
Performance of
Arc Consistency Algorithm s

on the C R A Y 1

A s h o k S a m a l a n d T o m H e n d e r s o n

U U C S -8 7 -0 1 7

Department of Computer Science
University of Utah

Salt Lake City, UT 84112 USA

July 23, 1987

A b s t r a c t

The consistent labeling problem arises in high level computer vision when assigning
semantic meaning to the regions of an image. One of the drawbacks of this method is that
it is rather slow. By using the consistency tests, node, arc and path consistency [9], the
search space is drastically reduced. However, for large problems it takes a fair amount of
time.

To use these algorithms more efficiently, one can take two approaches. First, is to
design special purpose hardware to specifically run these algorithms. Second is to use
faster computers. Here again, one can either take advantage of the multiprocessors, which
are becoming very widely available, or use supercomputers like the CRAY, CDC, etc. Here,
we present results of the performance of these algorithms in the CR AY supercomputer.

JThis work was supported in part by NSF Grant DMC 85

C o n t e n t s

1 Introduction 1

2 C onsistent Labeling P roblem 1

2.1 Solutions to C L P .. 2

3 T h e C R A Y Supercom puter , 3

3.1 Programming E nvironm ent.. 4

4 A rc C on sisten cy A lgorith m s 5

4.1 REVISE Procedure.. 5

4.2 A C -1 ... 6

4.3 A C -2 ... 7

4.4 A C -3 ... 8

4.5 A C -4 ... 8

4.6 Boolean Formulation.. 10

5 Im p lem en tation 11

5.1 Test Problems... 12

6 R esults 13

7 C onclusion and Future R esearch 26

i

1 I n t r o d u c t i o n

The consistent labeling problem arises in high level computer vision when assigning se­
mantic meaning to the regions of an image [6]. One of the drawbacks of this method is
that it is rather slow. In fact, this problem has been proved to be NP-complete [8]. Mack-
worth [9] took a different approach to the problem. Instead of finding a solution which is
consistent, he devised a set of algorithms which remove the inconsistencies in the network.
These algorithms, node consistency, arc consistency and path consistency algorithms, axe
polynomial time algorithms, but they don’t find the solutions. One still has to go through
backtracking to find the solution(s), but by using these algorithms first, the search space
is drastically reduced, if the problem is well constrained. However, for large problems it
takes a fair amount of time. Mohr and Henderson [10] gave an optimal algorithm for arc
consistency and a better algorithm for path consistency.

Even the new algorithm is not fast enough. Since it is an optimal algorithm, there is
not much hope for drastic improvement. To use these algorithms more efficiently, one can
take two approaches. First, is to design special purpose hardware to specifically run these
algorithms. Second is to use faster computers. Here again, one can either take advantage
of multiprocessors, which are becoming very widely available, or use supercomputers like
the C R A Y, CDC, etc. Here, we present result of the performance of these algorithms in
the C R A Y supercomputer.

Although path consistency algorithms help in pruning the search space, it has been
our experience that they don’t help much after the arc consistency algorithms have been
applied first. Also, path consistency algorithms axe much more expensive. Due to these
two reasons they are not very widely used. We also restrict ourselves to the arc consistency
algorithms.

The rest of the report is organized as follows. In section 2 we briefly describe the
consistent labeling problem. Section 3 some of the features of the Cray supercomputer
and their effect on the performance of the algorithms are discussed. In section 4 the four
arc consistency algorithms are described. In section 5 some of the implementation issues
are considered and the test problems which are used for comparing the performance of
the algorithms are discussed. The results are presented and analyzed in section 6. A brief
summary and some directions for future research is given in section 7.

2 C o n s i s t e n t L a b e l i n g P r o b l e m

Although it has variously been called the satisfycing assignment problem [1], the constraint
satisfaction problem [9], and Waltz filtering [13], the consistent labeling problem can be
formulated as follows, given

1

• a set of items or units, U = { « j , u,2 , ■ • • > un}-

• that each unit «,• has a domain Di, which is the set of acceptable labels; often the
units all have the same domain, in which case Di = D? = . . . = D n — D , D =
{D i , D 2, . . . , D n).

• a labeling L = (L 1; L2, L^), where k < n, L, = (u,-, /,•), /,■ 6 Di\ L,s are called unit
labels.

If k < n the labeling is a partial labeling, and if k = n, it is a complete labeling. A unit
can have any label which is in its domain. However, there are restrictions on the labels
a set of units can have simultaneously in order to be consistent. These constraints are
expressed by a constraint relation R . Potentially R can be an n-ary relation.

A pair of unit labels L,- = (« ,, /,), Lj = (uj, lj) are consistent if and only if (u,, li, Uj, lj) €
R . A given labeling L = (L\, L 2 , . . . , Lk) is consistent if unit labels £ , and Lj are consistent
for all i,j < k.

The labeling problem is to find a complete consistent labeling, given a set of units U ,
the domains of these units D and the constraint relation R . Other formulations of the
problem ask for all solutions, or the largest (or best) partial labeling if a complete solution
can not be found. The nature of the problem still remains unchanged.

2 .1 S o l u t i o n s t o C L P

The consistent labeling problem can be solved in many ways. The simplest method is
the generate-and-test method. Here all the possible solutions are enumerated and the
consistent solutions are selected. Clearly this method is extremely slow and wasteful. In
many cases the labels assigned to the first few units make the whole labeling inconsistent,
and this can be detected early, during the configuration process. This observation saves a
lot of time and is incorporated in the standard backtracking method.

In standard backtracking a single unit is assigned a label from its domain to start with.
Then another unit is selected from the rest of the units, and a label is assigned to it in
such a way that the partial labeling derived so far still remains consistent. Thus, attempt
is made to incrementally get a labeling which is consistent. If at some point such a label
can’t be found, this process is backed up to the last unit which was assigned a label and
the next possible label which keeps the labeling consistent is tried. Normally this process
goes back and forth until a consistent labeling is found. If we run out of labels, there is no
solution that is complete and consistent.

Clearly this is much more efficient than the generate-and-test method. However, it
is not good enough for large practical applications. There have been several approaches
to overcome this shortcoming. Gaschnig [l] attempted to solve it within the framework

2

of backtracking. He gave two new backtrack-type algorithms: Backmark, where all the
redundant pair-tests are eliminated, and Backjump, where it is possible to backtrack across
multiple levels, instead of just one level as in standard backtracking. These algorithms
indeed perform better. Haralick and Elliot [3] gave another algorithm: forward checking
to improve backtracking and it performs better under certain circumstances. Haralick et
al [2,4,5] have described two ‘ look-ahead’ operators, $ and to reduce the computation
during backtracking.

Waltz [13] took another approach to solve this problem. The basic idea is to assign all
possible labels to all the units, and then remove a label from a unit, if it is not compatible
with the labels of the other units. This in turn would make some labels of some units
inconsistent. This process continues until no label can be removed from any of the nodes
or all the labels from all the nodes. In the former case it is still necessary to search for a
solution, while in the later case there is no solution.

Mackworth [9] and others use yet another approach to reduce computation time during
the backtracking process. For binary constraints the problem can be formulated in terms of
graphs, where nodes correspond to the units, and the arcs represent the constraints between
them. Each node has an associated label set, which is the set of possible labels for the
unit. The fundamental properties of such networks are studied in [11]. Three consistency
tests are given in [9] to prevent the ‘ thrashing behavior’ of the backtracking algorithms:
node consistency, arc consistency, and path consistency tests. Several algorithms are also
described to achieve these three consistencies in the network. These consistency tests are
applied first to remove inconsistent labels and then the backtracking process is applied
to obtain a solution. Mohr and Henderson [10] have given an optimal algorithm for arc
consistency and an improved algorithm for path consistency. In [7] Henderson gave a
unified view of relaxation, both as a numerical and as a symbolic technique. The solution
to the later case is formulated as an iterative procedure of boolean operations.

3 T h e C R A Y S u p e r c o m p u t e r

The C R A Y series of computers: CRAY-1, CRAY X-M P, CRAY-2 are designed primarily
for large scale scientific applications. The core of these systems is a high speed vector unit,
which can be very effectively used in large scientific applications. Since, the system used
for our implementation is a CRAY X -M P /48 , we will describe its architecture in detail.

The C R A Y X -M P series of computers combine high-speed scalar and vector process­
ing with multiple processors, large and fast memories and high performance I /O . The
scalar performance of each processor is attributable to its fast clock cycle (9.5 nsec), short
memory access times and large instruction buffers. The C R AY X -M P /48 has four pro­
cessors and has a maximum combined potential speed of the system of 750Mflops. The
vector performance is supported by the fast clock, parallel memory ports, and flexible

3

hardware chaining. These features allow simultaneous execution of memory fetches, arith­
metic operations and memory stores in a series of linked vector operations. This results in
high-speed vector processing capabilities for both short and long vectors, characterized by
heavy register-to-register or heavy memory-to-memory vector operations.

The C R AY X -M P /48 computer has 8 million words of directly accessible memory and
each word is 64 bits long. The four processors share the central memory organized in
interleaved memory banks that can be accessed independently and in parallel during each
machine clock period. Each processor has four parallel memory ports connected to central
memory; two for vector fetches, one for store and one for independent I /O operations.
This coupled with the short memory access time provides a high-performance memory
system with a high bandwidth to support high-speed CPU and I /O operations in parallel.
The memory access time is 14 clock periods for a scalar and 17 clock periods for a vector
quantity.

3 .1 P r o g r a m m i n g E n v i r o n m e n t

CR A Y X-M P can run under two operating systems: COS, a batch oriented system, and
CTSS, a time shared system. Although several languages are available on the X-M Ps,
(e.g., Pascal, PSL, etc.) Fortran (called CFT) remains the most widely used. Our imple­
mentation used the CFT and hence we describe the features of the CFT compiler in some
detail below.

CFT complier translates the Fortran code into CAL (Cray Assembly Language) that
make effective use of the machine architecture. CFT itself is an extended version of the
ANSI Fortran 77. The most important aspect of the compiler is its ability to auto-vectorize
the CFT code. Thus the programmer does not have to modify the code to run on the
CRAY. However, to take real advantage of the architecture one must know how the com­
piler vectorizes. When the code is properly structured, it may reduce the computation
time dramatically.

CFT analyzes the inner most DO loops of the Fortran program to determine if the
vector processing methods can be applied to improve the program efficiency. If it leads
to improvements in the performance, the compiler produces vector instructions to drive
the high-speed vector and floating-point functional units and the vector registers (eight).
Clearly, it is not possible to vectorize all DO loops and whether a DO loop is vectorizable
depends on the statements in the loop and their relationships.

A DO loop must manipulate on the contents of at least one array in order to be
vectorized. Also, only the innermost DO loop can be vectorized. Further several conditions
inhibit the vectorization. Some of them are:

• CALL, ELSEIF, RETURN, STOP, PAUSE, or I /O statements inside the loop.

• Backward branches in the loop.

• Statem ent numbers with reference from outside the loop.

• IF statements which may not execute due to the effects of previous IF statements.

• References to character variables, arrays, or functions.

The compiler also inhibits vectorizations of D O loops with dependencies. A dependency
exists of the following conditions are met.

• An array is referenced and defined in the D O loop.

• An array element defined in a previous pass of the DO loop is referenced.

The implications of these will be discussed in the next section and while discussing the
implementation details in section 5.

4 A r c C o n s i s t e n c y A l g o r i t h m s

In this section the four arc consistency algorithms, usually referred to as AC-1, AC-2, A C -
3, and AC -4 are briefly described. The method given in [7] will also be described. We will
refer to it as DR. They are also analyzed for their suitability for vectorizing on the CRAY
supercomputer. The algorithms are described in detail in [9] and [10]. It is assumed that
node consistency is already achieved.

Before the algorithms are described, the R E V IS E procedure which is vised by AC-1,
AC -2, and AC-3 is discussed. Although the algorithms are given in the above references,
we include them here for two reasons. First, the control structures in Fortran are different
and the algorithms have to be slightly modified to portray the computation flow more
accurately. They are also included for the sake of completeness.

4 .1 R E V I S E P r o c e d u r e

This procedure is used by AC-1, AC-2, and AC-3, to enforce consistency along a single
arc, say (i,j). It removes all the labels at node i, which doesn’t have any support from
labels at node j. It also returns true if one or more labels are deleted, and returns false
otherwise. It is sketched in Figure 1.

There is a major implementational issue here, as far the CRAY is concerned. Clearly
REVISE is the innermost subroutine and only its code can be vectorized. Also, the in­
nermost loop in the procedure can’t be vectorized as it is, since, it doesn’t manipulate an
array. It just looks to see if there is any support for a label. So, the code has to be slightly
modified to take advantage of vector processing.

DELETE := false;
for each x £ -D, do
begin

support = false ;
for each y G D j do
begin

if (support) then continue;
i f (P,j(x,y)) then support := true ;

end
if ~ support then
begin

delete x from D, ;
DELETE := true ;

end
end
return DELETE ;

procedure REVISE(i,j)

begin

end

Figure 1 : REVISE Procedure

4 .2 A C - 1

AC-1 is essentially a brute force algorithm. During each iteration arc consistency is en­
forced for every axe in some order. If there is any change in the label sets of any one of
the nodes this process is repeated. The algorithm terminates when there is no change in
the label sets of any of the nodes. AC-1 is given in Figure 2.

procedure AC-1()
begin '

repeat
CHANGE := false ;
for each (i,j)€ ARCS do

CHANGE := CHANGE V R EVISE(ij) ;
until ~ CHANGE ;

end

Figure 2: Structure of AC-1

From the implementation standpoint it is the easiest. It also is the most inefficient of
the four AC algorithms. Its time complexity is o (ea3n).

4 . 3 A C - 2

AC -2 is similar to Waltz filtering in spirit. It makes the network consistent in a single
pass through the nodes. Although its structure is more complex than AC-3 it is actually
a special case of the later. Q and Q ’ are two Boolean arrays used to maintain the two
queues. ,

procedure AC-2()
begin

for i := 1 to n do
begin

Q := {(iJ) I (iJ) £ ARCS, j < i}
Q ’ := {(j,i) | (j,i) € ARCS, j < i}
while ~ Qempty do
begin

while ~ Qempty do
begin

pop (k,m) from Q ;
if REVISE(k,m) then

Q ’ = Q U {(p,k) | (p,k) 6 ARCS, p < i, p ^ m}
end
Q := Q ’ ;
Q := nil ;

end
end

end

Figure 3 : Structure of AC-2

One of the problems of implementing this in Fortran 77 is the lack of dynamic data
structures. So, the queues Q and Q ’ have to be simulated using arrays. This leads to some
amount of inefficiency. The time complexity of AC-2 is 0 (e a 3).

7

The structure of AC-3 is similar to AC-1. However, in AC-3 only the arcs associated with
the nodes whose label sets have changed during the previous iteration are added to the
pool of arcs to be checked for consistency. Thus, in general, it does less computation than
the AC-1.

procedure AC-3() .
begin

Qempty := true ;
Q := All the Arcs in the graph;
repeat

for each (k,m) 6 ARCS do
begin

if (i>j) £ Q then continue ;
Remove (k,m) from Q ;
Qempty := false ;
if REVISE(k,m) then

Q := Q U {(i,k) | (i,k) € ARCS, i / k, i / m }
end

until Qempty ;
end

Figure 4 : Structure of AC-3

Again, the lack of dynamic data structures make a Fortran implementation somewhat
less efficient. The time complexity of AC-3 is 0 (e a 3).

4 . 5 A C - 4

In A C -4 several data structures are used to reduce the time complexity. The algorithm
consists of three parts: building the appropriate data structures: M , 5, and Counter,
initialization of List, and pruning the inconsistent labels. We sketch each of the stages
separately for ease of understanding.

In the first stage, very detailed information about which label supports which other
labels at other nodes, how many supports each label at each node has, etc., are computed
and stored in the several data structures. The storing of this information explicitly, helps
the later phase where the labels without support are deleted.

for each (i,j) 6 ARCS do
for each b € -D, do
begin

total := 0 ;
for each c € D j do

if R(i,b,j,c) then
begin

total := total + 1 ;
Append(5jc,(i,b)) ;

end
if(total = 0) then

M[i,b] = 1;
Delete b from D t ;

else
. Counter[(i,j),b] := total ;

en dif
end

end
Figure 5: Building Data Structures for AC-4

In the next stage, which actually can be part of the first one, the List is initialized to
all the node-label pair which do not have any support and can be deleted. The pruning
process starts off with these pairs to prune other labels if possible.

procedure InitList()
begin

for i := 1 to n do
for b := 1 to a do

if (M[i,b] = 1) then Append(List,(i,b)) ;
end

Figure 6 : Initialization of List in AC-4

procedure BuildDataStmctures()

begin

In the last stage, the labels which don’t have any remaining support are deleted. We
start with the labels which have no support and hence are stored in List. These are deleted
and the support-count for the labels which are supported by these labels are decremented.
If during this process a support-count of a label goes to zero, then it is deleted and is
added to the List. This continues until List is empty.

9

while List not empty do
begin

Pop (j,c) from List ;
for (i,b) € Sjc do
begin

Counter[(i,j),b] := Counter[(i,j),b] - 1 ;
if (Counter[(i,j),b] = 0) A (M[i,b] = 0) then
begin

Append(List,(i,b)) ;
M[i,b] := 1 ;
Delete b from D x ;

end
end

end
end

Figure 7 : Pruning in AC-4

The main problem with AC-4 is the space. Generally it takes up more space than the
other three algorithms, because it has to store lots of information explicitly. This of course
reduces the time complexity of the algorithm. It has been proved that AC-4 is optimal
and is 0 (e a 2).

The structure of both BuildDataStructrures and Prune procedures had to be changed
to make it vectorizable. IniiLisi is directly vectorizable without any modification.

4 . 6 B o o l e a n F o r m u l a t i o n

Here the approach given in [7] is briefly discussed and then a simple algorithm to realize
it is described.

Let A ij be the m by m compatibility matrix between units i and j. A ij(k ,p) is the
element in the k’th row and p’th column of A,j. L is a m by a labeling matrix, where L,^ =
1 means the k’th label of i’th unit is still a viable label. If it is 0, then the label is deleted.
The iterative solution can be written as:

n m

Lik < L ik * IJ J 2 (Ljp * A
j = i |_p = i .

procedure Prune()

begin

The above formula says how to update the label sets of the units iteratively. The

10

updating is done until no label is removed during one iteration. The algorithm is described
below. We refer to this algorithm as DR.

procedure DR()
begin

repeat
Change := false ; ‘
for i := 1 to n do

for k := 1 to a do
begin

tem p := C o m p u te !^
(* use the above formula *)

i f (temp ^ Lik) Change := true ;
end

until Change ;
end

Figure 8 : Algorithm for Using Boolean Formulation

5 I m p l e m e n t a t i o n

All the algorithms (A C -1, AC-2, AC-3, AC-4, and DR) are implemented on the CRAY
and the Vax (VAX-8600). On CRAY they are implemented in Fortran since it is the most
efficient language. To ensure fair comparison, the Vax implementations are also in Fortran
77.

On the CRAY, strong effort was made to vectorize the code where ever possible. This
meant that the structure of some algorithms had to be changed. However, the Vax version
didn’t include these changes. The idea was to compare the best implementation on the
CRAY with the best implementation on the Vax.

One of the problems we faced was scarcity of memory in the AC -4 and DR algorithms.
On CR AY a whole word (64bits) is used for storing a ‘LO G ICAL’ variable. On the Vax,
also, a whole word is allocated for a boolean variable, although one can reduce it to 2 bytes,
by setting some compiler flags. To make the implementations efficient, these two algorithms
need large boolean arrays and this wastage of space prevents very large problems being
solved. An alternative is to do your own memory management. However, this prevents
the vectorization on the CRAY, since we are not manipulating arrays any more.

A problem with the Vax implementation is the paging. The Vax has virtual memory
and hence one can do big problems. However, once the memory requirement is large, the
time taken to swap in and out is a major concern. Since, the pattern of access in these
problems is very unpredictable, the overhead is very high.

11

Lack of dynamic data structures in Fortran is a problem which has been somewhat
discussed. Clearly, in AC2, AC3, and AC4, the performance would improve with such
facilities in the implementation language.

5 .1 T e s t P r o b l e m s

We used three problems to test and compare the performance of the algorithms. They are
the cyclic graph problem, n-queens problem and the graph coloring problem.

The cyclic graph problem is described in [12]. The nodes of the graph are connected
to form a cycle, see Figure 9. The label set of node i is given by { x : jn + i, 1 < j < a
} , where there are a labels and n nodes. The constraint used in the greater-than relation.
In this problem, only one label is removed from the network in one iteration and hence it
takes na iterations to converge. There is no solution to this problem and hence, the label
sets all go to nil.

Figure 9: A Network O f Constraints

In the n-queens problem, we use the row placement strategy and place a queen on each
row. The possible labels for each queen are 1 , 2 , . . . , n. The consraint is that no two
queens should attack each other. If we don’t constraint the search space further, nothing
will happen since, for every position of queen t there is at least one position for queen j
which is compatible. We chose to fix the position of two queens (n’th and n -l ’st) such that
they conflict and hence there is no solution. This forces the label sets of all units to go to
nil.

The underlying graph in the n-queens problem is a complete graph; hence the number
of arcs is 0 (n 2). In the case of the cyclic graph the number of arcs is O (n). So, we decided
to generate some graphs where the number of axes is halfway between the above two. Two
nodes of a graph were connected (or left unconnected) depending on the outcome of a
random event (e.g., a uniform random number generator produces a number greater than
0.5). We also, added a K-clique to the graph. Overall number of arcs remained halfway
(approximately) between n and n2. We used the graph to color the nodes in such a way
that no two adjacent nodes have the same color. Number of colors allowed is K -l , so that
no coloring possible. So, in this case also the label sets of all the nodes go to nil.

All these problems were tried for several problem sizes (number of units). The results
only show for n = 10, 20, 30, 40 and 50. The number of labels in n-queens is automat­
ically fixed by n. In the cyclic graph problem we chose it to be the same as n. In the
graph coloring the number of colors is taken to be (n-h8)+2 to keep the number of colors
reasonable.

6 R e s u l t s

Figure 10 compares the performance of the five algorithms on the Cray for the Cyclic
Graph problem. Figure 11 shows the performance of the algorithms for the same problem,
but on the Vax. In Figure 12 the times taken by AC-1 on the two machines is plotted as a
function of the problem size. Figures 13 to 16 do the same for the other four algorithms:
AC -2, AC-3, AC-4, and DR. Similaxly, Figures 17 to 23 show the performance of the
algorithms for the N-Queens problem. Figures 24 to 30 display the same for the Graph
Coloring problem on the random graphs.

13

Figure 14 : E xecution T im es o f A C -3 for C yclic G raph

Y

Figure 15 : Execution T im es of A C - 4 for Cyclic G r a p h

Figure 16 : E xecution T im es o f D R for C yclic G raph

Figure 17 : E xecution T im es for N -Q u een s on C R A Y X - M P /4 8

Figure 18 : Execution T im es for N- Queens on V A X 8 6 0 0

18

Figure 19 : E xecution T im es o f A C -1 for N -Q u een s

Figure 20 : Execution T im es of A C - 2 for N- Queens

Y

Y

Figure 22 : Execution T im es of A C - 4 for N - Queens

20

Figure 24 : E xecu tion T im es for G raph C oloring on C R A Y X - M P /4 8

Figure 25 : Execution T im es for G r a p h Coloring on V A X 8 6 0 0

22

Y

Figure 28 : E xecution T im es o f A C -3 for G raph C oloring

Y

Figure 29 : Execution T im es of A C - 4 for G r a p h Coloring

24

Several observations should be made about the performance of these algorithms. As
expected, the performance of the algorithms on the Cray is much superior as compared
to the Vax. However, the extent of speedup is different for different algorithms. The
speedups obtained are in the range of 10 to 60. Clearly for the smaller problem sets,
maximum advantage of vector processing can’t be taken advantage of. So, the gain is not
very conspicuous in these cases.

Theoretically, A C -4 is the best algorithm and should take the least amount of time
after a certain point. In the Cray implementation it is fairly obvious. It can be seen
that as the problem size increases, the difference is even more pronounced. However, such
performance is not reflected in the Vax implementation. The reason is as follows. AC-4
needs very large amount of space to be most efficient. Since, VAX-8600 is a time sharing
system, there is a lot of thrashing. Also, as the problem size increases, it gets worse.

It should be emphasized here, that this doesn’t mean that AC-4 can’t run efficiently
on the Vax. As mentioned before, this rather large memory requirement is because the
Fortran compiler allocates 16 bits for a logical type variable. Clearly one bit would suffice,
and one can do that by managing the memory by oneself. The reasons for not doing this
was explained in section 5.

In general DR performs very poorly. In fact, it is one order of magnitude slower than
the others. However, for N-Queens it is competitive. It is because for N-Queens the graph
is complete and hence, DR does no work that would not be done in other algorithms.

Among AC -1, A C -2, and AC-3, AC-3 is generally the fastest, both on the Cray and on
the Vax. As pointed out before, AC-2 and AC-3 have the same time complexity and their
performances are comparable. AC-3 generally fairs much better than AC-1.

7 C o n c l u s i o n a n d F u t u r e R e s e a r c h

Several arc consistency algorithms are compared for their performance on Vax and Cray.
Three problems with different characteristics axe used to measure their efficiency. As
expected, the implementation On the Cray is generally much better. Although AC-4 is
the most efficient algorithm in theory, it was not reflected in the Vax implementation.
However, on the Cray it is clearly visible. DR is generally expensive and should be avoided
unless the graph is complete (or close to). Also, AC-3 is generally very competitive and
takes less amount of space as compared to AC-4.

In order to be fair to A C -4 algorithm, it should be implemented on the Vax more
efficiently as explained in section 6. Also, since multiprocessors are commercially available,
it would be interesting to test the performance of these algorithms on them. Some of our
current research is along these lines. We intend to implement these algorithms on the
Butterfly multiprocessor and study their performance.

2 6

[1] John Gashnig. Performance Measurements and Analysis o f Certain Search Algo­
rithms. PhD thesis, Camegie-Mellon University, Department of Computer Science,

[2] Robert M. Haralick, Larry S. Davis, Azriel Rosenfeld, and David Milgram. Reduction
operations for constraint satisfaction. Information Sciences, 14:199-219, 1978.

[3] Robert M. Haralick and Gordon Elliot. Increasing Tree Search Efficiency for Con­
straint Satisfaction Problems. Technical Report, Virginia Polytechnic Institute and

[4] Robert M. Haralick and Linda G. Shapiro. The consistent labelling problem: Part I.
IE E E Transactions On Pattern Analysis And Machine Intelligence, PAM I-1(2):173-

[5] Robert M. Haralick and Linda G. Shapiro. The consistent labelling problem: Part II.
IE E E Transactions On Pattern Analysis And Machine Intelligence, PAM I-2(3):193-

[6] T .C . Henderson and Ashok Samal. Multi-constraint shape analysis. Image and Vision

[7] Thomas C. Henderson. A note on discrete relaxation. Computer Vision, Graphics

[8] Donald E. Knuth. Estimating the efficiency of backtrack programs. Mathematics o f

[9] Alan K. Mackworth. Consistency in network of relations. Artificial Intelligence, 8 :99-

[10] Roger Mohr and Thomas C. Henderson. Arc and path consistency revisited. Artificial

[11] Ugo Montanari. Networks of constraints: fundamental properties and applications to

[12] Ashok Samal. Parallelism in node and arc consistency algorithms. 1986. Unpublished.

[13] David Waltz. Understanding Line Drawings o f Scenes with Shadows, chapter 2,

27

