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ABSTRACT

Disease-specific ontologies, designed to structure and represent the medical
knowledge about disease etiology, diagnosis, treatment, and prognosis, are essential for
many advanced applications, such as predictive modeling, cohort identification, and
clinical decision support. However, manually building disease-specific ontologies is very
labor-intensive, especially in the process of knowledge acquisition. On the other hand,
medical knowledge has been documented in a variety of biomedical knowledge
resources, such as textbook, clinical guidelines, research articles, and clinical data
repositories, which offers a great opportunity for an automated knowledge acquisition. In
this dissertation, we aim to facilitate the large-scale development of disease-specific
ontologies through automated extraction of disease-specific vocabularies from existing
biomedical knowledge resources. Three separate studies presented in this dissertation
explored both manual and automated vocabulary extraction. The first study addresses the
question of whether disease-specific reference vocabularies derived from manual concept
acquisition can achieve a near-saturated coverage (or near the greatest possible amount of
disease-pertinent concepts) by using a small number of literature sources. Using a
general-purpose, manual acquisition approach we developed, this study concludes that a
small number of expert-curated biomedical literature resources can prove sufficient for
acquiring near-saturated disease-specific vocabularies. The second and third studies

introduce automated techniques for extracting disease-specific vocabularies from both



MEDLINE citations (title and abstract) and a clinical data repository. In the second study,
we developed and assessed a pipeline-based system which extracts disease-specific
treatments from PubMed citations. The system has achieved a mean precision of 0.8 for
the top 100 extracted treatment concepts. In the third study, we applied classification
models to reduce irrelevant disease-concepts associations extracted from MEDLINE
citations and electronic medical records. This study suggested the combination of
measures of relevance from disparate sources to improve the identification of true-
relevant concepts through classification and also demonstrated the generalizability of the
studied classification model to new diseases. With the studies, we concluded that existing
biomedical knowledge resources are valuable sources for extracting disease-concept
associations, from which classification based on statistical measures of relevance could

assist a semi-automated generation of disease-specific vocabularies.
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CHAPTER 1

INTRODUCTION

The work described below represents an effort to develop tools and processes that
can ease the work necessary to develop collections of disease-specific medical concepts
that will support the curation of computer-accessible medical ontologies. The medical
knowledge managed in ontologies using these concepts will contribute to promote

efficient and effective patient-centered care using automated health information systems

1.1 The Need of Disease-Specific Medical Knowledge

The following examples help to recognize a variety of informatics areas
demanding disease-specific medical knowledge for supporting better informed

healthcare and research activities.

1.1.1 Case 1: Physicians Facing Information Overload
A cardiologist is seeing his patient who has congestive heart failure (CHF) but
also other problems, such as diabetes mellitus, depression, and rheumatoid arthritis. He
has to manually collect and distill the information relevant to the CHF as the system has
stored a large number of records for this individual. He desires a system that could
automatically collect, distill, and summarize information that is relevant to the problem of

the current visit.



1.1.2 Case 2: Consumers’ Online Information Seeking
A middle-age lady was recently diagnosed with hepatic cirrhosis. Before her
upcoming visit to her healthcare provider, she would like to know the available means of
treatment and compare them regarding the cons and pros. She started searching on the
Internet with the broad words “treatment” plus “hepatic cirrhosis”, but ended up with
frustration by the broad, irrelevant, or even incorrect information received online. She
wishes for automated assistance in forming more precise searches directed at trusted

sources.

1.1.3 Case 3: Researchers’ Analysis of Healthcare Data
A data scientist aims to build a predictive model for lung cancer prognosis. Facing
massive amounts of both structured and unstructured data, he has to consult medical
experts throughout the entire process of data analysis, including understanding and
cleaning the data, extracting important data elements as inputs for building the predictive
model, and conducting comprehensive data analysis and evaluation. He wishes there
were a well-developed disease model which would assist the entire process and reduce

the dependence on medical experts.

1.2 Objectives and Hypothesis

The primary goal of this dissertation is to enable the large-scale development of
disease-specific ontologies which could serve as a fundamental component of those
advanced clinical applications (e.g., problem-oriented summarization of medical records,
question answering, diagnostic and predictive modeling) for better informed healthcare.

More specifically, we have studied methods to extract disease-specific, assertional



medical knowledge from existing biomedical knowledge resources for the development
of disease-specific ontologies. Disease-specific ontologies are computer-understandable
and human-readable knowledge bases that have been designed to explicitly support
representations of the knowledge of disease etiology, diagnosis, treatment and prognosis
for each kind of disease. The underlying assumption behind disease-specific ontologies is
the belief that they can be useful for the representation, sharing, and computation of
domain-specific medical knowledge. The main research question of this study is “can
disease-specific vocabularies required for building disease-specific ontologies be
extracted from existing biomedical knowledge resources.”

In the three studies to be presented, three specific research questions were
explored:

1. Is it practical to use only a small number of expert-curated textual knowledge
sources to acquire disease-specific vocabularies that reach a saturated coverage
(Chapter 3)?

2. Isit feasible to automatically acquire disease-specific treatment vocabularies from
the biomedical literature using a pipeline-based approach (Chapter 4)?
(Specifically, we hypothesize that there is no difference in precision at the top
100 extracted concepts among the rankings produced by the four measures of
relevance in the pipeline-based approach. We also hypothesize that there is no
difference in precision at the top 100 extracted concepts among the rankings
produced by the pipeline-based system and two baseline approaches.)

3. Can classifiers, generated using machine learning techniques, be used to reduce

the manual effort necessary to review noisy collections of proposed disease-



specific concepts extracted from both biomedical literature and clinical data
repositories (Chapter 5)? (Specifically, we hypothesize that using the features
(e.g., measures of relevance) from both the biomedical literature and clinical data
repositories would improve the classifiers’ performance compared to using
features from the individual sources. We also hypothesize that the classifiers

initially built for specific diseases would be generalizable to other disease(s).)

1.3 Rationale for Analysis

Computers have been introduced to the medical field to assist healthcare activities
since the 1950s [1]. As the complexity of the domain of medicine continuously increases,
comprehensive computer-understandable knowledge bases (KBs) are needed. The term
“knowledge bases” can refer to different things such as vocabularies, ontologies,
collections of rules, semantic networks, or probabilistic models. In this dissertation, we
choose the ontology as a medium to represent a kind of medical knowledge. Ontologies
represent an explicit specification of a conceptualization [2] which allow sharing and
reuse and have been commonly used by the healthcare informatics communities to
represent medical semantics. In addition, among the kinds of medical knowledge, we
discerned that disease-specific medical knowledge (i.e., disease’s etiology, diagnosis,
therapy, and prognosis) is particularly important. As a clinician, a comprehensive
understanding of the disease in all its different aspects can lead to better medical practice
and desired patient outcomes. Similarly, having such kinds of knowledge available to the
computer can empower and support healthcare activities through many advanced
applications. Specifically, several disease-specific ontologies have been demonstrated to

be useful for clinical applications such as diagnostic modeling [3], reminder systems [4],



and text annotation [5,6]. We assume that they will also be useful for other applications,
like problem-oriented summaries of patient EHRs [7-9], clinical question-answering [10],
query expansion [11], and treatment recommendation [12].

However, the development of this kind of ontologies is very labor-intensive. One
of the main challenges for the large-scale development of disease-specific ontologies is
the acquisition of disease-relevant medical knowledge. It is expensive to build ontologies
that rely heavily on human experts, and this effort becomes impractical when building
ontologies for thousands of diseases. As the majority of the medical knowledge is well
documented in the biomedical knowledge resources, such as textbooks, clinical
guidelines, research articles, and clinical notes, the sources offer great opportunities for
an automated knowledge extraction. Therefore, we aimed to extract disease-specific
medical knowledge from existing biomedical knowledge resources using approaches in

which the involvement of human experts or knowledge engineers could be minimal.

1.4 Overview of the Dissertation

Chapter 2 of this dissertation provides the background for the body of research
and contains two parts. Part one introduces the disease-specific ontologies and potential
applications. Part two describes state-of-the-art techniques for medical knowledge
acquisition from existing knowledge resources.

Chapter 3 of this dissertation investigates the manual acquisition of disease-
specific reference vocabularies from expert-curated documents (e.g., textbooks, clinical
practice guidelines, and journal articles) [13]. We described a complete process of
manual acquisition including document selection, manual annotation and adjudication,

mapping, and assessment of vocabulary saturation.



In Chapter 4 of this dissertation, we develop and assess a pipeline-based system
which automatically extracts disease-specific treatments from PubMed citations. The
research question is addressed in Chapter 4 with a detailed description of a pipeline-based
vocabulary extraction approach and the analysis of automated extracted results with a
comparison to the manual acquired reference vocabularies from Chapter 3. Two
corresponding hypotheses were tested.

Chapter 5 of this dissertation describes an effort to solve a challenge remaining
from several prior studies of knowledge extraction, where the automated generated
vocabularies from the biomedical literature and electronic medical records have low
signal-to-noise ratio, and therefore require considerable manual review and selection. We
tested several classifications models to automatically determine the relevance of those
extracted concepts to the disease of interest. The research question is addressed and two
corresponding hypotheses were assessed.

Chapter 6 summarizes our findings from three studies, and discusses the

limitations, range of applicability, and future directions.
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CHAPTER 2

BACKGROUND

2.1 Disease-Specific Ontologies

2.1.1 What Is Ontology?

Ontology is originally defined ‘as the branch of metaphysics which investigates
and explains the nature of all things or existences.’ In the world of information science,
the view of ontology is somewhat narrower. A classic definition of ontology was given
by Gruber [1] that ontology is ‘an explicit, formal specification of a shared
conceptualization of a domain of interest’. To expand this definition, the
conceptualization is ‘an abstract, simplified view of the world that we wish to present for
some purpose’[2], while the specification is ‘the representation of this conceptualization
in a concrete form’.

In the aspect of conceptualization, Noy [3] provided details about what is inside
of an ontology. Four main components were defined: concepts, properties, restrictions,
and instances. A concept represents a set or class of entities or ‘things’ within a domain.
For instance, ‘car’ is a class which has subclasses like ‘SUV’ and ’Minivan’. An instance
of the ‘car’ would be the car that you drive to work or home. ‘Car’ has properties, such as
‘door’, ‘manufacturer’, ‘window’, and ‘wheels’, and also restrictions, such as a car ‘has

four wheels’. In the process of specification, one goal is to encode the classes of entities
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in the domain of interest with relations, properties, and restrictions, and organize them
using semantic structure. Many ontology specification languages have been developed,
among which several are very popular including KIF (Knowledge Interchange Format)
[4], OWL (Web Ontology Language) [5], RDF+RDF(S) [6], and DAML+OIL [7]. In the
meantime, a number of tools for developing and maintaining ontologies were also
developed, such as Ontolingua, WebOnto, WebODE, Protégé, OntoEdit, etc. [8,9] Each
of the tools or languages has its own strengths and weakness; therefore, the choice of the
tools and languages are dependent on the users’ needs.

Ontologies have been made popular in many areas, for example, knowledge
representation [10,11], Semantic Web [12], and bioinformatics [13]. This could be
attributed to several possible reasons [3]. First, ontology's enable the sharing of common
knowledge among either people or software agents. Many ontologies have been
developed for all kinds of domains or purposes, and stored in open repositories (e.g.,
Swoogle, NCBO BioPortal [14], OBO Foundry [15]). They can be easily accessed by and
shared with those people who are interested in the same domain. The ontology, with the
formal, explicit representation of the knowledge, also enables the reuse of domain
knowledge. Computers that understand the languages of ontologies can parse the
ontologies and read information from the ontologies. Further, ontology has the potential
to enable many advanced applications, such as ontology-based reasoning [16], data

integration [17], information retrieval [18], and question answering [19].

2.1.2 Ontologies in the Biomedical Domain
The history of “ontology” in the computer science domain starts from Gruber’s

definition of ontology in the early 1990s [1,2], and the history of the “ontology” in the
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biomedical domain probably dates to the beginning of the 2000s with typical work
including Gene Ontology [20], Foundational Model of Anatomy (FMA) [21], and
Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) [22]. Since
then, ontologies have been widely developed and used in the biomedical domain [14,23].
Hundreds of biomedical ontologies have been developed, tracked from several well-
known biomedical ontology repositories. For example, BioPortal
(https://bioportal.bioontology.org/) [14] currently hosts up to 538 ontologies (accessed by
Jan 2017). OBO foundry (http://www.obofoundry.org/) [24] also hosts over 140
biomedical ontologies (accessed by Jan 2017). Those biomedical ontologies have not
only given the possibility of sharing and reuse of domain knowledge, but have also
played a fundamental role in many biomedical informatics research projects, including
the annotation of biomedical datasets, the biomedical literature and patient records,
information retrieval, data integration, knowledge discovery, and decision support and

reasoning [23,25].

2.1.3 Disease-Specific Ontologies and Applications
Each ontology has a scope of focus, which can be broad or narrow. For example,
SNOMED CT broadly covers several clinical subdomains (e.g., anatomy, clinical
finding, medications, procedure, etc.), while nurse administrator ontology

(https://bioportal.bioontology.org/ontologies/ ADMIN) has a narrow scope which

typically focuses on nursing administration. In this dissertation, the scope of the
ontologies we intend to construct are focused on specific diseases, which we called
disease-specific ontologies (DSOs). Each DSO takes one disease or condition as a scope

of focus. They are knowledge bases intended to structure and represent the medical
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knowledge about disease etiology, diagnosis, treatment and/or prognosis, etc.

Although hundreds of biomedical ontologies were made available to the public,
they primarily contain definitional knowledge which is considered as universally true.
For example, in terms of disease-specific information, SNOMED CT essentially contains
definitional knowledge about disease categories (e.g., myocardial infarction is_a
cardiovascular disease) and body location (e.g., congestive heart failure finding_site of
cardiac ventricle). However, assertion knowledge, a kind of knowledge considered as true
in a given context (e.g., aspirin treats headache), is usually missing from those existing
ontologies. For example, SNOMED CT has little information specifying the relationships
between drugs and diseases. As the importance of assertion knowledge is being
increasingly recognized [26-28], we intend to integrate it with definitional knowledge to
create DSOs to support different kind of applications, such as knowledge discovery,
problem-oriented summarization of medical records, information retrieval, etc.

As we review the literature, researchers have made different attempts to develop
DSOs for specific diseases and applied them in several informatics areas. For example,
Haug et al. [29] developed a pneumonia ontology for their “ontology-driven diagnostic
modeling system”. The pneumonia ontology contains (1) the relationships among
diseases, (2) the relationships between diseases and relevant observations, (3) the
relationships between diseases and typical therapeutic interventions, and (4) the
relationships between diseases and anticipated outcomes. By linking the concepts in the
ontology to the data stored in Intermountain Healthcare’s enterprise data warehouse
(EDW), the ontology was used to identify diseased and non-diseased patients, and choose

data elements to be useful in diagnosing pneumonia. Thereafter, the extracted data was
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fed into the Bayes Network for building a diagnostic model. In another example,
Malhotra ef al. constructed an Alzheimer’s disease ontology (ADO) which covers
clinical, etiological, molecular, and cellular mechanism aspects of AD [30]. The authors
of ADO also created two additional disease-specific ontologies using the same approach
as they built the ADO. Younesi et al. built a Parkinson’s disease ontology (PDO) to
model the domain knowledge of Parkinson's disease [31]. This ontology covers the
clinical aspects, etiology, model, neuropathology, disease categories, as well as
associated familial diseases of Parkinson’s disease. Malhotra et al. also created a multiple
sclerosis ontology (MSO) which covers similar aspects as the PDO [32]. These three
ontologies (i.e., ADO, PDO, and MSO) were all applied to the semantic mining of patient
records and literature for effective retrieval and extraction of accurate disease-related
information. In addition, Chalortham et al. developed an ontology for type II diabetes
mellitus (DM), which contains DM-relevant information such as sign and symptom,
treatment, assessment, and follow-ups activities [33]. The type II diabetes mellitus
ontology was applied to a reminding system that provided patients’ useful information to
hospital providers [33] and also to identify a patient cohort from the EHR [34]. Similarly,
El-Sappagh and Farman published a diabetes mellitus diagnosis ontology (DDO), which
covers diabetes-related complications, symptoms, drugs, lab tests, etc. [35] Most of the
development of these disease-specific ontologies mentioned above happened in the last
several years. And most of these ontologies are currently available in the Bioportal.
Besides the actual development of DSOs for several specific diseases as
mentioned above, there are some works closely related to the DSOs. Hadzic proposed

generic human disease ontology (GHDO) that was designed for the representation of
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knowledge regarding human disease [36]. It organizes the concepts of existing ontologies
into four dimensions: disease types, symptoms, causes, and treatments. The top hierarchy
of GHDO could be a useful guide for developing disease-specific ontologies. Bertaud-
Gounot et al. argued that diagnostic criteria (such as signs and symptoms) should be
included as part of the operational definition of diseases in the ontology for supporting
the diagnostic modeling and reasoning [37]. Mendonca et al. proposed a model for
accessing evidence from a digital library to answer clinical questions, where a major
component is the knowledge bases that contain clinical concepts derived from clinical
settings and relations (e.g., “is-caused-by”’) [38]. Another parallel work is the building of
the diseases symptoms ontology [39] which aligns the disease ontology with the
symptoms ontology, creating a core disease symptoms ontology.

With the merit of containing comprehensive disease-specific information in
computer-understandable and human-readable format, DSOs may support other kinds of
applications in addition to the ones researchers have explored (e.g., diagnostic modeling).
This includes clinical question answering [40], query expansion [41], and therapy
recommendation [42]. To support this argument, we provide detailed explanation below.

First of all, the disease-specific ontology may answer some disease-related
questions. For some frequently asked questions [43], such as “what is the drug of choice
for condition X?”, “what is the cause of disease X?”’, and “what test is indicated in
situation X?”, ontologies could assist the clinicians to form well-built questions [40] by
using the terms from the ontologies and could run the queries on the biomedical literature
or electronic medical records to identify related articles and patient records to answer

their questions. For consumers with little clinical background, disease-specific ontologies
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could be used to expand or reformulate the original queries to the Google, PubMed, or
MedlinePlus [41,44,45], which therefore may improve the effectiveness of the searches.
For example, a person may be interested in the “treatment” of disease Y; however, they
may not know what kind of treatments were available; by looking into the ontology, they
may form a specific query with a comparison of two medications for the diseases. Third,
disease-specific ontologies may facilitate the summarization of patient medical records.
With the understanding about what information is relevant to the problem of interest, a
system can extract disease-relevant information from a patient’s long historical medical
records and provide a summary to the clinicians. Moreover, disease-specific ontologies
could be used for clinical researchers to identify a proper research cohort from an EHR.
The phenotypes (e.g., signs, symptoms, diagnostic results) captured in the disease-
specific ontologies can be useful for the development of cohort selection algorithms for
finding target populations or subpopulations, which will further help clinical trial studies.

The development of disease DSOs is still at the beginning stage. As we reviewed
all the ontologies stored in BioPortal and OBO foundry, less than 1% of the ontologies
were built for specific diseases. Moreover, most of the disease-specific ontologies we
found haven’t covered a full range of the disease-specific medical knowledge. However,
we foresee that the importance of the disease-specific ontologies will be increasingly

recognized, and more and more DSOs will be developed.

2.2 Disease-Pertinent Knowledge Acquisition

Building disease-specific ontologies is labor-intensive. In the Medical Subject
Headings (MeSH), there are over 2000 disease concepts in the disease categories. It is

obvious that building ontologies for so many kinds of diseases could be a life-time job if
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we do it manually. As we review the life cycle of ontology development [46], a crucial
component is knowledge acquisition, which is a process of extracting, structuring, and
organizing knowledge from a variety of knowledge sources. Therefore, it would be
desirable to find or develop an automated or semi-automated knowledge acquisition
method and extract the knowledge from existing knowledge sources. Most existing
ontology development tools do not support an automated knowledge acquisition [8].

Working on the automated acquisition of disease-specific information, two
important questions need to be addressed: what are the knowledge sources and how
should we extract from them? To answer these two questions, we first review the prior
endeavors of disease-specific knowledge acquisition in the biomedical domain.

Since the earlier 1990s, dozens of studies have investigated techniques for
disease-concept association extraction from a variety of sources, where the concept could
be associated genes [47], signs and symptoms [48], findings [49], medications [26,50], or
lab tests [50]. The sources that have been mined broadly cover MEDLINE citations
[26,51-56,28,57], Clinical records [49,26,50,58,59], NDFRT [60], DrugBank [61], FDA
AERS [60], DailyMed [61], and AHFs Consumer Medication Information [61]. Among
the sources, MEDLINE citations (title and abstract) and clinical records were the two
most commonly used sources. Numerous knowledge acquisition techniques have been
proposed to extract relational information from them, including co-occurrence-based
statistics [49,26,50], natural language processing (NLP) [55,61], graph theory [47,62],
conditional random fields [56], pattern learning [28,57], and others [56]. Among these
techniques, co-occurrence-based statistics and natural language processing (NLP) are the

two techniques mostly applied. Detailed review of the knowledge extraction techniques
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can be found in Chapter 4 and 5.

Two barriers we identified led to the research work of this dissertation. First, most
of the previous work focus on a large-scale extraction of disease-concept associations
without a specific disease as a focus [26,50,28,57]. We are uncertain about their
performance when applying them to the disease-specific level. It is important to develop
and test approaches to support DSOs. Toward this end, we develop reference standards
below in Chapter 3 and a disease-treatment extraction system in Chapter 4 with some
comparison to previous works.

Second, existing automated extraction techniques not only identify the signal (i.e.,
relevant disease-concept associations) but also introduce noise (i.e., irrelevant disease-
concept associations). The signal-to-noise ratio can be very low when focusing on high
recall. The challenge remains when facing hundreds or thousands of concepts extracted
for each disease in which the precision is low; how can we filter out the false positives? It
is expensive to ask experts to manually determine the relevance of those extracted
concepts to the disease of interest. In Chapter 5, we explore supervised machine learning

techniques to overcome this barrier.
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Objective: Disease-specific vocabularies are fundamental to many knowledge-based intelligent systems
and applications like text annotation, cohort selection, disease diagnostic modeling, and therapy recom-
mendation. Reference standards are critical in the development and validation of automated methods for
disease-specific vacabularies. The goal of the present study is to design and test a generalizable method
for the development of vocabulary reference standards from expert-curated, disease-specific biomedical

Reywords: ! literature resources.

E:'% ‘?gﬁggite: ;5‘;:3:“ Methods: We formed disease-specific corpera from literature resources like textbooks, evidence-based
Annotation synthesized online sources, clinical practice guidelines, and journal articles. Medical experts annotated
Saturation and adjudicated disease-specific terms in four classes (i.e., causes or risk factors, signs or symptoms, diag-
Disease-specific ontology nostic tests or results, and treatment). Annotations were mapped to UMLS concepts. We assessed source
Heart failure variation, the contribution of each source to build disease-specific vocabularies, the saturation of the

vocabularies with respect to the number of used sources, and the generalizability of the method with
different diseases.
Results: The study resulted in 2588 string-unique annotations for heart failure in four classes, and 193 and
425 respectively for pulmonary embolism and rheumatoid arthritis intreatment class. Approximately 80%
of the annotations were mapped to UMLS concepts. The agreement among heart failure sources ranged
between 0.28 and 0.46. The contribution of these sources to the final vocabulary ranged between 18%
and 49%. With the sources explored, the heart failure vocabulary reached near saturation in all four
classes with the inclusion of minimal six sources (or between four to seven sources if only counting
terms occurred in two or more sources ). It took fewer sources to reach near saturation for the other two
diseases in terms of the treatment class.
Conclusions: We developed a method for the development of disease-specific reference vocabularies.
Expert-curated biomedical literature resources are substantial for acquiring disease-specific medical
knowledge. It is feasible to reach near saturation in a disease-specific vocabulary using a relatively small
number of literature sources.

Published by Elsevier B.V.

1. Introduction and sharing of domain-specific knowledge, Disease-specific ontolo-

gies are also essential in supporting a variety of domain-specific

Disease-specific ontologies are knowledge bases intended to
structure and represent disease-relevant information including
disease etiology, diagnosis, treatment and prognosis. The availabil-
ity of these ontologies could facilitate cross-disciplinary exchange
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computer applications, such as natural language processing, cohort
selection, and clinical decision support [1,2]. For example, Haug
et al. initiated a pneumonia-specific ontology, which supported the
development of a clinical diagnostic modeling system [3]. Malhotra
et al. constructed an Alzheimer’s disease ontology and applied it to
text mining on electronic health records [4].

However, the lack of comprehensive disease-specific ontolo-
gies hinders the development of such applications. BioPortal [5], an
open repository of biomedical ontologies, currently hosts up to 467
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Fig. 1. Workflow for building near-saturated, disease-specific reference vocabularies from biomedical literature resources,

ontologies in various domains. However, among those ontologies
less than 1% are disease-specific. Therefore, methods are needed to
help develop disease-specific ontologies that can be made available
to the community. A long-term goal of our research is to enable a
platform that supports large-scale development of such ontologies.

Creating disease-specificontologiesisstill alabor-intensive pro-
cess. One of the main challenges is the knowledge acquisition,
i.e., comprehensively ascertaining domain-specific concepts and
relationships in the ontologies [5,7]. In knowledge engineering,
domain experts are often used as the sources for acquiring med-
ical knowledge. However, they are scarce and expensive. Another
challenge is that while existing large terminologies, such as Dis-
ease Ontology [8] and Systematized Nomenclature of Medicine
Clinical Terms (SNOMED CT) [9], can be used as sources of con-
cepts for disease ontologies, the relationships betweenthe concepts
are primarily hierarchical, with little non-hierarchical relations
between diseases and their signs and symptoms, diagnostic pro-
cedures, and treatments, Therefore, it is not feasible to extract
a comprehensive set of disease-related relationships from those
terminologies.

A promising alternative to address disease-ontology develop-
ment challenges is to learn ontologies from textual data [7,10]. The
learning can be separated into multiple levels: learning terms, syn-
onyms, concepts, relations, axioms and rules [7,10]. At the term
level, for instance, Riloff proposed a corpus-based approach for
building domain-specific semantic lexicons [11]. At relationship
level, Sanchez and Moreno studied methods that learn non-
taxonomic relationships from web documents [12]. Particularly
for developing disease-specific ontologies, the learning is primar-
ily focused on using narrative text sources, such as the biomedical
literature, to automatically identify disease-relevant concepts and
relations. The relationships include the taxonomy backbone (i.e.,
is-a relations) and non-hierarchical relations (e.g., treats, causes).
Most hierarchical relations between biomedical concepts are well
represented in large domain ontologies and terminologies, such
as SNOMED CT and the Unified Medical Language System (UMLS).
However, important gaps still exist in regards to non-hierarchical
relations. Learning these relations is an active subject of research
interest [13-17].

The goal of the present study is to design and test a gen-
eralizable method for the development of vocabulary reference
standards from expert-curated, domain-specific documents, such
as textbooks, and clinical guidelines. The vocabularies and analy-
ses established will be used to help the development and testing of
automated disease-specific knowledge acquisition algorithms.

In the process of developing reference vocabularies, the number
and types of sources that are needed to maximize the number of
concepts retrieved are unknown. One source is unlikely to provide
all concepts and relations about a disease and it is not feasible
to manually extract concepts from all literature sources avail-
able, Therefore, in present study, we investigate the number of
sources that are needed to obtain saturation for a disease-specific
vocabulary. We assessed the feasibility of acquiring disease-specific
concepts and relationships in the classes of causes and risk factors,
sign and symptoms, diagnostic tests and results, and treatments by
manually annotating terms from a representative and diverse set
of popular knowledge sources in cardiology. Last, we then tested
the generalizability of our methods with two additional diseasesin
treatment class.

2. Methods

Inthe present study, a disease-specific vocabulary is understood
to be a list of concepts that are semantically related to a disease
or syndrome. We focused on gathering disease-related concepts
into a collection rather than identifying their taxonomic structure
[18]. The framework for acquiring disease-specific vocabulary is
displayed inFig. 1. This is an iterative process with the goal of reach-
ing nearsaturation whichinthis studyis defined as finding <5% new
concepts with the introduction of a new resource. We first formed a
corpus with a collection of textual biomedical literature documents
on the topical disease. Then, we initiated the iterative process by
selecting one source from the corpus. The following step is annota-
tion and adjudication, where the documents were annotated using
eHOST, an open source annetation tool [15], by medical experts
based on an annotation guideline. Any conflicted annotations were
adjudicated by consensus between experts. Annotations were then
mapped to equivalent UMLS concepts or, if these were unavailable,
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Table 1

Textual knowledge sources for extracting heart-failure-related concepts used to build a disease-specific vocabulary.

Sources Types

Published/updated by

No. of citations Included chapters/articles

Braunwald Textbook

Harrison's Textbook

UpToDate® Evidence-based systematic online journal reviews

DynaMed™ Evidence-based systematic online journal reviews

ACC guideline Clinical practice guidelines

ESC guideline Clinical practice guidelines

ACC key data elements Conclusive journal articles

201 4917
2011 9851

Dec 2013 N/A

Feb 2014 N/A

2009; 2013

2012 1951

2005 134

Chapter 26-34, excluded all the figures
and references

Chapter 234, exclude all the figures
and references

The first three articles retrieved with
the query of heart failure in adult
[29-31]

The first document retrieved with the
querying of “heart failure”, include
following sections: causes and risk
factors, history and physical, diagnosis,
treatment, and prevention and
screening.

For 2009 version, we include all the
recommendations which are in bold,
and all the tables.

For 2013 version, all the content is
included except the figures and
references.

Included following chapters: 3-5,
7-10,12-14.

Section IIl. Heart failure clinical data
standard elements and definitions

1334;535

assigned to local codes. Subsequently, we annotated each addi-
tional source, assessing the saturation of the vocabulary after each
new source was included. The iteration ended when the vocabulary
reached near saturation. More details are provided in the following
sections.

2.1. Selection and preparation of knowledge sources

There are a large number of textual resources available
that provide disease-specific medical knowledge, such as text-
books, online evidence-based documents, journal articles, medical
records, etc. When choosing source documents, we prefer those
that are expert-curated, knowledge-dense, and evidence-based. As
a starting point, the following types of knowledge sources were
chosen: regularly updated textbooks, evidence-based synthesized
online sources, clinical practice guidelines, and disease-specific
journal articles. Medical textbooks provide a comprehensive and
general overview of select diseases from their diagnosis to treat-
ment. Two decades ago, Curleyinvestigated physician’s preferences
for acquiring medical knowledge and found that among the many
resources texthook and journals were most frequently used [19].
Nowadays, they are still among the conventional sources used by
medical students to obtain medical knowledge. Another kind of
source, clinical practice guidelines, have been made available for
many medical domains and are used to “assist practitioner and
patient decisions about appropriate health care for specific clinical
circumstances.” [ 20] They typically focus on therapeutic guidance.
Due to the high demand for speed in answering daily clinical ques-
tions, online, point-of-care, evidence-based products have become
available and have gained wide acceptance from healthcare pro-
fessionals. Examples of these products include Clinical Evidence,
DynaMed, InfoRetriever, PDxMD and UpToDate [21].

We consulted domain experts to choose one or two examples
of each type of source mentioned above. For heart failure, a total of
seven source documents were chosen (see Table 1): Braunwald’s
heart disease (Braunwald) [22], Harrison’s principle of internal
medicine(Harrison’s)[23], UpToDate®, DynaMed™, American Col-
lege of Cardiology Foundation (ACCF)/American Heart Association
(AHA) guidelines for the management of heart failure (ACC guide-
line) [24,25], European Society of Cardiology (ESC) guidelines for
the diagnosis and treatment of acute and chronic heart failure

{ESC guideline) [26], and ACC/AHA key data elements and defini-
tions (ACCkey data elements) [27]. The publication date, popularity
(number of citations), and the sections of each of the sources used
in this study are further specified in Table 1. In the same way, we
formed corpus for two other conditions. For pulmonary embolism,
the initial corpus includes a clinical guideline [28], chapters from
a textbook (Braunwald) [22], four articles from UpToDate®, and
one document from DynaMed™, For rheumatoid arthritis, the cor-
pus includes four articles from UpToDate®, one document from
DynaMed™, and one chapter from Harrison’s.

2.2. Annotation scheme

As we examined those expert-curated, disease-specific docu-
ments, we found that their content covers different aspects of a
disease including etiology, diagnosis, treatment/prevention, and
prognosis. To maintain feasibility for the annotation tasks, we pro-
vided a more granular classification, and restricted the annotations
to four class types: causes or risk factors, signs or symptoms, diag-
nostic tests or results, and treatment; other classes were excluded
from this annotation task, such as comorbidities and complications.
Table 2 gives more detail about the definitions and examples for
these annotation classes.

2.3 Annotation and adjudication

Annotation is a process to identify salient terms from a collec-
tion of narrative documents and assign them to a proper class, while
adjudication is a process to resolve conflicting results between
annotators. We used eHOST [32] for both processes. Besides anno-
tation, eHOST supports dictionary export, pre-annotation, and
measurement of inter-annotator agreement (1AA).

Initially, we developed an annotation guideline (available in
the online supplement) with rules and classes. Before the actual
annotation task, annotators went through a training process, and
annotated a sample collection of documents. The degree of IAA
between the two annotators was calculated using F-measure
where we treated one annotator as the subject and the sec-
ond annotator’s results as if they were a gold standard [33]
. Text annotation can be seen as an information retrieval task
therefore normal Kappa statistics cannot be calculated without a
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Annotation scheme, definitions and examples.

Classes

Description

Examples

Causes or risk factors

Signs or symptoms

Diagnostic tests or results

Treatment

Merges two overlapped subclasses: causes and risk
factors, where causes refer to concepts or terms that
can directly cause heart failure and risk factors are
those factors associated with an increased risk of heart
failure.

Groups medical signs and symptoms. In addition it
includes the physical examination for which would
usually result signs or symptoms.

Includes phrases that describe procedures, panels, and
measures that are done to a patient or a body fluid or
sample in order to discover, rule out, or find more
information about a medical problem.

Includes phrases that describe procedures,
interventions, and substances given to a patientinan

In industrialized countries, coronary artery disease
(CAD) has become the predominant cause in men and
women and is responsible for 60-75% of cause of heart
failure.

Hypertension contributes to the development of heart
failure in 75% of patients.

The cardinal symptoms of heart failure are fatigue and
shortness of breath.

Nocturnal cough is a common manifes tation of this
process and a frequently overlooked symptom of heart
failure.

A routine 12-lead ECG is recommended.

A chest X-ray provides useful information about
cardiac size and shape.

Dietary restriction of sodium (2-3 g daily) is
recommended in all padents with the clinical

effort to resolve a medical problem.

syndrome of heart failure and either preserved or
depressed ejection fraction.

Diuretics are the only pharmacologic agents that can
adequately control fluid retention in advanced heart
failure.

negative case count. Annotators iteratively annotated sample doc-
uments until the IAA score reached substantial agreement (IAA
between 0.6 and 0.8) [34]. Then, annotators began working on
the same set of documents from the corpora. Disagreements were
resolved through a consensus process between two annotators.
However, for the diseases in which the annotators reached almost
perfect agreement (IAA greater than 0.8) on the first document, we
proceeded to the subsequent documents with only one annotator
per document.

We also used pre-annotation to improve the annotation quality
and efficiency as suggested in previous studies [35,36]. Annota-
tors were firstly assigned a small set of documents to annotate.
After adjudication, we extracted a list of terms as a dictionary from
these documents. Next, the subsequent documents were automat-
ically pre-annotated with the dictionary compiled from previously
adjudicated annotations. With these pre-annotated documents,
annotators could modify or delete pre-annotations, or add missed
occurrences of terms.

2.4, Mapping annotations to UMLS concepts

The annotation texts contain various lexical variations such
as abbreviations/acronyms (e.g., “EF" for “efection fraction”), syn-
onyms (e.g., “alcohol consumption” and “alcoholintake™), compound
terms (e.g., “cardiac catheterization and revascularization”, “coronary
or peripheral vascular disease”), and modifiers (e.g., “daily serum
electrolytes™), which make it difficult to compare the annotations
among the sources. To address this issue, we sought to map all the
annotations from these source documents to standard terminolo-
gies, including SNOMED CT, Logical Observation Identifiers Names
and Codes (LOINC}), RxNorm and Medical Subject Headings (MeSH).
This was expected to facilitate an analysis of the vocabulary sets
obtained from different sources and used to form a final vocabulary.
The terms that did not correspond to entries in standard terminolo-
gies may, in the future, be used to enhance existing terminologies.
The UMLS Metathesaurus is the largest thesaurus in the biomed-
ical domain. It has integrated hundreds of source terminologies,
and provides cross-mapping to different source terminologies. We
mapped the annotations to UMLS concepts while restricting the
source terminologies to the four mentioned above. The 2014AB
version was used in this study.

Concept mapping can be a subjective task. Lexical variations
increase the complexity of the mapping. For some terms it may
not even be possible to find mappings from the UMLS Metathe-
saurus. In order to reduce the subjectivity of the mapping and to
make the mapping process more reliable and reproducible, we set
up several mapping rules (see Table 3). For example, we restricted
the semantic types for mapped concepts to the treatment and
diagnostic tests or results classes. For terms with modifiers (e.g.,
daily serum electrolytes), we used a post-coordinated mapping
approach that we removed the modifier (e.g., daily) and assigned
the core term (e.g., serum electrolytes) with equivalent UMLS
concept unique identifier (CUI). Compound terms (e.g., atrial and
ventricular arrhythmias) were extended and mapped to multiple
terms.

The mappings were automatically processed by MetaMap [37]
and followed by manual verification and selection of concepts.
Mapping rules were applied for some special cases (see examples in
Table 3). The annotations that were not mappable to any targeted
terminologies in any form were temporarily assigned local codes in
order to support the analysis(e.g., atrial fibrillation surgery — atrial
fibrillation surgery - Local Code: TO0O00001). The manual verifica-
tion and selection were mainly done by one investigator (LW), with
some assistance from a cardiologist (BEB). We also tested the agree-
ment of the mappings by comparing the mapping results against
mappings from another individual (JS) on 237 randomly sampled
terms. The agreement of the mappings between these two individ-
uals in terms of F-measure [33] was 0.84.

2.5, Saturation assessment

Anatural process to build a vocabulary from a corpus (or knowl-
edge sources) is to add all the acquired vocabulary from it at once.
However, in order to answer our research question, we analyzed
the accumulation process of the acquired vocabulary where we take
the sources one by one, and determine whether, at a certain point,
the vocabulary reaches some level of saturation. The accumulation
rate of the vocabulary is calculated by the ratio of the number of
new concepts from the last included source divided by the total
number of concepts from all included sources (see Formula (1)).
We considered a concept to be new when its code (either a UMLS
CUI or temporary assigned code) did not appear in the vocabulary
from previous documents. We chose 5% as an arbitrarily threshold
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Rules for mapping the annotations to UMLS concepts.

Mapping rules

Example

1. Map the terms to concepts
that convey the term specific
meaning within the context
of the original sentence.

o

. Separate terms into two or
multiple terns when they
contain “and” or “or" and the
combined terms cannot be
mapped to the target
terminologies.

w

. Restrict UMLS terminology
soturces to SNOMED CT,
LOINC, RxNorm, and MeSH
for concept mapping.

For terms that can be
mapped to multiple UMLS
concepts, choose the concept
that contains the target
sources (example a). Terms
that can be mapped to UMLS
concepts, but not to one of
the target sources should be
left unmapped (exampleb).

4. Use semantic types to
choose a proper mapping
when terms can be mapped
to multiple concepts.

5. Map term to the UMLS
concept as close in meaning
as possible.

6. Map terms with modifiers
(e.g., daily, severe) by
post-coordinating multiple
UMLS concepts.

Sentence: “History of exposure to
cardiotoxic substances through
substance abuse: cocaine,
amphetamine, ephedrine, other
(specify).” (from ACCkey data
elements)

Cocaine (Class: causes or risk
factors) — Cocaine abuse (UMLS CUIL:
C0009171)

Sentence: “Mechanical circulatory
support in chronic heart failure
evolved as a means of supporting
patients awaiting transplantation, and
this indication provided successful
transition to heart transplantation and
enhanced post-transplantation
outcomes.” {from Branwald)
Transpiantation (Class:

treatrnent ) — Heart transplantation
(UMLS CUIL: CO018823)

Weight gain or loss — weight gain
(UMLS CUIL: C0043094); weight loss
(UMLS CUI: CO043096)

Miwral, aortic, tricuspid, andfor puimonic
valve surgical

replacement— Replacement of aortic
valve (UMLS CUI: C0003506);
Replacement of mitral valve (UMLS
CUI: C0026268 ); Replacement of
tricuspid valve (UMLS CUIL: CO190119);
Replacement of pulmonary valve
(UMLS CUI: C0190129).

For example,

(a) Abdominal fuliness was mapped to
Abdominal bloating (UMLS CUL
C1291077) instead of Fullness
abdominal (UMLS CUIL: C0235318)
because the C1291077 has source of
SNOMED CT.

(b) Acute dyspnea was left unmapped
instead of mapping to acute dyspnea
{UMLS CUI: C0743323) because
C0743323 is not contained in the
target sources.

For diagnostic tests or resuits, preferred
semantic types are: Laboratory
procedure, Laboratory or test result,
eg.

Blood ureanitrogen — Blood urea
nitrogen measurement {UMLS CUI:
C0005845)

Atrial fibrillation — ECG: atrial
fibrillation (UMLS CUI: C0344434)

For treatment, preferred semantic
types are: pharmacologic substance,
therapeutic or preventive procedure,
eg.

Digiralis — Digitalis preparation (UMLS
CUI: €0304520)

Yoga— Yoga (UMLS CUIL: C1883583)

Chest rediogroph — Plain chest X-ray
{UMLS CUL: CO039985)

Salt restriction — Low sodium diet
(UMLS CUL: C0012169)

History of Chagos disease — Chagas
disease (UMLS CUI:

C0041234) + medical history (madifier)
Daily serum electrolytes — Serum
electrolytes measurement (UMLS CUI:
C0587355) + daily (modifier)

to determine near saturation, i.e., a small number of new concepts
are added by including new sources.

the number of new concepts (Sn)

Accumulation rate = :
the number of all concepts (2151)

(1)

where S; is the ith entered source.

The accumulation rate is the key factor used in this study to
determine whetheravocabulary hasreached near saturation or not.
However, the rates can be affected by the order in which sources
are included. Supposing that most of the concepts from one entered
source have been presented in the existing vocabulary, the accumu-
lation rate could drop significantly; however the rate could increase
again if a subsequent source has substantially different vocabulary
from others. To adjust for this situation, we determine the order
of the sources in a given corpus by maximizing or minimizing the
accumulation rate at each step. In another words, at each accumu-
lation step the next incoming source is determined by selecting
the source that can achieve the highest or lowest accumulation
rate among the remaining sources. This method helps determine
the lower bound and/or upper bound of the number of sources
for reaching near saturation for a disease-specific vocabulary with
the corpus explored. When the order of the sources changes, the
number of sources for reaching near saturation falls in that range.

Although all the chosen sources are expert-curated and the
annotation was done by medical experts, it does not guarantee
all acquired relations are clinically-valid. For example, annotat-
ing conclusion sentences from a single clinical trial study could
bring relations that are not clinically-valid into the vocabulary. We
believe that terms that only occur in one source should be treated
as less valid than those that occur in multiple sources. To address
thisissue, we include an analysis based on the concepts that appear
in two or more sources which we called core concepts.

Thesaturation measurement is source-dependent. If the sources
consistently overlap, then a smaller number of input sources are
needed in order to reach a saturated status. Therefore, we use
F-measure to measure the agreement of the chosen sources to indi-
cate the degree of the source variety.

3. Results

For heart failure, two annotators reached substantial agreement
on the first set of documents and therefore both were involved in
the annotation and adjudication on the seven source documents.
The annotation processresulted in 258 8 string-unique annotations,
which were mapped to 1648 concepts. The majority of these anno-
tations (N=2109, 81%) was mapped to 1232 UMLS concepts with
the sources restricted to SNOMED CT, LOINC, RxNorm, and MeSH.
The remainder were mapped to 416 local terms. For the other
two conditions, two annotators reached perfect agreement in the
first documents, and therefore, the subsequent documents were
processed with only one annotator per document. For pulmonary
embolism, we retrieved 193 string-unique annotations related to
treatment, which were mapped to 96 concepts (83% were mapped
to UMLS concepts). Similarly, for rheumatoid arthritis, we obtained
425 string-unique annotations, which were mapped to 279 con-
cepts (83% were mapped to UMLS concepts). Independent of the
diseases and class types, we obtained 3142 string-unique annota-
tions, which mapped to 2049 concepts. On average, each concept
had 1.5 corresponding terms or synonyms.

3.1. Concepts distributed by sources and classes
Fig. 2 shows the number of unique concepts per class across

seven knowledge sources related to heart failure. Among the seven
sources, Braunwald had the largest number of concepts in the
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Fig. 2. Distribution of heart failure concepts extracted from different knowledge sources forsigns or symptoms, causes or risk factors, diagnostic tests or results, and treatment.

The numbers in the rectangles represent the corpus size (word count) of each source.

classes of signs or symptoms, diagnostic tests or results, and treat-
ment, while the ACC guideline had the largest amount of concepts
in the class of causes or risk factors. Fig. 2 also shows the number
of acquired concepts along with the size of each document based
onword count. Harrison's is the smallest corpus, containing 10,560
words, and from which we obtained 298 concepts, while Braunwald
is the largest corpus (98,306 words) and from which we obtained
810 concepts. However, the size of the documents was not propor-
tional to the number of obtained concepts. For example, UpToDate
is almost twice as large as ACC key data elements and ESC guideline
(20,661 vs. 9344 and 10,452 words); however, it provided a slightly
smaller vocabulary of concepts (380 vs. 386 and 481 concepts).

Table 4 shows the contribution of each knowledge source to
individual classes as well as the final heart failure vocabulary.
The contribution of the seven knowledge sources ranged between
13-63% for the individual classes and between 18-49% for the final
vocabulary. Among the seven sources, ACC guideline had the best
contribution to the class of causes or risk factors, while Braunwald
had best contribution to the other three classes. Some concepts
were assigned to multiple classes, whichexplains why the sum total
of the four classes is not equal to the total number of the vocabulary.
For example, “hypertension” was assigned to the class of causes or
risk factors and diagnostic tests or resuits in a different context.

3.2. Distribution of concept occurrerce

Fig. 3 shows the log-log-scale distribution of the number of
heart-failure concepts by concept frequencies. 747 concepts (45%
of the total) were annotated only once in the entire corpus, and
247 concepts (15% of the total )were occurred twice, however, some
concepts were annotated much frequently, such as one concept was
annotated 471 times. Overall, the log-log-scaledistribution appears
approximately linear. Table 5 lists a small set of concepts that fre-
quently occurred in the corpus, where the frequency of concept is
measured by the occurrence of the corresponding annotations over
the corpus.

3.3. Variety of the sources

Table 6 shows the agreement of concepts among the seven
sources. The overall agreement between source pairs ranged from
0.28 to 0.46. From Table 6, ACC key data element consistently had
lower agreement with other sources. Sources from the same cat-
egory (e.g., textbook), such as Braunwald and Harrison’s, did not
show a stronger agreement than sources from different categories.
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Fig. 3. Log-log scale plot of the distribution of the number of heart failure concepts
by concept occurrence.

3.4. Concept accumulation by classes

With the explored corpus, Fig. 4A shows the minimum accu-
mulation of heart failure concepts with the inclusion of additional
sources. The accumulation curves of all four classes appear approx-
imately linear. The number of concepts per class ranged from
170 concepts in signs or symptoms to 445 concepts in diagnos-
tic tests or results. Fig. 4B shows the maximum accumulation
of heart failure concepts. The accumulation curves of all four
classes increase quickly with the inclusion of the first set of
sources, but reach a plateau around the inclusion of the sixth
source.

Fig. 4C and D show the accumulation rates with the inclusion
of new sources (percent of identified concepts that are new) with
two different orders of sources, where the 4C achieved the minimal
accumulation rates and 4D achieved the maximum accumnulation
rates. The curves in Fig. 4C decline at the beginning, however, stay
flatten around 20% accumulation rate since the inclusion of the
fourth sources, and even increase slightly with the introduction of
the sixth or seventh sources. We found that Braunwald is the last
source in the minimum accumulation, which contained almost half
amount of the conceptsin the final vocabulary. The curves in Fig. 4D
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Table 4
Contribution of each knowledge source to the four classes and the final heart-failure vocabulary.
Sources Classes
Causes or risk Signs or symptoms Diagnostic tests or Treatment Final vocabulary
factors (N=435) (N=233) results (N=590) (N=477) (N=1648)
Harrison’s 71(16%) 79(34%) 75 (13%) 77(26%) 298 (18%)
UpToDate 110(25%) 45 (19%) 120 (20%) 116(24%) 380 (23%)
ACCkey data element 126 (30%) 47 (20%) 115 (19%) 100(23%) 386 (23%)
ESC guideline 81(17%) 54(23%) 205 (35%) 154 (32%) 484 (20%)
DynaMed 162 (37%) 55 (24%) 118 (20%) 148 (31%) 474 (29%)
ACC guideline 194 (45%) 63(27%) 146 (25% 178 (37%) 565 (34%)
Braunwald 150 (34%) 147 (63%) 2098 (51%) 239(50%) 810 (49%)
Table 5
Top 5 frequently occurring heart failure concepts in four classes.
Classes UMLS CUIJcode Concept Frequency
Signs or symptoms C0013404 Dyspnea 136
C0268000 Body fluid retention 55
C0018810 Heart rate 48
C0546817 Fluid overload 47
C0015672 Fatigue 46
Causes or risk factors C0020538 Hypertension 133
C0027051 Myocardial infarction 133
C0004238 Atrial fibrillation 132
C0010054 Coronary arteriosclerosis 123
C0011849 Diabetes mellitus 92
Diagnostic tests or results C0428772 Left ventricular ejection fraction 219
€0232174 Cardiac ejection fraction 195
C1095989 Brain natriuretic peptide measurement 134
0022662 Kidney function tests 110
C0013516 Echocardiography 82
Treatments C0003015 Angiotensin-converting enzyme inhibitors 471
C0001645 Adrenergic beta-antagonists 402
C0012798 Diuretics 313
C0521942 Angiotensin [l receptor antagonist 250
C1167956 Cardiac resynchronization therapy 215
Table 6
The agreement of the concepts among seven knowledge sources.
Agreement score Braunwald ACC guideline DynaMed ESC guideline ACC key data element UpToDate
Braunwald
ACC guideline 045
DynaMed 037 0.42
ESC guideline 0.45 0.43 0.34
ACC key data element 030 032 031 031
UpToDate 043 0.46 0.38 0.40 0.30
Harrison’s 041 0.41 0.38 0.40 0.28 0.43

decline steeply with the inclusion of the second and third sources
and are flatten after the inclusion of the fourth source. Although the
number of concepts per class is different (from Fig. 4A), the accu-
mulation rates are similar for all classes. After the sixth source, very
few concepts are added to the vocabularies.

Fig. 5A and B show the minimum and maximum accumula-
tion of the number of core concepts (i.e., concepts occur in two or
more sources) respectively to the inclusion of additional sources.
Fig. 5C and D are the corresponding analysis of the accumula-
tion rates. Based on these two figures, the heart failure vocabulary
reaches near saturation by using between four to seven sources
regardless of the order the sources. Comparing the minimal accu-
mulation rates between 4C and 5C, the accumulation rates in 5C
decline faster with all four classes, and reach the 5% threshold after
adding the seventh source, while in 4C, the accumulation rates
never reach the 5% threshold. The accumulation rates of all four
classes in 5D decline slightly faster than the rates in 4D, and reach
the 5% threshold after adding the fourth source comparing sixth
source in 4D. This confirms that concepts that are used more often

can be gathered with fewer knowledge sources. Table 7 provides
sample terms that occurred in one and multiple sources for each
class.

3.5. Concept accumulation by conditions

A similar decline in the benefit of reviewing additional sources
was seen in the other two diseases studied. Fig. 6A shows the max-
imum accurnulation of treatment concepts along with increase of
corpus size. For different diseases, the number of retrieved treat-
ment concepts varies. From Fig. 6B, we found that the accumulation
rates of heart failure decreased to the 5% threshold after adding
the sixth source, while it only took three sources for rheunatoid
arthritis to reach the threshold and four sources for pulmonary
embolism.

Fig. 7A and B show the minimum and maximum accumula-
tion rates of core treatment concepts per condition along with the
addition of new sources. Based on these two figures, heart-failure
treatment vocabulary of core concepts reached near saturation by
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Examples of heart-failure terms of four class types that occurred in one, two, three and seven sources.
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Examples Terms from 1 source Terms from 2 sources Terms from 3 sources Terms from 7 sources
Signs or symptoms Narrow pulse pressure; Exercise intolerance; Reduced exercise tolerance; S3 - third heart sound;
Jaw pain; Abdomen distended; Early satiety; Orthopnea;
Mottled skin; Abdominal pain; Respiratory distress; Fatigue;
Presyncope; Apex beat displaced; Dyspnea on exertion; Dyspnea;
Purple-blue nail bed Ventricular filling pressure Hypoxia Angina pectoris
increased
Causes or risk factors Deep vein thrombosis; Hyperlipidemia; Fabry disease; Coronary arteriosclerosis;
Dysglycemia; Chronic kidney failure; Angina, unstable; Myocardial ischemia;
Collagen diseases; Pulmonary arterial Familial cardiomyopathy ; Myocardial infarction;
Cilostazol; hypertension; Beriberi; Diabetes mellitus;
Egg consumption Viral myocarditis Rheumatic fever Hypertension
Diagnostic tests or results  Measurement of liver enzyme; Blood pressure monitoring; Cardiovascular monitoring; Maximum oxygen uptake;
Blood cell count; Myocardial biopsy; Cardiopulmonary exercise test; ~ Radionuclide
Hemoglobin Alc ECG: left ventricular strain; ECG: atrial fibrillation; ventriculography;
measurement, Pharmacologic and exercise Serum calcium measurement; Fluid overload;
Indirect bilirubin stress test; Blood pressure monitoring Magnetic resonance imaging;
measurement; Prolonged QRS duration Left ventricular ejection
Oral glucose rolerance test fraction
Treatments Alcohol deterrents; Ablation of atrioventricular Mitral valvuloplasty; Angiotensin Il receptor

Sheng-Mai San;

node;

Implantation of ventricular

antagonist;

Dietary supplementation; Epoprostenol; assist device; Inotropic agent;
Repair of pulmonary valve; Pericardiectomy; Fluid intake restriction; Heart transplantation;
Genetic counseling; Weight reduction regimen; Implantation of CRT-D; Diuretics;
Cell therapy Hydralazine hydrochloride Pneumococcal vaccination Angiotensin-converting
enzyme inhibitors
A
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Fig. 6. (A) Number of treatment concepts per disease with the addition of new sources; (B) accumulation rates of treatment concepts per disease with the addition of new

sources.
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using between three and seven sources; rheumatoid arthritis used
between two and three sources; and pulmonary embolism used
between two and four sources. All three conditions reached near
saturation with a relatively small number of sources regardless of
the order of sources.

4. Discussion

In this study, we assessed the feasibility of obtaining a
near-saturated disease-specific vocabulary using a diverse set of
expert-curated textual knowledge sources. We also estimated the
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number of sources needed to reach near saturation with four dis-
ease concept classes (i.e., causes or risk factors, sign or symptoms,
diagnostic tests or resuits, and treatment) with heart failure. We
tested the generalizability of the method with two other conditions,
i.e., pulmonary embolism, and rheurnatoid arthritis.

From the study, we found that regardless of the difference of
the total number of acquired concepts, the vocabularies of four
concept classes reached near saturation at similar pace. For the
four concept classes explored on the heart failure condition, the
vocabularies took six sources to reach near saturation with the
best order of sources. However, when order changes, they may
require more sources to reach near saturation. When consider-
ing only the core concepts, three conditions all achieved near
saturation with much fewer sources regardless of the order of
sources. Overall, the results support the conclusion that it is
feasible to obtain near-saturated reference standards for disease-
specific vocabularies of core concepts using a relatively small
number of knowledge sources. If choosing preferentially the
sources with big contribution, the vocabularies of all concepts can
also achieve near saturation with a relatively small number of
sources.

The main contribution of the study lies in two aspects. First,
the findings of this study are important for the development of
disease-specific reference vocabularies. Developing reference stan-
dards usually involves substantial manual knowledge acquisition
effort. The results of our study provide an estimate for the opti-
mal number of text sources that can be used to find a balance
between cost and saturation. Second, the method proposed in the
present study provides an underlying approach for the develop-
ment of disease-specific vocabularies. This includes the selection
of sources, the guideline for annotation, the rules for mapping, and
saturation assessment. Our approach is designed to be efficient as
the method is able to determine a stopping point where a vocab-
ulary has reached near saturation. Since the method had similar
results in different conditions and concept classes, it is expected
that the method and results will generalize to other conditions. We
intend to use this approach to develop other disease-specific vocab-
ularies and use them as reference standards for the development
and testing of automated methods to generate disease-specific
concept vocabularies. Xu et al. provides an example of such an
automated method that could benefit from our reference standards
[17]. Their method used known disease-drug pairs to learn patterns
from biomedical text, enabling an automated, large-scale extrac-
tion of drug-disease treatment pairs. The reference standards can
also be used to assess the performance of the automated systems
by comparing the automated generated concepts to those manually
extracted disease-specific vocabularies.

Seven authoritative sources that are frequently used by cli-
nicians were chosen for heart failure. No previous study has
investigated these sources regarding their contribution to a spe-
cific topic and the overlap among the sources. From our results,
the agreement scores of the concepts among the seven sources
ranged from 0.28 to 0.46, which indicates that these sources did
not strongly overlap. The study results also suggest that special-
ized textbooks (e.g., Braunwald for heart failure) should be used
as a starting point for building domain-specific vocabularies, as
they appear to provide the broadest contribution to the vocabu-
lary compared to other sources. However, the results discourage
using textbooks as the only source, as even the lengthiest textbook
(Braunwald) only captured half of the domain concepts repre-
sented in the final vocabulary. The use of multiple and diverse
sources is critical to construct a comprehensive vocabulary. When
applying our method to other conditions, we recommend that the
most optimal approach is to start the annotation with compre-
hensive textbooks on topical disease, followed by relevant and
most-updated clinical practice guidelines, and then topic summary

articles from evidence-based synthesized online resources such as
UpToDate.

The annotation process was sometimes complex and subjec-
tive. For example, for heart failure, it was difficult to discriminate
between the treatment of its symptoms and treatments directed
toward the causes and risk factors (e.g., hypertension, diabetes mel-
litus). A large portion of each source document was dedicated to
discussing the treatment of the causes and risk factors of heart
failure. Discriminating among these relationships is necessary to
correctly associate diseases with their concepts.

Mapping annotations to standard terminologies or local terms
is an essential step for saturation assessment. Without mapping,
it may require to annotate a larger corpus to reach near satura-
tion, however, which may only lead to more terms with all kind
of varieties. After the mapping, we identify many terms (N=364)
thatwerenot available instandard terminologies. These unmapped
concepts could be used to enhance existing standard vocabularies.
Another interesting finding is that almost half amount of concepts
annotated only once in the corpus (see Fig. 3). Based on a man-
ual review on the concepts with different occurrences, concepts
that occurred only once or came from a single source (see Table 7)
show less clinical relevance to the topic condition. In order to build
a disease ontology with strong evidences, we may exclude those
concepts. Besides, this distribution of concept occurrence over the
corpus (see Fig. 3) almost follows a Zipf distribution. This could be
possibly used for ranking strength of the relations of the concepts
to the disease.

Our study has a few limitations. First, although the final vocab-
ulary reached near saturation, we believe many disease-specific
concepts are still missing. For example, “Angiotensin-converting-
enzyme inhibitor” (ACE Inhibitor) — a class of drugs for treating
heart failure, is present in the acquired vocabulary. But not all the
drugs under this class were explicitly presented in the source docu-
ments. When experts mentioned the ACE inhibitor in those source
documents, they were probably referring to the entire class of the
drugs. These kinds of missing concepts could be inferred from rela-
tionships in existing standard terminologies, such as RxNorm and
SNOMED CT. Second, the actual coverage of the final vocabulary is
unknown. Assessing the actual coverage of a vocabulary is difficult
because perfect reference vocabularies are not available. Third, the
near saturation was reached with an optimal order of the sources.
However, when the order of sources changed, the vocabulary may
not be saturated. The upper bound of the number of sources for
near saturation was not detected with a small number of sources
explored in this study. However, for the vocabulary of core con-
cepts is sufficient to reach near saturation with a relatively small
number of sources regardless of the order of sources.

5. Conclusions

We provided an underlying approach for the development of
disease-specific reference vocabularies [ocused on the concept
classes of causes and risk factors, signs and symptoms, diagnostic tests
and results, and treatment. Our findings show that expert-curated
sources, such as textbooks, clinical guidelines, evidence-based
summaries, and journal articles, are substantial sources for disease-
specific medical knowledge. Their contribution to the vocabulary
varies substantially for a specified condition. While the numbers
of sources for reaching near saturation can vary modestly for dif-
ferent conditions, a relatively small number of text sources are
sufficient to obtain a near-saturated vocabulary of sound disease-
specific concepts. In the future we intend to develop automated
techniques to extract disease-specific vocabularies from large cor-
pora. The reference standards developed in the present study will
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be used to assess the performance of the automated vocabulary
extraction system.

Data availability

The extracted heart-failure-specific vocabulary, comprising
1648 concepts in the aspect of causes and risk factors, signs or
symptoms, diagnostic tests or results, and treatment, is available at
http:/{purl.bioontology.orgfontology/HFO. The rheumnatoid arthri-
tis vocabulary contains 279 concepts in the aspect of treatment
and is available at: http://bioportal.bicontology.orgfontologies/
RAO, while pulmonary embolism vocabulary with 96 concepts
is available at: http:f/bioportal.bioontology.orgfontologies/PE. The
hierarchical relationships in these vocabulary are obtained from
the UMLS.
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VOCABULARIES FROM MEDLINE CITATIONS

Reprinted with permission from Wang L, Del Fiol G, Bray BE, Haug PJ.
Generating disease-pertinent treatment vocabularies from MEDLINE citations.
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Objective: Healthcare communities have identified a significant need for disease-specific information.
Disease-specific ontologies are useful in assisting the retrieval of disease-relevant information from var-
ious sources. However, building these ontologies is labor intensive. Our goal is to develop a system for an
automated generation of disease-pertinent concepts from a popular knowledge resource for the building
of disease-specific ontologies.
Methods: A pipeline system was developed with an initial focus of generating disease-specific treatment
vocabularies. It was comprised of the components of disease-specific citation retrieval, predication
extraction, treatment predication extraction, treatment concept extraction, and relevance ranking. A
semantic schema was developed to support the extraction of treatment predications and concepts.
Four ranking approaches (i.e., occurrence, interest, degree centrality, and weighted degree centrality)
were proposed to measure the relevance of treatment concepts to the disease of interest. We measured
the performance of four ranks in terms of the mean precision at the top 100 concepts with five diseases,
as well as the precision-recall curves against two reference vocabularies. The performance of the system
was also compared to two baseline approaches.
Results: The pipeline system achieved a mean precision of 0.80 for the top 100 concepts with the ranking
by interest. There were no significant different among the four ranks (p = 0.53). However, the pipeline-
based system had significantly better performance than the two baselines,
Conclusions: The pipeline system can be useful for an automated generation of disease-relevant treat-
ment concepts from the biomedical literature.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

a previous study | 1] we asked medical experts to manually develop
reference vocabularies for three diseases from selected biomedical

Disease-specific ontologies are knowledge bases intended to
structure and represent disease-relevant information including
disease etiology, diagnostic characteristics, treatments and prog-
nosis [1]. By providing rich domain knowledge, they can be very
useful in assisting the retrieval of disease-relevant information
from sources like clinical data repositories, biomedical literature,
and online health resources, which therefore can better meet the
information needs of various healthcare communities.

Building and maintaining such ontologies is labor-intensive.
One major challenge is to identify disease-specific vocabularies
that form the core of disease-specific ontologies. For example, in

* Corresponding author at: Department of Biomedical Informatics, University of
Utah, 421 Wakara Way, Salt Lake City, UT 84108, USA.
E-mail address: ligin.wang@utah.edu (L. Wang).

http:/fdx.doi.org/10.1016/j.jbi.2016.11.004
1532-0464/© 2016 Elsevier Inc. All rights reserved.

literature sources. The annotation of selected documents took
around 100 man-hours, not counting the document preparation,
guideline development, experts training, adjudication, and concept
mapping. From the same study, we also found that existing litera-
ture sources were sufficient to provide disease-specific vocabulary.
Therefore, there is an opportunity for the development of algo-
rithms that can automatically extract vocabulary components from
these sources.

In the present study, we address the challenge described above
by developing a set of knowledge extraction techniques that auto-
matically generate disease-pertinent vocabulary from existing
sources. We chose the MEDLINE database as our knowledge source
because it contains a large collection of published journal citations
and covers a variety of diseases, We have focused on treatment
concepts associated with the disease of interest, including direct
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treatment and prevention of the problem or complications caused
by the problem; however, the method can also be adapted to other
disease domains (e.g., signs, symptoms, diagnostic tests).

2. Background
2.1. Disease-specific information needs and barriers

Disease-specific information is frequently sought by people in
the healthcare communities, including clinicians, healthcare con-
sumers, clinical researchers and medical knowledge engineers.
The types of information that have been sought include medical
knowledge (information that is understood to be generalizable to
the care of all patients), patient data {information about a specific
person), and population statistics { aggregated data about groups or
populations of patients) [2]. For example, a variety of published
studies investigated physicians’ information needs by analyzing
their clinical questions raised in the course of patient care [2-4].
A large proportion of the questions were related to disease-
specific medical knowledge, such as “what is the drug of choice
for condition x?", “what test is indicated in situation x?”, and
“how should I treat condition x?” [5]. Clinicians also frequently
seek disease-specific patient information (e.g, medical history,
physical exam) from clinical data repositories. With the wide adop-
tion of electronic medical records, available patient data has been
shown a marked increase. Thus, it is important to be able to distil
and filter medical records to show the patient information that is
relevant to a specific problem of interest.

Healthcare consumers also frequently seek health information
online to better understand and manage their own health [G].
Research shows that the top twoe major health topics searched
online are related to the personal medical problems and the treat-
ment for these problems [7]. Clinical researchers and medical
knowledge engineers also demand disease-specific information in
order to understand, model, and analyze clinical data. For example,
when conducting a retrospective clinical study, clinical researchers
need to understand the details of the clinical problem {e.g., disease-
specific signs and symptoms, diagnostic tests, comorbidities) in
order to properly identify “research subjects” from an EHR.

2.2, Disease-specific ontologies

Ontologies are explicit and formal representations of domain
knowledge, which enable the management, sharing, and reuse of
domain knowledge [8,9]. Disease-specific ontologies intend to
integrate vocabularies of different aspects of the disease, such as
signs and symptoms, medications, therapeutic procedures, diag-
nostic procedures, and laboratory tests and imaging. To minimize
information overload, it is crucial to develop effective information
retrieval systems capable of retrieving relevant information to
meet different information needs. For healthcare consumers, who
are likely to have low health literacy [10], it is important to assist
them forming optimal queries to retrieve relevant information
from online health sources [11]. We anticipate that these ontolo-
gies will facilitate the retrieval of specific information from a vari-
ety of sources, such as websites |12], biomedical literature [13],
and clinical data repositories [ 14-16]. Disease-specific ontologies
can support information retrieval systems by providing domain-
specific concepts and relations necessary to direct the formulation
or expansion of initially simple queries tied to clinical concepts. In
addition, the medical knowledge contained in disease-specific
ontologies could be used by clinical researchers and medical
knowledge engineers to understand the diseases, and the vocabu-
laries in the ontologies may further assist their research or engi-
neering work (e.g, cohort selection, text annotations).

2.3. Relation extraction in biomedical domain

Domain experts can develop disease-specific ontologies, but
individuals with the required expertise are scarce and expensive.
A long-term goal of our research is to create a platform to facilitate
large-scale development of these ontologies. One of the critical
tasks in building disease-specific ontologies is to acquire medical
knowledge like concepts and relationships related to the disease
of interest [8,17]. This kind of medical knowledge has been sub-
stantially documented in scurces like the biomedical literature,
web documents, and clinical data repositories, although most of
it is represented in unstructured and narrative format. We there-
fore hope to take advantage of these sources and investigate auto-
matic techniques to extract disease-specific medical knowledge
from them.

Automatic extraction of relational medical knowledge from the
biomedical literature is an active subject of research interest [ 18-
22]. Researchers have attempted to extract disease-specific medi-
cal knowledge from the biomedical literature ever since the
1990s [23,24]. In the earliest stage, the methods merely relied on
co-occurrence-based statistics. For examples, Zeng and Cimino
used MeSH co-occurrence information from the UMLS to obtain
disease-chemical associations [24]. Chen et al. used co-
occurrence statistics to extract disease-drugs relations from MED-
LINE abstracts [18].

Along with the advanced development of NLP techniques, a
variety of rule-based and machine-learning-based methods have
been used for relation extraction. A typical example of rule-based
system is SemRep [25,26 ] which is built upon UMLS and MetaMap.
It interprets the biomedical knowledge presented in a given sen-
tence from the scientific literature in the form of predications {sub-
ject PREDICATE object}, where the subject and object are
biomedical concepts from the UMLS Metathesaurus and the PREDI-
CATE is a semantic relation from the UMLS Semantic Network [25-
27]. For example, from the sentence “this paper will review the
earlier and present studies in the development of rasagiline for
treatment of PD and discuss its pharmacology and applicable
mechanism of action”, SemRep extracts the predication {Rasagiline
TREATS Parkinson's disease}. Based on a preliminary evaluation,
the precision and recall of SemRep are 78% and 49% respectively
[26]. More recently, Xu and Wang applied a pattern-based
approach to extract disease-drug and disease-disease risk relation-
ships from MEDLINE citations [21,22].

Machine learning techniques have also been successfully
applied to relation extraction. From one standpoint, relation
extraction is a classification problem which is to predict semantic
relations held between two identified entities in a given sentence
[28]. Researchers have employed different classification models
using diverse lexical, syntactic and semantic features derived from
the text to make predication on the relations. For example, Rosario
and Hearst compared graphical models and neural network using
lexical, syntactic, and semantic features to distinguish among
seven relation types that can occur between the entities “treat-
ment” and “disease” in bioscience texts [29]. Zeng et al. exploited
a convolutional deep neural network to extract lexical and sen-
tence level features which were fed into a softmax classifier to pre-
dict the relationships between two marked nouns [30]. From
another standpoint, relation extraction is a sequence labeling prob-
lem, for which researchers have applied kernel-based approaches
to label the relationships between two entities. For example,
Bundschus et al. used conditional random field technologies to
extract disease-treatment associations from PubMed abstracts
[31]. Giuliano et al. investigated a kernel-based approach based
on shallow linguistic processing for extracting relations between
entities from biomedical literature [32].
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In the present work, we intend to develop an automated
approach to extract treatment vocabularies from the biomedical
literature for a given disease of interest. Unlike previous studies
which worked on semantic interpretation of the relationships from
the biomedical literature, we focused on filtering and ranking
disease-specific concepts for a given disease of interest. In addition,
our work builds on previous tools and methods, in particular
SemRep.

2.4. SemMedDB

SemRep is routinely used to process the entire set of MEDLINE
citations (i.e., the titles and abstracts) to extract structured predica-
tions, which are then stored in a repository called SemMedDB [33].
There are currently over 83 million semantic predications in this
database version June 30, 2015, approximately 93% of which are
associative (or, non- “IS-A”" predication). Although SemMedDB pro-
vides structured predications that could facilitate the acquisition of
medical knowledge from the biomedical literature, further infer-
ence is needed to filter noisy data and to retrieve information that
is most useful for a disease-specific ontology. For example, a query
in SemMedDB for a collection of predications that include conges-
tive heart failure retrieves thousands of predications. Within these
predications, concepts may range widely from pharmaceutical
substances to signs and symptoms and related genes. Therefore,
many retrieved concepts and predications could be outside scope
for a disease-specific ontology. In addition, concepts that are irrel-
evant to the main search topic may be retrieved due to errors in the
underlying SemRep NLP process and inaccurate or outdated infor-
mation presented in MEDLINE abstracts. We addressed these
issues in the development of our automatic knowledge extraction
system from SemMedDB.

3. Materials and methods

The study method is comprised of two parts: (1) the develop-
ment of a pipeline-based process to extract disease-specific,
treatment-related information from biomedical literature; and
(2) an experiment to compare the pipeline-based process to extract
disease-specific treatment vocabulary with two baseline
approaches in terms of precision-recall curves and mean average
precision.

3.1. Pipeline-based process

The pipeline-based process developed in the present study con-
sists of the following steps (see Fig. 1): (1) retrieval of therapeutic
citations from MEDLINE for the disease of interest using a search
strategy that aims to retrieve scientifically sound studies; (2)
retrieval of all predications and their corresponding sentences
from SemMedDB for the citations retrieved in Step 1; (3) develop-

ment of a semantic schema from the UMLS and existing disease-
specific ontologies to identify treatment-related predications from
this list; (4) retrieval of treatment-related predications from the
predications in Step 2 using the semantic schema from Step 3;
(5) extraction of treatment concepts from the treatment predica-
tions extracted in Step 4 from the list generated in Step 3; (6) rank-
ing of the treatment concepts extracted in Step 5 using four
ranking algorithms.

3.1.1. Step 1: Retrieval of disease-pertinent MEDLINE citations

The first step retrieves biomedical citations from MEDLINE
database regarding the therapy of a given disease. We built a
search strategy based on the PubMed Clinical Queries, which is a
set of filters that are tuned to retrieve scientifically sound clinical
studies in topics such as treatment, diagnosis, and prognosis [34
36]. The Clinical Query filters provide two modes: broad and nar-
row. The broad treatment filter has shown a sensitivity of 99%
and a specificity of 70%, while the narrow treatment has shown a
sensitivity of 93% and specificity of 97%. In the present study, we
focused on sensitivity and used the broad filter.

Although Clinical Query filters perform well in retrieving clini-
cal trial studies, the query does not cover other types of study
design, such as systematic reviews, which would also be useful
for retrieving disease-specific medical knowledge. Hence, we
extended the Clinical Query treatment filter to retrieve systematic
review articles (see Fig. 2). In addition, we added the following
restrictions: English language, abstract available, human subjects,
and core clinical journals. We obtained the list of clinical journals
by combining the PubMed core clinical journals (http://www.
nlm.nih.gov/bsd/aim.html) with a list of journals categorized
under “clinical medicine” in Web of Science (http://ip-science.
thomsonreuters.com/mjl/). For each disease of interest, we added
a MeSH term for the disease as a major topic. The modified Clinical
Query filter can also be extended to retrieve articles for other
disease-associated concepts, such as etiology, diagnosis, and
prognosis.

3.1.2. Step 2: Predication extraction with SemRep

In this step, the input is all the PMIDs that were assigned to
those MEDLINE citations retrieved from step 1. The output is the
predications generated by the SemRep from those MEDLINE cita-
tions as well as the sentences where the predications came from.
More specifically, we took all the PMIDs to form SQL scripts to
query the SemMedDB [33] to retrieve all the predications and sen-
tences. The version of SemMedDB we used was updated with cita-
tions published through June 30, 2015. Citations published after
this date were not yet available in SemMedDB, therefore we
excluded those citations from the study.

Step 1 Step 2 Step 4 Step 5 Step 6
Disease " i Treatment Treatment
of — C':?“DHI Z‘fgg: ;ilg:\n — predication [— concept — Rele'\(r_ance
interest feliova extraction extraction fankings
i Step 3 T

Semantic schema |

=
SemMEdDB

Disease-specific
ontologies

Fig. 1. Flowchart of automatically extracting disease-specific, treatment vocabulary from the biomedical literature and the ranking of treatment concepts.
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OR "Cochrane Database Syst
"humans'[MeSH Terms] AND
(JOURNALLIST)

(Therapy/Broadffilter] OR (systematic[sb] AND ("systematic review"[t] OR "meta-analysis"[ti]
Rev'[journal]))) AND
"english"[language]

"QUERY_TERM"[Majr] AND

AND (hasabstractitext]) AND

Fig. 2. Modified Clinical Query for retrieving treatment-related citations for the disease of interest from MEDLINE. In the query, “QUERY TERM" is the MeSH term for the
disease of interest. “JOURNALLIST" is a list of clinical journals, e.g., "CA-CANCER ] CLIN", "NEW ENGL ] MED".

Table 1
The semantic types and groups of treatment concepts.

Semantic groups Included semantic types

Procedures Educational Activity, Health Care Activity,
Therapeutic or Preventive Procedure

Chemicals & Drugs Al

Activities & Behaviors All"

Devices Medical Device

? Refer to hitp://semanticnetwork.nlm.nih.gov/download/SemGroups.txt  for
detailed semantic types included by a specific semantic group.

3.1.3. Step 3: Development of semantic schema

The semantic schema consisted of a set of metapredications
whose arguments are defined based on high-level domains based
on UMLS semantic groups [37]; for example, {Procedures TREATS
Disorders). The development of a semantic schema is a one-time
process that supports knowledge extraction of treatment concepts
for any disease of interest. The development of the semantic
schema was performed in two steps: (1) selection of relevant
semantic groups to filter treatment concepts (Step 4), and (2) def-
inition of relevant metapredications to filter treatment predica-
tions {Step 5).

To select relevant semantic groups, we analyzed the semantic
groups and types that were present in the heart failure reference
vocabulary (http://bioportal.bicontology.org/ontologies/HFO) that
had been manually created in a previous study [1]. The rationale
for this approach is the assumption that the majority of semantic
groups and types covered in disease treatment vocabularies would
also be covered in the heart failure reference vocabulary.

A total of 413 treatment concepts were retrieved, from 38
semantic types and 9 semantic groups (i.e., Chemicals & Drugs, Pro-
cedures, Physiology, Devices, Activities & Behaviors, Concepts & Ideas,
Objects, Disorders, and Organizations). The majority of the heart fail-
ure treatment concepts belonged to two semantic groups: Chemi-
cals & Drugs and Procedures. We manually reviewed the other
seven semantic groups and, based on domain knowledge, decided
to include only four semantic groups: Chemicals & Drugs, Proce-
dures, Devices, and Activities & Behaviors (Table 1). We also
excluded a subset of the semantic types from the Procedures and
Devices semantic groups. For example, from Procedures, we
excluded Diagnostic Procedure, Laboratory Procedure, Molecular Biol-
ogy Research Technique, and Research Activity.

Table 2

We followed a similar process for metapredications, also using
the heart failure vocabulary.

We retrieved a total of 54,991 predications from SemMedDB
from 15,994 citations. Forty percent (N = 22,019) of the predications
contained treatment concepts from the heart failure vocabulary. We
then generated 205 unique metapredications based on the retrieved
predications, such as {Chemicals & Drugs, ADMINISTERED_TO, Liv-
ing Beings}. Next, we removed the metapredications that did not
contain any of the four semantic groups selected in the previous
step. In addition, we excluded metapredications whose predicate
was not treatment-related predicates, such as DIAGNOSES, CAUSES,
STIMULATES, PRODUCES, PREDISPOSES, as well as negation predica-
tions. The remaining metapredications were grouped into four cate-
gories (Table 2). For each category, we identified the predication
arguments that were most relevant for extracting treatment con-
cepts. However, we noted some exceptions. For example, in category
3, for metapredications where the arguments are Chemical & Drugs
and Devices, their corresponded predications are usually about the
comparison or co-occurrence of a treatment (Chemical & Drugs) with
a“placebo” { Devices), therefore, only the concepts from the position
of Chemical & Drugs will be retrieved.

3.1.4. Step 4: Extraction of relevant treatment predications

Many predications retrieved in Step 2 could be not related to
the treatment (e.g., a predication {congestive heart failure CAUSES
cardiemyopathy, dilated}), or were generic and of little interest
(e.g., {pharmaceutical preparations TREATS pneumonia}). To filter
out generic predications, we adopted the novelty approach pro-
posed by Fiszman et al. [ 38]. A predication is considered as generic
when it has a generic concepts which is determined by whether
the hierarchical depth in the Metathesaurus is less than an empir-
ical distance. Each concept of the predications has the attribute of
novelty in the SemMedDB. We exclude predications that contain
non-novel concepts.

We then used the semantic schema to separate the treatment
predications from irrelevant predications. To do so, we excluded
predications that did not match one of the metapredications. For
example, the predication {Adrenergic beta-Antagonists PREVENTS
heart failure} matches the metapredication {Chemicals & Drugs
PREVENTS Disorders}, while predication {congestive heart failure
CAUSES cardiomyopathy, dilated} does not match any metapredi-
cations in the semantic schema.

Semantic schema for classifying treatment predications. The predication arguments in underline are the ones from which treatment concepts are extracted.

Categery  Subject Relation

Object

ANY semantic groups

Chemical & Drugs/Procedures/Devices/
Activities & Behaviors

Activities & Behaviors/Drugs/
Procedures/Devices

1 Chemicals & Drugs/Procedures/Devices/ ~ ADMINISTERED TO/AUGMENTS/AFFECTS/ASSOCIATED WITH/
Activities & Behaviors DISRUPTS/INHIBITS/TREATS/PREVENTS

2 ANY semantic groups USES

3" Chemicals & Drugs/Procedures/Devices/  COEXISTS WITH/compared withfsame as/INTERACTS WITH/
Activities & Behaviors METHOD OF/lower than/higher than

4 Chemicals & Drugs/Procedures/Devices/  ISA

Activities & Behaviors

Activities & Behaviors/Drugs/
Precedures/Devices

* For metapredications where the subject is Chemical & Drugs and the object is Devices, and vice-versa, only Chemical & Drugs concepts are extracted.
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3.1.5. Step 5: Extraction of disease-specific treatment concepts

After obtaining treatment predications, we extracted the con-
cepts in the subject or object according to the semantic schema
in Table 2. However, these extracted concepts could still be too
general for the disease of interest. To exclude general concepts,
we used an approach based on the assumption that concepts asso-
ciated with a large number of diseases (i.e.,, common concepts) are
likely to be general

In order to identify common concepts, we took all MeSH terms
(from UMLS Version 2014AB) with the semantic type of disorders
(N=5109), and repeated Steps 1, 2, and 4 above to generate
disease-treatment pairs. A subset of 2683 MeSH terms were asso-
ciated with disease-treatment pairs. Then, we analyzed the
retrieved treatment concepts and the number of associated disor-
ders for each treatment concept. If a treatment concept was asso-
ciated with more than an arbitrary threshold of 20% of disease
MeSH terms {N = 536), the concept was considered to be a com-
mon concept. Applying this criterion, we generated a set of 69
common concepts. Table 3 shows examples of common concepts.

3.1.6. Step 6: Concept ranking

Ranking concepts has three purposes. First, the ranking might
convey the information of the strength of the association. As we
know, some treatment concepts might have stronger association
with the disease of interest. For example, both “carvedilol” and
“fish oil" are retrieved as treatment of heart failure, however,
“carvedilol” is mentioned much more frequently in the literature
than fish oil as a treatment of heart failure. Second, ranking con-
cepts could make the true relevant concepts appear earlier in the
result list than the noise. Although the semantic schema are able
to filter some treatment-irrelevant information, noisy information
can still be introduced because the semantic schema was focused
on sensitivity. For example, given a disease of interest (ie., heart
failure), we extracted a treatment predication {Trastuzumab
TREATS Breast cancer metastatic}, where the concept “Tras-
tuzumab” was discussed as a cause of heart failure rather a treat-
ment. Last but not least, a ranked list could speed up the review
of automatically extracted concepts. The knowledge authers could
prioritize their work with the ranked output.

We explored four approaches to rank the concepts: occurrence,
interest, degree centrality, and weighted degree centrality.

(1) Occurrence: the frequency of the occurrence of a treatment
concept in the retrieved treatment predications for a given
disease of interest (Formula (1)}). The assumption is that
the more often a concept is mentioned in the context of
disease-specific treatment predications, the stronger the
confidence that it is as a treatment for the disease of interest.

Occurrence(t;, d} = a; (1}

Table 3
Sampled common concepts.

cul UMLS concept # of co-occurred diseases
0040808 Treatment Protocols 1445
C1273870 Management procedure 1418
1273869 Intervention regimes 1361
C0011900 Diagnosis 1326
C1533685 Injection procedure 1265
C0543467 Operative Surgical Precedures 1248
0184661 Pracedures 1201
0032042 Placebos 1193
0001617 Adrenal Cortex Hormenes 1172
C0728940 Excision 1081
C1522577 Follow-up 1083
€0185125 Application procedure 1064
C0023977 Long-term care 1041
C0220908 Screening procedure 989

where a; is the frequency of the occurrence of a concept t; in
the treatment predications.

{2) Interest: A treatment concept may have a high occurrence
score among the other extracted treatment concepts simply
because it frequently occurs in the entire database. However,
the relation between the concept and the disease of interest
can still be weak. Inferest is a measure that attempts to cor-
rect this weakness of occurrence, the idea of which is very
similar to the TF-IDF {term frequency inverse document fre-
quency) - a statistic that is intended to reflect how impor-
tant a word is to a document in a collection of corpus [39].
We define the interest is the ratio of the occurrence of a treat-
ment concept to the sum of the occurrence of all treatment
concepts retrieved for a given disease of interest divided
by logarithm of the ratio of the occurrence of a treatment
of interest to all treatment concepts in the database (see For-
mula {2}). The denominator is a simple way of measuring the
commonality of a concept.

M
Interest(t;, d) =L‘?‘; (2)
log (Ai/>" " Ai)

where a; is the frequency of the occurrence of a concept t; in
the treatment predications, A; is the total frequency of the
occurrence of the concept t; in the entire database, while M
is the total number of retrieved treatment concepts.

{3) Degree centrality: Occurrence-based statistics ignore the
linkage between concepts. Since the treatment predications
extracted in step 4 can form a graph, we analyzed the
formed network and use the centrality to identify important
vertices (ie., treatment concepts) within the graph. Degree
centrality is the simplest of many centrality approaches,
which measures the significance of the concepts in the graph
by counting their connectivity to other concepts. We do not
look at whether a concept is directly connected to the dis-
ease of interest or not; rather, we assess whether concepts
are in the center of the graph. The following formula was
used to calculate the degree centrality of a given concept
in the graph:

Cy(i) = Zx,j (3)

where iis the focal node, j represents all other nodes, N is the
total number of nodes, and x is the adjacency matrix, in
which the cell x;; is defined as 1 if node i is connected to node
Jj,and 0 otherwise. Zhang et al. have used degree centrality for
semantic abstraction summarization of therapeutic studies,
in which degree centrality was used to select important
nodes from a graph [37]. Ozgiir et al. also used degree cen-
trality for mining gene-disease association from biomedical
literature [40].

(4) Weighted degree centrality: Weighted degree centrality is
a harmonization between the frequency of occurrence and
degree centrality [41].

S

o
Co(iy=hi % (E) =k st

ki = Cp(i) (4)
N

Si=Chliy=>"w;
i

where k; is the degree centrality score of node i, or Cp(i) as
described in Formula (3). §; is the sum of weighted adjacency
matrix in which wy is the value that represents the weight of
the edge (i.e., the occurrence of a predication) between node i
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and node j. o is a positive tuning parameter that can be set
according to the research setting and data. We used o =0.5
in this study to harmonize the occurrence and the degree
centrality in one ranking.

3.2. Experiment

We conducted an experiment to test the following null hypothe-
ses: there is no difference in precision at top 100 extracted con-
cepts among the rankings produced by the four ranking
approaches in the pipeline-based algorithms (H1); and there is
no difference in precision at top 100 extracted concepts among
the rankings produced by the pipeline, predication, and MeSH-
based extraction methods (H2). In addition, we alse evaluated
the performance of the system against the manually extracted
treatment vocabulary with precision-recall curves.

3.2.1. Baseline approaches

We compared our approach with two baselines in terms of
extracting disease-specific treatment concepts from MEDLINE
citations.

Baseline 1: The Medical Subject Headings {MeSH) vocabulary is
used to index and catalog articles in MEDLINE. MeSH qualifier
terms, in conjunction with the MeSH main headings, offer a conve-
nience to group citations together when they are related to a par-
ticular aspect of a subject. For example, Platelet Aggregation
Inhibitors/therapeutic use indicates that the citation is about the
use of the drug class platelet aggregation inhibitors in the treatment
of a disease. After reviewing the qualifiers defined in the MeSH
Topical Qualifiers [42] and examples in the MEDLINE database of
how those qualifiers were used with the MeSH headings, we
selected the following qualifiers: “methods”, “instrumentation”,
“therapeutic use”, “pharmacology”, and/or “administration &
dosage”. For example, the qualifier “administration & dosage” is
defined as “used with drugs for dosage forms, routes of administra-
tion, frequency and duration of administration, quantity of medica-
tion, and the effects of these factors.”, a drug MeSH term could be
possibly assigned with the qualifier “administration & dosage”.
Based in their definition, the qualifiers “methods” and “instrumen-
tation” were used with procedures and techniques, including diag-
nostic procedures and therapeutic procedures. The qualifiers
“therapeutic use”, “pharmacology”, andfor “administration &
dosage” were used with drugs or chemical substances.

From the articles retrieved by Step 1, we were able to extract a
collection of MeSH terms associated with the therapeutic qualifiers
of interest. We then obtained the UMLS concepts for these MeSH
terms using the mappings established in the UMLS Metathesaurus.
Next, the resulting UMLS concepts were restricted using the same
semantic types and groups described in Table 1 in order to aveid
the inclusion of concepts not related to treatment. The remaining
concepts were ranked based on their frequency of occurrence.

Baseline 2: This baseline approach simply used the predications
to obtain disease-specific treatment concepts. We first extracted
the predications with the pattern of {Subject TREATS/PREVENTS
Object}, where the object is the disease of interest. We then
extracted all the concepts in the subject position. Thereafter, we
ranked the concepts based on their frequency of the occurrence
in the retrieved predications.

3.2.2. Validation of extracted concepts

We selected five diseases cases for hypothesis testing. Two dis-
eases, pulmonary embolism {PE) and rheumatoid arthritis {(RA),
were chosen from a previous study, for which we have developed
reference treatment vocabularies with 80 and 232 concepts
respectively. The reference vocabularies are available in BioPortal
as rheumatoid arthritis ontology (https://bioportal.bicontology.

orgfontologies/RAO) and pulmonary embolism ontology (https://
bioportal.bioontology.orgfontologies/PE). The other three diseases
(diabetes mellitus, asthma, and schizophrenia) were chosen from
a previous publication on knowledge extraction from existing
knowledge resources [18].

In order to measure the performance of different knowledge
extraction approaches, we validated the extracted concepts for
the selected diseases. This was done by comparing to reference
standards (for the two diseases with reference standards) and
manual review.

For automated comparison to reference standards, we used
exact matching and one-way hierarchical matching where any
extracted concepts that were children of reference concepts were
considered as positive. The hierarchical relationships were
obtained from the UMLS Metathesaurus MRREL and MRHIER
tables.

For manual review, the goal was to verify if false-positive con-
cepts according to the reference standard were indeed true-
positives or just gaps in the reference standard. For example, “tu-
mor necrosis factor-alpha inhibitor” {a drug class used to treat
rheumatoid arthritis) was extracted by our system as a treatment
for rheumatoid arthritis. However, this drug class was not present
in the reference standard. Upon review one of the source sen-
tences: “Tumour necrosis factor-alpha {TNFalpha) inhibitors are
effective agents in treating RA; however, their cost effectiveness
as first-line agents has not been investigated”, we confirmed that
“tumor necrosis factor-alpha inhibitor” is indeed a treatment for
rheumatoid arthritis. This review was done by one of the authors
(LW) with additional clinician review if such judgement could
not be made directly based on the source sentences.

3.2.3. Outcome medasures

The primary outcome for the two hypotheses was precision at K
and secondary outcomes were the overall precision and recall. Pre-
cision at K was the ratio of the number of “true positive” concepts
among the top K ranked concepts divided by K. We calculated the
precision at K for five testing diseases for different rankings and
algorithms. We choose the parameter K =100, believing that as
knowledge engineers, it is a fair amount of concepts that they
would go through. When calculating the precision at K, for diseases
having reference standards, we not only validated the extracted
concepts with the reference standards, but also manually verified
false positive concepts in case they were in fact correct concepts,
but missing in the reference standard. For three diseases without
reference standards, the top 100 concepts of each disease were
manually validated.

To evaluate ranked results, interpolated precision-recall curves
were plotted to visualize the trade-off between precision and
recall, where the precision and recall were calculated based on
the reference standards. The precision-recall curves also provided
a visual comparison among the ranks in the pipeline-based
approach and between the pipeline-based approach and the base-
lines. We plotted the interpolated precision-recall curves only for
the two diseases with reference vocabularies. An error analysis
were also conducted based on manual inspection of false-positive
and false-negative concepts.

3.2.4. Statistical analysis

To test the difference among the different rankings in the
pipeline-based system (H1), we first measured the top 100 preci-
sion obtained by four different rankings for five diseases. We then
calculated the mean precision for each ranking. We used analysis
of variance (ANOVA) to test the significance of the difference. For
pairwise comparisons, we used the Tukey honest significant differ-
ence (HSD) post-hoc test.
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The numbers of retrieved citations, predications, treatment predication, and treatment concepts for five testing diseases.

42

Test cases Citations Predications Treatment predications Candidate treatment concepts
Rheumatoid arthritis 11,263 53,039 26,914 1984

Pulmonary embolism 3031 12,820 5101 706

Diabetes mellitus 32,552 166,140 72,730 3873

Asthma 17,286 94,001 39,189 2385

Schizophrenia 6910 25,086 14,701 1018

Table 5

Exampled output for rheumatoid arthritis with ranking scores and sample source sentences.

Ccul Concept Semantic  Occurrence Interest DC  WDC Source sentences
type
C0025677 Methotrexate Phsu 4102 03095 394 1271.29 CONCLUSIONS: This study confirms previous observations from a dose-
ranging study showing that anakinra, in combination with MTX, is an effective
and safe treatment for patients with RA who have inadequate responses to
MTX alone
C0666743 Infliximab Phsu 1974 0.1724 212 64691 Infliximab therapy was also associated with improvements in health-related
quality of life in patients with Crohn's disease or rheumatoid arthritis
C0717758 Etanercept Aapp 1313 0.1263 148 440.82 CONCLUSION: Etanercept as monotherapy was safe and was superior to MTX
in reducing disease activity, arresting structural damage, and decreasing
disability over 2 years in patients with early, aggressive RA
0242708 Antirheumatic Phsu 940 0.1002 158 385.38 Early diagnosis and treatment with disease-modifying antirheumatic drugs
Drugs, Disease- (DMARDs) are necessary to reduce early joint damage, functional loss, and
Modifying mortality
€0393022 Rituximab Aapp 1004 0.0844 125 35426  CONCLUSIONS: Evidence from RCTs suggests that RTX and ABT are more

effective than supportive care

DC = degree centrality; WDC = weighted degree centrality; phsu = pharmaceutical substance; aapp = amino acid, peptide, or protein; MTX = methotrexate; RA = rheumatoid
arthritis; RTX = rituximab; ABT = abatacept; RCTs = randomised controlled trials.

Table 6
Top 100 precision for treatment concepts extracted for five diseases.

Diseases Top 100 precision
Pipeline-based B1 B2
Occurrence Interest DC WwDC
Rheumatoid arthritis 0.87 0.89 0.82 0.84 0.56 0.76
Pulmonary embolism 0.63 0.66 0.65 0.63 0.31 038
Diabetes mellitus 0.78 0.82 0.66 0.75 0.46 0.54
Asthma 0.8 0.81 0.76 0.81 0.54 0.66
Schizophrenia 0.81 0.83 0.74 0.77 0.31 0.62
Mean precision 0.78 0.80 0.73 0.76 0.44 0.59
Std. deviation 0.089 0.085 0.071 0.081 0.121 0.142
95% Confidence interval (0.67, 0.89) (0.70, 0.91) (0.638, 0.814) (0.66, 0.86) (0.29, 0.59) (0.41,0.77)

DC = degree centrality; WDC = weighted degree centrality; B1 = MeSH-based baseline; B2 = predication-based baseline.
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Fig. 3. 95% family-wise confidence level for the difference of the precision of top 100 concepts between the pipeline-based system and the Predication-based system.

To test the difference between the pipeline-based system vs.
predication-based system and the pipeline-based system vs. the
MeSH-based approach (H2), we calculated the mean top 100 preci-

sion for the two baselines across the same five diseases. We used
ANOVA to test the significance of the differences between
pipeline-based system and predication-based approach, followed
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Fig. 4. 95% family-wise confidence level for the difference of the precision of top 100 concepts between the pipeline-based system and the MeSH-based system.
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Fig. 5. Weighted graph of exampled treatment concepts for asthma.

by the Dunnett post-hoc test for comparisons between the four
ranks in the pipeline-based system with the control (or the base-
line). In the same way, we tested the significance of difference
between the pipeline-based system and the MeSH-based approach.
All statistical analyses were based on a significance level of 0.05
and were performed with R version 3.2.5.

4. Results
4.1. System outputs on five diseases

Table 4 shows the number of citations, predications, treatment
predications, and treatment concepts retrieved from each step for
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Fig. 6. Weighted graph of exampled treatment concepts for diabetes mellitus.

the five test diseases. The number of retrieved citations varied by
disease. On average, each citation was able to generate 4-5 predi-
cations, and less than half of those predications were treatment
predications. The number of candidate treatment concepts also
varied based on the disease of interest.

Table 5 shows sample output from the pipeline-based system
for rheumatoid arthritis. The output consists of the following attri-
butes: UMLS CUI, concept name, semantic type, four ranking scores
(occurrence, interest, degree centrality, and weighted degree central-
ity), and sentences extracted from the abstract and titles of the
published articles.

4.2. Performance of pipeline-based algorithims versus baselines

Table G shows the precision of the top 100 treatment concepts
extracted by the pipeline system and baselines on five diseases:
rheumatoid arthritis, pulmonary embolism, diabetes mellitus, Alz-
heimer's disease, and asthma.

In the pipeline-based approaches, the difference among occur-
rence, interest, degree centrality, and weighted degree centrality
was not significant (mean top 100 precision =0.78 vs. 0.80 vs.
0.73 vs. 0.76; p=0.53).

According to the ANOVA test, there was a significant difference
in mean precision at top 100 among the pipeline-based and
predication-based approaches (occurrence 0.78 vs. interest 0.80 vs.
degree centrality 0.73 vs. weighted degree centrality 0.76 vs.

predication-based 0.59; p=0.022). With the HSD post-hoc test,
three ranks (i.e., interest, occurrence, and weighted degree centrality)
in the pipeline-based system significantly outperformed the
predication-based baseline (see Fig. 3), while no significant differ-
ence was found between the degree centrality and the predication-
based baseline. According to the ANOVA test, there was a signifi-
cant difference in mean precision at top 100 among the pipeline-
based and the MeSH-based baseline (occurrence 0.78 vs. interest
0.80 vs. degree centrality 0.73 vs. weighted degree centrality
0.76vs. MeSH-based 0.44; p < 0.0001). With the HSD post-hoc test,
the pipeline-based approach with all four ranks significantly out-
performed the MeSH-based approach (see Fig. 4).

Figs. 5 and 6 provide a visualization of the treatment vocabular-
ies generated by the pipeline-based system for asthma and
diabetes.

4.3. Precision-recall curves

The precision-recall curves compared the performance of the
different approaches against the manually developed reference
vocabularies. Fig. 7 shows the interpolated precision-recall curves
on rheumatoid arthritis and pulmonary embolism. By including all
extracted concepts, the recall of rheumatoid arthritis was 0.59,
and the recall of pulmonary embolism was 0.66. Recall for the
pipeline based approach was less than 1 for both diseases,
indicating that the automated system captured only a subset of
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the concepts in the gold standard. The predication-based baseline
approach reached a recall of 0.58 for rheumatoid arthritis and
0.56 for pulmonary embolism while, the MeSH-based baseline
reached a recall of 0.34 for both pulmonary embolism and rheuma-
toid arthritis.

4.4, Error analysis

We identified 143 false negative concepts for rheumatocid
arthritis, and 43 false negative concepts for pulmonary embolism.
All these false negative concepts were included in the error analy-
sis. We identified over two thousand false positive concepts for
these two diseases and analyzed the false positive concepts among
the top 100 ranked concepts of each disease retrieved by any of the
ranks, which resulted in 47 false positive concepts for rheumatoid
arthritis and 76 for pulmenary embolism.

Three main reasons could be attributed to false negative con-
cepts or lowered recall: (1) about one third of the reference con-
cepts were not present in the extracted sentences and
predications (e.g., “fluindione” and “lanoteplase” for pulmonary
embolism). A few false negative concepts were missed because
their semantic types were not included in the semantic schema
of the automated system, such as ‘systemic’ and ‘nutritional’. (2)
One third of the reference concepts existed in the extracted cita-
tions and sentences, however were missed because they were
not captured by SemRep. For example, in “Tai Chi and yoga are

complementary therapies which have, during the last few decades,
emerged as popular treatments for rheumatologic and muscu-
loskeletal diseases” two predications were extracted: {Comple-
mentary therapies TREATS Rheumatologist} and {Complementary
therapies TREATS Musculoskeletal Diseases}; however, ncne of
the predications included the relevant concepts “Tai Chi" and
“yoga". (3) One third of reference concepts were missed because
equivalent annotations were mapped to UMLS CUIs with different
granularity in the reference vocabulary. For example, ‘resistance
training’ was mapped to 0872279 (Resistance Training) in the ref-
erence standard, but was mapped to C0814409 (Resistance educa-
tion) in SemMedDB. The reference was more likely to include the
entire annotation as a concept while SemRep mapped more gran-
ular fragments to UMLS concepts. For example, from the sentence
“in this systematic review, outcomes for total wrist fusion were
comparable and possibly better than those for total wrist arthro-
plasty in rheumatoid patients”, SemRep extracted the predication
{Arthroplasty TREATS Patients}, while in the reference the “total
wrist arthroplasty” was mapped to (0408314 (total wrist
arthroplasty).

Several reasons were attributed to false positive concepts or
lowered precision. (1) Among the analyzed false positive concepts,
40% were correct disease-specific treatments that were missing in
the reference vocabularies. Examples include “methotrexate treat-
ment”, “tumor necrosis factor therapy”, and “Hip Replacement,
Total” for rheumatoid arthritis; and “Prescription of prophylactic

A. Interpolated precision-recall curve for rheumatoid arthrits
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anticoagulant”, “Prescription of prophylactic anticoagulant™,
“Compression Stockings”, and “Angioplasty, Balloon” for pul-
monary embelism. (2) Many false positive concepts were biomark-
ers of tests and assessments for treatment moenitoring, usually with
the semantic type of “amine acid, peptide, or protein”. Examples
include “neurchormonal factor”, “N-terminal pro-B-type natri-
uretic peptide”. (3) The false positive concepts could be studied
as adverse events or risk factors for the disease of interest. Espe-
cially for pulmonary embolism, many false positive concepts were
related to complications of certain procedures or medications that
increase the risk of pulmonary embolism, such as “Arthroplasty”,
“Repair of hip”, “Splenectomy"”. (4) False positive concepts were
also caused by errors introduced by NLP tools. For example, from
the sentence “this indicates that the MHAQ and RA-HAQ generally
fail to identify appropriately the extent of functional loss in RA",
the predication {Ametantrone TREATS Rheumatoid Arthritis} was
extracted, where “HAQ" {Health Assessment Questionnaire) was
incorrectly mapped to “ametantrone”.

5. Discussion

In this study, we developed a pipeline-based knowledge extrac-
tion system to automatically generate disease-specific treatment
vocabularies from the biomedical literature. The system is
designed to retrieve disease-specific treatment-related articles,
predications, and a ranked list of concepts. Comparing to a
MeSH-based and a predication-based concept extraction
approaches, our system had significantly higher precision for
extracting the top 100 concepts. We also compared different algo-
rithms ranking the extracted concepts; there was no significant
difference among four ranks. Our system achieved an average pre-
cision of 0.8 for the top 100 concepts. We conclude that this
pipeline-based system could be useful in generating disease-
specific treatment vocabulary from the biomedical literature for
building disease-specific ontologies. Besides, manual review of
the system output would be necessary in order to generate a
high-quality treatment vocabulary from these automated gener-
ated concepts. As an individual without much clinical background,
we estimated the time for judging the relevance of the treatment
concepts to the disease of interest by reading the crigin sentences
and citations, which is about one minute per concept. Comparing
to manually acquisition, this could be much more efficient.

We reported that the pipeline system has achieved an average
precision of 0.80 ranked by interest based on five test diseases.
However, as the results show, for well-studied diseases (e.g.,
rheumatoid arthritis) with many associated biomedical articles,
the system would have higher precision, while for those with less
articles {e.g., pulmonary embolism), their precision is relatively
lower. Therefore, the reported performance would not reflect the
system’s performance on diseases that have not been extensively
investigated, such as new or rare diseases.

Our system has achieved a relatively low recall based on two
test diseases {i.e., pulmonary embolism and rheumatoid arthritis).
Based on the error analysis in Section 4.4, approximately two
thirds of the false negative concepts were probably attributed to
the relation extraction tool we have used. However, there exist
many other approaches aimed at extracting semantic relations
from the bicmedical literature or web documents, and some of
them were also used UMLS andfor MetaMap [43]. Therefore, our
system may gain further recall by incorperating the output of other
relation extraction approaches or tools as secondary knowledge
sources in addition to the SemMedDB to our proposed pipeline
process.

Although the automated generated vocabulary was not able to
identify 100% of the concepts in our manually generated reference

vocabularies, the automated approach was able to extract some
relevant treatment concepts that were missing in these reference
vocabulary. This included cases of concepts with finer granularity
or new information that was not included in the guidelines, text-
books, or online documents used to build the reference vocabular-
ies. What's more, rather than starting from scratch, we build our
system upon publically available resources, such as PubMed Clini-
cal Queries, MEDLINE citations, and SemMedDB. In addition, we
developed semantic schemas for treatment from an existing
disease-specific treatment vocabulary to filter treatment predica-
tions rather simply relying on predicates such as “TREATS” or
“PREVENTS". In this way, more information could be captured,
for example, the evidence about the comparison between two
medications can also be identified.

The main contribution of our study lies in three areas; the tuned
selection of articles, the filtering of predications from millions of
predications in the SemMedDB, and the ranking of concepts speci-
fic to the disease of interest. As Fig. 7 shows, predication-based
approach has lower precision comparing to the pipeline system,
which indicates that purely using SemRep predications would
require much more review effort. In addition, the MeSH-based
approach have lower recall comparing to the pipeline system,
which indicates that using MeSH heading in the MEDLINE citations
would not result as good coverage of the treatment vocabulary as
using the pipeline system.

Our approach is innovative in two ways. First, compared to pre-
vious studies [18,22], we not only retrieve disease-specific phar-
maceutical substances, but also other types of treatment, such as
procedures, devices, and activities. In terms of disease-drug pairs,
it is interesting to compare the results with previous studies
[18,22]. However, we found such comparisons to be difficult since
there were substantial differences in study goals, evaluation meth-
ods, and reference standards. In a simple comparison to the work
of Chen et al. [18], our study found a greater number of disease-
relevant citations and disease-drug pairs. Comparing to Xu's work
[22], we have achieved a similar recall at a precision of 0.80, with
the caveat that the reference standards used in both studies were
different. Second, we were able to collect the source sentences
and PubMed citations related to the disease-specific treatments.
This could be useful for anyone who are interested in expanding
their knowledge on a specific treatment. The extracted concepts
also provide an index for over thousands of disease-specific
treatment-related citations and sentences from MEDLINE.
Researchers or clinicians can use this index to trace the evidence
in the biomedical literature of a specific treatment for the disease
of interest.

Our proposed approach was designed to be generalizable to
other disease domains, such as diagnostic tests, signs, and symp-
toms. Yet, some adaptation is necessary including developing
specific semantic schemas and defining common concepts for
other disease domains. The same approach used to develop the
semantic schema and define common concepts in the present
study can be followed to adapt the algorithms to other disease
domains.

The study has several limitations. First, the semantic schema for
extracting treatment predications and concepts were developed
based on a reference vocabulary of one disease (ie., heart failure),
and might not be generalize to some types of disease. Second, we
defined a list of common concepts to be filtered from extracted
treatment concepts in Section 3.1.4. The selection of common con-
cepts is based on an arbitrary cut-off threshold. Third, as the algo-
rithm evaluation demonstrated, our reference standards had gaps
in coverage and therefore were not perfect. Last the approach to
judging the correctness of extracted concepts for diseases without
a reference vocabulary was not as rigorous as the approach used to
develop the reference vocabularies.
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6. Conclusions

We investigated a pipeline-based approach to extract disease-
specific treatment concepts from the biomedical literature to assist
the development of disease-specific vocabularies. The pipeline-
based approach obtained a mean precision of 0.8 for the top 100
retrieved concepts, which was significantly higher than two base-
lines. The performance of four ranking strategies (e.g., occurrence,
degree centrality, weighted degree centrality, and interest) was not
statistically significant different. In the future, we intend to extend
the system to extract concepts on other disease aspects, including
signs, symptoms, and diagnostic tests.
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CHAPTER 5

USING CLASSIFICATION MODELS FOR THE GENERATION OF
DISEASE-SPECIFIC MEDICATIONS FROM BIOMEDICAL

LITERATURE AND CLINICAL DATA REPOSITORY

Reprinted with permission from Wang L, Haug PJ, Del Fiol G. Using classification
models for the generation of disease-specific medications from biomedical literature and

clinical data repository. Journal of Biomedical Informatics. 2017;69:259-266.

5.1 Abstract

Mining disease-specific associations from existing knowledge resources can be
useful for building disease-specific ontologies and supporting knowledge-based
applications. Many association mining techniques have been exploited. However, the
challenge remains when those extracted associations contained much noise. It is
unreliable to determine the relevance of the association by simply setting up arbitrary cut-
off points on multiple scores of relevance; and it would be expensive to ask human
experts to manually review a large number of associations. We propose that machine-
learning-based classification can be used to separate the signal from the noise, and to
provide a feasible approach to create and maintain disease-specific vocabularies.

We initially focused on disease-medication associations for the purpose of
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simplicity. For a disease of interest, we extracted potentially treatment-related drug
concepts from biomedical literature citations and from a local clinical data repository.
Each concept was associated with multiple measures of relevance (i.e., features) such as
frequency of occurrence. For the machine purpose of learning, we formed nine datasets
for three diseases with each disease having two single-source datasets and one from the
combination of previous two datasets. All the datasets were labeled using existing
reference standards. Thereafter, we conducted two experiments: 1) to test if adding
features from the clinical data repository would improve the performance of classification
achieved using features from the biomedical literature only, and 2) to determine if
classifier(s) trained with known medication-disease data sets would be generalizable to
new disease(s).

Simple logistic regression and LogitBoost were two classifiers identified as the
preferred models separately for the biomedical-literature datasets and combined datasets.
The performance of the classification using combined features provided significant
improvement beyond that using biomedical-literature features alone (p-value<0.001). The
performance of the classifier built from known diseases to predict associated concepts for
new diseases showed no significant difference from the performance of the classifier built
and tested using the new disease’s dataset.

It is feasible to use classification approaches to automatically predict the
relevance of a concept to a disease of interest. It is useful to combine features from
disparate sources for the task of classification. Classifiers built from known diseases were

generalizable to new diseases.



50

5.2 Introduction

The biomedical literature and electronic medical records offer great opportunities
for acquiring disease-specific medical knowledge. Automated extraction of disease-
medication associations from these knowledge sources can speed the process of building
disease-specific concept vocabularies which could be further used for various clinical
applications, such as automated annotation of biomedical text [1,2], identification of
diseased cohorts [3], and development of diagnostic models [4]. In the present study, we
propose an approach for automated extraction of disease-concept associations from the
biomedical literature and a clinical data repository (CDR). The approach uses machine
learning classification models to predict the relevance of concepts to the disease of
interest. The approach is developed based on former studies [5—8] and it overcomes a
common challenge faced in these studies, which is to use the metrics of relevance of the
disease-concept associations to effectively decrease the manual efforts necessary to
review noisy collections of associations in order to build disease-specific concept
vocabularies. To build classification models, we evaluated the proposition that combining
features derived from a clinical data repository with those from the biomedical literature
would result in better performance than using features from a single source. We also
conducted an exploratory assessment of the model’s generalizability in predicting the

disease-concept associations extracted for other diseases.

5.3 Background and Significance

Dozens of studies have investigated techniques for extracting disease-concept
associations from the biomedical literature and electronic medical records. The concepts

studied have included associated genes [9], signs and symptoms [10], findings [11],
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medications [7,8], and lab tests [7]. Numerous knowledge acquisition techniques have
been proposed to extract relational information, including co-occurrence-based statistics
[7,8,11], natural language processing (NLP) [12,13], graph theory [9,14], and others
[15,16]. Zeng and Cimino retrieved disease-chemical relationships from the UMLS co-
occurrence table (MRCOC) simply based on the co-occurrence of MeSH terms assigned
to published articles[17]. Cao et al. used NLP and co-occurrence statistics (i.e., chi-
square statistics and the proportion confidence interval) to extract disease-finding
associations [11]. Chen et al. applied similar techniques to extract disease-drug pairs
from PubMed® citations and clinical documents [8]. In those studies, NLP techniques
have been used mainly for named entity recognition when the sources of the data were in
“free-text” form. In addition, Rindflesch et al. developed a rule-based system called
SemRep that extracts the semantic relations between the concepts identified in a
particular sentence in the biomedical literature [12,18]. For example, given the sentence
“a randomized trial of etanercept as monotherapy for psoriasis”, a semantic predication
was generated: etanercept TREATS psoriasis. Bundschus et al. explored using
conditional random fields to identify the semantic relations between disease and
medications and between disease and genes in biomedical text [15]. Xu and Wang used a
pattern-learning approach to extract disease-drug and disease-disease risk pairs from
biomedical abstracts [16,19]. In addition, the authors of the present study have developed
a pipeline-based system which combines multiple techniques (i.e., document retrieval,
SemRep, UMLS semantic network, and co-occurrence-based statistics) to extract disease-
specific treatments (including medications, surgical procedures, medical devices, and

activities) from biomedical titles and abstracts [6]. More details about this work can be



52

found in section 3.1.

Existing statistically-based automated extraction techniques score the disease-
concept candidate set allowing some reduction in noise, but leaving behind a large
number of “bad” concept-disease pairs. The precision can be very low when focusing on
high recall. For example, in a previous study, when counting all retrieved treatment
concepts, we achieved a precision of less than 0.3 on two test diseases when comparing
to manually-created reference vocabularies [6]. The challenge escalates when facing
hundreds or thousands of concepts extracted for each disease in light of low precision.
Ultimately, filtering out false-positives requires manual expert review, which is costly
and time-intensive.

Disease-concept associations extracted by automated techniques have been
assigned statistical scores, such as frequency of occurrence, which may provide some sort
of indication for the strength of the relationship between the disease of interest and
extracted concepts. Researchers previously investigated potential approaches to set
proper thresholds based upon those statistical scores to identify a subset of important
associations for further investigation. For example, Cao et al. explored using the volume
test of Diaconis and Efron to identify thresholds using the chi-square score [20].
However, choosing cut-off points on these statistical scores is either empirical or
arbitrary, and it would not generally apply well to a situation where extracted concepts
are assigned multiple scores.

To determine the relevance of extracted concepts to the disease of interest is a
binary classification issue. To address the above challenge, machine-learning-based

classification techniques can possibly be used to predict the relevance of extracted
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disease-concept associations based upon the multiple statistical scores. This would
eliminate a significant number of irrelevant concepts and keep a subset of “interesting”
concepts for further investigation.

To develop an appropriate classification model, we considered two important
questions: (1) what features should be used to build the model; and (2) how generalizable
is the model?

Disease-specific associations could be extracted from different sources by
multiple techniques, which generate different kinds of measures of relevance (i.e.,
features). For example, in a prior study, we used four scoring strategies (i.e., frequency of
occurrence, interest, degree centrality, and weighted degree centrality) to extract disease-
treatment associations from the biomedical literature [6]. Wright et al. applied five co-
occurrence-based statistics (i.e., support, confidence, chi square, interest, and conviction)
to extract disease-medication and disease-lab test associations from the electronic
medical records [7]. Studies have shown that combining the results of extraction by
different techniques/queries from a single source led to progressively improving retrieval
performance [21-23]. Other studies also show that the results of extraction from the
different sources are somewhat complementary [5,8]. With these findings in mind, we
assumed that by combining the measures of relevance generated by different techniques
from different sources (i.e., the biomedical literature and a CDR) as features within a
classification system, the performance of the classifiers may be improved compared to
using a single feature or features only from a single source.

The generalizability of the classification model is important because it is difficult

and expensive to build a classifier for each disease. However for different diseases, the
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range and distribution of the value of the relevance measures may be different. This could
affect the performance of a classifier when trained and tested on different disease
datasets. We measure the generalizability of the classifier by determining if a classifier
trained and tested on different disease’s datasets achieved as good performance as the
classifier trained and tested on the same disease’s dataset.

The ultimate goal of this study is to develop machine learning classifiers that
could reduce the manual effort necessary to review noisy collections of disease-specific
concepts. To achieve this goal, in the present study, we initially focused on disease-
medication associations, and searched for classification models appropriate to predict the
relevance of groups of medications to a specific disease. The models were designed to
incorporate multiple statistical scores. We assessed two research questions: (1) Would
adding the features from the CDR improve the performance of models that used features
from biomedical literature only; (2) Would models built from known disease-medication

associations be effective in predicting disease-medication associations for new diseases?

5.4 Materials and Methods

The study methods consisted of the following steps (see Figure 5.1): (1)
extraction of disease-specific medications from the biomedical literature; (2) extraction of
disease-specific medications from a local CDR; (3) preparation of datasets for
classification, including merging the datasets from the disparate sources and validating
disease-medication associations using reference standards; (4) searching for preferred
classifiers for different datasets; and (5) statistical analysis. The reference standards in
Figure 5.1 are the reference vocabularies we built in a prior study for three diseases (i.e.,

heart failure, pulmonary embolism, and rheumatoid arthritis) [5].
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3. Concepts 4. Preferred
L Vocab_ulary =—r=p merging and =P classification
extraction validation model selection
2. Vocabulary 5. Statistical
extraction analysis

Reference standards

Figure 5.1. Workflow for testing supervised learning of classification models to generate
disease-specific reference vocabularies from the biomedical literature and the CDR.

5.4.1 Association Extraction from the Biomedical Literature

In an earlier study, we developed a pipeline-based system to extract disease-
specific treatment concepts from MEDLINE citations [6]. That pipeline system consists
of several sequential steps, including citation retrieval, predication extraction, treatment
predication and concept extraction based on a semantic schema, and relevance ranking. In
the citation retrieval step, we developed our PubMed queries based on PubMed Clinical
Queries to retrieve disease-pertinent, treatment-related citations from the entire
MEDLINE database. The sentences in those retrieved citations are then parsed into
predications, which are semantic relations in the form of a triple subject predicate object
(e.g., Chronic Obstructive Airway Disease AFFECTS Left Ventricular Function).
Treatment predications are semantic relations that match a predefined semantic treatment
schema, which is a set of rules that define which predications are valid treatment
predications. For example, the predication Captopril TREATS Congestive heart failure

matches the semantic schema Pharmaceutical Substance TREATS Disease or Disorder.
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In the next step, the treatment concepts (e.g., Captopril) are extracted from the retrieved
treatment predications.

In the last step, the extracted concepts are assigned four different scores: (1)
occurrence, which is the frequency of the concept in the treatment predications; (2)
interest, which is the ratio of the occurrence of a treatment concept to the sum of the
occurrences of all treatment concepts retrieved for a given disease of interest divided by
the ratio of the occurrence of a treatment of interest to all treatment concepts in the
database; (3) degree centrality, which measures the significance of the concepts in the
graph by counting their connectivity to other concepts; and (4) weighted degree
centrality, which is a harmonization between the frequency of occurrence and the degree
centrality. These four scores, when used independently, were not significantly different in
terms of the mean precision of the top 100 ranked concepts.

The treatment concepts returned from the pipeline-based system broadly covered
the semantic groups of procedures, chemicals & drugs, activities & behaviors, and
devices. In the present study, as we focused on medications, we further limited the
returned concepts to those whose source terminology was “RXNORM” and whose term
type was “IN” (ingredients). The four relevance scores described above were generated

for each concept.

5.4.2 Association Extraction from CDR
For mining disease-medication associations from a local CDR, we adapted the
approach proposed in [7] which resulted in 89.2% accuracy for the top 500 disease-drug
associations. The approach first uses frequent item set mining to locate commonly co-

occurring items in a database, and then uses association rule mining to identify the
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direction of the associations. Thereafter, co-occurrence-based statistics are applied to sort
the disease-lab test and disease-medication associations from electronic health records.

For mining frequent item sets, the Apriori algorithm was used [24]. Apriori was

designed to operate on databases of transactions. For example, consider a transaction in
the grocery store as a set of items purchased by the customer during one visit to the store;
a large collection of these transactions could be used to identify associations between
purchased items. In the clinical setting, a transaction would be a set of diagnoses,
medications, procedures, and lab tests associated with a patient in a clinical encounter.
From a database with millions of transactions, we simply count the number of
transactions in which the disease of interest and the medications co-occurred. With each
two-item set, a two-by-two table can be constructed (Table 5.1), where a is the number of
transactions in which X and Y co-occurred, b is the number of transactions that contain X
but not Y, ¢ is the number of transactions that contains Y but not X, and d is the number
of transactions that contain neither X nor Y.

From Table 5.1, the following statistical measures were calculated:

1. Support (X, Y) is simply the number of transactions in which item X and Y
co-occur. It is based on the underlying assumption that two associated
concepts are more likely to appear together than pairs of unrelated concepts.

Support(X, Y)=a (D)

2. Confidence (X, Y) is the proportion of all transactions that contain X that also
contain Y. It provides a way to account for the directionality of associations.
Take an example in [7], in confidence (insulin, diabetes), the proportion of

patients who have been prescribed insulin and have diabetes would be
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Table 5.1
Two-by-two contingency table for the frequent items X and Y. X is the disease of interest
and Y is the medication co-occurred with X.

Y Y’
X a b
X’ c d

different from confidence (diabetes, insulin), which is the proportion of
patients with diabetes who have been prescribed insulin.
Confidence = a/(at+b) (2)
3. Interest (X, Y) is the proportion of confidence (X-2>Y) divided by the
proportion of all transactions that contain Y. It accounts for the weakness of
confidence when Y is highly occurrent in the database.
Interest = [a/(a+b)] / [(at+b)/(a+bt+c+d)] = a*(at+btc+d)/(at+b)? 3)
4. Chi-square (X, Y) is a statistical test that measures the significance of the
association between X and Y.
Chisq = (a*d-b*c)* * (a+b+c+d)/[(a+b)*(c+d)*(b+d)*(atc)] 4)
We used clinical data from Intermountain Healthcare, a regional US healthcare
provider which consists of 22 hospitals and over 150 clinics. The patient data collected
from these hospitals and clinics is stored in an enterprise data warehouse (EDW).
Intermountain also maintains a database called the analytic health repository (AHR),
which is a subset of the EDW that contains commonly accessed classes of medical data
(e.g., patient, diagnosis, prescription, lab tests, procedures) expressed using standard

medical terminologies such as ICD-9, LOINC, and SNOMED CT [4]. In the present
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study, we used diagnoses and medication data at the encounter level from the AHR and
restricted the query timeframe to between 01/01/2008 and 12/31/2010.

Our approach differed slightly from the one proposed in [7]. We built a database
table of transactions that combined the information of medications and diagnosed
problems at the encounter level, while Wright et al. created the transactions at the patient
level. We assumed that the drugs prescribed to a patient were more specific to the
problems diagnosed and managed in that particular encounter. In the transactions table,
each transaction corresponded to a patient encounter, and included all prescribed
medications and diagnostic codes that happened as a part of that patient encounter. The
AHR drug prescription table does not have any encounter information, but we linked the
medication prescriptions to a specific encounter by checking whether the prescription
time falls within the specific time frame of an encounter for the targeted patient.

In order to extract treatment concepts that match the concepts extracted from the
biomedical literature, we converted the original codes of medication to UMLS CUIs. The
prescribed drugs were coded in First Data Bank codes which were also mapped to the
RxNorm codes. Besides, the drugs were recorded at the clinical drug level (SCD)
{ingredient+strength+dose form} (e.g., Lisinopril 5 mg oral tablet) of RxNorm. We
convert the concepts to the ingredient level through the “ingredient of” RxNorm
relationship. For example, ‘Lisinopril’ is the ingredient of ‘Lisinopril 5 mg oral tablet’.
Multi-ingredient drugs were decomposed into their individual ingredients. All the
ingredients were mapped to UMLS concepts through querying the UMLS MRCONSO
table. The diagnoses were coded using ICD-9-CM codes; we kept the original codes in

the transactions table. In final, we built a table containing over 10 million transactions to
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support frequent item sets mining and calculate statistical scores for extracted disease-
medication associations.

We focused on extracting medications associated with a specific disease of
interest. However, sometimes children concepts (e.g., ICD9 codes 428.0, 428.1, 428.2) as
opposed to the exact disease of interest (e.g., heart failure) are present in the database of
transactions. To address these cases, we expanded the disease of interest to include its
children concepts. As a result, the cell a in Table 5.1 was calculated as the sum of the

number of transactions containing X and Y or the children concepts of X and Y.

5.4.3 Dataset Preparation

Supervised learning requires a labeled dataset from which to build classifiers. In a
previous study, we manually created reference vocabularies for heart failure
(https://bioportal.bioontology.org/ontologies/HFO), rheumatoid arthritis
(https://bioportal.bioontology.org/ontologies/RAQ), and pulmonary embolism
(https://bioportal.bioontology.org/ontologies/PE) [5]. We chose these three diseases for
our study. All three reference vocabularies contain a near-saturated set of disease-
associated treatments (e.g., medications, surgical therapy), where the near saturation is
defined as finding <5% new concepts with the introduction of a new knowledge source
(e.g., textbook) [5]. In the present study, since we focused on disease-medication
associations, we formed a subset of each vocabulary containing only medication
treatments (see supplements for an example of heart failure-related medication concepts).
The majority of concepts were represented as UMLS concept unique identifiers (CUISs);
concepts that could not be mapped to a UMLS CUIs were excluded from the study. These

reference vocabulary subsets were used to create labeled datasets.
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For the dataset features, we first extracted two lists of disease-specific
medications separately from the biomedical literature and the CDR through the
approaches introduced in sections 5.4.1 and 5.4.2. Second, we created another list of
medications for each disease by merging the medications extracted from two sources,
while keeping their original features: four features from the biomedical literature (i.e.,
occurrence, interest, degree centrality, weighted degree centrality) and four features from
the CDR (i.e., support, confidence, chi-square, and interest). If a concept only had feature
values from one source, the values of the features from the other source were marked as
missing values. Then, we labeled each concept by comparing the concept to the the target
subset of reference vocabulary with exact mapping. A concept that was in a disease’s
reference standards was labeled as reference positive (“RefPos”), and a concept that was
not found in the disease’s reference standards was labeled as reference negative
(“RefNeg”). More details about these datasets can be found in section 5.5.1. Thereafter,
the data was organized into a standard format, called Weka attribute-relation file format

(ARFF) (http://weka.wikispaces.com/arff) and fed to Weka for further analysis.

In total, we created nine datasets based upon these three diseases where each
disease had three datasets: one from the biomedical literature, one from a local CDR, and

the third one from the combination of these two datasets.

5.4.4 Searching for Preferred Classification Models
Machine learning environments provide a variety of classification algorithms that
can be used to build predictive models for disease-medicine associations. In this study,
we have three kinds of datasets. Each dataset has slightly different feature sets, which

may favor different models. We used the three heart failure datasets to search for
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effective classification models. We used the rheumatoid arthritis and pulmonary
embolism datasets for testing the chosen classification models.

To identify useful classifiers, we applied Weka, a general purpose, open-source,
data mining toolkit, which includes over 50 classifiers in version 3.7, as well as a variety
of data transformation and feature selection algorithms [25]. In this study, we did not
explore all the classifiers available; instead, we focused on a subset of commonly-used
classifiers.

First of all, we included three ensemble-based classifiers: adaptive boosting M1
(ADB) [26], LogitBoost (LGB) [27]), and bagging (BAG) [28]. Ensemble methods are
learning algorithms that construct a set of classifiers (such as neural networks or decision
trees) then classify new data points by taking a weighted vote of their predictions [29].
Previous research has shown that an ensemble is often more accurate than any of the
single classifiers in the ensemble [29]. Ensemble approaches generally refer to two kinds
of learning techniques (i.e., boosting and bagging). Two of the three classifiers we chose
use the boosting approach and one uses bagging. Each ensemble-based classifier requires
a specific base classifier. In our study, we chose the classic “decision stump” classifier (a
machine learning model consisting of a one-level decision tree) for two boosting
approaches, and a decision tree classifier for the bagging approach.

Second, we included a typical lazy and memory-based learning approach called
locally weighted learning (LWL). LWL was introduced by Atkeson ef al. in 1997 and is
based on a locally weighted linear regression [30]. The “decision stump” classifier was
used as the base classifier and the “brute force” search algorithm was used for nearest

neighbor search. In addition, four single classifiers were chosen, including: Bayes
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Network (BYN) [31], multilayer perceptron (MLP), simple logistic regression (SLR)
[32], and random forest (RDF) [33]. This approach provided experience with a variety of
classification algorithms. Weka’s default parameters were used for all of those classifiers.
To compare among the classification models, we used the area under the receiver
operating characteristic (ROC) curve (AUC) as a single measure of a classifier’s
performance for evaluating which model is better on average. AUC is a general measure
of effectiveness often preferred over other measures (e.g., accuracy) in comparing
classifiers [34,35]. We calculated the mean AUC for each model in three heart failure
datasets using 10 repetitions of 10-fold cross-validation [36]. In addition, we calculated
the 95% confidence interval for the mean AUC. Here, we report the top five classifiers

based on their mean AUC with their 95% confidence intervals.

5.4.5 Statistical Analysis
After found the best classification model for each kind of dataset, we conducted

exploratory experiments to assess our two research questions.

5.4.5.1 Comparison Between Using Single-Source
and Combined Datasets

The first hypothesis is that adding the features and instances from the CDR would
improve the performance of a classifier developed using the dataset from the biomedical
literature only. The expectation is, no matter what classifier has been used, the best
performance obtained using the combined dataset should outperform the best
performance obtained using the single-source dataset. As indicated above, we tested if
there is significant difference in the performance using the combined dataset versus the

dataset from biomedical literature as measured by the AUC. In this experiment, we used
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heart failure biomedical literature and combined datasets to select preferred classification
models. The same datasets were used to train the classifiers. We used the remainder of
the disease datasets (rheumatoid arthritis and pulmonary embolism) for testing the
classifiers. The AUCs were generated separately for the biomedical literature dataset and
combined dataset. To test the significance of the differences between two AUCs, we used
the nonparametric DeLong test [37] which was implemented using an R package called

pROC [38]. This is consistent with the recommendations made in [39,40].

5.4.5.2 Generalizability Assessment

The second experiment tests the hypothesis that a classifier built from known
diseases’ datasets will accurately predict the relevance of the medications extracted for
other diseases. More specifically, how effective is a classifier trained using a labeled
dataset from one or more diseases in accurately determining the relevance of disease-
medication associations in a dataset for a new disease; how will this classifier comparing
to the performance of a classifier which was both trained and tested on the new disease’s
dataset? Although the training datasets are different, if the classifier achieves similar
performance, then we would infer that a classifier trained on diseases’ labeled dataset
would be generalizable to new disease(s).

In this study, we used only combined datasets for this experiment. We formed an
experiment group with classifiers trained with each combination of two diseases’ datasets
and with their performance tested with the third disease. We also formed a control group
with classifiers trained and tested with the dataset of the third disease using 10 repetitions

of 10-fold cross-validation. We then compare the performance between the two groups.
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We used a 95% confidence interval to assess the statistical significance of the difference

of the mean AUCs.

5.5 Results

5.5.1 Datasets from the Biomedical Literature

and Clinical Database

Table 5.2 reports the number of instances for each dataset. For example, for heart

failure, we extracted 465 candidate medication concepts from the biomedical literature,

1144 from the CDR, and 1340 after merging them together.

Table 5.2

Summary description of the number of instances and features of the classification
datasets created from the biomedical literature and clinical data repository.

Dataset (Disease, Source) No. of instances No. of RefPos
HF1 (HF, CDR) 1144 88

HF2 (HF, Biomedical literature) 465 100

HF3 (HF, Combined) 1340 107

RA1 (RA, CDR) 1011 62

RA2 (RA, Biomedical literature) 425 77

RA3 (RA, Combined) 1226 82

PE1 (PE, CDR) 930 18

PE2 (PE, Biomedical literature) 141 35

PE3 (PE, Combined) 998 36

HF: Heart failure; RA: Rheumatoid arthritis; PE: Pulmonary embolism
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5.5.2 “Preferred” Model Selection
We calculated the mean AUC of all tested classification models from Weka
separately for the heart failure datasets (i.e., HF1, HF2, and HF3) with 10 repetitions of
10-fold cross-validation. Table 5.3 shows the top 5 classifiers in terms of mean AUC as
well as the 95% confidence interval. Based on the ranking in Table 5.3, we chose SLR as
the preferred classification model for the biomedical literature datasets, MLP as the
preferred classification model for the CDR datasets, and LGB as the preferred

classification model for the combined datasets.

5.5.3 Comparison of Performance between Different Datasets
After the preferred models were selected, we trained the models with the heart
failure datasets, and tested these trained models on the datasets from rheumatoid arthritis
and pulmonary embolism. The AUC for SLR tested on the two biomedical literature
Table 5.3

Mean AUC of top 5 classifiers on two kinds of feature sets as well as 95% confidence
interval.

Classifier: Mean AUC (95% Confidence Interval)
Rank

Biomed

CDR

Combined

SLR: 0.872
(0.870 — 0.874)

LWL: 0.872
(0.869 —0.874)

MLP: 0.871
(0.869 —0.874)

LGR: 0.870
(0.867 —0.873)

BAG: 0.863
(0.859 - 0.867)

MLP: 0.795
(0.791 — 0.799)

BYN: 0.794
(0.789-0.799)

BAG: 0.782
(0.776 — 0.788)

LGB: 0.781
(0.767—10.795)

SLR: 0.780
(0.774 - 0.786)

LGB: 0.931
(0.927 — 0.935)

LWL: 0.926
(0.924 - 0.927)

BYN: 0.918
(0.914 - 0.921)

ADB: 0.918
(0.912 -0.923)

MLP: 0.899
(0.893 —0.905)
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datasets (RA2 and PE2) was 0.893, and the AUC of LGB on combined datasets (RA3
and PE3) was 0.947. Comparison of the AUC of the best detectors built from the
biomedical literature dataset and the combined dataset yielded a significant difference

among the two values (p-value 0.0077).

5.5.4 Generalizability Assessment
In Table 5.4, we reported the AUC of the LGB classifier which was trained with
each combination of two disease datasets and tested on the third disease while comparing
to the performance of the LGB classifier trained and tested on the same dataset of the
third disease. From this table, we see that in all three cases, using a classifier trained with
any two disease datasets to make a prediction on the third disease dataset can achieve
excellent performance (AUC > 0.9). In addition, in two of three cases, the AUCs were

above the upper bound of the 95% confidence interval of the internally trained group.

5.6 Discussion

In the present study, we tested using machine-learning classification models as a
secondary filter to reduce the noise when extracting disease-specific medications from
the biomedical literature and clinical data repository. Two research questions were
answered: (1) would the performance of classification on extracted associations from the
biomedical literature be improved by adding the features and drug instances extracted
from the CDR; (2) would a classifier built from labeled datasets of some diseases be
generalizable to new diseases. In this study, we choose SLR as the “preferred” classifier
for the biomedical literature datasets and LGB as the “preferred” classifier for the

datasets created from the features and instances of both the biomedical literature and
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Table 5.4
The AUC and 95% confidence interval of seven classifiers with different combination of
training and testing datasets.

Case Control

Two-disease datasets for AUC  Cross-validation Mean AUC (95%
training and one-disease within one disease confidence interval)
datasets for testing dataset

HF+PE->RA 0933 RA 0.929 (0.925, 0.932)
HF+RA->PE 0982 PE 0.979 (0.977, 0.981)
RA+PE->HF 0.932 HF 0.931 (0.927, 0.935)

clinical data repository. For the first research question, we found that the classification
performance (i.e., AUC) on the biomedical literature datasets significantly improves from
0.893 to 0.947 after adding the features from the CDR. We did not test adding biomedical
literature to the CDR, because the performance of CDR alone is worse than biomedical
literature alone (see Table 5.3). In addition, it is easier to access the biomedical literature.
There are additional challenges in trying to use clinical data. Therefore, it is important to
know whether the CDR data adds value. For the second research question, we found that
the classifiers built from the datasets of two diseases can be used effectively to predict the
relevance of associations extracted in a third disease dataset; the performance may
surpass that of a classifier trained with the dataset of the third disease itself. These
findings support the conclusion that combining features from the CDR and biomedical
literature significantly improves performance in terms of AUC compared with using
features from those datasets alone. In addition, the classifiers built from one or two

diseases generalized well to new diseases.
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In Table 5.2, we also observed that the three biomedical literature datasets have a
higher proportion of “refPos” instances comparing to the three corresponding CDR
datasets. For example, for heart failure datasets, the HF2 has 21.51% (100 out of 465) of
“refPos” instances while HF1 has 7.69% (88 out of 1144) “refPos” instances. We note
that the CDR contributed a few “refPos” concepts that were missing from the biomedical
literature. For example, for heart failure, 100 “refPos” were extracted from the
biomedical literature, and 7 new “refPos” concepts were contributed from the CDR for a
total of 107 “refPos” concepts in the combined datasets.

When choosing the “preferred” classifier for each kind of feature set, there were
often no significant differences among the classifiers based on the mean AUC and 95%
confidence interval. For the purpose of this study, we picked the ones that had a relatively
higher mean AUC and smaller standard deviations. However, the key finding is that a
variety of classification models provided similar results. In addressing a particular
problem, other performance measures (e.g., precision, recall, f-measure) besides the AUC
may contribute to the selection of an optimal classifier.

The main contribution of this study lies in three areas. First, we built classification
models based on multiple numerical measures of relevance to filter irrelevant
associations from the many associations extracted from the biomedical literature and
CDR. If employed in a process for expert review, these classifiers may reduce the human
effort spent in manual review of those extracted associations. The level of effort
reduction would depend on the thresholds set by the users to focus on higher precision or
recall for the classifiers. Second, we also tested and found that combining the features

and instances from different sources would improve the overall performance of the
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classification. This is particularly helpful when the performance of classification on the
datasets from individual sources was low. Third, the classifiers built from a small subset
of diseases can be generalizable to classify in other diseases. In this study, we have three
diseases with labeled datasets; we can use these datasets to train a classifier that can
effectively detect the relevant associations for other diseases.

There are also several limitations of this study. First, the accuracy of machine-
learning-based classifiers is affected by a variety of factors including hyper-parameter
settings, feature selection, and discretization. Altering those factors can be expected to
affect the performance of the classifiers. In the present study, we chose to survey a broad
range of classifiers in the Weka. However, rather than searching across a full range of
hyper-parameters, feature selection algorithms, and discretization’s, we chose to use
Weka’s default parameter settings. Second, in terms of the generalizability, from the
present study, we found that classifiers built from one or two diseases can generalize well
to new common diseases. However, it is not known if the performance will also
generalize to less common diseases, with a small number of published articles or patient
records. Third, when preparing the training set, we mapped reference concepts from
previous studies to the extracted concepts. Therefore, we may have incorrectly labeled
some concepts as false positives if they were not present in the reference standards. We
anticipate a future analysis to explore a mechanism for identifying refinements to these
algorithms that will yield the best classifications. Finally, the models appear
generalizable to new diseases only when the datasets were from the same knowledge
sources (the biomedical literature and a clinical data repository); it is uncertain whether

the models will perform similarly when incorporating new knowledge sources.
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Specifically, we only used the clinical data from one site, Intermountain Healthcare; the
performance of the classifiers tested in this study may change when using the data from

other sites or from multiple sites.

5.7 Conclusion

Machine-learning classification models can be used to identify relevant
medications used for treating a disease of interest by taking advantage of the numerical
scores generated from prior studies when extracting disease-associated concepts from the
biomedical literature and clinical data repository. Combining the datasets generated from
the biomedical literature and CDR improves the classification performance obtained with
single-source datasets. Classifiers built from one or two diseases appear to generalize
well to new diseases. In the future, we intend to integrate some of tested classification
models into our pipeline system to automate generation of disease-specific medications
with much reduced noise associations. We will also explore the application of those
classifiers in generating other kinds of disease-specific concept vocabularies (e.g.,

diagnosis tests, signs, or symptoms).
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CHAPTER 6

DISCUSSION

6.1 Summary

To facilitate the large-scale building of disease-specific ontologies, in this
dissertation, we have explored both manual and automated acquisition of disease-
specific, assertional knowledge from three kinds of knowledge resources: expert-curated
articles, biomedical literature, and clinical data repositories. The principal findings of
each phase of the research are discussed as follows.

In the first study, we answered the question of whether it is feasible to use only a
small number of expert-curated textual knowledge sources to acquire a disease-specific
vocabulary that reaches a saturated coverage. For this, we manually extracted disease-
specific vocabulary from a collection of documents which include clinical guidelines,
textbooks, UpToDate, and DynaMed [1]. For one disease case (i.e., heart failure), the
vocabulary reached near saturation in four disease aspects (i.e., treatment, diagnostic
tests or results, signs or symptoms, and causes or risk factors) with the inclusion of a
minimum of six sources, or between four to seven sources if only counting terms
occurred in two or more sources. It took fewer sources to reach near saturation for the
other two diseases regarding the treatment class. The principal finding of this phase’s

research is that it is feasible to use a limited number of expert-curated articles to obtain a
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disease-specific, near-saturated vocabulary. This finding from this study is meaningful to
the development of disease-specific reference vocabularies.

The second study answered a research question of whether it is feasible to
automatically acquire disease-specific vocabulary from the biomedical literature. For this,
we developed a pipeline-based system to automatically extract disease-specific treatment
concepts from the biomedical literature. The system achieved a mean precision of 0.8 for
the top 100 retrieved concepts based on three diseases case (i.e., heart failure, pulmonary
embolism, and rheumatoid arthritis). When comparing four ranking strategies (i.e.,
occurrence, interest, degree centrality, and weighted degree centrality), although interest
has a slightly better mean precision at the top 100, there is no significant difference
among the four rankers. When comparing the automated results to the manual results, the
pipeline-based system was able to capture over half of the concepts in the reference
vocabularies. With further error analysis, we found that the overall recall can be higher.
In addition, the system also captured many relevant concepts that did not exist in the
reference vocabularies. A prerequisite of achieving higher recall is the improvement of
the natural language processing tool used to process the biomedical literature. An
improvement of the semantic schema may further improve the precision because many
concepts were not treatment related. From this study, we concluded that the pipeline-
based system we developed is a promising tool for an automated extraction of disease-
specific treatment vocabulary for any disease of interest.

The third study investigated whether classifiers, generated using machine learning
techniques, can be used to reduce the manual effort necessary to review noisy collections

of disease-specific concepts extracted from both the biomedical literature and the clinical
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data repository. For three types of datasets compiled from different sources (i.e.,
biomedical literature, clinical data repository, and combination of the two sources), the
results favor different “preferred” classification models. These were simple logistic
regression, multilayer perceptions, and LogitBoost, respectively. The study results show
that the classifiers developed with the combined datasets significantly outperforms the
classifiers developed with either the biomedical literature dataset or the clinical data
repository dataset. The results also show that the performance of a classifier on a specific
disease dataset shows no significant difference when trained on the same or on another
diseases’ dataset. Therefore, we concluded that it is a promising approach to use
classification techniques based upon different measures of relevance to reduce the noisy
collections of disease-specific concepts extracted from the biomedical literature and
clinical data bases. Combining the features from disparate sources improved the
performance of classification. The classifiers trained with the dataset of known diseases
could be generalized to new diseases.

When comparing the three kinds of knowledge resources we have explored, we
note different merits and limitations. For expert-curated documents, the main advantage
is that they intensely contain disease-specific information, so that with only a few
documents, the extracted vocabulary can reach near-saturation. However, the extraction
of medical knowledge from them remains in a manual way. One reason for that is the
variety of the representation of the knowledge in these documents, such as tables and
figures, which brought new challenges to the natural language processing tools especially
in understanding the content of the documents. Therefore, a manual acquisition with

maximal assistance from the computer (such as pre-annotation with a dictionary) could
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be currently desirable for extracting knowledge from this kind of documents. For
MEDLINE citations, it is a popular knowledge resource used for knowledge extraction in
the biomedical domain. A key advantage of using MEDLINE citations is that MEDLINE
broadly covers a variety of diseases and aspects (e.g., treatment) that human beings have
explored. However, some disadvantages are that as we learned from the study in Chapter
4: (1) MEDLINE citations may contain out-of-date information which is hard to discern;
(2) an NLP tool is necessary to handle free-text data. However, preprocessing with NLP
could also introduce noise. A common issue when dealing with both expert-curated
documents and MEDLINE citations is that the concept granularity for human writing can
contain vague or inconclusive statements. For the clinical data repository, the overall
precision of extracted vocabularies was relatively lower than the precision of
vocabularies generated from the biomedical literature (Table 5.2). However, we found in
the study in Chapter 5 that it was still very useful for the knowledge extraction; it
improved the overall recall after combining the results of extraction from both the
biomedical literature and clinical data repository and the performance of classification
when discerning true-relevant concepts.

There are three potential merits of automated acquisition comparing to manual
acquisition. First, automated techniques offer almost an instant retrieval of possible
disease-related concepts from the biomedical literature and clinical data repositories.
Although the initial results of automated extraction contained noisy information which
required substantial manual investigation, applying classifiers could possibly reduce a
collection of noisy information and therefore may reduce the effort of manual review.

The manual acquisition from expert-curated documents involves multiple steps including
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preparation of documents, annotation and adjudication, and concept mapping, none of
which is trivial. Based on the experience with the three studies in this dissertation, the
automated acquisition would be more efficient than the manual approach; however, a
further evaluation would be necessary to prove this. Second, mining huge amounts of
data with automated techniques could provide new information that was missed from the
expert-curated documents. Third, comparing to the concepts extracted from expert-
curated documents, the concepts extracted from the MEDLINE citations preserve the
links to the origin evidence (or individual clinical trial studies). This could be useful for

some information seekers.

6.2 Significance of Contributions

Knowledge acquisition is one of the core topics of clinical informatics [2]. The
dissertation adds contributions to the body of literature in disease-specific knowledge
acquisition from existing biomedical knowledge resources in three aspects. First, we
provided a mechanism to build disease-specific reference vocabularies and verified the
amount of sources required in order to build vocabularies achieving near saturation.
Second, we developed a novel pipeline-based approach to mine MEDLINE citations for
disease-specific treatment concepts and relations. Third, we used classification to
incorporate disparate sources for an automaticaaly generated disease-specific vocabulary
with a control of the signal-to-noise ratio. The technologies we explored in this research
lay a foundation of a clinical knowledge authoring and sharing service (cKASS) [3]
which would assist people to build disease-specific ontologies.

The dissertation adds contributions to the development of knowledge-based

clinical applications through providing disease-specific computerized medical knowledge.
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Those applicable domains in general cover but are not limited to information retrieval,

clinical decision support systems, and data analytics in healthcare.

6.3 Limitations

The research described in this dissertation has mainly three limitations. First, the
disease-specific information focused on by the three studies were narrowed down from
four classes (i.e., causes or risk factors, signs or symptoms, diagnostic tests and results,
and treatment) in Chapter 3, to one class (i.e., treatment) in Chapter 4, and to a subclass
of treatment (i.e., medication) in Chapter 5. Although we argued that the automated
techniques could be extensible to extract other diseases classes, at this point, the
performance of the pipeline-based system in Chapter 4 and classifiers in Chapter 5 is
unknown in the unstudied disease classes. Second, the reference vocabularies we
developed in the study in Chapter 3 and used for the other two studies were not perfect
and had gaps; therefore, the performance reported in the studies in Chapter 4 and 5 (e.g.,
precision and recall) may not reflect the true performance. Third, we mainly evaluate
each phase of the study with three testing diseases: heart failure, pulmonary embolism,
and rheumatoid arthritis. With a small sample of testing diseases, the results and

conclusion generated from them may not be representative of the entire disease pool.

6.4 Generalizability of the Results

We discuss the generalizability of the results from two aspects: whether the
results were generalizable to other diseases, disease classes, and beyond disease-specific
information.

The principal finding of the first research study in Chapter 3 is that using a limited
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number of expert-curated articles is able to produce a disease-specific, near-saturated
vocabulary. We believe that this finding applies to the majority of diseases. We observe
that as the complexity of the diseases increase, the number of documents used for
achieving a near-saturated vocabulary would also be slightly increased. Heart failure, one
of the three diseases we have explored, is among one of the most complex diseases.
Therefore, diseases with less complexity probably require an equal or smaller number of
documents comparing to heart failure. Besides, the finding applies to four classes of
disease-specific concepts, including causes or risk factors, signs or symptoms, diagnostic
tests or results, and treatments. Although one disease was tested, we find that the four
classes achieved near saturation at the similar speed.

In the study of Chapter 4, we developed a pipeline-based system which is able to
extract disease-specific treatment vocabularies. It achieves a mean precision of 0.80 on
the top 100 concepts. As we have tested on five diseases, the precision would vary
slightly among diseases (Table 4.6). We argue that the main framework of the pipeline-
based system could be reused and extended to extract concepts of other disease classes,
such as causes and risk factors. However, the performance in other disease classes is
currently unknown.

In the study of Chapter 5, the principle findings are that combining features from
disparate sources would improve the performance of classification, and the classifiers
built from some diseases could be generalizable to new diseases. We believe that the
results of this study would be generalizable to the majority of diseases, although there
might be an exception for some rare diseases which have a small number of entries in

MEDLINE and few records in the clinical data repositories. We assume the finding
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would be generalizable to other disease classes; however, further study is required.

6.5 Future Directions

While this dissertation has demonstrated the potential of automated extraction of
disease-specific treatment information from expert-curated documents, biomedical
literature, and a clinical data repository, many opportunities for extending the scope of

this dissertation remain. This section presents two of these directions.

6.5.1 Extend the Scope of this Dissertation

We will extend the scope of this dissertation in three aspects: the techniques, the
data (or knowledge sources), and the types of disease-specific information.

In terms of disease-concept associations, the automated techniques developed in
this dissertation mainly focused on extracting disease-specific treatment information. In
the future, we will fully extend the techniques to three other classes, including disease-
specific causes and risk factors, diagnosis tests, and signs and symptoms. For the
pipeline-based system built in Chapter 4, we expect to add new semantic schemas in
order to capture the information in those expanded classes. In addition, we will expand to
capture other information about the disease-specific vocabularies, such as synonyms,
definitions, and PubMed IDs in order to make the ontologies meet different needs. For
example, synonyms would be useful for the annotation of the biomedical literature and
electronic medical records.

In terms of the data, the knowledge resources we have exploited are attributed to a
very small portion of the big data available in the world. The unstructured data is intact in

this study. Some disease-concept associations like signs or symptoms, or causes and risk
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factors may not be easily captured from structured data sources. We have to expand our
work to use unstructured data (e.g., clinical notes) in order to capture different kinds of
disease classes.

To unveil those disease-specific associations from large and unstructured data
sets, we will exploit other techniques besides the ones developed in this dissertation.
With recent advanced work in the artificial intelligence field (e.g., neural networks), we
found some interesting techniques that could be potentially used for mining semantic
association from unstructured data. For example, neural word embedding (e.g.,
word2vec), a technique used for computing continuous vector representations of words,
is able to capture a large number of precise syntactic and semantic word relationships

from very large data sets [4,5], which might be also useful for our purpose.

6.5.2 Knowledge Authoring Tool
In order to obtain practical disease-specific ontologies, it is necessary to develop a tool
that allows human experts to manipulate and validate automated machine generated
results [3]. We intend to integrate the techniques exploited in this dissertation as well as
some techniques investigated by other researches into the tool to provide a single
platform to generate disease-specific vocabularies as well as a user interface for the
interaction with domain experts for validation of the relevance of the extracted concepts.
We would implement the machine-learning-based classifications into the tool for pre-
selection of relevant concepts from the noise. After the tool was developed, further

evaluation on the system’s performance and user satisfaction would be needed.
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