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ABSTRACT 

 

 

The lifting line theory was first developed by Prandtl and was used primarily on 

analysis of airplane wings. Though the theory is about one hundred years old, it is still 

used in the initial calculations to find the lift of a wing. 

 The question that guided this thesis was, “How close does Prandtl’s lifting line 

theory predict the thrust of a propeller?” In order to answer this question, an experiment 

was designed that measured the thrust of a propeller for different speeds. The measured 

thrust was compared to what the theory predicted. In order to do this experiment and 

analysis, a propeller needed to be used. A walnut wood ultralight propeller was chosen 

that had a 1.30 meter (51 inches) length from tip to tip.  

 In this thesis, Prandtl’s lifting line theory was modified to account for the 

different incoming velocity depending on the radial position of the airfoil. A modified 

equation was used to reflect these differences. A working code was developed based on 

this modified equation.  

 A testing rig was built that allowed the propeller to be rotated at high speeds 

while measuring the thrust. During testing, the rotational speed of the propeller ranged 

from 13-43 rotations per second. The thrust from the propeller was measured at different 

speeds and ranged from 16-33 Newton’s. The test data were then compared to the 

theoretical results obtained from the lifting line code. A plot in Chapter 5 (the results 

section) shows the theoretical vs. actual thrust for different rotational speeds. 
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The theory over predicted the actual thrust of the propeller. Depending on the 

rotational speed, the error was: at low speeds 36%, at low to moderate speeds 84%, and at 

high speeds the error increased to 195%. Different reasons for these errors are discussed. 
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NOMENCLATURE 

 

 

V or      Incoming velocity         (m/s) 

 

  (  )   Incoming velocity at different spanwise locations      (m/s) 

 

  (  ) Incoming velocity at different spanwise locations in terms of the 

transform variable          (m/s) 

 

    Induced velocity         (m/s) 

 

    Density               (kg/m^3) 

 

A   Rotor disk area                   (m^3) 

 

    Power loss       (Watts) 

 

    Thrust            (Newton’s) 

 

          Lift per span           (Newton’s/meters) 

 

         Total lift           (Newton’s) 

 

    Circulation              (m^2/sec) 

 

 (  )   Circulation at different spanwise locations           (m^2/sec) 

 

       Zero lift angle of attack             (radians) 

 

    (  )  Zero lift angle of attack at different spanwise locations      (radians) 

 

 (  )   Angle of attack at different spanwise locations          (radians) 

 

 (  ) Angle of attack at different spanwise locations in terms of the 

transform variable               (radians) 

 

x   Coordinate direction in the same direction as the incoming flow 

 

y or    Coordinate direction in the spanwise direction of the propeller 

blade 



x 

 

 

z  Coordinate direction perpendicular to both the incoming flow and 

spanwise direction 

 

    Transform variable  

 

c   Chord length                (meters) 

 

 (  )   Chord length at different spanwise locations             (meters) 

 

 (  ) Chord length at different spanwise locations in terms of the 

transform variable                (meters) 

 

B   Length of the propeller blade              (meters) 

 

   Coefficients used to generate the Fourier Series approximation of 

the circulation 

 

              The thrust measured by the testing rig       (Newton’s) 

 

                 The thrust calculated by the computer code        (Newton’s) 

 

     Renolds number    

 

    Fluid viscosity         (kg/(sec*m)) 
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CHAPTER 1 
 

 

INTRODUCTION 

 

 

Prandtl’s lifting line theory, (Anderson, 2007) though old, is good for doing a 

quick analysis. It gives a closed-form solution so that key parameters for the design can 

be found. Though Prandtl’s lifting line theory has been used in finite wings,  it has not 

been used to analyze propellers. Other tools exist to analyze propellers, but a lot of them 

do not have closed-form solutions. There is a common theory called the Blade Element 

Theory that is used to analyze propellers. The Blade Element Theory gives a closed-form 

solution, but this theory requires a fudge factor in order to accommodate for invalid 

assumptions in the development of the theory.  One big advantage of using the lifting line 

theory was that the closed-form solution did not require fudge factors and an actual 

closed-form solution was found.  It was not as computationally intense as a Finite 

Element Analysis model (FEA) and it did not require as much setup as an FEA. Some of 

the limitations to Prandtl’s lifting line theory came from the assumptions that were used 

to develop the equation. The flow is assumed to be inviscid and incompressible. The 

inviscid flow assumption is a good approximation because at the higher speeds and the 

low viscosity, most of the forces come from the pressure distribution on the airfoil, and 

only a small portion will come from the skin friction. 

 Assuming that the fluid is incompressible is valid as long as the propeller is not 

close to the speed of sound. The part of the propeller that will have the highest velocity is 
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the propeller tip. As long as the tip velocity is one third the speed of sound, it can be 

safely assumed that the flow will be incompressible.  

Another assumption that was made in Prandtl’s lifting line theory was that the 

incoming velocity would be smooth. This is never the case in the context of propeller 

analysis. Due to the complex disturbance caused by the preceding blade,  the incoming 

velocity is hard to model. While this was an invalid assumption, a smooth incoming flow 

was used because it is almost impossible to model the complex flow of what actually 

happens. This will be further discussed in the literature review.  

The question that guided this thesis was “How close does Prandtl’s lifting line 

theory predict the thrust of a propeller?” In order to answer this question, this thesis had 

two main parts. The first was developing a modification to Prandtl’s lifting line equation 

for studying propellers. The second part of this thesis was to perform an experiment that 

measured a few key parameters. The results from these two parts were then compared. 

The velocity terms in the original Prandtl’s lifting line equation had to be 

modified in order to use them for propellers. The original Prandtl’s lifting line equation 

assumed a constant incoming air velocity in the context of airplane analysis. This is not 

the case with  propeller analysis. The tip of the propeller moves faster than any other part 

of the propeller, and the hub moves slower than any other part of the propeller.  Prandtl’s 

lifting line theory had to be altered in order to reflect this difference and  is shown in an 

integro differential equation. In order to solve the integro differential equation, a Fourier 

Series was used. This approach was similar to what Prandtl did except there were 

velocity terms in the equation that were different, and the boundary conditions were 

different. A computer code was developed to solve the integro differential equation. The 
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code used inputs of the propeller geometry and the rotational speed, and the output was 

the thrust of the propeller.  

The second part of this thesis consisted of designing and running tests  that 

measured the thrust of a propeller. A propeller was also designed and built. The test rig 

frame was built out of multiple 2” diameter pipes. Three wheels where connected to the 

frame. The test rig was powered by a 40 horse power engine. The drive train consisted of 

a centrifugal clutch. Two sensors were also designed and built. The first sensor was a 

speed sensor and the second sensor was a thrust sensor. These sensors were connected to 

a Data Acquisition System (DAQ) system, which was connected to a laptop. When the 

test was performed, each wheel on the test rig was placed on a smooth surface. The 

surface allowed the rig to roll back and forth with very little friction. The thrust sensor 

was anchored to the ground on one end and on the other end was fastened to the test rig. 

By using this setup, the only load path from the thrust of the propeller was through the 

thrust sensor. When the tests were performed, the thrust from the propeller applied a 

force to the thrust sensor. This would make the springs in the thrust sensor deflect until 

the forces were equalized. Before any tests were run, both the speed and thrust sensors 

were calibrated. During the tests, both the thrust and speed were measured. A plot was 

constructed from these data to show the thrust of the propeller at different speeds. 

The same speeds from the experiment were analyzed in the software that was 

developed. With both the experimental and theoretical results, the data were then 

compared to each other. The results found that the theory over predicted the actual thrust 

of the propeller. Depending on the rotational speed, the error was between 36% to 84% 

for low to moderate speeds, but at high speeds, the error increased to 195%. The reasons 
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for these errors are in part due to the assumptions that were made in the development of 

Prandtl’s lifting line theory. 

 



 

 

 

 

 

 

 

CHAPTER 2 
 

 

LITERATURE REVIEW 
 

 

 This chapter describes literature relevant to the research purposes of this thesis. I 

first review previous scholarly literature on propeller design and analysis. This review 

will include a discussion of different propeller theories, their uses, and limitations. The 

final section of the literature review discusses the theoretical approach for the study, 

Prandtl’s lifting line theory.  

Propellers are used in a wide range of machinery. They are used in boats, 

airplanes, windmills, and ventilation systems as well as many other types of machinery. 

Propellers have been studied from many approaches to optimize the efficiency of the 

device in which they are used. Some approaches to studying propellers include the 

Momentum Theory, the Blade Element Theory, the Vortex Theory, and Computational 

Fluid Dynamics (Johnson, 1994). These theoretical concepts will be discussed in the 

following sections.   

 

1.1  Momentum Theory 

In fluid dynamics, momentum theory (Johnson, 1994) describes a mathematical 

model for propellers. One of the earliest methods used for analyzing propellers was this 

theory. Johnson stated that “The purpose of momentum theory is to find the induced 

velocity and power for a given thrust” (Johnson, 1994) and “this method is surpassed in 

accuracy by more modern theory but is still used to give a first approximation” (pp. 29- 
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30). The way the momentum theory finds the induced velocity and power for a given 

thrust is by using conservation of momentum, energy, and mass.  Stepniewski and Keys 

(1984) said, “the momentum approach may provide a clarity of the overall picture that 

could be lacking when more complicated theories are applied” (p. 89).   

One of the basic concepts that can be understood from momentum theory is the 

slipstream of a propeller. When an airplane propeller produces thrust, it forces air behind 

the aircraft and produces a slipstream. Rwigema (2010) found that the slipstream “may 

rudimentarily be considered as a cylindrical tube of spiraling air propagating rearward 

over the fuselage and wings – having detrimental and beneficial effects. Flow within the 

slipstream is faster than free-stream flow resulting in increased drag over the parts 

exposed to its trajectory” (Rwigema, 2010, p. 2). The slipstream is related to the size of 

the propeller and it helps design engineers understand the dynamics of the air. This is 

important to understand in the design process of the propeller because it will affect other 

measurable factors, or parameters, of the propeller.  

In momentum theory, the propeller is analyzed as an actuator disk. It is infinitely 

thin. The velocity does not change across the disk, but the pressure does. Figure 1 shows 

the slipstream of a propeller as well as other parameters. 

The momentum theory uses the following equations (Johnson, 1994, p. 33) which 

describe the induced velocity ( ) and power loss (P). The different parameters are ‘ ’ for 

the density, ‘A’ for the area of the propeller disk, and the parameters as shown in Figure 

1. 

   
 

 
 √(

 

 
)
 

 (
 

     
)    (1) 

        (   )     (2) 
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Referring to the momentum theory, Stepniewski and Keys (1984) asserted that 

The presently discussed theory [momentum theory] encounters serious limitations 

in providing guidance for rotor design, as it singles out disc loading as the only 

important parameter. Consequently, it does not provide any insight into such rotor 

characteristics as ratio of the blade area to the disc area, blade airfoil 

characteristics, tip speed values with all the associated phenomena of 

compressibility, etc.   … the simple momentum approach did not provide a 

physical concept that could explain the non uniformities of downwash velocities 

or the presence of tip losses. (p. 89) 

 

As discussed above, the uniform disk loading is an assumption made by 

momentum theory. In reality, the propeller will be loaded closer to the middle of the 

blade and less near the tips and the hubs. This will make the slipstream less uniform then 

what is assumed by momentum theory. Though  the momentum theory is good to 

understand the basic fluid dynamics from propellers, other theories need to be used when 

a more rigorous study is undertaken in propeller analysis and design.  

 

1.2  Blade Element Theory  

A widely used theory in propeller design and analysis is the Blade Element 

Theory (Rwigema, 2010). The Blade Element Theory is “a model which will permit one 

to determine… aerodynamic forces and moments acting on various segments of the 

blade” and this can be done by “imagining that the blade is composed of aerodynamically 

independent, chord wise-oriented, narrow strips or elements” (Stepniewski and Keys, 

1984, 93).  This is a powerful theory because only the two-dimensional characteristics of 

an airfoil needs to be known in order to determine the forces of a three-dimensional flow.  

Though the analysis is straightforward, there are a lot of assumptions and 

associated errors. “There is no interaction between the analyses of each blade element, 

and the forces exerted on the blade elements by the flow stream are determined solely by 
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the two-dimensional lift and drag characteristics of the blade element airfoil shape and 

orientation relative to the incoming flow”( Rwigema,  2010, p. 3). This assumption is 

valid at most places on the propeller, but one place that this assumption grossly over 

predicts the lift is near the propeller tips. The air underneath the airfoil goes around the 

tip of the propeller toward the top of the airfoil. This has the effect of decreasing the lift 

at the tip of the blade. The fluid moving from the bottom to the top of the wing is called 

wing tip vortices.  Rwigema (2010) explains, “These tip vortices create multiple helical 

structures in the wake and play a major role in the induced velocity distribution along the 

propeller. To compensate for this deficiency in Blade Element Theory, a tip-loss (or 

correction) factor, F, originally developed by Prandtl is used” (Rwigema, 2010, p. 4). The 

wing tip vortices create a component of velocity perpendicular to the flow. This induced 

velocity decreases the effective angle of attack of the airfoil at different spanwise 

locations; see Figure 2. This will be manifested by the steady decrease of lift nearing the 

tips until the lift goes to zero at the very tips. Figure 3 shows the lift along the propeller 

predicted by the Blade Element Theory, and the lift that is expected because of wing tip 

losses. 

Referencing Figure 2, the V_inf is the approach velocity of the airstream, and 

V_ind is the induced velocity from the wing tip vortices. The vector sum of these two 

velocity components is V_sum. Because of the induced velocity (V_ind) created from the 

wing tip vortices, the geometric angle of attack (A) is not what determines the lift of the 

airfoil. The lift is determined by the effective angle of attack (B). The induced velocity 

along the propeller blade is small near the middle, and increases nearer the wing tips. 
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Blade Element Theory is still widely used in the analysis of propellers. 

Rashahmadi (2011) said, “Blade Element Theory remains popular due to their low costs 

and realizibility…” (p. 1582). Though there are errors in using this theory, one of the 

biggest advantages is the ease of the theory’s application. Results that are more accurate 

can be calculated using the correction factors described above, but these are not exact and 

there will still be errors. For more accurate analysis, or when the geometry does not lend 

itself to Blade Element Theory, other theories can be used. Another theory that is 

commonly used is vortex theory. 

 

1.3 Vortex Theory 

Another theory through which propeller can be studied is through the vortex 

theory. The vortex theory works by accounting for  the lift of an object by looking at the 

circulation of a fluid instead of the pressure on the object. This concept is explained by 

the Kutta-Joukowski Theorem (Johnson, 1994, p. 262), which is mathematically shown 

below. 

                   (3) 

 

1.4 Thin Airfoil Theory 

One application of the vortex theory is the thin airfoil theory. This theory is for 

2D flow only. Anderson (2007) explains how the “thin airfoil theory provides a means to 

predict the angle of zero lift” (p. 333) . The zero lift angle of attack is the angle of attack 

that the airfoil is at when no lift is generated. In addition, thin airfoil theory predicts the 

slope of the lift vs. angle curve to be 2*pi. The equation is developed by treating the 
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mean camber of the airfoil as a streamline in the flow (Anderson, 2007).  Equation 4 

shows the equation derived by the thin airfoil theory, that equates the zero lift angle of 

attack to the shape of the camber line. Equation 5 is a transform between the variable x 

and  , z is the heigth of the camber of the airfoil in the x direction and c is the chord 

length.  

      
 

  
 ∫

  

  
 (      )  

  

 
   (4) 

  (
 

 
)  (      )     (5) 

The vortex theory can be used to set up numerical solutions. Johnson (1994) said, 

“The modern variant of the vortex theory is a numerical solution for the rotor induced 

velocity, loads, and performance that uses a detailed model of the vortex wake, including 

a representation of the discrete tip vortices and frequently even the distorted wake 

geometry. Such an analysis is only practical using high-speed digital computers” (p. 88). 

The vortex theory is a powerful theory that can be used in numerical computations and in 

other simpler calculations like the thin airfoil theory. The vortex lattice method is a 

numerical solution that can be used for three-dimensional flow.   

Other current numerical solutions exist beyond the vortex lattice method.  The 

finite volume method used by most computational fluid dynamic code in solving the 

Navier-Stokes equation is a powerful technology and is used extensively in the aerospace 

industry.  

Kerwin (2001) points out some shortcomings of propeller analysis and of 

numerical solutions in general. Talking about the flow field around the propeller, he said,  

“Unlike a purely potential flow, the vorticity in this flow field interacts with itself as it is 

accelerated by the action of the propeller. This means that the total velocity at a point 
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near the propeller is not simply the linear superposition of the inflow (in the absence of 

the propeller) and the velocity induced by the propeller, but includes an additional 

interactive component” (p. 134).  The momentum theory, Blade Element Theory, and 

many numerical simulations do not take into account the disturbance of the flow going 

into the propeller blade caused by the wake of the previous propeller blade. Kerwin 

continues, “A full numerical simulation of the combined flow problem requires massive 

computational resources, and the validity of the outcome is limited by present empirical 

modeling of turbulence. It is therefore a practical necessity to employ a simpler flow 

model for most propeller design and analysis applications” (p. 134).  

Prandtl’s lifting line theory is a subset of the vortex theory. This is a simple theory 

that has a closed-form solution. It is similar to Blade Element Theory except this theory 

takes into account the wing tip vortices. 

 

1.5 Prandtl’s Lifting Line Theory  

Prandtl’s lifting line theory is a method used to describe the circulation at 

different spanwise locations of the wing. In this thesis, it has been applied to a propeller. 

From the circulation, the lift at the different sections of the propeller wing  were 

calculated, by using the Kutta-Joukowski Theorem (Johnson, 1994). This theorem is 

explained by Equation 3.  

The lift for a cross section of a finite wing was different than the lift of the same 

cross section for an infinitely long wing. The reason for this was because the fluid not 

only moved in a two-dimensional motion in a finite wing, but also had a velocity 

component that traveled towards and away from the tip of the wing. The air traveled from 
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the bottom of the wing towards the tip and from the tip to the top of the wing. This 

created an induced velocity on the air. The overall effect was the angle of attack of each 

cross section was less.   

The classical case of a lifting line theory was developed by Prandtl (Johnson, 

1994). The theory and equation that he developed bears his name. The principle used in 

developing this theory is that multiple line segments have circulation around them, and 

by using superposition, these line segments are placed along the wing. This is done to 

simulate the circulation over the wing. The circulation had a different value depending on 

the spanwise location of the wing. This theory found the circulation distribution over a 

finite wing (Anderson 2007). The fundamental equation of Prandtl’s lifting line is shown 

below, where  (  ) is the only unknown. 

 (  )  
 (  )

       (  )
     (  )  

 

       
 ∫ (

  

  
)  (  

 

 

 
 

 

  )         (6) 

These parameters described how the geometric angle of attack ( (  )) is equaled 

to the effective angle of attack (
 (  )

       (  )
     (  )) plus the induced angle of attack 

(
 

       
 ∫ (

  

  
)  (  

 

 

 
 

 

  )    ) at every spanwise location. To solve this integro 

differential equation, the boundary conditions needed to be known. For propellers, 

Kerwin (2001) explains that the “circulation goes to zero at the hub and the tips” (p. 181). 

“The lifting line theory by itself does not provide any way of determining the lift 

generated by a particular airfoil shape…” (Kerwin, 2001, p. 115) but needed to be used in 

conjunction with other theories. The zero lift angle of attack term     (  ) in this 

equation was found by using the thin airfoil theory. 
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Prandtl’s classical lifting line theory works well for wings that are long and 

narrow. However, for other types of wings like delta wings or swept wings, the classical 

lifting line theory is inappropriate (Johnson, 1994) . Another limitation to this theory is it 

assumes inviscid flow. Another assumption of this theory is that no flow separation 

occurs. When the angle of attack increases beyond the stall angle, there will be flow 

separation, but this theory does not predict that. 

The lifting line theory is similar to Blade Element Theory, but it has fewer 

assumptions and it is more accurate. Just like Blade Element Theory, the lifting line 

theory requires a knowledge of the two-dimensional characteristics of the blade at 

multiple locations. This theory is still used today for preliminary calculations of finite 

wings, even though it was developed during the years of 1911-1918 (Johnson, 1994).  
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Figure 1:  Slipstream of a propeller modeled by the momentum theory 
 

 

 

 

Figure 2: Angle of attack of an airfoil 
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Figure 3: Loading on a propeller for both the actual and the Blade Element Theory 

 

 



 

 

 

 

 

 

 

CHAPTER 3 
 

 

LIFTING LINE THEORY AND CODE DEVELOPMENT 

 

 

Prandtl’s lifting line theory was used to find the overall thrust of a propeller in 

this thesis.  In order to use this lifting line theory, the geometric angle of attack ( ) and 

the zero lift angle of attack (    ) at different spanwise locations needed to be identified. 

The approach velocity (  ) of the air, chord length (c) and diameter of the propeller (b) 

also needed to be known. Equation 7 shows the lifting line equation.  

 (  )  
 (  )

       (  )
     (  )  

 

       
 ∫ (

  

  
)  (  

 

 

 
 

 

  )         (7) 

This equation is the fundamental equation of Prandtl’s lifting line theory. By 

itself, it does not provide a way to determine the lift generated by a particular geometric 

shape as explained by Kerwin (2001). This equation needed to be combined with other 

theories in order to determine the thrust generated. The     (  ) term in this equation 

was found by the thin airfoil theory, and the geometric angle of attack terms ( (  )) 

were measured. The following section explains how these parameters were found. 

 

2.1 Propeller Geometry 

Once the camber of the propeller at multiple spanwise locations was found, the 

geometric angle of attack and the zero lift angle of attack were identified.  
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In order to find the camber of the propeller at different spanwise locations, both 

the top and the bottom surfaces of the propeller were measured. An apparatus was created 

to measure the top and bottom surface of the propeller at different spanwise locations. 

The apparatus included an arm that was able to swing around the propeller hub and a 

caliper that was used to measure the height of  the propeller. See Figure 4 for a picture of 

the measuring apparatus.  

The propeller surface was measured at five different spanwise locations. At each 

spanwise location, the surface of the propeller blade was measured twenty times from the 

leading edge to the trailing edge on both the top and the bottom of the propeller. An 

illustration of where the propeller was measured is shown in Figure 5. In between the 

letters A and B, C and D, E and F, G and H, I and J, the propeller was measured twenty 

times each.  

The data obtained from the measurements at the five spanwise locations were then 

used to find the geometric angle of attack, the chord length, and the normalized camber 

curve. Using linear regression, a polynomial fit was created to find the functional fit of 

the camber curve. In order for the functional fit of the camber to be more accurate, the 

camber was broken up into two sections. The first section of the camber was near the 

leading edge and then the second section of the camber  was near the trailing edge. 

The chord length was found by finding the distance between the leading edge and 

the trailing edge. The geometric angle of attack was found by calculating the angle of the 

line between the leading edge and the trailing edge and the plane in which the propeller 

rotates. Figure 6 shows the results of one of the normalized spanwise airfoils. It also 

includes the camber of that airfoil. The angle of attack and the chord length for this cross 
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section were: 0.2133 radians, and the chord is 0.0829 meters. These data were calculated 

for each of the five different spanwise locations.  

 

2.2 Lifting Line Code Development 

By using the functional fit of the camber, the zero lift angle of attack was found 

using Equation 8 and 9 (Johnson, 1994). The 
  

  
  in Equation 8 was found by 

differentiating the polynomial fit of the camber curve. The x axis is the horizontal axis 

from Figure 6, and the z axis is the vertical axis.  

      
 

  
 ∫

  

  
 (      )  

  

 
   (8)  

  (
 

 
)  (      )    (9)  

The zero lift angle of attack (    ) was found for all five spanwise locations. 

When the geometric and zero lift angle of attack are known, then the only variable 

still unknown in Equation 7 (found in this chapter heading)  is the function  (  ). 

Solving for the  (  ) function was not a trivial task. The way to solve for the  (  ) is to 

first to assume a form for this function. One viable form for  (  ) is a series of sines and 

cosines. This is an assumption that is made by Anderson (2007). This is an accurate 

assumption because a Fourier Series can closely approximate any function over a 

bounded interval, and as the number of terms in the Fourier Series increases, the closer it 

approximates the actual function. Anderson also transformed the y in Equation 7 to a     

The transformation that he used was y=-b/2*cos( ). This changed the limits of 

integration in Equation 7 from 0 for the lower limit and pi for the upper limit. As will be 

shown in Equation 16 (with the new limits), the integral has a closed-form solution. 
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Another vital piece of information needed to solve for the circulation was that the 

circulation along the propeller was symmetric across the hub.  

One additional piece of information needed in solving Equation 7 was the 

boundary conditions. The boundary conditions for the propeller are that circulation goes 

to zero at the tips and at the hub. From Equation 10, it can be seen that the circulation 

will go to zero under two conditions. The first condition is if the velocity is zero, and the 

second condition is if the velocity of the air going over the top and bottom of an object is 

the same. In the case of the propeller, the velocity going around either side of the hub was 

always  the same, and therefore, the circulation will go to zero at that point. The reason 

the circulation went to zero at the tips is because, “there is a pressure equalization from 

the bottom to the top of the wing… and hence no lift is created at these points” 

(Anderson, 2007, p. 403).  

   ∮         (10) 

 A functional form of  (  ) is shown in Equation 11. This form was chosen so 

that the integral could be solved with a closed-form solution. Only sines were used in this 

form in order to make sure that on either ends of the propeller, the circulation went to 

zero. Shown below is the generic function of  ( ).  

 ( )      ∑       (   )
 
                    (11) 

The derivative of the circulation needed to be identified  in order to be put into 

Equation 7  
  

  
  is shown below. 
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     ∑         (   )

 
    

  

  
   (13) 
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Putting Equation 9 and 11 into Equation 7 gives: 

 (  )  
    ∑       (   )

 
   

     (  )  (  )
     (  )  

 

  (  )
 ∫

∑   
 
       (   )

   ( )     (  )

  

 
         (14) 

The integral in this Equation has a closed-form solution. This integral was derived 

in Appendix E of reference 11.  

∫
   (   )   

   ( )     (  )
 

  

 

       (    )

    (  )
    (15) 

Using the result of Equation 13, Equation 12 was reduced to: 

 (  )  
   

     (  )  (  )
 ∑       (    )

 
        (  )  

 

  (  )
 ∑      

 
   

   (    )

   (  )
 (16) 

Equation 14 was evaluated at a given spanwise location; hence, the subscript on 

(  ) was specified.  

One additional parameter, the rotational speed, needed to be known in order so 

solve for the     . The rotational speed of the propeller shaft was identified in order to 

calculate the approaching velocity at each spanwise location   . With the    known from 

the rotational speed of the propeller the only unkowns were the    ’s. Using these results, 

the circulation distribution along the propeller, was calculated. Using Equation 15 and 16, 

the lift per span and the total lift was calculated, where   was the density of the air 

(Anderson, 2007, p. 409). The total lift for the propeller is also the thrust of the propeller 

(Anderson, 2007, p. 409).  

             (  )   (  )    (17) 

       ∫         ( )    
   

    
   (18) 
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Using the above procedure, Figure 3 was generated. This figure shows a 

circulation distribution along the propeller for a given rotational speed.  

It is important to note that the highest location of circulation is a little inboard of 

the tips, the circulation went to zero at the hub and tips, and the circulation was a smooth 

curve without any discontinuities or sharp slope changes. One of the correction factors 

that was made using the  Blade Element Theory was the lift near the tips was corrected so 

that they went to zero. The Blade Element Theory  automatically assumes this correction 

because of the boundary conditions used when it was solved. The lift near the hub, using 

the lifting line theory, was also different from that estimated by Blade Element Theory. 

Both theories estimate a zero lift at the hub, but the slope of the lift at the hub is different. 

The lift calculated using Prandtl’s lifting line theory predicted a smooth transition of lift 

from one location to another and at the hub, the slope is zero. For the Blade Element 

Theory, the slope of the lift near the hub is a nonzero value. The value of highest 

circulation was a function of geometry. A different propeller would have  similar 

circulation as the one shown in Figure 7, but the different geometry would make the 

location of the maximum circulation different.  

The thrust analysis for this propeller can be performed for any rotational speed. 

The rotational speeds were chosen to match up with the speeds from the tests that were 

run.  
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Figure 4: The apparatus used to find the propeller geometry 
 

 

 

 

Figure 5: Measurement of five spanwise locations 
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Figure 6: Normalized airfoil at one spanwise location of the propeller. 

 

 

 

 

Figure 7: The lift per unit span of a propeller. 



 

 

 

 
 

 

 

CHAPTER 4 
 

 

 EXPERIMENTAL SETUP AND PROCEDURE 
 

 

In order to measure the thrust of the propeller at different speeds, a testing rig and 

a data acquisition system were designed and built. Figure 8 shows the test rig set up right 

before some of the tests. 

The test rig consisted of: a frame that held the components  together, an engine, a 

drive shaft that had linkage between the engine and propeller shaft,  a speed and a thrust 

sensor.  Figure 9 is a sketch of how the different components were assembled and how 

they operated together. 

The frame had three wheels on it, two in the back and one on the front. The 

wheels were on slightly inclined ramps. The inclined ramps served two purposes. The 

first was to give the wheels a smooth surface on which to roll. When the thrust was 

produced by the propeller, the frame would move forward a few inches, so the ramps 

needed to allow forward movement. The second purpose of the inclined ramps was to 

compensate for a slanted driveway (where the tests were performed) to make sure the test 

rig did not roll backwards. The added forward force from the inclined ramp was 

accounted for when the thrust from the propeller was calculated. 

One side of the thrust sensor was connected by a rope to the test rig. The other 

side was anchored to the ground. The thrust from the propeller was directed through the 

frame through the rope and through the thrust sensor. This is very important because the 
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thrust produced by the propeller was directed through the thrust sensor. There was a 

small amount of friction from the wheels that countered the thrust of the propeller that 

produced an inaccuracy in the thrust measurement. 

Behind the propeller was approximately 100 feet of unobstructed space. This 

orientation was chosen because an obstruction close to the propeller could affect the 

airflow and hence the performance of the propeller.  

 

3.1 Speed Sensor 

The speed sensor on the test fixture was made by connecting a disk to the 

propeller shaft. The disk had one hole in it. On one side of the disk was an Infrared LED, 

and on the other side was an Infrared Diode. When the propeller shaft would spin around 

there was only one position in the rotation where the phototransistor would ‘see’ the IR 

light; see Figure 10.  This was converted to an electrical signal. See Figure 11 for the 

electrical schematic of the speed sensor. 

To minimize the effects of noise, a Schmitt trigger was implemented on the output 

of the photo diode, and a box was put around the whole system to stop any rays from the 

environment. One pulse was equated to one time around. The output signal was fed into 

the Data Acquisition System (DAQ). The DAQ system measured the time it took 

between pulses. This is then easily converted to rotational speed. 

 

3.2 Thrust Sensor 

The thrust sensor consisted of four mechanical arms with a spring arranged in 

between the arms. When a load was applied on either end of the thrust sensor, the arms 

would move and make the spring deflect. The higher the load was, the more the 
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deflection was. At the same time, a potentiometer was connected to the arms so that the 

amount of load was related to the voltage on the potentiometer. Figure 12 shows a 

Computer Aided-Design model of the sensor. The potentiometer, which is part of the 

sensor, was connected to the DAQ system as shown in Figure 13. 

Both these sensors were calibrated. The way that the speed sensor was calibrated 

was by the following. First, a known frequency square wave signal was put on one of the 

digital input pins. The pulses were counted until another digital input pin read a high 

signal from the speed sensor, which would then write how many known frequency pulses 

were captured between the last pulse. This information was then read into a desktop 

computer to wait postprocessing.  

In order to calibrate the thrust sensor, a high-resolution scale was used. The scale 

had a resolution of 0.1 Newton’s. When the engine was off, a load was applied to the test 

fixture that was parallel to the line of action of the propeller thrust. At different applied 

forces, both the force and the voltage from the potentiometer were recorded. 39 forces 

were applied between 0 to 100 Newton’s (the thrust from the propeller never exceed 100 

Newton’s); see Figure 14. This information was used in the postprocessing. The raw 

value from the potentiometer was read into the Arduino and then into a desktop, and 

during the postprocessing stage, the calibration data were used. A least square model was 

used for the calibration data. The R squared value was .9955.  

 

3.3 Running the Test and Data Analysis 

Components were set up as described in Figure 10 and tests were performed. A 

laptop was connected to the DAQ system and it recorded the results from the tests.  The 

process that was followed when a test was performed was the engine was started and the 
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throttle was adjusted to make the propeller rotate at a certain speeds. Once a certain speed 

was attained, that speed was maintained for approximately 5 to 10 seconds, then the 

throttle was adjusted for a different speed. After this, the test was stopped and the data 

was recorded. This process was followed multiple times and at different speeds. After all 

the data were collected, postprocessing was performed to find the thrust at different 

speeds. In the data analysis, the calibration factors were used to change the raw data into 

either speed with units of rotations per second, or for the thrust sensor units of Newton’s.  
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Figure 8: Test fixture 
 

 

 

 

Figure 9: Sketch of the components on the test fixture. 
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Figure 10: Speed sensor 
 

 

 

 

Figure 11: Electrical schematic for the speed sensor 

Radial and 

Thrust Bearing 
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Figure 12: Model of thrust sensor in the retract and extend position. 
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Figure 13: Electrical schematic for the thrust sensor. 

 

 

 

 

Figure 14: Calibration curve for the thrust sensor 

 



 

 

 

 

 

 

 

CHAPTER 5 

 

 

RESULTS AND DISCUSSION 

 

 

The thrust of the propeller was a function of the rotational speed. The 

experimental and theoretical results are shown in Figure 15. The theoretical result 

predicted by Prandtl’s lifting line theory and that obtained by Blade Element Theory are 

shown. Momentum theory was not used in this analysis because the induced velocity is 

unknown, which is a required parameter in order to use momentum theory. An obvious 

conclusion that can be made from this plot is that there is an error between the theory and 

the experimental results. The actual error for each rotational speed is tabulated in Table 1. 

 

4.1  Uncertainties and Error Analysis 

In the measurements performed in the tests described, there are some 

measurement errors that create a certain amount of uncertainty in the results obtained. 

This section descibes the errors associated with the different measurements. The three 

main measurements were: the measurement of thrust from the thrust sensor, the 

measurement of speed from the speed sensor, and the angle of attack of the propeller 

geometry. 
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4.1.1 Thrust Sensor Uncertainty 

There are a few major sources of errors in the thrust measurements. The thrust 

sensor was calibrated against a scale that had a resolution of 0.1 Newton’s, and because 

of electronic noise, the voltage reading from the data oscillates about 2 bits or 

approximately 0.03 Newton’s. In addition, because of how the thrust sensor was situated 

in the test setup, there will be a small amount of frictional force from the wheels that the 

thrust sensor will not see. This frictional force, though unknown exactly, will be 

dependent on the rolling coefficient. The coefficient for a bicycle tire is around .0055. 

This value times the normal force gives the frictional force of 3.5 Newton’s, which is 

another factor in the uncertainty of the thrust measurements. There are a few other minor 

sources of error that are negligible compared to these other errors. When all these are 

combined, the error in the thrust measurement could be as high as 3.7 Newton’s. 

 

4.1.2  Speed Sensor Uncertainty 

 The speed sensor counts the pulses between every rotation. These pulses are 

integer numbers so associated with them are round off errors. For example, if on average 

there are 24.5 pulses every revolution, then the sensor will read 24 pulses for the first 

revolution and 25 for the next. By just looking at the pulses for one rotation, the 

rotational speed could have a lot of error, but if multiple rotations are averaged, then the 

rotational speed is very accurate. The postprocessing code used an average rotational 

speed to minimize the error. 
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4.1.3 Angle of Attack Uncertainty 

 

 When the geometry of the propeller was measured, there was associated error. To 

measure the angle of attack, the top and bottom surfaces were measured with a tape 

measure (for the x direction) and a digital caliper (for the z direction), and then the angle 

of attack was found from these data. The error with a tape measure is about 60 thousands 

of an inch, and with a caliper, 1 thousands of an inch. By doing the calculations for the 

propeller tip, this correlates to an angle of attack error of .25 degrees. At other spanwise 

locations the angle of attack error will be less.  

 

4.2 Discussion  

One source of error was an assumption made in the theoretical calculation. In the 

calculation, the velocity vector of the incoming air was assumed to only be in the same 

plane as the rotation of the propeller blade. In reality, there was a small component of the 

incoming velocity vector that was perpendicular to the plane of rotation. I will call this 

velocity component the perpendicular velocity. The effect of the perpendicular velocity 

vector caused the effective angle of attack to be smaller. This was described in terms of 

the induced velocity in the literature review, but the same principles apply if the 

perpendicular components of the velocity are induced or come from the freestream 

velocity vector. Because there was a perpendicular velocity component all along the 

propeller, the effective angle of attack along the blade was decreased. The amount of 

thrust produced by a section of the wing was proportional to velocity of the incoming air 

and the effective angle of attack. This resulted in each section of the propeller not having 

as much lift because the effective angle of attack was decreased. Each section had less 
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lift, so the integral over the whole propeller had less total thrust. This made the calculated 

thrust closer to the thrust that was measured. 

During the test, the perpendicular velocity was not measured, but from the 

momentum theory in the literature review, it can be calculated. When this velocity 

component is calculated, there are errors associated with it that come from the 

assumptions used to develop the momentum theory. To use the momentum theory, the far 

upstream velocity (V) was set to 0. The thrust calculated from the code was also put into 

Equation 1, which then calculated the perpendicular velocity. The perpendicular velocity 

was then put back into the code, which calculated a new thrust. This then became an 

iterative process of solving the thrust and perpendicular velocity until the solution 

converged. When a rotational speed of 27 rot/sec (170 rad/sec) was used in the code, the 

theoretical thrust went from 61.0 Newton’s for no perpendicular velocity used to 31.2 

Newton’s with the perpendicular velocity predicted by momentum theory. This would 

explain part of the error from Figure 15.  

Another explanation why the theoretical and experimental did not match up is 

from the measurement errors associated with the thrust sensor. From section 4.2.1, there 

is a possible 3.7 Newton’s of constant error between the two. By looking at the error in 

the angle, the deviation in the thrust can be calculated. For the same rotational of 27 

rot/sec with a .25 degree lower angle of attack, the thrust was lowered to 60.9 Newton’s, 

only a .2 Newton difference, which is negligible compared to the other errors. Even if the 

propeller was vibrating so that the Angle of attack was changed one degree, the 

difference would only be .8 Newton’s. 
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Prandtl’s lifting line assumed a smooth incoming flow. As the air traveled around 

the blade, trailing edge vortices and wing tip vortices were created. These vortices were 

present when the following propeller blade approached. The air was not smooth anymore 

because of the vortices created by the previous blade. The vortices were carried 

downstream but still impacted  the initial conditions of the incoming blade. These 

vortices took energy from the system and decreased the efficiency of the propeller. The 

decrease in efficiency was shown by the lower thrust produced for a given rotational 

speed. If these disturbances to the incoming flow were accounted for in the calculations, 

then the thrust predicted would be closer to the thrust measured in the experiment. 

The last three errors just discussed explain the initial offset in the theoretical vs. 

experimental plot. But these errors did not explain why there is a dip in the lift at higher 

speeds. In order to understand this phenomena, the assumptions in the theory need to 

inspected. 

An assumption that was made in developing the equations for the thrust of the 

propeller was that the flow is a inviscid flow. In reality, when the Reynolds number 

became too high, the flow went turbulent. The effect caused a decrease in lift, as was 

shown in Figure 15. However, by using the equations developed, the flow was assumed 

to never go turbulent, and hence, no decrease in lift was predicted at higher rotational 

speeds. This explained why the theoretical plot always had a positive slope. On the other 

hand, the experimental plot had a dip in it. Where the plot started to dip, there was flow 

separation. Flow separation can happen at high speeds, or higher angles of attack, and 

sometimes in both instances. The effect of flow separation was that the thrust from the 

propeller decreased. This is known as stall. 
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Other assumptions were made in developing the equations. First, there was no 

friction from the viscosity of the fluid. Secondly, there was an incompressible flow. The 

first assumption is accurate because at the higher speeds, and the low viscosity, most of 

the forces will came from the pressure distribution on the propeller blade. A small drag 

force was developed from skin friction; however, this value was small in comparison to 

the forces from the pressure distribution on the airfoil. This can be quantified by looking 

at the Reynolds number, which is a ratio of the momentum forces divided by the viscous 

forces. Another way to look at this ratio is the ratio of the forces contributed by the 

pressure distribution over the propeller divided by the forces from the viscosity of the 

fluid. The average Reynolds number is the incoming velocity times the chord length 

times the density all divided by the dynamic viscosity of the fluid. This is shown in 

Equation 19:  

    
      

 
     (19) 

For the propeller at the quickest speed during the test, the Reynolds number was 

9.04e5. When the Reynolds number is approximately 5000, the momentum starts to 

dominate, and the Reynolds number calculated is 180 times above this value.  

The assumption that the flow is incompressible is valid and will only deviate by a 

few percent if the fastest velocity of the propeller is less than 300 mi/hr. (134 m/s) 

(Anderson, 2007). Just before stall, the tip velocity was 120 m/s. At the higher speeds, the 

compressibility effects started to be manifested. This accounts for some of the errors at 

the high speeds. 

The overall effectiveness of Prandtl’s lifting line theory in predicting the actual 

thrust was dependent on the rotational speed. When the speed was close to the stall point 
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of the propeller, but not over it, the error was the least with only a 36% error. The percent 

error was greater at lower and faster speeds. The errors in the plot for the lower speed 

were probably due to the errors in the measurements, the decreased effective angle of 

attack of the propeller, and the disturbances in the incoming flow. At higher speeds, not 

only did these previous reasons contribute to the error, but also flow separation and 

compressible flow made more errors in the results. 

It was found that by using a Fourier Series to approximate the circulation along 

the propeller, under certain conditions, the solution became unstable. These instabilities 

were caused when a lot of spanwise locations were used in the lifting line code. The 

instabilities were obvious when they happened because the circulation distribution 

became very erratic. The instability was probably because when there were a lot of 

spanwise locations to solve for, the frequencies that were used in the Fourier Series 

became high. To ensure that the solution was stable, the number of spanwise locations 

had to be limited. When only five spanwise locations were used, the solution showed no 

signs of instability. To verify this, the code was run when one of the spanwise locations 

was omitted. The lift that was calculated was within 1% of what the lift was when all the 

spanwise locations were included.  However, for this test, the Fourier Series were 

sufficient to provide an accurate and stable result; a limitation will occur when a lot of 

spanwise locations are used.  
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Figure 15: A graph relating the thrust vs. the speed. 
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Table 1: The percent error between the experimental and theoretical thrust 

predicted by Prandlt’s lifting line theory. 
 

Speed 

(rot/sec) 

      

 
   (                             )

            
 

13 84% 

15 94% 

20 89% 

23 53% 

25 53% 

27 36% 

35 93% 

37 199% 

40 192% 

43 195% 

 

 



 

 

 

 

 

 

 

CHAPTER 6 
 

 

CONCLUSION 

 

 

An experiment was carried out to find the thrust of a propeller at different 

rotational speeds. By using a modified version of Prandtl’s classical lifting line theory, 

the thrust of a propeller was calculated at these same speeds. By comparing the results, it 

was found that the theory over predicted the experimental thrust. When the rotational 

speed did not cause the propeller to stall, the error was between 84% at low speeds to 

36% close to the stalling point of the propeller. At speeds above the stall point, the error 

increased tremendously up to 195% and from the data trend, it looked like it would 

continue to increase at even higher speeds.  

These errors are likely associated with a few factors. For all speeds, there are 

three big factors. They are the measurement errors from the thrust sensor, neglecting the 

velocity component perpendicular to the plane in which the propeller rotates, and the 

non-uniform flow in which the propeller blade constantly moves. For medium speeds, the 

error is due to flow separation, which is manifested by a rapid decrease in lift. The theory 

never took this into account. For high speeds only, another error shows up. This 

additional error is due to compressible flow, which again the theory did not take into 

account. 
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Prandtl’s lifting line theory applied to propellers gives a reasonably result as long 

as the propeller does not stall. The reasonable result still has error associated with it that 

comes from the assumptions made when the theory was developed.



 

 

 

 

 

 

 

CHAPTER 7 

 

 

 FUTURE WORK 

 

 

The measured  value was always lower than the calculated value. This means that 

there are some turbulent and viscous effects that negatively affect the thrust of the 

propeller. By using a correcting factor, a closer result can be found for the thrust. Some 

parts of the geometry that should be considered in the correcting factor are the thickness 

of the airfoils and the ‘roundness’ of the tips of the airfoil. Another correction factor can 

be used for high speeds. The lifting line theory assumes incompressible effects, but at 

high speeds, the tips of the propeller are the first place that compressibility needs to be 

considered. 

A limitation was found in using the Fourier Series. The solution showed signs of 

instability when a lot of spanwise locations were used. These instabilities might be 

alleviated if the spanwise locations were chosen in such a way that the different 

frequencies used in the Fourier Series would not cause the solution to become unstable. 

This might mean choosing the spanwise locations at certain distances from the hub 

depending on the number of terms used. Another approach is to use a different type of 

function besides trig functions to describe the circulation along the propeller blade.  
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