used a similar lung cancer

dataset and replaced the machine learning component of McCowan et al. with a rule-based

dictionary component. Their approach eliminated the need for expert manual annotations,

and achieved comparable accuracies of 73% and 79% for T and N stages, respectively.

Martinez et al.8 experimented with various machine learning approaches to identify
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TNM stages for colorectal cancer in reports obtained from the Royal Melbourne Hospital

in Australia. A notable aspect of their experiment was assessment of the generalizability

of their methods when using a colorectal cancer dataset from a different institution. Their

results showed that accuracy dropped significantly from above 80% down to 50% to slightly

above 60% when training and testing on the same corpus versus using corpora from different

institutions (cross-corpora) for training and testing. They attribute this drop mainly to

differences between the two corpora in expressing TNM labels (e.g., T1 for staging T).

Based on feature selection analysis performed by the authors, these explicit TNM labels

are among the top features for good performance within the same corpus, and differences

across corpora may lead to inconsistent predictions that could introduce many errors and

hamper good performance.

Kim et al.5 focused on extracting TNM stage information from pathology notes of

prostate cancer patients. Using a set of 100 radical prostatectomy specimen reports,

they first created a gold standard using two blinded manual reviewers. They then used

an NLP system developed to directly match TNM mentions like pT2 and achieved very

high accuracies of 99%, 95% and 100% for T, N and M stages, respectively. It is worth

mentioning, however, that for the M stage, the dataset was highly skewed with all 100 cases

from the randomly selected sample staged as MX.

Warner et al.19 implemented an NLP system that searched and directly found relevant

phrases for summary stage information (i.e., stage I, stage II, early stage, etc.) from the

entire EHR available at their institution. They successfully achieved high accuracy (Cohen’s

kappa of 0.906) when comparing with stages manually determined at the cancer registry,

and using a set of 2,323 cancer cases with about 751,880 documents.

Based on the prior scientific work cited above, we used a hybrid approach combining

pattern-matching for extraction and supervised machine learning for classification of TNM

stage mentions as either pathological or clinical. To the best of our knowledge, our study

is the first to report about the extraction of TNM staging information from unstructured

text found in records collected at a central Cancer Registry (UCR).
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4.4 Methods

4.4.1 Utah Cancer Registry Data

This study is based on data collected at the UCR, which instructs and oversees more

than 70 cancer facilities in the state of Utah. Each cancer treatment facility sends records

abstracts containing the required data elements for a given cancer patient electronically to

the Utah Cancer Registry for each newly diagnosed cancer case. Two types of reports were

used for this study. The first type is the North American Association of Central Cancer

Registries (NAACCR) abstract record,16,18 which contains coded information required for

reporting to national cancer databases such as the patient age, date of diagnosis, cancer

tumor histology, and grade. NAACCR abstracts also contain unstructured text fields

that include information such as the patient clinical history, clinical exam results, imaging

study descriptions, and any potential staging information. The other type of record is the

electronic surgical pathology report also known as E-path. Its content consists of mostly

unstructured text fields about the tumor gross pathology, histology, and final diagnoses.

Since a patient can be seen in multiple different facilities within a state or have multiple visits

within the same facility, there are usually multiple NAACCR and E-path records available

for each patient at the Utah Cancer Registry. We refer to these reports as unconsolidated

records in this study. The role of registrars at the Utah Cancer Registry is to consolidate

all information received by the registry for a given cancer case and to produce one final

consolidated abstract that captures the most accurate information for final reporting to

national authorities.

4.4.2 Reference Standard

For development and evaluation of our system, a random subset of 100 cancer cases

was selected from three different cancer primary sites (see Table 4.1): Colon, Lung and

Table 4.1: Document types and counts for the corpus used in this study. N = number of
patient cases.

Record
Type

QCSET
(N=60)

ABSTRACTION
(N=240)

TOTAL
(N=300)

NAACCR 72 286 358

E-path 113 339 452

TOTAL 185 625 810
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Prostate cancers with 300 cases in total. These three primary sites are among the most

prevalent cancer types at the UCR and could therefore benefit the most from case review and

consolidation automation. The text fields from NAACCR (see Table 4.2) and e-path records

for these 300 cases constituted the corpus for this study. Note that since each case may

have multiple records (3 on average), the corpus contains far more documents than selected

cancer cases. In our case, the corpus consisted of 810 NAACCR and e-path records as shown

in Table 4.1. All text fields in these records were manually annotated for mentions of TNM

staging information. Two human annotators who are certified tumor registrars conducted

the annotation independently, and a third domain expert participated in the process for

adjudication of differences between annotators when necessary. The annotation task was

initiated by going through preliminary practice rounds in which annotators were given

the same set of 25 documents to annotate followed by team meetings where agreement

was discussed, and annotation guidelines revised to clarify ambiguous examples found

during preceding practice sessions. Once an adequate level of agreement (κ = 0.81)

was observed and good understanding of the annotation task was achieved, we started

the quality control phase in which a small subset (QCSET) of 20 cases from each cancer

Table 4.2: NAACCR column names and numbers for the free text fields used in the study.

NAACCR Item Number # Text Field Name

2520 Text–Dx Proc–PE
2530 Text–DX Proc–X-ray/scan
2540 Text–DX Proc–Scopes
2550 Text–DX Proc–Lab Tests
2560 Text–DX Proc–Op
2570 Text–DX Proc–Path
2580 Text–Primary Site Title
2590 Text- Histology Title
2600 Text–Staging
2610 RX Text–Surgery
2620 RX Text–Radiation (Beam)
2630 RX Text–Radiation Other
2640 RX Text–Chemo
2650 RX Text–Hormone
2660 RX Text–BRM
2670 RX Text–Other
2680 RX Text–Remarks
2690 Text–Place of Diagnosis
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site (60 cases total) from the reference standard was selected for double-annotation. The

interannotator agreement was calculated using Cohen’s kappa statistic and results are

shown in Table 4.3. Disagreements in the QCSET were mostly due to either a missed

TNM value mention by one annotator or discrepancies in the timing attribute. Given

the excellent interannotator agreement observed, the remaining documents in our corpus

(ABSTRACTION) were each annotated by one annotator only. The annotation project and

reference standard development was managed using the WebAnno tool.21 The annotation

schema included three categories of information to be annotated corresponding to T, N and

M stage mentions. Each TNM stage mention was annotated with the following attributes:

• Stage: The AJCC stage designation (e.g., T1, N1b).

• Timing: This attribute is used to indicate if the staging is clinical or pathological as

per the rules of the AJCC manual and according to the context of the mention.

• Negation: The value to indicate if a TNM mention is within the scope of a negated

context. The possible values are: affirmed (default, or most mentions), negated, and

possible. Most mentions will have an affirmed value. The possible was selected when

there was hedging involved within the context of mention.

• Temporality: This attribute is used to capture historical or future mentions that do

not necessarily represent current mentions valid at the point in time when the mention

was stated at the patient record. The three possible values are: current (default, or

most mentions), historical, and hypothetical (future mentions).

• Subject: This is used to capture TNM mentions that are related to family relatives

or others who are not the patient himself. Possible values include: patient (default),

and other.

Table 4.3: Interannotator agreement by document type in the QCSET. Method is Cohen’s
Kappa for 2 raters.

Document Type Mentions annotated by both raters Kappa p-value

e-path 60 0.658 < 0.001

NAACCR abstract 125 0.9009 < 0.001

All 185 0.8129 < 0.001
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After completion of the reference standard development, we found that almost all TNM

mentions were affirmed, recent and related to the patient (only 1 was negated, 3 were

historical and 2 were related to someone other than the patient). Therefore, we decided

to exclude negation, temporality and subject attributes from further training and analysis.

Table 4.4 presents TNM annotations added by annotators in the reference standard. The

reference standard was divided randomly into 3 subsets: Train (50%), Development (17%)

and Test (33%).

4.4.3 NLP and ML Systems

Figure 4.1 shows the complete NLP and ML system developed for this study. The

preprocessing components were adapted from cTAKES13, a general clinical NLP application.

Each text field is broken into smaller units (sentences and tokens such as words, numbers,

and punctuation) and assigned parts-of-speech tags by preprocessing modules for further

analysis. Both rule-based (pattern-matching) and ML-based (Conditional Random Fields)

approaches were utilized for TNM mentions extraction and classification. The pattern

matching component was developed using regular expressions based on human annotations

from the training data to achieve high sensitivity. The Conditional Random Fields (CRF)

component was developed using the CRFsuite package within ClearTK machine learning

libraries. The Java-based Apache UIMA framework was used as the main development

framework for this project.

The development of NLP included the following system variants:

1. REGEX: based on direct pattern matching using regular expressions for TNM men-

tions, and rules for classifying timing attribute, as follows,

(a) If TNM mention has prefix letter ‘c’ then clinical else if it has prefix letter ‘p’

then pathological.

Table 4.4: TNM mentions extracted by annotators from corpus used as reference standard.

Data Subset Records T N M Total TNM annotations

Train ( 50%) 405 235 192 86 513

Development ( 17%) 135 85 73 27 185

Test ( 33%) 270 139 119 52 310

All 810 459 384 165 1008
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Figure 4.1: NLP and ML application high-level architecture.

(b) If TNM mention has no ‘c’ or ‘p’ prefixes and TNM mention was extracted

from pathology record then pathological, otherwise if extracted from NAACCR

abstract then clinical.

2. CRF: based on a Conditional Random Fields (CRF) machine learning algorithm.

3. REGEX-CRF: hybrid system that combined regular expression output with CRF

algorithm classification of timing attribute.

4.5 Results

Tables 4.5 and 4.6 detail the results of our evaluation of the NLP system variants.

Reported metrics include: precision (equivalent to positive predictive value), recall (sensi-

tivity) and the F1-measure (harmonic mean of precision and recall). We report evaluations

with both subsets: development and test. Results with the development subset were

obtained by training with the train subset only while results with the test subset were

obtained after training on both the train and development subsets. We used two evaluation

approaches to compare the NLP system output with our reference standard: strict and

Table 4.5: TNM mentions extraction results.

Evaluation Method System
Development Set Test Set

Precision Recall F1-measure Precision Recall F1-measure

Strict match
REGEX 0.926 0.946 0.936 0.890 0.884 0.887

CRF 0.952 0.859 0.903 0.923 0.845 0.882

Partial match
REGEX 0.958 0.984 0.971 0.961 0.955 0.958

CRF 0.988 0.897 0.940 0.989 0.906 0.946
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Table 4.6: Pathological and clinical TNM classification results. P – Precision, R – Recall.

Evaluation Set System
Pathological Clinical Overall

P R F1 P R F1 P R F1

Development
REGEX 0.952 0.688 0.798 1.000 0.025 0.049 0.529 0.543 0.536

REGEX-CRF 0.901 0.889 0.895 0.681 0.800 0.736 0.847 0.870 0.858

Test
REGEX 0.934 0.536 0.681 1.000 0.051 0.097 0.386 0.384 0.385

REGEX-CRF 0.859 0.896 0.877 0.793 0.704 0.746 0.841 0.835 0.838

partial matches. The former requires exact matching of the TNM mention sequence of

characters predicted by the NLP system with the corresponding mention in the reference

standard. The latter relaxes this restriction by allowing overlapping TNM mentions to be

counted as true positives. For instance, if the NLP system extracted the mention “T1” and

the reference standard had “cT1” then this would count as a true positive partial match.

Table 4.5 shows the results of TNM mentions extraction. Table 4.6 shows the results of

classifying the TNM mentions to pathological and clinical. Note the REGEX-CRF system

uses REGEX to extract TNM mentions and CRF to classify them to pathological and

clinical mentions.

Both the REGEX and CRF versions of the NLP system achieve comparable performance

when detecting mentions of TNM staging (F1: 94.0%–97.1%), but the CRF version reached

much higher accuracy when predicting the timing (clinical or pathological) attribute (F1:

83.8%–85.8%). In general, the REGEX (rule-based) version retrieved slightly more correct

TNM mentions (i.e., had higher recall: 88.4%–98.4%) while the CRF version retained a

higher precision (Precision: 92.3%–98.9%). The CRF version also performed better than

the REGEX version when classifying the timing attribute. Our analysis of partial matching

results indicate that the NLP system tends to miss words like “clinical” and “PATH”

preceding TNM mentions as included by our annotators in the reference standard. This

is despite the fact that our annotation guidelines did not in particular include specific

instructions to the annotators on selecting contextual words preceding TNM mentions as

in these cases. The NLP system was able to partially capture these longer multiword TNM

mentions found in the reference standard. The REGEX NLP system achieved very high

sensitivity with partial matching, indicating that this approach is practical for extracting

TNM mentions from NAACCR and E-path records. The hybrid REGEX-CRF NLP system
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combined the output of the REGEX version with the classification of timing by the CRF

module, and achieved the highest F1-measure overall (F1: 83.8%–85.8%).

4.6 Discussion

Our effort outlined above showed that extraction of TNM mentions from unstructured

text fields within records collected at the central Utah Cancer Registry can be automated

with reasonable accuracy. One source of errors that was eliminated earlier during our

development was matching of ‘TX’ mentions by the REGEX NLP system. Despite slight

increase in sensitivity, there were numerous false positives and a decrease in precision

when including this pattern since it could be confused with the commonly used ‘TX’

abbreviation for ’treatment’ in this corpus (see Table 4.7, for examples). For this reason,

we decided to exclude the pattern for ‘TX,’ especially since patient cases with no T stage

mentions extracted from their records can be assigned ‘TX’ stage by default. Most strict

matching errors were caused by missing contextual words preceding TNM mentions such

as “CLINICAL” and “PATHOLOGIC”. When considering partial matches, many errors

were caused by spurious matching within alphanumerical terms such as matching ‘T0’ or

‘N1’ in “T0012-9071” and “N13-129”. Other errors were due to confusion of text mentions

related to MRI scans such as ‘T2’ inside the statement: “SUBTLE AREA OF FOCAL T2

SIGNAL LOSS”. Similarly, incorrectly matching ‘T1’ within a biomarker phrase as in the

sentence:“weakly positive for WT1”. A third source of errors was the use of capital letter ‘O’

instead of the digit ‘0’ in some TNM mentions such as “NO” and “MO” instead of “N0” and

“M0” stages, respectively. These errors could be addressed by including more contextual,

lexical and character shape features to enable disambiguation and improve sensitivity while

maintaining high precision.

Although regular expressions were more robust for extracting TNM mentions, our range

of features used with the CRF classifier were still limited and potential improvements may be

observed if other more sophisticated feature patterns were used such as character N-grams.

Table 4.7: Example statements containing the ‘TX’ abbreviation.

Statements with TX abbreviations

DISCUSSED PALLIATIVE TX W/ CARBO/TAXL . . .
NEW LUNG CANCER F/U & TX . . .
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In addition, other machine learning algorithms could yield better performance than CRF

and further investigation is required.

Results reported here were validated with patient records from various healthcare or-

ganizations (local and regional hospitals) in the state of Utah. We believe that despite

potential differences in documentation style and use of linguistic patterns, the proposed

NLP and ML systems were able to extract TNM mentions with high accuracy comparable

to manual abstraction by humans. To investigate questions about the distribution of TNM

mentions extracted across sites, the number of TNM mentions found for each patient case,

and the percentage of patients without any TNM mentions in their records, we applied

the REGEX NLP system to a selected set of 11,180 NAACCR and e-path records for a

population of 4,117 patient cases available from the UCR database. Table 4.8 outlines

the number of TNM mentions extracted across cancer sites. There were 14,560 mentions

extracted in total from all case records. In general, more patients had no M stage mentioned

in their records, followed by N stage mentions, and finally T stage mentions. Across the

three primary cancer sites, colon cases tended to have more TNM mentions in their records

than prostate or lung cancer cases.

The number of TNM mentions extracted from patient records was distributed as shown

in Figure 4.2. On average, there were about 5 mentions extracted per patient. The

distribution is right skewed with a majority of patients having less than 10 mentions and

then gradually fewer patients having more than 10. At the extreme right were patients with

more than 30 TNM mentions. Note that this average excludes patients who have no TNM

Table 4.8: Count of TNM mentions extracted from a selected set of patient cases.

Site TNM count

Colon T 2814
N 2635
M 1012

Lung T 1615
N 1407
M 634

Prostate T 2341
N 1409
M 693

Total 14560
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Figure 4.2: Frequency of TNM stage mentions extracted per patient.

stage mentions in their records. Only patients with TNM stage mentions extracted from

their records were considered.

There were about 6,485 records (out of a total of 11,180) with no TNM mentions,

belonging to 1,443 patient cases (out of 4,117). When considering each T, N and M mention

individually, about 37% of the patients had no T stage mentions (1558/4117), 44% had no

N stage mentions and 63.5% had no M stage mentions.

4.7 Conclusion

The study presented here showed that automated extraction of TNM stage information

using NLP and ML approaches could achieve high accuracy, at levels comparable with

manual abstraction by humans. In a future study, we plan to use the NLP pipeline developed

for TNM stage information extraction to then perform cancer stage consolidation at the

patient level for cases from the three primary cancer sites included in this study. The

automated stage consolidation will be compared with the consolidated stages assigned by

human registrars manually in the central registry. Our aim is to eventually assess whether

NLP and machine learning could be implemented with sufficient accuracy to automatically

consolidate cancer stage and support the work of cancer registrars.
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5.1 Abstract

Consolidating cancer stage from multiple records is one of the primary tasks performed

by central cancer registries. A team of certified tumor registrars (CTR) conducts the

consolidation by manually reviewing records received from multiple sources for each newly

diagnosed cancer case. The large volume of cases handled by central registries and the

complexity of staging guidelines make staging one of the barriers to reducing the time delay

between diagnosis and reporting for national surveillance data.

The objective of this study is to implement and evaluate Natural Language Processing

(NLP) and Machine Learning algorithms to automate cancer stage consolidation.

Records collected at the Utah Cancer Registry (UCR) for patients with colon, lung, or

prostate cancers were used for this study. UCR receives multiple records for each cancer

case containing clinical and pathological information as structured data and text fields. We

annotated the source documents, then developed an NLP application to find and extract

mentions of the three components of stage, i.e., tumor size (T), node involvement (N), and

metastasis (M). Multiple machine learning classifiers were applied to consolidate stage. The

consolidated T, N, and M stages were used to derive a stage group for each case. Results

were compared to stages assigned manually by experienced registrars as a gold standard.

Consolidation of the M stage for the three cancer sites reached very high accuracy

(93.9%96.8%) compared to the manually reviewed gold standard, whereas consolidation of

T and N stages varied for different cancer sites. Best accuracy for T and N was observed

for colon cancer cases (83.6%91.2%), followed by prostate cancer cases (73.5%81.4%) and

lowest for lung cancer cases (60.4%71.1%). Deriving a stage group from consolidated TNM

stages reached high accuracy for colon cancer (88.4%) followed by lung cancer (84.5%) while

accuracy for prostate cancer was moderate (67.1%).

Automatic consolidation of cancer stage using NLP and machine learning can reach high

accuracy for some cancer sites and may be practical and useful in the context of manual

human review assistance. Future studies may focus on additional feature engineering and

extraction of medical concepts to improve consolidation accuracy.
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5.2 Background and Significance

Population-based cancer registries play a critical role in the fight against cancer, col-

lecting cancer information, disseminating vital statistics, providing data for epidemiological

studies, and facilitating planning, control and prevention of the disease.10 For example,

the Surveillance, Epidemiology, and End Results (SEER) program at the U.S. National

Cancer Institute (NCI) publishes annual statistics about incidence, prevalence and survival

patterns of cancer in the United States.11 Cancer surveillance data compiled by state-wide

or regional central cancer registries are the basis for national cancer surveillance. Central

registries depend on trained certified tumor registrars (CTRs) to manually curate electronic

records of newly diagnosed cancer cases received from a variety of sources and to perform

coding of specified required data elements. Increased automation of this process and reduced

reliance on manual coding could help address concerns about timeliness of cancer registry

reporting and shortage of qualified CTRs.

Cancer staging information is a crucial component of surveillance data for assessing

trends and for research. The current staging schemes specified by the American Joint

Commission on Cancer (AJCC) and International Union Against Cancer (UICC) include

tumor size (T), node involvment (N), metastatis (M), and overall stage group for each case.

Assignment of AJCC or UICC stage involves complex coding schemes for each cancer site.

Stage may be missing or incorrectly assigned in records submitted to a central cancer reg-

istry. The Maryland Cancer Registry reported 13% of cases with missing staging information

because “data are either not clinically ascertained or not successfully abstracted”.6 Cancer

stage information may remain inadequate after central registry adjudication; within the

SEER program, the proportion of cases that are unstaged has declined over recent decades

but remains high for certain cancer sites.4 A study of 60 central cancer registries in Europe

found that only about a third of them provided stage at diagnosis of good quality, with cases

with missing TNM staging information ranging from 0% (breast cancer cases in the Naples,

Italy cancer registry) to 95% (lung cancer in the Wales, UK cancer registry).9 In the New

Zealand Cancer Registry, the proportion of invasive breast cancer cases with unknown or

inaccurate staging information reached 12%, when all but one of these cases had staging

information in the source cancer record.13 In a prostate cancer study in Connecticut, about

23% of cases in the registry had incorrectly coded staging information.7 A study conducted
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in Los Angeles County Cancer Surveillance Program (CSP) database found that 77% of

cases with testicular cancer were coded with inaccurate stage group.3

Central cancer registries in the U.S. now receive a large proportion of cancer data in

electronic form, creating the opportunity for automated abstraction of cancer data .8,14

In a previous study, we developed and applied NLP and machine learning methods and

resources to extract TNM staging information from clinical text found in records at the

Utah Cancer Registry (UCR).1 The present study focuses on applying machine learning

algorithms to automatically consolidate extracted TNM stage mentions combined with other

structured data into one final stage. The general objective of this study is to assess the extent

to which machine learning methods can be used to perform consolidation of cancer case

data, and provide insight to future large scale efforts to implement information technology

strategies that can address the challenges of increasing costs and sustained data quality.

More specifically we aim to:

1. Develop algorithms for consolidating cancer TNM stage information using machine

learning.

2. Validate the performance of machine learning algorithms for TNM stage consolidation

through comparison to the consolidation decisions made by cancer registrars.

5.3 Materials and Methods

5.3.1 Central Cancer Registry Data

This study is based on data collected at the Utah Cancer Registry (UCR), the central

cancer registry for the state of Utah and a SEER program registry. UCR receives reports

from more than 70 facilities that treat cancer in the state of Utah. Two types of reports were

used for this study. The first type is the North American Association of Central Cancer

Registries (NAACCR) abstract record15,17 which contains information that is compiled

by CTRs employed by treating hospitals. Structured fields include the patient age, date

of diagnosis, cancer tumor histology, grade, and stage. NAACCR abstracts also contain

unstructured text fields that include information such as the patient clinical history, clinical

examination results, and imaging study descriptions. The other type of record is the elec-

tronic surgical pathology report also known as ‘e-path’. Its content includes unstructured

text fields about tumor gross pathology, histology, and final diagnoses. A patient may
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have one or more surgical procedures for diagnosis and treatment of cancer that result

in multiple ”e-path” reports to the registry, and the patient may be seen in one or more

treatment facilities that each report a NAACCR abstract to the central registry. We refer

to these reports as unconsolidated records in this study. Registrars at the central registry

consolidate and review information received for a given cancer case and produce one final

consolidated abstract that captures the most accurate information. The final consolidated

stage was used as the reference standard for the machine learning study.

5.3.2 Study Population

The study included cases diagnosed between January 1, 2011 and December 31, 2014

with colon, prostate, or lung primary cancer sites. We focused on cases with invasive

behavior and on adults aged 20 or more at diagnosis. There were a total of 8,189 cases

meeting these eligibility criteria. Of these, 622 were excluded because of missing electronic

records (neither e-path nor NAACCR abstract). An additional 12 cases were excluded for

histologies that could not be staged. This study was approved by the University of Utah

IRB.

A large proportion of the eligible prostate cancer cases were diagnosed with T1/T2,

N0, and M0 (Table 5.1). We included a random sample of 500 T1/N0/M0 and 500

Table 5.1: Invasive cancer cases diagnosed in Utah, aged 20 or older at diagnosis.
Diagnosed 2011-2014, by cancer site and AJCC derived TNM stage.

Eligible Cases Selected Cases

Colon Lung Prostate Total Colon Lung Prostate Total

T0 58 13 6 77 58 13 6 77
T1 308 393 1354 2055 308 393 646 1347
T2 199 501 2418 3118 199 501 869 1569
T3 679 343 486 1508 679 343 486 1508
T4 376 389 52 817 376 389 52 817
TX 149 322 143 614 149 322 143 614

N0 984 746 3741 5471 984 746 1484 3214
N1 392 178 140 710 392 178 140 710
N2 279 605 0 884 279 605 0 884
N3 0 240 0 240 0 240 0 240
NX 114 192 578 884 114 192 578 884

M0 1416 974 4254 6644 1416 974 1997 4387
M1 353 987 205 1545 353 987 205 1545

Total 1769 1961 4459 8189 1769 1961 2202 5932
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T2/N0/M0 prostate cases to reduce class imbalance. We included all cases with other

TNM combinations for prostate cancer, and we selected all eligible cases for colon and lung

cancers. This resulted in 5,932 cases selected for the machine learning task. Table 5.2 shows

the distribution of these cases across the three cancer sites considered for this study, along

with the demographic distribution of the selected cases by cancer site.

Upon further review of these cases, we identified several patients who had more than

one cancer diagnosis among the lung and colon cases. We then restricted the sampled cases

to include one cancer site per person. Our final analysis set includes 5915 cases (1760 colon

cancer, 1953 lung cancer, 2202 prostate cancer). These cases were divided into 3 subsets

for the machine learning task as shown in Table 5S.1. The total number of e-path and

NAACCR records available for the 5,915 cancer cases selected for the study were 8,850 and

7,168, respectively, reaching 16,018 total records available for this study.

Table 5.2: Selected cases for inclusion in machine learning project, SEER reportable cases
diagnosed 2011-2014 with colon, lung, or prostate cancers.

Colon Lung Prostate Total

Selected cases 1769 1961 2202 5932

Year of Diagnosis
2011 434 520 583 1537
2012 421 529 522 1472
2013 456 411 561 1428
2014 458 501 536 1495

Age
20 to 64 756 674 906 2336
65 to 74 458 679 864 2001
74 or older 555 608 432 1595

Race
White 1675 1871 2116 5662
Black 26 21 23 70
American Indian or Alaskan Native 17 7 5 29
Asian or Pacific Islander 50 61 48 159
Other or Unknown 1 1 10 12

Ethnicity
Hispanic 117 126 94 337
Non-Hispanic 1647 1833 2070 5550
Unknown 5 2 38 45

Sex
Male 904 1003 2202 4109
Female 865 958 0 1823
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5.3.3 Consolidated TNM Stages as Gold Labels

Cancer cases selected for the study were assigned an unconsolidated TNM stage by local

reporting facilities and then were rectified and assigned a final consolidated stage based on

most accurate information by registrars at the Utah Cancer Registry. The consolidation

of stage for each patient is an internal process to the Utah Cancer Registry and is usually

based on the multiple records received from different sources. Since the registrars at the

Utah Central Cancer Registry have access to every record from each facility visited by

the patient, they are able to assign the most accurate stage based on available complete

information and patient history. Therefore, we will consider the final consolidated stage as

the gold standard for this study.

5.3.4 TNM Stage Extraction

A random sample of 300 cases (100 per cancer site included in the study) was selected

for annotation and reference standard development. Experienced CTRs annotated the text

fields for mentions of T, N and M stages and other relevant contextual information. An NLP

application was developed and evaluated based on this reference standard to automatically

extract TNM mentions. The methods and results of this system are reported in a different

paper.1 Final evaluation showed that a rule-based NLP system achieved very high accuracy

for the extraction of TNM stage mentions (sensitivity: 95.5%–98.4%). The NLP application

was applied to the records of all cases used in the current study and the extracted TNM

stage mentions from patient records were used as input features to the machine learning

algorithms developed for automatic consolidation in this study.

5.3.5 NLP and Machine Learning Application

Figure 5.1 highlights the NLP and machine learning application developed for the study.

The application consists of two main components: TNM extraction and TNM consolidation.

The TNM extraction component was developed and evaluated based on reference standard

of 300 cases (100 per site), and more details and results are reported in a separate study.1

The preprocessing components were adapted from cTAKES12 clinical processing pipeline to

produce lexical and syntactic features for the TNM extraction. The consolidation of various

information from the unconsolidated NAACCR and e-path records into one final TNM stage

was implemented using Support Vector Machine (SVM) available from scikit-learn python
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Figure 5.1: NLP and machine learning application high-level architecture.

library (LinearSVC). The feature extraction component produces necessary sparse matrix

representation for the SVM learning task. Both structured data (e.g., age, histology, grade)

and TNM mentions extracted from unstructured text fields of each patient records were

used as input features for the learning task, with the consolidated TNM stage (manually

verified by the registrars at the Utah Cancer Registry) as the target label for classification.

5.3.6 Baseline System

A baseline system was developed to consolidate TNM stage mentions extracted by the

NLP system. The baseline uses two simple rules:

1. Given multiple T, N and M mentions extracted from multiple records belonging to the

same patient, assign the highest numerical stage (selecting the highest value for TNM

is the same rule of thumb a certified tumor registrar would use for case consolidation).

2. If the patient has no respective TNM stage mentions, then use the most frequent stage

for each T, N, and M as supported by stage counts from training data, for instance,

use stage N0 when assigning N stage since it is the most prevalent stage for N in the

training data (see TNM stage counts from Table 5.1).

5.3.7 Features from NAACCR Records

Coded and structured data fields from the unconsolidated NAACCR records for each

patient were used to train the SVM classifiers used for final stage consolidation. Each data

field is a numerical code assigned by registrars after reviewing the patient data. NAACCR

standard and data dictionary defines the specification and scope of each data element

captured in the NAACCR records. Since each patient may have multiple unconsolidated
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NAACCR records, we implemented a procedure that selects the highest coded value for

each data field used as feature when multiple numerical codes exist. If any data field is

empty for a patient we use -1 to indicate a missing code for this data.

5.3.8 Algorithms and Features Optimization

Large margin classification based on SVM has demonstrated superior results in many

studies and recent NLP challenges.2,16 However, due to the novelty of the current task, we

experimented with other well-known classification algorithms in the literature. The scikit-

learn library was used to systematically compare performance of various algorithms such

as Decision Trees, Naive Bayes, K-Nearest-Neighbors, Random Forests and ensemble-based

voting classifier. In addition, we performed a systematic feature selection and parameter

tuning using grid search to find the most effective values for the SVM parameters. Feature

selection was guided by a stepwise evaluation with progressive addition of features to finally

obtain the best feature subset for each cancer site and TNM combination.

5.3.9 Stage Group Derivation

The AJCC rules and guidelines provide stage group classification (e.g., I, II, III and IV)

definitions based on TNM stage information. We used these (as found in the AJCC 7th

edition manual) for each primary cancer site to derive the stage group based on the predicted

TNM labels automatically assigned by our NLP and ML application. We then compared

the derived stage group for each case to the stage group assigned by UCR registrars to

assess accuracy. An example of stage group classification based on the AJCC manual for

the three cancer sites considered in this study is shown in Table 5S.2.

5.3.10 Evaluation Methods

Multiple SVM classifiers were developed to consolidate each of T, N and M staging

labels for each of the primary cancer sites separately (9 total SVM classifiers). All initial

experiments were conducted on the training and development subsets using cross validation

approach. The most effective algorithm, features and parameter settings were selected for

final evaluation on the test subset that was heldout from the system developer and only

released during the final phase of the study. The predictions on the test set were submitted

to an independent statistician who participated in the study to perform final assessment.
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The 7th edition of AJCC TNM manual adds a layer of complexity to the TNM classification

system by introducing a more refined staging hierarchy with alphabetical subdesignation

to the existing numerical stages such as T1a and N2b. We grouped TNM labels assigned

by registrars into a more coarse-grained numerical level (essentially converting the more

refined alphabetical stages such as T1a and T1b into T1) and then trained classifiers to

predict numerical stages only. Similarly, the stage group labels in the consolidated records

for each case were converted to numerical level stages (e.g., IIA and IIB into II) to be used

for final evaluation.

Since each patient must be assigned a final consolidated TNM and stage group labels,

we used accuracy (number of correct classifications divided by number of total cases) as

the primary metric to measure performance during development. We report the mean and

standard deviations of accuracy obtained from 3-fold cross validation on the training and

development subsets. We report final assessments on the test subset using accuracy (percent

agreements), and Cohen’s kappa (κ) metrics.

5.4 Results

5.4.1 Consolidation with Baseline System

Table 5S.3 shows the accuracy obtained (mean and standard deviations) from applying

the baseline system to the 70% training data using 3-fold cross validation approach. This

simple baseline achieves accuracy higher than 80% when consolidating N and M for colon,

and M for prostate. Consolidation of T for colon, and N and M for prostate achieves lower

accuracy level below 70%. Consolidation of T, N, and M stages for lung cancer achieves

low accuracy below 60%.

5.4.2 Consolidation with Various Machine Learning Algorithms

To compare various machine learning algorithms and apply the most accurate of them

for automatic TNM consolidation, we used the python scikit-learn library. The plots in

Figure 5.2 show accuracy levels obtained by running each machine learning algorithm on

the training subset using 3-fold cross validation. Each subfigure contains the mean accuracy

performance from 3-fold on the y-axis and the classification algorithm used on the x-axis.

The plots in each subfigure show accuracy for all cancer sites, lung, colon and prostate, from

top to bottom, respectively. The left column shows accuracy when using extracted TNM
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Figure 5.2: The mean accuracy (y-axis) obtained with multiple classification algorithms
(x-axis) applied to the training dataset using 3-fold cross validation. From top to bottom,
mean accuracy is for all cancer sites, colon, lung and prostate, respectively. Left column is
the accuracy obtained when using TNM mentions only while right column is the accuracy
obtained when coded histology used as additional feature.
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mentions only, and the right column shows accuracy when coded histology is added as a

feature. The graph colors distinguish between accuracy scores for T (green), N (orange),

and M (blue).

This comparative analysis shows that, in general, accuracy for consolidating T stage

is lowest (≈40%–80%) and is best for M stage consolidation (≈80%–90%). This is not

surprising given that M is a binary classification problem (M0-M1), and T is a more

complex classification problem. The overall best accuracy was obtained with linear SVM

and Random Forest classifiers.

Performance with different cancer sites varied for M, with the best performance for

prostate (≈90%) and lowest for lung cancer (≈80%), in general, with the exception of

performance of T and N which was slightly better for colon (≈80%–90%) than prostate

(≈70%-80%) and lung (≈40%–60%).

Adding more features for machine learning improves TNM consolidation accuracy slightly

for specific sites. For instance, adding histology feature improves N accuracy for prostate

from low 70% to about 80%. Similarly, for colon, adding histology features improves T

accuracy slightly from 78% to 80%. This shows that adding more structured data from

the unconsolidated NAACCR abstract records could improve accuracy.

5.4.3 Consolidation with Linear Support Vector Machines

The comparative analysis of various machine learning algorithms presented above showed

that linear SVM was among the best machine learning algorithms for consolidation of TNM

stage information. We chose this algorithm for further analysis, starting with feature selec-

tion in which the best combination of structured data items or coded fields (e.g., histology,

grade, tumor size) from unconsolidated NAACCR abstracts were selected to maximize

classification accuracy. We performed feature selection for colon, lung and prostate cancer

sites and each T, N and M stage classification separately. In addition, SVM algorithm5 has

an important hyperparameter known as C value that can be tuned to avoid over-fitting the

model to the data and allow for reduced classification error. Using a grid search approach,

we found the best C value given the best combination of features found for each site and

TNM combinations. Tables 5S.4 and 5S.5 present the mean accuracy and standard deviation

obtained when using 3-fold cross validation with the training and development data sets
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before and after performing feature selections and searching for the best C value. Table 5S.4

presents 3 sets of scores; 1) scores when using extracted TNM mentions only and default

value for the C parameter, 2) scores after feature selection (TNM mentions + best features)

and 3) scores after performing grid search and using best value for C parameter. Table

5S.5 presents results of the 3-fold cross validation on the 70% training subset and results on

10% development subset obtained with training linear SVM classifier on the 70% training

subset.

The results indicate major improvements in accuracy after adding best features for each

site especially for the M stage (colon: +9.53%, lung: +16.94%, and prostate: +2.89%).

This might be due to the fact that many of the coded fields in NAACCR abstracts capture

data associated with metastasis such as nodes involvement (NAACCR data items #820 and

830), metastasis in specific organs (NAACCR data items #2851–2854) and CS site specific

factors as part of the collaborative stage system.

Among the three cancer sites, accuracy of T and N stages improved significantly for

colon cases when using best features (T: +8.95%, and N: +2.78%). Similarly, there is

significant improvement in accuracy for the T and N stages for lung cancer cases (+23.79%,

and N: +3.4%).

Performing grid search and using best C value seems to improve performance slightly

for colon and lung cancers by an average of 1%. However, there is significant improvement

in accuracy for prostate cancer cases by about 6-7% for the T and N stages after using best

C value.

5.4.4 Consolidation on the Test Data

The linear SVM classifiers with best features found and C parameter settings were

applied to the testing subset after training on the 80% training and development data for

each site and TNM combinations. Table 5.3 outlines the results obtained on the held-out

testing subset using the Linear SVM for each site and TNM. To perform the weighted

kappa, rows that contained TX or TIS for T stage or NX for N stage were removed.

The results show accuracy levels comparable to the results obtained on the cross vali-

dation experiments on the training and development subsets. An exception is accuracy for

the T stage for both colon and prostate cancer cases which shows a drop of about 5% and a
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Table 5.3: Performance obtained on the testing subset with the baseline system and linear
SVM trained on the 80% data using best features and C parameters for each site and TNM
combinations.

Classifier Site TNM Agreement (%) Kappa Weighted

Baseline (All) (All) 2358/3567 (66.1%) 0.602 0.984
Baseline (All) M 871/1189 (73.3%) 0.229 0.101
Baseline (All) N 779/1189 (65.5%) 0.389 0.512
Baseline (All) T 708/1189 (59.5%) 0.461 0.616
Baseline Colon (All) 810/1062 (76.3%) 0.722 0.988
Baseline Colon M 280/354 (79.1%) 0.371 0.154
Baseline Colon N 297/354 (83.9%) 0.725 0.843
Baseline Colon T 233/354 (65.8%) 0.559 0.740
Baseline Lung (All) 593/1182 (50.2%) 0.436 0.951
Baseline Lung M 222/394 (56.3%) 0.175 0.132
Baseline Lung N 196/394 (49.7%) 0.25 0.329
Baseline Lung T 175/394 (44.4%) 0.259 0.359
Baseline Prostate (All) 955/1323 (72.2%) 0.655 0.987
Baseline Prostate M 369/441 (83.7%) 0.095 0.014
Baseline Prostate N 286/441 (64.9%) 0.125 0.400
Baseline Prostate T 300/441 (68.0%) 0.519 0.645

Linear SVM (All) (All) 2958/3567 (82.9%) 0.803 0.990
Linear SVM (All) M 1138/1189 (95.7%) 0.891 0.891
Linear SVM (All) N 920/1189 (77.4%) 0.646 0.795
Linear SVM (All) T 900/1189 (75.7%) 0.689 0.820
Linear SVM Colon (All) 960/1062 (90.4%) 0.888 0.991
Linear SVM Colon M 341/354 (96.3%) 0.884 0.884
Linear SVM Colon N 323/354 (91.2%) 0.856 0.952
Linear SVM Colon T 296/354 (83.6%) 0.785 0.845
Linear SVM Lung (All) 888/1182 (75.1%) 0.720 0.980
Linear SVM Lung M 370/394 (93.9%) 0.878 0.878
Linear SVM Lung N 238/394 (60.4%) 0.435 0.638
Linear SVM Lung T 280/394 (71.1%) 0.637 0.808
Linear SVM Prostate (All) 1110/1323 (83.9%) 0.803 0.986
Linear SVM Prostate M 427/441 (96.8%) 0.812 0.812
Linear SVM Prostate N 359/441 (81.4%) 0.609 0.785
Linear SVM Prostate T 324/441 (73.5%) 0.618 0.736

drop of about 3% for lung cancer cases. This drop in performance could be partly associated

with high standard deviation calculated from the 3-fold cross validation experiments for the

T stage which was about 3%.

Figure 5.3 shows the classification matrices for T and N for all sites when compared

against the true manually consolidated T and N stages. Most errors seem to center around

the diagonal for T stage reflecting the fact that most errors made by the machine were closer
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Figure 5.3: Classification errors for T and N stages across all sites on the test set.
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to true labels assigned by registrars. Similarly the case for N stage with high proportion of

errors (51 and 47) occurring between NX and N0 stages.

5.4.5 Stage Group Derivation

Table 5.4 show the agreement accuracy obtained when deriving the stage group for each

cancer case on the testing subset using the TNM predictions from the Baseline and Linear

SVM classifiers. Accuracy for colon and lung are above 80% while prostate is lower at 67%.

5.5 Discussion

5.5.1 TNM Consolidation

The cross validation experiments and results on the held-out testing subset using the

Linear SVM machine learning algorithm showed that the consolidation of M stage can be

reasonably automated with high accuracy (93%-98%). This is a significant improvement on

the baseline accuracy for the M stage consolidation (57.29%-82.27%). Across the three sites,

consolidation of M stage for lung cancer is lower (93%) than the other two sites considered in

this study. This may be due to the prior distribution of the M stage within lung cancer cases

where similar proportions of M0 and M1 stages were observed in our dataset, while colon

and prostate cases were skewed with far more cases with M0 stages than M1. This is could

be one reason the baseline accuracy for the M stage on lung cancer cases is significantly

lower than other two sites. Other possible factor that may affect accuracy for the M stage

is mentions of MX within the text fields which indicate insufficient information available

to stage metastasis. The 7th edition of the AJCC manual eliminated the MX stage and

required the use of M0-M1 stage classifications only.

Table 5.4: Performance obtained on the testing subset for derivation of stage group using
TNM predictions from baseline and linear SVM classifiers.

TNM Predictions Used Site Agreement (%) Kappa Weighted

Baseline (All) 572/1189 (48.1%) 0.353 0.246
Baseline Colon 231/354 (65.3%) 0.558 0.535
Baseline Lung 156/394 (39.6%) 0.222 0.113
Baseline Prostate 185/441 (42.0%) 0.220 0.445

Linear SVM (All) 942/1189 (79.2%) 0.738 0.875
Linear SVM Colon 313/354 (88.4%) 0.851 0.928
Linear SVM Lung 333/394 (84.5%) 0.758 0.883
Linear SVM Prostate 296/441 (67.1%) 0.584 0.751
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Accuracy for consolidation of T and N stages for colon cancer cases was the highest

(above 80%) followed by prostate (above 70%) and lowest accuracy for lung cancer cases

(above 60%). This is may indicate that the criteria for staging colon cancer cases could be

a less complex task than the other two sites. Our study was limited on applying similar

techniques regardless of the cancer site to test the level of generalizability of the proposed

approach. This approach heavily relies on direct documentation of cancer TNM stage

mentions and other coded information in unconsolidated records from hospital registrars.

This assumption may not be very realistic and more experiments need to be conducted to

potentially improve performance. Most prominent is the use of medical terminologies from

the Unified Medical Language System (UMLS) to map medical concepts found in text fields

to semantic categories such as anatomical sites, neoplastic processes, and other findings as

well as concept codes (CUI). The extracted concepts together with their associated semantic

categories and relations between them could then be used in the training process. However,

this is may not be a trivial task since there is usually an enormous number of possible

mappings and a considerable amount of ambiguity that needs to be resolved. This is

especially true with text in the records used for this study which contain extensive use

of telegraphic-style sentences, abbreviations, acronyms and all-CAPS text, for instance,

LUNG, LUL: 2 CM. MOD TO POORLY DIFF ADENOCA.

Knowing that ‘TUMOR’ concept is existing and invades into the ‘ VISCERAL PLEURA’

in the lung could indicate stage T2. Similarly, knowing that ‘8 LYMPH NODES NEG-

ATIVE FOR TUMOR’ could indicate stage N0. Therefore, extraction of concepts and

mapping them to UMLS categories and codes may be a useful feature engineering task to

improve performance of consolidation in the future. This is may also become necessary when

lack of documentation of structured data is an issue for a registry. The rationale behind use

of concepts is that patients with similar stages will tend to have similar concepts mentioned

in their records and therefore a classifier will learn to associate collections of concepts to a

stage. This approach may be promising especially if a registry has large collection of cancer

cases records with a sufficient amount of text to allow robust training and classification.
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5.5.2 Stage Group Derivation

Deriving a stage group with TNM predictions on the testing subsets showed high

accuracy on colon cancer (88.4%) followed by lung cancer (84.5%) while accuracy for

prostate cancer was lower (67.1%). Since the AJCC manual specify stage grouping based on

TNM subcategories (e.g., T1a-c and N1a-b) and we only predict numerical level TNM and

stage groups, we had to compromise when choosing stage grouping in border cases (e.g.,

stage groups IB–T2aN0M0 and IIA–T1bN0M0 for lung cancer both are derived from T1

numerical stage with different subcategories a and b). In addition, the criteria for stage

grouping for prostate cancer involve the use of PSA and Gleason scores which we do not

include in our derivation method and, therefore, the reason for lower accuracy for prostate

cases. In future studies, we propose to proceed in two phases to handle the extra layer of

complexity involving use of alphabetical subcategories within the labels. In the first phase,

group TNM labels into a coarse-grained numerical level and then build classifiers to predict

numerical stage only. Second, use results of the previous step as input to new classifiers with

original information that can predict the more refined alphabetical stages in a cascading

fashion. This process will allow measuring performance of classification at the two levels

separately and could potentially reduce label complexity by dealing with a smaller number

of categories in each classification task.

5.6 Conclusion

Automatic consolidation of cancer stages by machine learning for the cancer registry

could achieve high accuracy for some cancer sites and may be practical and useful in the

context of manual human review assistance. Future studies may focus on additional feature

engineering and extraction of medical concepts to improve consolidation accuracy.
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5.10 Supplementary Materials

This section contains additional tables that can be included as supplementary materials

for Chapter 5.

Table 5S.1: Distribution of cases by set assignment and cancer site

Lung Colon Prostate Total

Training 1365 1228 1540 4133
Validation 194 178 221 593
Testing 394 354 441 1189
Total 1953 1760 2202 5915

Table 5S.2: Example stage group classification based on TNM stages for the primary
cancer sites considered in the study according to the AJCC manual, 7th edition.

Cancer Site Stage Group T N M PSA Gleason

Prostate
I T1a-c N0 M0 PSA < 10 Gleason ≤ 6
I T2a N0 M0 PSA < 10 Gleason ≤ 6
I T1-2a N0 M0 PSA X Gleason X

Colon
IIA T3 N0 M0
IIB T4a N0 M0
IIC T4b N0 M0

Lung

IIA T2b N0 M0
IIA T1a N1 M0
IIA T1b N1 M0
IIA T2a N1 M0
IIB T2b N1 M0
IIB T3 N0 M0
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Table 5S.3: Accuracy scores (mean and standard deviations from 3-fold) obtained with
the baseline approach on the 70% training data.

TNM Cancer Site Mean Score Stdev

T All sites 61.84% 1.10%
N All sites 66.07% 1.11%
M All sites 73.36% 2.51%
T Lung 43.73% 2.76%
N Lung 49.59% 3.68%
M Lung 57.28% 2.98%
T Colon 72.15% 1.88%
N Colon 86.80% 0.58%
M Colon 80.05% 2.28%
T Prostate 69.67% 4.23%
N Prostate 64.15% 3.69%
M Prostate 82.27% 1.99%
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Table 5S.4: Accuracy scores (mean and standard deviations from 3-fold cross validation)
obtained when performing feature selection and C parameter search for linear SVM algo-
rithm on the 80% combined training and development subsets.

Features TNM Cancer Site Mean Score Stdev C value

TNM mentions T Colon 78.03% 2.38% 1
TNM mentions N Colon 87.97% 0.53% 1
TNM mentions M Colon 88.26% 1.37% 1
TNM mentions T Lung 47.60% 3.49% 1
TNM mentions N Lung 55.48% 2.73% 1
TNM mentions M Lung 76.90% 0.81% 1
TNM mentions T Prostate 69.61% 0.53% 1
TNM mentions N Prostate 72.23% 1.68% 1
TNM mentions M Prostate 92.22% 1.10% 1

TNM mentions + best features T Colon 86.98% 0.53% 1
TNM mentions + best features N Colon 90.75% 1.34% 1
TNM mentions + best features M Colon 97.79% 0.36% 1
TNM mentions + best features T Lung 71.39% 1.99% 1
TNM mentions + best features N Lung 58.88% 1.07% 1
TNM mentions + best features M Lung 93.84% 1.96% 1
TNM mentions + best features T Prostate 72.84% 3.10% 1
TNM mentions + best features N Prostate 74.95% 1.25% 1
TNM mentions + best features M Prostate 95.11% 1.61% 1

TNM mentions + best features T Colon 88.40% 0.74% 0.12
TNM mentions + best features N Colon 91.82% 0.28% 0.075
TNM mentions + best features M Colon 98.15% 0.09% 0.045
TNM mentions + best features T Lung 74.53% 3.18% 0.115
TNM mentions + best features N Lung 59.39% 0.69% 0.135
TNM mentions + best features M Lung 94.41% 1.96% 0.06
TNM mentions + best features T Prostate 78.64% 3.09% 0.02
TNM mentions + best features N Prostate 81.37% 1.48% 0.025
TNM mentions + best features M Prostate 97.61% 0.14% 0.01
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Table 5S.5: Accuracy scores on the 70% training subset and 10% development using best
features and C value found for linear SVM. Training score: mean accuracy from 3-fold
cross validation on 70% training subset. Development score: accuracy obtained on the 10%
development subset after applying classifier trained on the 70% training subset.

TNM Cancer Site Training Score Stdev Development Score

T Colon 87.69% 0.80% 88.20%
N Colon 91.12% 0.59% 89.32%
M Colon 97.96% 0.30% 98.31%
T Lung 71.86% 1.23% 78.86%
N Lung 58.60% 1.31% 60.30%
M Lung 93.70% 1.28% 93.81%
T Prostate 78.23% 3.22% 77.82%
N Prostate 81.62% 1.15% 80.99%
M Prostate 97.66% 0.82% 98.19%
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DISCUSSION
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6.1 Summary

The ultimate goal of this study is to demonstrate the utility of NLP and ML to automate

cancer stage consolidation in a central cancer registry. I have presented a preliminary

study that involved reusing and adapting exiting NLP resources and medical terminology

to solve new clinical information extraction task. Reusing existing NLP resources provided

very good baseline and reduced development efforts. I then compared performance of two

well known statistical machine learning algorithms (CRF and SVM) in extracting cancer-

related concepts, time expressions and relations from clinical text of colon cancer patients.

The evaluation showed that while both algorithms performed comparably in general, CRF

performed slightly better for sequential extraction; in addition, combining both CRF and

SVM in ensemble-based approach may improve performance for time expressions extraction.

Automatic extraction of TNM stage mentions achieved very high performance suggesting

usefulness of the proposed NLP system based on simple regular expressions in future tasks.

There were aspects about TNM mentions that were not clear at the start of the project, in

particular, the negation, historical and temporal contexts for these kinds of mentions. These

contexts became clear after the completion of the reference standard development which

was necessary to evaluate the NLP system and better understand the information context

surrounding these TNM mentions. The TNM mentions were mostly affirmed, recent, and

related to the patient in question, and did not occur in very sophisticated contexts. This is

to large extent indicated that the proposed NLP system likely benefited from having these

TNM mentions occur in direct contexts and made development easier since the amount of

context that needs to be extracted and analyzed is minimal.

TNM stages could be either clinical or pathological based on general criteria involving

the time frame of staging and the use of clinical exams, imaging tests and biopsies or

surgical resection of tumor and pathological examination to determine stage. Knowledge

of clinical and pathological stages is imperative for effective treatment decisions and future

analysis of registry data. The proposed CRF approach to classify TNM stages to clinical

or pathological achieved high sensitivity (83.5%–87%) significantly better than a baseline

rule-based system (38.4%–53.5%).

The extracted TNM stage mentions and use of other structured data fields from patient

records to automatically consolidate TNM stages at the patient level using machine learning
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proved to be feasible based on results obtained from the cross validation experiments and

on the testing set. Automatic consolidation could achieve very high accuracy for the M

stage for all three cancer sites considered in the study (above 90%), very good accuracy for

the T and N stages for colon cancer (above 80%), moderate accuracy for prostate cancer

(70%–80%) and lower accuracy for lung cancer (60%–70%). The proposed machine learning

algorithms do not make assumptions about underlying criteria to stage cancer cases or do

not attempt to capture information criteria that may allow direct staging such as tumor

size or number of lymph nodes involvement. The criteria for staging cancers are complex

and differ for each site and algorithms that attempt to extract information which can be

used to infer stages will be difficult to generalize without retraining them with new data

for each different site. This will mean the requirement to develop a new annotation schema

and reference standard for each different site detailing the data items required for staging,

a very expensive and demanding task. The proposed algorithms is more pragmatic in the

sense that we try to depend on existing TNM stage documentation and other coded data

from reporting facilities to consolidate stages for central cancer registry.

Deriving a stage group based on the automatically consolidated TNM stages showed

promising results for Colon and Lung cancers while deriving a stage group for Prostate

cancer attained lower accuracy because both gleason and PSA score values which are

required for deriving a stage group were not extracted by the proposed NLP system.

6.2 Future Directions

The nature of clinical text collected at the Utah central cancer registry varies mainly

because these text fields are collected from various reporting facilities ranging from large

regional hospitals to small community health centers. In addition, the text is a verbatim

copy of notes from relevant section of the patients EHR or manual dictations by local cancer

registrars. The most prominent feature of this text is the extensive use of uppercase letters

which makes it difficult to easily discern abbreviations, and distinguish proper nouns. In

addition, the use of short telegraphic style sentences, abbreviations and acronyms is very

common such as “COULD NOT FIND EVIDENCE OF ANY FURTHER TX” or “CC: AB

PAIN”. This could be challenging for NLP systems and novel approaches may be needed

to handle the extensive use of abbreviations and all-caps text.
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Each patient case in the registry has multiple records with text fields that were used

to extract TNM mentions. The TNM mentions together with other coded data were

consolidated using the proposed SVM algorithm for each cancer site at the patient level.

Although this approach yielded promising results, it is likely that more feature engineering

or structuring of the prediction task will be required to enhance performance. NLP tasks

usually assume a document structure with a class label assigned at either document-level (for

document classification) or word-level (for information extraction). This project involved

eventually assigning a label at the patient-level (i.e., a label for multiple documents). Since

each patient may have multiple records with text fields (and TNM mentions), the task

can be structured such that labels are assigned at the document-level for each separate

record and then using some heuristics to assign final label at the patient-level based on

previously predicted document-level labels. Alternatively, the multiple records per patient

may be combined using temporal labels and then using some heuristics to discard duplicated

fields. This latter approach will likely require sophisticated feature engineering to find most

salient features for final stage consolidation at the patient-level. This is also a venue for

experimenting with more novel feature representations for this task.

Another challenge for the proposed consolidation algorithms is the lack of adequate

documentation of TNM stage mentions required to consolidate a final stage. This may

be mitigated by the use of bag-of-concepts or more refined concept-level representations.

The rationale behind this is that cancer cases with similar TNM stages might tend to have

similar mentions of concepts. For instance, colon cancer cases that have mentions of affirmed

‘TUMOR’ that penetrates the ‘VISCERAL PERITONEUM’ concepts will more likely be

staged T4. Similarly, these concepts may be mentions of tumor invasion within specific

anatomical sites such as penetration of ‘TUMOR’ cells into the ‘SUBMUCOSA’ for colon

cancer (mostly indicating T1 stage), or the mention of ‘DISTANT METS’ to mostly indicate

M1 stage for most cancers. However, as mentioned previously the extraction and mapping

of concept terms and relations between them may not be a trivial task given the nature of

the text. It is likely that a considerable amount of ambiguity needs to be resolved before

a useful representation maybe used to train a module. The ambiguity could be managed

by the use of more recent word embedding and deep learning to build word vectors that

capture semantics at a deeper level. This could be a viable direction to pursue especially if



71

a large amount of textual data becomes accessible in the future (i.e., millions of words).

Consolidation of T, N and M stages was performed separately by developing SVM

classifiers for each site and TNM combinations. It is likely that future implementation may

benefit from experimenting with, for instance, feeding T and N classifiers the predictions of

M stages or vice versa. The rationale behind this is the strong likelihood of advanced T stage

(T2–T4) given previously predicted metastasis stage (M1) for a cancer case. Therefore, each

classifier will inform the other classifiers in a feedback loop that could potentially improve

performance.




