
A n A b s t r a c t M a c h i n e f o r P a r a l l e l G r a p h R e d u c t i o n *

Lai George
Department of Computer Science

University of Utah
Salt Lake City, UT 84112

USA

george@cs.utah.edu

Abstract

An abstract machine for parallel graph reduction on a shared
memory multiprocessor is described. This is intended pri­
marily for normal order (lazy) evaluation of functional pro­
grams. It is absolutely essential in such a design to adapt
an efficient sequential model since during execution under
limited resources available, performance will be reduced in
the limit to that of the sequential engine. Parallel evalua­
tion of normal order functional languages performed naively
can result in poor overall performance despite the availabil­
ity of sufficient processing elements and parallelism in the
application. Needless context switching, task migration and
continuation building may occur when a sequential thread of
control would have sufficed. Furthermore, the compiler using
static information cannot be fully aware of the availability of
resources and their optimal utilization at any moment in run
time. Indeed this may vary between runs which further ag­
gravates the job of the compiler writer in generating optimal
and compact code for programs. The benefits derived from
this model are: 1) it is based on the G-machine so that exe­
cution under limited resources will default to a performance
close to that of the G-machine; 2) the additional instructions
needed to control the complexities of parallel evaluation are
extremely simple, almost trivializing the job of the compiler
writer; 3) attempts are made where possible to avoid con­
text switching and task migration by retaining a sequential
thread of control (made more clear in the paper), and 4)
the method has demonstrated good overall performance on
a shared memory multiprocessor.

*This work was supported by an IBM Academ ic Fellowship
and in part by grant CCR-8704778 from the National Science
Foundation.

1 Introduction
We define an abstract machine suitable for parallel
graph reduction on a shared memory multiprocessor.
This provides a level of abstraction constituting an im­
portant step towards building a compiler. The machine
is intented for an ML[ll]-like language with compound
datatypes with lazily evaluated components. Our inter­
est in lazy functional languages for multiprocessors is
motivated by several reasons:

1. Awkward annotations for runtime synchronization
of parallel activity are not required, since paral­
lelism in lazy functional programs is implicit.

2. Due to the side effect free nature of functional
languages, expressions can be executed in parallel
without fear of having violated data dependencies.

3. Functional languages are highly amenable to static
analysis and program transformation which are of­
ten non-trivial for other kinds of programming lan­
guages.

Since little is known about programming general pur­
pose multiprocessors the benefits afforded by functional
languages makes them a good starting point compared
to other alternatives.

1.1 B B N B u tte r f ly M u lt ip r o c e s s o r

The investigation reported in this paper was performed
on a shared memory MIMD multiprocessor, the delta
connected BBN Butterfly[22]. Each processing unit
(PU) of the Butterfly is a MC68020 microprocessor
with a MC68882 floating coprocessor and a 68851 paged
memory management unit. The microprocessor and co­
processor operate at their max speed of 16MHz. Each
PU has 4 Mbytes of local memory and can access the
full address space of 4 Gbytes. Associated with each PU
is a process node controller (PNC) that services non lo­
cal references from the host microprocessor to modules

1

mailto:george@cs.utah.edu

across the switch and likewise references from other pro­
cessors. The PNC also implements various atomic op­
erations. The local to remote access time is 5:1 with a
local reference taking 1 microsecond. The ratio of 5:1 is
ideal and could be much larger based on switch traffic
and congestion.

The machine at our site has 18 processors of which
2 are reserved for system use. This investigation was
performed under the Chrysalis operating system.

1.2 Im p le m e n ta t io n

The abstract machine to be described is mapped onto
each node of the multiprocessor with shared memory
used to implement the heap. The abstract machine
consists of a number of processing elements (APE) that
share common resources like the heap and task pool. In
this implementation there is one APE per processor or
in other words, there is only one process per processor
and this implements the APE. For this reason we may
use processor, processor unit/element (PE) or just pro­
cess to mean an instance of an APE. The usage should
be clear from the context. The design considerations
that went into this work would be appropriate for other
kinds of tightly coupled shared memory machines like
the bus connected Sequent multiprocessor, but may not
be appropriate for loosely coupled machines like the In­
tel iPSC.

Parallelism on this abstract machine is obtained pri­
marily from:

1. Evaluation of strict arguments to a function. Such
information can be derived from strictness analy­
sis, user annotations or even the static structure of
patterns in a function definition.

2. Evaluation of anticipatory work from the top level
print function (Section 7).

3. User annotations surrounding program expressions.

1.3 O r g a n iz a t io n o f P a p e r

The rest of the paper is organized as follows. In Sec­
tion 2 we describe the basic components of our abstract
machine. This is based on the G-machine; most of the
major components are recognizable and used identically,
although we must make some additions to account for
the needs of parallel execution. Section 3 is largely de­
voted to the conventions we will use to describe the state
of the machine and state transitions. In Section 4 we
describe a function whose compilation we will consider
throughout the rest of the paper. Providing a descrip­
tion of a complete compiler would needlessly distract us
from the main issues and would not add significantly
to the contents of this paper. Section 5 represents the
core of the paper. The main instructions used to control

parallel activity are, set.wtcnt, demand and block. We
progressively refine their meaning from a naive defini­
tion and employ them in the compilation of the function
described in Section 4. We use some other instructions
along the way and may not offer a detailed explana­
tion; these are all identical to those presented in the
original G-machine paper[13], like eval, hd, update,
pushnil, etc. Their meaning should be obvious from
the context. Recently, there have been significant im­
provements to the basic G-machine model[3] that have
been proposed, but in this exposition we adhere to the
original G-machine as it is widely understood and acts
as a base reference. The subsequent optimizations ap­
plied to the G-machine are not particularly germane to
this discussion. In Section 6 we discuss issues related to
a complete compiler and in particular the role of strict­
ness analysis. Sections 7 through 11 discuss other issues
related to performance on a parallel machine. We dis­
cuss related work in Section 13 and conclude in Section
14.

2 Abstract machine
The abstract machine is derived from Johnsson’s G-
machine[13], modified for parallel execution. A process­
ing element of the abstract machine is described by the
tuple « S , C, F, D>, G, T> where:

• S = the evaluation stack containing pointers to
heap nodes.

• C = code sequence being executed.

• F = a flag pertaining to the sequential thread of
control (Section 5.3).

• D = sequence of return addresses and saved stack
segments.

• G = heap space shared by all processors.

• T = task pool of bounded size implemented as a dual
queue1 also shared by all processors.

The nesting structure of the tuple is used to indicate
that the heap G and the task queue T are shared among
all PEs while the rest of the components are PE specific.
The abstract machine tuple differs from that presented
by Johnsson[13] in the following ways :

• The presence of the global task pool, T.

1A dual queue is a queue that can be in one o f 3 states, i.e.,
empty, containing process descriptors or containing tasks to be
evaluated. A dual queue containing process descriptors indicates
that thoses processes are idle and an excess of processes over tasks.
A dual queue containing tasks indicates that all processes are busy
and here there is an excess o f tasks over processes. The usual kinds
o f operations on queues are available such as Enqueue, Dequeue,
TryEnqueue, etc.

2

• The presence of the per PE flag, F.

• The absence of the arithmetic stack. With cer­
tain optimizations described in Section 10 we have
found this to be unnecessary.

• The absence of the output stream and environment
which have been omitted for compactness.

Each PE executes an infinite loop where it repeatedly
dequeues tasks from the task pool, T, and attempts a
reduction. When the printing of the user top level ex­
pression has completed (assuming termination), a ter­
mination task is put into the dual queue for each PE.
When its termination task is received each PE dumps
out certain statistics and terminates gracefully.

3 Function Evaluation
A task2 has several fields but for the purpose of PE state
transitions as described in subsequent sections we shall
only be concerned with the following:

• TAG: A tag value that may be either CLOS or BUSY.
• A code pointer.

• wc: A wait count for synchronization.

• nc: A notification chain which is a list of closures
to be notified upon evaluation of this closure to
normal form.

• env: A pointer to an environment or argument
block.

A task having the tag CLOS indicates that it is unevalu­
ated and the tag BUSY indicates that it is under evalua­
tion. Associated with the task is a lock bit that is used
to provide mutual exclusion when updating the notifi­
cation chain or setting the tag field.

We use the following conventions when representing
the state of the machine. The evaluation stack will nor­
mally be represented by so..Sk..sn where SQ,Sk and sn
are references to objects on the heap and Sq is the bot­
tom of the stack. A code sequence is represented as a
list within [and], with the Prolog style of using | to
represent the cons operation. A similar notation will
be used for the task pool. We will use i—► to dereference
a pointer. Rather than displaying the entire heap, only
the references of interest will be shown within { and }.
This will usually be certain references from the evalua­
tion stack. For compactness, if S0, Si, ..Sn are states of
a specific PE, and cond^, ..condn, boolean expressions,
then we will use the notation :

2In this paper we use task and c lo su re interchangably. A
closure is structure containing besides others a code pointer and
a environment required by the former.

S q => S i, cond^
S 2 , c o n d 2

S n , condn

to represent a conditional state transition, otherw ise,
may be used as a catchall boolean condition.

As in the original G-machine, the S stack is used to
cache the arguments o f a closure and maintain an envi­
ronment during execution of the closure. Prior to the
execution of the code pointer associated with the clo­
sure, the argument block is unwound or copied onto the
S stack. The state o f the machine immediately after the
unwind is shown in Figure 1. Note that the tag asso­
ciated with the task is BUSY since it is currently under
evaluation. A PE that picks a task off the task pool,
will only attempt a reduction if the task is not being
evaluated by any other processor, indicated by the tag
being CLOS. In this case the tag is set to BUSY. The code
sequence is [/ | C]\ f comes from the closure being eval­
uated and C represents the code forming the infinite top
level processing loop.

W e will frequently refer to the redex referenced by sq
(Figure 1) as the root redex.

4 Language Compiler
The thrust of this paper involves the compilation of par­
allel activity, its control, synchronization and perfor­
mance on a parallel machine all in the context of graph
reduction and the G-machine. Much of the compiler
would be similar to that described in the G-machine
paper[13] which is to be expected since this model is
based on it. Consequently, we do not provide a com­
pilation strategy for a complete language or reasonable
subset thereof; such a description would needlessly dis­
tract us from the main issues we want to present. For
our purposes it will be sufficient to consider the compi­
lation of just one function which we will use throughout
the paper namely:

fun p lu s x y = x + y

where the + operator invokes the parallel evaluation of
its arguments. Issues involved in a complete compiler
are discussed in Section 6.

5 Demand/Block
The main instructions added to the G-machine related
to parallel activity are demand, b lo ck and set.w tcn t.
In order to motivate their final definition we progres­
sively refine their meaning in the subsequent sections.
The basic intuition is that demand should spawn the par­
allel evaluation of a task specified as an argument and

3

„ re i 7-. f so 1-1* B U S Y f w c nc en v 1 _
« s 0Sl. , n, [f \ C] ,F ,D > ^ e°n v ^ s h s n j J ’

Figure 1: Machine state after graph unwind.

b lock should implement the synchronization or wait for
all the parallel activity to complete before proceeding.

In the next section we assume that there are an infi­
nite number of processing elements and a task pool of
unbounded size. This allows us to offer a spin waiting
implementation for b lo ck for example. These assump­
tions are of course unrealistic, but we consider them so
that the reader may get a feel for the nature of code
generated since this does not really change as we make
improvements.

In Section 5.2 we improve the definition of the b lock
instruction so that the process executing this instruction
finds som e other work to do if all the parallel activity
it is waiting for has not completed. A small change will
be required in the code sequence we initially generated.

In Section 5.3 we improve both instructions to essen­
tially retain a task in the sequential thread of control
and take into account the reality of a limited number of
processing elements and a task pool of bounded size.

5.1 N a iv e D e fin it io n

W e forward the following naive definitions for demand,
b lock and se t .w tc n t, whose PE state transitions are
shown in Figures 2 and 3.

d e m a n d (n) Spawns the parallel evaluation of the
graph pointed by the reference on top of the stack
assumed to be of height n. In the state transition of
Figure 2, a reference to the demanded task and the
parent is put onto the task pool so that the appro­
priate notification can take place. The notification
is accomplished by the demanded task decrement­
ing the wait count associated with the parent.

b lo c k (n ,a ,f) Spin waits for all parallel activity related
to the root redex to complete before proceeding.
This is equivalent to waiting for the wait count to
fall to zero. The continuation is represented by the
function t applied to a number of arguments whose
references are on the top end of the evaluation stack
assumed to be of height n. W hen the wait count
falls to zero a tail recursion call is performed with
the usual stack rearrangement and a jump to the
continuation code (Figure 2).

se t_w tc n t(w) Sets the wait count field o f the root re­
dex to w.

A possible compilation for the p lu s function (Section
4) using the above instructions and their definitions is
shown below. As in the G-machine, the redex is at the
bottom of the stack, and the arguments unwound onto
the stack.

s e t_ w tc n t (2) ;
p u s h (l) ;
dem and(3);
p u s h (2) ;
demand(4) ;
b lo c k (4 , 2 , d o .a d d);

do_add is a label to code that performs the update of
the root redex under the guarantee that its arguments
have been evaluated, push(n) is identical to that on the
G-machine and copies the references in the evalua­
tion stack to the top of the stack. The formal parameter
x is at offset 2, and y at offset 1 after the unwind op­
eration. This piece of code pushes these arguments on
top of the stack using push and tries to invoke their
parallel evaluation. The synchronization takes place at
the b lo ck instruction that waits for them to complete.
Given an infinite number of processing elements and
a task pool that is unbounded in size, the definitions
provided for demand and b lo ck are quite appropriate
because, any task spawned on the dual queue would be
picked up and a PE spin waiting is of no consequence
although it could significantly increase the traffic on the
communication medium due to a potential remote ac­
cess to read the wait count field of the closure. These
assumptions in practice are of course unrealistic and we
relax them in a systematic manner in the subsequent
sections.

5.2 Im p r o v e m e n t 1

In this section we improve the b lo ck instruction by
avoiding the spin wait. The PE that performs the block
instruction could create the continuation closure and
pick up another task if all the parallel activity it is wait­
ing for has not been completed. Notification will now
involve both decrementing the wait count and inserting
the task into the task pool should its associated wait
count fall to zero. Previously notification did not in­
volve re-inserting the task into the task pool since the
process executing the b lo ck instruction would be spin

4

rj u \ i /~n n n J so ̂ B U S Y f wc nc env 1 « s 0..s„, [demand(n) \ C], F, D>, < > ,T > =>
I. s n HH*■ a J

_ f «o 1—»■ B U S Y f wc nc env 1 rr , . ^
« s 0..sn,C ,F ,D > ,< 0 J \ , [[«„, s0] | T] >

 ̂ sn 1 * a J

<<so..s„, [block(n, a, f) \ C], F, D>, { sqi-+ B U S Y g wt nc env } , T > =>

<<so-.sn, [block(n, a, f) \ C], F, D>, { S q\-*B U SY g wt nc env } , T > , wt ^ 0

<<sosn-a+i--Sni [/ | C], F, D>, { «o B U S Y g wt nc env } ,T > , wt = 0

Figure 2: Naive implementation of demand and block

<<so..s„, [set-.wtcnt(w) \ C], F, D>, { sot-^-BUSY f wt nc env } , T > =>■

« s 0..sn,C ,F ,D > , { s0 i-+ B U SY f w nc env } ,T >

, Figure 3: PE transition on s e t .w tc n t instruction

waiting and would eventually detect that the wait count
had reached zero. With this change to block, in our
running example above, there are really three processes
that meet at the synchronization barrier; the two paral­
lel tasks to evaluate x and y and the process generating
the parallel activity which may need to modify the root
redex with the continuation. Thus we need to modify
the first line of our instruction sequence to be :

set_wtcnt(3);

In general for this reason, the wait count will have to be
set to one more than the number of parallel tasks that
are being created and spawned.

The state transition for this modification is shown in
Figure 4. Notice the case when wt = 1 all parallel activ­
ity that was generated has completed and a tail recur­
sion call is implemented where a direct jump is made to
the continuation with the appropriate arguments. The
only process left at the synchronization barrier is that
which is executing the block instruction. Note that in
this case there is no need to update the root redex to
reflect the fact that a specific tail call has been made.

The case when (wt > 1) corresponds to the situation
where parallel activity that was generated has not com­
pleted. In an atomic operation implemented by locking,
the root node is updated with the continuation and the
wait count decremented. Any task that subsequently
decrements this wait count to zero should enqueue it
into the task pool.

This improvement now allows better utilization of the
processor since there is no spin waiting while executing
the block instruction.

5 .3 Im p r o v e m e n t 2

The naive definition of demand described in Section 5.1
and shown in Figure 2 has several drawbacks:

• If the argument is already evaluated to weak head
normal form there would have been a needless in­
sertion into the task pool and a synchronization
step.

• In practice the task pool may have a finite size and
the spawn or insertion may not always succeed. If

5

< <S0Sn -a+i"S n) [/ I C], F , D > , { so B U S Y g 0 nc en v } , T > , wt = 1

■ r-, f sn i—i► B U S Y f (w t — 1) nc en v new 1 _
« e m p i y , C , F , D > , < 0 1 y ’ > , T > , wt > 1

envnew ®n—o+l"®n J

« s o - .s n, [block(n, a, f) \ C\, F, D>, { So *—>■ BU SY g wt nc env } ,T > =>•

Figure 4: Non spin waiting b lo ck instruction.

the spawn does fail we must guarantee that the task
does eventually get evaluated.

• W hen there is only one task that can be generated
for parallel evaluation, it is meaningless to spawn
it off to another processor since one must incur the
additional overhead of spawning and blocking. In
such a situation it is better to retain the task in the
sequential thread of control. Likewise when there
are several parallel tasks that can be spawned it is
meaningful to retain one of them in the sequential
thread of control. By choosing the most expensive
task to retain in the sequential thread one may de­
crease the likelihood of blocking in the synchroniza­
tion step [9].

The occurrence of most of these conditions cannot
be determined through static analysis at compile time,
since they are runtime dependent. This means that the
responsibility is on the design of the abstract machine
and its instruction set to recognize these conditions and
take the most appropriate action. The code generated
for our running example remains exactly the same but
we modify the definitions of demand and b lo ck to take
the above into account. This actually means that the
job of the compiler writer is significantly simplified since
he may generate code under the assumption of infinite
processing elements and a unbounded task pool. As
we will show below, at saturation the execution of each
processing element resorts to the execution model of the
G-machine (or close to it) which is arguably the best
known execution model for normal order languages.

Our approach will be to retain an unevaluated graph
(one that is not in normal form) in the sequential thread
of control. One possibility going back to our p lu s func­
tion would be to generate the following sequence of in­
structions (as a reminder, x is at offset 2 and y at offset

1):

s e t_ w tc n t (2) ;
p u s h (l) ;
dem and(3);
p u s h (2) ;
e v a l ;
b lo c k (4 , 2 , do_add);

This spawns the parallel evaluation of y using demand
and retains x in the sequential thread of control us­
ing e v a l. Hopefully, by the time the b lo ck instruc­
tion is executed, y would have been evaluated and the
tail recursion call performed immediately. The prob­
lem with this is that x every time is predestined to be
evaluated in the sequential thread of control which may
not always be desirable. It may be the case that x is
already in normal form in which case we would have
needlessly spawned the parallel evaluation of y which in­
stead should have been retained in the sequential thread
of control.

Our solution is to introduce an additional state vari­
able into the abstract machine called the F flag, which
is a per-processor flag. This is reset at the beginning
of the code sequence and records the reference to the
first unevaluated graph encountered by the demand in­
struction. This will be made more clear after a detailed
discussion of both demand and b lo ck below.

demand(k)
The state transition for the demand instruction is shown
in Figure 5. Each conditional test in Figure 5 is ex­
plained in more detail:

i) If the object being demanded is already in normal
form (determined by the whnf test) then the wait
count associated with the root is decremented to
indicate that the evaluation has already been per­
formed. The Butterfly has an atomic decrement
instruction which we use for this purpose.

ii) If the graph is busy as indicated by the presence of
the BUSY tag, then a notification is set up to the
root. This graph would be busy if it were shared
and there was another processor that was evaluat­
ing it.

6

iii) If the graph is unevaluated and the flag F is reset
(i.e., 0) then the reference is retained for the se­
quential thread of control. The information that
the flag is set is utilized in the b lo ck instruction.

iv) If the graph is unevaluated and a task has been
retained in the sequential thread of control then
an attempt is made to insert the task onto the task
pool. TryEnqueue is a boolean valued function that
attempts to insert the task into the dual queue3.

v If none of these conditions hold true then the de­
fault action is to perform the evaluation inline us­
ing the e v a l instruction. In the original G-machine
paper[13] e v a l implied a machine state save on the
dump and a restore upon completion. W e have
shown them explicitly, so our usage of ev a l here is
not quite the same. The save involves pushing the
stack ’top’ , the code sequence to be executed and
the F flag onto the dump D.

block(n,a,f)
The state transition for the block instruction is shown in
Figure 6. Each conditional test in Figure 6 is explained
in more detail :

i) If the wait count has fallen to 1 then all parallel activ­
ity generated has completed and a tail recursion op­
timization can be performed. The function pointer
is obtained from the instruction and the arguments
must have been created on top of the stack. In this
case nothing could have been retained for the se­
quential thread of control or the wait count would
not be 1.

ii) If something was retained for the sequential evalua­
tion indicated by the per-processor flag being set,
then the equivalent of a G-machine ev al is per­
formed.

iii) Otherwise there is still pending parallel activity and
we merely update the root redex with information
pertaining to the continuation and decrement its
wait count.

W ith these definitions o f demand and b lock , in our
running example it is immaterial which of x or y is in
normal form. The appropriate task will be retained in
the sequential thread of control. If neither x or y are
in normal form then one will be spawned off and the
other retained in the sequential thread of control. If
the machine is saturated then the spawning will default

3 Since the task pool is a critical resource it needs to be locked
before any operations can be performed on it. In an implemen­
tation that we developed if the lock could not be obtained on
the first attempt then the function TryEnqueue returned fa l s e
immediately making this a very inexpensive function.

to an inline evaluation by creating a new environment
(exactly what the G-machine would do in a sequential
execution). W hen the number of parallel tasks in the
system greatly exceeds the number of processors, this
inline evaluation is going to occur very frequently. It
is for this reason that the model must be based on the
best sequential model of execution. The trick towards
efficiency in our model is to make the tests involved as
cheap as possible. It is exactly this that adds to the cost
of parallel evaluation.

6 Role of Strictness Analysis.
It is possible to develop a system based on what has been
presented here, where the primary source of parallelism
is from strict binary operators. The Butterfly imple­
mentation of SASL+LV[2] exploits exactly this using
the Turner’s S, K and I combinator technique. How­
ever, it is possible to get better performance and un­
ravel more opportunities for parallelism by using strict­
ness information[24]. For example, consider the f i l t e r
function :

fu n f i l t e r p [] = []
I f i l t e r p (x : :y) =

i f (x mod p) = 0 then f i l t e r p y
e ls e x : : (f i l t e r p y)

The strictness analyzer developed by Yeh[24] was able to
determine that the f i l t e r function was strict on its sec­
ond argument since there is an empty list test in the pat­
tern match of the first clause, fun f i l t e r p [] =
Should this test fail then it was able to determine that
the first argument and the head of the second argument
should both be atomic or integers since they are in­
volved in a mod computation in the conditional state­
ment. W e adopted a style of compilation where the
arguments were first raised to the level determined by
the strictness analysis so that context switching in the
body of the function to evaluate the first usage of an
argument would be minimized[7,16], This gave us good
overall performance using a sequential implementation
as compared to commercial implementations of LISP.
W e propose to adopt a similar style here. So for the
above function we could generate the following code :

r _ f i l t e r : s e t_ w tc n t (2) ;
p u s h (l) ;
demand(3) ;
b lo c k (2 , 2 , g _ f i l t e r)

Since f i l t e r is strict on its second argument this
piece of code pre-evaluates the second argument (recall
that the second argument is at offset 1). Due to the
nature of demand and b lo ck an attempt will be made
to retain its execution in the sequential thread of con­
trol. Note that we have used the instructions related to

7

 ̂- rj u 1 \ i n r-> f so l_► B U S Y f wc nc env 1 „<<SQ..Sk,[demand(k) \C],F,D>, < \ , T > =$■
(_ Sk t—i► a J

.. „ „ „ | s0 i—»■ B U S Y f (wc — 1) nc env 1 „ , >
i) « s 0..sk,C ,F ,D > ,< u ,T > , whnf(a){' Ski-* a J

... ^ f so y-* B U S Y f wc nc env 1 _____ ,
“) l ,S l ' ' r D > -\ Bl! SY f t w c (so : nct) en«() ,T > ' *» “ B0SY ** ” * “ » " lv*

ia) « * , . « „ c , i , z » , { ‘ a^ f , uTf Z !, m " c, , 1 , t >, r “ ' * " Ck “ * “ *»' ̂ S k ^ C L O S fk wck (s 0 : nck) envk J F = 0

. , „ p n / so - B U S Y f wc nc env \ „ “ = ^
iv) « s 0..sk,C,F,D>,< nrr ,Q r (\ > , T > , F ^ O\ s* C L O S f k wck (s 0 : nck) envk J -rt

v) « S 0 . . Sk ,

TryEnqueue(sjt , T)

savejmachineQ;
evalQ;
restore jmachineQ \ C

r-, r-, f So i—>• B U S Y f w c nc env 1
,F , D > , < r ^ T n c t i \ ? , T > , otherw ise[s k h-> C L O S fk wck (so : nck) e n v k J

Figure 5: Final definition of the demand instruction.

parallel execution since the execution could indeed block,
particularly if the second argument is shared and is cur­
rently being evaluated by some other processor. In this
situation the PE executing this piece of code will set up
the continuation and pick up another task.

The code generated for the label g _ f i l t e r would per­
form the pattern match with the guarantee that the
arguments have been sufficiently evaluated. Should
this pattern match fail then a similar set of opera­
tions could be performed to raise the arguments suf­
ficiently for the second pattern matching step, i.e.,
f i l t e r p (x : : y) = i f The code may resemble :

g _ f i l t e r :
p u s h (2) ;
n u l l ; Conditional test
j f a l s e L I;
p u s h n il ;
update (3) ; Update with NIL
r e t (2) ;

L I:
s e t_ w tc n t (3) ;
p u s h (2) ;
demand(3) ; Pre-evaluate first argument,p
p u s h (l) ;
h d (4) ;
demand(4) ; Pre-evaluate head of second argument
b lo c k (2 , 2 , g _ f i l t e r 2) ;

Note the parallel activity generated after the la­
bel LI, which pre-evaluates the first argument using
demand(3), and the head of the second argument us­
ing demand(4). This sequence of instructions handles
all possibilities related to these components already in
normal form and the state of the machine. The function
g_f i l t e r 2 4 can be similarly defined with the guarantee
that the arguments have been sufficiently evaluated to
the extent determined by the strictness analysis.

7 Top Level Print
The purpose of the top level print function is to perform
output of the top level expression being evaluated. Fur­
ther, parallelism can be obtained by spawning i f possible
tasks to evaluate the remaining components of the ex­
pression, only if they are in unevaluated form. W e call
this work anticipatory work since its need is anticipated.
M andatory work on the other hand is related to the cur­
rent print object. In the terminology used by Burn[4],
this is equivalent to evaluating the top level expression

4The prefix r_ and g_ to function names are no accident.
They were initially used to convey red and green. Red saying,
“STOP don’t go ahead but pre-evaluate certain arguments” and
green saying, “All pre-evaluation done, shoot into the body of the
function”.

8

« s q . . s h , [block(n, a, /) | C], F, D>, { sqi-^B U SY g wc nc env } , T > =$■

i) «soSfi-a+i--sn) / I C> F, D>, { so B U SY g wc nc env } , T > , wt = 1

ii) <<SQ..Sfj,

iii) « e m p ty , C, F, D>,

push(k);
savejmachineQ;
evalQ;
restore machine ();
block(n, a, f) \ C

s0 >-+ B U SY f (wc — 1) nc envnew \
B.TlVnew Sn — a+l**̂ n J

, 0, D>, { s0 BU SY g wc nc env } , T > , F = k ^ 0

T > , otherwise

Figure 6 : Final definition of the block instruction

using a £3 evaluator, which evaluates the structure of a
list and every element of the list to head normal form.
A major problem occurs when this evaluator gets ap­
plied to a graph more than once. Each evaluator will be
running down the list structure looking for unevaluated
graphs to spawn, which is wasteful. If the evaluator
is represented as the application of a built in function
then this traversal could involve a substantial amount
of graph building as it recursively descends the cons
structure.

A solution to this problem would be to have a flag
in the list structure indicating that it has been previ­
ously traversed by an £3 evaluator thus avoiding further
propagation. We adopted a slightly different strategy
by adding an extra bit called the exhaustiveness bit
to the closure representation. If the closure is updated
as a cons structure with this bit set, then this bit is
reset and the bit propagated to unevaluated compo­
nents of the cons structure. If possible these uneval­
uated components are inserted into the task pool. The
main drawback with this approach is ensuring that the
exhaustiveness bit gets propagated to the unevaluated
components since this appears to be quite expensive and
not very easy to implement.

The parallelism from the top level print is not always
sufficient or useful. For example the sieve program (Sec­
tion 16.1) with all cons operators being lazy exhibits se­
quential performance with this form of parallelism. The
reason for this is that when the top level expression gets
reduced to normal form the head component is already
in normal form and is printed immediately. The spawn­
ing of the tail part has little consequence since it will be
demanded by the top level print almost immediately.
The parallelism from the top level print is useful when
the head computation involves a substantial amount of
work. In this situation, while the head is being evalu­

ated and printed, a substantial portion of the tail may
be evaluated in parallel. On our 18 node Butterfly we
ran the program of Section 16.2 with the parallelism
from the top level print and without it. The perfor­
mance was almost the same indicating that the machine
was probably being swamped by the parallelism from
evaluating the head of the stream itself.

Our intuition at this point is to omit the parallelism
from the top level print in future implementations due
to its complexity and overhead in book keeping and con­
centrate more on the parallelism from strictness analysis
(Section 6) and insights provided by user annotations.

8 Memory Management
Our heap is a shared memory space where each abstract
machine has a segment of the total heap, that is typi­
cally local to the memory of its associated physical pro­
cessor. Accesses to the local segment of the heap is
usually faster than accesses to nonlocal segments. Each
abstract machine makes allocations out of its local heap
segment and when exhausted will try to allocate from a
remote heap segment. This means that the heap alloca­
tion routine must be a critical section. Since functional
programs tend to be memory intensive this is a bottle­
neck as locking would be required for every allocation.
The heap allocation can be optimized by locally man­
aging a sufficiently large buffer space allocated out of
the heap. Test programs showed an improvement of
between 7-17% with a local buffer space of IK bytes.

It was also observed that the local memory usage
among the processors was very even for the benchmarks
tried. This strongly favors a complete stop and collect
style of garbage collection since, when one processor has
exhausted its memory most of the other processors will
be in a similar situation. Our implementation does not

9

presently contain a garbage collector.
In our state transition description we have abstracted

away the locking that is involved at various stages. How­
ever, the locking issue does impact the design of the
node structures used. Consider two processors com­
peting for the lock on a node, one to update the node
to normal form and the other to attach a notification
marker. Assuming the processor that is performing the
update acquires the lock first then upon release of the
lock the node is no longer busy or in unevaluated form.
The second processor would then lock a node in normal
form. For this reasons the lock bit must be in the same
position for both the closure/task and its normal form.

9 Scheduling
Since there is just a single task pool in the abstract ma­
chine, scheduling is trivial. Tasks are always removed
from the front of the queue but may be inserted at both
ends. Our policy is to put all parallelism generated as
a consequence of advisory information or the top level
print at the back of the queue and mandatory work
from demand in the front. This has worked out to be
marginally better than a FIFO or LIFO scheduling pol­
icy.

10 Mixed Evaluation Stack
The Butterfly is a byte addressable, 32 bit word ma­
chine. If all nodes are word aligned then all pointers to
nodes will have zeros in the lower most two bits. These
lower two bits can be used as a tag to distinguish be­
tween between nodes and pointers. There are two kinds
of node structures: 1) unboxed objects that can fit inside
a word used to represent constants and nullary construc­
tors and 2) boxed objects that are multiple words used
to represent closures and constructors of arity greater
than zero[17]. In boxed objects the first word is used
as a descriptor indicating the length, type, etc. The C
language declarations are shown below :

struct unboxed {
unsigned tag : 27;
unsigned int_flag : 1;
unsigned exhaustive : 1;
unsigned lock : 1;
unsigned id : 2;

>;

struct Desc {
unsigned tag : 16;
unsigned length : 12;
unsigned exhaustive : 1;
unsigned lock : 1;
unsigned id : 2;

>;

struct boxed {
struct Desc desc;
WORD comp[0];

>;

Note that the lock and exhaustiveness bits are in
the same position for both boxed and unboxed objects,
a requirement we discussed in Section 8. The field id
(which happen to be the lowest two bits of the word)
is used to distinguish between pointers, boxed and un­
boxed objects. The intjlag in the unboxed declara­
tion is used to distinguish between integers and nullary
constructors, where 27 bits are used to store the inte­
ger value. With this design we can use the evaluation
stack to hold unboxed objects as well as pointers to heap
nodes. In the G-machine the evaluation stack (S stack)
contained exclusively pointers to heap nodes. The ad­
vantages of having data in the evaluation stack are:

• Computations can be performed using the evalu­
ation stack to store temporary results. This was
achieved by using a special stack (the arithmetic
stack) in the G-machine.

• The most important benefit is that when closures
are created the graph need not have pointers to
unboxed objects in the heap but can store the
unboxed objects themselves directly in the graph.
This further means that when an unwind takes
place the unboxed objects are unwound directly
onto the evaluation stack and an initial reference
need not go to the heap which may involve a non
local access.

• A consequence of the fact that unboxed objects are
stored directly in graphs rather than storing point­
ers to them, results in fewer requirements on the
heap space.

A drawback is a small amount of additional complex­
ity in the implementation but this was not sufficient
to affect the performance which was improved over the
“pointer evaluation stack” case. In Figures 8 and 7 we
show the effect of a mixed evaluation stack on the 8
queens and sieve programs respectively.

11 Two level scheduling
To avoid contention on the centralized task pool, a
small local task pool can be maintained. Thus excess
work spills over from the local task pool to the cen­
tralized task pool. Search for work begins at the local
task pool and ends at the centralized task pool. We
have found in the examples tried that a large local task
pool (i.e., greater than 2) degrades the performance.

10

oo
»go

oo
ico

30 -
27 -
24-

T 21-
i 18­

15 -
12 -
9 -
6 -
3 ­
0 -

0 3 6 9 12 15
Number of Processors

Figure 7: Sieve Program with Data Caching

30
27
24
21
18
15
12
9
6
3
0

Figure 8: 8 Queens Program with Data Caching

Q O Pointer S Stack
\ • Mixed S Stack

\
* \

\ \
\ \

\

" ■"■O—

t--------------- 1--------------- 1--------------- 1--------------- r
0 3 6 9 12 15

Number of Processors

o Pointer S Stack
 ̂ • Mixed S Stack
\

\ \
\ \

\ \

Figure 9 and 11 shows the results obtained. In all these
experiments there was one processor per local task pool.
Goldberg reported better results with a small number
of processors sharing a local task pool[9]. These exper­
iments show that going overboard in trying to retain
locality is not allows a good idea (particularly in the
fibstrm program).

12 Performance

Figures 9 through 12 shows the best performance of our
machine. Also shown is the performance of the Stan­
dard ML of New Jersey (NJML) compiler running on
the VAX 8600, a machine at least 6 times faster than
the BBN Butterfly. The NJML compiler (version 0.33)
is the latest from AT&T and is highly optimized. The
figure of 6 times, was obtained by taking the Dhrys-
tone benchmark, and allocating all global variables on
another processor. This was so that the switch and
message overhead typical in programs would come into
the picture. The Dhrystone benchmark is reported to
have 9% of its accesses to global structures. We hes­
itate to show speedup curves based on our sequential
performance. Since our sequential performance is not
blazingly fast, we would obtain good (though mislead­
ing) speedup curves. Ideally, we should obtain our speed
up curve based on the best sequential system running
on one node of the Butterfly. This would have to be
either Johnsson’s LML system or even the New Jersey
ML system. Unfortunately the latter is not as portable
as we would have liked and at the time of writing we do
not have access to the former.

13 Related Work

13.1 A r c h ite c tu r e s

There has been considerable effort in exploiting the
benefits of compiling to a fixed set of combinators
such as the S,K,I set[23]. These includes projects
such as COBWEBflO], SKIM I and SKIM II[5,21], and
NORMA[20] although the NORMA architecture could
be microcoded to execute a different set of combinators.
Our approach is to use commercially available shared
memory multiprocessors and to follows the lead of the
G-machine by having every user function represent a
combinator. Our motivation for this was the need to
adapt an efficient sequential model for reasons stressed
throughout this paper. Other projects such as ALICE[6]
and GRIP[19,18] use compilation techniques motivated
by the G-machine but make use of specialized hardware
to support graph reduction and garbage collection.

11

13.2 B u c k w h e a t

Goldberg[9,8] describes a system for graph reduction
on a shared memory machine called Buckwheat. The
source language ALFL developed at Yale is trans­
formed into a new set of combinators called serial
combinaiors[12]. These serial combinators contain spe­
cific constructs that specify the synchronization for par­
allel execution. The basic synchronization constructs
are demand, wait and spawn which are expressed at a
fairly high level. For example, in a serial combinator,
the demand construct:

(demand (vi . . vn) body)

indicates that the variables vi .. vn may be safely
evaluated in parallel and need not return before body
is evaluated. The synchronization constructs are sim­
ple calls to routines in the Buckwheat graph reducer
module.

The implementation details of these routines are not
readily available in the literature, but it seems very
likely that the ideas introduced in this paper (with
maybe certain minor enhancements) could be used to
implement each of these constructs. An interesting
prospect would be to compile the serial combinator code
into the instruction set of the abstract machine defined
in this paper.

1 3 .3 < v, G > M a c h in e

Augustsson and Johnsson[14] describe an abstract ma­
chine called the < v,G > machine which is a shared
memory multiprocessor abstract machine for normal or­
der evaluation of functional programs. Its characteristic
feature besides being a simple formalization is that the
evaluation stack is contained in the graph structure and
consequently resides in the heap space. This raises sev­
eral problems such as allocating a sufficient stack space
to be associated with the graph.

A more difficult problem would be obtaining good
performance on a machine like the Butterfly which does
not have a data cache associated with each processor
and for which a fairly high penality is paid for in ac­
cessing references across the switch. In this respect our
adaptation of G-machine is better suited to the But­
terfly because the per-process private evaluation stack,
acts as a local cache for arguments once they have been
unwound and for temporaries created during the reduc­
tion.

1 3 .4 E v a lu a t io n T ra n s fo rm e rs

Burn[4] describes a model where it is possible through
abstract interpretation to determine the amount of eval­
uation a particular argument could be subject to, give

the context in which it is being evaluated. Four evalua­
tors are discussed £o..3 ! for example, evaluates an ex­
pression to head normal form. In the model proposed by
Burn, each function is compiled so that it first executes
a switch statement. The switch statement applies the
appropriate evaluators to the existing arguments based
on the context in which the function is being evaluated.
The function need not wait for arguments to complete.

Our demand instruction actually implements the £2
evaluator and we attempted to implement the £3 eval­
uator when evaluating the top level expression in the
program. The work by Burn is indeed more general,
however, there are several points worth mentioning:

• We have found that in practise the £3 evaluator
is not trivial to implement and could incur a sig­
nificant overhead. The approach we investigated
involved using an exhaustiveness bit. In many of
our programs we found that this evaluator applied
to the top level print function was not very use­
ful (Section 7), since either the head computation
was so small that the £3 was not able to progress
far enough, or the head computation was so large
that it swamped the machine thus inhibiting the £3
evaluator.

• We compile functions so that the evaluation of par­
allel arguments is completed before the body is ex­
ecuted. This will certainly prevent blocking or a
context switch to evaluate strict arguments.

• In our discussion of strictness analysis (Section 6)
it seems conceivable that the idea of the switch
statement to account of the context under which
the evaluation is taking place, could be incorpo­
rated.

14 Conclusions
In this paper we have discussed possible extensions to
the G-machine that account for the needs of parallel
evaluation. While we have discussed this in the context
of the G-machine[13] there is no reason why a newer
and improved model of the G-machine cannot be incor­
porated, like the Spineless G-machine[3]. Our suggested
method of compilation consists of two phases :

1. Spawning the parallel evaluation of strict argu­
ments.

2. Waiting for the parallel activity above to complete
before entering the body of the function being eval­
uated.

This paper largely deals with 1 above. The code for 2
could be substituted by ones favorite G-machine variant.

We feel that the added instructions to the G-machine
significantly simplifies the job of the compiler writer in

12

generating compact code for a parallel machine and that
our suggested compilation technique is easy enough, to
develop a simple and robust compiler. The instructions
introduced avoid context switching and needless task
migration by retaining a sequential thread of control
and default to an inline sequential execution of the base
model under saturation. The model on our 18 node
Butterfly demonstrated good performance.

14.1 F u tu re D ir e c t io n s

The work described here is part of an ongoing research
project at Utah to develop a tightly coupled multi­
paradigm language. This is essentially a functional lan­
guage augmented with logic variables. While it em­
braces concepts such as constraint satisfaction, mono­
tonic data types and bidirectional communication using
logic variables (found also in Id Nouveau[1]), it also em­
braces the notions of committed choice non-determinism
and guarded evaluation which we have found to be very
useful in certain examples[2]. Using static analysis of
programs with logic variables[15] we hope to be able to
generate large grain combinator code (the results from
this work) that can be executed efficiently on a multi­
processor machine. We are presently doing a port of our
implementation to MACH on the Butterfly??.

15 Acknowledgments
I would like to gratefully acknowledge the comments and
suggestions provided by Simon Peyton Jones and Gary
Lindstrom which I found very useful while preparing the
final version. If I were to fully acknowledge there com­
ments and suggestions throughout the paper, I would
need to add a footnote to almost every page. I would
also like to thank Peter Kogge for taking an outside in­
terest in the development and future directions of this
work. None of this work would have been possible with­
out the support of the excellent systems staff at the
University of Utah, in particular Mark Swanson who
patiently answered my questions on the Butterfly.

References
[1] Arvind, Nikhil, R. S., and Pingali, K. K. I-

structures: data structures for parallel computing.
In Graph R eduction : Proceedings o f a W orkshop,
J. H. Fasel and R. M. Keller, Eds., Springer-Verlag,
1987, pp. 336-369. Lecture Notes in Computer Sci­
ence No. 279.

[2] Bage, G ., and Lindstrom, G. Committed choice
functional programming. In Proc. International
C onference on Fifth G eneration C om pu ter S ystem s

(Tokyo, November 1988), Institute for New Gener­
ation Computer Technology (ICOT), pp. 666-674.

[3] Burn, G., Peyton Jones, S. L., and Robson, J. D.
The spineless g-machine. In P roc. o f the 1988 A C M
Conf. on Lisp and Functional Program ming (July
1988), ACM , pp. 244-258. Conf. at Snowbird,
Utah.

[4] Burn, G. L. Evaluation Transformers - A Model for
the Parallel Evaluation of Functional Languages.
LNCS 274, Springer-Verlag, 1987, pp. 446-470.
Portland Oregon Proc., Ed. Gilles Kahn.

[5] Clarke, T ., Gladstone, P., and MacLean, N. A.
SKIM - the s, k, i reduction machine. In The
1980 L IS P Conference (August 1980), pp. 128-135.
Stanford University.

[6] Darlington, J., and Reve, M. ALICE: a multipro­
cessor reduction machine for the parallel evaluation
of applicative languages. In Functional Program­
ming Languages and Computer Architecture (Oc­
tober 1981), ACM , pp. 65-76.

[7] George, L. Efficient Normal Order Evaluation
Through Strictness Information. Master’s thesis,
University of Utah, March 1987.

[8] Goldberg, B. E. Buckwheat: graph reduction on
a shared memory multiprocessor. In Proc. o f the
19 88 A C M Conference on Lisp and Functional P ro­
gramming (July 1988), ACM , pp. 40-51. Snowbird,
Utah.

[9] Goldberg, B. E. Multiprocessor Execution of
Functional Programs. PhD thesis, Yale Uni­
versity, Dept, of Computer Science, April 1988.
YA L E U /D C S/R R -618.

[10] Hankin, C. L., Osmon, P. E., and Shute, M. J.
C O B W E B : A C om binator Reduction Architecture.
L N C S 201, Springer-Verlag, 1985, pp. 99-112.

[11] Harper, R. Introduction to Standard ML. LFCS
Report Series ECS-LFCS-86-14, Computer Sci­
ence Department, Edinburgh University, November
1986.

[12] Hudak, P., and Goldberg, B. E. Serial Com bina-
tors ’’ O ptim al” Grains o f Parallelism. L N C S 201,
Springer-Verlag, 1985, pp. 382-388.

[13] Johnsson, T. Efficient compilation of lazy evalu­
ation. In Proc. Sym p. on C om piler Construction
(Montreal, 1984), ACM SIGPLAN.

[14] Johnsson, T. The < v, g >-machine: an abstract
machine for parallel graph reduction. In Proc. W G
10 .1 W orkshop on C oncepts and Characteristics

13

of Declarative Systems (Budapest, October 1988),
G. David, Ed., IFIP. Also appears in this proceed­
ings.

[15] Lindstrom, G. Static analysis of functional pro­
grams with logical variables. In Proc. International
Workshop on Programming Language Implementa­
tion and Logic Programming (PLILP ’88), Springer
Lecture Notes in Computer Science Number 348,
Orleans, France, 1989, pp. 1-19.

[16] Lindstrom, G ., George, L., and Yeh, D. Generat­
ing efficient code from strictness annotations. In
Proc.Second Int. Joint Conf. on Theory and Prac­
tice of Software Development (TAPSOFT) (March
1987).

[17] Peyton Jones, S. L. The Implementation of Func­
tional Programming Languages. International Se­
ries In Computer Science, Prentice-Hall, 1987.

[18] Peyton Jones, S. L. Parallel implementations of
functional programming languages. The Computer
Journal 32, 2 (1989), 175-186.

[19] Peyton Jones, S. L., Clack, C., Salkild, J., and
Hardie, M. GRIP - a high performance architecture
for parallel graph reduction. LNCS 274, Springer-
Verlag, 1987, pp. 98-112.

[20] Scheevel, M . NORM A: a graph reduction proces­
sor. In Proc. of the 1986 A C M Conference on
Lisp and Functional Programming (August 1986),
ACM , pp. 212-219.

[21] Stoye, W . R., Clarke, J. W ., and Norman, A. C.
Some practical methods for rapid combinator re­
duction. In Proc. o f the A C M Conference on
LISP and Functional Programming (August 1984),
ACM , pp. 159-166.

[22] Thomas, B., Gurwitz, B., Goodhue, J., and Allen,
D. Butterfly parallel processor: overview. Tech.
Rep. 6148, BBN Laboratories Incorporated, March
1986.

[23] Turner, D. A. A new implementation technique
for applicative languages. Software Practice and
Experience 9 (1979), 31-49.

[24] Yeh, D. Static Evaluation of a Functional Lan­
guage Through Strictness Analysis. Master’s the­
sis, University of Utah, December 1987.

16 Appendix: Test Programs
We surround expressions with “ to indicate that should
resources exist then they should be spawned onto the

task pool. Unless otherwise stated all the cons op­
erators (: :) are strict which means that the result is
constructed with possibly unevaluated components but
should resources exists the unevaluated components are
spawned onto the task pool. Thus (el :: e2) is really
(*el~ :: *e2~).

16.1 S ieve

fun from n m =
i f (n>m) then n i l e lse n : : from (n+1) m;

fun f i l t e r p [] = []
I f i l t e r p (x : : y) =

i f (x mod p = 0) then f i l t e r p y
e lse x : : f i l t e r p y;

fun sieve [] = []
I sieve (x : : y) = x : : sieve (f i l t e r x y) ;

sieve (from 2 2000);

16 .2 F ib o n a c c i S tre a m

This is obviously not the best way to compute fibonnacci
numbers or a stream of them. The intent was just to
generate a lot of parallelism.

fun f ib n = i f n < 2 then 1
e lse f i b (n - l) + f i b (n -2) ;

fun from n m = i f (n > m) then n il
e lse n : : from (n+1) m;

fun fib strm [] = []
I fibstrm (x : : y) = f ib x : : fibstrm y;

fib strm (from 1 20) ;

16.3 T a k F u n ct io n

fun tak x y z = i f (y >= x) then z
e lse tak (tak (x -1) y z)

(tak (y -1) z x)
'(t a k (z -1) x y) “ ;

tak 18 12 6;

16 .4 8 Q u een s

fun append [] x = x
I append (x : : x s) ys = x : : append xs ys;

fun queens n = queensoln n n

and
queensoln 0 _ = n i l : : n i l

I queensoln n s iz e =
add_columns n size

(queensoln (n - 1) s iz e)

14
\

add_columns _ _ nil = nil
I add_columns x n (board :: boards) =

append (add_column x n board)
“(add_columns x n boards)*

and
add_column x 0 board = nil

I add_column x y board =
if (attacks x y (x-i) board) then

add_column x (y—1) board
else (y :: board) ::

(add_column x (y - 1) board)

and
attacks x y xl nil = false

I attacks x y 0 board = false
I attacks x y xl (yl :: board) =

attacks2 x y xl yi board

and
attacks2 xl yl x2 y2 rest =

yl = y2 orelse
abs (y2 - yl) = abs (x2 - xl) orelse
(attacks xl yl (x2-l) rest);

and

33
30
27
24

T 21
m 18
s 15
! 12

9
6
3
0

Figure 9: Two Level Scheduling and the Sieve Program

18

15

12
T

£ 9
s e c

6

3

0

Figure 10: Two Level Scheduling and the Fibstrm Pro­
gram

$ ^

\ -------
• Centralized Task PoqI
o Two Level, size=l ^
* Two Level, size=2
O Two Level, size=4\
® Two Level, size=10

\

_VAX_8600, Std_ML_ofNJ^, _v0^33___________
I I I I I
3 6 9 12 15

Number of Processors

• Centralized Task Pool
o Two Level, size=l
* Two Level, size=2
O Two Level, size=4

 ̂ <E> Two Level, size=10

■_ _VAX_860q, Std_ML_of_NJ, vOJ3___________
H----------- 1----------- 1-----------1-----------1-----------1­
0 3 6 9 12 15

Number of Processors

21

18

15
T
i 12 me
s q
e y
c

6

3

0

Figure 11: Two Level Scheduling and the 8 Queens Pro­
gram

21

18

15

T
i 12 me
s „ e 9
c

6

3

0

Number of Processors

• Centralized Task Pool
o Two Level, size=l

Y * Two Level, size=2
^ O Two Level, size=4
^ 0 Two Level, size=10

I'
T

v* V
* «

VAX 8600, Std ML of NJ, v0.33

—i----------- 1----------- 1----------- 1—
6 9 12 15

^ • Centralized Task Pool
\ .

\ ® Two Level, size=10
\
\
\
\
\
9 . N. N

S

«■»»

V A X 8600, Std ML of NJ, vO.33® ~

t-----------1-----------1----------- 1----------- 1-----------r~
0 3 6 9 12 15

Number of Processors

Figure 12: Two Level Scheduling and the Tak Program

16

