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Abstract 

Estimating the location and distribution of current sources within the brain from 
electroencephalographic (EEG) recordings is an ill-posed inverse problem. The ill­
posedness of the problem is due to a lack of uniqueness in the solution; that is, 
different configurations of sources can generate identical external fields. Additionally, 
the existence of only a finite number of scalp measurements increases the under­
determined nature of this problem. Most source localization algorithms attempt to 
solve the inverse problem by fitting the potentials created on the scalp from multi­
ple dipoles to a single time step of EEG measurements. In this paper we consider a 
spatio-temporal model and exploit the assumption that the EEG signal is composed of 
contributions from statistically independent sources. Under this assumption, we can 
apply the recently derived blind source separation algorithm (BSS), also referred as 
to Independent Component Analysis (ICA). This algorithm separates multichannel 
EEG data into temporally independent activation maps due to stationary sources. 
For our study, we use a 64 channel EEG recording of a multi-focal epileptic event 
and a realistic geometric model of the cranial volume derived from MRI data. The 
original ICA algorithm required the number of sources to be equal to the number 
of recorded channels and becomes unstable otherwise. In this paper, we propose a 
novel approach for solving this problem through the reduction of the data subspace. 
Specifically, we discard eigenvectors with small eigenvalues from a PCA analysis of 
the data prior to ICA decomposition. Our results show that using these proposed 
subspace reduction methods, multi-focal epileptic data can be successfully decom­
posed into several independent activation maps. For each activation map we perform 
a separate source localization procedure, looking only for a single dipole using a mul­
tistart downhill simplex method. The localized sources are found to be located and 
oriented at physiologically appropriate positions within the brain 
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Introd uction 

In this paper, we introduce a novel method for localizing epileptogenic sources in 
patients with multi-focal temporal lobe epilepsy. Localizing multiple deep sources 
is computationally challenging due to superposition of signal from the active regions 
and "blurring" of the signal as it projects to the scalp. We address these challenges by 
incorporating statistical methods to separate the signal into independent activation 
maps, and by constructing a detailed geometric model of the patient's head. 

The EEG data for our study comes from multi-focal seizure events. As such, it is 
known in advance that the signal will not be attributable to a single dipole source. 
Rather, the time series will contain contributions from multiple epileptogenic regions. 
Each region (representable as a dipole) will have its own independent time course. In 
order to reduce the noise inherent in the raw data, we perform an eigen-decomposition 
(PCA) and discard the small components. Having removed the noise, but still faced 
with a superposition of multiple dipole activations, we perform a blind source sepa­
ration technique (lCA) in order to separate the sources. The result of this statistical 
preprocessing of the raw EEG data is a separate activation map for each dipole source. 
Each activation map is then fed into a source localization algorithm, in order to find 
the separate epileptic foci. 

The source localization algorithm identifies the dipole which, for a particular geomet­
ric model, best accounts for the measured EEG signal. Choosing the model requires 
careful consideration, especially since we know a priori that the sources are likely to 
be deep relative to the scalp surface. In [Huiskamp, 1997], Huiskamp et al showed 
that a spherical shell model is not adequate to localize deep temporal lobe sources. 
Rather, a more realistic patient model was required. Furthermore, because we desire 
as accurate a source localization as possible, we have chosen to construct a model that 
incorporates local conductivity anisotropy. Thus, we have opted for a finite element, 
rather than boundary element model. 

Putting the pieces together, we identify multi-focal regions of activation by 1) per­
forming PCA to reduce the data space; 2) utilizing ICA to extract independent acti­
vations; 3) constructing a patient-specific finite element model; and 4) localizing each 
dipole independently with a downhill-simplex search method. 
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Methods 

We begin with the construction of a patient-specific computational model. The real­
istic head geometry is obtained originally from raw MRI data. This data is then seg­
mented; that is, each tissue material is labeled in the underlying voxels [Wells, 1994]. 
The segmented head volume can then be tetrahedralized via a mesh generator which 
preserves the classification when mapping from voxels to elements [Schmidt, 1995]. 
For each tissue classification, we assign a conductivity tensor from the literature 
[Foster, 1989]. A cut-through of the classified mesh is shown in Figure 1. 

The next step of our method is to preprocess the raw EEG data into independent 
activation sequences. This processing is done in two stages: peA and leA. Once the 
EEG data has been processed, we will apply a source localization method in order to 
identify the active region responsible for each activation sequence. 

PCA Preprocessing 

Let X be a spatio-temporal data matrix, where every row contains voltages at a par­
ticular electrode at consecutive time steps and every column contains voltages for all 
electrodes at some moment in time. We first decompose the initial data into signal and 
noise subspaces [Mosher, 1992]. This is achieved by finding the eigen-decomposition 
of the covariance matrix R, where R = {XXT}, and discarding eigenvectors with 
eigenvalues smaller than some noise threshold. We can estimate an accuracy of such 
a decomposition by attempting to restore the original signals from this signal sub­
space; we choose a threshold such that our restoration is at least 98%. Having chosen 
a subspace, we project the original data onto it: Vs = VAUTX, where A and U 
are the eigenvalues and eigenvectors which form the signal subspace. We now exploit 
the assumption that the original signals were independent, as it allows us to decom­
pose Vs into independent components using independent component analysis (leA) 
[Bell, 1995]. 

ICA Decomposition 

The leA algorithm proceeds by finding an unmixing matrix W, such that rows of 
the matrx S = WVs will be independent, i.e. the multivariate probability density 
function (pdf) of S is equal to the product of the pdf of each signal in S . The 
unmixing W = (WI, W2, '" w n ) matrix can be constructed iteratively, for example, by 

2 



using a fixed-point algorithm [Hyvarinen, 1997] to compute its columns: 

wi(k + 1) = E{V(Wi(kf v)3} - 3Wi(k); 
wi(k + 1) 

wi(k + 1) = Ilwi(k + 1)11' 

where v are vectors drawn from the signal subspace Vs and k is the iteration number. 
To ensure that at each time we estimate a different independent component, we use 
a deflation scheme, where we work with the projection onto the subspace orthogonal 
to already restored components. 

N ow we can compute independent source signal matrix S by applying W to the signal 
subspace data, S = WVs. To restore the electrode recordings due to just a single 
source, we zero out all of the rows but one in the signal matrix S, and compute the 
back projection: 

where the first part of this expression corresponds to back projecting from the sig­
nal subspace onto the electrodes. These Y i vectors are what we will be trying to 
reproduce, one at a time, with our simulations. 

So, by using signal pre-processing we have effectively reduced the multi-source local­
ization problem to a sequence of single-source localizations. We know the potentials, 
Y i , at the electrodes on the scalp surface and having constructed a geometric finite 
elements models of the head volume, we now need to find a single dipole which creates 
that map. 

FEM Solution 

Mathematically, the problem of computing the electric potentials within the cra­
nial volume due to a set of current sources can be described by Poisson's equation 
[Plonsey, 1965]: 

\7 . (a\7<I» = J s 

subject to the Neumann boundary conditions: 

(a\7<I» . n = 0 

everywhere on the scalp except for at the electrodes where the electrostatic potential 
is known, C) = ¢; J s are the current sources. We can solve this problem using the 
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finite element method (FEM) to compute a solution within the entire volume domain 
[Jin, 1993]. Vsing FEM we obtain the system of equations: 

where A is a stiffness matrix, b is a source vector and 1> is a vector of unknown 
potentials at every node. The A matrix is sparse (for our simulation, it contained 
approximately 2, ODD, 000 non-zeroes entries), symmetric and positive definite. We 
solve the above system using LV-decomposition, or, since the matrix A is symmetric 
positive definite, Cholesky factorization. This allows us to use multiple right hand 
sides for the same stiffness matrix without re-factorizing it, thus minimizing our 
computational overhead. 

Source Localization 

To compute the solution of the described inverse problem, we find the set of dipoles 
which generate the "best fit" (minimal error) of computed electrode potentials to 
measured electrode potentials. We use correlation coefficient CC , as our error metric. 

where 1>i is the result ofthe forward model computation (as described in the subsection 
above) for a particular dipole source. A value of CC = 1 indicates that the simulated 
and recovered values at that time instant are identical up to a scaling factor. 

Previously, finding this minimum requires solving the forward problem for every pos­
sible configuration of a large number of dipoles. However, because of our statistical 
preprocessing, we only have to find one dipole for each activation map. Each dipole 
in the model has 6 parameters: 3 location coordinates (x, y, z), 2 degrees of orienta­
tion (e, 1», and the dipole strength, P. We will use first 5 as the parameters for the 
source localization process. We do not need to optimize for the dipole strength, since 
strength will not effect our error metric. Rather, P can be recovered as a post-process, 
after the optimal dipole position and orientation have been determined. We use the 
downhill simplex method [Nedler, 1993] to find the minimum of the multidimensional 
cost function. 
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Discussion 

This study has proposed a novel method for source localization of multiple indepen­
dent, stationary sources. We have applied this method to the localization of dipolar 
epileptic foci and have successfully recovered independent sources for each focus, as 
shown in Figure 2. The positions of the foci correspond to the temporal lobes, pre­
liminarily indicating the qualitative accuracy of our method. This demonstrates the 
importance of using a realistic head model with anisotropic conductivities. As a fu­
ture study, we will compare the results of our method with results generated from 
BEM models and FEM models without anisotropy. 
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Figure 1: Cut-through of the finite element. The full model contains approximately 
164,000 nodes and 768,000 elements. As indicated by gray-scale coding, each element 
is assigned a conductivity tensor according to its underlying anatomic tissue. 
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Figure 2: Three dipole sources (arrows) localized within the temporal lobes. Orthogo­
nal MRI slices(background) and electrode positions (spheres) are shown for reference. 
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