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ABSTRACT 

 
 

Disease-specific ontologies, designed to structure and represent the medical 

knowledge about disease etiology, diagnosis, treatment, and prognosis, are essential for 

many advanced applications, such as predictive modeling, cohort identification, and 

clinical decision support. However, manually building disease-specific ontologies is very 

labor-intensive, especially in the process of knowledge acquisition. On the other hand, 

medical knowledge has been documented in a variety of biomedical knowledge 

resources, such as textbook, clinical guidelines, research articles, and clinical data 

repositories, which offers a great opportunity for an automated knowledge acquisition. In 

this dissertation, we aim to facilitate the large-scale development of disease-specific 

ontologies through automated extraction of disease-specific vocabularies from existing 

biomedical knowledge resources. Three separate studies presented in this dissertation 

explored both manual and automated vocabulary extraction. The first study addresses the 

question of whether disease-specific reference vocabularies derived from manual concept 

acquisition can achieve a near-saturated coverage (or near the greatest possible amount of 

disease-pertinent concepts) by using a small number of literature sources. Using a 

general-purpose, manual acquisition approach we developed, this study concludes that a 

small number of expert-curated biomedical literature resources can prove sufficient for 

acquiring near-saturated disease-specific vocabularies. The second and third studies 

introduce automated techniques for extracting disease-specific vocabularies from both  
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MEDLINE citations (title and abstract) and a clinical data repository. In the second study, 

we developed and assessed a pipeline-based system which extracts disease-specific 

treatments from PubMed citations. The system has achieved a mean precision of 0.8 for 

the top 100 extracted treatment concepts. In the third study, we applied classification 

models to reduce irrelevant disease-concepts associations extracted from MEDLINE 

citations and electronic medical records. This study suggested the combination of 

measures of relevance from disparate sources to improve the identification of true-

relevant concepts through classification and also demonstrated the generalizability of the 

studied classification model to new diseases. With the studies, we concluded that existing 

biomedical knowledge resources are valuable sources for extracting disease-concept 

associations, from which classification based on statistical measures of relevance could 

assist a semi-automated generation of disease-specific vocabularies.  
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CHAPTER 1 

 
 

INTRODUCTION 
 
 

The work described below represents an effort to develop tools and processes that 

can ease the work necessary to develop collections of disease-specific medical concepts 

that will support the curation of computer-accessible medical ontologies. The medical 

knowledge managed in ontologies using these concepts will contribute to promote 

efficient and effective patient-centered care using automated health information systems 

 
1.1 The Need of Disease-Specific Medical Knowledge  

 
The following examples help to recognize a variety of informatics areas 

demanding disease-specific medical knowledge for supporting better informed 

healthcare and research activities. 

 
1.1.1 Case 1: Physicians Facing Information Overload 

 
A cardiologist is seeing his patient who has congestive heart failure (CHF) but 

also other problems, such as diabetes mellitus, depression, and rheumatoid arthritis. He 

has to manually collect and distill the information relevant to the CHF as the system has 

stored a large number of records for this individual. He desires a system that could 

automatically collect, distill, and summarize information that is relevant to the problem of 

the current visit.  
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1.1.2 Case 2: Consumers’ Online Information Seeking 
 

A middle-age lady was recently diagnosed with hepatic cirrhosis. Before her 

upcoming visit to her healthcare provider, she would like to know the available means of 

treatment and compare them regarding the cons and pros. She started searching on the 

Internet with the broad words “treatment” plus “hepatic cirrhosis”, but ended up with 

frustration by the broad, irrelevant, or even incorrect information received online. She 

wishes for automated assistance in forming more precise searches directed at trusted 

sources. 

 
1.1.3 Case 3: Researchers’ Analysis of Healthcare Data 

 
A data scientist aims to build a predictive model for lung cancer prognosis. Facing 

massive amounts of both structured and unstructured data, he has to consult medical 

experts throughout the entire process of data analysis, including understanding and 

cleaning the data, extracting important data elements as inputs for building the predictive 

model, and conducting comprehensive data analysis and evaluation. He wishes there 

were a well-developed disease model which would assist the entire process and reduce 

the dependence on medical experts.  

 
1.2 Objectives and Hypothesis 

 
The primary goal of this dissertation is to enable the large-scale development of 

disease-specific ontologies which could serve as a fundamental component of those 

advanced clinical applications (e.g., problem-oriented summarization of medical records, 

question answering, diagnostic and predictive modeling) for better informed healthcare. 

More specifically, we have studied methods to extract disease-specific, assertional 
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medical knowledge from existing biomedical knowledge resources for the development 

of disease-specific ontologies. Disease-specific ontologies are computer-understandable 

and human-readable knowledge bases that have been designed to explicitly support 

representations of the knowledge of disease etiology, diagnosis, treatment and prognosis 

for each kind of disease. The underlying assumption behind disease-specific ontologies is 

the belief that they can be useful for the representation, sharing, and computation of 

domain-specific medical knowledge. The main research question of this study is “can 

disease-specific vocabularies required for building disease-specific ontologies be 

extracted from existing biomedical knowledge resources.” 

In the three studies to be presented, three specific research questions were 

explored:  

1. Is it practical to use only a small number of expert-curated textual knowledge 

sources to acquire disease-specific vocabularies that reach a saturated coverage 

(Chapter 3)?  

2. Is it feasible to automatically acquire disease-specific treatment vocabularies from 

the biomedical literature using a pipeline-based approach (Chapter 4)? 

(Specifically, we hypothesize that there is no difference in precision at the top 

100 extracted concepts among the rankings produced by the four measures of 

relevance in the pipeline-based approach. We also hypothesize that there is no 

difference in precision at the top 100 extracted concepts among the rankings 

produced by the pipeline-based system and two baseline approaches.) 

3. Can classifiers, generated using machine learning techniques, be used to reduce 

the manual effort necessary to review noisy collections of proposed disease-
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specific concepts extracted from both biomedical literature and clinical data 

repositories (Chapter 5)? (Specifically, we hypothesize that using the features 

(e.g., measures of relevance) from both the biomedical literature and clinical data 

repositories would improve the classifiers’ performance compared to using 

features from the individual sources. We also hypothesize that the classifiers 

initially built for specific diseases would be generalizable to other disease(s).) 

 
1.3 Rationale for Analysis 

 
Computers have been introduced to the medical field to assist healthcare activities 

since the 1950s [1]. As the complexity of the domain of medicine continuously increases, 

comprehensive computer-understandable knowledge bases (KBs) are needed. The term 

“knowledge bases” can refer to different things such as vocabularies, ontologies, 

collections of rules, semantic networks, or probabilistic models. In this dissertation, we 

choose the ontology as a medium to represent a kind of medical knowledge. Ontologies 

represent an explicit specification of a conceptualization [2] which allow sharing and 

reuse and have been commonly used by the healthcare informatics communities to 

represent medical semantics. In addition, among the kinds of medical knowledge, we 

discerned that disease-specific medical knowledge (i.e., disease’s etiology, diagnosis, 

therapy, and prognosis) is particularly important. As a clinician, a comprehensive 

understanding of the disease in all its different aspects can lead to better medical practice 

and desired patient outcomes. Similarly, having such kinds of knowledge available to the 

computer can empower and support healthcare activities through many advanced 

applications. Specifically, several disease-specific ontologies have been demonstrated to 

be useful for clinical applications such as diagnostic modeling [3], reminder systems [4], 
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and text annotation [5,6]. We assume that they will also be useful for other applications, 

like problem-oriented summaries of patient EHRs [7–9], clinical question-answering [10], 

query expansion [11], and treatment recommendation [12]. 

However, the development of this kind of ontologies is very labor-intensive. One 

of the main challenges for the large-scale development of disease-specific ontologies is 

the acquisition of disease-relevant medical knowledge. It is expensive to build ontologies 

that rely heavily on human experts, and this effort becomes impractical when building 

ontologies for thousands of diseases. As the majority of the medical knowledge is well 

documented in the biomedical knowledge resources, such as textbooks, clinical 

guidelines, research articles, and clinical notes, the sources offer great opportunities for 

an automated knowledge extraction. Therefore, we aimed to extract disease-specific 

medical knowledge from existing biomedical knowledge resources using approaches in 

which the involvement of human experts or knowledge engineers could be minimal.  

 
1.4 Overview of the Dissertation 

 
Chapter 2 of this dissertation provides the background for the body of research 

and contains two parts. Part one introduces the disease-specific ontologies and potential 

applications. Part two describes state-of-the-art techniques for medical knowledge 

acquisition from existing knowledge resources.  

Chapter 3 of this dissertation investigates the manual acquisition of disease-

specific reference vocabularies from expert-curated documents (e.g., textbooks, clinical 

practice guidelines, and journal articles) [13]. We described a complete process of 

manual acquisition including document selection, manual annotation and adjudication, 

mapping, and assessment of vocabulary saturation.  
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In Chapter 4 of this dissertation, we develop and assess a pipeline-based system 

which automatically extracts disease-specific treatments from PubMed citations. The 

research question is addressed in Chapter 4 with a detailed description of a pipeline-based 

vocabulary extraction approach and the analysis of automated extracted results with a 

comparison to the manual acquired reference vocabularies from Chapter 3. Two 

corresponding hypotheses were tested.  

Chapter 5 of this dissertation describes an effort to solve a challenge remaining 

from several prior studies of knowledge extraction, where the automated generated 

vocabularies from the biomedical literature and electronic medical records have low 

signal-to-noise ratio, and therefore require considerable manual review and selection. We 

tested several classifications models to automatically determine the relevance of those 

extracted concepts to the disease of interest. The research question is addressed and two 

corresponding hypotheses were assessed.  

Chapter 6 summarizes our findings from three studies, and discusses the 

limitations, range of applicability, and future directions. 
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CHAPTER 2 

 
 

BACKGROUND 
 
 

2.1 Disease-Specific Ontologies 
 

2.1.1 What Is Ontology? 
 

Ontology is originally defined ‘as the branch of metaphysics which investigates 

and explains the nature of all things or existences.’ In the world of information science, 

the view of ontology is somewhat narrower. A classic definition of ontology was given 

by Gruber [1] that ontology is ‘an explicit, formal specification of a shared 

conceptualization of a domain of interest’. To expand this definition, the 

conceptualization is ‘an abstract, simplified view of the world that we wish to present for 

some purpose’[2], while the specification is ‘the representation of this conceptualization 

in a concrete form’.  

In the aspect of conceptualization, Noy [3] provided details about what is inside 

of an ontology. Four main components were defined: concepts, properties, restrictions, 

and instances. A concept represents a set or class of entities or ‘things’ within a domain. 

For instance, ‘car’ is a class which has subclasses like ‘SUV’ and ’Minivan’. An instance 

of the ‘car’ would be the car that you drive to work or home. ‘Car’ has properties, such as 

‘door’, ‘manufacturer’, ‘window’, and ‘wheels’, and also restrictions, such as a car ‘has 

four wheels’. In the process of specification, one goal is to encode the classes of entities 
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in the domain of interest with relations, properties, and restrictions, and organize them 

using semantic structure. Many ontology specification languages have been developed, 

among which several are very popular including KIF (Knowledge Interchange Format) 

[4], OWL (Web Ontology Language) [5], RDF+RDF(S) [6], and DAML+OIL [7]. In the 

meantime, a number of tools for developing and maintaining ontologies were also 

developed, such as Ontolingua, WebOnto, WebODE, Protégé, OntoEdit, etc. [8,9] Each 

of the tools or languages has its own strengths and weakness; therefore, the choice of the 

tools and languages are dependent on the users’ needs. 

Ontologies have been made popular in many areas, for example, knowledge 

representation [10,11], Semantic Web [12], and bioinformatics [13]. This could be 

attributed to several possible reasons [3]. First, ontology's enable the sharing of common 

knowledge among either people or software agents. Many ontologies have been 

developed for all kinds of domains or purposes, and stored in open repositories (e.g., 

Swoogle, NCBO BioPortal [14], OBO Foundry [15]). They can be easily accessed by and 

shared with those people who are interested in the same domain. The ontology, with the 

formal, explicit representation of the knowledge, also enables the reuse of domain 

knowledge. Computers that understand the languages of ontologies can parse the 

ontologies and read information from the ontologies. Further, ontology has the potential 

to enable many advanced applications, such as ontology-based reasoning [16], data 

integration [17], information retrieval [18], and question answering [19]. 

 
2.1.2 Ontologies in the Biomedical Domain 

 
The history of “ontology” in the computer science domain starts from Gruber’s 

definition of ontology in the early 1990s [1,2], and the history of the “ontology” in the 
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biomedical domain probably dates to the beginning of the 2000s with typical work 

including Gene Ontology [20], Foundational Model of Anatomy (FMA) [21], and 

Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) [22]. Since 

then, ontologies have been widely developed and used in the biomedical domain [14,23]. 

Hundreds of biomedical ontologies have been developed, tracked from several well-

known biomedical ontology repositories. For example, BioPortal 

(https://bioportal.bioontology.org/) [14] currently hosts up to 538 ontologies (accessed by 

Jan 2017). OBO foundry (http://www.obofoundry.org/) [24] also hosts over 140 

biomedical ontologies (accessed by Jan 2017). Those biomedical ontologies have not 

only given the possibility of sharing and reuse of domain knowledge, but have also 

played a fundamental role in many biomedical informatics research projects, including 

the annotation of biomedical datasets, the biomedical literature and patient records, 

information retrieval, data integration, knowledge discovery, and decision support and 

reasoning [23,25]. 

 
2.1.3 Disease-Specific Ontologies and Applications 

 
Each ontology has a scope of focus, which can be broad or narrow. For example, 

SNOMED CT broadly covers several clinical subdomains (e.g., anatomy, clinical 

finding, medications, procedure, etc.), while nurse administrator ontology 

(https://bioportal.bioontology.org/ontologies/ADMIN) has a narrow scope which 

typically focuses on nursing administration. In this dissertation, the scope of the 

ontologies we intend to construct are focused on specific diseases, which we called 

disease-specific ontologies (DSOs). Each DSO takes one disease or condition as a scope 

of focus. They are knowledge bases intended to structure and represent the medical 



12 
 

 

knowledge about disease etiology, diagnosis, treatment and/or prognosis, etc.  

Although hundreds of biomedical ontologies were made available to the public, 

they primarily contain definitional knowledge which is considered as universally true. 

For example, in terms of disease-specific information, SNOMED CT essentially contains 

definitional knowledge about disease categories (e.g., myocardial infarction is_a 

cardiovascular disease) and body location (e.g., congestive heart failure finding_site_of 

cardiac ventricle). However, assertion knowledge, a kind of knowledge considered as true 

in a given context (e.g., aspirin treats headache), is usually missing from those existing 

ontologies. For example, SNOMED CT has little information specifying the relationships 

between drugs and diseases. As the importance of assertion knowledge is being 

increasingly recognized [26–28], we intend to integrate it with definitional knowledge to 

create DSOs to support different kind of applications, such as knowledge discovery, 

problem-oriented summarization of medical records, information retrieval, etc.  

As we review the literature, researchers have made different attempts to develop 

DSOs for specific diseases and applied them in several informatics areas. For example, 

Haug et al. [29] developed a pneumonia ontology for their “ontology-driven diagnostic 

modeling system”. The pneumonia ontology contains (1) the relationships among 

diseases, (2) the relationships between diseases and relevant observations, (3) the 

relationships between diseases and typical therapeutic interventions, and (4) the 

relationships between diseases and anticipated outcomes. By linking the concepts in the 

ontology to the data stored in Intermountain Healthcare’s enterprise data warehouse 

(EDW), the ontology was used to identify diseased and non-diseased patients, and choose 

data elements to be useful in diagnosing pneumonia. Thereafter, the extracted data was 
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fed into the Bayes Network for building a diagnostic model. In another example, 

Malhotra et al. constructed an Alzheimer’s disease ontology (ADO) which covers 

clinical, etiological, molecular, and cellular mechanism aspects of AD [30]. The authors 

of ADO also created two additional disease-specific ontologies using the same approach 

as they built the ADO. Younesi et al. built a Parkinson’s disease ontology (PDO) to 

model the domain knowledge of Parkinson's disease [31]. This ontology covers the 

clinical aspects, etiology, model, neuropathology, disease categories, as well as 

associated familial diseases of Parkinson’s disease. Malhotra et al. also created a multiple 

sclerosis ontology (MSO) which covers similar aspects as the PDO [32]. These three 

ontologies (i.e., ADO, PDO, and MSO) were all applied to the semantic mining of patient 

records and literature for effective retrieval and extraction of accurate disease-related 

information. In addition, Chalortham et al. developed an ontology for type II diabetes 

mellitus (DM), which contains DM-relevant information such as sign and symptom, 

treatment, assessment, and follow-ups activities [33]. The type II diabetes mellitus 

ontology was applied to a reminding system that provided patients’ useful information to 

hospital providers [33] and also to identify a patient cohort from the EHR [34]. Similarly, 

El-Sappagh and Farman published a diabetes mellitus diagnosis ontology (DDO), which 

covers diabetes-related complications, symptoms, drugs, lab tests, etc. [35] Most of the 

development of these disease-specific ontologies mentioned above happened in the last 

several years. And most of these ontologies are currently available in the Bioportal.  

Besides the actual development of DSOs for several specific diseases as 

mentioned above, there are some works closely related to the DSOs. Hadzic proposed 

generic human disease ontology (GHDO) that was designed for the representation of 
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knowledge regarding human disease [36]. It organizes the concepts of existing ontologies 

into four dimensions: disease types, symptoms, causes, and treatments. The top hierarchy 

of GHDO could be a useful guide for developing disease-specific ontologies. Bertaud-

Gounot et al. argued that diagnostic criteria (such as signs and symptoms) should be 

included as part of the operational definition of diseases in the ontology for supporting 

the diagnostic modeling and reasoning [37]. Mendonca et al. proposed a model for 

accessing evidence from a digital library to answer clinical questions, where a major 

component is the knowledge bases that contain clinical concepts derived from clinical 

settings and relations (e.g., “is-caused-by”) [38]. Another parallel work is the building of 

the diseases symptoms ontology [39] which aligns the disease ontology with the 

symptoms ontology, creating a core disease symptoms ontology.  

With the merit of containing comprehensive disease-specific information in 

computer-understandable and human-readable format, DSOs may support other kinds of 

applications in addition to the ones researchers have explored (e.g., diagnostic modeling). 

This includes clinical question answering [40], query expansion [41], and therapy 

recommendation [42]. To support this argument, we provide detailed explanation below. 

First of all, the disease-specific ontology may answer some disease-related 

questions. For some frequently asked questions [43], such as “what is the drug of choice 

for condition X?”, “what is the cause of disease X?”, and “what test is indicated in 

situation X?”, ontologies could assist the clinicians to form well-built questions [40] by 

using the terms from the ontologies and could run the queries on the biomedical literature 

or electronic medical records to identify related articles and patient records to answer 

their questions. For consumers with little clinical background, disease-specific ontologies 
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could be used to expand or reformulate the original queries to the Google, PubMed, or 

MedlinePlus [41,44,45], which therefore may improve the effectiveness of the searches. 

For example, a person may be interested in the “treatment” of disease Y; however, they 

may not know what kind of treatments were available; by looking into the ontology, they 

may form a specific query with a comparison of two medications for the diseases. Third, 

disease-specific ontologies may facilitate the summarization of patient medical records. 

With the understanding about what information is relevant to the problem of interest, a 

system can extract disease-relevant information from a patient’s long historical medical 

records and provide a summary to the clinicians. Moreover, disease-specific ontologies 

could be used for clinical researchers to identify a proper research cohort from an EHR. 

The phenotypes (e.g., signs, symptoms, diagnostic results) captured in the disease-

specific ontologies can be useful for the development of cohort selection algorithms for 

finding target populations or subpopulations, which will further help clinical trial studies.  

The development of disease DSOs is still at the beginning stage. As we reviewed 

all the ontologies stored in BioPortal and OBO foundry, less than 1% of the ontologies 

were built for specific diseases. Moreover, most of the disease-specific ontologies we 

found haven’t covered a full range of the disease-specific medical knowledge. However, 

we foresee that the importance of the disease-specific ontologies will be increasingly 

recognized, and more and more DSOs will be developed.  

 
2.2 Disease-Pertinent Knowledge Acquisition 

 
Building disease-specific ontologies is labor-intensive. In the Medical Subject 

Headings (MeSH), there are over 2000 disease concepts in the disease categories. It is 

obvious that building ontologies for so many kinds of diseases could be a life-time job if 
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we do it manually. As we review the life cycle of ontology development [46], a crucial 

component is knowledge acquisition, which is a process of extracting, structuring, and 

organizing knowledge from a variety of knowledge sources. Therefore, it would be 

desirable to find or develop an automated or semi-automated knowledge acquisition 

method and extract the knowledge from existing knowledge sources. Most existing 

ontology development tools do not support an automated knowledge acquisition [8].  

Working on the automated acquisition of disease-specific information, two 

important questions need to be addressed: what are the knowledge sources and how 

should we extract from them? To answer these two questions, we first review the prior 

endeavors of disease-specific knowledge acquisition in the biomedical domain. 

Since the earlier 1990s, dozens of studies have investigated techniques for 

disease-concept association extraction from a variety of sources, where the concept could 

be associated genes [47], signs and symptoms [48], findings [49], medications [26,50], or 

lab tests [50]. The sources that have been mined broadly cover MEDLINE citations 

[26,51–56,28,57], Clinical records [49,26,50,58,59], NDFRT [60], DrugBank [61], FDA 

AERS [60], DailyMed [61], and AHFs Consumer Medication Information [61]. Among 

the sources, MEDLINE citations (title and abstract) and clinical records were the two 

most commonly used sources. Numerous knowledge acquisition techniques have been 

proposed to extract relational information from them, including co-occurrence-based 

statistics [49,26,50], natural language processing (NLP) [55,61], graph theory [47,62], 

conditional random fields [56], pattern learning [28,57], and others [56]. Among these 

techniques, co-occurrence-based statistics and natural language processing (NLP) are the 

two techniques mostly applied. Detailed review of the knowledge extraction techniques 
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can be found in Chapter 4 and 5.  

Two barriers we identified led to the research work of this dissertation. First, most 

of the previous work focus on a large-scale extraction of disease-concept associations 

without a specific disease as a focus [26,50,28,57]. We are uncertain about their 

performance when applying them to the disease-specific level. It is important to develop 

and test approaches to support DSOs. Toward this end, we develop reference standards 

below in Chapter 3 and a disease-treatment extraction system in Chapter 4 with some 

comparison to previous works.  

Second, existing automated extraction techniques not only identify the signal (i.e., 

relevant disease-concept associations) but also introduce noise (i.e., irrelevant disease-

concept associations). The signal-to-noise ratio can be very low when focusing on high 

recall. The challenge remains when facing hundreds or thousands of concepts extracted 

for each disease in which the precision is low; how can we filter out the false positives? It 

is expensive to ask experts to manually determine the relevance of those extracted 

concepts to the disease of interest. In Chapter 5, we explore supervised machine learning 

techniques to overcome this barrier.  
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Reprinted with permission from Wang L, Del Fiol G, Bray BE, Haug PJ. 
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CHAPTER 5 

 
 

USING CLASSIFICATION MODELS FOR THE GENERATION OF 
 

DISEASE-SPECIFIC MEDICATIONS FROM BIOMEDICAL 
 

LITERATURE AND CLINICAL DATA REPOSITORY 
 
 

Reprinted with permission from Wang L, Haug PJ, Del Fiol G. Using classification 

models for the generation of disease-specific medications from biomedical literature and 

clinical data repository. Journal of Biomedical Informatics. 2017;69:259-266. 

 
 

5.1 Abstract 
 

Mining disease-specific associations from existing knowledge resources can be 

useful for building disease-specific ontologies and supporting knowledge-based 

applications. Many association mining techniques have been exploited. However, the 

challenge remains when those extracted associations contained much noise. It is 

unreliable to determine the relevance of the association by simply setting up arbitrary cut-

off points on multiple scores of relevance; and it would be expensive to ask human 

experts to manually review a large number of associations. We propose that machine-

learning-based classification can be used to separate the signal from the noise, and to 

provide a feasible approach to create and maintain disease-specific vocabularies. 

We initially focused on disease-medication associations for the purpose of 
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simplicity. For a disease of interest, we extracted potentially treatment-related drug 

concepts from biomedical literature citations and from a local clinical data repository. 

Each concept was associated with multiple measures of relevance (i.e., features) such as 

frequency of occurrence. For the machine purpose of learning, we formed nine datasets 

for three diseases with each disease having two single-source datasets and one from the 

combination of previous two datasets. All the datasets were labeled using existing 

reference standards. Thereafter, we conducted two experiments: 1) to test if adding 

features from the clinical data repository would improve the performance of classification 

achieved using features from the biomedical literature only, and 2) to determine if 

classifier(s) trained with known medication-disease data sets would be generalizable to 

new disease(s). 

Simple logistic regression and LogitBoost were two classifiers identified as the 

preferred models separately for the biomedical-literature datasets and combined datasets. 

The performance of the classification using combined features provided significant 

improvement beyond that using biomedical-literature features alone (p-value<0.001). The 

performance of the classifier built from known diseases to predict associated concepts for 

new diseases showed no significant difference from the performance of the classifier built 

and tested using the new disease’s dataset. 

It is feasible to use classification approaches to automatically predict the 

relevance of a concept to a disease of interest. It is useful to combine features from 

disparate sources for the task of classification. Classifiers built from known diseases were 

generalizable to new diseases. 
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5.2 Introduction 
 

The biomedical literature and electronic medical records offer great opportunities 

for acquiring disease-specific medical knowledge. Automated extraction of disease-

medication associations from these knowledge sources can speed the process of building 

disease-specific concept vocabularies which could be further used for various clinical 

applications, such as automated annotation of biomedical text [1,2], identification of 

diseased cohorts [3], and development of diagnostic models [4]. In the present study, we 

propose an approach for automated extraction of disease-concept associations from the 

biomedical literature and a clinical data repository (CDR). The approach uses machine 

learning classification models to predict the relevance of concepts to the disease of 

interest. The approach is developed based on former studies [5–8] and it overcomes a 

common challenge faced in these studies, which is to use the metrics of relevance of the 

disease-concept associations to effectively decrease the manual efforts necessary to 

review noisy collections of associations in order to build disease-specific concept 

vocabularies. To build classification models, we evaluated the proposition that combining 

features derived from a clinical data repository with those from the biomedical literature 

would result in better performance than using features from a single source. We also 

conducted an exploratory assessment of the model’s generalizability in predicting the 

disease-concept associations extracted for other diseases. 

 
5.3 Background and Significance 

 
Dozens of studies have investigated techniques for extracting disease-concept 

associations from the biomedical literature and electronic medical records. The concepts 

studied have included associated genes [9], signs and symptoms [10], findings [11], 
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medications [7,8], and lab tests [7]. Numerous knowledge acquisition techniques have 

been proposed to extract relational information, including co-occurrence-based statistics 

[7,8,11], natural language processing (NLP) [12,13], graph theory [9,14], and others 

[15,16]. Zeng and Cimino retrieved disease-chemical relationships from the UMLS co-

occurrence table (MRCOC) simply based on the co-occurrence of MeSH terms assigned 

to published articles[17]. Cao et al. used NLP and co-occurrence statistics (i.e., chi-

square statistics and the proportion confidence interval) to extract disease-finding 

associations [11]. Chen et al. applied similar techniques to extract disease-drug pairs 

from PubMed® citations and clinical documents [8]. In those studies, NLP techniques 

have been used mainly for named entity recognition when the sources of the data were in 

“free-text” form. In addition, Rindflesch et al. developed a rule-based system called 

SemRep that extracts the semantic relations between the concepts identified in a 

particular sentence in the biomedical literature [12,18]. For example, given the sentence 

“a randomized trial of etanercept as monotherapy for psoriasis”, a semantic predication 

was generated: etanercept TREATS psoriasis. Bundschus et al. explored using 

conditional random fields to identify the semantic relations between disease and 

medications and between disease and genes in biomedical text [15]. Xu and Wang used a 

pattern-learning approach to extract disease-drug and disease-disease risk pairs from 

biomedical abstracts [16,19]. In addition, the authors of the present study have developed 

a pipeline-based system which combines multiple techniques (i.e., document retrieval, 

SemRep, UMLS semantic network, and co-occurrence-based statistics) to extract disease-

specific treatments (including medications, surgical procedures, medical devices, and 

activities) from biomedical titles and abstracts [6]. More details about this work can be 
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found in section 3.1. 

Existing statistically-based automated extraction techniques score the disease-

concept candidate set allowing some reduction in noise, but leaving behind a large 

number of “bad” concept-disease pairs. The precision can be very low when focusing on 

high recall. For example, in a previous study, when counting all retrieved treatment 

concepts, we achieved a precision of less than 0.3 on two test diseases when comparing 

to manually-created reference vocabularies [6]. The challenge escalates when facing 

hundreds or thousands of concepts extracted for each disease in light of low precision. 

Ultimately, filtering out false-positives requires manual expert review, which is costly 

and time-intensive.  

Disease-concept associations extracted by automated techniques have been 

assigned statistical scores, such as frequency of occurrence, which may provide some sort 

of indication for the strength of the relationship between the disease of interest and 

extracted concepts. Researchers previously investigated potential approaches to set 

proper thresholds based upon those statistical scores to identify a subset of important 

associations for further investigation. For example, Cao et al. explored using the volume 

test of Diaconis and Efron to identify thresholds using the chi-square score [20]. 

However, choosing cut-off points on these statistical scores is either empirical or 

arbitrary, and it would not generally apply well to a situation where extracted concepts 

are assigned multiple scores. 

To determine the relevance of extracted concepts to the disease of interest is a 

binary classification issue. To address the above challenge, machine-learning-based 

classification techniques can possibly be used to predict the relevance of extracted 
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disease-concept associations based upon the multiple statistical scores. This would 

eliminate a significant number of irrelevant concepts and keep a subset of “interesting” 

concepts for further investigation.  

To develop an appropriate classification model, we considered two important 

questions: (1) what features should be used to build the model; and (2) how generalizable 

is the model? 

Disease-specific associations could be extracted from different sources by 

multiple techniques, which generate different kinds of measures of relevance (i.e., 

features). For example, in a prior study, we used four scoring strategies (i.e., frequency of 

occurrence, interest, degree centrality, and weighted degree centrality) to extract disease-

treatment associations from the biomedical literature [6]. Wright et al. applied five co-

occurrence-based statistics (i.e., support, confidence, chi square, interest, and conviction) 

to extract disease-medication and disease-lab test associations from the electronic 

medical records [7]. Studies have shown that combining the results of extraction by 

different techniques/queries from a single source led to progressively improving retrieval 

performance [21–23]. Other studies also show that the results of extraction from the 

different sources are somewhat complementary [5,8]. With these findings in mind, we 

assumed that by combining the measures of relevance generated by different techniques 

from different sources (i.e., the biomedical literature and a CDR) as features within a 

classification system, the performance of the classifiers may be improved compared to 

using a single feature or features only from a single source. 

The generalizability of the classification model is important because it is difficult 

and expensive to build a classifier for each disease. However for different diseases, the 
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range and distribution of the value of the relevance measures may be different. This could 

affect the performance of a classifier when trained and tested on different disease 

datasets. We measure the generalizability of the classifier by determining if a classifier 

trained and tested on different disease’s datasets achieved as good performance as the 

classifier trained and tested on the same disease’s dataset. 

The ultimate goal of this study is to develop machine learning classifiers that 

could reduce the manual effort necessary to review noisy collections of disease-specific 

concepts. To achieve this goal, in the present study, we initially focused on disease-

medication associations, and searched for classification models appropriate to predict the 

relevance of groups of medications to a specific disease. The models were designed to 

incorporate multiple statistical scores. We assessed two research questions: (1) Would 

adding the features from the CDR improve the performance of models that used features 

from biomedical literature only; (2) Would models built from known disease-medication 

associations be effective in predicting disease-medication associations for new diseases? 

 
5.4 Materials and Methods 

 
The study methods consisted of the following steps (see Figure 5.1): (1) 

extraction of disease-specific medications from the biomedical literature; (2) extraction of 

disease-specific medications from a local CDR; (3) preparation of datasets for 

classification, including merging the datasets from the disparate sources and validating 

disease-medication associations using reference standards; (4) searching for preferred 

classifiers for different datasets; and (5) statistical analysis. The reference standards in 

Figure 5.1 are the reference vocabularies we built in a prior study for three diseases (i.e., 

heart failure, pulmonary embolism, and rheumatoid arthritis) [5]. 
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Figure 5.1. Workflow for testing supervised learning of classification models to generate 
disease-specific reference vocabularies from the biomedical literature and the CDR. 

 
5.4.1 Association Extraction from the Biomedical Literature 

 
In an earlier study, we developed a pipeline-based system to extract disease-

specific treatment concepts from MEDLINE citations [6]. That pipeline system consists 

of several sequential steps, including citation retrieval, predication extraction, treatment 

predication and concept extraction based on a semantic schema, and relevance ranking. In 

the citation retrieval step, we developed our PubMed queries based on PubMed Clinical 

Queries to retrieve disease-pertinent, treatment-related citations from the entire 

MEDLINE database. The sentences in those retrieved citations are then parsed into 

predications, which are semantic relations in the form of a triple subject predicate object 

(e.g., Chronic Obstructive Airway Disease AFFECTS Left Ventricular Function). 

Treatment predications are semantic relations that match a predefined semantic treatment 

schema, which is a set of rules that define which predications are valid treatment 

predications. For example, the predication Captopril TREATS Congestive heart failure 

matches the semantic schema Pharmaceutical Substance TREATS Disease or Disorder. 
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In the next step, the treatment concepts (e.g., Captopril) are extracted from the retrieved 

treatment predications. 

In the last step, the extracted concepts are assigned four different scores: (1) 

occurrence, which is the frequency of the concept in the treatment predications; (2) 

interest, which is the ratio of the occurrence of a treatment concept to the sum of the 

occurrences of all treatment concepts retrieved for a given disease of interest divided by 

the ratio of the occurrence of a treatment of interest to all treatment concepts in the 

database; (3) degree centrality, which measures the significance of the concepts in the 

graph by counting their connectivity to other concepts; and (4) weighted degree 

centrality, which is a harmonization between the frequency of occurrence and the degree 

centrality. These four scores, when used independently, were not significantly different in 

terms of the mean precision of the top 100 ranked concepts.  

The treatment concepts returned from the pipeline-based system broadly covered 

the semantic groups of procedures, chemicals & drugs, activities & behaviors, and 

devices. In the present study, as we focused on medications, we further limited the 

returned concepts to those whose source terminology was “RXNORM” and whose term 

type was “IN” (ingredients). The four relevance scores described above were generated 

for each concept.  

 
5.4.2 Association Extraction from CDR 

 

For mining disease-medication associations from a local CDR, we adapted the 

approach proposed in [7] which resulted in 89.2% accuracy for the top 500 disease-drug 

associations. The approach first uses frequent item set mining to locate commonly co-

occurring items in a database, and then uses association rule mining to identify the 
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direction of the associations. Thereafter, co-occurrence-based statistics are applied to sort 

the disease-lab test and disease-medication associations from electronic health records. 

For mining frequent item sets, the Apriori algorithm was used [24]. Apriori was 

designed to operate on databases of transactions. For example, consider a transaction in 

the grocery store as a set of items purchased by the customer during one visit to the store; 

a large collection of these transactions could be used to identify associations between 

purchased items. In the clinical setting, a transaction would be a set of diagnoses, 

medications, procedures, and lab tests associated with a patient in a clinical encounter. 

From a database with millions of transactions, we simply count the number of 

transactions in which the disease of interest and the medications co-occurred. With each 

two-item set, a two-by-two table can be constructed (Table 5.1), where a is the number of 

transactions in which X and Y co-occurred, b is the number of transactions that contain X 

but not Y, c is the number of transactions that contains Y but not X, and d is the number 

of transactions that contain neither X nor Y. 

From Table 5.1, the following statistical measures were calculated: 

1. Support (X, Y) is simply the number of transactions in which item X and Y 

co-occur. It is based on the underlying assumption that two associated 

concepts are more likely to appear together than pairs of unrelated concepts. 

Support(X, Y) = a                                                     (1) 

2. Confidence (X, Y) is the proportion of all transactions that contain X that also 

contain Y. It provides a way to account for the directionality of associations. 

Take an example in [7], in confidence (insulin, diabetes), the proportion of 

patients who have been prescribed insulin and have diabetes would be 
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Table 5.1 

Two-by-two contingency table for the frequent items X and Y. X is the disease of interest 
and Y is the medication co-occurred with X. 

 

 Y Y’ 

X a b 

X’ c d 

 
 

different from confidence (diabetes, insulin), which is the proportion of 

patients with diabetes who have been prescribed insulin. 

Confidence = a/(a+b)                                                  (2) 

3. Interest (X, Y) is the proportion of confidence (X�Y) divided by the 

proportion of all transactions that contain Y. It accounts for the weakness of 

confidence when Y is highly occurrent in the database. 

Interest = [a/(a+b)] / [(a+b)/(a+b+c+d)] = a*(a+b+c+d)/(a+b)2                  (3) 

4. Chi-square (X, Y) is a statistical test that measures the significance of the 

association between X and Y.  

Chisq = (a*d-b*c)2 * (a+b+c+d)/[(a+b)*(c+d)*(b+d)*(a+c)]                   (4) 

We used clinical data from Intermountain Healthcare, a regional US healthcare 

provider which consists of 22 hospitals and over 150 clinics. The patient data collected 

from these hospitals and clinics is stored in an enterprise data warehouse (EDW). 

Intermountain also maintains a database called the analytic health repository (AHR), 

which is a subset of the EDW that contains commonly accessed classes of medical data 

(e.g., patient, diagnosis, prescription, lab tests, procedures) expressed using standard 

medical terminologies such as ICD-9, LOINC, and SNOMED CT [4]. In the present 
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study, we used diagnoses and medication data at the encounter level from the AHR and 

restricted the query timeframe to between 01/01/2008 and 12/31/2010. 

Our approach differed slightly from the one proposed in [7]. We built a database 

table of transactions that combined the information of medications and diagnosed 

problems at the encounter level, while Wright et al. created the transactions at the patient 

level. We assumed that the drugs prescribed to a patient were more specific to the 

problems diagnosed and managed in that particular encounter. In the transactions table, 

each transaction corresponded to a patient encounter, and included all prescribed 

medications and diagnostic codes that happened as a part of that patient encounter. The 

AHR drug prescription table does not have any encounter information, but we linked the 

medication prescriptions to a specific encounter by checking whether the prescription 

time falls within the specific time frame of an encounter for the targeted patient.  

In order to extract treatment concepts that match the concepts extracted from the 

biomedical literature, we converted the original codes of medication to UMLS CUIs. The 

prescribed drugs were coded in First Data Bank codes which were also mapped to the 

RxNorm codes. Besides, the drugs were recorded at the clinical drug level (SCD) 

{ingredient+strength+dose form} (e.g., Lisinopril 5 mg oral tablet) of RxNorm. We 

convert the concepts to the ingredient level through the “ingredient_of” RxNorm 

relationship. For example, ‘Lisinopril’ is the ingredient_of ‘Lisinopril 5 mg oral tablet’. 

Multi-ingredient drugs were decomposed into their individual ingredients. All the 

ingredients were mapped to UMLS concepts through querying the UMLS MRCONSO 

table. The diagnoses were coded using ICD-9-CM codes; we kept the original codes in 

the transactions table. In final, we built a table containing over 10 million transactions to 
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support frequent item sets mining and calculate statistical scores for extracted disease-

medication associations.  

We focused on extracting medications associated with a specific disease of 

interest. However, sometimes children concepts (e.g., ICD9 codes 428.0, 428.1, 428.2) as 

opposed to the exact disease of interest (e.g., heart failure) are present in the database of 

transactions. To address these cases, we expanded the disease of interest to include its 

children concepts. As a result, the cell a in Table 5.1 was calculated as the sum of the 

number of transactions containing X and Y or the children concepts of X and Y.  

 
5.4.3 Dataset Preparation 

 
Supervised learning requires a labeled dataset from which to build classifiers. In a 

previous study, we manually created reference vocabularies for heart failure 

(https://bioportal.bioontology.org/ontologies/HFO), rheumatoid arthritis 

(https://bioportal.bioontology.org/ontologies/RAO), and pulmonary embolism 

(https://bioportal.bioontology.org/ontologies/PE) [5]. We chose these three diseases for 

our study. All three reference vocabularies contain a near-saturated set of disease-

associated treatments (e.g., medications, surgical therapy), where the near saturation is 

defined as finding <5% new concepts with the introduction of a new knowledge source 

(e.g., textbook) [5]. In the present study, since we focused on disease-medication 

associations, we formed a subset of each vocabulary containing only medication 

treatments (see supplements for an example of heart failure-related medication concepts). 

The majority of concepts were represented as UMLS concept unique identifiers (CUIs); 

concepts that could not be mapped to a UMLS CUIs were excluded from the study. These 

reference vocabulary subsets were used to create labeled datasets. 
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For the dataset features, we first extracted two lists of disease-specific 

medications separately from the biomedical literature and the CDR through the 

approaches introduced in sections 5.4.1 and 5.4.2. Second, we created another list of 

medications for each disease by merging the medications extracted from two sources, 

while keeping their original features: four features from the biomedical literature (i.e., 

occurrence, interest, degree centrality, weighted degree centrality) and four features from 

the CDR (i.e., support, confidence, chi-square, and interest). If a concept only had feature 

values from one source, the values of the features from the other source were marked as 

missing values. Then, we labeled each concept by comparing the concept to the the target 

subset of reference vocabulary with exact mapping. A concept that was in a disease’s 

reference standards was labeled as reference positive (“RefPos”), and a concept that was 

not found in the disease’s reference standards was labeled as reference negative 

(“RefNeg”). More details about these datasets can be found in section 5.5.1. Thereafter, 

the data was organized into a standard format, called Weka attribute-relation file format 

(ARFF) (http://weka.wikispaces.com/arff) and fed to Weka for further analysis. 

In total, we created nine datasets based upon these three diseases where each 

disease had three datasets: one from the biomedical literature, one from a local CDR, and 

the third one from the combination of these two datasets. 

 
5.4.4 Searching for Preferred Classification Models 

 
Machine learning environments provide a variety of classification algorithms that 

can be used to build predictive models for disease-medicine associations. In this study, 

we have three kinds of datasets. Each dataset has slightly different feature sets, which 

may favor different models. We used the three heart failure datasets to search for 
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effective classification models. We used the rheumatoid arthritis and pulmonary 

embolism datasets for testing the chosen classification models. 

To identify useful classifiers, we applied Weka, a general purpose, open-source, 

data mining toolkit, which includes over 50 classifiers in version 3.7, as well as a variety 

of data transformation and feature selection algorithms [25]. In this study, we did not 

explore all the classifiers available; instead, we focused on a subset of commonly-used 

classifiers.  

First of all, we included three ensemble-based classifiers: adaptive boosting M1 

(ADB) [26], LogitBoost (LGB) [27]), and bagging (BAG) [28]. Ensemble methods are 

learning algorithms that construct a set of classifiers (such as neural networks or decision 

trees) then classify new data points by taking a weighted vote of their predictions [29]. 

Previous research has shown that an ensemble is often more accurate than any of the 

single classifiers in the ensemble [29]. Ensemble approaches generally refer to two kinds 

of learning techniques (i.e., boosting and bagging). Two of the three classifiers we chose 

use the boosting approach and one uses bagging. Each ensemble-based classifier requires 

a specific base classifier. In our study, we chose the classic “decision stump” classifier (a 

machine learning model consisting of a one-level decision tree) for two boosting 

approaches, and a decision tree classifier for the bagging approach.  

Second, we included a typical lazy and memory-based learning approach called 

locally weighted learning (LWL). LWL was introduced by Atkeson et al. in 1997 and is 

based on a locally weighted linear regression [30]. The “decision stump” classifier was 

used as the base classifier and the “brute force” search algorithm was used for nearest 

neighbor search. In addition, four single classifiers were chosen, including: Bayes 



63 
 

 

Network (BYN) [31], multilayer perceptron (MLP), simple logistic regression (SLR) 

[32], and random forest (RDF) [33]. This approach provided experience with a variety of 

classification algorithms. Weka’s default parameters were used for all of those classifiers.  

To compare among the classification models, we used the area under the receiver 

operating characteristic (ROC) curve (AUC) as a single measure of a classifier’s 

performance for evaluating which model is better on average. AUC is a general measure 

of effectiveness often preferred over other measures (e.g., accuracy) in comparing 

classifiers [34,35]. We calculated the mean AUC for each model in three heart failure 

datasets using 10 repetitions of 10-fold cross-validation [36]. In addition, we calculated 

the 95% confidence interval for the mean AUC. Here, we report the top five classifiers 

based on their mean AUC with their 95% confidence intervals. 

 
5.4.5 Statistical Analysis 

 
After found the best classification model for each kind of dataset, we conducted 

exploratory experiments to assess our two research questions. 

 
5.4.5.1 Comparison Between Using Single-Source  
and Combined Datasets 

 
The first hypothesis is that adding the features and instances from the CDR would 

improve the performance of a classifier developed using the dataset from the biomedical 

literature only. The expectation is, no matter what classifier has been used, the best 

performance obtained using the combined dataset should outperform the best 

performance obtained using the single-source dataset. As indicated above, we tested if 

there is significant difference in the performance using the combined dataset versus the 

dataset from biomedical literature as measured by the AUC. In this experiment, we used 
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heart failure biomedical literature and combined datasets to select preferred classification 

models. The same datasets were used to train the classifiers. We used the remainder of 

the disease datasets (rheumatoid arthritis and pulmonary embolism) for testing the 

classifiers. The AUCs were generated separately for the biomedical literature dataset and 

combined dataset. To test the significance of the differences between two AUCs, we used 

the nonparametric DeLong test [37] which was implemented using an R package called 

pROC [38]. This is consistent with the recommendations made in [39,40]. 

 
5.4.5.2 Generalizability Assessment 
 

The second experiment tests the hypothesis that a classifier built from known 

diseases’ datasets will accurately predict the relevance of the medications extracted for 

other diseases. More specifically, how effective is a classifier trained using a labeled 

dataset from one or more diseases in accurately determining the relevance of disease-

medication associations in a dataset for a new disease; how will this classifier comparing 

to the performance of a classifier which was both trained and tested on the new disease’s 

dataset? Although the training datasets are different, if the classifier achieves similar 

performance, then we would infer that a classifier trained on diseases’ labeled dataset 

would be generalizable to new disease(s).  

In this study, we used only combined datasets for this experiment. We formed an 

experiment group with classifiers trained with each combination of two diseases’ datasets 

and with their performance tested with the third disease. We also formed a control group 

with classifiers trained and tested with the dataset of the third disease using 10 repetitions 

of 10-fold cross-validation. We then compare the performance between the two groups. 
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We used a 95% confidence interval to assess the statistical significance of the difference 

of the mean AUCs. 

 
5.5 Results 

 
5.5.1 Datasets from the Biomedical Literature  

and Clinical Database 
 

Table 5.2 reports the number of instances for each dataset. For example, for heart 

failure, we extracted 465 candidate medication concepts from the biomedical literature, 

1144 from the CDR, and 1340 after merging them together. 

 
Table 5.2 
Summary description of the number of instances and features of the classification 
datasets created from the biomedical literature and clinical data repository. 
 
Dataset (Disease, Source) No. of  instances No. of RefPos 

HF1 (HF, CDR)  1144 88 

HF2 (HF, Biomedical literature) 465 100 

HF3 (HF, Combined) 1340 107 

RA1 (RA, CDR) 1011 62 

RA2 (RA, Biomedical literature) 425 77 

RA3 (RA, Combined) 1226 82 

PE1 (PE, CDR) 930 18 

PE2 (PE, Biomedical literature) 141 35 

PE3 (PE, Combined) 998 36 

HF: Heart failure; RA: Rheumatoid arthritis; PE: Pulmonary embolism 
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5.5.2 “Preferred” Model Selection 
 

We calculated the mean AUC of all tested classification models from Weka 

separately for the heart failure datasets (i.e., HF1, HF2, and HF3) with 10 repetitions of  

10-fold cross-validation. Table 5.3 shows the top 5 classifiers in terms of mean AUC as 

well as the 95% confidence interval. Based on the ranking in Table 5.3, we chose SLR as 

the preferred classification model for the biomedical literature datasets, MLP as the 

preferred classification model for the CDR datasets, and LGB as the preferred 

classification model for the combined datasets. 

 
5.5.3 Comparison of Performance between Different Datasets 

 
After the preferred models were selected, we trained the models with the heart 

failure datasets, and tested these trained models on the datasets from rheumatoid arthritis 

and pulmonary embolism. The AUC for SLR tested on the two biomedical literature 

 
Table 5.3 

Mean AUC of top 5 classifiers on two kinds of feature sets as well as 95% confidence 
interval. 

 

Rank 

Classifier: Mean AUC (95% Confidence Interval) 

Biomed CDR Combined 

1 SLR: 0.872  
(0.870 – 0.874) 
 

MLP: 0.795  
(0.791 – 0.799) 

LGB:  0.931  
(0.927 – 0.935) 

2 LWL: 0.872  
(0.869 – 0.874) 
 

BYN: 0.794  
(0.789– 0.799) 

LWL: 0.926  
(0.924 – 0.927) 

3 MLP: 0.871  
(0.869 – 0.874) 
 

BAG: 0.782  
(0.776 – 0.788) 

BYN: 0.918  
(0.914 – 0.921) 

4 LGR: 0.870  
(0.867 – 0.873) 
 

LGB: 0.781  
(0.767 – 0.795) 

ADB: 0.918  
(0.912 – 0.923) 

5 BAG: 0.863  
(0.859 – 0.867) 

SLR: 0.780 
 (0.774 – 0.786) 

MLP: 0.899  
(0.893 – 0.905) 
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datasets (RA2 and PE2) was 0.893, and the AUC of LGB on combined datasets (RA3 

and PE3) was 0.947. Comparison of the AUC of the best detectors built from the 

biomedical literature dataset and the combined dataset yielded a significant difference 

among the two values (p-value 0.0077). 

 
5.5.4 Generalizability Assessment 

 
In Table 5.4, we reported the AUC of the LGB classifier which was trained with 

each combination of two disease datasets and tested on the third disease while comparing 

to the performance of the LGB classifier trained and tested on the same dataset of the 

third disease. From this table, we see that in all three cases, using a classifier trained with 

any two disease datasets to make a prediction on the third disease dataset can achieve 

excellent performance (AUC > 0.9). In addition, in two of three cases, the AUCs were 

above the upper bound of the 95% confidence interval of the internally trained group. 

 
5.6 Discussion 

 
In the present study, we tested using machine-learning classification models as a 

secondary filter to reduce the noise when extracting disease-specific medications from 

the biomedical literature and clinical data repository. Two research questions were 

answered: (1) would the performance of classification on extracted associations from the 

biomedical literature be improved by adding the features and drug instances extracted 

from the CDR; (2) would a classifier built from labeled datasets of some diseases be 

generalizable to new diseases. In this study, we choose SLR as the “preferred” classifier 

for the biomedical literature datasets and LGB as the “preferred” classifier for the 

datasets created from the features and instances of both the biomedical literature and  
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Table 5.4 
The AUC and 95% confidence interval of seven classifiers with different combination of 
training and testing datasets. 

 
Case Control 

Two-disease datasets for 

training and one-disease 

datasets for testing 

AUC Cross-validation 

within one disease 

dataset 

Mean AUC (95% 

confidence interval) 

HF+PE�RA 0.933 RA 0.929 (0.925, 0.932) 

HF+RA�PE 0.982 PE 0.979 (0.977, 0.981) 

RA+PE�HF 0.932 HF 0.931 (0.927, 0.935) 

 

clinical data repository. For the first research question, we found that the classification 

performance (i.e., AUC) on the biomedical literature datasets significantly improves from 

0.893 to 0.947 after adding the features from the CDR. We did not test adding biomedical 

literature to the CDR, because the performance of CDR alone is worse than biomedical 

literature alone (see Table 5.3). In addition, it is easier to access the biomedical literature. 

There are additional challenges in trying to use clinical data. Therefore, it is important to 

know whether the CDR data adds value. For the second research question, we found that 

the classifiers built from the datasets of two diseases can be used effectively to predict the 

relevance of associations extracted in a third disease dataset; the performance may 

surpass that of a classifier trained with the dataset of the third disease itself. These 

findings support the conclusion that combining features from the CDR and biomedical 

literature significantly improves performance in terms of AUC compared with using 

features from those datasets alone. In addition, the classifiers built from one or two 

diseases generalized well to new diseases.  
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In Table 5.2, we also observed that the three biomedical literature datasets have a 

higher proportion of “refPos” instances comparing to the three corresponding CDR 

datasets. For example, for heart failure datasets, the HF2 has 21.51% (100 out of 465) of 

“refPos” instances while HF1 has 7.69% (88 out of 1144) “refPos” instances. We note 

that the CDR contributed a few “refPos” concepts that were missing from the biomedical 

literature. For example, for heart failure, 100 “refPos” were extracted from the 

biomedical literature, and 7 new “refPos” concepts were contributed from the CDR for a 

total of 107 “refPos” concepts in the combined datasets. 

When choosing the “preferred” classifier for each kind of feature set, there were 

often no significant differences among the classifiers based on the mean AUC and 95% 

confidence interval. For the purpose of this study, we picked the ones that had a relatively 

higher mean AUC and smaller standard deviations. However, the key finding is that a 

variety of classification models provided similar results. In addressing a particular 

problem, other performance measures (e.g., precision, recall, f-measure) besides the AUC 

may contribute to the selection of an optimal classifier. 

The main contribution of this study lies in three areas. First, we built classification 

models based on multiple numerical measures of relevance to filter irrelevant 

associations from the many associations extracted from the biomedical literature and 

CDR. If employed in a process for expert review, these classifiers may reduce the human 

effort spent in manual review of those extracted associations. The level of effort 

reduction would depend on the thresholds set by the users to focus on higher precision or 

recall for the classifiers. Second, we also tested and found that combining the features 

and instances from different sources would improve the overall performance of the 
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classification. This is particularly helpful when the performance of classification on the 

datasets from individual sources was low. Third, the classifiers built from a small subset 

of diseases can be generalizable to classify in other diseases. In this study, we have three 

diseases with labeled datasets; we can use these datasets to train a classifier that can 

effectively detect the relevant associations for other diseases. 

There are also several limitations of this study. First, the accuracy of machine-

learning-based classifiers is affected by a variety of factors including hyper-parameter 

settings, feature selection, and discretization. Altering those factors can be expected to 

affect the performance of the classifiers. In the present study, we chose to survey a broad 

range of classifiers in the Weka. However, rather than searching across a full range of 

hyper-parameters, feature selection algorithms, and discretization’s, we chose to use 

Weka’s default parameter settings. Second, in terms of the generalizability, from the 

present study, we found that classifiers built from one or two diseases can generalize well 

to new common diseases. However, it is not known if the performance will also 

generalize to less common diseases, with a small number of published articles or patient 

records. Third, when preparing the training set, we mapped reference concepts from 

previous studies to the extracted concepts. Therefore, we may have incorrectly labeled 

some concepts as false positives if they were not present in the reference standards. We 

anticipate a future analysis to explore a mechanism for identifying refinements to these 

algorithms that will yield the best classifications. Finally, the models appear 

generalizable to new diseases only when the datasets were from the same knowledge 

sources (the biomedical literature and a clinical data repository); it is uncertain whether 

the models will perform similarly when incorporating new knowledge sources. 
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Specifically, we only used the clinical data from one site, Intermountain Healthcare; the 

performance of the classifiers tested in this study may change when using the data from 

other sites or from multiple sites. 

 
5.7 Conclusion 

 
Machine-learning classification models can be used to identify relevant 

medications used for treating a disease of interest by taking advantage of the numerical 

scores generated from prior studies when extracting disease-associated concepts from the 

biomedical literature and clinical data repository. Combining the datasets generated from 

the biomedical literature and CDR improves the classification performance obtained with 

single-source datasets. Classifiers built from one or two diseases appear to generalize 

well to new diseases. In the future, we intend to integrate some of tested classification 

models into our pipeline system to automate generation of disease-specific medications 

with much reduced noise associations. We will also explore the application of those 

classifiers in generating other kinds of disease-specific concept vocabularies (e.g., 

diagnosis tests, signs, or symptoms). 
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CHAPTER 6 

 
 

DISCUSSION 
 
 

6.1 Summary 
 

To facilitate the large-scale building of disease-specific ontologies, in this 

dissertation, we have explored both manual and automated acquisition of disease-

specific, assertional knowledge from three kinds of knowledge resources: expert-curated 

articles, biomedical literature, and clinical data repositories. The principal findings of 

each phase of the research are discussed as follows.  

In the first study, we answered the question of whether it is feasible to use only a 

small number of expert-curated textual knowledge sources to acquire a disease-specific 

vocabulary that reaches a saturated coverage. For this, we manually extracted disease-

specific vocabulary from a collection of documents which include clinical guidelines, 

textbooks, UpToDate, and DynaMed [1]. For one disease case (i.e., heart failure), the 

vocabulary reached near saturation in four disease aspects (i.e., treatment, diagnostic 

tests or results, signs or symptoms, and causes or risk factors) with the inclusion of a 

minimum of six sources, or between four to seven sources if only counting terms 

occurred in two or more sources. It took fewer sources to reach near saturation for the 

other two diseases regarding the treatment class. The principal finding of this phase’s 

research is that it is feasible to use a limited number of expert-curated articles to obtain a 
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disease-specific, near-saturated vocabulary. This finding from this study is meaningful to 

the development of disease-specific reference vocabularies.  

The second study answered a research question of whether it is feasible to 

automatically acquire disease-specific vocabulary from the biomedical literature. For this, 

we developed a pipeline-based system to automatically extract disease-specific treatment 

concepts from the biomedical literature. The system achieved a mean precision of 0.8 for 

the top 100 retrieved concepts based on three diseases case (i.e., heart failure, pulmonary 

embolism, and rheumatoid arthritis). When comparing four ranking strategies (i.e., 

occurrence, interest, degree centrality, and weighted degree centrality), although interest 

has a slightly better mean precision at the top 100, there is no significant difference 

among the four rankers. When comparing the automated results to the manual results, the 

pipeline-based system was able to capture over half of the concepts in the reference 

vocabularies. With further error analysis, we found that the overall recall can be higher. 

In addition, the system also captured many relevant concepts that did not exist in the 

reference vocabularies. A prerequisite of achieving higher recall is the improvement of 

the natural language processing tool used to process the biomedical literature. An 

improvement of the semantic schema may further improve the precision because many 

concepts were not treatment related. From this study, we concluded that the pipeline-

based system we developed is a promising tool for an automated extraction of disease-

specific treatment vocabulary for any disease of interest.  

The third study investigated whether classifiers, generated using machine learning 

techniques, can be used to reduce the manual effort necessary to review noisy collections 

of disease-specific concepts extracted from both the biomedical literature and the clinical 
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data repository. For three types of datasets compiled from different sources (i.e., 

biomedical literature, clinical data repository, and combination of the two sources), the 

results favor different “preferred” classification models. These were simple logistic 

regression, multilayer perceptions, and LogitBoost, respectively. The study results show 

that the classifiers developed with the combined datasets significantly outperforms the 

classifiers developed with either the biomedical literature dataset or the clinical data 

repository dataset. The results also show that the performance of a classifier on a specific 

disease dataset shows no significant difference when trained on the same or on another 

diseases’ dataset. Therefore, we concluded that it is a promising approach to use 

classification techniques based upon different measures of relevance to reduce the noisy 

collections of disease-specific concepts extracted from the biomedical literature and 

clinical data bases. Combining the features from disparate sources improved the 

performance of classification. The classifiers trained with the dataset of known diseases 

could be generalized to new diseases.  

When comparing the three kinds of knowledge resources we have explored, we 

note different merits and limitations. For expert-curated documents, the main advantage 

is that they intensely contain disease-specific information, so that with only a few 

documents, the extracted vocabulary can reach near-saturation. However, the extraction 

of medical knowledge from them remains in a manual way. One reason for that is the 

variety of the representation of the knowledge in these documents, such as tables and 

figures, which brought new challenges to the natural language processing tools especially 

in understanding the content of the documents. Therefore, a manual acquisition with 

maximal assistance from the computer (such as pre-annotation with a dictionary) could 
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be currently desirable for extracting knowledge from this kind of documents. For 

MEDLINE citations, it is a popular knowledge resource used for knowledge extraction in 

the biomedical domain. A key advantage of using MEDLINE citations is that MEDLINE 

broadly covers a variety of diseases and aspects (e.g., treatment) that human beings have 

explored. However, some disadvantages are that as we learned from the study in Chapter 

4: (1) MEDLINE citations may contain out-of-date information which is hard to discern; 

(2) an NLP tool is necessary to handle free-text data. However, preprocessing with NLP 

could also introduce noise. A common issue when dealing with both expert-curated 

documents and MEDLINE citations is that the concept granularity for human writing can 

contain vague or inconclusive statements. For the clinical data repository, the overall 

precision of extracted vocabularies was relatively lower than the precision of 

vocabularies generated from the biomedical literature (Table 5.2). However, we found in 

the study in Chapter 5 that it was still very useful for the knowledge extraction; it 

improved the overall recall after combining the results of extraction from both the 

biomedical literature and clinical data repository and the performance of classification 

when discerning true-relevant concepts. 

There are three potential merits of automated acquisition comparing to manual 

acquisition. First, automated techniques offer almost an instant retrieval of possible 

disease-related concepts from the biomedical literature and clinical data repositories. 

Although the initial results of automated extraction contained noisy information which 

required substantial manual investigation, applying classifiers could possibly reduce a 

collection of noisy information and therefore may reduce the effort of manual review. 

The manual acquisition from expert-curated documents involves multiple steps including 
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preparation of documents, annotation and adjudication, and concept mapping, none of 

which is trivial. Based on the experience with the three studies in this dissertation, the 

automated acquisition would be more efficient than the manual approach; however, a 

further evaluation would be necessary to prove this. Second, mining huge amounts of 

data with automated techniques could provide new information that was missed from the 

expert-curated documents. Third, comparing to the concepts extracted from expert-

curated documents, the concepts extracted from the MEDLINE citations preserve the 

links to the origin evidence (or individual clinical trial studies). This could be useful for 

some information seekers.  

 
6.2 Significance of Contributions 

 
Knowledge acquisition is one of the core topics of clinical informatics [2]. The 

dissertation adds contributions to the body of literature in disease-specific knowledge 

acquisition from existing biomedical knowledge resources in three aspects. First, we 

provided a mechanism to build disease-specific reference vocabularies and verified the 

amount of sources required in order to build vocabularies achieving near saturation. 

Second, we developed a novel pipeline-based approach to mine MEDLINE citations for 

disease-specific treatment concepts and relations. Third, we used classification to 

incorporate disparate sources for an automaticaaly generated disease-specific vocabulary 

with a control of the signal-to-noise ratio. The technologies we explored in this research 

lay a foundation of a clinical knowledge authoring and sharing service (cKASS) [3] 

which would assist people to build disease-specific ontologies. 

The dissertation adds contributions to the development of knowledge-based 

clinical applications through providing disease-specific computerized medical knowledge. 
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Those applicable domains in general cover but are not limited to information retrieval, 

clinical decision support systems, and data analytics in healthcare. 

 
6.3 Limitations 

 
The research described in this dissertation has mainly three limitations. First, the 

disease-specific information focused on by the three studies were narrowed down from 

four classes (i.e., causes or risk factors, signs or symptoms, diagnostic tests and results, 

and treatment) in Chapter 3, to one class (i.e., treatment) in Chapter 4, and to a subclass 

of treatment (i.e., medication) in Chapter 5. Although we argued that the automated 

techniques could be extensible to extract other diseases classes, at this point, the 

performance of the pipeline-based system in Chapter 4 and classifiers in Chapter 5 is 

unknown in the unstudied disease classes. Second, the reference vocabularies we 

developed in the study in Chapter 3 and used for the other two studies were not perfect 

and had gaps; therefore, the performance reported in the studies in Chapter 4 and 5 (e.g., 

precision and recall) may not reflect the true performance. Third, we mainly evaluate 

each phase of the study with three testing diseases: heart failure, pulmonary embolism, 

and rheumatoid arthritis. With a small sample of testing diseases, the results and 

conclusion generated from them may not be representative of the entire disease pool.  

 
6.4 Generalizability of the Results 

 
We discuss the generalizability of the results from two aspects: whether the 

results were generalizable to other diseases, disease classes, and beyond disease-specific 

information.  

The principal finding of the first research study in Chapter 3 is that using a limited 
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number of expert-curated articles is able to produce a disease-specific, near-saturated 

vocabulary. We believe that this finding applies to the majority of diseases. We observe 

that as the complexity of the diseases increase, the number of documents used for 

achieving a near-saturated vocabulary would also be slightly increased. Heart failure, one 

of the three diseases we have explored, is among one of the most complex diseases. 

Therefore, diseases with less complexity probably require an equal or smaller number of 

documents comparing to heart failure. Besides, the finding applies to four classes of 

disease-specific concepts, including causes or risk factors, signs or symptoms, diagnostic 

tests or results, and treatments. Although one disease was tested, we find that the four 

classes achieved near saturation at the similar speed. 

In the study of Chapter 4, we developed a pipeline-based system which is able to 

extract disease-specific treatment vocabularies. It achieves a mean precision of 0.80 on 

the top 100 concepts. As we have tested on five diseases, the precision would vary 

slightly among diseases (Table 4.6). We argue that the main framework of the pipeline-

based system could be reused and extended to extract concepts of other disease classes, 

such as causes and risk factors. However, the performance in other disease classes is 

currently unknown.  

In the study of Chapter 5, the principle findings are that combining features from 

disparate sources would improve the performance of classification, and the classifiers 

built from some diseases could be generalizable to new diseases. We believe that the 

results of this study would be generalizable to the majority of diseases, although there 

might be an exception for some rare diseases which have a small number of entries in 

MEDLINE and few records in the clinical data repositories. We assume the finding 
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would be generalizable to other disease classes; however, further study is required.  

 
6.5 Future Directions 

 
While this dissertation has demonstrated the potential of automated extraction of 

disease-specific treatment information from expert-curated documents, biomedical 

literature, and a clinical data repository, many opportunities for extending the scope of 

this dissertation remain. This section presents two of these directions. 

 
6.5.1 Extend the Scope of this Dissertation 

 
We will extend the scope of this dissertation in three aspects: the techniques, the 

data (or knowledge sources), and the types of disease-specific information. 

In terms of disease-concept associations, the automated techniques developed in 

this dissertation mainly focused on extracting disease-specific treatment information. In 

the future, we will fully extend the techniques to three other classes, including disease-

specific causes and risk factors, diagnosis tests, and signs and symptoms. For the 

pipeline-based system built in Chapter 4, we expect to add new semantic schemas in 

order to capture the information in those expanded classes. In addition, we will expand to 

capture other information about the disease-specific vocabularies, such as synonyms, 

definitions, and PubMed IDs in order to make the ontologies meet different needs. For 

example, synonyms would be useful for the annotation of the biomedical literature and 

electronic medical records. 

In terms of the data, the knowledge resources we have exploited are attributed to a 

very small portion of the big data available in the world. The unstructured data is intact in 

this study. Some disease-concept associations like signs or symptoms, or causes and risk 
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factors may not be easily captured from structured data sources. We have to expand our 

work to use unstructured data (e.g., clinical notes) in order to capture different kinds of 

disease classes. 

To unveil those disease-specific associations from large and unstructured data 

sets, we will exploit other techniques besides the ones developed in this dissertation. 

With recent advanced work in the artificial intelligence field (e.g., neural networks), we 

found some interesting techniques that could be potentially used for mining semantic 

association from unstructured data. For example, neural word embedding (e.g., 

word2vec), a technique used for computing continuous vector representations of words, 

is able to capture a large number of precise syntactic and semantic word relationships 

from very large data sets [4,5], which might be also useful for our purpose.  

 
6.5.2 Knowledge Authoring Tool 

 
In order to obtain practical disease-specific ontologies, it is necessary to develop a tool 

that allows human experts to manipulate and validate automated machine generated 

results [3]. We intend to integrate the techniques exploited in this dissertation as well as 

some techniques investigated by other researches into the tool to provide a single 

platform to generate disease-specific vocabularies as well as a user interface for the 

interaction with domain experts for validation of the relevance of the extracted concepts. 

We would implement the machine-learning-based classifications into the tool for pre-

selection of relevant concepts from the noise. After the tool was developed, further 

evaluation on the system’s performance and user satisfaction would be needed.   
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