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ABSTRACT

Multisite imaging studies have the potential to accelerate scientific discovery by provid-

ing increased sample sizes, broader ranges of participant demographics, and publicly available data.

However, failing to address the known nuisance variability across sites, such as scanner type or

imaging protocol, reduces statistical power of any analysis performed on the multisite data. In this

thesis, I present three contributions to the field of medical image analysis that are designed to re-

duce this known variability. These contributions include a feature reduction technique for pairwise

correlation functional-magnetic resonance imaging (fMRI) data used as features in a multisite sup-

port vector machine (SVM), a subject-level network estimation technique for structural magnetic

resonance imaging (MRI), and a hierarchical atlas estimation approach that accounts for intersite

variability, while providing a global atlas as a common coordinate system for images across all sites.

All results are presented on the Autism Brain Imaging Data Exchange (ABIDE) data set which

contains resting-state fMRI (rs-fMRI) and structural MRI for 1112 subjects, including both autism

and control groups. These methods result in state-of-the-art classification accuracy on the ABIDE

data set and increased efficiency in reducing overall MRI data variability.
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1 INTRODUCTION

Analysis of neuroimaging data has been a popular focus in both medical and computing

disciplines for a number of years. The ability to take high-resolution brain images of in vivo patients

has allowed researchers to identify biomarkers in the early stages of Alzheimer’s using longitudinal

data [14, 22], map neural connectivity to assist surgeons in patient-specific brain surgery [2], and

identify universal functional networks of the human brain [15]. In recent years, there has been a

movement towards combining neuroimaging data collected across multiple sites. Such multisite data

have the potential to accelerate scientific discovery by providing increased sample sizes, broader

ranges of participant demographics, and publicly available data.

Different approaches include large, coordinated multisite neuroimaging studies, such as the

Alzheimer’s Disease Neuroimaging Initiative (ADNI) [27], as well as data sharing initiatives that

combine multiple single-site studies, such as the Autism Brian Imaging Data Exchange (ABIDE) [10].

Larger sample sizes are especially critical in genome-wide association studies (GWAS), in order to

provide sufficient statistical power to test millions of genetic variants. This requires aggregation

across a broad range of neuroimaging studies, such as those involved in the Enhancing NeuroImaging

Genetics through Meta-Analysis (ENIGMA) consortium [32]. Analysis using these multisite data

sets, however, is not straightforward. Styner et al. [31] compared intra- and intersite variability by

analyzing variability of tissue and structural volumes of the same subject imaged twice at each of

five sites. This analysis showed that, regardless of segmentation approach, there was always higher

intersite variability, most notably when those sites used different brands of magnetic resonance

imaging (MRI) scanner. In large multisite studies, there are possibly multiple confounding factors

across sites, including different MRI scanners, protocols, populations, and diagnosis techniques.

An alternative approach to multisite data analysis is to perform separate statistical analyses

at individual sites and combine the results in a meta-analysis. This is often formulated as a random

effects model [9], where each site is regarded as a random treatment effect. While this can be an

effective way to combine statistical tests of low-dimensional summary measures, it is less applicable

to learning problems on high-dimensional data such as images. For instance, applying independent

classifiers at each site and then combining them post-hoc misses the opportunity for the classifiers
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to benefit from sharing information across sites during learning, although this is often the the only

option due to the reluctance of individual sites to share their data. Meta-analysis is also prone to

publication bias, meaning only results from studies whose results were significant enough to publish

are aggregated. By using shared raw data instead of widely published results, this bias can ideally

be avoided [13].

As the driving force behind all work contained within this thesis, we focus on reducing

variability in neuroimaging studies involving subjects who are considered typically developing (TD)

or diagnosed with an autism spectrum disorder (ASD). Autism is a disorder which is now estimated

to affect more than 1% of children born in the United States [20]. Despite the high prevalence of

autism, there are still many unknowns, in part because it is so hard to study. One of the difficulties is

that autism is a spectrum disorder, differing in phenotype and severity across patients. This known

variability is hard to quantify when the data itself is noisy. Reducing nuisance variability in the

data will ideally allow the known variability attributed to autism to be qualified using neuroimaging

data.

I focus on reducing variability in two main aspects of neuroimage analysis in the context of

multisite data: classification and atlas estimation. Classification, whereby the data are essentially

sorted into two or more groups based on features extracted from the data, is often used to identify

differences between groups when standard statistical analysis is too simplistic . Atlas estimation for

neuroimaging is the process of estimating an “average brain” from a set of images, which is then

used as the common coordinate system in which all further analysis is performed.

I make several contributions in the field of medical image analysis, including:

1. Multisite Classification of rs-fMRI: I develop a novel method to reduce pairwise correla-

tion features extracted from functional MRI (fMRI) which, when used in conjunction with a

multisite support vector machine (SVM) that leverages increased sample size, yields increased

classification accuracy over published results on the ABIDE data set.

2. Network Estimation and Classification of MRI: I design a subject-level network esti-

mation approach on MRI data including reduction of the feature space. This network char-

acterization allows the use of the multisite SVM and gives rise to the first (to my knowledge)

classification results on the ABIDE data set exclusively using structural MRI.

3. Multisite Atlas Building: We employ a hierarchical Bayes model to characterize varia-

tion across sites in a large deformation diffeomorphic metric mappings (LDDMM) setting to

simultaneously estimate group and site-specific atlases.



2 MULTISITE CLASSIFICATION

To address the problem of classification using multisite data, the idea is to treat the problem

as a multitask learning problem, where classifiers for each site are estimated jointly, with a regular-

ization that favors similarity across sites. This allows classifiers to share information during learning,

but also provides the flexibility for the classifiers to differ across sites as needed. We specifically

employ a regularized SVM introduced by Evgeniou and Pontil [12]. As a driving problem, we apply

this method to the classification of autism from MRI and resting-state fMRI (rs-fMRI) from the

ABIDE database.

Several groups have reported classification results using the multisite ABIDE data, in each

case treating the pooled collection of images across all sites as a single homogeneous data set during

classification. Nielsen, et al. [28] combined the ABIDE rs-fMRI data set with a whole-brain approach,

using a leave-one-out classifier to compute a classification score for each left-out subject based on

age, gender, and handedness. The correlations for each connection in turn were fit with a linear

model, separating controls from subjects with an ASD, which was then adjusted by the difference

between the subject’s site mean for that connection and the overall mean. This approach yielded

a maximum overall accuracy of 60.0%, although they found significant positive correlation between

the classification score and several of the phenotypic behavioral measures [28]. A different study

used histogram of gradients and applied this to several multisite imaging studies achieving a 61.7%

accuracy on the ABIDE data set and 62.6% on the ADHD-200 data set [17]. While Nielsen, et al.

accounted for the site differences during feature generation and selection, both studies approached

the differences across imaging sites as noise instead of extra data that could be leveraged when

classifying an aggregate data set.

By combining multisite learning and classification, we show that classification accuracy on

the ABIDE data set can be boosted regardless of which data are used. In the following sections, we

first give details describing how this multisite method works, then show its specific applications to

rs-fMRI and MRI data.
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2.1 Methods

We formulate classification of multisite imaging data as a multitask learning problem, where

each site, s = 1, . . . , S, is treated as a separate task. This results in a different classifier for each site,

which allows for variability of decision boundaries across sites. At the same time, a regularization

term in the objective function favors similarities between sites, resulting in sharing of data across

sites during training. We specifically use a regularized version of SVM, introduced by Evgeniou and

Pontil [12], which is described next. Following that, we introduce the data sets used to show that

this method has statistical merit.

2.1.1 Multisite learning. Evgeniou and Pontil [12] introduced a method of multitask

learning based on kernel methods typically used for single task learning. This method relies on

minimizing regularization functions, such as that for SVM, to capture both overall similarity between

tasks as well as individual task differences. Given N feature vectors xi ∈ Rd with labels yi ∈ {−1, 1},

the traditional minimization for a soft margin SVM [7] is

arg min
w

1

2
‖w‖2 + C

N∑
i=1

ξi, subject to: yi(w · xi − b) ≥ 1− ξi, ξi ≥ 0, (1)

where the weight vector w defines the hyperplane, (w ·x+b), which is the boundary between groups,

C ∈ R is a constant, and ξi ∈ R are slack variables.

For multitask learning, the relationship between S tasks (or sites, in our case) must be

described, which can be framed as a hierarchical model. This assumes that each task function comes

from a class of probability distributions. The relationship is defined as

ws = w0 + vs, (2)

where w0 is the mean of the data, and each task s has its own weight vector, vs. Multitask learning

allows for simultaneous learning of the mean of all tasks, w0, and each task weight vector, vs, so the

minimization function then becomes

C

S∑
s=1

m∑
i=1

ξis +
λ1
S

S∑
s=1

||vs||2 + λ2||w0||2, (3)

where λ1, λ2 are positive regularization parameters, and ε is still a constant. For high similarity

between tasks, the vs will be small in relation to w0; this relationship is described by the hyperpa-

rameters λ1, λ2 that must be chosen by the user. The dual of (3) can be described using a feature
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mapping φ(x, s), which allows us to relate the dual of a multitask learning problem to the dual of

(1) as

max
αis


m∑
i=1

S∑
s=1

αis −
m∑
i=1

S∑
s=1

m∑
j=1

S∑
t=1

αisyisαjtyjtφ(x, s)

 , (4)

where

φ(x, s) =
( x
√
µ
, 0, ..., 0︸ ︷︷ ︸

s−1

, x, 0, ..., 0︸ ︷︷ ︸
S−s

)
, for µ =

Sλ2
λ1

. (5)

As can be seen in (4), this is the same dual problem as for a single-task SVM, with the data

transformed by φ(x, s) into the multitask feature space. This can be implemented as a kernel

method, without explicitly computing the higher-dimensional feature vectors φ(x, s), since only

inner products between features are needed in the SVM optimization.

2.1.2 Data. The Autism Brain Imaging Data Exchange (ABIDE) database is an online

consortium of MRI and rs-fMRI data from 17 international sites, resulting in brain imaging data

for 539 individuals with ASD and 573 TD controls [10]. All ASD subjects were diagnosed using

either the Autism Diagnosis Observation Schedule-General (ADOS-G) or the Autism Diagnostic

Interview-Revised (ADI-R) tests and removed from the study if other comorbid disorders were

present [10,24,25]. Further inclusion details can be found in [10].

We present multisite classification using both types of imaging data present in the ABIDE

data set. These two types of images present different challenges in the face of multisite classification,

yet both benefit through the use of the multisite SVM described in Section 2.1.

2.2 Functional Connectivity MRI Classification

Understanding what an fMRI scan measures is essential when considering classification of

such images. An MRI is a series of black and white images that together give a 3D view of the

structures scanned based on the density of the structure at each voxel in the image. An fMRI is an

MRI with an additional measure of the functional level in that area. In an fMRI of the brain, this

is the amount of oxygenated blood in the area over the length of the scan, called the blood oxygen

level dependent (BOLD) signal. This additional information, while providing more insight into the

brain, also greatly increases the complexity of the data.

2.2.1 Feature selection. Data extraction in imaging studies typically involves very high-

dimensional data spaces. For fMRI, a typical choice for data is the pairwise correlation between n

predefined regions of the brain. This yields a data space of n(n−1)
2 dimensionality, which, even for a

relatively small number of regions, can be computationally expensive. Feature selection can reduce
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redundancy and increase relevancy of the data while reducing computation time [18]. Rather than

select features in the n(n−1)
2 -dimensional feature space of correlations, we instead select from the

original n brain regions.

One approach to feature selection in SVM is to use the values of the weight vector w to

choose the most relevant features. Recall that the decision boundary in an SVM is defined by

w · x − b, meaning that the highest magnitudes in the weight vector denote the features that best

define the decision boundary between groups. This is the basis for the SVM recursive feature

elimination (SVM-RFE) method demonstrated in [10, 11, 19]: an iterative process where a user-

specified number of features corresponding to the lowest w values are removed from the feature

set after each iteration. We modify SVM-RFE to better suit the fMRI pairwise correlation data by

ranking the features not by the associated w value of each pairwise correlation, but by the l2-norm of

an entire region’s pairwise correlation w vector values. This means for each region, r, we extract the

w values for all pairwise correlation data points involving region r and find the l2-norm of these w

values. We do this for all regions in the data set which are then ranked and a user-specified number

of regions corresponding to the lowest associated l2-norms are removed from the data set after each

iteration. This approach effectively reduces the data dimension for feature selection purposes while

still leveraging the correlation data.

2.2.2 Evaluation. All data were preprocessed using the Functional Connectomes-1000

preprocessing scripts which include skull stripping, motion correcting, registration, segmentation,

and spatial smoothing [5]. Twelve subjects were removed because of failure during the preprocessing.

Two OHSU subjects were missing the resting rs-fMRI file and 10 UCLA subjects were missing the

anatomical scan file which is required in the preprocessing pipeline. This resulted in 1100 subjects

for analysis, 530 ASD and 570 TD controls.

From each subject’s postprocessed image, the time series for each of 264 regions was ex-

tracted based on Power’s regions of interest [29]. These 264 regions are distributed among the

cerebral cortex, subcortical structures, and cerebellum, where each region is a sphere of 5mm in

radius and regions are separated by a minimum distance of 10mm so as to avoid detection of a

shared signal. The Fisher-transformed Pearson correlation coefficient was then found between each

region and all other 263 regions, resulting in a 34,716 dimensional feature space for each subject.

After feature selection, this number was reduced to 74 regions of the original 264, yielding a final

feature space of 2,701 features.
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The ABIDE data are split into two sets; one half of the data is used for training and the

other half is used exclusively to test our approach. This split is performed at the site level, randomly

removing half of the ASD subjects and half of the TD subjects per site, and then aggregating these

subjects into a testing set to preserve the ratios between sites and groups across the two data sets.

We present results for three cases: one where each site is classified individually, a second

where all site data are pooled and considered a single-site, and the third using the multisite learning

approach described in Section 2.1. For all of the results presented within, a linear kernel is used in the

SVM, with the error term parameter, ε, determined by cross validation on the training set. Multisite

learning requires an additional parameter, µ, which is also determined through cross validation on

the training set. Additionally, the training set is used to determine nuisance factor regression on

subject age, and feature selection as described in Section 2.2.1. It is important to note that all

parameter tuning, feature selection, and nuisance factor regression is performed exclusively on the

training set. Involving the testing set in any of these procedures can bias the classifier and inflate

the results.

The multisite learning approach achieved significantly better overall accuracy than the

single-site approach, which in turn improved upon the individual site classifiers. Using multisite

learning, we classified the ABIDE data with an overall accuracy of 64.9%, with 67% sensitivity,

and 63% specificity. Pooling all data resulted in 62.9% overall accuracy, 67% sensitivity, and 59%

specificity. The weighted average of each site’s individual accuracy was 58.1% with sensitivity of

64%, and specificity of 53%. The site-by-site accuracies for pooled, individual, and the proposed

multisite classifiers are shown in Figure 1.

Figure 1. The overall accuracies by site, as found by each of the three experiments.
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Several sites benefited greatly from the increase in data size, most notably Caltech, CMU,

MaxMun, and Olin. Using multisite learning, all but one of the sites in the bottom 50% for sample

size either equaled or improved upon the pooled result. For sites that were relatively stable to begin

with because of large individual site sample size (e.g., NYU, UCLA, UM, USM), the site’s overall

accuracy found little to no improvement with the multisite learning approach. This is an expected

byproduct of multisite learning, as the larger sites already have sufficient data to train a competent

classifier.

2.2.3 Visualization of discriminating functional connections. Figure 2 displays the

regions identified via the method described in Section 2.2.1. Each ribbon connects two regions whose

pairwise correlation was most discriminative in the SVM classifier, where ribbon width corresponds

to importance. The regions show a strong overlap with ROIs previously identified as network

“hubs” thought to be abnormal in autism, namely the default mode network (including regions

LCGpf, RCGad, RPC) and socioemotional salience network (including regions RIC, LPcG, RPcG,

RIFGpt). Specifically, these regions include atypical network structure identified in previous studies

of autism using structural covariance MRI [36] and also fMRI (reviewed in [1]). It is hypothesized

that these abnormal networks may contribute to many of the behaviors associated with the disorder.

Abbrev. Region

LC L. Caudate
LCC L. Cuneal Cortex
LCG L. Cingulate Gyrus
LIC L. Insular Cortex
LIFG L. Inferior Frontal Gyrus
LITG L. Inferior Temporal Gyrus
LLOC L. Lateral Occipital Cortex
LMTG L. Middle Temporal Gyrus
LOFG L. Occipital Fusiform Gyrus
LOP L. Occipital Pole
LPcG L. Paracingulate Gyrus
LPG L. Precentral Gyrus
LPoG L. Postcentral Gyrus
LPT L. Planum Temporale
LSFG L. Superior Frontal Gyrus
LSPL L. Superior Parietal Lobule
LTFC L. Temporal Fusiform Cortex
RAG R. Angular Gyrus
RCG R. Cingulate Gyrus
RIC R. Insular Cortex
RIFG R. Inferior Frontal Gyrus
RITG R. Inferior Temporal Gyrus
RJLC R. Juxtapositional Lobule Cortex
RLOC R. Lateral Occipital Cortex
RMFG R. Middle Frontal Gyrus
ROP R. Occipital Pole
RP R. Putamen
RPC R. Precuneous Cortex
RPcG R. Paracingulate Gyrus
RPG R. Precentral Gyrus
RSFG R. Superior Frontal Gyrus
RTFC R. Temporal Fusiform Cortex
RTOFC R. Temporal Occipital Fusiform Cortex
RV R. VI
VV Vermis VI

ad anterior division
id inferior division
pd posterior division
po pars opercularis
pt pars triangularis
sd superior division
tp temporooccipital part

Figure 2. The most discriminative pairwise connections as selected by the method described in Section 2.2.1.
The width of each ribbon is determined by the weights from the w0 vector (i.e., utility) in specifying the
SVM decision boundary.



3 STRUCTURAL MRI NETWORK ESTIMATION AND

CLASSIFICATION

Structural MRI presents different challenges in the face of classification. One of the main

issues with structural MRI is that the image encodes relative structure density, meaning that com-

paring voxel density from subject to subject is not straightforward. Bringing analysis to the level of

a single subject requires additional manipulation of the data in order to get to a state in which the

multisite learning approach presented in Section 2.1 can be effectively applied.

3.1 Methods

We believe the power of structural MRI classification resides in looking at networks within

the brain that present differences between ASD and TD subjects. Indeed, multiple studies have

found that there are abnormalities at the network level in autism [4, 36]. However, many of these

methods rely on functional MRI or a group level analysis across subjects. Reduction to a network

quantification at the individual subject level requires several extra steps in the classification pipeline.

3.1.1 Network extraction. There are many ways to go about extracting networks using

neuroimaging data. Most approaches rely on fMRI data [8, 15] where the network determination is

based on a task the subject completes during the scan. Additionally, using fMRI, an approximation

of the network can be seen at the single subject level. Using MRI, the network formulation is less

direct, requiring postprocessing to extract the networks [36]. This approach uses a “seed” node in

the brain which is known to be an important region for a certain network. Looking at the whole

brain grey matter density covariance with the seed across all subjects yields regions with a high

correlation to the seed node. By performing this structural covariance analysis at the group-level,

differences in network connectivity between groups can be captured.

3.1.2 Feature space reduction. Once we have a set of regions, S, which belongs to

some known network, N , we can pose the data as a fully connected graph where each region in S is

a vertex connected by an edge with some weight w, w ≥ 0, denoting the strength of the correlation

between regions. The graph is represented by the inverse covariance matrix, or precision matrix,

which measures partial correlations of random variables. The [i,j]th entry in the precision matrix
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denotes partial correlation between the ith and jth random variables in a set. There are several

in-place methods for estimating the precision matrix on a set of data, including the chosen sparse

approaches demonstrated in [16,34].

Computing this graph at the group level yields two graphs within the network, one char-

acterizing the connectivity of S in subjects with an ASD and one for TD subjects. These graphs

are interesting in themselves, but also provide a novel way to reduce the network feature space.

Mahalanobis distance is a weighted distance metric between a point and the mean of a distribution,

where the weights are determined by the precision matrix. The equation is given by:

d =
√

(X − µ)TΛ(X − µ),

where X is a vector of length |S|, each xi corresponding to the subject’s density for region i in N , µ is

the mean density across all subjects for nodes i...|S| in N . The matrix Λ is the estimated precision

matrix. Note that the squared Mahalanobis distance is proportional to the log-likelihood of the

multivariate normal distribution. Using this metric, we can compute the distance of an unlabeled

subject from each of the two group-level graphs, reducing the data dimension of each network from

|S| nodes to 2.

3.2 Evaluation

As a proof-of-concept, we apply the network estimation and feature space reduction tech-

niques to a subset of the ABIDE database and present classification results for the three previously

described approaches: multisite, pooled, and site-specific.

3.2.1 Data. We chose the three largest sites from the ABIDE database in terms of sample

size, NYU, UCLA, and UM, consisting of 438 subjects among both groups. As above, ten UCLA

subjects did not include the anatomical MRI scan, and all subjects without a strict autism classifi-

cation (i.e., excluding Asperger’s, PPD-NOS, etc.) were removed from the data set, resulting in 319

total subjects, with 222 TD subjects and 97 subjects with autism. The data were preprocessed by

our colleague, Dr. Brandon Zielinski, using a preprocessing pipeline which includes computation of

a customized image atlas, segmentation, and intensity normalization [37].

3.2.2 Data extraction. For each of 16 known networks in the brain, we used the network

extraction approach described in Section 3.1. First, a set of regions implicated within the network

is identified by analyzing group-level structural covariance across all subjects and then extracting

the union of regions that were significant across ASD and TD subjects. For the chosen 16 networks,
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this resulted in 394 regions of interest per subject. This feature space was reduced to 32 features

per subject through the graph-based feature space reduction done at the site level. Recall that for

|N | networks, each with dn nodes, the feature space dimension is reduced from
∑n
i=1 dn to 2|N |.

The computed distance could be used as a classifier similar to a majority vote, where a

subject is classified as the group to which it most often belongs (i.e., by a lower computed distance).

However, this does not include a multisite application and, more importantly, oversimplifies what is

known to be a complicated disorder. Autism is characterized by changed connectivity [4, 36] and is

a spectrum disorder, presenting in different ways and different severities across subjects, potentially

affecting some networks and leaving others unchanged. Just using the computed distance would fail

to account for this variability.

3.2.3 Results. The three chosen sites are split into a training and testing set performed

at the site level, randomly removing one-third of the ASD subjects and one-third of the TD subjects

per site, and then aggregating these subjects into a testing set to preserve the ratios between sites

and groups across the three data sets.

As in the fMRI case, there are three scenarios: one where each site is considered individually,

a second where all site data are pooled and considered a single-site and the third using the multisite

learning approach described in Section 2.1. Note that the network graphs are computed using

subjects aggregated across all sites to leverage the increase in sample size.

For all of the results presented within, a polynomial kernel of degree 3 is used in the SVM,

with the error term parameter, ε, and kernel parameters, γ, b, determined by cross-validation on

the training set. Multisite learning requires an additional parameter, µ, which is also determined

through cross validation on the training set. Additionally, the training set is used in feature reduction

to form the network graphs as described in Section 3.1. Once again, note that all parameter tuning,

feature reduction, and nuisance factor regression are performed exclusively on the training set.

While the multisite classification results are not convincing, looking at the accuracy of each

individual site classifier shows that there is the network extraction and features space reduction

techniques are able to capture group-level differences. These results are shown in Figure 3. All

three sites were able to achieve an overall accuracy greater than 65%, although the sensitivity

and specificity accuracies are lopsided for the NYU classifier (9.1%, 86.7%, respectively). This is

potentially due to the ratio of ASD to TD subjects in the NYU data set, which is about 1:4, whereas

the UM and UCLA data sets have a ratio 1:3. As for why the pooled and multisite classifiers do so

poorly in comparison to the site-specific classifiers, there is only conjecture. This could be that the
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Figure 3. Summarized results of ABIDE MRI classification using three sites. Note that the overall accuracy
is highest for each site classified individually; however, the sensitivity and specificity measures are more even
for the multisite approach.

network differences between groups are so different that even the multisite classifier was not able to

correct for the difference. This seems unlikely, considering the networks were estimated using the

data across all sites, unless the relative sample size across sites skewed the networks towards one

site and this could not be corrected by parameter selection.



4 MULTISITE ATLAS ESTIMATION

Similar to the multisite approach for classification, the goal of multisite atlas estimation is

to capture site deviation from the mean, except the formulation is that of a hierarchical Bayes model

which encodes site deviation from the pooled data atlas. As previously stated, image templates, or

atlases, play a critical role in imaging studies by providing a common anatomical coordinate system

for analysis of shape and function. It is now common to estimate an atlas as a deformable average

of the very images being studied in order to provide a representative example of the particular

population, imaging hardware, protocol, etc. However, when imaging data are aggregated across

multiple sites, estimating an atlas from the pooled data fails to account for the variability of these

factors across sites and can potentially obliterate meaningful data.

We present a hierarchical Bayesian model to estimate atlases on multisite imaging data,

which controls for the intersite variability, while providing a common coordinate system for analysis.

This builds on methods presented in [35], where the large deformation diffeomorphic metric mapping

(LDDMM) problem is formulated as a probabilistic model, and the transformations between the atlas

and individual images are considered random variables. To build an atlas from multisite image data,

we propose to add an additional layer in this probabilistic model to account for systematic geometric

differences between imaging sites, resulting in concatenated transformations, one site-specific, one

subject-specific, which describe the deformation of a subject’s image to the estimated atlas. Bayesian

inference is performed through an iterative, maximum a posteriori (MAP) estimate of the random

variables until convergence conditions are met. We demonstrate that the resulting model reduces the

confounding intersite variability, and results in improved statistical power in a statistical analysis of

brain shape.

4.1 Single-Site Bayesian Atlas Building

We will work within the framework of large deformation diffeomorphic metric mapping

(LDDMM) [3], as it provides a rigorous setting for defining a distance metric on deformations between

images. The atlas building problem in LDDMM can be phrased as a minimization of the sum-of-

squared distances function from the atlas to the input images. Images are treated as L2 functions

on a compact image domain Ω. The diffeomorphism registering the atlas image A ∈ L2(Ω,R) to the
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input image Ik ∈ L2(Ω,R) will be denoted φk ∈ Diff(Ω). It is given by the flow of a time-varying

velocity field, vk(t) ∈ C∞(TΩ). In the geodesic shooting framework, this velocity field is governed

by the geodesic shooting equation on Diff(Ω). As such, it is sufficient to represent a geodesic by

its velocity at t = 0. Thus, we will simplify notation by excluding the time variable, and write

vk = vk(0). Given this setup, the atlas building problem seeks to minimize the energy

E(vk, A) =

N∑
k=1

(Lvk, vk)− 1

σ2

N∑
k=1

‖A ◦ φ−1k − Ik‖
2
L2 , (6)

where L is a Riemannian metric on velocities, given by a self-adjoint differential operator that

controls the regularity of the transformations, and σ2 is the image noise variance.

Zhang et al. [35] describe a Bayesian interpretation of this diffeomorphic atlas building

problem, where the initial velocities, vk, become latent random variables. In the Bayesian setting,

the regularization term on vk is the log-prior and the image match term is the log-likelihood. We

will adopt this probabilistic interpretation, as it allows us to define a hierarchical Bayesian model

for multisite atlas building.

4.2 Geodesic Shooting of Diffeomorphisms

We will give a very brief description of geodesic shooting in the space of diffeomorphisms.

Given an initial velocity v ∈ C∞(TΩ), the evolution of the velocity along a geodesic path is given

by the Euler-Poincaré equations (EPDiff) [26],

∂v

∂t
= −K ad∗vm = −K

[
(Dv)Tm+Dmv +mdiv v

]
, (7)

where D denotes the Jacobian matrix, and K = L−1. The operator ad∗ is the dual of the negative

Lie bracket of vector fields,

adv w = −[v, w] = Dvw −Dwv.

The EPDiff equation (7) results in a time-varying velocity vt : [0, 1] → V , which is integrated in

time by the rule (dφt/dt) = vt ◦ φt to arrive at the geodesic path, φt ∈ Diffs(Ω).

4.3 Hierarchical Bayesian Model

We now present our hierarchical Bayesian model for multisite atlas estimation. The input

are images Iik, where i = 1, . . . , S represents the site index and k ∈ 1, . . . , Ni represents the subject

index at site i. The goal is to estimate a common atlas image for all sites, A ∈ L2(Ω,R), and
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simultaneously capture the geometric differences between sites. We represent the intersite variability

as a set of site-specific deformations, φi, which, when composed with A, describe site-specific atlases,

A◦φ−1i . The site-specific atlas is then deformed by the individual-level diffeomorphism, ψik, to arrive

at the final registration of the atlas, A ◦φ−1i ◦ψ
−1
ik , to the input image Iik. As above, we will use the

initial geodesic velocity to capture a diffeomorphism: denote ui for the initial velocity of φi and vik

for that of ψik. This approach gives rise to a hierarchical Bayesian model, shown in Figure 4, which

decomposes the diffeomorphic transformation from the atlas A to the individual image Iik into the

site-specific initial velocity, ui, and the subject-specific initial velocity, vik.

In order to estimate the ui, vik in the Bayesian setting, we need to define priors on our

random variables:

ui ∼ N(0, L−1)

vik ∼ N(0, L−1),

where L = (−α∆ + I)c, the same value discussed in Section 4.1.

Our model assumes i.i.d. Gaussian image noise, yielding the likelihood:

p(Iik|vik, ui, A) ∼
∏
k∈Ni

N(A ◦ φ−1i ◦ ψ
−1
ik , σ

2). (8)

While it is not readily apparent that vik, ui are related in the priors, these two variables are condi-

tionally dependent, as seen in the head-to-head nature of the submodel involving vik, Iik, ui. When

Iik are also random variables, vik and ui are independent; when Iik is observed, this introduces a

link between vik, ui and they are now dependent in their respective posterior distributions:

ln p(vik|Iik, A, ui;σ) ∝ −(Lvik, vik)− 1

2σ2
‖A ◦ φ−1i ◦ ψ

−1
ik − Iik‖

2, (9)

ln p(ui|Iik, A, vik;σ) ∝ −(Lui, ui)−
1

2σ2

Ni∑
k=1

‖A ◦ φ−1i − Iik ◦ ψik‖
2|Dψik|. (10)

vik

uiA Iik

S
Ni

Figure 4. The hierarchical Bayesian model for multisite atlas estimation.
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Performing Bayesian inference on the system described above could be done in several ways.

We have chosen a maximum a posteriori (MAP) optimization that alternates between maximizing

the posterior equations given in (9) and (10) over vik, ui, and the closed-form maximization for A

given in (11). Alternatively, we could sample the vik, ui using Gibbs sampling on the posteriors

in a Monte Carlo expectation maximization (MCEM) procedure. However, the MAP estimate is a

mode approximation to the full EM algorithm and sufficient to show the utility of our hierarchical

Bayesian model for estimating multisite image atlases.

We compute the MAP estimates through a gradient ascent procedure in which we alternate

between updating the vik and the ui, then updating the atlas, A, using an adaptation of the closed

form MAP update derived in [35]:

A =

∑
i∈S
∑
k∈Ni

(Iik ◦ ψik ◦ φi)|D(ψik ◦ φi)|∑
i∈S
∑
k∈Ni

|D(ψik ◦ φi)|
. (11)

This is done iteratively until the energy, E(vik, ui, A) converges within reasonable tolerance.

In our model, we fix the parameters σ = 0.05, α = 3 and c = 3. To compute the gradient w.r.t. the

initial velocity vik, we follow the geodesic shooting algorithm and reduced adjoint Jacobi fields from

Bullo [6]. We first forward integrate the geodesic evolution equation (7) along time points t ∈ [0, 1],

and generate the diffeomorphic deformations by (d/dt)φ(t, x) = v(t, φ(t, x)). The gradient at t = 1

is computed as

∇vik ln p(vik|Iik, A, ui;σ) = −K
[

1

σ2
(A ◦ φ−1i ◦ ψ

−1
ik − Iik) · ∇(A ◦ φ−1i ◦ ψ

−1
ik )

]
.

We then integrate the gradient above backward to time point t = 0 by reduced adjoint Jacobi fields

to update the gradient w.r.t. the initial velocity vik. Similarly for ui, we compute the gradient at

t = 1 by

∇ui
ln p(ui|Iik, A, vik;σ) = −K

[
1

σ2
(A ◦ φ−1i − Iik ◦ ψik) · |Dψik| · ∇(A ◦ φ−1i )

]
.

For more details on the derivation of the reduced adjoint Jacobi field equations, see [6].

4.4 Results

We present results from a multisite neuroimaging data set as a demonstration of the hi-

erarchical model’s ability to capture intersite variability. Furthermore, we show that controlling
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for this intersite variability results in improved statistical characterization of the underlying shape

variability due to factors of interest, such as age and diagnosis.

4.4.1 Data. Once again, we employ the ABIDE database’s structural MRI images. From

three sites with different scanner brands, we selected 45 age and group matched subjects (15 from

each site), including 27 TD and 18 ASD subjects. The MRIs for these subjects were then skull

stripped, motion corrected, bias field corrected, rigidly registered, and intensity normalized prior to

analysis.

4.4.2 Statistical comparison. We compared our hierarchical multisite atlas to a single

atlas computed from the pooled data. The results are shown in Figure 5. Notice that the top-

level atlas A estimated in the multisite model is similar to the single atlas from the pooled data.

However, our model captures differences between the site-specific atlases, as can be seen in the log-

determinant Jacobian maps of the site-specific diffeomorphisms. Similar analysis was performed on

the pooled results, using the estimated initial velocities within each site for the estimated pooled atlas

to generate the site deformations. This analysis showed that just pooling the data and estimating

site-specific deformations yields smaller differences across sites in terms of magnitude and average

deformation.

In order to focus on biological shape variability, we can control for the confounding intersite

variability by “removing” the estimated site-specific transformations from our multisite approach.

We do this by adjoint transport of the initial velocity fields, vik, from the site atlas back to the

top-level atlas coordinates, giving transported velocities, ṽik = Adφ−1
i
vik.

To test if our multisite atlas is better able to capture age-related and diagnosis-related

shape variability, we use partial least squares (PLS) regression on the diagnosis (ASD or TD) and

age versus the initial velocity fields ṽik. PLS seeks to predict a set of dependent variables from a

set of independent variables, yielding, among other analyses, what percentage of the variance with

respect to the independent variables is accounted for by the dependent variables [33]. In our case,

the dependent variables for analyzing the multisite method are age and diagnosis, and for the pooled

method are age, diagnosis and site versus the initial velocity fields. Figure 6 shows that variance

in the multisite velocity field data is able to explain age and diagnosis in fewer PLS components

than in the velocities estimated by pooling the data, even when site is included as a dependent

variable. Of course with enough dimensions, both methods are able to fully explain the responses,

but our hierarchical model explains the variance more efficiently. Additionally, the total variance of

the system described by PLS on the multisite data was nearly 14% lower than the total variance
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Figure 5. Axial slices of the estimated atlases: pooled (top left), multisite (top right), site-specific (middle),
and the site-specific atlases overlaid with the log-determinant Jacobian of the site-specific deformations
(bottom). A negative value (blue) denotes shrinkage and positive value (red) denotes expansion from the
site level to the estimated atlas.

Figure 6. The cumulative age and group variance (blue, red) or age, group, and site (gold) accounted for by
each PLS component of the velocity fields.

on pooled data, for totals of 1129056 and 1305985, respectively. This shows that our proposed

hierarchical model is able to more efficiently capture biological variability in shape of the multisite

ABIDE data set by reducing the overall intersite variance.



5 CONCLUSION

I have presented my three contributions to the field of medical image analysis involving

multisite data.

5.1 Resting-State Functional MRI Classification

The approach described above is a novel way to classify multisite data, specifically neu-

roimaging fMRI data, in a way that leverages similarity across sites while accounting for individual

site differences. Additionally, the feature selection approach that is better equipped to handle fMRI

pairwise correlation data. The utility of these ideas was demonstrated by achieving state-of-the-art

classification accuracy on the ABIDE data set. The results suggest that multitask learning can

especially benefit imaging sites with smaller sample sizes. Future work in this area should explore

other techniques that may further distinguish the multisite classifier from the pooled results. This

could be some sort of boosting mechanism, additional feature space reduction, or even something

other than pairwise correlation data.

5.2 Structural MRI Network Estimation and Classification

While the results presented above do suggest that the network estimation approach is cap-

turing differences across groups, there is definite room for improvement. The multisite classifier

failed with these data and the reasoning for this is unclear and should be explored. Additionally, a

natural future step is to perform this approach on the entire ABIDE data set to see how the smaller

sample size sites react to the network estimation approach and possibly gain insight for the direction

of future improvements.

5.3 Multisite Atlas Estimation

We have presented a novel approach to the problem of multisite atlas estimation and shown

its utility in reducing the variability of high-dimensional, multisite imaging data. Our hierarchical

Bayesian model captures intersite variability in site-specific diffeomorphisms which, when composed

with diffeomorphisms at the individual level, achieve the final diffeomorphic transformations between

the atlas and input images. Our multisite model was able to reduce overall variability and capture
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the relevant variability of the data, i.e., that due to age or diagnosis, in fewer PLS components than

its pooled atlas counterpart.

We chose to compare our approach to a single atlas on the pooled data due to the prevalence

of this approach in the literature, e.g., [21,30]. An alternative comparison would be to use a multi-

atlas [23] on the pooled data to determine if our decrease in variance is due solely to the fact that

we are estimating multiple atlases. The difference is that our multisite atlas directly models and

controls for the intersite variance. We leave comparison to a multi-atlas as future work.
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