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ABSTRACT 

Genetic heterogeneity is one of  the most significant  obstacles to identifying  the 

genetic basis for  many common human diseases. Heterogeneity is the term used for 

genetic systems in which numerous genes each make a small contribution to the 

overall heritability of  a disease. Linkage analysis has been used successfully  for 

several decades to map disease susceptibility genes, but it lacks power to identify 

susceptibility genes in heterogeneous systems. The purpose of  this research is to 

improve current methods and develop new methods for  linkage analysis in the 

presence of  genetic heterogeneity. Competency is established in conventional and 

emerging methodology, new methods are developed, and the newly developed 

methods are tested in real study data. Prostate cancer (PCa), a prime example of  the 

problems that heterogeneity creates for  genetic epidemiologists, is used as a model 

system throughout the research. 

Studying alternate PCa phenotype definitions  or PCa subtypes may improve 

our knowledge of  the disease. Chapter 2 describes a conventional linkage analysis for 

aggressive PCa subtypes, the results of  which confirm  two previously reported PCa 

aggressiveness loci. Chapter 3 presents proof  of  concept that phenotypes based on 

gene expression profiles  from  microarray data may be useful  for  identifying  genes 

associated with risk of  PCa development via linkage analysis. Chapters 4 and 5 

describe the development and application of  the innovative sumLINK statistic, which 
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identifies  genetic regions of  extreme consistency across pedigrees without regard to 

negative evidence from  unlinked or uninformative  pedigrees. Significance  of  the 

sumLINK statistic and the complimentary sumLOD statistic is determined empirically 

by an innovative permutation procedure that randomizes linkage information  across 

pedigrees. Simulation testing shows that this method is reliable and powerful  for 

finding  genes in heterogeneous systems. The utility of  the sumLINK method is 

demonstrated with exciting results using data from  the International Consortium for 

Prostate Cancer Genetics for  aggressive and general prostate cancer. The sumLINK 

procedure fills  an important informatics  role by facilitating  secure interinstitutional 

data sharing and collaborative research. The sumLINK method is a powerful  tool for 

combating the obstacles presented by heterogeneity, and will improve our knowledge 

of  the genetic epidemiology of  many common, complex diseases. 
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Background 

Genetic Epidemiology 

Genetic epidemiology is the study of  the genetic contribution to biological 

phenomena, with specific  emphasis on determining the hereditary factors  of  human 

disease. The basic purpose of  genetic epidemiology is to define  the relationship 

between genotype and phenotype. Genetic epidemiology is an interdisciplinary 

science that synthesizes knowledge from  the fields  of  genetics, statistics, and 

bioinformatics.  The traditional tools of  genetic epidemiology include case-control 

genetic association techniques and a variety of  pedigree-based analytical techniques, 

such as linkage analysis and transmission tests. 

Genetic Epidemiology Research in Utah 

Genetic epidemiology research has a rich history in Utah, due largely to the 

unique resources available in the Utah Population Database (UPDB). The UPDB was 

established in the 1970s and now contains records for  over 12 million individuals. 

The UPDB began with computerized genealogical records from  the descendants of 

Utah's founding  pioneers. Those genealogies have since been extended and linked 

with extensive phenotype data from  such sources as the Utah Cancer Registry, Utah 

death certificates  and vital records, and hospital discharge data [1 ]. This combination 

of  genealogical and phenotypic data makes it possible to calculate population-based 

risk estimates for  diseases among the relatives of  probands and to easily identify 

families  with significant  excesses of  those diseases. Familial relative risks can be 

determined for  phenotypes as diverse as cancer [2], intracranial aneurysm [3], and 
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kidney disease [4], UPDB resources have been instrumental in identifying  many 

important disease genes [5-9], 

Linkage Analysis 

Genetic linkage analysis has been successfully  used for  many years as a tool 

for  mapping disease susceptibility loci [ 10], Linkage analysis is the process of 

identifying  chromosomal segments that are co-inherited with disease status in 

pedigrees with an abundance of  the disease. This technique is well suited for  finding 

rare, highly penetrant genetic variants. The LOD score has been the principle metric 

used in linkage analysis for  over 50 years [1 1.12], LOD scores work well when all or 

most of  the pedigrees studied are linked to a single genetic locus, but it lacks power to 

detect genes in heterogeneous systems where the trait is controlled by numerous genes 

and only a small proportion of  the collected pedigrees are linked to any given risk 

locus [10], Variants that account for  less than 20% of  the total heritability of  a trait 

can rarely be detected with LOD analysis [13], The low power of  the traditional LOD 

score method for  detecting linkage in heterogeneous systems is a major weakness of 

the approach. Many human health-related phenotypes are believed to be controlled by 

multiple genes, each accounting for  such a small proportion of  the heritability of  the 

trait that it is unlikely to be detected by LOD analysis. 

Heterogeneity Methods 

Several analytical methods have been developed for  dealing with the problem 

of  heterogeneity. The most widely used metric is the Heterogeneity-LOD, or HLOD 

statistic [ 14], HLOD analysis allows for  a portion of  the pedigrees to be unlinked at 

kidney di sease [4]. UPDB resources have been instrumelllal in identifying many 

important disease genes [5-9]. 
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Heterogeneit y Methods 

Severa l analytical methods have been developed for dealing wi th the problem 

of heterogene ity. The most wide ly used metri c is the Heterogenei ty-LaD, or II LaD 

stati stic [141 . HLaD analysis all ows for a porti on o rthe pedigrees to be unlinked at 
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any given locus [15.16]. but it tends to identify  only large-effect  loci. Other methods 

have been proposed and tested for  incorporating interaction effects  into linkage or for 

simultaneous linkage analysis of  multiple loci [17.18], but these methods are in 

developmental stages and have not yet been broadly adopted. Another approach to the 

problem is the sumLOD statistic, which strives to identify  loci in the presence ot 

heterogeneity by focusing  on the pedigrees with positive linkage information  at a 

locus and ignoring negative information  from  other pedigrees. It has been used in the 

past as a summary measure [19-211. but has not been used as a test statistic because 

the distribution is unknown, making significance  determination difficult.  The 

sumLOD statistic is not widely used currently, but a procedure for  testing its 

significance,  presented in Chapter 4. may increase its utilization. 

Prostate Cancer 

Prostate cancer (PC) is the most commonly diagnosed cancer among American 

men. 186,320 new PC cases were expected in the United States in 2008, accounting 

for  25% of  all new male cancer cases [22], PC is also the second leading cause of 

cancer-related mortality in American men. Studies have repeatedly shown that PC has 

a strong hereditary component [23,241. This observation holds true in Utah, where 

analysis of  the UPDB indicates significant  evidence of  familial  ity for  PC extending 

well beyond the limits of  nuclear familes  [Appendix A]. The relative risk of  PC to 

first  degree relatives of  PC cases in Utah is 1.91 (95% CI: 1.85—1.97), and the 

relative risk to second degree relatives is 1.28 (1.24—1.32) [25], The health burden of 
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PC makes it a priority for  epidemiology research, and the familiality  evidence makes it 

an excellent candidate for  genetic epidemiology research as well. 

Heterogeneity in Prostate Cancer 

Prostate cancer (PC) is an excellent example of  the negative impact of 

heterogeneity on genetic linkage. Results of  the first  genome-wide linkage analysis 

for  PC were published in 1996 [26], That study found  highly significant  linkage 

evidence (LOD = 5.43) at chromosome lq23-24. a region that has come to be known 

as the IIPC1 locus. Identification  of  HPC1 was an encouraging start to the pursuit of 

PC susceptibility genes; however, early attempts to replicate the linkage finding  met 

little success [24], Genes such as RNASEL [27] have since been proposed as the 

HPCI gene, but there is still no consensus about the underlying source of  the HPC1 

linkage. 

Several more linkage analyses were published soon after  the HPCI result that 

implicated additional PC susceptibility loci. Notable PC loci reported between 1998 

and 2001 include PCAP [28]. HPCX [29], CAPB [30], HPC20 [31], and HPC2 [32], 

Linkage to the HPC2 locus on chromosome 17p was announced by Utah researchers 

in 2000 [33]. Positional cloning and mutation screening identified  a gene, 

HPC2/ELAC2, mutations of  which segregated with PC. This finding  was greeted with 

"enormous excitement" by the research community [24], Early confirmation  studies 

reported that two common missense variants in the gene were strongly associated with 

PC risk (OR=2.37) and accounted for  5% of  PC in the population of  inference  [34]. A 

meta-analysis of  six studies showed a similar level of  association [35], Significant 
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association was also reported in a study of  African  American PC cases [36], 

However, other researchers failed  to replicate either the linkage [37] or the association 

result [38,39], Evidence for  the HPC2 locus remains inconsistent. Confirmation 

attempts for  other linkage regions have encountered difficulties  similar to what has 

been described for  the HPC1 and HPC2 loci. To date, over 30 genome-wide linkage 

analyses for  PC or selected PC subtypes have been published [ 18.26,28-32,40-66], 

with little consensus in the findings  [23], Putative PC susceptibility loci have been 

reported on almost every human chromosome, and multiple susceptibility loci reported 

on several chromosomes [23,67.68]. Major findings  are summarized in Table 1.1. 

Addressing Prostate Cancer I leterogeneity 

A 1998 review of  PC genetics determined that "a large proportion of  familial 

(prostate cancer) may not be due to segregation of  a few  major gene mutations, but 

rather to familial  sharing of  alleles at many loci, each contributing to a small increase 

in cancer risk" [69], This observation was prescient of  the future  of  PC genetics. 

Since 1999, at least 18 more reviews have been written about the ongoing pursuit of 

PC susceptibility genes [23,24,67,68,70-83], These reviews have consistently 

identified  genetic heterogeneity as the primary factor  that complicates the search for 

PC genes. It has been proposed that the apparent heterogeneity of  PC results partially 

from  variability in the phenotype, and that different  subtypes of  the disease may each 

have a more uniform  genetic etiology. The phenotypic variability is often  attributed to 

the increased screening for  prostate-specific  antigen (PSA) which began in the 1980s 

and resulted in a dramatic increase in PC incidence rates [221. Another frequent 
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Table 1.1. Selected prostate cancer ( 5C) linkage peaks 
Maximum LOD, 
HLOD, NPL or 

Locus p-value Proposed Gene Study 
General PC 

1 p36 3.22 CAPB Gibbs, 1999 [30] 
lq24-25 5.43 HPCI Smith, 1996 [26] 
Iq42.2-q43 3.10 PCAP Berthon, 1998 [28] 
3p 14.2 3.83 FHIT Larson, 2005 [84] 
3q26.31 2.48 N/A Camp, 2005 [66] 
5q21.1 2.06 N/A Camp, 2005 [66] 
7q 1 1 -21 3.01 N/A Friedrichsen, 2004 [60] 
8p22-23 1.84 MSR1 Xu, 2001 [85] 
16q23.2 3.15 N/A Suarez, 2000 [61] 
17p 1 1 4.53 HPC2/ELAC2 Tavtigian, 2001 [32] 
17q22 3.16 N/A Gillanders, 2004 [62] 
19pl 3.3 2.87 N/A Hsieh, 2001 [64] 
20q 13 3.02 HPC20 Berry, 2000 [311 
22ql2 3.57 N/A Xu, 2005 [63] 
Xq27-28 3.85 HPCX Xu, 1998 [29] 
Aggressive  PC 

lq24-25 3.25 HPCI Goddard, 2001 [65] 
1 q42.2-q43 2.84 PCAP Goddard, 2001 [65] 
4q 2.80 N/A Goddard, 2001 [65] 
5q31 -33 P=0.0053 N/A Witte, 2000 [59] 
6p22.3 3.00 N/A Schaid, 2006 [51] 
6q23.3 P=0.0009 N/A Slager, 2006 [55] 
7q21.11 4.09 N/A Schaid, 2006 [51] 
7q31-33 3.02 N/A Paiss, 2003 [86] 
7q32.2 P=0.0076 N/A Witte, 2000 [59] 
11 q 14.1-3 3.31 N/A Schaid, 2006 [51] 
19q 12 P=0.0088 N/A Witte, 2000 [59] 
19q 13 P<0.000l N/A Slager, 2003 [54] 
20p11-q11 2.65 HPC20 Schaid, 2006 [51] 
22q1 1-13 2.18 N/A Stanford,  2006 [56] 
22q 13 2.06 N/A Chang, 2005 [41] 
Xq 12-13 3.06 AR Goddard, 2001 [65] 
Xq27-28 2.54 HPCX Chang, 2005 [41] 
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explanation for  the lack of  reproducible results is the high expected number of 

phenocopies, or pedigree members who have the disease but do not share the same 

inherited factors  as other pedigree members, the presence of  which suppresses linkage 

evidence. Eeles wrote the following  in a 1999 review of  PC genetics: 

The study of  familial  prostate cancer is complicated by the fact  that 
there may be many sporadic cases in families,  as prostate cancer is so 
common. In addition, (PSA) screen detected family  history may behave 
differently  from  symptomatic disease. |76] 

These observations regarding phenotypic variability were echoed by Ostrander and 

Stanford  in 2000: 

It seems, therefore,  that mapping and cloning of  prostate cancer genes 
will be complicated. . . . First, there are a large number of  men with 
sporadic disease in the population. . . . Finally, there is enormous 
variation in the phenotype of  disease at diagnosis as well as disease 
progression within single families.  The introduction of  prostate-specific 
antigen (PSA) testing in the mid to late 1980s has probably contributed 
to that variability. [24] 

Stratification  of  PC families  into more homogeneous subgroups for  linkage 

analysis has been suggested as a mechanism to address the problem of  heterogeneity 

due to phenotypic variability [87], Linkage pedigrees are commonly classified 

according to variables such as mean age of  cases at PC diagnosis, evidence of  male-to-

male transmission, and the number of  cases in the pedigree. This approach has met 

with some success, as many of  the most significant  and reproducible linkages reported 

for  PC have come from  subset analyses. The weakness of  this approach comes in the 

inherent loss of  statistical power resulting from  multiple testing [88], 

Several research groups have published linkage analyses focusing  on the 

"aggressive" or "clinically significant"  subset of  prostate cancer cases 
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[41,42,48,51,52,55,59|. This approach is substantially different  from  simple 

subsetting of  pedigrees, as it requires a thorough redefinition  of  the phenotype. The 

definitions  of  aggressiveness vary across studies, but generally include some 

combination of  advanced tumor stage or grade, PSA level, early age at diagnosis, and 

mortality resulting from  PC. An example of  linkage analsysis for  aggressive PC is 

presented in Chapter 2. A more recent innovation is the idea of  linkage analysis using 

PC-related biomarkers to define  the phenotype, with the hypothesis that a gene may be 

identified  that is associated with the biomarker, and by extension, with the disease. 

An example of  this is the recently reported linkage analysis for  the TMPRSS2-ERG 

fusion,  a genetic anomaly commonly observed in PC tumors [45], RNA expression 

levels are another type of  biomarker that has been suggested as a suitable phenotype 

for  linkage analysis. This concept is discussed more in Chapter 3. 

Another method to address genetic heterogeneity is to increase statistical 

power for  finding  genes by collecting larger numbers of  pedigrees for  analysis. The 

International Consortium for  Prostate Cancer Genetics (1CPCG) was formed  with the 

goal of  improving PC research through the use of  both prospective and retrospective 

collaboration [89], following  Morton's directive to combine linkage evidence across 

studies [13]. The pooled pedigree resource of  the ICPCG consists of  over 1200 high-

risk PC pedigrees from  diverse areas of  the world. Analysis of  this resource has 

resulted in very promising linkage regions such as that on chromosome 22ql2 [63.90], 

and there is great potential for  future  discoveries within the extensive ICPCG data. 

Chapter 5 contains an analysis of  this ICPCG resource using newly developed 

statistical methods. 
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Genome-wide association studies (GWAS) have been proposed as an 

alternative to traditional pedigree-based linkage analysis. This approach, using case-

control testing of  several hundred thousand single nucleotide polymorphisms (SNPs), 

has shown some promise in clarifying  the genetic basis of  PC [91]. Recently 

published GWAS results for  PC have resulted in several significantly  associated SNP 

loci [72], SNP associations on chromosomes 8. 10, and 17 have been reproduced in 

multiple data resources, including at the University of  Utah [92], but these variants 

account for  only a very small portion of  all PC. and their functional  significance  has 

yet to be defined.  GWAS methodology is still in developmental stages and has yet to 

fulfill  the optimistic expectations for  the procedure [93]. but it holds promise for 

identifying  genes involved in PC and other complex phenotypes. 

Description of  Research 

The purpose of  the research presented here is to improve current methodology 

and to develop new methods for  linkage analysis in the presence of  heterogeneity. 

Newton Morton, one of  the fathers  of  modern linkage analysis, identifies  the 

heterogeneity issue as one of  the most significant  unsolved problems in genetic 

epidemiology 113]. He describes collaborative research and methodological 

development as two key factors  to make mapping of  oligogenes (genes with the 

greatest effect  in heterogeneous systems) possible. Morton writes: 

"The central problem of  oligogenic mapping is to combine evidence 
from  linkage and allelic association over many studies, each with 
inadequate power and differing  to some extent from  the others in 
phenotype definition,  ascertainment, markers, and population. Otherwise 
stated, the central problem is to develop methods that bring to 
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oligogenes the reliability that lods have given to linkage mapping for 
major loci [13]." 

Methodological development, particularly the development of  methods that encourage 

and facilitate  collaborative research, is a necessary step to overcome the negative 

impact of  heterogeneity. The development of  a reliable, robust analysis method will 

be an important step toward understanding the genetic etiology of  a plethora of 

complex human health phenotypes. The creation of  such a method is the centerpiece 

of  this research. Prostate cancer, a prime example of  the complications presented by 

heterogeneity, is used as a model system throughout this dissertation. 

The research presented here has three primary objectives: 

1. Apply conventional genetic epidemiology methods to alternative 

phenotype definitions,  such as clinically aggressive disease and 

predicted disease risk based on biomarkers, which may clarify  the 

broader genetic basis of  the disease. 

2. Develop new statistical methods for  linkage analysis in the presence of 

heterogeneity, designed to facilitate  multicenter collaborative research. 

3. Demonstrate the power and utility of  the new methods using data from 

the International Consortium for  Prostate Cancer Genetics. 

Chapters 2 through 5 present the results of  four  research projects designed to fulfill  the 

objectives above. The contents of  these chapters, as well as four  appendices 

containing supporting information,  are described below. 
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Methodological development, part icul arly th e deve lopment of methods that encourage 

and faci li tate co ll aborati ve research, is a necessary step to overcome the negative 

impact of heterogeneity. The deve lopment o f a rel iable, robust ana lys is method will 

be an important step toward understandi ng th e geneti c etiology ofa plethora of 

complex human hea lth phenotypes. The creation of such a method is the centerpiece 

of thi s research. Prostate cancer, a prime example of the compli cati ons presented by 

hetcrogeneity. is used as a model system throughout thi s disscrtation. 

The resea rch presented here has three primary objecti ves: 

I. Apply conventional genetic ep idem iology methods to alternati ve 

phenotype de l"nitions, such as cli nica lly aggress ive di sease and 

predicted di sease ri sk based on biomarkers, which may cla rify the 

broader genet ic basis of the di sease. 

2. Develop new stati stical methods for linkage analysis in the presence of 

heterogeneity. designed to fac ilitate multicenter col laborat ive research. 

3. Demonstrate th e power and utilit y of th e new methods using data from 

the In ternat ional Consortium for Prostate Cancer Genetics. 

Chapters 2 through 5 present the results of four resea rch projects designed 10 fullill the 

objectives above. The contents of these chapters, as we ll as four appendices 

containing supporting information, are described below. 



Chapter 2 

Chapter 2 is a description of  a genome-wide linkage analysis for  aggressive PC 

in Utah high-risk pedigrees based on the definition  of  aggressiveness set forth  by the 

ICPCG [5 I]. The analysis is designed as a replication study, undertaken with the 

intention of  confirming  risk loci that were previously identified  by the ICPCG and 

others for  aggressive PC. Several regions of  interest are identified,  two of  which 

support loci previously linked to PC aggressiveness. Chapter 2 is an example of  the 

type of  linkage analysis that is commonly published today. The results include a 

confirmation  of  previously published linkage evidence and contributes novel findings 

with regard to PC aggressiveness. It includes subset analysis intended to control for 

the effects  of  heterogeneity by analyzing subgroups with homogeneous phenotypic 

characteristics. 

Chapter 3 

Chapter 3 contains the results of  an analysis prepared for  the fifteenth  Genetic 

Analysis Workshop (GAW, GAW15) [94], GAW is a series of  biannual conferences 

where genetic epidemiologists convene to discuss current and emerging topics in the 

field.  One or more data sets representing contemporary research trends are made 

available prior to each GAW meeting, and participants are encouraged to use these 

data to test innovative analysis methods. One of  the data sets provided for  GAW 15 

participants included RNA expression levels for  3554 genes together with genome-

wide SNP genotype data for  194 individuals from  14 CEPH (Centre d'Etude du 

Polymorphisme Humain) pedigrees [95]. The study in Chapter 3 uses these data to 
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test the hypothesis that PC-related biomarkers may be used as a phenotype for  linkage 

analysis with the intention of  identifying  the location of  genes that cause PC. 

Phenotypes were assigned to all individuals based on RNA expression profiles 

consistent with PC. and conventional linkage analysis was then carried out. The 

results provide proof  of  concept that biomarkers such as RNA expression levels are 

valid phenotypes for  linkage analysis. 

Chapter 4 

Morton wrote that overcoming the problem of  heterogeneity in linkage will 

require collaborative efforts  as well as the development of  new analytical methods. 

Morton also criticized linkage methods that do not account for  multiple testing [13]. 

All of  these issues are addressed directly in Chapter 4. As discussed previously, the 

sumLOD statistic may have the ability to identify  linkage in the presence of 

heterogeneity, but has not been used as a test statistic due to a lack of  understanding of 

its distribution. Chapter 4 describes a novel genomic randomization method to test the 

empirical significance  of  the sumLOD statistic, as well as a similar metric, sumLINK. 

Both of  these statistics use LOD scores from  individual pedigrees to identify 

chromosomal regions of  extreme consistency across multiple pedigrees with evidence 

of  linkage, without regard to negative evidence from  other pedigrees. Simulation 

results given in the chapter demonstrate that the sumLINK and sumLOD statistics are 

more powerful  than conventional HLOD statistics to identify  trait genes in polygenic 

systems. 
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This method facilitates  collaborative research because it is a postprocessing 

procedure that uses only meta data (pedigree LOD scores), and therefore  allows for 

pooled analysis without sharing protected, identifiable  information.  An important 

advantage of  the sumLINK procedure is that loci identified  with the method are 

excellent candidates for  statistical recombinant mapping, as multiple pedigrees are 

linked to these loci. Recombinant mapping can delimit the precise chromosomal 

regions where trait genes are most likely to be found.  Multiple testing effects  for  the 

sumLINK and sumLOD procedure are quantified  by the use of  false  discovery rate 

(FDR) techniques. An illustrative example of  sumLINK and sumLOD analysis is 

presented using data from  190 aggressive PC pedigrees provided by the ICPCG. 

Appendix D contains R [96] program code for  running sumLINK and sumLOD 

analysis. 

Chapter 5 

Chapter 5 is an in-depth application of  the sumLINK and sumLOD methods 

that are described in Chapter 4. The chapter describes an analysis of  1230 high-risk 

PC pedigrees from  Europe and North America provided by the ICPCG. The previous 

report of  significant  linkage at chromosome 22ql2 is confirmed,  as well as several 

other previously reported linkage results. Linkage signals are localized to narrow 

chromosomal regions with statistical recombinant mapping. The regions identified  are 

more precise than the regions identified  by traditional 1-LOD support intervals. The 

application of  these powerful  statistics to such an extensive data resource provides a 

clear understanding of  the genomic regions with the greatest evidence of  consistent 
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linkage information  across multiple pedigrees. The results of  Chapter 5 provide 

encouraging evidence that the sumLINK and sumLOD statistics will be beneficial  for 

identifying  the genes underlying PC and other complex phenotypes. 
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Abstract 

BACKGROUND: It has been proposed that studying alternative phenotypes, 

such as tumor aggressiveness, may be a solution for  overcoming the apparent 

heterogeneity that has hindered the identification  of  prostate cancer genes. We present 

the results of  a genome-scan for  predisposition to aggressive prostate cancer using the 

Utah high-risk pedigree resource. METHODS: We identified  259 subjects with 

aggressive prostate cancer in 57 extended and nuclear families.  Parametric and non-

parametric multipoint linkage statistics were calculated for  a genome-wide set of  401 

microsatellite markers using the MCI,INK software  package. Stratification  analyses 

by the number of  affected  subjects per pedigree (<5, >5) and the average age at 

diagnosis of  affected  subjects (<70 years, >70 years) were also performed. 

RESULTS: No significant  results were observed at the genome-wide level, but 

suggestive evidence for  linkage was observed on chromosomes 9q (HLOD=2.04) and 

I4q (HLOD=2.08); several pedigrees showed individual evidence for  linkage at each 

locus (LOD > 0.58). The subset of  pedigrees with earlier age at onset demonstrated 

nominal linkage evidence on chromosomes 3q (HLOD=1.79), 8q (HLOD=1.67), and 

20q (HLOD=1.82). The late-onset subset showed suggestive linkage on chromosome 

6p (HLOD=2.37) and the subset of  pedigrees with fewer  than five  affected  subjects 

showed suggestive linkage on chromosome I Op (HLOD=l .99). CONCLUSIONS: 

Linkage evidence observed on chromosomes 6p, 8q, and 20q support previously 

reported prostate cancer aggressiveness loci. While these results are encouraging, 

further  research is necessary to identify  the gene or genes responsible for  prostate 

cancer aggressiveness and surmount the overarching problem of  PC heterogeneity. 
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Introduction 

Prostate cancer (PC) is the most commonly diagnosed cancer among men, and 

has long been recognized to occur in familial  clusters. Brothers and sons of  affected 

men have a twofold  to threefold  increased risk of  developing prostate cancer [1-5]. 

Evidence that genetics plays a critical role in PC is based on results from  a variety of 

study designs, including case-control, cohort, twin, and family-based  studies [6], 

However, identification  of  genes predisposing to prostate cancer has been difficult.  In 

the past 10 years, investigators in the field  have struggled to localize genes responsible 

for  this common yet complex phenotype [7|. Although many candidate loci have been 

suggested in conventional genome-wide scans of  high-risk families,  successful 

confirmation  reports have been rare. Hereditary prostate cancer is a complex disease 

potentially involving multiple genes and variable phenotypic expression. This genetic 

heterogeneity is one of  the chief  obstacles in understanding hereditary prostate cancer 

[8], 

Putative prostate cancer predisposition loci identified  by genetic linkage have 

been reported on almost all chromosomes [6], In 2003, several investigators 

belonging to the International Consortium for  Prostate Cancer Genetics (ICPCG) 

published the results of  their individual linkage analyses in parallel [1,9-15]. Across 

these eight studies, 1 1 linkage peaks with LOD scores in excess of  2 were identified. 

However, no chromosomal region was reported as being significant  at this level by 

more than one study and only one corresponded to a peak previously suggested by 

another group [7|. It has been suggested that traditional linkage analysis methods are 
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not sufficiently  powerful  to localize the genes that cause complex diseases such as PC 

[16]. 

One proposed solution to the problem of  heterogeneity is to use more 

homogeneous phenotypes in linkage analyses. An example has been the analysis of 

the subset of  prostate cancer characterized as aggressive. Quantitative trait linkage 

analysis has been applied in prostate cancer using Gleason's grade, a measure of 

tumor aggressiveness, as the primary outcome variable, yielding evidence for  regions 

on chromosomes 7 and 19 11 7|. The region on chromosome I9q was later confirmed 

in another study considering Gleason's grade 11 8|. No genes for  aggressive prostate 

cancer have been positively identified. 

The ICPCG recently completed a genome-wide scan for  PC aggressiveness 

defined  as a qualitative trait 119]. The results of  similar analyses have also been 

reported recently by researchers at the University of  Michigan [20], Wake Forest and 

Johns Hopkins Universities [21 ], and the Fred Hutchinson Cancer Center [22], The 

definition  of  aggressive prostate cancer considered by the ICPCG is based on a 

combination of  clinical and pathological values including tumor stage and grade. PSA 

levels at diagnosis, and premature death due to PC. The ICPCG pooled analysis also 

required all families  be only small to moderate size, to facilitate  standard linkage 

analysis software.  Hence, although the ICPCG analysis included data from  the Utah 

prostate cancer pedigree resource, the Utah pedigrees were not analyzed in their 

complete form.  Specifically,  pedigrees were divided and trimmed before  analysis, 

which reduced the power of  the analysis to detect predisposition loci. Here we present 
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the results of  a genome-wide scan for  aggressive prostate cancer predisposition loci 

utilizing the full  Utah pedigrees. 

Materials and Methods 

The pedigree and genotype resources used for  this analysis were described 

previously in a genome-wide linkage analysis of  prostate cancer of  464 affected 

individuals in 59 Utah pedigrees [231. For the current analysis, only cases with 

aggressive prostate cancer (APC) were considered affected.  The phenotype data used 

for  aggressiveness classification  were obtained from  Utah death certificate  records and 

from  the Utah Cancer Registry. The Utah Cancer Registry, an NCI SEER registry 

since 1973, contains data about all cancer events reported in the state of  Utah since 

1966. Prostate cancer cases were required to meet at least one of  the following  criteria 

in order to be classified  as aggressive: I) regional or distant stage; 2) poorly 

differentiated  or undifferentiated  grade; or 3) death due to metastatic prostate cancer, 

confirmed  by death certificate.  Any prostate cancer cases not meeting this criteria 

were classified  as having unknown prostate aggressiveness status. Of  the 59 Utah 

pedigrees analyzed previously, 57 contained at least 2 APC cases and were included in 

this analysis. A total of  259 APC cases were identified,  136 of  whom were genotyped. 

Spouses and up to four  children were genotyped in order to infer  the genotypes of  the 

deceased cases. All pedigrees consisted of  between two and six generations, with a 

median of  3 generations. The mean age of  prostate cancer diagnosis was 70.8 years. 

This is higher than the national average (about 68 years), but is similar to the mean age 

the results o f a ge nome-wide scan for aggress ive prostate ca ncer predi spos it ion loc i 

util izin g the fu ll Utah pedi grees . 

Materi a ls and Methods 
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of  diagnosis for  all prostate cancer cases in the Utah Cancer Registry (70.7 years). 

Table 2.1 summarizes the characteristics of  the pedigrees analyzed. 

Genotyping was performed  by the Center for  Inherited Disease Research 

(CIDR) on a set of  401 STR markers with an average spacing of  9 cM across the 22 

autosomes and the X chromosome. Details concerning laboratory methods used by 

CIDR are described at www.cidr.jhmi.edu. All map positions were derived from  the 

Marshfield  Genetic maps [24], 

All linkage analyses were performed  with MCLINK, which uses Markov 

Chain Monte Carlo simulation methods to sample haplotype configurations  and to 

calculate an estimate of  the LOD statistic [25]. MCLINK utilizes the robust 

multipoint linkage statistic proposed by Goring and Terwilliger [26], referenced 

hereafter  as the TLOD (theta-LOD) [27], The TLOD is analogous to a two-point LOD 

score, but utilizes complete multipoint inheritance information.  This statistic has been 

successfully  used to map several disease genes [23,28-31]. 

Three analyses were performed.  Dominant and recessive parametric linkage 

analyses were performed  with a previously published model [32], The dominant 

model assumed a susceptibility allele frequency  of  0.003, with penetrance of  1.00 in 

affected  carriers, and 0.001 in noncarriers. The recessive model assumed a 

predisposition allele frequency  of  0.15, with a penetrance of  1.0 in affected  carriers 

and 0.001 in noncarriers. All individuals of  unknown prostate aggressiveness status 

(all remaining individuals) were assigned a penetrance of  0.5 regardless of  carrier 

status, making them uninformative  in the analysis. The dominant and recessive 

models for  the X chromosome differ  only in the frequency  of  the disease allele. 
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Table 2.1: Summary of  57 Utah pedigrees with 2 
prostate cancer cases 

or more a ggressive 

Per Pedigree 

Total Mean Min Max 

Aggressive PC cases (APC) 259 4.5 2 20 

APC mean age at diagnosis 70.8 70.0 56.5 79.7 

APC subjects genotyped 136 2.39 0 12 

Other genotyped* 733 12.86 1 56 

* connecting ancestors of  cases, and spouse with up to four  children were genotyped 
when necessary to infer  genotypes 

Statistics reported for  these two models include the TLOD and Heterogeneity TLOD 

(referenced  hereafter  as HLOD). The third analysis calculated a nonparametric 

linkage (NPL) statistic for  APC as a dichotomous qualitative trait. The NPL statistic 

was only computed for  the 22 autosomes. 

In addition to analyzing all APC high risk pedigrees together, we also stratified 

the pedigrees into selected subsets. Pedigrees were first  stratified  according to the 

average age at diagnosis of  all aggressive cases, using a cutoff  of  70 years. The early 

onset group consisted of  25 pedigrees, with 32 pedigrees in the late onset group. The 

pedigrees were also stratified  according to the number of  APC cases; 32 pedigrees had 

less than five  APC cases and 25 pedigrees had five  or more cases. 

Significance  of  results was determined according to the standards established 

by Lander and Kruglyak [33]. The threshold for  significant  linkage is LOD = 3.30, at 

which level a false  positive result is expected to occur with a probability of  0.05 in a 
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the ped igrees into se lected subsets. Pedi grees we re first stratified according to the 

average age at di agnos is o r a ll aggress ive cases. us ing a cuto ffo f 70 years. The early 

onset group cons isted 01'25 pedi grees, w ith 32 pedigrees in th e late onset group . The 

ped igrees we re a lso stratifi ed accordin g to the number o f APC cases; 32 ped igrees had 

less th an fi ve APC cases a nd 25 pedi grees had fi ve or more cases. 

Signifi ca nce of res ults was determined acco rding to th e standards estab li shed 

by Lander and Kru glyak r331. The thresho ld fa r s ignifi ca nt linkage is LO D = 3.30. at 

which leve l a ra ise pos iti ve result is ex pected to occ ur w ith a probab ility orO.05 in a 



full  genome screen. The threshold for  suggestive linkage is LOD = 1.86. which 

predicts 1 false  positive result per genome. A threshold of  LOD = 1.00 was arbitrarily 

selected to represent nominal linkage evidence. 

Results—Parametric Analysis 

The HLOD results for  the dominant and recessive parametric analyses are 

shown in Figure 2.1. Table 2.2 summarizes the regions where at least nominal linkage 

was observed. No TLOD or HLOD results were statistically significant  at a genome-

wide level. Two regions indicated suggestive evidence for  linkage: chromosome 14q 

(dominant HLOD=2.09 at DI4S1426) and chromosome 9q (recessive HLOD=2.04 at 

D9SI786). Nominal evidence for  linkage was also observed on chromosome 6p 

(recessive HLOD=l .75. at F13A1) and chromosome 3q (recessive HLOD=l .27 at 

D3S2460). TLOD values were generally similar to HLOD values in these regions, 

except on chromosome 9, where the HLOD was notably greater, with a = 0.33. 

The best evidence observed in the overall analysis was a dominant HLOD = 

2.09 at D14SI426, at position 1 14 cM on chromosome 14q. This result was supported 

by six pedigrees with LOD scores greater than 0.58 (p<0.05). Most of  these pedigrees 

include nonaggressive prostate cancer cases, some of  which appear to share 

haplotypes with the linked aggressive cases. The one-LOD support interval covers a 

range of  approximately 30 cM from  about D14S1434 to the q terminus. No previous 

linkage results have been reported in this region. 
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Figure 2.1. HLOD statistic for  chromosomes I -22 and X. The solid line represents the dominant 
model, and the broken line represents the recessive model. 
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Table 2.2. Summary of  maximum linkage scores for  each analysis model on 
chromosomes with at least nominal linkage evidence in the full  analysis. 
Centimorgan positions are based on the Marshfield  Genetic map. 

Dominant Model Recessive Model NPL 

Chr TLOD Pos HLOD a Pos TLOD POS HLOD a Pos LOD Pos 

1 0 ~ 0.80 0.17 64 0.89 56 0.945 0.62 56 1.45 56 

3 0.51 0 0.56 0.08 195 1.27 129 1.27 1.00 129 0.84 132 

6 0.26 25 0.50 0.13 103 1.75 9 1.75 1.00 9 0.74 25 

9 0.96 104 0.96 1.00 104 1.26 104 2.04 0.33 104 1.05 104 

14 2.09 114 2.09 1.00 114 0.45 101 0.45 1.00 101 0.73 126 

The second highest linkage score observed was a recessive HLOD of2.04  at 

D9S1786, at map position 104 cM on chromosome 9q (TLOD = 1.26). The finding 

was supported by live pedigrees with LOD scores of  0.58 or greater, including a single 

pedigree with a LOD score of  1.63. This single pedigree consists of  3 affected 

siblings who share maternal and paternal haplotypes at the locus. The maternal 

haplotype is also shared with an affected  nephew, and the paternal haplotype is shared 

with an affected  second cousin. The pedigree also includes seven nonaggressive PC 

cases. Four of  those cases appear to share at least one haplotype with the aggressive 

cases, while the remaining three appear not to share. No evidence of  linkage was 

observed in this region in the previous genome-wide analysis of  the Utah pedigrees 

[23]. 

Although it did not meet the criterion for  suggestive linkage, the linkage signal 

on chromosome 6 is interesting because it replicates a region identified  in two 
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previous aggressive prostate cancer studies [19,20], The signal maximized at a value 

of  IILOD = 1.75 at a position of  9 cM from  the p-terminus near F13AI. The peak is 

quite broad, with the one-LOD support region extending from  the p-ter to about 42 

cM. Six pedigrees have LOD scores exceeding 0.58 in the region. In a study of  71 

families  with elevated risk of  prostate cancer, University of  Michigan researchers 

reported a nonparametric LOD of  2.09 at 30cM, and a parametric HLOD = 1.52 at that 

position in the recessive model [20|. The ICPCG analysis [19] reported a non-

parametric LOD = 3.00 at a position of  42 cM, and a recessive HLOD = 2.20 at 43 

cM. The International ACTANE Consortium also reported an HLOD of  1.41 under a 

rare dominant model near D6S2439 (42 cM) in a study of  64 families  from  five 

countries [13], although this study was not restricted to aggressive disease. 

Results—Parametric Subgroup Analysis 

Genome wide HLOD results for  the subset analyses are shown in Figure 2.2. 

Table 2.3 presents a summary of  regions where at least nominal linkage evidence was 

observed in the subset analyses. 

Early Onset 

Nominal linkage evidence was observed on chromosome 20q in the early onset 

pedigrees. We observed a dominant HLOD = 1.82 at 52 cM, which supports the 

previously published IIPC20 localization [34], This region was also seen in the 

ICPCG pooled analysis of  the aggressive prostate cancer phenotype, dominant 
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Table 2.3. Summary of  chromosomes with 1ILOD values greater than 
1.0 for  subsets. Centimorgan positions are based on the Marsh Held 
Genetic map. 

Subset Chromosome Position (cM) HLOD Model 
<5 Affected 3 129 1.25 Recessive 

6 9 1.23 Recessive 

9 32 1.12 Recessive 

9 98 1.08 Dominant 

10 24 1.99 Dominant 

>5 Affected 1 64 1.19 Recessive 

4 75 1.16 Dominant 

9 104 1.63 Recessive 

14 114 2.10 Dominant 

16 1 1 1.03 Recessive 

Early onset 1 28 1.12 Recessive 

2 14 1.19 Dominant 

2 129 1.04 Dominant 

2 248 1.13 Recessive 

3 132 1.79 Recessive 

8 118 1.67 Dominant 

9 76 1.16 Dominant 

20 52 1.82 Dominant 

Late onset 1 64 1.14 Dominant 

4 75 1.13 Recessive 

6 63 2.37 Recessive 

9 104 1.90 Recessive 

10 15 1.29 Recessive 

14 1 14 1.83 Dominant 
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1.0 fo r subsets . Centimo rga n pos itions a rc based on the Marshfi e ld 
Genet ic map. 
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6 9 1.23 Recess ive 
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9 10-1 1.63 Recessive 
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16 II 1.03 Recess ive 

Early onset I 28 1. 12 Recessive 

2 14 1.1 9 Dom inant 

2 129 1.04 DominanL 

2 248 I. 13 Recess ive 
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132 1.79 Recess ive J 

8 11 8 1.67 Dominant 

9 76 1. 16 Dominant 

20 52 1.82 Dominant 

Late onset I 64 1.1 4 Dominant 

4 75 1.1 3 Recess ive 

6 63 2.37 Recess ive 

9 104 1.90 Recessive 

10 15 1.29 Recess ive 

14 11-1 1.83 Dominant 
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HLOD = 2.49 at 54 cM [ 19], I Iowever, contrary to our results, the ICPCG study 

showed slightly stronger results in the late-onset group, achieving a maximum HLOD 

of  2.65. Five Utah pedigrees showed individual linkage evidence (LOD > 0.58) in this 

region. 

Two other regions on chromosomes 3q and 8q were observed in the early-

onset pedigrees with LOD>l .5. On chromosome 3q, we observed a recessive HLOD 

= 1.79 at D3S4523 (132 cM). This finding  is primarily supported by four  pedigrees 

with individual LOD values greater than 0.58 (p<0.05). Linkage was previously 

reported in the Utah pedigrees on chromosome 3 with a dominant inheritance model 

[23], but the linkage evidence was centered around D3S2427 (182 cM), which is 

identified  in Figure 2.3. On chromosome 8q, we observed a dominant HLOD = 1.67 

at 118 cM, near D8SI 132. Two recent studies have identified  possible prostate cancer 

loci in this area [35,36], Seven pedigrees in our resource showed nominal individual 

linkage (LOD > 0.58) in this region. There was no previous linkage evidence for 

chromosome 8 reported for  the Utah pedigrees. 

Late Onset 

Suggestive evidence for  linkage in the late-onset pedigrees was observed for 

chromosomes 6 and 9. The LOD scores for  both chromosomes were similar to the 

analysis of  all pedigrees combined. I Iowever, on chromosome 6, a second, 

independent region of  linkage evidence emerged slightly downstream (HLOD = 2.37, 

at marker D6S1017, 63 cM) (Figure 2.3). Six pedigrees have LOD scores in excess of 

0.58 (p < 0.05) in this region, although three of  those also show reduced linkage (but 
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Figure 2.3. HLOD tracings for  chromosomes showing at least nominal linkage 
evidence in subset analyses. The solid line in each figure  represents the results from 
the analysis of  all APC pedigrees combined, and the broken lines represent the 
indicated subsets. 
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still >0.58) in the upstream peak. This is interesting when compared to the ICPCG 

pooled analysis [19], where suggestive evidence was also identified  in the recessive 

model (HLOD=l .98), which was strengthened in the late-onset pedigrees 

(HLOD=2.40). However, The ICPCG and ACTANE linkage scores both maximized 

near 42 cM [13,19], which represents a local minimum in our linkage graph, as shown 

in Figure 2.3. The chromosome 6 downstream peak that emerged in the late-onset 

subset analysis is closer to a locus suggested by Janer et al., who reported a dominant 

HLOD of  2.51 in a study of  254 families  at marker D6S1281. The HLOD statistic 

was as high as 3.43 in one subgroup [12], It must be noted that unlinked pedigrees can 

shift  linkage peaks, and whether there are in fact  two distinct regions is yet to be 

determined. 

Less than Five APC 

The subgroup of  pedigrees with fewer  than 5 affected  aggressive prostate 

cancer cases yielded suggestive evidence on chromosome lOp (dominant IILOD = 

1.99 at marker D1 OS 1412, 24 cM). The one-LOD support interval extends from  about 

10 cM to 40 cM. Primary support for  this peak comes from  6 pedigrees with 

individually significant  linkage evidence (LOD > 0.58). Nominal linkage for  prostate 

cancer was previously observed on chromosome lOp by Wake Forest/Johns Hopkins, 

who reported a LOD score of  1.39 at D10S249. near the p-terminus [9], Our result 

does not appear to support that finding. 
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Five or More APC 

The subgroup of  pedigrees with five  or more aggressive prostate cancer cases 

showed suggestive evidence of  linkage on chromosome 14 (dominant HLOD = 2.10 at 

114cM), similar to the evidence observed in the overall analysis. 

Results—Nonparametric Analysis 

Figure 2.4 shows the qualitative NPL statistic for  the 22 autosomes. No 

significant  linkage evidence was observed. The highest NPL statistic observed across 

the entire genome was 2.33 at D1S255 (56 cM) on chromosome 1 p, corresponding to 

a LOD = 1.45. The region is about 25 cM removed from  a significant  chromosome I 

linkage previously reported in a single extended Utah pedigree; nominal linkage 

evidence was observed at the same locus in all pedigrees combined [23]. This signal 

is close to the CAPB locus [37], and a study using Gleason grade as a quantitative 

measure of  prostate cancer aggressiveness also reported suggestive linkage in the 

region [17]. 

Discussion 

Significant  genetic heterogeneity in prostate cancer has been invoked to 

explain the many different  published hints of  linkage, as well as the failure  of  other 

studies to independently confirm  most of  these published linkages. A variety of 

approaches to select more homogeneous prostate cancer phenotypes have been 

attempted. One such approach has been the analysis of  aggressive prostate cancer. 

Published analyses of  the aggressive phenotype have to date not proven successful  for 
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Figure 2.4 shows the qualitati ve NPL stati stic for the 22 autosomes. No 

signifi cant linkage ev idence was observed. The hi ghest NPL stati sti c obse rved across 

the ent ire genome was 2.33 at D I S255 (56 cM) on chromosome I p. co rresponding to 

a La D = 1.45. The reg ion is about 25 cM removed from a signifi ca nt chromosome I 

linkage prev iously report ed in a single extended Utah pedi gree: nomi nal linkage 

ev idence was observed at the same locu s in all pedi grees combined [23]. Thi s signal 

is c lose to th e CAPB locus [37], and a stud y using Gleason grade as a quantitati ve 

measure o f prostate cancer aggress iveness also repo rted suggesti ve linkage in the 

reg ion 11 7J. 

Discuss ion 
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explain thc many different publi shed hints of linkage, as we ll as the failure of other 

studies to independentl y confirm most o f th ese published linkages. A vari ety of 

ap proaches 10 se lect more homogeneous prostate cancer phenotypes have been 

attempted. One such approach has been th e analys is o f aggress ive prostate cancer. 

Published analyses of the aggressive phenotype have to date not proven success ful for 
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Figure 2.4. Qualitative NPL statistic for  chromosomes I-22. The solid line represents the NPL statistic, 
while the broken line shows the equivalent LOD value. 
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gene identification,  but the existence of  some replications across studies is 

encouraging. 

In this analysis of  aggressive prostate cancer in the extended Utah pedigrees, 

no significant  linkages were identified,  but. given the gold-standard is replication, 

rather than single study significance,  it is encouraging that we have replicated regions 

also identified  in other aggressive prostate cancer linkage studies. Suggestive hints of 

linkage were identified  that showed pedigree-specific  linkage support from  multiple 

pedigrees. Among these regions, the Utah evidence for  the chromosome 6p and 20q 

regions confirm  previous suggestions of  linkage to prostate cancer aggressiveness. 

Suggestive linkage regions on chromosomes lp and 8q also support previously 

reported prostate cancer loci. As replication of  linkage results is historically rare in 

prostate cancer genetics research, these results should not be overlooked. 

The aggressiveness loci on chromosomes 6p and 20q were also identified  in 

the ICPCG analysis of  aggressive prostate cancer [19], which included data from  Utah 

pedigrees. However, the data that were submitted to the ICPCG represent only a 

fraction  of  the data used in this study. The software  used in the ICPCG pooled 

analysis was not capable of  analyzing the complex pedigree structures in the Utah 

resource. Therefore,  the data that were submitted consisted of  smaller families  and 

branches that had been excised from  the extended pedigrees in our resource. The 

results we present in this report are based on significantly  more data, including several 

large and complex pedigree structures that were not used in the ICPCG analysis. The 

extended pedigrees give us greater power to determine haplotype structures and 

inheritance patterns, especially in the case of  rare alleles. This analysis also used a 
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different  phenotype definition  than the ICPCG analysis, as we recognized any prostate 

cancer-related death to be aggressive, as opposed to only those deaths that occurred 

before  65 years of  age. 

The existence of  intrafamilial  heterogeneity could have affected  this analysis. 

The pedigrees used were originally ascertained for  an excess of  all prostate cancers. 

When only the aggressive prostate cancers in each pedigree were considered, the 

number of  affected  subjects in each pedigree decreased and the genetic distance 

separating the cases increased. I ligh-frequency  alleles could therefore  act as 

confounders  in some cases, as it becomes difficult  to determine if  they were inherited 

from  a common ancestor. 

Though derived from  the same data source, there is very little overlap in the 

results of  this study and the results of  the genomic scan for  all prostate cancers for 

which this data was originally ascertained [23]. The strongest linkage signals reported 

in that study were on chromosomes 1, 3, 5, and 22. Some evidence of  those results is 

visible in the present analysis, but is not noteworthy. The most striking example is 

chromosome 22, where the previously observed peak has completely vanished in this 

study using an alternate phenotype definition.  Conversely, the suggestive linkage 

results we now report are not generally seen in the previous analysis. Most of  the 

pedigrees that show evidence of  linkage to the regions we report in this study also 

included individuals with nonaggressive prostate cancer. In most cases, some of  those 

cases appeared to share haplotypes with the aggressive cases. The alternate phenotype 

definition  clearly affected  the outcome of  the analysis. 
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Conclusion 

Although this analysis did not identify  any regions with significant  linkage 

evidence at the genome-wide level, regions of  interest were identified  on 

chromosomes 9, 14, 6, and I. The result on chromosome 6 appears to support linkage 

evidence reported by the ICPCG as well as the University of  Michigan and the 

ACTANE consortium. Additionally, using pedigree subsets of  the data resource 

identified  regions of  interest on chromosomes 3, 8, 10, and 20. The chromosome 20 

result supports previous findings  reported by researchers at Mayo Clinic and the 

ICPCG. We did not find  sufficient  evidence to support linkage regions previously 

reported for  aggressive prostate cancer by the ICPCG for  chromosome 1 I. by the 

University of  Michigan for  chromosome 15, or by Wake Forest/Johns Hopkins or Fred 

Hutchinson for  Chromosome 22. Further research is necessary to identify  the gene or 

genes responsible for  prostate cancer aggressiveness and surmount the overarching 

problem of  PC heterogeneity. 
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The genetic factors  underlying many complex traits are not well understood. 

The GA W15 Problem I data presents the opportunity to explore whether gene 

expression data from  microarrays can be utilized to define  useful  phenotypes for 

linkage analysis in complex diseases. We describe a simple approach that utilizes 

expression profiles  for  multiple genes that have been associated with a disease, to 

develop a composite 'risk profile*  that can be used to map other loci involved in the 

same disease process. Using prostate cancer (PCa) as our disease of  interest, we 

identified  26 genes whose expression levels had previously been associated with PCa, 

and we defined  three phenotypes: high, neutral, or low risk profiles,  based on 

individual expression levels. Linkage analyses using MCLINK, a Markov chain 

Monte Carlo method, and MERLIN were performed  for  all three phenotypes. Both 

methods were in very close agreement. Genome-wide suggestive linkage evidence was 

observed on chromosomes 6 and 4. It was interesting to note that the linkage signals 

did not appear to be strongly influenced  by the location of  the original 26 genes used 

in the phenotype definition  indicating that composite measures may have Fpotential to 

locate additional genes in the same process. In this example, however, extreme caution 

is necessary in any extrapolation of  the identified  loci to PCa due to the lack of  data 

regarding the behavior of  these genes' expression level in lymphoblastoid cells. Our 

results do indicate there exists potential to augment our current knowledge about the 

relationships among genes associated with complex diseases using expression data. 
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Abstract 
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same di sease process . Us ing prosta te cancer (PCa) as our disease of interest. we 

identified 26 genes whose expression levels had prev ious ly been associated with PCa. 

and we defined three phcnotypes: high. neutral. or low risk profi les. based on 

individua l expression levels. Linkage ana lyses using MCLlNK. a Markov chain 

Monte Ca rlo method. and MERLI N were performed fo r all three phenotypes. Both 

methods were in very close agreement. Genome-wide suggesti ve linkage ev idence was 

observed on chromosomes 6 and 4. It was intercsting to note that the linkage signa ls 

did not appea r to be strongl y innuenced by the locati on of the ori ginal 26 genes used 

in th e phenotype definition indicating that composi te measures may have Fpotential to 

locate add itiona l genes in the same process. In thi s example. however. extreme caution 

is necessa ry in any extrapolati on of the identi fi ed loc i to PCa due to the lack o f data 

rega rding the behav ior of these genes' expression leve l in Iymphoblastoid ce ll s. Our 

resu lt s do indicate there exists potent ia l to augment our current knowledge about the 

relationships among genes assoc iated with complex di seases using expression data. 
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Background 

Recent advances in biotechnology have resulted in an explosion of  genotypic 

and phenotypic data. Millions of  single nucleotide polymorphisms (SNPs) can 

quickly and accurately be genotyped, and microarray technology has made it possible 

to simultaneously assess the expression levels for  many thousands of  genes. The 

question becomes what knowledge can we extract from  these extensive data sources 

with respect to disease susceptibility, and how? The GAW15 Problem I data presents 

a unique opportunity to explore whether gene expression data from  microarrays can be 

used to define  useful  phenotypes for  linkage analysis to better understand disease 

susceptibility. The expression data provided for  Problem 1 includes 3554 genes that 

were previously established to have greater variation between individuals than within 

individuals. These expression levels are reasonable candidates for  use as phenotypes 

in linkage analysis [ I J. 

For the majority of  complex traits, the underlying genetic factors  are not fully 

understood, but for  many, certain genes and/or genetic pathways have been implicated 

or related to the trait through expression experiments. The expression levels of  a gene 

may be controlled by regulatory genes elsewhere in the genome, and the expression of 

multiple genes can be regulated by a common transcription factor[2].  Hence, linkage 

analysis of  gene expression levels could conceivably identify  regulatory loci 

associated with that gene. Further, and more related to a disease end-point, if  several 

genes are known to be related to a given trait, it is also conceivable that their 

expression levels could be combined to create a phenotype to be used in linkage 
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analysis to identify  loci that are involved in disease susceptibility, perhaps through 

membership in the pathway or interaction (epistasis) with the known genes. 

In this study, we explore whether gene expression profiles  for  genes that have 

been associated with a disease can be used to map other genes that are involved in the 

disease process or highlight genes within the pathways that are key factors.  Here we 

specifically  examine the approach for  Prostate Cancer (PCa). 

Research has consistently shown that genetics plays a critical role in PCa 

development, but the identification  of  PCa genes has proven to be very difficult. 

Hereditary prostate cancer is a complex disease involving numerous genes and 

variable phenotypic expression[3]. Recent research has demonstrated great potential 

for  the use of  proteomic profiling  and other biomarkers for  PCa diagnostics[4]. One 

such study was able to discriminate PCa from  benign prostates with perfect  sensitivity 

in men with elevated prostate specific  antigen (PSA) levels using serum proteomic 

profiling[5].  TheGAWI5 Problem 1 data provide an opportunity to explore whether 

gene expression levels from  lymphoblastoid cells can be used to develop a prostate 

cancer profile  phenotype for  use in linkage analysis. Using expression data from  26 

genes whose expression levels had previously been reported to be associated with PCa 

16], we defined  individuals as having high, neutral, or low risk profiles  based on their 

individual expression levels. Here we present the results of  linkage analyses based on 

those phenotypes. 

ana lysis to identify loc i that are invo lved in di sease susceptibi lity. perhaps th rough 

membership in th e pathway or interacti on (epistasis) with th e known genes. 

54 

In thi s study, we ex plore whether ge ne express ion profil es for genes that have 

been associated wi th a di sease can be used to map other genes that are invo lved in the 

disease process or hi ghlight genes within the pathways that are key factors. Here we 

specifica ll y examine th e approach for Prostate Cancer (PCa). 

Research has consistentl y shown that geneti cs plays a criti ca l role in PCa 

development. but the identification of pea genes has proven to be very clil1icult. 

Heredita ry prostate cancer is a com plex di sease involvi ng numerous genes and 

var iab le phenotypic expression[3]. Recen t research has demonstrated great potentia l 

for th e use ofpro teomic profiling and other biomarkc rs for PCa di agnosti cs[4] . One 

such study was ab le to di scriminate PCa from benign prostates with perfect sensitivity 

in men with elevated prostate spec ifi c antigen (PSA) leve ls using serum proteomic 

profi li ng[5]. The GA W 15 Prob lem I data prov ide an opportunity to ex plore whether 

gene express ion leve ls fi'om Iymphoblastoid ce ll s can be used to deve lop a prostate 

ca ncer profi le phenotype for use in linkage analysis. Usi ng express ion da ta from 26 

genes whose express ion leve ls had prev iously been reported to be associated with PCa 

[6], we defined individuals as hav ing hi gh, neutra l, or low ri sk profil es based on their 

indi vidua l express ion leve ls. Here we present the results o f linkage analyses based on 

those phenotypes. 
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Methods 

Ashida identified  21 genes that are commonly up-regulated and 63 genes that 

are commonly down-regulated in the transition from  normal epithelium to PCa and/or 

prostatic intraepithelial neoplasia (PIN)[6|. Of  these 84 genes, 26 were included in the 

data for  Problem I. These 26 genes are listed in Table 3.1. Based on the expression 

data for  the 194 individuals in the Problem 1 data, we scaled the expression levels for 

each of  these 26 genes to fit  a standard normal distribution with mean 0 and variance 

1. Two statistics. A and B. were then computed for  each individual. A represented the 

number of  genes for  which the expression level was greater than I standard deviation 

in the direction associated with PCa. B represented the number of  genes for  which the 

expression level was greater than 1 standard deviation in the opposite direction. One 

standard deviation was selected arbitrarily as a threshold to ensure that the expression 

values were distant from  the center of  the distribution while allowing for  a sufficient 

number of  informative  subjects in the subsequent linkage analysis An individual was 

considered to be in the "high-risk profile"  group if  A > 4 and A-B > 2. Individuals 

were classified  to be in the "low-risk profile"  group if  B > 4 and B-A > 2. All other 

subjects were classified  as "neutral" and were considered as "unknown" in all linkage 

analyses. This classification  system was devised to distribute the influence  of  the 26 

genes on the assigned risk profiles  and to prevent outlying expression levels of 

individual genes from  having undue influence.  As shown in Figure 3.1, 53 subjects 

(25 male and 28 female)  were classified  with high-risk profiles,  57 (32 male and 25 

female)  with low-risk profiles,  and 84 (42 male and 42 female)  as neutral (unknown). 

While women are not susceptible to PCa, they may still carry the susceptibility genes 
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Table 3.1: Genes used to create phenotype definition 

Gene Location 

Up-regulated ABCC4 chrl3q32 

AMACR chr5pl 3.2-q 11.1 

MIPEP chrl3q12 

PRC 1 chrl5q26.1 

SMS chrXp22.1 

Down-regulated ANXA2 chrl5q21-q22 

ARHGDIB chrl 2p 12.3 

ASS chr9q34.1 

BHLHB2 chr3p26 

CD74 chr5q32 

CSPG2 chr5q 14.3 

CUTLI chr7q22.1 

CX3CL1 chrl6q 13 

FHL2 chr2q12-q14 

FLNA chrXq28 

GATA3 chrl Op 15 

GBP2 chrlp22.2 

IER3 chr6p21.3 

IRF1 chr5q31.1 

KRT7 chrl 2ql 2-q 13 

LY6E chr8q24.3 

MMP7 chrl1q21-q22 

MYL9 chr20q 11.23 

SERPINB1 chr6p25 

TOP2B chr3p24 

WFDC2 chr20ql2-q13.2 
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Tab le 3. 1: Genes used 10 create phenOL) pc defi nilion 

Gene Loca ti on 

Up-regu lated A BCC4 chrl 3q32 

AM AC R chr5pI 3.2-qll.l 

M IPEP chrl 3ql 2 

PRC I chrl 5q26. 1 

SMS chrX p22. 1 

Down-regulated ANXA2 chrl Sq2 1-q22 

A RIIGDII3 chrl 2p 12.3 

ASS chr9q34. 1 

13 111.11 132 chr3p26 

CD74 chr5q32 

CS PG2 chr5q 14.3 

CUTLI chr7q22. 1 

CX3CL I chrl 6q l 3 

1'1-1 L2 chr2q 12-q 14 

FL 1\ chrX q28 

GATA3 chrlOpl S 

GBP2 chr I p22.2 

IER3 chr6p2 1.3 

IRFI chr5q3 1.1 

KRT7 chrl 2q 12-q 13 

LY6E chr8q24.3 

MMP7 chrllq2 1-q22 

MYL9 chr20q 11 .23 

SERPI NB I chr6p25 

TOP213 chr3p24 

WFDC2 chr20q 12-q 13.2 
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for  PCa; hence, in our analyses, both males and females  are included. Figure 3.1 

shows a scattergram of  the values of  A and B for  each individual and the 

categorization to the high-risk, low-risk, and neutral groups. 

Three phenotype models were considered. The first  model {"FULL")  included 

the high-risk profile  individuals as "affected"  and the low-risk profile  individuals as 

"unaffected";  neutrals were "unknown."' The second model ("HIGH")  included the 

high-risk profile  individuals as "affected"  and all others as "unknown." The third 

model ("LOW")  included the low-risk profile  individuals as "affected"  and all others 

as "unknown." This final  phenotype model is akin to an analysis searching for 

protective genes. For the FULL  and HIGH  phenotype models, 10 of  the 14 CEPH 

pedigrees were informative  for  linkage, with between 2 and 8 affected  subjects per 

pedigree. Thirteen pedigrees were informative  in the LOW  analysis, with up to 9 

affected  subjects. 

Dominant and recessive parametric linkage analyses were performed  using 

MCLINK, which uses Markov chain Monte Carlo simulation methods to sample 

haplotype configurations  to estimate the LOD statistic[7]. The inheritance model for 

the analysis was based on the "Smith" model used to map the HPC1 locus, but without 

the specificity  to males[8], and assumes a population prevalence of  0.003 for  the 

mutant allele. Genotypes for  a genome-wide panel of  2,882 SNP markers were 

provided by GAW. The genetic map used in the analysis was based on the Rutgers 

genetic map, with the positions of  SNPs for  which genetic map position was not 

available interpolated from  flanking  markers based on physical location[9]. Any SNP 

located less than 0.001 cM from  the preceding SNP was eliminated from  the initial 

for PCa; hence, in our analyses, both males and fe males are included, Figure 3, I 

shows a scanergram of th e va lu es of A and B lo r each individual and the 

categorization to the hi gh-ri sk, low-risk, and neutral groups, 
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Figure 3.1. Phenotype distribution. A is the number of  genes expressed more than I 
SD in the direction associated with PCa for  an individual, and B is the number of 
genes expressed greater than 1 SD in the opposite direction. 0=neutral risk status; 
l=low-risk profile;  2=high-risk profile. 
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Figure 3. 1. Phenotype di stribution. A is the number of genes expressed more than I 
SD in the directi on associated with PCa for an indi vid ual, and B is the num ber of 
genes expressed greater th an I SD in the oppos ite direction. O=neutral ri sk status: 
1= low- risk profil e; 2=high-ri sk profil e. 
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analysis. After  completing the initial analyses, the best linkage peaks were identified 

and those regions were reanalyzed using a reduced marker map, with a minimum 

spacing of  0.3 cM between SNPs[10]. This was done to control for  the possible 

effects  of  linkage disequilibrium (LD), which may inflate  LOD scores. The linkage 

statistics for  these chromosomes were then confirmed  by performing  both parametric 

and model-free  analyses with MERLIN| I 1], Linked pedigrees (LOD>0.588, which 

represents a nominal, uncorrected p<0.05 for  an individual pedigree) were identified 

in the regions with HLOD>1.9 (genome-wide suggestive evidence for  linkage[12]) 

and gene expression profiles  within those pedigrees were inspected to ensure that the 

linkage ev idence was not correlated with the expression levels of  any specific  genes. 

Results 

The genome-wide scan results showing the HLOD statistic for  all models are 

shown in Figure 3.2. Significant  linkage evidence was observed on chromosome 6q 

(P1LOD = 3.51). Other peaks over HLOD=l .9 were observed on chromosomes 3, 4, 

and 7. Only the peaks on chromosomes 4 and 6 retained at least suggestive linkage 

evidence with the reduced marker set without LD. 

The strongest linkage signal observed in the FULL  analysis, and the best result 

overall, was HLOD=3.51 at marker rs1491074 under the dominant model on 

chromosome 6q. As is shown in Figure 3.3, two of  the 26 genes used in creating the 

phenotype (SERP1NBI  and 1ER3) are located on chromosome 6, however, they are not 

situated near the linkage peak. Chromosome 6 was reanalyzed using a map with 

increased marker spacing (which reduced the number of  SNPs used from  101 to 70 
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Figure 3.2. Genome-wide HLOD statistics. A) FULL analysis model B) HIGH model C) LOW (protective) model. The 
solid line represents the dominant inheritance model and the broken line represents the recessive model in each figure. 
HLOD values are shown on the vertical axis, and chromosome number is shown on the horizontal axis. 
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Figure 3.3. Analyses with increased marker spacing. Detail of  Chr. 6 from  the FULL 
phenotype model and Chr. 4 from  the HIGH  phenotype model using a minimum 
marker spacing of  0.3 cM. The solid line in each panel represents the dominant 
HLOD statistic as calculated by MCLINK, the broken line shows the dominant HLOD 
from  Merlin, and the dotted line shows the model-free  Kong and Cox lod score from 
MERLIN. The locations of  genes included in the phenotype definition  are indicated at 
the top of  each frame. 
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and excluded SNP rs 1491074) and the maximum HLOD fell  to 2.82, suggesting the 

possible influence  of  LD in the initial result. This result was confirmed  using 

MERLIN. The model-based HLOD statistic from  MERLIN was very similar to 

results from  MCLINK for  both the full  and reduced marker sets, although the model-

free  Kong and Cox LOD score did not perform  well. 

The best result in the HIGH  analysis was HLOD=2.75 at marker rs885 103 

under the dominant model on chromosome 4q. Three pedigrees were linked to the 

locus with individual LOD scores >0.588. None of  the genes used to determine the 

phenotype were located on chromosome 4. Linkage results were unchanged when the 

peak was reanalyzed with the reduced marker map. as shown in Figure 3.3. MERLIN 

analysis confirmed  the parametric linkage result from  MCLINK. 

Discussion 

One concern of  a study based on expression levels of  known genes is that a linkage 

analysis may simply map back to the genes used to construct the phenotype. This did 

not appear to be the case for  this study. None of  the genes were located near our best 

results on chromosomes 6 and 4. Our phenotype definition  was simplistic, but was 

designed to limit the influence  of  individual genes on the phenotype, and thereby 

enhance the likelihood of  identifying  a locus related to the entire set. It is interesting 

to note that the regions we identified  on chromosomes 6 [13,14] and 4q [15,16] have 

each been implicated in previous linkage analyses for  PCa. However, it is premature 

to consider these as replications, as without data indicating that the expression levels 

seen in tumor[6] are also representative in lymphoblastoid cells, there is no evidence 
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to note that the regions we iden ti fi ed on chromosomes 6 [1 3, 14] and 4q [1 5. 16] have 
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that the risk profiles  we created are actually related to PCa. This is a major weakness 

of  our particular PCa example, and perhaps illustrates the weakness of  such 

approaches in general-that is, much of  the experimental data is still missing and will 

be expensive to generate. 

Because the true locations of  any genes that interact with or modify  the 26 we 

studied are not known, the statistical power of  this approach can not be properly 

evaluated. However, with the 14 CEPH pedigrees, we were able to generate linkage 

peaks that appeared distinct from  background noise. Further, we know that the 

linkage evidence observed was not influenced  by the linkage analysis method chosen, 

as both MCLINK and MERLIN produced almost identical results. Recognizing the 

limitations of  the data available, we present these results as proof  of  concept that the 

expression levels of  several related genes can be combined to create a phenotype that 

can reasonably be used in linkage analysis. Such an approach could identify  loci that 

regulate or contribute to disease pathways. More work is needed to refine  and test the 

methodology, and more experimental data is needed to correlate tissue and 

lymphoblastoid expression levels, but the approach appears to have the potential to 

augment our current knowledge about the genetic basis of  complex diseases. 
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Abstract 

We present the "sumLINK" statistic—the sum of  multipoint LOD scores for 

the subset of  pedigrees with nominally significant  linkage evidence at a given locus— 

as an alternative to common methods to identify  susceptibility loci in the presence of 

heterogeneity. We also suggest the "sumLOD" statistic (the sum of  positive 

multipoint LOD scores) as a companion to the sumLINK. SumLINK analysis 

identities genetic regions of  extreme consistency across pedigrees without regard to 

negative evidence from  unlinked or uninformative  pedigrees. Significance  is 

determined by an innovative permutation procedure based on genome shuffling  that 

randomizes linkage information  across pedigrees. This procedure for  generating the 

empirical null distribution may be useful  for  other linkage-based statistics as well. 

Using 500 genome-wide analyses of  simulated null data, we show that the genome 

shuffling  procedure results in the correct type 1 error rates for  both the sumLINK and 

sumLOD. The power of  the statistics was tested using 100 sets of  simulated genome-

wide data from  the alternative hypothesis from  GAW 13. Finally, we illustrate the 

statistics in an analysis of  190 aggressive prostate cancer pedigrees from  the 

International Consortium for  Prostate Cancer Genetics, where we identified  a new 

susceptibility locus. We propose that the sumLINK and sumLOD are ideal for 

collaborative projects and meta-analyses, as they do not require any sharing of 

identifiable  data between contributing institutions. Further, loci identified  with the 

sumLINK have good potential for  gene localization via statistical recombinant 

mapping, as, by definition,  several linked pedigrees contribute to each peak. 
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id entifiable data between contributing institutions. Further. loci identifi ed with th e 

sum LI NK havc good potential for gene loca li zation via stati sti ca l recombinant 

mapping, as, by de finiti on, seve ral linked pedi grees contribute to each peak. 



Introduction 

Genetic linkage analysis can be an effective  tool for  identifying  disease 

susceptibility loci. However, locus heterogeneity can counter this effectiveness  and is 

often  acknowledged as the single largest issue that hinders the linkage analysis 

approach. Complex traits may be controlled by numerous genes and. therefore, 

statistics that attempt to model or recognize locus heterogeneity are required. The two 

common methods to address heterogeneity are the heterogeneity LOD statistic 

(HLOD). which statistically models the heterogeneity with an additional parameter, 

and phenotypic subset analysis. I Iowever, the former  may fail  to distinguish linked 

from  unlinked pedigrees sufficiently  to allow for  substantial power increase and 

suffers  from  the lack of  a precise distribution for  assessing significance,  and the latter 

requires a-priori determination of  subsets. Beyond heterogeneity, localization also 

presents a challenge in linkage analysis. Often  regions identified  by linkage are large 

(perhaps 30-50 cM) and the boundaries ill-defined,  both of  which hinder follow-up 

studies. A method that can address locus heterogeneity and produce regions that are 

useful  for  localization would be an important addition to the tools already available. 

The genetic research community has ascertained a great number of  family-

based resources for  linkage analysis across numerous and varied complex traits. 

These data repositories represent a tremendous investment of  time and resources, and 

likely contain a wealth of  information-much  of  which has yet to be extracted. In the 

era of  consortia efforts  and with greater numbers of  pedigrees available for  specitic 

diseases through collaborative efforts,  new approaches and opportunities arise, 

especially to identify  genes that may explain only a very small portion of  disease that 
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These data repos itori es rep resent a tremendous investment o f time and resources, and 

likely contain a wea lth o f informati on- much of which has yet to be ex tracted. In the 
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diseases through co ll aborati ve enorts. new approaches and opportuniti es ari se. 

especially to identi fy genes that may ex plain onl y a very small porti on of di sease that 



could not be identified  in single studies. Here, we introduce a new approach to locus 

heterogeneity that focuses  on individually powerful  pedigrees-something that 

becomes possible in multicenter collaborative settings and other studies with large 

numbers of  pedigrees. A standard HLOD analysis attempts to statistically separate 

linked and unlinked pedigrees through an additional parameter in the LOD calculation, 

a, the proportion of  linked pedigrees; however, many pedigrees may be uninformative 

(pedigree-specific  contributions surrounding 0) at a locus, and these pedigrees add 

statistical noise that reduces power. Our new approach uses a predefined  LOD 

threshold to simply remove those families  that are below the threshold and could be 

considered "noise.'" As such, it could be thought of  as a "brute-force"  approach to 

heterogeneity that attempts to gain power by removing noise from  the statistical 

analysis. This method directly addresses the fact  that only a small portion of  the 

pedigrees in a data resource may be linked to any true causative locus, and in the 

process, identifies  the informative  set of  families  that are most useful  for  defining  and 

fine  mapping the locus. Several recent studies have used statistical recombinant 

mapping to delimit the boundaries of  linkage regions [1-3]. Recombinant mapping 

requires that several pedigrees be linked to a region of  interest, but it is unclear how 

many pedigrees should be linked to a locus for  it to be considered a reasonable 

candidate for  successful  mapping. The sumLINK statistic can address this issue by 

assigning valid significance  probabilities. 

Our method focuses  on individually powerful  pedigrees that are nominally 

"linked" to a position in the genome and assesses whether the amount of  concordance 

observed across the linked pedigrees at any point in the genome is more than would be 
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fine mapping th e locus. Several recent studies have used stati sti ca l recombinant 

mapping to delimit th e boundari es o f linkage reg ions [1-3]. Recombinant mapping 

requires that severa l ped igrees be linked to a reg ion of illlerest. but it is unc lear how 

many pedigrees should be linked to a locus for it to be conside red a reasonab le 

candidate fo r success ful mappin g. The sumLi NK stati stic can add ress this issue by 

assigning val id significa nce probabilities. 

Our meth od focu ses on indi vidually powerfu l pedigrees that are nominally 

"Iinked" to a posi ti on in the genome and assesses whether the amount of conco rdance 

observed across the lin ked pedi grees at any point in th e genome is more than wou ld be 



expected by chance. Statistical excess of  concordance is evidence for  an underlying 

susceptibility locus. An advantage is that by the nature of  the procedure, the regions 

of  interest identified  by the sumLINK statistic should have multiple pedigrees that can 

be used to delimit the region using statistical recombinant mapping. Further, in 

contrast to many other situations, the existence of  different  genetic marker sets (which 

often  will occur in consortia) is not problematic and may, in fact,  lead to some 

serendipitous pseudo-fine  mapping. This method offers  additional opportunities to 

identify  disease susceptibility loci and the underlying genes using linkage-based data. 

Methods 

sumLINK and sumLOD 

Our approach is to identify  regions of  the genome that display a significant 

excess of  concordance across 'linked' pedigrees. The level of  concordance is 

quantified  by the sum of  the pedigree-specific  multipoint LOD scores in the identified 

linked pedigrees. We consider any pedigree that meets or exceeds a pedigree-specific 

LOD threshold of  0.588 (p < 0.05. "nominal" significant  evidence) at a specific 

genomic position to be "linked" at that position. We have called this linkage-based 

statistic the "sumLINK," because it is simply the sum of  multipoint LOD scores for 

linked pedigrees at a given point in the genome. Clearly, the distribution of  the 

sumLINK statistic varies according to the number and structure of  pedigrees in the 

initial resource and the parameters of  the linkage model used to calculate the LOD 

scores. It is therefore  difficult  to determine the null distribution of  the statistic 

theoretically: however, empirical methods can be employed to generate the null 
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expected by chance. Stati stica l excess o t" concord ancc is ev idence for an underl ying 

susceptibility locus. An adva ntagc is th at by the natu re of the proced ure, the regions 

of interest identifi ed by the sumLi NK stati sti c should have mUltiple pedi grees th at can 

be used to delimit the reg ion usi ng stati sti ca l recombinant mappin g. Further, in 

contrast to many other situations, the ex istence o f di fferent genetic marker sets (which 

often will occur in conso l1ia) is not problemati c and may. in fact, lead to some 

serendipitous pseudo-fine mapping. Thi s meth od offers additional opportunities to 

iden tify di sease suscept ibi li ty loci and the underlying gencs us ing lin kage-based data. 

Methods 

sum LI NK and sum LOD 

Our approach is to identify reg ions of the genome that di splay a significant 

excess of concordance across ' 1 inked' ped igrees. The leve l o f concordance is 

quantifi ed by th e sum of the pedigree-specific multipoint LOD scores in the identified 

li nked pedi grees. We cons ider any pedigrec thatmcets or exceeds a pedigree-spec ifi c 

LOD threshold of 0.588 (p :S 0.05. "nominal" s ignificant ev idence) at a spec ifi c 

genomic pos it ion to be " Iinked" at th at pos ition. We have call ed thi s linkage-based 

stati sti c the "sumLl NK," because it is simply the sum o f multipoint LOD scores for 

linked pedigrees at a given point in the genome. Clea rl y. th e di stribution o rthe 

sum LI NK stati sti c va ri es according to the number and structure o f pedigrees in the 

initial reso urce and th e parameters o f the linkage mode l used to calculate the LOD 

scores. It is thcrelo re dirfi cultto determinc the null di stribution of the stati stic 

theoretica ll y; however, empiri ca l methods can bc employed to generate the null 



distribution for  any data resource. The creation of  the null distribution from  which to 

test significance  is outlined below. 

To perform  a sumLINK analysis, it is necessary that linkage results are 

available for  each pedigree at regular intervals across the genome (Figure 4.1. A). This 

is possible in many standard linkage software  packages that calculate multipoint LOD 

scores, including Meiiin[4] and Genehunter-Plus [5]. The sumLINK statistic is then 

calculated at each position by summing the LOD scores for  only those pedigrees that 

meet or exceed the threshold of  0.588 at each position in the genome. A simplistic 

example is shown in Figure 4.2. The null distribution of  the sumLINK statistic must 

represent the chance consistency expected across linked pedigrees, matched for 

pedigree structure, information  content, and linkage potential. We achieve this null 

scenario by using a genome shuffling  technique. The shuffling  procedure consists of  a 

chromosome randomization step and a genome rotation step. The randomization step 

begins by randomizing the sequential order of  chromosomes for  each pedigree. 

Chromosomes are concatenated end-to-end in this random order to create a 'new' 

genome (Figure 4.1, B). The beginning and end of  this new genome is connected to 

form  a 'loop.' In the rotation step, a random position in the loop is chosen and the 

loop rotated such that this position becomes the new starting position and the loop is 

broken there. This is done for  each pedigree separately, and because multipoint LODs 

were calculated at evenly spaced positions, these new shuffled  genomes can again be 

aligned across pedigrees (Figure 4.1, C). A null sumLINK statistic can then be 

calculated at each position across the shuffled  genomes. The procedure maintains the 

continuity and autocorrelation of  marker data within chromosomes, but randomizes 
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distribut ion lo r any data resource. The creation of the null di stribut io n li'om which to 

test signili cance is outlined be low. 

To perform a sumLl NK analys is. it is necessa ry that linkage results are 

avail able lo r each pedi gree at reg ul ar interva ls across the genome (Figu re 4. 1. A). Thi s 

is poss ible in many standard linkage so ft ware packages th at ca lculate multipoint LOD 

scores, inc luding Merlin[4] and Genehunter-Plus [5]. The sumLl NK stati sti c is then 

ca lcul ated at each position by summing the LOD scores fo r onl y those ped igrees that 

meet or exceed the th reshold of 0.588 at each posit ion in the genome. A simp listi c 

example is shown in Figure 4.2. The null distribut ion o r th e sumLl NK statistic must 

represent the chance cons istency expected ac ross li nked pedigrees. matched lo r 

pedi gree structure, informati on co ntent, and lin kage potent ia l. We achieve thi s null 

scenari o by using a genome shuffiing technique. The shuffi ing procedure consists ofa 

chromosome randomi zati on step and a genome rotatio n step. The randomi zati on step 

begins by ra ndomizing the sequenti al ord er of chromosomes lo r each pedi gree. 

Chromosomes are conca tenated end-to-end in thi s random orde r to crea te a ' new' 

genome (F igure 4. 1, B). The beg inning and end o f thi s new ge nome is connected to 

fo rm a ' Ioop'- In the rotation step, a random position in the loop is chosen and the 

loop rotated such that thi s position becomes th e new starting posi ti on and the loop is 

broken there. Thi s is done fo r each ped igree separately. and because multipoi nt LODs 

were ca lcul ated at eve nl y spaced positions. these new shufned genomes can aga in be 

aligned across pedi grees (Figure 4. 1, C). A null sumLl NK stati sti c can th en be 

ca lcul ated at each pos ition across the shufned genomes. The procedure maintains th e 

continuity and au tocorrelati on o f marker data within chromosomes. but randomi zes 
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Figure 4.1. Shuffling  procedure for  creating null distribution. A) Raw test statistic is 
calculated across unshuffled  data at regular intervals throughout the genome. Figure 
shows five  pedigrees (rows) and four  chromosomes (columns). B) Chromosomes are 
connected end-to-end in random order within each pedigree, and the resulting loop is 
broken at a random location to create a new starting point. C) The new starting points 
are aligned, and null statistics can be calculated along the shuffled  genome. 
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Fi gure 4. 1. Shuffling procedure ror crea ting null di stribution. A) Raw test stati sti c is 
ca lculated ac ross unshumcd data at regular interva ls throughout the genome. Figure 
shows li ve pedigrees (rows) and rour chromosomes (co lumns) . 8) Chromosomes are 
connected end-to-end in random order wi thin each pedigree. and the resulting 100Jl is 
broken at a random location to create a new starting point. C) The new stal1ing points 
are ali gned. and null statisti cs can be ca lculated along the shurtl ed genome. 



Figure 4.2. Simplistic illustration of  the calculation of  the sumLINK statistic. The 
linkage evidence for  three pedigrees (broken lines) are shown across 6 loci. The 
sumLINK calculated from  these three pedigrees in shown by the heavy black line. 
Pedigree LOD scores that are marked with a diamond meet the threshold for  inclusion 
and these are summed to produce the sumLINK. Pedigree LOD scores marked with a 
cross do not meet the threshold for  inclusion and do not contribute to the sumLINK. 
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Figure 4.2. Simplistic illustration o f the cal culati on of th e sumLi NK stati sti c. The 
linkage evidence lor three pedi grees (broken lines) are shown ac ross 6 loc i. The 
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Slim LI NK ca lcul ated from thcse three pedi grees in shown by the heavy black line. 
Pedi gree LOD scores that are marked with a diamond meet th e threshold fo r inclusion 
and these are summed to produce th e sumLi NK. Pedi gree LOD scores marked with a 
cross do not mee t the threshold for inclusion and do not contri bute to the sumLi NK. 
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consistency across pedigrees. The shuffling  procedure is repeated a large number of 

times to determine the null distribution of  the statistic for  the given data. 

Genome-wide significance  is determined by the expected frequency  of  peaks 

of  at least a certain magnitude occurring in the null sumLINK genome scans [6]. All 

peaks in each null genome are considered. In accordance with guidelines set by 

Lander and Kruglyak [7] for  significance,  we consider a peak height that is expected 

to occur with a frequency  no greater than 0.05 per genome as genome-wide significant 

evidence for  linkage, and a peak that occurs with an expected frequency  of  less than 

1.00 per genome as genome-wide suggestive. It is important to note that a false 

positive rate (FPR) is not a p-value. it is a rate per genome and represents the expected 

frequency  of  peaks of  at least the specified  magnitude under null conditions. For 

example, FPR=0.6 indicates that a similar peak would be expected to occur 0.6 times 

per genome, which is sufficient  evidence for  suggestive linkage. 

The advantage of  the sumLINK is that regions are identified  using individually 

powerful  pedigrees, which is more intuitively appealing and perhaps convincing. 

Further, these independently powerful  linked pedigrees can be used for  localization 

using statistical recombinant mapping. In brief,  statistical recombinant mapping uses 

pedigree-specific  linkage evidence to estimate the positions of  recombinant events on 

the linked segregating haplotypes, which can then be used to delimit the shared 

genomic region. Aligning these regions across all linked pedigrees localizes the region 

for  further  study. Another advantage of  sumLINK is that it requires a minimal data set. 

It is not necessary to know pedigree structures or genotypes, which are required to 

obtain null statistics by permuting disease status [6], nor is it necessary that all 
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consistency across pedigrees. The shuffling procedure is repea ted a large number of 

times to determine the null di stribution of th e stat istic for the given data. 
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positive rate (FPR) is not a p-va lue. it is a rate per gcnomc and represents th e expected 

frequency of peaks of at least the speci fi ed magnilllde under null conditions. For 

example, FPR=0.6 indicates th at a simil ar peak wou ld be expected to occur 0.6 times 
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The adva ntage of the sum LI NK is that reg ions are identified using indi viduall y 

powerful pedigrees, which is more intuitively appeal in g and perhaps convi nc ing. 

Further. these independently powerful linked pedigrees can be used for locali zation 

us ing statis ti ca l recombinant mapping. In brief, stati stica l recombinant mapping uses 

pedigree-speci fic linkage ev idence to estimate the positions of recombinant events on 

the linked segregating haplotypes, which can then be used to de limit the shared 

genomic reg ion. Ali gning these regions across al l linked pedigrees loca lizes the region 

for further study. Another advantage of sum LI NK is that it requires a minimal data set. 

It is not necessary to know pedigree structures or genotypes. whi ch are required to 

obtain null stati sti cs by permuting di sease status [6]. nor is it necessary that all 



pedigrees be genotyped with the same marker set, so long as the various marker sets 

are litted to a common genetic map before  calculating LOD scores. This property 

makes sumLINK ideal for  multi-institutional collaborative research projects. A 

disadvantage is that the sumLINK will ignore some small pedigrees (e.g., sib-pairs) 

due to their relative lack of  information  content. It may therefore  be attractive to 

additionally consider the sumLOD (sum of  all positive pedigree LOD scores) as a 

companion to the sumLINK. The relaxed inclusion threshold of  the sumLOD allows 

the potential for  any minimally informative  pedigree to contribute to the result. The 

sumLOD statistic is similar to the previously proposed C statistic [8], but utilizes 

multipoint, rather than two-point, inheritance information.  The sumLOD has been 

used previously as a summary measure [9-11], but has not been adopted as a test 

statistic due to the lack of  a theoretical distribution. I lowever. our genome shuffling 

procedure can be used to assess empirical significance  of  any statistic that is derived 

as a postprocessing step from  pedigree-specific  LOD values, including the sumLOD. 

False Discovery Rate 

Often  for  complex traits, no single significant  findings  are identified  when 

using conservative family-wise  multiple testing corrections and thresholds. It may 

therefore  be useful  to identify  whether there exists a group of  most significant  findings 

that together indicates deviation from  the null. The false  discovery rate (FDR) 

evaluates this using the q-value. For example, if  a q-value of  0.05 is assigned to the 

top 40 most significant  findings,  this indicates that 2 (0.05x40) are likely false 

positives, and that 38 are true-positives. In this way, a group can be identified  within 
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pedi grees be genotyped with the same marker set. so long as the va rious marker sets 

are fill ed to a common geneti c map before calculating LOD scores. Thi s property 

makes sum LI NK ideal for multi - institutional co ll aborati ve resea rch projec ts. A 
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which true positive findings  likely reside. Using our genome-shuffling  method, it is 

possible to estimate empirical FDRs for  the observed findings.  In particular, this 

allows us to assess significance  accounting for  the multiple testing inherent in the 

multiple models and statistics. 

Simulation Tests 

Simulations Under the Null Hypothesis of  No Linkage 

We tested the sumLINK and sumLOD procedures in data simulated under null 

conditions in order to assess the validity of  our genome shuffling  procedure to 

generate the correct false  positive rates. We created 400 two, three and four 

generation pedigrees typical of  the families  commonly used in linkage analysis. Each 

pedigree had a minimum of  three affected  subjects. Genome-wide genotypes were 

simulated using random gene-drops based on the genetic map and characteristics of 

2,936 autosomal single nucleotide polymorphisms selected from  the Illumina 6K SNP 

array to be free  from  linkage disequilibrium. This was repeated 250 times. Additional 

pedigree characteristics are summarized in Table 4.1. For each of  the 250 replicates, 

multipoint parametric linkage statistics were calculated at lcM intervals for  both 

dominant and recessive inheritance models using Merlin [4], and results for  each 

pedigree were extracted. Genome-wide sumLINK and sumLOD statistics were then 

computed for  each replicate, and the empirical significance  was assessed with 200 

iterations of  the genome shuffling  procedure. Across the 250 replicates, the median 

number of  pedigrees that contributed to the dominant sumLINK analysis was 153, and 

the median number that contributed to the recessive sumLINK analysis was 276. 

which true positi ve findi ngs li ke ly reside. Using our genome-shuffling method. it is 

poss ible to estimate empirical FDRs for the observed findin gs. In pa rti cul ar. thi s 

all ows us to assess signifi cance accounting lo r the multip le testing inherent in th e 

multiple models and stat istics. 

Simulati on Tests 

Simulat ions Under th e Null Hvpothesis of No Linkage 
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We tested th e sumLi NK and sumLOD procedures in data simulated under null 

condi ti ons in order to assess the valid ity or our genomc shu fn ing procedure to 

generate the correct fa lse pos it ivc rates. We crea tcd 400 two. three and four 

generatio n pedigrees typica l of the families commonly used in linkage analys is. Each 

pedi gree had a minimum of three affected subjects. Genome-wide genotypes we re 

simulated using random gene-drops based on the gencti c map and characteri stics o f 

2.936 autosomal single nucleotide polymorph isms selected from th e Iliumina 6K SN P 

array to be free from linkage di sequilibrium . This was repeated 250 times. Add it iona l 

pedi gree characteri stics are summarized in Table 4. 1. For each of th e 250 replicat es, 

multipoint parametri c linkage stati sti cs we re ca lcul ated at IcM interva ls lo r both 

dominant and recess ive inheritance models using Merlin [4]. and results for each 

pedi gree were extracted. Genome-wide sumLi NK and sumLO D stati sti cs we re then 

computed fo r each replicat e, and the empiri cal significance was assessed with 200 

iterations of the genome shuffling procedure. Ac ross the 250 replicates. th e median 

number o f pedi grees that contributed to the dominant sumLi NK analys is was 153. and 

the median number that contributed to the recess ive sumLi NK analys is was 276. 



77 

Table 4.1. Simulated data characteristics 

Null 

Simulation 

(x250) 

Selected GAW13 Simulation Pedigrees 

Null 

Simulation 

(x250) All SumLINK set SumLOD-only set 

Pedigrees 400 5232 1056 4176 

Individuals 2673 44,326 13,568 30,758 

Persons per ped 6.68(4 to 16) 8.47 (4 to 25) 12.85 (6 to 25) 7.37 (4 to 22) 

Mean generations 2.44 (2 to 4) 2.38 (2 to 4) 2.83 (2 to 4) 2.27 (2 to 4) 

Total Affected 1627 (60.9%) 20,889(47.1%) 6363 (46.9%) 14,526(47.2 %) 

Mean Affected 4.07(3 to 11) 3.42 (2 to 12) 4.78 (2 to 12) 3.07 (2 to 11) 

Total Genotyped 1627 (60.9%) 25808 (58.2%) 7590 (55.9%) 18218 (59.2%) 

Mean Genotyped 4.07(3 to 11) 4.93 (2 to 15) 7.19(3 to 15) 4.36(2 to 14) 

Marker Type SNP STRP STRP STRP 

Marker Number 2936 399 399 399 

Simulations Under the Alternative Hypothesis of  Linkage 

We illustrate the power of  the sumLINK and sumLOD statistics, in comparison 

to the more standard HLOD. by applying these to data based on the well-documented, 

simulated genome-wide data from  Genetic Analysis Workshop 13 (GAW13) [12,13]. 

The GAW13 data were designed to represent random pedigrees (not ascertained for 

specific  disease) and contained several simulated "heart disease" traits. Fifty  trait-

related genes were simulated, most with common underlying susceptibility alleles and 

low effect  sizes. There were 100 replicates of  330 simulated pedigree structures 

available, resulting in a total of  33,000 independent pedigrees. Genotypes were 

77 

Table 4.1. Sim ul aled dala charac leri slics 

Null 

Sillluhliion Selected GA\VI3 Simulation Pedigrees 

(x2S0) All SUIIlLI NK set SumLOO-only sct 

Pedigrees 400 5232 1056 4176 

Indi viduals 2673 44 ,326 13.568 30,758 

Persons per peel 6.68 (4 '0 16) 8.4 7 (4 '0 25 ) 12. 85 (6'025) 7.3 7 (4 '022) 

MC:lll genera tions 1.44 (1 '04) 1.3 8 (2 '0 4 ) 1.83 (1 '0 4) 2.27 (2 '0 4) 

Tot:!! Affcctrd 1627 (60 .9%) 10.889 (4 7. 1 ~,,) 6363 (46 .9%) 14.526 (47.2 %) 

Mean A freeled 4.07 (3 '0 II) 3.41 (1 10 12 ) 4.78 (2 '0 12) 3.07 (2 '0 I I) 

Total Genotypcd 1627 (60 .9%) 15808 (58 .2%) 7590 (5 5.9%) 182 18 (59.2%) 

Mean Gcnotypcd 4.07 (3 10 I I) 4 .93 (2 '0 15) 7.19(3 '0 15) 4 .36(2 '0 14) 

Milrkcr Type SNP STRP STRP STR P 

Marker Numher 2936 399 399 399 

Si mulalions Under Ihe A Iternalive Hvpothesis o f Linkage 

We illustrate the power o l'lhe sumLi NK and sumLOD stati sti cs, in compar ison 

to Ihe more sland ard HLOD, by app lying these to data based on th e we ll-documented. 

simulated genome-wide data from Genetic Ana lysis Workshop 13 (GA W 13) [12. 13]. 

The GA W 13 data were designed to represent random pedigrees (not asce rtained for 

spec ifi c di sease) and contai ned severa l simulated ' hea rl di sease' trai ts. Fifty trait

related genes we re simulated. mOSI wi th comm on underl yi ng susceptibil ity all eles and 

low effec t sizes. There we re 100 rep li cales 01'330 sim ulated pedigree structures 

ava ilab le, resulting in a tOlal 0 1' 33.000 independent ped igrees. Genotypes were 
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simulated for  399 microsatellite markers across the 22 autosomes. We chose to 

analyze an obesity trait as defined  by [I4| and sampled from  the full  set of  pedigrees 

to better represent a linkage resource ascertained for  disease. From the full  set of 

33,000 pedigrees, we extracted 5232 independent and minimally informative  unilineal 

pedigrees (those with at least two genotyped subjects classified  as obese). For each of 

the 5232 pedigrees, multipoint parametric linkage statistics were calculated at IcM 

intervals for  a simple dominant inheritance model using Merlin [4J. The pedigrees 

were divided into two groups based on whether they would be included in a sumLINK 

analysis (that is, that a minimum LOD score of  0.588 was observed at least once 

across the genome). Of  the 5232, 1056 pedigrees were useful  for  sumLINK analysis; 

the remaining 4176 pedigrees were not suitable for  sumLINK analysis but remained 

useful  for  sumLOD analysis. Pedigree characteristics for  each group are summarized 

in Table 4.1. By sampling from  the two groups of  pedigrees, we created 100 

replicates each containing 200 pedigrees (100 useful  for  sumLINK and 100 that were 

not); all sampling was performed  with replacement. We then calculated genome-wide 

sumLOD and sumLINK statistics for  each of  the 100 replicates, with empirical 

significance  determined by 200 repetitions of  the genome shuffling  procedure. 

HLODs were calculated with Merlin. Thresholds of  1.9 and 3.3 were used to 

determine suggestive and significant  HLOD results. 

Aggressive Prostate Cancer Case Study 

We performed  a sumLINK and sumLOD analysis on 190 pedigrees provided 

by the International Consortium for  Prostate Cancer Genetics (ICPCG) [15] with 
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s imulated for 399 microsa tc llit e marke rs across the 22 autosomcs. We chose to 

analyze an obes ity tra it as defincd by [14] and samp ledll'om the full set o f pedigrees 

to better represen t a linkage resource ascerta in ed for di sease. From th e full set of 

33,000 pedigrees. we extracted 5232 independent and minima ll y info rmative unilineal 

pedigrees (those with at least two ge notyped subj ects c lass ified as obese). For each o f 

the 5232 pedigrees. multipo int parametri c linkage stati stic s were calculated at IcM 

interva ls fo r a s imple domin ant inheritance model us ing Merlin [4]. The pedigrees 

wcre divided into two groups based on whether th ey wou ld be in cluded in a sumLiNK 

analy sis (that is. that a minimum LOD scorc o f 0.588 was obsc rved at least once 

across the genome) . Of the 5232. 1056 pedigrees were usefu l fo r sumLi NK analys is ; 

the remaining 4176 ped igrees were not suitab le for sum LI N K ana lys is but remained 

usefu l for sum LOD a na lys is . Pedigree c haracteristics fo r each group a re summ arized 

in Tab le 4 . 1. By samp ling from th e two groups of pedi grees. we created 100 

replicates each containing 200 pedigrees ( 100 usefu l fo r sumLi NK and 100 that were 

not) ; all samp ling was pe rfo rmed with rep lace ment. We then ca lculated genome-wide 

sumLOD and sum LI N K stati stics fo r eac h o f the 100 replicate s, with empirical 

s ign ificance determined by 200 repetitions o f the genome shuFni ng procedure. 

HLODs we re ca lcul ated with Me rlin . Th resho lds of 1.9 and 3.3 were usedLO 

determine suggesti ve and signifi can t HLOD results. 

Aggress i ve Prostate Ca ncer Case Study 

We perfo rm ed a sum LI NK a nd sumLOD analys is on 190 pedigrees prov ided 

by the Internat iona l Co nsortium for Prostat e Ca ncer Genet ics (lCPCG) I. 15] with 



clinically aggressive prostate cancer. A conventional linkage study of  this resource 

and description of  the data was published previously [16]. Dominant and recessive 

multipoint LOD scores were computed for  each pedigree at 1-cM increments 

throughout the 22 autosomes by Genehunter-Plus using the models (dominant and 

recessive) as described by Schaid [15]. The sumLINK and sumLOD statistics were 

then calculated at each of  the cM positions for  both models, and empirical significance 

of  the observed peaks was determined by 1000 repetitions of  the genome shuffling 

procedure. Of  the total 190 ICPCG pedigrees, 125 pedigrees achieved linkage 

evidence of  at least 0.588 at some point in the genome with the dominant model and 

127 for  the recessive model. Hence, only these numbers of  pedigrees contribute to the 

sumLINK analysis. All 190 pedigrees reached a LOD score greater than zero at least 

once in each inheritance model, allowing them all to contribute to the sumLOD 

analysis under both models. 

Results 

Simulation Tests 

Simulations Under the Null I Ivpothesis of  No Linkage 

Table 4.2 illustrates the false  positive rates observed under the dominant and 

recessive models for  the sumLINK and sumLOD. All of  these results fall  within the 

95% confidence  interval based on 250 replicates and for  a Poisson process with rates 

of  0.05 or 1.0, and illustrate that the genome shuffle  procedure to determine 

significance  is valid. 
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clinica ll y aggress ive prostate canccr. A conventiona l linkage study of thi s resource 

and desc ription of th e data was published prev iously 116] . Dominant and recess ive 

multipoint LOD scores were computcd fo r each pedi gree at l-cM increments 

throughout the 22 autosomes by Gcnehunter-Plus using th e models (dominant and 

recess ive) as desc ribed by Schaid [1 5]. The sumLi NK and sumLOD stati sti cs were 

then ca lculated at each of the cM pos itions for both model s, and empirical significance 

of the obse rved peaks was determ ined by 1000 "epet it ions of the genome shu ffl ing 

procedure. Of the total 190 ICPCG pedi grees. 125 pedigrees achieved linkage 

ev idence o f at least 0.588 at some po int in th c gcnome wi th thc domi nant model and 

127 fo r the recess ive mode l. Hence. only these numbers of pedigrees contribute to th e 

sumLi NK analys is. All 190 pedi grees reached a LOD score greater than zero at least 

once in each inheritancc mode l. a ll owing thcm all to contribute to th e sum LOD 

analysis under both models. 

Results 

Simulation Tests 

Simulati ons Under the Nullll YPolhes is of No Linkage 

Table 4.2 illustrates the false pos iti ve rates observed under the dominant and 

recess ive models for the sum LI NK and sumLOD. All of these results fall within th e 

95% confidence interva l based on 250 replicates and for a Poisson process with rates 

01'0.05 or 1.0, and illustrate that th e genome shume pl'Ocedure to determine 

signifi cance is va lid. 
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Table 4.2. False positive rates estimated from  250 genome-wide replicates under the 
null hypothesis of  no linkage 
Statistic Analysis Model Statistical FPR threshold surpassed 

Significant  (0.05)* Suggestive (1.00)f 

sumLINK Dominant 0.056 0.936 

Recessive 0.060 1.124 

sumLOD Dominant 0.052 1.020 

Recessive 0.052 0.912 

OVERALL 0.055 0.998 

*95% CI for  0.05 in 250 replicates is [0.024,0.080] 
+95% CI for  1.00 in 250 replicates is [0.876.1.124] 

Simulations Under the Alternative Hypothesis of  Linkage 

Results of  the power testing are summarized in Table 4.3. All genes that were 

identified  with suggestive evidence at least five  times by any one of  the three statistics 

(HLOD, sumLINK, or sumLOD) are summarized. The simulated data included only 

one gene, Gbl I,  which affected  baseline weight with a reasonably large effect  size. 

This gene was identified  with excellent power with all three statistics (all >99% 

power). Of  the remaining genes, all had very common susceptibility alleles (minor 

allele frequencies  >0.15) and low effect  sizes. Subsequently, none were identified 

particularly well. However, it is interesting to note that of  these lower effect  size genes 

that were identified  at least 5 times out of  the 100 replicates, the sumLOD and/or 

sumLINK were always superior, and exhibited significantly  more power than the 

HLOD at eight of  the 10 loci. There were no genes that were significantly  better 

identified  with the HLOD. 
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Ta bl e 4.2. Fa lsc pos iti ve rates estimated from 250 genomc-w id e rcplicates und er th e 
null hypoth es is o f no lin kage 
Sta tis tic Analysis Model Statistical FPR threshold surpassed 

Significant (0.05)* I Suggestive (I.OO)t 

sUIllLlNK Dominant 0.056 

Recessive 0.060 

sumLOD Dominant 0.0 52 

Recessive 0.05 2 

OVERALL 0.055 

*95% C I 1'01' 0.05 in 250 repli cates is [0.024.0.080] 
'i'95% C I for 1.00 in 250 rep li ca tes is (0 .876. 1. 124] 

Simulations Under the Alternati ve Hypoth es is o f Li nkage 

0.936 

1. 124 

1.020 

0.9 12 

0.998 

Results of th e power testin g are s umm ari zed in Tablc 4 .3 . A ll ge nes th at were 

ide nt ified wi th suggesti ve ev id ence at leas t fi ve tim es by anyone o r the three statisti cs 

(HLOD. sumLl NK, o r sumLOD) are summari zed. The simu lated data included o nl y 

one ge ne. GMI. which affected base line we ight wi th a reaso nab ly large e ffect s ize. 

Th is ge ne was id e ntifi ed w ith exce ll ent power w ith a ll three sta ti stics (a ll ~99% 

power) . Of th e re mainin g ge nes, a ll had very comm on susceptib ility a lle les (m inor 

a ll e le freq uenc ies ~0.1 5) and low effect s izes. Subsequentl y. none we re identified 

particularl y we ll. However, it is intercstin g to note that o f these lower effect s ize ge ne s 

th at we re identifi ed at least 5 tim es out of the 100 repli cate s, the sumLOD andlo r 

sum LI N K were a lways s uperi or. and ex hibited s ignificant ly more power th an the 

HLOD at e ight o f th e 10 loc i. There we re no genes tha t were s ignifi ca ntl y better 

identifi ed with the HLOD. 
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Table 4.3. Power to detect at least suggestive linkage evidence 
loci detected at least 5 times by any of  the statistics are shown. 

n 100 simulations. All 

Power (%) 

Gene Affected  Trait sumLINK sumLOD HLOD 

Gbl l,Gb4* Weight-baseline, 1 leight-baseline 99 100 100 

Gb2 Height-baseline 17t 22t J 

Gb20 HDL-baseline 9 14+ 4 

Gb22,Gs3** HDL, Triglycerides 61" 81" 1 

Gbl5.Gsl0. HDL, Triglycerides, Glucose, 7t 71* 1 

Gsl2,Gb37** SB P. DBP 

Gs4 Triglycerides, Glucose. 4 71" 1 

Gs2 Weight-slope 6 5 3 

Gs8 Cholesterol-slope 5 61" 1 

Gb24 Triglycerides-baseline 2 61- 0 

Gb5 Height-baseline 1 St 0 

Gene characteristics can be found  in [Daw, et al. 2003]. 
*Gb4 was observed independently several times, but was often  obscured by the broad 
peak at Gbl 1. 
**Genes were positioned too closely on the chromosome to discern which was 
responsible for  the linkage signal; 
t significantly  greater power than the HLOD. None of  the differences  observed 
between the sumLINK and sumLOD are statistically significant. 
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Tablc 4.3. Powcr to detect at Icast suggesti ve linkage cvidence in 100 simulations. All 
loci detected at least 5 timcs by any of th e stati sti cs are shown. 

Power ('Yo) 

Gene Affected Trait sumLINK sumLOO HLOO 

Gbl l.Gb4* Wcight -baselinc. I leigh t-base line 99 100 100 

Gb2 Height-basel inc In 22-j' " j 

Gb20 HOL-base line 9 14 'j' 4 

Gb22.Gs3** HO L. Triglycerides 6'j' 8'j' I 

GbI5.Gs I0. IIO L. Tri glyccrides. Glucose. n n I 

GsI2.Gb37* * SBP. DBI' 

Gs4 Tri glycerides. G I ueose. 4 7i" I 

Gs2 Weight-s lope 6 5 3 

Gs8 Choleste rol-slope 5 6'j' I 

Gb24 Triglyccridcs-base l i ne 2 6'j' 0 

Gb5 Height-ba clinc I 5'j' 0 

Gcne characteristics can bc fo und in [Oaw, et a l. 2003). 
*Gb4 was obse rved independently seve ra l times. but was often obscured by the broad 
peak at Gb I I. 
*'Genes were pos itioned too close ly on the chromosome to di scern whieh was 
responsible for th c lin kage signal : 
'j' significantly greater power than th e HLOD. No ne o f the differences observed 
between the sumLi NK and sumLOO are stati sti ca ll y signifi cant. 
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Aggressive Prostate Cancer Case Study 

In our real data aggressive prostate cancer case study example, the sumLINK 

and sumLOD analyses identified  significant  linkage evidence at two loci 

(chromosomes 20q and 1 lq) and suggestive evidence at a third locus (chromosome 2), 

as shown in Table 4.4. The peak on chromosome 20 was significant  under the 

dominant inheritance model for  both the sumLINK (sumLINK = 13.848. number of 

linked pedigrees = 17. expected false  positive rate (FPR) =0.005) and the sumLOD 

(sumLOD = 30.311, number of  positive pedigrees = 83, FPR=0.028). The peak on 

chromosome I 1 was significant  in the recessive sumLOD analysis (FPR=0.007), with 

suggestive evidence in other analyses. The sumLINK analysis also identified 

suggestive linkage evidence on chromosome 2 under both dominant and recessive 

models (FPR = 0.628 and 0.897, respectively). Figure 4.3 shows the genome-wide 

sumLINK results for  the dominant model and sumLOD results for  the recessive 

model. 

In an attempt to consider the multiple testing inherent from  performing  both 

the sumLINK and the sumLOD. both for  dominant and recessive models, we 

considered the false  discovery rates. Each centimorgan position in the genome search 

data (N=3502) was considered as an individual observation and p-values were 

calculated for  every position based on the respective empirical distribution for  each of 

the analyses. When the results of  all four  analyses are pooled, the top 54 ranked cM 

positions collectively attained an FDR of  0.1. An FDR of  0.1 indicates that the 

expected ratio of  false:true  positives is 1:9. That is, one tenth of  these 54 (or, 5-6 

positions) are likely from  the null (false  positives), but the remaining are likely true 
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Aggress ive Prostate Cance l' Case Study 

In Our rea l data aggress ive prostate cancel' case slUdy example, the sumLi NK 

and sumLOO anal yses identi fi ed significant linkage evidence at two loc i 

(chromosomes 20q and Ilq) and suggestive ev idence at a third locus (chromosome 2). 

as shown in Tab le 4.4. The peak on chromosome 20 was significant under the 

dominant inheritance mode l for both the sumLi NK (sum LI NK = 13.848, number of 

linked pedigrees = 17. expected fal se positive rate (FPR) =0.005) and the sumLOO 

(sumLOO = 30.3 11 . number of positive pedigrees = 83. FPR=0.028). The peak on 

chromosome II was signifi ca nt in th e recess ive sumLOO ana lysis (FPR=0.007). with 

suggesti ve ev idence in ot her analyses. The sumLi NK analys is al so identifi ed 

suggestive linkage ev idence on chromosome 2 under both dominant and recessive 

models (FPR = 0.628 and 0.897. respcctively). Figure 4.3 shows the genome-wide 

sum LI NK results for the dominant model and sumLOO results for the recess ive 

model. 

In an attempt to consider the multiple te sting inherent from performing both 

the sum LI NK and the sumLOO. both for dominant and recess ive models, we 

considered the fal se di scovery rates. Each cent imorgan pos ition in th e genome search 

data (N=3502) was considered as an individual observati on and p-values were 

ca lculated for every position based on the respective empirical di stribution for each of 

thc analyses. When the result s o f all foul' analyses are pooled. th e lOp 54 ranked eM 

pos itions collect ivc ly anained an FOR o f O. I . An FOR of 0.1 indicates that the 

expected ratio of fal se: true positi ves is I :9. That is. one tenth of th ese 54 (01', 5-6 

pos itions) are likely from the null (false positi ves) . but the remaining are li ke ly true 
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Table 4.4. Summary of  significant  and suggestive linkage peaks 

sumLINK Expected Number of FDR 

cM Frequency contributing q-
Model Position sumLINK (FPR) pedigrees value 

Dominant 20 59 13.848 0.005 17 0.017 

2 69 10.837 0.628 13 0.175 

Recessive 11 89 10.941 0.598 14 0.128 

2 68 10.624 0.897 14 0.209 

sumLOD Expected Number of FDR 

cM Frequency contributing q-
value Model Chrom. Position sumLOD (FPR) pedigrees 

q-
value 

Recessive 1 1 89 27.975 0.007 87 0.017 

Dominant 20 59 30.31 1 0.028 83 0.017 

11 89 27.650 0.657 81 0.213 
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Table 4 .4. Summary o f signiti cant and suggesti ve lin kage peaks 

sUIllLlNK EXflected Number of FOil 

eM Frequency contributin g q-

Model Position sumLi NK (F PIl) pedigrees value 

Dominant 20 59 13.848 0.005 17 0.0 17 

2 69 10.837 0.628 13 0.175 

Recess ive II 89 10.94 1 0.598 14 0. 128 

2 68 10.624 0.897 14 0.209 

sumLOD EXflccled Number of FDIl 

eM Frequency contributing q-

Model Chromo Position sumLOD (FPIl) pedigrees va lue 

Il.cccss ive II 89 27.975 0.007 87 0.0 17 

Dominant 20 59 30.3 11 0.028 83 0.0 17 

II 89 27.650 0.657 81 0.2 13 
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Figure 4.3. Genome-wide multipoint sumLINK results (dominant model) and sumLOD results (recessive model) for  the 
ICPCG aggressive prostate cancer data. 
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Figure 4.3. Genome-wide multipoilll sumLiNK results (dominant model) and sumLOD resul ts (recessive model) for the 
ICPCG aggressive prostate cancer data. 



positives. FDR will not differentiate  which are which; however, in this case example, 

all 54 positions fall  under one of  the significant  linkage peaks (19, 16, and 19 positions 

on chromosomes 20 (sumLINK), 20 (sumLOD), and 11 (sumLOD), respectively). 

I lence, even if  all 5-6 false  positive findings  were from  one region, it is still expected 

to have a true positive in each. In conclusion, the FDR suggests that the linkage peaks 

on chromosomes 1 I and 20 are likely true positive findings  after  correction for 

multiple testing. 

We applied statistical recombinant mapping to all three regions with at least 

suggestive genome-wide evidence to delimit the regions of  interest. The genotypes 

used in this multicenter collaborative analysis were derived from  several diverse sets 

of  microsatellite markers, generally with an average spacing of  10 cM. On average, 

therefore,  most pedigrees have a genotyped marker within 5 cM of  any given cM 

position on the genetic map. Pedigrees were therefore  included in a localization 

analysis if  they achieved LOD > 0.588 within 5 cM of  the observed peak. Figure 4.4 

illustrates the by pedigree LOD tracings used in the recombinant mapping for  the three 

regions of  interest. Recombinant events are estimated to be at the outermost point of  a 

sharp decline in LOD score, as these positions indicate statistical evidence for  a loss of 

genetic sharing. This point is a conservative estimate for  the outer limit of  the region 

where a susceptibility variant may be found.  A region bounded by two recombinant 

events on each side represents an approximate 95% confidence  interval for  the 
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pos iti ves. FOR will not differenti ate which are whi ch; however, in thi s case example. 

all 54 positions fa ll under one o rthe significant linkage peaks ( 19, 16. and 19 pos itions 

on chromosomes 20 (sum LI NK), 20 (sumLOD). and II (sumLOD), respective ly). 

Hence, even if all 5-6 false positi ve findin gs we re from one reg ion. it is still expected 

to have a true positi ve in each. In conclusion. the FOR suggests th at th e linkage peaks 

on chromosomes II and 20 are like ly true positi ve findings after correcti on for 

multiple testing. 

We ap plied stati sti ca l recombinant mapping to all three reg ions with at Icast 

suggesti ve genome-wide ev idence to de l im it th e regions of interest. The genotypes 

used in thi s multicenter co ll aborati ve ana lysis wcre dc ri ved from several di ve rse sets 

o f micro satellite markers, generall y with an average spac ing of 10 cM. On average. 

therefore. most pedi grees have a genotyped marker within 5 cM o f any given cM 

position on the geneti c map. Pedigrees we re th erefore included in a loca li zati on 

analys is irthey ac hi eved LOD 2: 0.5 88 within 5 cM o f the observed peak. Figure 4.4 

illustrates the by pedi gree LOD trac ings used in the recombinant mapping lo r the three 

rcg ions of interest. Recombinant events are estimated to be at the outermost point o f a 

sharp decline in LOD score, as these pos itions ind ica te stati sti ca l evidence for a loss of 

genetic sharing. Thi s po int is a conservati ve estimate for the outer limit of the reg ion 

where a susceptibi li ty variant may be found. A region bounded by two recombinant 

event s on each side represents an approximate 95% confidence interval for the 
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Figure 4.4. LOD traces for  each pedigree contributing to the linkage results on 
chromosomes A) 20-dominant, B) 1 I-recessive, and C) 2-dominant. Black bars 
indicate the two-recombinant localization regions. 
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consensus region [11. As seen in Figure 4.4, the linkage peaks on Chromosomes 20, 

1 I. and 2 can each be conservatively localized to regions of  21, 21, and 19 cM, 

respectively. 

Discussion 

The sumLINK statistic is a new method aimed at addressing both 

heterogeneity and localization. The procedure is designed to identify  the genomic 

regions for  which an excessive number of  powerful  pedigrees are concordant. It is an 

ideal approach for  multicenter collaborations or large single-site studies where a large 

number of  pedigrees are available. A distinct advantage of  this method is that it does 

not require collaborating centers to share raw data such as pedigree structures or 

genotypes, and does not require that each center use the same marker set. Provided a 

common genetic map is used for  analysis, each center can perform  their own analyses, 

calculating multipoint LOD scores at the same equally-spaced increment across the 

genome. It is only necessary to share these meta data (a multipoint genome scan for 

each pedigree), which enhances data privacy and security. 

An important advantage of  the sumLINK is the ability to identify  loci that have 

good potential for  gene localization, as several linked pedigrees exist beneath each 

peak identified.  An unexpected benefit  of  compiling data across centers that used 

different  marker maps is that the resolution of  the localization can be higher than any 

of  the individual genetic maps due to the overlaying of  data. In our example, even with 

a low density 10 cM marker map, we were able to localize each region to 

approximately 20 cM, and these localized regions would be greatly refined  with fine-

consensus reg ion [I] . As seen in Figure 4.4 , the lin kage peaks o n C hro mosomes 20. 

I I, and 2 ca n each be conservati ve ly loca li zed to reg ions of2 1, 2 1. and 19 eM. 

respecti ve ly. 

Disc ussio n 
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The sumLi N K stati sti c is a new meth od a imed at addressin g both 

heterogeneity and loca li zati on. The procedure is des igned to id enti fy the genomic 

reg ions fo r whi ch a n excessive number o f powe rfu l pedi grees a re co ncord ant. It is an 

idea l approach fo r multi cente r collabo rat ions or large sin gle-s ite studies where a large 

number o f pedi grees are avai lab le. 1\ di stinct adva ntage of thi s meth od is that it does 

not requ ire co lla borating centers to share raw da ta such as pedi gree structu res or 

genotypes, and does not req uire that eac h center use th e sa me marker set. Prov ided a 

common ge neti c ma p is used fo r ana lys is. eac h center ca n perform the ir own a na lyses, 

ca lculati ng mult ipo int LO D scores at the sa me equ a ll y-spaced in creme nt across th e 

ge nome. It is only necessa ry to share th ese meta data (a multipo int ge nome scan for 

each pedig ree), w hich enhances data privacy and security. 

An important advantage o f the sumLi NK is the abi lity to identify loc i that have 

good potenti a l for gene locali zation. as several linked pedigrees ex ist beneath each 

peak id entifi ed. An unexpec ted bene fit of co mpiling data across ce nters th at used 

different marker maps is thaI th e reso lution o f the locali zati on can be hi gher than any 

o f the indi vidua l geneti c maps due to the overlay in g of data. In our examp le. e ven with 

a low dens ity 10 c M marker map, we were able to loca lize eac h region to 

approx imately 20 c M. and these loca lized reg io ns would be greatly refin ed w ith fin e-
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mapping. This method of  using the limits of  sharing observed within extended 

pedigrees is intuitively appealing for  localization, but may also have theoretical 

advantages over other common methods. Often,  so-called "1-LOD" support intervals 

are reported for  linkage peaks generated from  a HLOD analysis: however, support 

intervals should strictly be applied to parameter estimates (the recombination fraction 

parameter, 8, in the case of  linkage statistics) and are relevant in the context of  two-

point maxLOD statistics that are directly analogous to likelihood ratio tests. The 

standard practice of  a I-LOD support interval using the value of  the statistic itself 

(usually HLOD) rather than a parameter is not statistically well-grounded, although 

since 0 is a distance parameter, it has intuitive appeal. In particular, in a IILOD 

analysis, it is not clear whether the statistical noise generated by "unlinked" pedigrees 

may mask or shift  positive linkage evidence. Hence, these "1-LOD" intervals can only 

be considered as a rough guide. 

The shuffling  method we have implemented to determine the null distribution 

is a particularly innovative element of  the sumLINK procedure, and may be especially 

useful  to the broader research community. We used the procedure to assess the 

significance  of  two genome-wide linkage statistics (sumLOD and sumLINK), but it 

may have broader applications for  testing the significance  of  other statistics with 

unknown distributions. It is a simple, elegant, and quick way to create null data for 

assessing significance.  It accounts for  variations in pedigree structure as well as the 

autocorrelation of  consecutive loci inherent in genetic linkage data. We developed a 

postprocessing script written in R [ 171 that calculates the sumLINK and sumLOD 

statistics, performs  the genome-shuffling,  generates the empirical null distribution, and 
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tests the significance  of  observed linkage peaks. Computational time is dependent 

upon the number of  pedigrees and the length of  the genomic region being analyzed. 

The ICPCG data, comprised of  190 pedigrees and 3502 data points from  22 

chromosomes, required 21.3 seconds per iteration with a 3.0 GHz Intel Xeon Duo 

Core 64-bit CPU running R v2.4.1 on Red Hat Enterprise Linux v5. One iteration 

consists of  shuffling  all pedigrees, calculating the null sumLINK, sumLOD, and 

number of  pedigrees contributing to each statistic at all data points, and writing out a 

text file  containing these values. Significance  is computed in a later step after  all 

shuffling  iterations are complete. Our simulated null data (400 pedigrees, 3550 cM, 

22 chromosomes) required 60.8 seconds per iteration, and the simulated data sets from 

GAW 13 (200 pedigrees, 3604 cM, 22 chromosomes) required 22.9 seconds per 

iteration. 

Analysis of  simulated null data illustrated that the type-I error rate for  the 

sumLINK and sumLOD statistics were all within acceptable boundaries, indicating 

that the genome shuffling  procedure is valid for  significance  testing. It is interesting 

to note that the sumLINK and sumLOD statistics did not frequently  agree with regard 

to the locations of  statistically significant  peaks in the null data, nor did they generally 

agree with the HLOD. This perhaps indicates that the three statistics are sensitive to 

different  characteristics of  the null data. 

Analysis of  simulated alternative hypothesis data was based on a GAWI3 

complex model. An obesity phenotype was selected because it is a complex trait 

simulated with extensive locus heterogeneity. One major weight gene, Gbl 1 was 

easily identified,  with both the sumLOD and sumLINK showing good comparability 
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with the HLOD. Power was low for  all other genes, but this was not unexpected. 

Others who analyzed these data reported that the simulated obesity-related genes, 

particularly those genes affecting  change over time, were very difficult  to find  [ 18,19]. 

The data creators intentionally made many of  the genes challenging and perhaps even 

impossible to find  [13]. Although the power was low, the sumLINK and sumLOD 

statistics consistently outperformed  the IILOD in identifying  the minor genes. 

However, we do not believe that these new statistics should replace the HLOD; rather, 

our investigation indicates a proof-of-principle  that the sumLINK and/or sumLOD are 

useful  companion measures to help identify  the best loci for  further  testing. 

Potential limitations of  our method include that the genome-shuffling 

procedure to create the null distribution may not be useful  for  studies including only a 

small number of  pedigrees due to the limited number of  shuffled  genomes that can be 

generated. The shuffling  procedure also assumes that information  content is 

approximately constant across the genome, an assumption that may be violated at the 

telomeres where multipoint information  and information  content is reduced 

systematically. We tested robustness to this by removing all the telomeric regions 

from  the ICPCG data and repeating the analysis. We found  that because these regions 

are such a small part of  the entire genome, they do not substantially bias the shuffled 

null genomes and the results were extremely robust. However, given the difference  in 

information  content between the sex chromosomes and the autosomes, we suggest the 

method for  autosomal genome scans only. The term "genome-wide" as used in this 

manuscript refers  only to the 22 autosomes. All of  the sumLINK and sumLOD 

analyses we presented were performed  using sex-averaged genetic maps. The effect 
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of  this assumption on the characteristics of  these new statistics has not been 

investigated here.. 

In our example case study of  the ICPCG aggressive prostate cancer data, we 

identified  3 regions of  interest for  further  follow-up:  two with genome-wide 

significant  evidence supported by FDR analysis, and one with suggestive evidence. 

This performance  is very encouraging. A prior linkage study of  these data using 

conventional LOD/HLOD procedures indicated suggestive linkage evidence at the 

same loci that we identified  on chromosomes 1 1 and 20 (HLODs of  2.40 for  a 

recessive model and 2.49 for  a dominant model, respectively) [16]. Our method finds 

superior levels of  significance;  both loci are genome-wide significant.  However, it is 

certainly notable that Schaid et al. reported that the evidence on chromosome 11 

increased to HLOD=3.31 in subset analyses for  early age-at-onset pedigrees, and the 

region on chromosome 20 increased to HLOD= 2.65 in the subset of  pedigrees with 

mean age-at-onset greater than 65 years [16], Without necessitating the increased 

multiple testing inherent from  subset analyses, the sumLINK was able to identify  the 

more powerful  pedigrees and the superior evidence. Our suggestive region on 

chromosome 2 was not identified  using conventional linkage statistics in the previous 

study. 

Conclusion 

We have proposed a new statistic to identify  linkage regions that have promise 

for  localization and follow-up  to gene identification.  An R-script is available from  the 

authors that can be used to calculate the sumLINK and sumLOD statistics and 

of thi s assumption on the characteri sti cs of these new stati stics has not been 

in vesti gated here .. 
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In our example case stud y of th e ICPCG aggress ive prostate cancer data, we 

identified 3 reg ions of intcrest lo r further follow- up : two with genome-wide 

significant ev idence supported by FDR analys is, and one with suggesti ve ev idence. 

This perform ance is very encourag in g. A prior linkage study of these data using 

conve ntional LOD/HLOD procedures indicated suggesti ve linkage ev idence at th e 

same loci that we ide nt iried on chromosomes II and 20 (HLODs 01' 2.40 ro r a 

recess ive mode l and 2.49 for a dominant mode l. respecti ve ly) [1 6]. Our method li nds 

superi or leve ls of signifi cance: both loci are genome-wide signifi cant. However. it is 

ce rtainly notable that Schaid et a l. report ed that th e ev idence on chromosome II 

increased to HLOD~3 . 3 1 in subset analyses lo r earl y age-at-onset pedi grees, and the 

reg ion on chromosome 20 increased to HLOD~ 2.65 in th e subset of pedi grees with 

mean age-at-onset greater than 65 yea rs [ 16]. Without necess itati ng the increased 

multi ple testing inherent from subset ana lyses. the sumLi NK was ab le to identify the 

more powerful pedi grees and th e superior ev idcnce. Our suggesti ve reg ion on 

chromosome 2 was not identifi ed using convent io nal linkage statisti cs in th e prev ious 

study. 

Conclusion 

We havc proposed a new stati sti c to ide ntify lin kage regions that have promise 

for localization and foll ow-up to gene identili cati on. An R-script is ava ilable from the 

authors that can be used to ca lculate the sum LI NK and sumLOD statistics and 



generate the null distributions to assess significance  of  each. We do not claim that 

these statistics are superior, but that there is evidence that they are useful  companion 

statistics to the HLOD. This method is of  particular use within the framework  of  large 

collaborative data as it requires neither the sharing of  raw data nor the use of  common 

marker sets. We believe this is an important additional statistical tool for  identifying 

linkage regions likely to harbor disease predisposition genes. 
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BACKGROUND: Prostate cancer is generally believed to have a strong 

inherited component, but the search for  susceptibility genes has been hindered by the 

effects  of  genetic heterogeneity. The recently developed sumLINK and sumLOD 

statistics are powerful  tools for  linkage analysis in the presence of  heterogeneity. 

METHODS: We performed  a secondary analysis of  1233 prostate cancer pedigrees 

from  the International Consortium for  Prostate Cancer Genetics (ICPCG) using two 

novel statistics, the sumLINK and sumLOD. For both statistics, dominant and 

recessive genetic models were considered. False discovery rate (FDR) analysis was 

conducted to assess the effects  of  multiple testing. RESULTS: Our analysis identified 

significant  linkage evidence at chromosome 22ql2, confirming  previous findings  by 

the initial conventional analyses of  the same ICPCG data. Twelve other regions were 

identified  with genomewide suggestive evidence for  linkage. Seven regions (lq23, 

5q 1 1, 5q35, 6p21, 8q 12, 1 1 q 13, 20p I 1 -q 1 1) are near loci previously identified  in the 

initial ICPCG pooled data analysis or the subset of  aggressive prostate cancer (PC) 

pedigrees. Three other regions (1 p 12, 8p23, 19q 13) confirm  loci reported by others, 

and two (2p24, 6q27) are novel susceptibility loci. FDR testing indicates that over 

70% of  these results are likely true positive findings.  Statistical recombinant mapping 

narrowed regions to an average of  9 cM. CONCLUSIONS: Our results represent 

genomic regions with the greatest consistency of  positive linkage evidence across a 

very large collection of  high-risk prostate cancer pedigrees using new statistical tests 

that deal powerfully  with heterogeneity. These regions are excellent candidates for 

further  study to identify  prostate cancer predisposition genes. 
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Abstract 

BACKGROUND: Prostate cancer is generally be li eved to have a strong 

inherited component, but the sea rc h for susceptibility genes has been hindered by the 

effects of genetic heterogene ity. The recentl y deve loped sUIllLl NK and sumLOD 

stati sti cs are powerfu l too ls for linkage analysis in the presence of heterogeneity. 

METHODS: We performed a secondary analysis of 1233 prostate cancer pedigrees 

from the Internati onal Consortium for Prostate Cancer Genet ics (ICPCG) using two 

novel stati sti cs. the sumLiNK and sUIllLOD. For both stati stics. dom inant and 

reccss ive gcneti c models were considered. False discovery rate (FDR) analys is was 
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Introduction 

Prostate cancer (PC) is believed to have a complex environmental and genetic 

etiology potentially involving numerous genes (I]. The identification  of  PCa genes 

has proven to be very difficult;  genetic heterogeneity is a major issue that hinders 

progress [2], Confirmations  of  reported PC susceptibility loci are infrequent  and some 

of  the loci that have been confirmed  by multiple researchers are in chromosomal 

regions with very few  promising candidate genes [3,4], Luo and Yu reported in 2003 

that evidence for  PC susceptibility variants had been reported on all but two human 

chromosomes [5], These two remaining chromosomes, 21 [6,7] and 22 [8.9], have 

subsequently both been implicated. The International Consortium for  Prostate Cancer 

Genetics (ICPCG) was formed  by a large and diverse group of  researchers who have 

pooled their resources with the intent of  deciphering the principal genetic factors 

underlying this pervasive disease 110]. The ICPCG published the findings  of  a 

conventional linkage analysis using the well-known heterogeneity LOD (HLOD) 

statistic and multiple subset analyses based on 1233 high-risk prostate cancer 

pedigrees. The study identified  several susceptibility loci for  further  study |8]. 

Here we present the results of  a secondary analysis of  the ICPCG pooled 

pedigree resource using new genome-wide linkage-based statistics, the sumLINK and 

sumLOD, to identify  PC susceptibility loci. These new statistics have been shown in 

simulation studies to be powerful  and robust tools for  identifying  susceptibility loci in 

the presence of  genetic heterogeneity [ I I |. The sumLlNK/sumLOD approach is well-

suited to analysis of  pooled data resources such as this, because it requires only 

summary data from  each constituent group, which is logistically easier to attain (there 
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are often  data privacy and confidentiality  concerns associated with sharing individual 

raw genotype data and pedigree structures). Secondary analyses of  existing data that 

are more powerful  at addressing genetic heterogeneity have the potential to refine  the 

original analyses, and identify  additional evidence for  PC predispostion genes. 

Methods 

The sumLINK approach focuses  on "linked' pedigrees, which we define  to be a 

pedigree-specific  LOD>0.588 (p<0.05). The aim is to identify  regions with extreme 

consistency of  linkage evidence across pedigrees. The sumLINK statistic is the sum 

of  multipoint LOD scores for  all pedigrees that meet the threshold of  LOD>0.588 at a 

given point in the genome. This value is computed at intervals of  one centimorgan 

throughout the genome. We assess the significance  of  the sumLINK empirically using 

a unique genome randomization and shuffling  method that simulates the expected 

consistency of  linked pedigrees under null conditions [ 1 I |. Briefly,  for  each pedigree, 

the vectors of  LOD scores for  each chromosome are connected in random order, with 

the first  and last values connected to form  a "loop,' and the loop is broken at a random 

position to create a randomized, shuffled  "genomewide' vector of  LOD scores. These 

vectors are then aligned across pedigrees and values of  the sumLINK statistic are 

calculated. This procedure is designed to maintain each pedigree's potential for 

linkage signals across the genome, but randomizes consistency of  linkage evidence 

across pedigrees. Observed peaks are compared with peaks occurring in 1000 

iterations of  the randomized data in order to establish the expected frequency  of  peaks 
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with a similar or greater magnitude for  the data in question. This expected frequency 

may be called a false  positive rate, or FPR. 

The sumLOD statistic is a complimentary companion to the sumLINK statistic. 

The sumLOD statistic is similar to the sumLINK statistic, but with a reduced inclusion 

threshold; all positive pedigree LOD scores at each point in the genome are summed 

to calculate the sumLOD statistic. Significance  of  the sumLOD is determined 

empirically by the same genome randomization procedure that is used for  the 

sumLINK. In accordance with the standards for  significant  linkage evidence set by 

Lander and Kruglyak [12], peak sumLINK and sumLOD values are considered to 

represent significant  evidence of  linkage if  the expected frequency  of  peaks of  similar 

magnitude under null conditions is less than 0.05 per genome. Peak values are 

considered to be suggestive evidence of  linkage if  the expected frequency  is less than 

one per genome. 

We applied the sumLINK and sumLOD procedures to the 1233 PC pedigrees 

in the ICPCG pooled pedigree resource. Pedigree characteristics and genotyping 

details have been described previously [8], The two statistics were computed at 1-cM 

increments (N=3502) throughout the 22 autosomes based on LOD scores from  the 

dominant and recessive inheritance models that were used in the original ICPCG 

analysis. The sex chromosomes were not included in the analysis. 572 pedigrees 

achieved a maximum LOD score of  at least 0.588 at some point in the genome under 

the dominant inheritance model, and 533 pedigrees achieved a LOD score of  at least 

0.588 under the recessive model. Only these pedigrees contributed to the sumLINK 

analyses. 1230 pedigrees contributed to the sumLOD analyses under each model. 
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Empirical significance  was computed based on 1000 iterations of  the genome 

randomization technique. 

False positive rates were calculated based on the empirical distributions for 

each of  the four  analyses (dominant and recessive, sumLINK and sumLOD). False 

discovery rate (FDR) q-values were estimated to account for  the effects  of  multiple 

testing that are inherent in the usage of  multiple models and statistics. Application of 

FDR methods to multipoint LOD scores have been shown to be valid provided no 

fine-mapping  markers are used [ 13], This requirement is met in the present analysis. 

The empirical FDR q-value represents the probability that a given result is a false 

positive based on the pooled distributions of  all four  analyses. 

Localization 

Loci identified  with the sumLINK approach have natural potential for 

subsequent gene localization using statistical recombinant mapping [14], as, by 

definition,  there exist a statistical excess of  linked pedigrees contributing to each peak. 

Hence, for  all significant  and suggestive sumLINK peaks, we will pursue localization 

using statistical recombinant mapping. The genetic marker sets for  which pedigrees 

were genotyped varied between institutions. Even though the resolution of  each 

separate linkage study map was an average spacing of  10 cM, the disparity of  different 

marker maps helps fine-mapping  efforts.  If  pedigrees from  different  resources are 

linked to the same region, they can identify  regions smaller than the resolutions of 

each independent marker map. These genomic segments are the most probable 

locations for  finding  a PC susceptibility gene. 

Empir ica l significance was computed based on 1000 ite rat ions of the genome 

ra ndom iza ti on tech n ique. 
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Given that the linkage evidence for  each pedigree is based on a 10 cM map. 

most pedigrees will have a genotyped marker within 5 cM of  any given cM position 

on the genetic map. Hence, when selecting pedigrees to consider 'linked' to a 

significant  or suggestive region, we identified  all pedigrees that achieved LOD>0.588 

within 5 cM of  the observed sumLINK peak. We then examined the LOD score 

curves for  each of  these pedigrees and determined the probable location of 

recombination events that mark the outer limits of  the segregating chromosomal 

segment within each pedigree. Recombinant events are estimated to be at the outer 

point of  an abrupt drop in LOD score, as these positions are statistical evidence for  a 

loss of  genetic sharing by affected  pedigree members. A shared chromosomal region 

bounded by two recombinant events on each side is an approximate 95% confidence 

interval for  the consensus region [14|. 

Results 

Figure 5.1 shows the genome-wide sumLINK and sumLOD statistics for  each 

model, together with lines representing the thresholds for  significant  and suggestive 

linkage as determined by the randomization procedure. Results are summarized in 

Table 5.1. We identified  one locus with significant  linkage evidence, and twelve loci 

with suggestive linkage evidence. There were no significant  or suggestive linkage 

peaks identified  by the recessive sumLINK analysis. 

Significant  linkage evidence was observed at chromosome 22q 12 by both the 

dominant sumLINK (FPR=0.0I0, 46 contributing pedigrees) and the dominant 

sumLOD (FPR=0.032, 454 contributing pedigrees). In addition to both of  these 
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Figure 5.F Genome-wide sumLINK and sumLOD values for  dominant and recessive inheritance models. The line marked "A" 
in each figure  represents the threshold for  significant  linkage evidence determined by the genome shuffling  process. The line 
marked "B" shows the threshold for  suggestive linkage evidence. 5 
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Figure 5.1, continued. 
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Table 5.1. Chromosomal regions with at least suggestive linkage evidence. 

FDR** 

Chi Nearest 

marker 

cM Total peels 

contributing 

Analysis Model FPR* q-val Obs 

peaks 

Exp 

peaks 

22q 12 D22S283 42 46 sumLINK Dom 0.010 0.115 1 0.1 

D22S283 42 454 sumLOD Dom 0.032 0.186 2 0.4 

5q 11 D5S2500 75 507 sumLOD Dom 0.059 0.200 4 0.8 

D5S407 72 43 sumLINK Dom 0.529 0.259 17 4.4 

2p24 D2SI360 39 45 sumLINK Dom 0.089 0.200 4 0.8 

6p21 D6S2427 59 495 sumLOD Dom 0.350 0.259 17 4.4 

D6SI017 64 40 sumLINK Dom 0.445 0.259 17 4.4 

19q 13 D19S900 70 43 sumLINK Dom 0.379 0.259 17 4.4 

8q 12 D8S285 68 487 sumLOD Dom 0.393 0.259 17 4.4 

D8S285 68 449 sumLOD Rec 0.851 0.259 17 4.4 

8p23 D8S1130 18 467 sumLOD Dom 0.442 0.259 17 4.4 

1 Iql3 D11S1314 79 491 sumLOD Dom 0.558 0.259 17 4.4 

20pl 1- D20S912 51 484 sumLOD Rec 0.688 0.259 17 4.4 

q l l D20SI95 58 489 sumLOD Dom 0.736 0.259 17 4.4 

6q27 D6S28I 189 450 sumLOD Rec 0.740 0.259 17 4.4 

lq23 D1S2628 164 44 sumLINK Dom 0.822 0.259 17 4.4 

5q35 D5S400 177 43 sumLINK Dom 0.852 0.259 17 4.4 

lp l2 D1S534 140 491 sumLOD Dom 0.935 0.262 18 4.7 

* False positive rate, or FPR, refers  to the expected frequency  of  peaks of  similar or 
greater magnitude based on the results of  1000 repetitions of  the genome 
randomization procedure. 
** False discovery rate (FDR) results are based on the cumulative distribution of  null 
p-values from  all analyses. The q-value indicates the proportion of  all results of 
similar or greater significance  that are expected to be false  positives. 
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Table 5.1. Chromosomal regions wi th at least suggestive linkage ev idence. 
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similar or grea ter significance that arc expected to be fa lse posi tives. 
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findings  being genome-wide significant  in their respective single genomewide screens 

(FPRs < 0.05), after  correction for  all four  genomewide analyses, the FDR was 0.186. 

This indicates that under the null hypothesis, the expected number of  peaks at least as 

extreme as these two is only 0.4 (=0.186x2), and therefore,  that 1.6 of  these 2 peaks 

are not likely to be from  the null distribution. Since both peaks are at 22ql2, this 

indicates that even after  correction for  the four  genomewide analyses performed  here, 

there is excellent evidence that the 22q 12 locus is a true positive. 

Suggestive peaks are those that in a single genomewide screen would only be 

expected once per genome under the null hypothesis. Twelve loci were identified 

within their respective single genomewide analyses to have suggestive evidence for 

linkage. In decreasing order of  significance,  these regions were at chromosomes 5ql I 

(dominant sumLOD and sumLINK), 2p24 (dominant sumLINK), 6p21 (dominant 

sumLOD and sumLINK), 19ql3 (dominant sumLINK), 8q 12 (dominant and recessive 

sumLOD), 8p23 (dominant sumLOD). I lql3 (dominant sumLOD), 20pl l-ql 1 

(dominant and recessive sumLOD), 6q27 (recessive sumLOD). Iq23 (dominant 

sumLINK), 5q35 (dominant sumLINK), and lpl2 (dominant sumLOD). Loci at 5ql I 

and 2p24. are perhaps worthy of  particular note because although strictly only 

suggestive, both were borderline significant  (FPRs of  0.059 and 0.089. respectively). 

Accounting for  the four  genomewide analyses, the FDR value associated with these 18 

suggestive and significant  peaks (distributed across 13 regions) was 0.262. indicating 

that only 4.7 (18x0.262) peaks would have been expected under the null. That is, we 

observed 13.3 more peaks than expected and thus, 13.3 are likely not from  the null. 
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I inkage. I n decreas ing order o f signi li cance. these reg ions we re at chromosomes 5q 1 I 

(dominant sumLOD and sumLl NK). 2p24 (dominant sum LI NK). 6p2 1 (dominant 

sumLOD and sum LI NK), 19q 13 (dominant sumLl NK), Sq 12 (dom inant and recess ive 

sumLOD). Sp23 (dominant sumLOD). II q 13 (dominant sUI11LOD), 20p II ·q I I 

(dominant and recess ive sumLOD), 6q27 (recess ive sumLOD), Iq23 (dominant 

sum LI NK). 5q35 (dominant sUI11L1 NK). and I p 12 (domina nt sumLOD). Loci at 5q II 

and 2p24. are perhaps wo rthy of particul ar note because alt hough strictly onl y 

suggesti ve, both were borderline signilicant (FPRs 01' 0.059 and 0.OS9. respective ly). 
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that onl y 4.7 ( ISxO.262) peaks would have been expected under the nu ll. That is. we 

observed 13.3 1110re peaks than expected and thus. 13.3 are like ly not from the null. 



Hence, there is good evidence that many, although not all, of  these loci with 

suggestive evidence for  linkage are also true positive findings. 

Table 5.2 shows the results of  our localization analysis for  the seven significant 

and suggestive regions identified  with the sumLINK analyses. Estimated regions are 

based on the observation of  two recombination events at each end, indicating an 

approximate 95% support interval. The microsatellite markers flanking  the two-

recombinant region are also reported. These two-recombinant localization intervals 

range from  5 to 17 cM. with a mean of  9.1 cM. Since we included information  from 

all pedigrees with a LOD>0.588 within 5 cM of  the peak, there were some instances 

where pedigrees showed conflicting  evidence about the location of  the shared 

chromosomal region. In these instances, we selected the region where the greatest 

number of  pedigrees agreed, and reported the number of  conflicting  pedigrees in the 

table together with the number of  supporting pedigrees. 

Table 5.2. Localization intervals for  sumLINK regions 

Locus Peak 2-recomb. Supporting Conflicting Flanking markers 

(cM) Interval (cM) Pedigrees* Pedigrees 

Iq23 164 161—170 59 0 D1S1677—DIS452 

2p24 39 29—40 53 0 D2S1400— D2S1360 

5q 11 72 72—79 52 2 D5S407—D5S647 

5q35 177 168—185 52 0 D5S422—D5S1960 

6p2l 64 65—74 50 0 D6S1582—D6S1280 

19ql3 70 63—69 55 2 D19S570—D19S420 

22ql2 42 37—42 57 0 D22S280—D22S683 

* Number of  pedigrees with LOD >0.588 within 5cM of  the peak. 

106 

Hence. lhere is good evidence lhalm any, allhough nol a ll. of lhese loci wilh 

suggestive evidence for linkage are also true positive findings. 

Table 5.2 shows lhe resulls of our loca li zation analysis for the seven sign ifi can l 

and suggesli ve regions idenl ifi ed Wilh the sum LI NK ana lyses. ESlimaled regions are 

based on lhe observation of two recombinali on even Is al each end. indical ing an 

approxi male 95% support inlerva l. The microsalellile marke rs fl ank ing lhe lWO-

recombinanl region are a lso reported. These lwo-recombinan l localizalion interva ls 

ran ge from 51017 cM . Wilh a mean 01'9. 1 cM. Si nce we included inJ"orl11ationli·om 

all ped igrees Wil h a LOD2:0.588 wi lhin 5 cM ofl he peak. lhere were some inslances 

whe re pedi grees showed confli cting evidence aboullhe local ion oflhe shared 

chromosoma l reg ion. In these inslances, we se lecled the region where the greatest 

num ber 0 f ped igrees agreed. and reported the num ber 0 r con fl i ct i ng ped igrees in the 

table togelher with the number of supporting pedigrees. 

Table 5.2. Loca li zati on intervals for sum LI NK regions 

LocliS Peak 2-rccolll b. SUppoI,ti ng Connicting FhHtking I11jwkers 

(eM) Interval (eM) Pedigrees" Pedigrees 

1'123 164 161 - 170 59 0 DISI677- DIS4 52 

2p24 39 29-40 53 0 D2S 1400- D2S 1360 

5q II 72 72- 79 52 2 D5S407- D5S647 

Sq35 177 168- 185 52 0 D5S422- D5S 1960 

6p21 64 65- 74 50 0 D6S I 582- D6S 1280 

19'1 13 70 63- 69 55 2 D19S570- D19S4 20 

22'112 42 37--42 57 0 D22S280- D22S683 

* Number ofpedigrces Wil h LOD 2:0.588 within 5cM of the peak. 



Discussion 

We have performed  a secondary analysis of  data from  the largest collection of 

high-risk prostate cancer pedigrees ever assembled with new multipoint linkage-based 

statistics, sumLINK and sumLOD, which are specifically  designed to address genetic 

heterogeneity. Three of  the thirteen loci that we identified  in the present analysis 

(5q I 1, 5q35, and 22q 12) correspond directly to peaks that were reported in the original 

ICPCG analysis using the conventional HLOD statistic [8], In that analysis, a 

dominant LOD score of  1.95 was observed at 22ql2, which increased to 3.57 in the 

subset of  pedigrees with at least five  affected  family  members. Additionally, a non-

parametric LOD of  2.28 was reported at 5ql2, and a dominant LOD of  2.05 was 

reported at 5q35 in the subset of  families  with mean age at diagnosis <65 years. Two 

other loci (Iq23 and 8q 12) are near peaks that were reported in the first  analysis [8], 

The loci on chromosomes 6p21. 1 Iql3, and 20pl 1-ql I correspond to susceptibility 

loci previously identified  in the ICPCG data resource in linkage scans for  aggressive 

prostate cancer [I 1,15]. The remaining loci have not previously been identified  in 

pooled ICPCG data, though many of  them correspond to findings  reported elsewhere 

in linkage studies by individual institutions. 

The dominant and recessive sumLOD peaks on chromosome 20 appear to be 

supportive of  the HPC20 locus [16], although it should be noted that the original 

HPC20 linkage peak was at 20ql3, about 20-30 cM downstream from  the peaks we 

report here. Our tentative replication of  HPC20 is in contrast to an earlier ICPCG 

study using the same data and a conventional HLOD approach that failed  to replicate 

this locus [10], although a later ICPCG study concentrating on aggressive prostate 
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cancer pedigrees did find  linkage evidence [15]. The ICPCG aggressive PC linkage 

study found  a dominant LOD score of  2.49 midway between the dominant and 

recessive sumLOD peaks that we report here. The observed LOD score increased to 

2.65 in the subset of  pedigrees with mean age at onset >65 years. The present study 

includes data from  most of  the pedigrees that were included in the ICPCG 

aggressiveness analysis, but the difference  in phenotype definition  prevents a direct 

comparison of  the pedigrees that contribute to the results. HPC20 was originally 

identified  by the Mayo Clinic site [16,17]; however, of  the 45 pedigrees that exhibited 

LOD>0.588 within 5 cM of  the dominant sumLOD peak, only 6 were from  Mayo 

Clinic. As seen from  these comparisons, one distinct advantage of  the sumLINK and 

sumLOD statistics is that the approach inherently identifies  subgroups of  pedigrees 

that are genetically alike, and hence, one analysis can encompass what in conventional 

analyses may take many subset analyses and multiple testing corrections. It is 

therefore  perhaps not surprising that our results more closely align with linkage 

tindings for  subset-based analyses such as aggressive prostate cancer [15]. 

In addition to the findings  discussed above, three of  the other suggestive 

linkage regions reported here support previously identified  loci. Our peak at 1 p 12 

falls  within a region of  interest reported by other ICPCG member-sites [18]. The peak 

at chromosome lq23 approximates the HPCI susceptibility region [19], although the 

RNASEL  candidate gene proposed as the HPCI gene [20] is located about 20 Mb 

beyond the boundary of  our support interval. An ICPCG member-site previously 

reported linkage at 8p23 [21], a finding  that was recently replicated and refined  by 

combined somatic deletion and fine  linkage mapping [22], The suggestive sumLOD 
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peak at 8p23 is about 4 Mb from  the MSRI  PC candidate gene. Our 19q 13 region also 

corresponds to previously reported linkage for  aggressive PC [23,24], 

Our suggestive regions on chromosomes 2p24 and 6q27 appear to be new. Of 

particular interest of  these new loci is perhaps 2p24. Statistical evidence for  2p24 was 

borderline significant,  and recently, a gennline copy number variant at the 2p24 locus 

has been associated with aggressive prostate cancer [25], Other notable association 

studies have focused  on regions identified  in this report. Copy number variations at 

8p23 and 1 lql3 have been implicated in aggressive PC and PC recurrence, 

respectively [26], Kallikrein genes KLK2  and KLK3  at chromosome I9ql3 have been 

identified  as PC candidate genes [27], 

We did not identify  linkage evidence to regions that have recently received 

much attention due to highly significant  and replicable association evidence with PC 

in genome-wide association studies. The most compelling of  these results are located 

on chromosomes 8q24, I 7ql2, and lOql 1 [3], It is perhaps not surprising that we did 

not find  any evidence to support these regions because these SNPs have common 

minor allele frequencies  and very small effect  sizes. The sumLINK and sumLOD are 

linkage-based statistics, and linkage is most powerful  for  finding  rarer, more highly-

penetrant variants. 

The localization procedure we used here to delimit support intervals generated 

much more concise intervals than the 1-LOD drop regions reported previously by 

ICPCG for  the four  sumLINK peaks that overlapped with previous findings  [8] . The 

intervals reported previously ranged from  12 to 30 cM with a mean length of  21.2 cM, 

substantially longer than the mean length of  9.5 cM we report here for  the same 4 
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regions. A particularly interesting example of  the narrower intervals can be seen in 

the putative susceptibility locus at chromosome 5ql 1-12. The previous analysis of 

this data identified  a suggestive HLOD peak at 77 cM, with a reported 1-LOD support 

interval extending from  66—96 cM. In the present analysis, the sumLINK statistic 

identified  a suggestive linkage peak at 72 cM and a 2-recombinant support interval of 

only 7 cM, which includes the original HLOD peak. This ability to more narrowly 

define  regions using statistical recombinant mapping was also illustrated by an earlier 

candidate region localization study for  the chromosome 22ql2 susceptibility locus [9J. 

That report had the advantage of  LOD score data from  several large pedigrees with 

fine-mapping  markers that were not included in the present results. Nonetheless, and 

as expected, the 2-recombinant localization region we report here supports the region 

previously reported in that paper. 

Conclusion 

A secondary reanalysis of  1233 PC pedigrees using novel linkage statistics 

identified  13 regions with at least genomewide suggestive evidence for  linkage. Eight 

regions provide confirmation  of  loci previously identified  by conventional linkage 

analyses in the same ICPCG data [8] or the subset of  aggressive PC pedigrees 115], 

three are regions that confirm  loci not seen in the original analyses, but are reported in 

other linkage studies [ 18,22-24], and two are novel loci. One distinct benefit  of  the 

sumLINK and sumLOD approach is that the statistics are based on the identification 

of  pedigrees that are genetically alike at a locus, and the constituent set of  pedigrees 

may change from  locus-to-locus. This both addresses genetic heterogeneity directly 
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and largely circumvents the need for  subset and stratification  analyses that are costly 

in terms of  multiple testing. This is illustrated by the fact  that several of  the regions 

identified  here replicate results that were originally found  in stratification  analyses. 

The second advantage for  the sumLINK statistic is the natural progression to statistical 

recombinant mapping, which appears to hold much promise for  narrowing linkage 

regions. Furthermore, the FDR approach for  correction of  multiple genomewide 

analyses can better guide interpretation and aid prioritization of  findings.  Evidence 

here suggests that these statistics have the potential to further  refine  the results of 

original analyses, and provide new directions in the pursuit for  PC susceptibility 

genes. 
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Summary 

The purpose of  this research was to extend methodology for  identifying  disease 

genes in heterogeneous systems. Current methodology for  genetic linkage analysis 

was examined and new methods for  linkage analysis were developed. Prostate cancer 

(PC), the genetic etiology of  which is believed to be very complicated, was used as a 

model system throughout the research. 

Chapter 2 Review 

Genetic heterogeneity has been identified  as the principle factor  responsible for 

the numerous published hints of  PC linkage and the relative dearth of  positive 

replication studies, it is encouraging that analysis of  clinically defined  PC subtypes, 

especially "aggressive" disease cases, has resulted in several replicated linkage 

findings.  Chapter 2 is a conventional linkage analysis for  aggressive PC using data 

ascertained from  an unconventional resource, the Utah Population Database (UPDB) 

11]. Analysis of  the large extended pedigrees in this study did not return any 

significant  linkage results, but previously reported linkages for  the aggressive 

phenotype to chromosomes 6p and 20q were confirmed.  Suggestive linkage regions 

on chromosomes lp and 8q also support previously reported PC linkage. 

It is very interesting to note the differences  between the results of  this study 

and the results of  the previous linkage analysis of  the same pedigrees for  all PC cases 

[2J. The best linkage signals reported in that study, on chromosomes 1. 3, 5, and 22, 

practically disappeared in the analysis of  the aggressive phenotype. Conversely, the 

suggestive linkage results in the aggressive analysis are not generally seen in the 
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results of  the original analysis. This observation supports the notion that aggressive 

PC may have a different  genetic etiology than PC in general, or that the etiology of  PC 

may involve too many genes for  any one of  them to be detected by analysis of  only the 

broader phenotype. 

The challenge for  prostate cancer researchers is to sufficiently  clarify  the 

differences  within the PC phenotype so that genes controlling each subtype can be 

identified.  This includes improving the definitions  of  "aggressive" and "early onset" 

disease. Similar challenges exist for  other heterogeneous phenotypes as well. 

Obtaining valid results from  linkage analysis using conventional techniques requires 

that phenotypes be defined  as concisely as possible. It is possible that new analytical 

methods will make it possible to find  more genes with marginal effects,  but any 

ambiguity in the analyzed phenotype will make it more difficult  to establish a 

causative relationship. 

Chapter 3 Review 

To identify  disease susceptibility genes in complex systems, it may be 

necessary find  alternative methods of  defining  the phenotype of  interest, thereby 

excluding statistical noise produced by phenocopies (individuals whose disease was 

caused by a nongenetic factor).  It has been proposed that biomarkers associated with 

the disease, such as RNA expression levels, may lead to genes associated with disease, 

particularly in regulatory pathways. Chapter 3 is a conceptual study that uses gene 

expression profiles  from  randomly-ascertained individuals in pedigrees as a phenotype 

for  linkage analysis with the hypothesis that loci may be found  that are linked to the 
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expression profile  as well as the associated disease. This study concentrated on an 

expression profile  that could be considered a marker of  PC risk. The risk level for 

study subjects was determined based on the expression levels of  26 genes that had 

previously been implicated as over- or under-expressed in PC tumors. Linkage 

analysis of  this "PC risk'" phenotype identified  interesting results on chromosomes 4 

and 6 in areas previously linked to PC susceptibility. 

A weakness of  this study is that the risk profiles  used as phenotypes in this 

chapter used expression data measured in blood cells, whereas the model for  risk was 

based on reported RNA expression levels in prostate tumors. This presumes that 

blood biomarkers can, at some level, represent tumor biomarkers and can be used to 

predict disease risk. This is a novel concept that is receiving much attention in current 

cancer research. The N1H Challenge Grants in Health and Science Research initiative, 

part of  the American Recovery and Reinvestment Act of  2009, includes requests for 

research proposals to identify  body fluid  expression biomarkers that provide early 

detection for  the risk of  cancer and age-related diseases. Understanding the genetics 

underlying gene expression, which is at the center of  Chapter 3, has also been 

identified  as a key to understanding human disease genetics [3]. 

The results in Chapter 3 stand as proof  of  concept that the expression levels of 

several related genes can be combined to create a reasonable phenotype for  linkage 

analysis. As shown in Chapter 2, it is very important to concisely define  phenotypes 

used in linkage analysis in order to obtain reliable results. In the event that a 

phenotype's clinical presentation is easily confused  with a different,  unrelated 

phenotype, the use of  related gene expression levels and other biomarkers may 
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improve the accuracy of  the diagnosis, and thereby strengthen the results of  the 

analysis. The methods presented here would be particularly useful  for  identifying 

inherited variants that may regulate genetic pathways. 

Chapter 4 Review 

Collaborative data sharing, appropriately accounting for  multiple 

testing, and developing new analytical methods have all been identified  as necessary 

factors  to overcome the problems of  heterogeneity in linkage analysis [4], Chapter 4 

describes an attempt to address all of  these factors  through the development of  the 

novel sumLINK and sumLOD analysis method. These statistics are designed to 

address both heterogeneity and gene localization. Trait genes in heterogeneous 

systems may not be found  by traditional linkage methods because only a limited 

number of  pedigrees may be linked to the locus, and the linkage signal from  those 

pedigrees does not rise above the statistical "background noise." The sumLINK and 

sumLOD procedures identify  the genomic regions for  which a substantial number of 

pedigrees give concordant linkage evidence, regardless of  the negative evidence 

exhibited by unlinked pedigrees. The sumLINK and sumLOD methods were 

validated by extensive simulations. Simulation testing established that the rate of 

detecting false  positive results was followed  the expected distribution. Both statistics 

routinely outperformed  the conventional HLOD statistic in identifying  the location of 

trait related genes in data simulating a complex disease system. 

The methods described in Chapter 4 are of  particular use within the framework 

of  large collaborative data as they require neither the sharing of  raw data nor the use of 

improve the accuracy of the diagnosis, andthcrcby strengthen the results of the 
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common genetic marker sets. Empirical methods for  false  discovery rate (KDR) 

analysis give perspective to the significance  of  results across multiple analyses. These 

characteristics were demonstrated in a case study that analyzed 190 pedigrees with 

aggressive PC provided by the International Consortium for  Prostate Cancer Genetics 

(ICPCG). The case study successfully  replicated the results of  a conventional linkage 

analysis and also identified  an additional locus linked to PC aggressiveness that had 

not been reported previously. 

Chapter 5 Review 

The International Consortium for  Prostate Cancer Genetics (ICPCG) has 

assembled a collection of  1233 high-risk PC pedigrees for  linkage analysis. Chapter 5 

is a practical application of  the sumLINK and sumLOD methods within this large 

ICPCG data resource. Conventional analysis of  this resource previously identified 

significant  linkage on chromosome 22ql2, and suggestive linkage evidence in several 

other regions [5]. Most of  the previously identified  regions of  interest were found  via 

subset analysis. The sumLINK and sumLOD analyses in Chapter 5 confirm  the 

significant  linkage result at 22ql2 as well as suggestive loci originally reported by the 

ICPCG at chromosomes 1 q23, 5q 1 I. 5q35, 6p21. 8q 12, 11 q 13, and 20p 1 I-q 11. This 

analysis also provided confirmation  of  susceptibility loci reported by other researchers 

on chromsomes Ipl2. 8p23, and 19ql3, which were not found  in this data using 

conventional linkage statistics. All linkage regions identified  by the sumLINK 

statistic can be delimited by statistical recombinant mapping, which can greatly reduce 

the length of  the chromosomal segment where candidate genes may be found.  The 
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results found  with sumLINK and sumLOD did not require subsetting the data, thereby 

limiting the effects  of  multiple testing on the significance  of  the results. The results in 

this chapter identify  the genomic regions with the greatest consistency of  positive 

linkage evidence across a very large collection of  PC pedigrees. These regions are 

excellent candidates for  further  study to identify  PC predisposition genes. 

Contribution to Biomedical Informatics 

Biomedical informatics  is the application of  computer science and information 

systems to healthcare and biological research. The field  of  genetic epidemiology 

relies heavily on biomedical informatics  tools and resources. The Utah Population 

Database [ 1] and online resources such the UCSC Genome Browser [6] are examples 

of  informatics  resources that make genetic epidemiology research possible. Genetic 

epidemiologists contribute to biomedical informatics  by developing phenotype and 

genotype databases and by creating software  tools and algorithms for  analyzing 

genetic data and testing hypotheses of  genetic contributions. The present research 

makes a significant  contribution to biomedical informatics  with the development of 

the sumLINK analysis method. Aside from  being a powerful  statistic for  genetic 

epidemiology research, the sumLINK procedure has two major benefits  for 

informatics. 

First, the novel genome shuffling  algorithm used to determine sumLINK 

significance  may have a variety of  additional applications both in and out of  the 

biological sciences. The algorithm can be applied to any type of  trend data measured 

at regular intervals for  several experimental subjects. Possible applications include 
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such varied fields  as public health surveillance (is an apparent peak in over-the-

counter sales of  llu medicine at several pharmacies significantly  different  from  the 

established norms, and therefore  indicative of  an outbreak?) and meteorology (Is it 

significant  that several weather stations in a broad area reported recorded spikes in 

wind speed at the time?). 

The second informatics  benefit  of  the sumLINK method is that it facilitates 

collaborative research and data sharing. Data security and protecting the privacy of 

research subjects are very important issues in informatics.  Sharing private patient data 

or other secure, proprietary information  between institutions can be a barrier to 

research collaborations as institutional review boards are generally wary about 

allowing researchers to pass any sensitive data outside of  their own institution. The 

sumLINK procedure uses only unidentifiable  meta data as input, and can therefore  be 

used to analyze data from  multiple institutions without sharing any private data. This 

characteristic makes the sumLINK a very valuable tool from  the perspective of 

biomedical informatics. 

Discussion 

The problems presented by genetic heterogeneity will not be easy for  genetic 

epidemiologists to overcome. Many years of  research have already been dedicated to 

this topic, and many more years are likely to follow.  It is clear that current methods 

are not capable of  solving the problem. New and innovative analytical methods are 

needed. The sumLINK and sumLOD statistics are a step in the right direction, but 

they must still withstand the test of  time. SumLINK analysis outperforms 

such va ri ed fi e lds as public hea lth surveillancc (Is an apparcnt peak in over-th e

counter sa les o f flu medic inc at several pharm ac ies signifi cantl y different lI'om the 

establi shed norms. and th erefore indica ti vc of an out break?) and meteo rology (Is it 

signifi cant that seve ral wea ther stations in a broad area reponed reco rded spikes in 

wind spced at the timc?). 

125 

The second info rmati cs benefit o f th e sumLi NK meth od is that it fac ilitates 

co ll aborati ve research and data sharing. Data security and protecting the privacy of 

resea rch subjec ts are ve ry important issucs in inform ati cs. Sharing pri vate pati ent data 

or other secure . p" oprieta ry inlormal ion bctwcen insti tut ions ca ll be a ba rri er to 

resca rch co ll aborati ons as institutional rev iew boards are generall y wary about 

allowing researchers to pass any sensiti ve data outside o f their own institution. The 

sum LI NK proced ure uses onl y unidentifi able meta da ta as input. and can there fore be 

used to ana lyze data from multip le institutions without sharin g any private dat a. This 

characteri stic makes the sumLi NK a very valuable too l from the perspective o f 

biomedical inlo nnati cs. 

Discussion 

The problems presented by genetic heterogeneity will not be easy for genetic 

epidemiologists to overcomc. Many years o f research have already been dedicated to 

thi s topic, and many more years are likely to follow. It is clear th at current meth ods 

are not capable of solving the problem. New and innova ti ve analyti cal methods are 

needed. The sumLi NK and sumLOD stati stics are a step in th e ri ght direction. but 

they must still withstand the test o f rim e. SumLiNK anal ys is outperform s 



conventional methods in simulated data, but no genes have yet been proven to exist 

based on sumLINK evidence, and it remains unclear whether susceptibility loci 

identified  with this method will have a better replication rate than traditional methods. 

Despite the novelty of  the methods, sumLINK and sumLOD remain 

LOD-based linkage statistics. The LOD statistic has been used for  over 50 years, and 

it may be that the answer to the overarching heterogeneity problem lies somewhere 

further  outside the bounds of  traditional methodology. Advances in high-throughput 

genotyping make it possible to simultaneously genotype over one million single 

nucleotide polymorphisms (SNPs), and exciting new methods are being developed to 

utilize this rich data. One such technique is shared genomic segment (SGS) analysis 

[7]. This method uses long runs of  SNPs at which alleles are shared identically by 

state in pedigrees to localize hypothesized predisposition genes. I ligh-density SNP 

genotyping has also led to the current trend of  genome-wide association studies 

(GWAS). GWAS analyses typically use a case-control design with large numbers of 

unrelated subjects. This type of  study is still in developmental stages, but has already 

demonstrated utility for  finding  common genetic variants that have moderate statistical 

association with disease status. 

Although useful,  GWAS cannot entirely replace pedigree-based analysis. 

Current GWAS methods lack the power to identify  rare (allele frequency  < 0.05), 

high-risk coding variants, which is a strength of  linkage analysis [3]. The expense of 

collecting and genotyping the large number of  subjects needed for  GWAS is also a 

limiting factor.  There are some phenotypes for  which linkage will always be more 

powerful  and efficient.  A combination of  linkage and association techniques is likely 
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to give the best power in heterogeneous systems. An example of  the synergy that 

results from  combined linkage and association testing can be seen in the chromosome 

8q24 PC locus. This locus was identified  by linkage analysis and replicated by 

GWAS, but it remains unclear which gene in that region, if  any, is responsible for  the 

association with increased PC risk. In such a case, statistical recombinant mapping 

with linked pedigrees can refine  the area most likely to harbor the true susceptibility 

variant [8], Pedigree-based data is also useful  for  association studies, and several tools 

have been developed for  association testing using related subjects [9-12], Methods for 

association analysis using related subjects need to be refined  and extended for  use in 

genome-wide setting. This concept is addressed in Appendix C, which contains results 

of  a combined linkage and association study in extended pedigrees. The efficiency 

and economy of  genomic research can be greatly improved if  linkage and association 

analysis can be performed  in the same group of  subjects, as the cost of  subject 

ascertainment and genotyping can be combined. 

The future  of  genetic epidemiology research relies on the development of 

analysis methods with sufficient  power to identify  susceptibility genes in complex, 

heterogeneous systems. This may require a fundamental  shift  in the way we think 

about phenotypes, as demonstrated in Chapters 2 and 3. It may also require the 

development of  new analytical methods, such as the sumLINK and sumLOD statistics 

described in Chapters 4 and 5. Methods must also be developed for  emerging data 

types. The past decade has seen an explosion in genotype data with the introduction 

of  affordable,  high throughput, high density SNP genotyping technology. Despite the 

advances in data collection, there has been little fundamental  change in the tools used 
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to analyze genetic data over the same period. The coming decade is likely to 

experience another genotyping renaissance as "next-generation" sequencing 

technology comes of  age [ 13], At the present, this technology can greatly assist with 

mutation screening and candidate gene identification  in linkage regions, but it may 

have far  greater implications in the future,  as full  genome sequencing becomes a 

practical reality. Full genome sequences will contain treasures of  knowledge, but it 

will never be understood unless genetic epidemiologists are prepared with the methods 

needed to process and analyze such vast amounts of  data. We must be ready. 
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Survey of  Excess Familiality in Prostate Cancer 

by: 

GB Christensen, JM Farnham, NJ Camp, LA Cannon-Albright 

University of  Utah Department of  Biomedical Informatics 

Background 

Prostate cancer (PCa) is the most commonly diagnosed cancer among men, 

and has long been recognized to occur in familial  clusters. However, identification  of 

genes predisposing individuals to prostate cancer has been difficult.  Putative PCa 

predisposition loci identified  by genetic linkage have been reported on almost all 

chromosomes, but successful  confirmation  reports have been rare. PCa is a complex 

disease likely involving multiple genes and variable phenotypic expression. As a step 

toward understanding PCa heterogeneity, we used the resources of  the Utah 

Population Database to review several PCa-related phenotypes for  excess familiality. 

PCa subgroups that can be shown to have a strong familial  component become 

candidates for  linkage analysis and other genetic testing to determine the genetic basis 

for  the observed phenotype. 

Data Resource 

Utah Population Database (UPDB) 

Records for  approximately 2.2 million individuals 

Up to 9 generations of  genealogical data linking individuals into 

pedigrees 
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Prostat e cancer (PCa) is the most commonl y diagnosed cancer among men, 

and has long been recogn ized to occur in fami li al clusters. Howcver. identifi cation of 

genes predi sposing individuals to prostate cancer has been dil'li cu lt. Putative PCa 

predi spos it ion loc i iden tified by geneti c linkage have been report ed on almost all 

chromosomes. but success ful conlirmati on rcport s have been ra re. PCa is a complex 

di sease likely in vo lving multiple genes and vari able phenotypic expression. As a step 

toward understanding PCa heterogeneity, we used th e resources of the Utah 

Population Database to rev iew severa l PCa-relatcd phenotypes for excess familia lit y. 

PCa subgroups that can be shown to have a stro ng familial component become 

cand idates fo r linkage ana lys is and other geneti c testing to determine the geneti c basis 

for the observed phenotype. 

Data Resource 

Utah Populat ion Database (U PDB) 

Records fo r approx imate ly 2.2 million individuals 

Up to 9 generat ions o f genealog ica l data linking indi vidual s in to 

ped igrees 

I 



Linked to death certificates  from  Utah vital records, providing cause of 

death data since 1904 

Utah Cancer Registry (UCR) 

Part of  Surveillance, Epidemiology and End Results (SEER) program 

since 1973 

All cancer events except basal and squamous cell carcinomas are 

required to be reported 

• Fully linked to UPDB 

At the time of  this study, 17.379 PCa cases from  UCR were linked to UPDB 

genealogies 

Tables A. 1 —5 summarize the primary variables from  UCR and UPDB used in 

this study 

Genealogical Index of  Familiality (GIF) 

The GIF statistic tests the hypothesis that a set of  individuals is more closely related 

than would be expected by chance. The statistic is computed for  the cases and for 

1000 sets of  controls that are carefully  matched to each subject in the case group based 

on sex, year of  birth, and place of  birth. An empirical p-value determines the 

significance  of  the relatedness of  the cases in comparison to the repeated controls. 

Results of  GIF analysis are summarized in Table A.6. 
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Linked to death certifi cates li'om Utah vita l records. prov iding cause of 

death data since 1904 

Utah Cancer Regi stry (UCR) 

Pa rt ofSurvc ill ancc. Epidcmiology and End Results (SEER) program 

since 1973 

A II cance r eve nts exce pt basa l and squamous ce ll ca rcinomas are 

required to be reported 

Full y linked to UPDB 

At the time of th is st udy. 17.379 PCa cases from UCR were linked to UPDB 

genea logies 

Tab les A. I- S summarize the primary va ri ab les from UCR and UPDB used in 

thi s study 

Genea logica l Index o f Familialitv CG IF) 

The GI F stat istic tests the hypothes is that a set of indiv iduals is more close ly related 

th an wou ld be expected by chance. The stati sti c is computed fo r the cases and for 

1000 sets o f contro ls that are ca refully matched to each subject in the case group based 

on sex. year of birth, and place of bi rth . An empirica l p-va lue determines th e 

signifi cance of the relatedness of the cases in compa rison to the repeated contro ls. 

Results ofGIF analysis are summ arized in Table A.6. 



Table A.1: Age at PCa diagnosis 

Age (years) N 

40-49 143 

50-59 1283 

60-69 5436 

70-79 7184 

80-89 3051 

>90 273 

Table A.2: Age at PCa-related death 

Age (years) N 

40-49 15 

50-59 166 

60-69 801 

70-79 2028 

80-89 1943 

>90 420 

Table A.3: ICD cause-of-death codes for PCa 

ICD Revision Code N 

6 177 35 

7 177 487 

8 185 650 

9 185 2719 

10 C61 1487 
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Table A.4: PCa stage at diagnosis 

Stage Code Description N 

1 Localized 6973 

2,3,4,5 Regional 6840 

7 Distant metastases / Systemic disease 5206 

Table A.5: PCa grade at diagnosis 

Grade Code Description N 

1 Well differentiated 7205 

2 Moderately differentiated 6930 

3 Poorly differentiated 3035 

4 Undifferentiated,  anaplastic 209 
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Table A.6. Summary of GIF analysis for prostate cancer subgroups 

Overall GIF GIF without 1° and 2° relatives 

Phenotype Group N Cases Controls Empirical P Cases Controls Empirical P 

All PC Cases 17,379 3.75 3.02 <0.001 2.80 2.52 <0.001 

Localized PCa (Stage=1) 6973 3.87 3.03 <0.001 2.80 2.48 <0.001 

Metastatic PCa (Stage=7) 1506 3.54 3.01 <0.001 2.57 2.45 0.174 

PCa Dx before age 60 1426 4.99 3.14 <0.001 2.98 2.76 0.034 

PCa Dx after age 80 3324 3.92 2.99 <0.001 3.13 2.61 <0.001 

Grade 1 PCa 7205 3.80 2.99 <0.001 2.73 2.41 <0.001 

Grade 3/4 PCa 3244 3.81 3.02 <0.001 2.89 2.55 <0.001 

PCa-related death 5378 3.83 2.94 <0.001 2.39 2.25 0.008 

PCa death before age 65 456 5.01 2.98 <0.001 2.30 2.42 0.661 

Malnutrition Death* 1481 2.97 2.98 0.528 2.28 2.45 0.918 

All PCa subgroups analyzed show greater than expected familiality 

Cases with metastatic disease show reduced significance  when the 

contribution of  close relatives is removed 

Relatedness of  group who died from  PCa before  age 65 also loses significance 

beyond close relatives 
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contributi on of close re lati ves is rem oved 
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Re latedness of group who died from PCa before age 65 a lso loses sign ifi cance 

beyond c lose re latives 



Graphical GIF Results 

The graphs in Figure A.l show the contribution made to the GIF statistic by 

individuals with varying degrees of  relatedness. Each step on the horizontal axis 

represents increasingly distant relatives. In familial  diseases, we expect the case group 

to be consistently higher than the controls for  several steps. In each frame  the black 

bars represent the case group and the grey bars represent the average results of  1000 

matched control sets. The GIF results of  malnutrition-related death are included to 

show the typical behavior of  a non-hereditary phenotype. 

0.7 

0.6 
0.5 

0.4 
u_ O 

0.3 

0.2 
0.1 
0 

Figure A. I. Genealogical index of  familiality. 
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The graphs in Figure A. I show the contribution made to the GIl' stati stic by 
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represents increasingly di stant relat ives. In famili al di seascs. we expec t the case group 
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bars represent the case group and the grey bars represent the average results or 1000 

matched control sets. The GIl' resu lts of malnutrition-re lated death are included to 

show the typica l behavior ofa non-hered itary phenotype. 
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Figure A. I. Genea logical index of fami li ali ty. 
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Figure A.I. continued. 

137 

Localized, non-metastatic PCa (stage=1) 

07 r---------------------------------------------, 

06 

05 

0 4 

03 

02 

0 1 

o 
2 3 5 6 7 B 9 10 11 12 13 

Ge neti c Distance 

Metastatic PCa (stage=7) 

07 r---------------------------------------------, 

06 

0 5 

0 4 

03 

02 

0 1 

o 
2 3 4 5 6 B 9 10 11 12 13 

Genetic Distance 

Figure A. I . conti nued. 



Grade 1 PCa 
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Figure A. I. continued. 
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PCa Dx before age 60 
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Figure A. I. continued. 
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PCa Death before age 65 
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Figure A. I. continued. 

140 

pea Death before age 65 

16 

1. ' 

" 
Z; 0.8 

0.6 

04 

02 

0 

9 10 11 12 13 

GentIle (lst~nct 

Malnutrition-re lated death 

07 

06 

05 

O. 
~ 

i3 
03 

IJIl 02 

0 1 

£l.n 0 

2 3 • 5 6 , 9 10 11 12 13 

Genetic Distance 

Figure A .I . con linued. 



Familial Relative Risk (FRR) 

The resources of  the UPDB allow us to make population-based estimates of 

relative risk for  family  members of  individuals with specific  phenotypes. Table A.7 

shows the relative risk to first,  second and third degree relatives of  cases for 

developing the same PCa phenotype. 

Table A.7: Summary of Familial Relative Risks for prostate cancer subgroups 

Phenotype 
Relationship 

Observed Expected 
Subjects Cases Cases FRR 95% CI 

All PCa Cases 
1° 
2° 
3° 

17,379 
5330 2762.8 1.93 1.88—1.98 
5256 4071.4 1.26 1.26—1.33 
9312 8402.1 1.11 1.09—1.13 

Localized PCa (Stage=1) 
1° 
2° 
3° 

6973 
1061 521.4 2.04 1.91—2.16 
1293 898.4 1.44 1.36—1.52 
2332 1979.1 1.18 1.13—1.23 

Metastatic PCa (Stage=7) 
1° 
2° 
3° 

1506 
51 27.3 1.87 1.39—2.46 
62 40.8 1.52 1.16—1.95 
161 137.3 1.17 0.99—1.37 

PCa Dx before age 60 
1° 
2° 
3° 

1426 
119 18.6 6.4 5.30—7.65 
58 24 2.42 1.84—3.13 
114 80 1.42 1.18—1.71 

PCa Dx after age 80 
1° 
2° 
3° 

3324 
322 157.5 2.04 1.83—2.28 
288 203.8 1.41 1.25—1.59 
809 700.1 1.16 1.08—1.24 

Grade 1 PCa 
1° 
2° 
3° 

7205 
1159 596.6 1.94 1.83—2.06 
1193 922.7 1.29 1.22—1.37 
2688 2271.5 1.18 1.14—1.23 

Grade 3/4 PCa 
1° 
2° 
3° 

3244 
238 110.4 2.16 1.89—2.45 
224 154.7 1.45 1.26—1.65 
655 519.7 1.26 1.17—1.36 

PCa-related death 
1° 
2° 
3° 

5378 
786 406.4 1.93 1.80—2.07 
985 700.4 1.41 1.32—1.50 
1534 1334.7 1.15 1.09—1.21 

PCa death before age 65 
1° 
2° 
3° 

456 
9 2.3 3.91 1.79—7.4 
16 5.3 3.02 1.72—4.90 
15 9.8 1 53 0.85—2.52 

Malnutrition-related death 
1° 
2° 
3° 

1481 
31 25.5 1.21 0.83—1.73 
49 44 1.11 0.82—1.47 
125 115.8 1.08 0.90—1.29 
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The resources of the UPDB a ll ow us to make popu lation-based estimates of 

relative risk for lillll il y members o f ind ividua ls with spec ifi c phenotypes. Table A.7 

shows the re lati ve ri sk to first. second and th ird degree relatives o r cases lor 

developing Ihe same PCa phenotype. 
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Grade 3/4 PCa 3244 
l ' 238 110.4 2.16 1.89-2.45 
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PCa-related death 5378 
l ' 786 406.4 1.93 1.80-2.07 
2' 985 700.4 1.41 1.32-1 .50 
3' 1534 1334.7 1.15 1.09-1 .21 
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2' 16 5.3 3.02 1.72-4.90 
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3' 125 115.8 1.08 0.90-1.29 
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Conclusions 

All of  the PCa subgroups examined show a significant  familial  component 

Best result was for  early diagnosis group (age at Dx less than 60 years) 

GIF = 4.99 was the second largest observed 

FRR = 6.4 for  first  degree relatives was largest observed 

FRR values for  all relative groups were significantly  higher than the 

values for  general PCa 

Strong familiality  for  PCa-related death prior to age 65 is not observed in 

distant relatives. 

May be the result of  a small sample size 

Localized vs. Metastatic PCa cases 

Metastatic PCa loses familial  significance  beyond first  and second 

degree relatives 

Result may be affected  by relatively small sample size. 

FRR values for  localized cases were significantly  higher than the 

values for  general PCa in both second and third degree relatives 

Our results show that early-onset PCa cases and those cases with localized 

disease have the strongest familial  relationships. These two phenotypes may therefore 

be strong candidates for  linkage analysis or other genetic testing to identify  genes that 

are associated with prostate cancer. 
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Genetic susceptibility of  Prostate Cancer: Genome-wide screen of 

"non-aggressive" disease 

by: 

GB Christensen, NJ Camp, JM Farnham, LA Cannon-Albright 

University of  Utah Department of  Biomedical Informatics 

Background 

Research has consistently shown that genetics plays a critical role in prostate 

cancer (CaP) development, but the identification  of  CaP genes has proven to be very 

difficult.  I lereditary prostate cancer is a complex disease believed to involve 

numerous genes and variable penetrance. It has been proposed that studying 

alternative, highly homogenous phenotypes related to CaP may be a solution for 

overcoming the apparent heterogeneity that has hindered the identification  of 

susceptibility genes. Several recent studies have applied this idea to "aggressive" or 

"clinically significant"  cases of  CaP. Using the resources of  the Utah Population 

Database, we identified  two phenotypes often  associated with non-aggressive disease 

that show significant  familiality.  We present those results here. 

Data Resource 

• Utah Population Database (UPDB) 

Records for  approximately 2.2 million individuals 

Up to 9 generations of  genealogical data linking individuals into 

pedigrees 

Linked to death certificates  providing cause of  death data since 1904 

Gcnetic susceptibi lity o r Prostate Cancer: Genomc-widc screcn o r 

"non-aggress ive" disease 

by: 

GB Chri stensen. NJ Camp, .I M Fa rnham. LA Can non-Albright 

University of Utah Department or Biomedica l In format ics 

Background 
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Resea rch has consistentl y shown that geneti cs plays a criti ca l role in prostate 

cancer (Ca P) developmcnt. but the identi ficat ion or Ca I' gencs has provcn to be vcry 

difficu lt. Heredi tary pros tate cance r is a comp lex di sease beli eved to in vo lve 

numerous genes and va ri ab le penetrance. It has been proposed that studying 

alternative, highl y homogenous phenotypes related to Ca P may be a so lution for 

ove rcoming th e apparent heterogenei ty that has hindered th e identification or 

susceptibility genes. Several recent studies ha ve app lied this idea to "aggress ive" or 

"c linically signifi cant" cases of CaP. Us ing the resources of the Utah Population 

Database, we identifi ed two phenotypes often assoc iated with non-aggress ive disease 

that show signifi cant ramili ality. We present those results here. 

Data Resource 

Utah Population Database (U PDB) 

Reco rds for approx imate ly 2.2 million individua ls 

Up to 9 generat ions of genea log ica l data linking individua ls into 

pedigrees 

Linked to death certificates prov id ing cause o r death data since 1904 
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Utah Cancer Registry (UCR) 

Part of  Surveillance, Epidemiology and End Results (SEER) program 

since 1973 

All cancer events (except basal and squamous cell carcinomas) are 

recorded 

• Fully linked to UPDB 

18.894 CaP cases from  UCR currently linked to UPDB genealogies 

Familial Relative Risk (FRR) 

The resources of  the UPDB make it possible to make population-based 

estimates of  relative risk for  family  members of  individuals with specific 

phenotypes. Considering each CaP subgroup to be a unique condition, Table 

B.l shows the relative risk to first,  second and third degree relatives of  cases 

for  developing the same phenotype. 

All examined subgroups have a significant  familial  risk component. 

Non-metastatic disease shows a greater risk to extended family  than general 

CaP. 

Cases diagnosed before  age 65 and cases surviving more than 10 years have a 

risk significantly  greater than general CaP for  all three relative groups. 
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All examined subgroups have a signifi cant familial ri sk component. 

Non-metastatic di sease shows a grea ter ri sk to extended fami ly than general 

CaP. 

Cases diagnosed before age 65 and cases surviving more than 10 yea rs have a 

risk significantly greater than genera l Cal' lo r all three relati ve gro ups. 
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Table B.1: Summary of Familial Relative Risks for selected prostate cancer subgroups 

Phenotype Observed Expected 

Relationship Subjects Cases Cases FRR 95% CI 

All CaP Cases 18,894 

1° 5400 2815.2 1.92 1.87—1.97 

2° 5336 4145.4 1.29 1.25—1.32 

3° 9397 8527.3 1.10 1.08—1.12 

Localized (Non-Metastatic) CaP 7563 

1° 1081 531.1 2.04 1.92—2.16 

2° 1316 916.6 1.46 1.36—1.52 

3° 2357 2005.0 1.18 1.13—1.22 

Regional or Distant Mets. 8974 

1° 1286 670.9 1.92 1.81—2.02 

2° 1128 853.5 1.32 1.25—1.40 

3° 3097 2692.7 1.15 1.11—1.19 

CaP Survival < 5 years 6926 

1° 802 413.0 1.94 I 81—2.08 

2° 980 723.1 1.36 1.27— 1 44 

3° I 834 1645.0 1.11 1.06—1.17 

CaP Survival > 10 years 4786 

1° 556 218.3 2.55 2.34—2.77 

2° 395 258.2 1.53 1.38—1.69 

3° 1302 1007.7 1.29 1.22—1.36 

CaP Dx before age 65 4094 

1° 401 121.2 3.31 2.99—3.65 

2° 264 157.1 1.68 1.48—1.90 

3° 642 514.3 1.25 1.15—1.35 

FRR significantly greater than that for general CaP 
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Linkage Analysis 

Dominant and recessive parametric linkage analyses were performed  for  the 

CaP subgroups with survival of  greater than 10 years and with localized tumors. All 

analyses were performed  using the MCLINK software  package at the Center for  High 

Performance  Computing at the University of  Utah. Genotyping was performed  by the 

Center for  Inherited Disease Research (CIDR) on a full-genome  set of  401 STR 

markers with an average spacing of  9 cM. A summary of  the pedigrees is in Table 

B.2. HLOD tracings are shown in Figures B.I and B.2. 

Table B.2: Summary of pedigree characteristics for linkage analyses Summary data for the orignial 

CaP linkage resource used 

for this study. 

Phenotype 

Summary data for the orignial 

CaP linkage resource used 

for this study. Non-metastatic CaP Survival > 10 years 

Summary data for the orignial 

CaP linkage resource used 

for this study. 

Pedigrees 47 44 59 

Cases 176 150 464 

Mean age at dx (yrs) 69.0 66.6 69.7 

Mean case survival (months) 112.9 172.7 106.2 

Case subjects genotyped 86 115 246 

Other genotyped* 676 594 640 

* connecting ancestors of cases, and spouse with up to four children were genotyped when necessary to infer 

genotypes 

14 7 

LinkaQe Anal vs is 

Dominant ancl recess ive parametri c linkage analyses were performed for the 

Ca l' subgroups wi th survival of greater than 10 years and with localized tumors. All 
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Perform ance Computing at th e Uni ve rsity of Utah . Genotyping was perform ed by the 
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B.2. HLOD trac in gs are shown in Figu res B.I and B.2. 
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genotypes 



Figure B. 1: HLOD statistic for  linkage to non-metastatic CaP. The solid line represents the dominant model, and the broken 
line represents the recessive model. 
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Figure B.I: I-ILOD stati stic for linkage to non-metastatic CaP. The so lid line represents the dominant model. and the broken 
line represents the recessive model. 
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Figure B.2: HLOD statistic for  linkage to CaP with survival of  over 10 years. The solid line represents the dominant model, 
and the broken line represents the recessive model. 
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Figure B.2: HLOD stati sti c fo r linkage to Cal' with survival or ove r 10 yea rs. The solid line rep resents the dOl11 inantl11ode l. 
and the broken line represe llls the recess ive mode l. 



Discussion 

No significant  linkage evidence was observed at the genome-wide level for 

either of  the phenotypes examined. 

Best result for  the non-metastatic subgroup was HLOD = 1.50 in the dominant 

analysis at 58 cM on chromosome 9. 

Best result for  the long survival subgroup was HLOD = 2.33 in the dominant 

model at 40 cM on chromosome X. 

Signal is at Xp21-22, and is not associated with the I IPCX locus at 

Xq27-28. 

Long survival appears to be correlated with early age at diagnosis, which is 

generally considered to be a trait of  hereditary CaP cases. 

The pedigrees and genotypes used in this study were originally ascertained for 

a linkage analysis of  general prostate cancer. Considering only subgroups of 

the original cases results in fewer  cases per pedigree and greater genetic 

distance between cases, increasing the possibility of  confounding  due to intra-

familial  heterogeneity. 

Further research is necessary to identify  the genes responsible for  hereditary 

prostate cancer and surmount the overarching problem of  CaP heterogeneity. 

Discuss ion 

No signili cant lin kage ev idence was observed at the genome-wide leve l fo r 

either of the phenotypes examined. 
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Best result for the non-metastatic subgroup was HLOD = 1.50 in the dominan t 

ana lys is at 58 cM on chromosome 9. 

Best result for the long surviva l subgroup was HLOD = 2.33 in the do minant 

model at 40 cM on chromosome X. 

Signal is at Xp21-22. and is not assoc iated wit h the I-IPCX locus at 

Xq27-28. 

Long surviva l appears to be corre lated with early age at diagnosis. which is 

genera ll y considered to be a trait of hereditary Cal' cases . 

The pedigrees and genotypes used in thi s study were originall y asce rtained fO I· 

a lin kage ana lys is of general prostate cancer. Considering only subgroups of 

th e original cases results in fewer cases per pedi gree and greater genetic 

distance betwee n cases. increas ing the poss ib ility of confounding due to in tra

fa mil ial heterogeneity. 

Further resea rch is necessa ry to identify the genes responsib le for hereditary 

prostate cance r and sllrmollntthe overarching problem of Ca l' heterogene ity. 
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Combined genome-wide association and linkage analysis of  extended Utah prostate 

cancer pedigrees identities significance  at chromosome 8ql2 

GB Christensen, J Farnham, NJ Camp, LA Cannon-Albright 

University  of  Utah  School  of  Medicine  Department  of  Biomedical  Informatics, 

Salt  Lake City,  UT 

Abstract 

We performed  genome-wide linkage and case/control association studies in 27 

prostate cancer cases from  3 extended, informative,  high-risk Utah pedigrees. All 

relationships between cases were more distant than first  degree. Genotyping was 

performed  with the Illumina 550k SNP array, after  exclusion of  58.000 markers failing 

quality control. For controls, we selected Caucasians from  the Illumina iControl data 

set (n=l,579), also genotyped for  the 550k SNPs. 

A naive Fisher's Exact Test was used for  the initial association screen, 

ignoring the familial  relationships between cases, under three models: dominant, 

recessive, and an allele test. Fifty-four  distinct markers were selected for  secondary 

screening with a significance  cut off  of  p<le-5. Secondary screening was performed 

using Genie software,  which included known relationships between cases. In the 

secondary screen, 1 marker reached the genome-wide significance  threshold of 

p<3.4e-7. This marker was on chromosome band 8q 12.3 (p=le-7). Five of  the top 8 

associations from  the secondary screening were also at 8ql2.3. Other regions with 

markers reaching p<3e-6 included: 4pl3, 2p25. 7p2l, 17q22, and 2lq21. 
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Combined genome-wide assoc iation and linkage ana lys is of extended Utah prostate 

ca ncer pedigrees identi fi es s igni fi cance at chromosome 8'112 

GB Chri stensen. J Farnham. NJ Camp, I"A Cannon-Alb right 

Vnil'ersily of Vlah School o/JI!ledicine Departmenl o/Biomedical li?/ormalics, 

Sail Lake Cily, VT 

Abstrac t 

We performed genome-wide linkage and case/control association studi es in 27 

prostate cance r cases from 3 ex tended. info rmative. hi gh-risk Utah ped igrees. All 

relationships between cases were more di stant than first degree. Genotyping was 

performed with the Illumina 550k SN P array. aft cr exc lusion of 58.000 markers failing 

quality contro l. For controls. we se lected caucasians fro m the Ilium ina iCon trol data 

set (n= I,579). also genotyped for the 550k SN Ps. 

A naive Fisher's Exact Test was used 1'01' the initial associat ion screen, 

ignoring th e familial relationships between cases, under three mode ls: dominant. 

recess ive. and an a ll ele test. Fifty- four di stinct markers were se lec ted for secondary 

screening with a signifi cance cut off of p< le-5. Secondary screening was perform ed 

using Genie soft wa re. which included kn own relationships between cases. In the 

secondary screen. I marke r reached the genome-wide signi fi cance threshold of 

p<3.4e-7. Thi s marker was on chromosome band 8'112 .3 (p= le-7). Five o f the top 8 

assoc iat ions from the secondary screening were also at 8q 12.3. Other reg ions wi th 

markers reaching p<3e-6 included : 4p 13. 2p25. 7p2 1, 17q22, and 2 1 '121. 
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We also performed  linkage analysis in the 3 pedigrees using 27.157 SNPs from  the 

lllumina 550k set. Under the Smith (1996) inheritance model, two regions showed 

suggestive evidence of  linkage; chromosome band 2p 15 (hetLOD=2.44), and 

chromosome band 8ql2-q21 (max hetLod = 2.28). The SNPs showing significant 

evidence for  association are located within the linkage peak, but were not used as part 

of  the linkage analysis. 

Data 

Cases 

27 prostate cancer cases from  two extended Utah pedigrees (Figure 

C.l) 

Mostly 3-5 generations separated 

Subjects originally ascertained for  shared genomic segment analysis 

Controls 

Caucasians from  lllumina iControl database 

• N=1579 

Male and female  controls used 

Genotyping 

All cases and controls genotyped with lllumina 550k SNP array 
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We also perform ed linkage analys is in the 3 pedigrees using 27 .1 57 SN Ps from th e 

Il lu mina 550k set. Under the Smith ( 1996) inhcritance model. two reg ions showed 

suggesti ve ev idence of linkage; chromosome band 2p 15 (hetLOD=2.44), and 

chromosome band 8q 12-q2 1 (max hetLod = 2.28). The SN Ps showing signi fi can t 

ev idence for assoc iati on are located within the linkage peak. but we re not used as part 

of the linkage ana lysis. 

Cases 

27 prostate cancer cases 1I'om two extended Utah pedigrees (Figure 

C. I ) 

Mostly 3-5 generati ons separated 

Subjects originally ascerta ined for shared genomic scgment analys is 

Controls 

Caucasians from Illumina iContro l database 

N= 1579 

Male and female controls used 

Genotyping 

All cases and controls gcnotyped with 11lumina 550k SN P array 
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Figure C.l. Sample Pedigree. Dark boxes indicate known prostate cancer cases. 
Black arrows indicate genotyped subjects. 
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Fig ure C. I . Sa mpl e Ped igree. Da rk boxes ind icate known prostate ca nce r cases. 
Black arrows ind icate gcnotyped subjects. 

155 



Analyses 

Association 

Quality control 

• 11 WE (controls only. p<0.05) 

All 3 genotypes must be observed in cases and controls 

Minimum individual call rate 98% 

• Minimum marker call rate 98% in cases and controls 

Stage 1 

Na'i've Fisher exact test run on all SNPs (assuming 

independence) 

Dominant, recessive, and allele tests 

SNPs advanced to stage 2 if  p< 1 c-5 

Stage 2 

Analysis with GENIE 

Empirical significance  test accounting for  familial  relationsh 

Significance  thresholds set as in Hoggart et al. 2008 

Linkage 

• 27,157 SNPs selected from  Illumina 550k set 

Minimum spacing 0.1 cM 

Minimum heterozygosity of  0.3 

Maximum RA2=0.16 within 5Mb window 

Smith (1998) inheritance model 

MCLINK software  package 

Analyses 

Assoc iati on 

Quality contro l 

Stage I 

Stage 2 

1-1 WE (controls onl y. p<0.05) 

All 3 genotypes must be obse rved in cases and controls 

Minimum indi vidual ca ll rate 98% 

Minimum mark er ca ll rate 98%) in cases and controls 

Na"ive Fisher exact test run on all SN Ps (assu ming 

i nd ependence) 

Dom inant . recess ive. and all ele tests 

SN Ps advanced to stage 2 ifp< le-5 

Analysis with GEN IE 
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Empirica l s ignitl cance test accounting for famili al relat ionships 

Sign ili cance thresholds set as in Hoggan et al. 2008 

Linkage 

27, 157 SN Ps se lected from Illul11 ina 550k set 

Minimum spac ing 0.1 cM 

Minimum heterozygos ity of 0.3 

Maximum RA2~0 .1 6 within 5Mb window 

Smith ( 1998) inherit ance model 

MCLl NK so ft wa re package 
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Results 

Linkage (Figure C.2) 

Two suggestive linkage peaks 

• HLOD=2.44 at Chromosome 2p 15 

• HLOD=2.28 at Chromosome 8q 12-21 

Association 

Stage 1 

54 unique SNPs from  73 analyses passed threshold 

• Stage 2 (Table C.I) 

1 SNP significant  at threshold of  3.4e-7 

• rs975847 at 8q 12.3, p= 1,0e-7 

Chromosome 8q 12.3 

Identified  in both linkage and association analyses 

Location of  best overall association result and four  of  the top five 

results from  the second stage 

Nine SNPs from  a 217 kb region passed first  stage of  association 

None of  these SNPs were included in the linkage set 

No genes are located within the 217 kb span 

Region includes RNA sequence AL 137390, expressed in testis 

Results 

Linkage (F igure C.2) 

Two suggesti ve linkage peaks 

Associati on 

Stage I 

H LOI)=2.44 at Chromosome 2p 15 

HLOI)=2.28 at Chromosome 8q 12-2 1 

54 un ique SN Ps from 73 analyscs passed threshold 

Stage 2 (Table C. I) 

I SN P signili ca nt at threshold of 3.4e-7 

rs975847 at 8q 12.3. p= I.Oe-7 

Chromosome 8q 12.3 

Identified in both linkage and associa ti on analyses 

Location of best overa ll association result and four orthe top fi ve 

resu lts from th e second stage 

Nine SN Ps from a 2 17 kb reg ion passed fi rst stage of associati on 

None of these SN Ps were included in th e linkage set 

No genes are loca ted within the 2 17 kb span 
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Reg ion inc ludes RNA seq uence AL 137390. expressed in testi s 
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Figure C.2. Genome-wide HLOD results. The inset shows detail from  chromosome 8. with an arrow indicating the 
relative position of  the significant  association finding. 
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Table C.I. GWA Secondary Screen 

SNP Location Test Em p. P-val Notes 

rs975847 8q 12.3 Dominant 1,00e-7 

rs 1347901 4p 13 Dominant 6.00e-7 

rs6471975 8q 12.3 Allele 9.56e-7 

rs823422 8q 12.3 Dominant 1.30e-6 

rs344248 8q12.3 Allele 1.31 e-6 

rs768447 2p25 Allele 2.00e-6 

rs2107280 7p21.3 Dominant 2.00e-6 NXPHI intron 

rs3442IO 8q 12.3 Allele 2.46e-6 

rs8070264 17q22 Dominant 2.80e-6 

rs2826745 21q21 Dominant 2.90e-6 NCAM2 intron 

Results shown for  SNPs with observed P<3e-6. Only the best test result is shown for 
each SNP. 
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Tab le C. I . G W A Secondary Scree n 

SN P Location Test Emp. P-vll i Notes 

rs975847 8q 12.3 Dominant 1.00e-7 

rs 134790 I 4p l 3 Domina nt 6.00e-7 

rs647 1975 8q 12.3 A ll e le 9.56e-7 

rs823422 8q 12.3 Domina nl 1.30e-6 

rs344248 8q 12.3 Alle le 1.3 1 e-6 

rs768447 2p25 Alle le 2.00e-6 

rs2 107280 7p2 J.3 Dom in an t 2.00e-6 NX PH I int ro n 

rs3442 I 0 8q 12.3 Alle le 2.46e-6 

rs8070264 17q22 Domina nt 2.80e-6 

rs2826745 2 1q2 1 Dom i nant 2.90e-6 NCAM2 inlron 

Results shown fo r SN Ps w ith observed P<3e-6. O nly the best lest resul t is shown fo r 
each SN P. 



Discussion 

This small study shows the power and synergistic utility of  using both linkage 

and association analysis in high risk pedigrees 

Genome-wide association and linkage can be performed  with one set of 

genotype data, reducing costs and improving efficiency 

The 8q 12 region identified  as significant  for  prostate cancer predisposition has 

not been previously reported for  linkage or association, but is recognized for 

LOII. 

No association evidence was observed at 8q24 prostate cancer locus 
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Discuss ion 

This small stud y shows the power and synergistic utility o f using both linkage 

and assoc iation analysis in high ri sk pedigrees 

Genome-wide associat ion and linkage can be performed with one set of 

genotype data. reducing costs and improving efficiency 

The 8q 12 region ident ifi ed as signi ficant for prostate ca ncer predi sposition has 

not been previous ly reported lor lin kage or association. but is recognized for 

LOI-1. 

No assoc iat ion ev idence \las observed at 8q24 prostate cancer locus 
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slkpoint.r 

# ## slkpoint.r 
###B Christensen, 4/20/2009 
###Calculates observed values for sumLINK and sumLOD 
###Outputs results to file "points.out" 
###Requires input files for each chromosome with pedigree name 
###in first column, and LOD scores in subsequent columns. 
###A11 input files must have pedigrees in same order. 
###Creates basic plots of both stats 

#####function zeroes out negative values 
isgtz=function(x){ 
if(x <= 0) 0 
else x } 

#####function zeroes out non-sig values (p<0.05) 
i s s i g= function(x) { 
if (x < 0.588) 0 
else x 
I 

####Start. chroinosorne loops#### 
for(ch in 1:22) { 
fil=paste("lods/c",ch,".lods.cm",sep="") ###clefine data file path 

d22 = read.table(fil)[,-1] ##read file, remove first column 
cm = dim(d22)[2] ##count LOD observations (may be 1 cM 
increments) 

####Add basic lod scores, sumlod, and sumlink 
####Count positive lods and linked lods at each point 

ctpos=colSums(d22>0) ##total peds w/ positive LOD 
ctlnk=colSums(d22>=0.58 8) ##total peds w/ significant LOD 
sld=colSums(apply(d22,c(1,2), 'isgtz') ) ##calculate sumLOD 
slk=colSums(apply(d22,c(1,2),'issig')) ## calculate sumLINK 
lod=colSurns (d22 ) ##calculate LOD 

##store chromosome data in object count* 
chrom=rep(ch,cm) 
pos=l:cm 
assign(paste("count",ch,sep=""),as.data.frame(cbind(chrom,pos,ctpos, 
ctlnk,slk,sld,lod))) 

} lend chromosome loops# 

###combine all chromosomesflf 
points=rbind(count1,count 2,count3,count 4,count5,count 6,count7,count 8, 
count 9,count 10,count 11,count 12,count 13,count!4,count 15,count 16, 
count 17 , count 18,count 19,count2 0,count21,count22) 

slkpoilll.r 

###slkpoint . r 
###8 Chc i stensen , 4120/2009 
##UCalculates observed values for sumLINK and sumLOD 
###Outputs results t o fi l e "poinLs . out " 
###Requires input files for each chromosome with pedigree name 
##Hin first column , and LOO scores in subsequent columns . 
»HHAll input files must have pedigrees in same order . 
U##Creates basic plots of both stats 

#####function zeroes out negative values 
isgtz=function (xl I 
if I x <~ 0) 0 
else x 
) 

R#ij##function zer:es out non-5ig values Ip<O . 05} 
issig=function(xJ { 
if Ix < 0 . 588) 0 
else x 
) 

####Start chromosome loopsU### 
forlch in 1 : 22) ( 
[il=paste( "lods/c ", ch ,". lods . cm", sep= "" ) ### define data file path 
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d22 ~ read . tablelfil) ( , -lJ 
cm ~ dimld22) 12J 
increments) 

Ii#read file , remove first column 
HHcount LOO observations (may be 1 eM 

####Add basic lod scores , sumled , and sumlink 
HHHHCount positive lods and linked lods at each point 

ctpos~colSumsld22>0) ""total peds wi positive LOD 
ctlnk~colSumsld22>~0 . 588) ""total peds wi significant LOD 
sld~colSumslapplyld22 , cl1 , 2) , ' isgtz ' )) "" calculate sumLOD 
slk~colSumslapplyld22 , cl1 , 2) , ' issig ' )) U" calculate sumLINK 
lod~colSumsld22) " #calcula Le LOD 

HHslore chromosome data in object eount * 
chrom=rep(ch , cm) 
pos=l : em 
assign (paste ("count " , ch , sep: "" ) , as . data . frame (ebind (ehrom , pos , ctpos , 
ctlnk , slk , sld , lod))) 

} Hend c h romosome loopsH 

HHHcombine all chromosomesHHH 
points=rb ind(countl , count2 , count3 , count4 , count5 , count6 , count7 , countB , 
count9 , countlO , countll , eount 12 , count13 , count14 , count15 , count16 , 
count17 , count18 , count19 , count20 , count21 , count22) 

l 
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###write to f i l e 
wr i t e . t ab l e (po in t s , "points.out",quote=FALSE,row.names=FALSE) 

############################## 
##Make basic sumLINK Plots#### ############################## 

###C.reate vector "d2" with cumulative cM pos i t ions 
chl=numeric(22) 
for(ch  in 1: 22) {chl[ch]=max(points$pos[points$chrom==ch] ) } 
chl2=numeric(23) 
chl2[1]=0 
chl2[2:23]=cumsum(chl+10) 

d2=numeric(length(points$pos)) 
for(ch  in 1:22){ 
d2[points$chrom==ch] = points$pos[points$chrom==ch]+chl2[ch] } 

###create vector " t l " , with pos i t ions for  axis t i ck marks### 
tl=numeric(22) 
fo r ( j  in 1:22) { 

tl[i]=median(d2[points$chrom==j]) 
} 

###create vector "vert" with pos i t ions of  v e r t i c a l chromosome 
separators 
vert=chl2-5 

##Plot SumLINK### 
pdf("SumPlot1.pdf",height=7.5,width=10) 
par(mfrow=c(2,1),  mar=c(3,1,1,0.5)) 

p lot (d2,points$s ik , type="n",yl im=c(0,15) , xaxt="n", xlab="", 
mtext("sumLINK",2,0) 
ax i s ( s ide= l , l abe l s= l :22 , a t = t l , cex.axis=0.75) 
segments(vert[2:23] , -100,vert[2:23] ,1000, l ty=3, lwd=0.5) 
for( i  in 1:22) { 
l ines(d2[points$chrom==i] ,points$slk[points$chrom==i] , l ty=l , } 

##Plot SumLOD 
plot(d2,points$sld, type="n",yl im=c(10,30) ,xaxt="n", xlab="", ylab="") 
mtext("sumLOD",2,0) 
ax i s ( s ide= l , l abe l s= l :22 , a t= t l , cex .ax is=0 .75) 
segments(vert[2:23] , -100,vert[2:23] ,1000, l ty=3, lwd=0.5) 
for( i  in 1:22) { 
l ines(d2[points$chrom==i] ,points$sId[points$chrom==i] , l ty=l , lwd=0.5) 

) 

ylab- ") 

lwd=0.5) 

dev.off() 

IfH#write to file 
wr i te . table (points , "points . out " I quote=FALSE , row . names=FALSE) 

H##H.###.H####.###.######H#### 
##Make basic sumLINK PloLsH### 
# # # # # # ## # # # # # # # # # # # # H# # # # # # # # # 

Hff»Create vector "d2 " with cumulative eM positions 
chl~numeric(22) 

for(ch in 1 : 22) (chllch]~max(points$pos[points$chrom~~ch])} 
ch12~numeric(23) 

ch12[1}~O 

ch12[2 : 23]~cumsum(chl+lO) 

d2~numeric(length(points$pos)) 

for(ch in 1 : 22) ( 
d2[poinls$chrom~~ch] ~ points$pos[points$chrom~~ch]+chI2[ch] 

) 

H#Ucreate vector "tl " , with positions for axis tick marks### 
tl~numeric(22) 

for(j in 1 : 22)( 
tl[j] median(d2[points$chrom~cj]) 

###create vector "vert " with positions of vertical chromosome 
separators 
vert~ch12-5 

##Plot SumLINKff## 
pdf( " SumPlotl . pdf " , height~7 . 5 , width~lO) 

par(mfrow~c(2 , l) , mar~c(3 , I , l , O . 5)) 
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plot(d2 , points$slk , type= "n ", ylim=c{O , 15) , xaxt= "n", xlab=o "" , ylab= "" ) 
mtext( "sumLINK ", 2 , O) 
axis{side=1 , labels=1 :22 , at=tl , cex . axis=O . 75) 
segments(vert[2 : 23] , - 100 , vert[2 : 23] , lOOO , lty~3 , lwd~O . 5) 

forti in 1 : 22)( 
lines(d2Ipoints$chrom~~i] , points$slk[points$chrom~~i] , Ity~I , lwd~O . 5) 

} 

HHPlot SumLOD 
plot (d2 , pOints$sld , type= "n ", ylim=c (10 , 30) , xaxt= "n", xlab= "" I ylab= "" ) 
mtext( "sumLOD", 2 , O) 
axis(side=l , labels=1 :22 , at=tl , cex . axis=O . 75) 
segments(vert[2 : 23] , -100 , vert[2 : 23] , 1000 , lty~3 , lwd~O . 5) 

forti in 1 : 22)( 
lines(d2[points$chrom~~iJ , points$sld[points$chrom~~i] , lLy~I , lwd~O . 5) 

) 

dev . off() 
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FindPeaks.r 

###FindPeaks.r 
###B. Christensen 4/20/2009 
###Program reads "points.out" and finds peaks for 
###observed sumLOD and sumLINK statistics 
###Peak values saved to files 

points=read.table("points.out",header=TRUE) 

####SumLINK Peaks 

slkbase=quantile(points$slk, .90) 
max4=points[points$slk>slkbase,] 

t1=NULL 
peak=NULL 

ford in 1: (dim(max4 ) [ 1 ]-1) ) { 
if(abs(max4$pos[i + 1]-max4 $pos[i]) < 10 && 
max4$chrom[i]==max4Schrom[i+1]){ 

tl=rbind(tl,max4[i,]) 
}lend if 
else { 

tl=rbind(t1,max4[i,]) 
t2=t1[ 11 $ s 1k==max(11 $ s1k),] 
peak=rbind(peak,12[1,]) 
tl=NULL 

}#end else 
(lend for 

##finish last loop 
tl=rbind(tl,max4[i, ] ) 
t2=t1[11 $ s1k==max(11 $ s1k) , ] 
peak=rbind(peak,t2[1,]) 
t1=NULL 

outpeak=cbind(peak$chrom, peak$pos, peak$slk) 
write.table(outpeak,"sumlinkPeaks^",row.names=FALSE,quote=FALSE, 
col.names=TRUE) 

####SumLOD Peaks 

sldbase=quantile(points$sld, .90) 
max4=points[points$sld>sldbase, ] 

t1=NULL 
peak=NULL 

for(i in 1: (dim(max4) [1]-1)) { 
if(abs(max4$pos[i+1]-max4$pos[i]) < 10 && 
max4 $chrom[i]==max4 $ chrom[i +1]) { 

tl=rbind(tl,max4[i,]) 

FindPeaks.r 

# # # FindPeaks . c 
###8 . Chcistensen 4/20/2009 
I#HProgram reads "points . out " and finds peaks for 
###observed sumLOD and sumLINK stalistics 
HH"Peak values saved to files 

points=read . table( "points . out ", header=TRUE) 

####SumLINK Peaks 

slkbase~quantilelpointsSslk ,. 901 
max4~points[pointsSslk>slkbase , I 

tl~NULL 

peak~NULL 

forli in 1 : Idimlmax41 [II-I I I [ 
iflabslmax4Spos[i+ll-max4Spos[ill < 10 && 
max4 Schrom [i Jmax4 Schrom [i III I I 

tl~rbind(tl , max4 Ii , I I 
J Mend if 
else( 

tl~rbind Ill , max4 [i , I I 
t2~tl [tlSslk~max ItlSslkl , I 
peak~rbind(peak , t2[l , I I 
tl~NULL 

I Mend else 
I.end for 

#hfinish last loop 
t1~cbind Itl , max4 Ii , I I 
t2~tl[tlSslk~~maxltl$slkl , I 
peak~cbindlpeak , t2[1 , II 
tl~NULL 

outpeak~cbindlpeakSchrom , peakSpos , peakSslkl 
write . table(outpeak , "sumlinkPeaks2 ", row . narnes=FALSE , quole=FALSE , 
col . names=TRUE) 

# # # # SumLOD Pea ks 

sldbase~quantile IpoinLs$sld , . 901 
max4~points[pointsSsld>sldbase , I 

tl~NULL 

peak~NULL 

forli in 1 : ldimlmax41[11 - 1111 
iflabslmax4Spos[i+ll-max4Spos[ill < 10 && 
max4Schrom[ilc~max4Schcom[i+ll I I 

tl~rbind Ill , max4 [i , I I 
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} # e n d i f 
e l s e { 

t l = r b i n d ( t l , m a x 4 [ i , ] ) 
t 2 = t l [ t l $ s l d = = m a x ( t l $ s l d ) , ] 
p e a k = r b i n d ( p e a k , t 2 [ 1 , ] ) 
t l = N U L L 

} # e n d e l s e 
} # e n d f o r 

# # f i n i s h l a s t l o o p 
t l = r b i n d ( t l , m a x 4 [ i , ] ) 
t 2 = t l [ t l $ s l d = = m a x ( t l $ s l d ) , ] 
p e a k = r b i n d ( p e a k , t 2 [ 1 , ] ) 
t l = N U L L 

o u t p e a k = c b i n d ( p e a k $ c h r o m , p e a k $ p o s , p e a k $ s l d ) 

w r i t e . t a b l e ( o u t p e a k , " s u m l o d P e a k s 2 " , r o w . n a m e s = F A L S E , q u o t e = F A L S E , c o l . n a 
m e s = T R U E ) 

I Rend if 
else{ 

tl rbind(tl , max4Ii , I) 
t2· tlltl$sld max(tl$sld) , I 
peak=rbind(peak , t2[1 , I) 
tl=NULL 

IUend else 
l'end for 

UUfinish last loop 
tl=rbind(tl , max4 [i , l) 
t2=t 1 [tl$sld==max (tl$sld) , J 
peak=rbind(peak , t211 , 1) 
tl=NULL 

outpeak=cbind(peakSchrom , peak$pos , peakSsld) 
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write . table (outpeak , " sumlrdPea~:s2 ", rov! . narr,es=FALSE , qUl.Jt~· FALSE , col . na 
mesTRUE) 



rshuff2.r 

# # # r s h u f f 2 . r 
# # # B . C h r i s t e n s e n 4 / 2 0 / 2 0 0 9 
# # # R e a d s i n r a w LOD s c o r e d a t a , p e r f o r m s s h u f f l i n g , 
# # # c a l c u l a t e s s u m L O D a n d s u m L I N K f r o m s h u f f l e d  d a t a , 
# # # w r i t e s a r e s u l t f i l e f o r e a c h s e t " p o i n t * " 

n s h f f = 1 0 0 0  # n u m b e r o f s h u f f l e s t t 
p t s = " . . / p o i n t s . o u t " # p a t h t o p o i n t s . o u t # 

# # # R e a d i n " p o i n t s . o u t " t o d e t e r m i n e g e n o m e l e n g t h 
p o i n t s = r e a d . t a b l e ( p t s , h e a d e r = T R U E ) 
g e n l = d i m ( p o i n t s ) [ 1 ] 

################################################### 
# # # R E A D I N LOD SCORES AND R A N D O M I Z E CHR O R D E R # # # # # # 
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # 

# # a d j u s t d a t a f i l e p a t h a s n e c e s s a r y 

r l = r e a d . t a b l e ( " . 
r 2 = r e a d . t a b l e ( " . 
r 3 = r e a d . t a b l e ( " . 
r 4 = r e a d . t a b l e ( " . 
r 5 = r e a d . t a b l e ( " . 
r 6 = r e a d . t a b l e ( " . 
r 7 = r e a d . t a b l e ( " . 
r 8 = r e a d . t a b l e ( " . 
r 9 = r e a d . t a b l e ( " . 
r l 0 = r e a d . t a b l e ( " 
r l l = r e a d . t a b l e ( " 
r l 2 = r e a d . t a b l e ( " 
r l 3 = r e a d . t a b l e ( " 
r l 4 = r e a d . t a b l e ( " 
r l 5 = r e a d . t a b l e ( " 
r l 6 = r e a d . t a b l e ( " 
r l 7 = r e a d . t a b l e ( " 
r l 8 = r e a d . t a b l e ( " 
r l 9 = r e a d . t a b l e ( " 
r 2 0 = r e a d . t a b l e ( " 
r 2 l = r e a d . t a b l e ( " 
r 2 2 = r e a d . t a b l e ( " 

/ l o d s / c l . l o d s . c m " ) 
/ l o d s / c 2 . l o d s . c m " ) 
/ l o d s / c 3 . l o d s . c m " ) 
/ l o d s / c 4 . l o d s . c m " ) 
/ l o d s / c 5 . l o d s . c m " ) 
/ l o d s / c 6 . l o d s . c m " ) 
/ l o d s / c 7 . l o d s . c m " ) 
/ l o d s / c 8 . l o d s . c m " ) 
/ l o d s / c 9 . l o d s . c m " ) 
. / l o d s / c l O . l o d s . c m " 
. / l o d s / c 1 1 . l o d s . c m " 
. / l o d s / c l 2 . l o d s . c m " 
. / l o d s / c l 3 . l o d s . c m " 
. / l o d s / c l 4 . l o d s . c m " 
. / l o d s / c l 5 . l o d s . c m " 
. / l o d s / c l 6 . l o d s . c m " 
. / l o d s / c l 7 . l o d s . c m " 
. / l o d s / c l 8 . l o d s . c m " 
. / l o d s / c l 9 . l o d s . c m " 
. / I o d s / c 2 0 . l o d s . c m " 
. / l o d s / c 2 1 . l o d s . c m " 
. / l o d s / c 2 2 . l o d s . c m " 

n p e d s = d i m ( r l ) [ 1 ] # # # n u m b e r o f p e d i g r e e s 

f o r ( r e p t  i n l : n s h f f ) { 

r x = N U L L 
f o r ( i  i n 1 : n p e d s ) { 
r x = r b i n d ( r x , r a n k ( r u n i f ( 2 2 ) , t i e s , m e t h o d = " r a n d o m " ) ) 
} 

rshu fl2.r 

"" Urshuff2 . r 
"""B . Christensen 4/20/2009 
MH#Reads in raw LaD score data , performs shuffling , 
HHffcalculates sumLOD and sumLINK from shuffled data , 
H##writes a result file for each seL "point· " 

nshff~1000 

pts= " .. /points . out " 
Unumber of shuffles# 
#path to points . outH 

###Read in "points . out " to determine genome length 
points=read . table(pts , header: TRUE) 
gen1~dim I points) 11 J 

;rl#H.\,'F';"'fl""'ffffffffffff'ffff#ff'ffrl""'ff;ff###"'ff~""##H 
,ff.READ IN LOD SCORES AND RANDOMIZE CHR ORDERff""," 

"" #""" #"""" """ ff""""ff""" ij" ff""""" ff""""""" ff,""""" ff ijff" # ##adjust data file path as necessary 

r1~read . table( " . . /lods/el . lods . em" ) 
r2~read . table I" . . /lods/e2 . lods . em" ) 
r3~read . table I" .. /lods/e3 . lods . em" ) 
r4~read . table I" .. /lods/e4 . lods . em" ) 
r5~read . table I" . . /lods/e5 . lods . em" ) 
r6~read . table I" . . /lods/e6 . lods . em" ) 
r7~read . tablel " . . /lods/e7 . lods . em" ) 
rB~read . tablel " .. /lods/eB . lods . em" ) 
r9~read . tablel " . . /lods/e9 . lods . em" ) 
rlO~read . table I " .. /lods/e10 . lods . em" ) 
rll~read . table I " .. /lods/ell . lods . em" ) 
r12~read . tablel " .. /lods/e12 . lods . em" ) 
r13~read . tablel " . . /lods/e13 . lods . em" ) 
r14~read . tablel " .. /lods/e14 . lods . em" ) 
r15~read . tablel " .. /lods/e15 . lods . em" ) 
r16~read . tablel " .. /lods/el6 . lods . em" ) 
r17~read . tablel " .. /lods/e17 . lods . em" ) 
rlB~read . tablel " .. /lods/elB . lods . em" ) 
r19~read . tablel " .. /lods/e19 . 1ods . em" ) 
r20~read . table I" . . /lods/c20 . lods . em" ) 
r21~read . table I " . . /lods/e2l . 1ods . em" J 
r22~read . tablel " .. /lods/e22 . 1ods . em" J 

npeds~dim I rl J [1 J ff" ff number of pedigrees 

for(rept in l : nshffJ I 

rx~NULL 

forli in l : npedsJI 
rx-rbind(rx , rank{runif(22) , ties . method= "random" )) 
} 
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###OPTIONAL to write out chrorn order and/or read in saved chrom order 
##wr.i to . table ( rx, paste ( " . . /chord/CHord" , rept, sep=" " ) , quote= FALSE, 
row.names=FALSE,col.names=FALSE) 
##rx=read.table(paste("CHord",rept,sep="")) 

rfull=NULL 
for ( i in 1:npeds) { 
xl=NULL 

for(j in 1:22) { 
z l=eval ( as . name (paste ( "r " , rx [ i, j ] , sep>= ' ' ) ) ) 
xl=c(xl,as.numeric(zl[i,-1])) 
} # #end for j 

rfull=rbind(rful1,xl) 
} ##end for i 

################################################################## 
tf # #RECENTER GENOME-WIDE LODSCORES############################# ################################################################## 

shif t = ceilinq(runif(npeds,0.0 0001,qenl) ) 

d22=NULL 
for(i in 1:npeds){ 
z=shift[i] 
xl=rfull [i,] 
x2=c(xl[z:qenl],xl) H(uneven lengths cut off below) 
d22=rbind(d22,x2[1:genl1) } 

################################################################# 
####CALCULATE AND OUTPUT SUMMARY STATISTICS###################### ################################################################# 

#####function zeroes out negative values 
isgtz=function(x){ 
if(x <= 0) 0 
else x 
) 

#####function zeroes out non-sig values 
issiq=function(x){ 
if(x < 0.588) 0 
else x 
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###OPTIONAL to write out chrom order and/or read in saved chrom order 
##write.lable(rx , paste( " .. /chord/CHord", rept , sep= "" ) , quote=FALSE , 
row . names=FALSE , col . names=FALSE) 
# #rx=read . table (paste ( "CHord" I rept , sep= "" ) ) 

cfull~NULL 

forli in l : npeds) ( 
xl~NULL 

[ oc(j in 1 : 22) ( 
zl=eval(as . name(paste( "r ", rx [ i , j] , sep= ' ' ))) 
xl=c(xl , as . numeric(zl[i , -l])) 
) MMend for j 

rfull =rbind(rfull , x l ) 
) M#end foe i 

####~########~###ff###ff##HH##########"############H#######ffffff#fi~##~ 

### RECENTER GENOME-WIDE LODSCORES##### ##n# ###### #########,#,## 
####### ###### ####### ########4##########################'# .,,###### 

shift~ceilrng(runiflnpeds , O . OOOOl , genl) ) 

d22~NULL 

forli in l : npeds) ( 
z~shift[iJ 

xl~rfull [i , ) 
x2~clxl [ z : genl),xl) ## (uneven lengths cut off below) 
d22~cbindld22 , x2[1 : genlJ ) 
) 

# ## # # M # # # # # M M # II # # # # # # # # # # # ## # # II # # # II # # # # # # # ## # ## # # # # ## ## # ## # # ## # # # 
M###CALCULATE AND OUTPUT SUMMARY STATI STICS### ##############MM#MM 
# ### # # # M # # # # # M # ## # # # # # # ## # ## # # # II # # # # # # # H # # ## # # ## #U# ## # # H# # # # ## # # 

#####function zeroes out nega tive values 
isgtz=function(x) { 
if Ix <~ 0) 0 
else x 
) 

## # ## function zeroes out non -s ig values 
issig=function (x) { 
iflx < 0 . 588) 0 
else x 



# # # # A d d u p s u m l o d a n d s u m l i n k 
# # # # C o u n t p o s i t i v e l o d s a n d l i n k e d l o d s a t e a c h p o i n t 

c t p o s = c o l S u m s ( d 2 2 > 0 ) 
c t l n k = c o l S u m s ( d 2 2 > = 0 . 5 8 8 ) 
s l d = c o l S u m s ( a p p l y ( d 2 2 , c ( 1 , 2 ) , ' i s g t z ' ) ) 
s l k = c o l S u m s ( a p p l y ( d 2 2 , c ( 1 , 2 ) , ' i s s i g ' ) ) 
l o d = c o l S u m s ( d 2 2 ) 

s l d = r o u n d ( s l d , 5 ) 
s l k = r o u n d ( s l k , 5 ) 
l o d = r o u n d ( l o d , 5 ) 

surrun = a s . d a t a . f r a m e ( c b i n d ( 1 : g e n l , l o d , s l d , s l k , c t l n k , c t p o s ) ) 

w r i t e . t a b l e ( s u m m , p a s t e ( " p o i n t " , r e p t , s e p = " " ) , r o w . n a m e s = F A L S E ) 

r m ( r f u l l ) 
r m ( d 2 2 ) 
r m ( r x ) 
} 

q u i t ( " n o " ) # # # c l o s e R , d o n ' t s a v e w o r k s p a c e 

ijijijijAdd up sumlod and sumlink 
~~unCount positive lods and linked lods at each point 

ctpos~colSums(d22>O) 

ctlnk~col Sums(d22>~O . 588) 

sld=colSums (apply (d22 , c (1 , 2) , ' isgtz ' ) ) 
slk=coISums(apply(d22 , c(I , 2) , ' issig ' )) 
lod=colSums(d22) 

sld~round(sld , 5) 

slk~round(slk , 5) 

lod~round(lod , 5) 

summ = as . data . frame(cbind( l :genl , lod , sld , slk , ctlnk , ctpos)) 

write . table(summ , pasce( "p< ";'nt ", rept , sep= "" ) , row . names=FALSE) 

rm i rfull) 
rm(d22) 
rm(rx) 
) 

quit( "no ") U##close R, don ' t save workspace 
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testPeaks95p 1 ,r 

# # # t e s t P e a k s 9 5 p l . r 
# # # B . C h r i s t e n s e n 4 / 2 0 / 2 0 0 9 
# # # I d e n t i f i e s p e a k s f r o m s h u f f l e d  d a t a r e s u l t s a n d 
# # # d e t e r m i n e s s i g n i f i c a n c e o f o b s e r v e d p e a k s a n d 
# # # w r i t e s o u t r e s u l t f i l e s 

n s h f f = 1 0 0 0  # # # n u m b e r o f s i m u l a t i o n s 

# # # # R e a d i n o b s e r v e d p o i n t s a n d p e a k s 

p o i n t s = r e a d . t a b l e ( " p o i n t s . o u t " , h e a d e r = T R U E ) 
g e n l = d i m ( p o i n t s ) [ 1 ] 

s l d p e a k s = r e a d . t a b l e ( " s u m l o d P e a k s 2 " , h e a d e r = T R U E ) 
s l k p e a k s = r e a d . t a b l e ( " s u m l i n k P e a k s 2 " , h e a d e r = T R U E ) 

s l k b a s e = q u a n t i l e ( p o i n t s $ s l k , 0 . 9 5 ) 
s l d b a s e = q u a n t i l e ( p o i n t s $ s l d , 0 . 9 5 ) 

# # # # # # R e a d s h u f f l e d  g e n o m e s a n d s e l e c t p e a k s # # # # 

s l d s i m s = N U L L 
s l k s i m s = N U L L 

f o r ( i  i n 1 : n s h f f ) { 

p a t h = p a s t e ( " s i m s / p o i n t " , i , s e p = " " ) 
p r i n t ( p a t h ) 
s i m s = a s . d a t a . f r a m e ( c b i n d ( r e p ( i , g e n l ) , r e a d . t a b l e ( p a t h , h e a d e r = T R U E ) ) ) 
n a m e s ( s i m s ) [ l ] = " s i m " 
n a m e s ( s i m s ) [ 2 ] = " l o c u s " 

# # # # # F i n d p o i n t w i s e s u m L i n k p e a k s o v e r [ t h r e s h o l d ] i n f u l l s i m u l a t i o n 
s e t 

m a x 4 = s i m s [ s i m s $ s l k > s l k b a s e , ] 

i f ( d i m ( m a x 4 ) [ 1 ] = = 1 ) { s l k s i m s = r b i n d ( s l k s i m s , m a x 4 ) } 

i f ( d i m ( m a x 4 ) [ 1 ] > 1 ) { 
t l = N U L L 
p e a k = N U L L 

f o r ( i  i n 1 : ( d i m ( m a x 4 ) [ 1 ] - 1 ) ) { 
i f ( a b s ( m a x 4 $ l o c u s [ i + 1 ] - m a x 4 $ l o c u s [ i ] ) < 2 && 
m a x 4 $ s i m [ i ] = = m a x 4 $ s i m [ i + 1 ] ) { 

t l = r b i n d ( t l , m a x 4 [ i , ] ) 
} # e n d i f 

testPeaks95p 1.1' 

###testPeaks95p1 . r 
###8 . Christensen 4/20/2009 
nU»Identifies peaks from shuffled data results and 
»UUdetermines significance of observed peaks and 
#~#writes out result files 

nshff~1000 ##Unumber of simulaLions 

##UnRead in observed points and peaks 

points=read . table( " points . out ", header~TRUE) 

genl~dimlpointsl [11 

sldpeaks=read . table( "sumlodPeaks2 ", header=TRUE) 
slkpeaks=read . table ( " sumlinkreaksL ", hedjer=TRUE) 

slkbase~quantilelpoinLs$slk , 0 . 951 

sldbase~quanLi1elpoints$sld , 0 . 951 

######Read shuffled genomes and select peaks#### 

sldsims=NULL 
slksims=NULL 

forli in l : nshffl ( 

path=paste( "sims/point ", i , sep= "" ) 
printlpathl 
sims=as . data . frame{cbind{rep(i , genl) , read . table(path , header=TRUE))) 
names (sims) [l]= "sim" 
names (sims) [2] = " locus " 
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##H##Find pointwise sumLink peaks over (threshold] in full simulation 
set 

max4=sims[sims$slk>slkbase , } 

ifldimlmax41 [11~~11 (slksims~rbindls1ksims , max41) 

ifldimlmax4) [11>11 { 
t1~NULL 

peak~NULL 

forli in 1 : Idimlmax41 [11-111 ( 
iflabslmax4$locus[i+11-max4$locus[ill < 2 && 
max4$sim[il~~max4$sim[i+11) { 

tl ~ rbind I tl , max4 [i , I 1 
1 #end if 
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e l s e { 
t l = r b i n d ( t l , m a x 4 [ i , ] ) 
t 2 = t l [ t l $ s l k = = m a x ( t l $ s l k ) , ] 
p e a k = r b i n d ( p e a k , t 2 [ 1 , ] ) 
t l = N U L L 

} # e n d e l s e 
} # e n d f o r 
# # f i n i s h l a s t l o o p 
t l = r b i n d ( t l , m a x 4 [ i , ] ) 
t 2 = t l [ t l $ s l k = = m a x ( t l $ s l k ) , ] 
p e a k = r b i n d ( p e a k , t 2 [ l , ] ) 
t l = N U L L 

s l k s i m s = r b i n d ( s l k s i m s , p e a k ) 

} # # # e n d i f m a x > l 

# # # # # F i n d p o i n t w i s e s u m L o d p e a k s o v e r [ t h r e s h o l d ] i n f u l l s i m u l a t i o n 
s e t 

m a x 4 = s i m s [ s i m s $ s l d > s l d b a s e , ] 

i f ( d i m ( m a x 4 ) [ 1 ] = = 1 ) { s l d s i m s = r b i n d ( s l d s i m s , m a x 4 ) } 

i f ( d i m ( m a x 4 ) [ 1 ] > 1 ) { 
t l = N U L L 
p e a k = N U L L 

f o r ( i  i n 1 : ( d i m ( m a x 4 ) [ 1 ] - 1 ) ) { 
i f ( a b s ( m a x 4 $ l o c u s [ i + 1 ] - m a x 4 $ l o c u s [ i ] ) < 2 && 
m a x 4 $ s i m [ i ] = = m a x 4 $ s i m [ i + 1 ] ) { 

t l = r b i n d ( t l , m a x 4 [ i , ] ) 
} # e n d i f 

e l s e { 
t l = r b i n d ( t l , m a x 4 [ i , ] ) 
t 2 = t l [ t l $ s l d = = m a x ( t l $ s l d ) , ] 
p e a k = r b i n d ( p e a k , t 2 [ 1 , ] ) 
t l = N U L L 

} # e n d e l s e 
} # e n d f o r 
# # f i n i s h l a s t l o o p 
t l = r b i n d ( t l , m a x 4 [ i , ] ) 
t 2 = t l [ t l $ s l d = = m a x ( t l $ s l d ) , ] 
p e a k = r b i n d ( p e a k , t 2 [ l , ] ) 
t l = N U L L 

s l d s i m s = r b i n d ( s l d s i m s , p e a k ) 

} # # # e n d i f m a x > l 

} # # # e n d o f s h u f f s 

elsel 
L1:rbind(tl , max4[i , I I 
t2:tl[tl$slk ·maxlt1$slkl , I 
peak:rbind(peak , t2[1 , I I 
t1:NULL 

)#end else 
)#end for 
##finish last loop 
tlcrbind (tl , max4 Ii , I I 
t2:t1[t1$slk::max(t1$slkl , J 
peak:rbind(peak , t2[1 , 1 I 
t1:NULL 

slksims=rbind(slksims , peak) 

I###end if max>l 
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#nHlI#Finli pointv·,rise sumLod peaks over (tl!trsh"ld] in fUl.l simulation 
set 

max4~simslsims$sld>sldbase , ) 

if (d im (max41 [1J::11 Is1dsims:rbind(sldsims , max41) 

if (d im(max41 [1»11 I 
t1:NULL 
peak:NULL 

forti in 1 : (dim(max41 [II -II I I 
if(abs(max4$locus[i+1J-max4$locus[il) < 2 && 
max4$sim[iJ::max4$sim[i+ll I I 

elsel 

tl crbind (tl , max4 [i , I I 
) Mend if 

t1:rbind (tl , max4 [i , I ) 
t2:t1[t1$sld::max(t1$sld) , I 
peak:rbind(peak , t2[1 , I) 
t1:NULL 

)#end else 
} Mend for 
##finish last loop 
tl=rbind(tl , max4[i , ] ) 
t2:tl[t1$sld::max(tl$sld) , 1 
peak:rbind(peak , t2[1 , I) 
t1:NULL 

sldsims=rbind(sldsims , peak) 

}###end if max>l 

)###end of shuffs 
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####################### 
# # # # a s s e s s s i g n i f i c a n c e 
# # # # # # # # # # # # # # # # # # # # # # # 

# # # s u m l i n k s i g n i f i c a n c e 

k s i g = f u n c t i o n ( x ) { d i m ( s l k s i m s [ s l k s i m s $ s l k > = x , ] ) [ 1 ] / n s h f f } 

s l k s i g = n u m e r i c ( l e n g t h ( s l k p e a k s $ s l k ) ) 
f o r ( k i n 1 : l e n g t h ( s l k p e a k s $ s l k ) ) { s l k s i g [ k ] = k s i g ( s l k p e a k s $ s l k [ k ] ) } 

d e s t = " s u m l i n k S i g 9 5 p l " 
s l k p e a k s $ s l k = r o u n d ( s l k p e a k s $ s l k , 3 ) 
w r i t e . t a b l e ( c b i n d ( s l k p e a k s , s l k s i g ) [ s l k s i g < = 5 , ] , d e s t , q u o t e = F A L S E , r o w . n 
a m e s = F A L S E , s e p = " \ t " ) 

# # # s u m l o d s i g n i f i c a n c e 

d s i g = f u n c t i o n ( x ) { d i m ( s l d s i m s [ s l d s i m s $ s l d > = x , ] ) [ 1 ] / n s h f f } 

s l d s i g = n u m e r i c ( l e n g t h ( s l d p e a k s $ s l d ) ) 
f o r ( k i n 1 : l e n g t h ( s i d p e a k s $ s l d ) ) { s l d s i g [ k ] — d s i g ( s i d p e a k s $ s 1 d [ k ] ) } 

d e s t = " s u m l o d S i g 9 5 p l " 
s l d p e a k s $ s l d = r o u n d ( s l d p e a k s S s l d , 3 ) 
w r i t e . t a b l e ( c b i n d ( s l d p e a k s , s l d s i g ) [ s l d s i g < = 5 , ] , d e s t , q u o t e = F A L S E , r o w . n 
a m e s = F A L S E , s e p = " \ t " ) 

s l k b a s e 
s l d b a s e 
q u i t ( " n o " ) 

H H H HUH,H HiH H HH HHH HHH MHH 
U#U#assess significance 
H # # H HH # H , HH HH #H H# H HH H '" 

##Usumlink significance 

k5ig~function I x) I dim 151 k5im5 [51 k5im5$ 51 k>~x , J ) [1 J In5h ff} 

51k5ig~numericI1engthI51kpeak5$51k)) 

forlk in 1 : lengthls1kpeaks$slk)) Is1ksig[kJ~ksigls1kpeaks$slk[kJ)) 

dest= "sumlinkSig9Spl " 
slkpeaks$slk~roundls1kpeaks$slk , 3) 
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write . tab1elcbindls1kpeak5 , slksig) [slksig<~5 , J , dest , quote~fALSE , row . n 

ames~FALSE , sep~ '· \ t " ) 

H#~sumlod significance 

dsig~function I x) I dim I 51dsims [sldsims$sld>~x , J ) [1 J Inshff} 

sldsig=numeric(length(sldpeaks$sld)) 
for I k in 1 : length I sldpeaks$sld) ) I sldsig [kJ ~dsig I sldpeak5$sld [kJ ) ) 

dest= "sumlodSig95pl " 
51dpeaks$51d~roundI51dpeaks$sld , 3) 

write . tablelcbindlsldpeaks , sldsig) [sldsig<~5 , J , dest , quote~FALSE , row . n 

ames~FALSE , sep~ " \t " ) 

slkbase 
sldbase 
qUit( "no ") 


