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ABSTRACT

An important aspect of medical research is the understanding of anatomy and its 

relation to function in the human body. For instance, identifying changes in the brain 

associated with cognitive decline helps in understanding the process of aging and age-related 

neurological disorders. The field of computational anatomy provides a rich mathematical 

setting for statistical analysis of complex geometrical structures seen in 3D medical images. 

At its core, computational anatomy is based on the representation of anatomical shape 

and its variability as elements of nonflat manifold of diffeomorphisms with an associated 

Riemannian structure. Although such manifolds effectively represent natural biological 

variability, intrinsic methods of statistical analysis within these spaces remain deficient at 

large.

This dissertation contributes two critical missing pieces for statistics in diffeomorphisms: 

(1) multivariate regression models for cross-sectional study of shapes, and (2) generalization 

of classical Euclidean, mixed-effects models to manifolds for longitudinal studies.

These models are based on the principle that statistics on manifold-valued information 

must respect the intrinsic geometry of that space. The multivariate regression methods 

provide statistical descriptors of the relationships of anatomy with clinical indicators. The 

novel theory of hierarchical geodesic models (HGMs) is developed as a natural generalization 

of hierarchical linear models (HLMs) to describe longitudinal data on curved manifolds. 

Using a hierarchy of geodesics, the HGMs address the challenge of modeling the shape-data 

with unbalanced designs typically arising as a result of follow-up medical studies. More 

generally, this research establishes a mathematical foundation to study dynamics of changes 

in anatomy and the associated clinical progression with time.

This dissertation also provides efficient algorithms that utilize state-of-the-art high 

performance computing architectures to solve models on large-scale, longitudinal imaging 

data. These manifold-based methods are applied to predictive modeling of neurological 

disorders such as Alzheimer's disease. Overall, this dissertation enables clinicians and 

researchers to better utilize the structural information available in medical images.
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CHAPTER 1

INTRODUCTION

Regression analysis explains the functional relationship between independent variables 

and dependent response variables. Several statistical and machine learning techniques 

exist for estimating regression models in Euclidean space. Most of these methods do not 

generalize to the analysis of variables in high-dimensional, non-Euclidean spaces. This 

dissertation presents a framework to investigate shape changes represented in non-Euclidean 

spaces of shapes, called diffeomorphisms, and relate those to clinical variables represented 

in Euclidean spaces. The shape regression framework developed in this dissertation is appli­

cable to a variety of problems. This research, in particular, is motivated by its application 

to predictive modeling in neuroimaging studies of progressive neurological disorders such as 

Alzheimer’s disease (AD).

It is well known that the human brain undergoes continuous and gradual structural 

changes with aging [1, 2]. Alzheimer’s disease is a senile dementia characterized by se­

vere behavioral, cognitive and functional impairment accompanied by distinctive brain 

atrophy. The brain atrophy in AD typically occurs at a much more accelerated rate as 

compared to that in normal aging [3, 4]. Cognitive decline is measured by clinical tests 

for neuropsychological function [5, 6]. The complex and subtle shape changes that occur 

during disease progression are extracted from structural information available in magnetic 

resonance images (MRI) of brain.

This dissertation provides a mathematical foundation for statistical analysis of changes 

in anatomy and associated clinical progression with time. The models developed in this 

dissertation test the hypothesis that neuropsychological response and clinical progression 

are a function of brain anatomy. This dissertation also presents a generalization of classical 

methods of longitudinal analysis of Euclidean data to manifolds. This enables longitudinal 

studies on population of shapes represented as elements of abstract, non-Euclidean spaces. 

The next section reviews the underlying clinical motivation behind this research in detail.
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1.1 Motivation
In cognitive disorders, such as AD, the brain attenuation typically occurs at a much 

accelerated rate as compared to that in normal aging. A key factor in treating any disease 

is the identification of biomarkers that provide objective measures of disease progress. 

Medical imaging techniques provide noninvasive access to anatomical structures through 

3D magnetic resonance imaging (MRI). A major obstacle in conducting clinical trials for 

treatments of Alzheimer’s disease is the enormous cost. This is compounded by the fact 

that no standardized, quantitative, imaging-based biomarkers yet exist. Imaging-based 

biomarkers hold the potential to reduce the costs of clinical trials by the quantitative 

monitoring of disease progression and treatment effects. Longitudinal imaging biomarkers 

hold the promise of identifying prodromal disease, enabling the trials to more efficiently 

recruit patients most likely to be impacted by treatment and providing earlier detection of 

outcomes.

The goal of this dissertation is to enable clinicians and researchers to better utilize the 

structural information available in MR images. This will help improve the understanding 

of normal aging and disease progression affecting anatomy. This dissertation addresses the 

challenges in relating anatomy to clinical symptoms of disease and enables longitudinal 

population-wise studies.

1.1.1 R ela tin g  anatom y to  m easures o f clin ical sym p tom s

Imaging techniques such as MRI provide a 3D view of the anatomy of brain. The 

information about size and shape of tissues extracted from MRI are primary entities in 

modeling anatomy and its variability. Along with the imaging information, low-cost clin­

ical assessments provide an insight into the associated behavioral response and cognitive 

performance of an individual. Examples of such test scores include the clinical scores of 

the mini mental state examination (MMSE), the logical memory test (LOGIC), the audio 

verbal learning test (AVLT) and the Alzheimer’s disease assessment score (ADAS). The first 

two are the measures of performances in function of memory while the third summarizes 

performance on audio and verbal tasks. The ADAS is a cumulative measure of the extent of 

dementia and overall cognitive impairment in an individual. Figure 1.1 shows an example 

of a brain image extracted from a 3D MRI scan. The complexity in structure is evident 

even in a single 2D view across the sagittal plain of the brain.

Along with the complexity, the structure of the brain differs across individuals both in 

terms of the overall global shape as well as in the local tissue structures. The associated 

clinical scores for individuals also exhibit high variability across a population. Figure 1.2
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Figure 1.1: Extracted brain image from 3D MRI of an individual. Along with imaging in­
formation, clinical assessments include multiple test scores for neuropsychological response.

Age 71 75 75 75 75 75
MMSE 26 24 30 29 27 28
ADAS 17 19 4 12 19 10
AVLT 28 42 41 32 27 51

LOGIC 5 7 17 19 8 13

Figure 1.2: Variability in anatomy and clinical response.

shows examples depicting differences in anatomy and the associated neuropsychological 

responses for six individuals. Even though all individuals are of similar age, the shape 

of tissues in their brain and the associated clinical assessment scores markedly differ. An 

effective modeling of the relationships between the two must harness this rich information 

from both.

The challenge of relating brain anatomy to neuropsychological response has two facets. 

First is about the effective representation of the diverse and intricate anatomical structures 

seen in MRI. Second is the absence of statistical techniques to relate the complex anatomy 

under this representation to clinical response. Further, the nonlinear nature of anatomical
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shape change pose a significant challenge for representation and rigorous statistical analysis.

Extensive research in the last 40 years has been focused on the development of anatomical 

shape descriptors for statistical studies. Fortunately, several methods to represent shapes 

now exist and are capable of capturing nonlinear variability among shapes. These methods 

rely on fundamentally different ways of representation. While some are based only on 

the object boundaries, the others take into account interiors of the body. Boundary 

representations typically include methods based on the collection of landmark points [7]. 

Statistical shape analysis under point correspondence model is carried out on point-set 

spaces of shapes [8, 9]. Methods of medial axis representation of structures also rely on the 

boundary of an object [10].

The methods used in this dissertation are based on the representation of shapes as 

nonlinear transformations of the object from a representative template shape. These trans­

formations of underlying coordinates of the image volume summarize intricate nonlinear 

changes in brain anatomy. These mappings form a signature representation of variabil­

ity of shapes of substructures in the brain relative to the template shape. This field 

of statistical study on transformations is now broadly referred to as the computational 

anatomy [11, 12, 13, 14]. This has provided a mathematical foundation for statistics on the 

complex shape information extracted from gray level intensities in medical images. The rich 

theory of groups and manifolds utilized under this framework provides effective tools for 

statistics in these spaces of shapes. For example, Fletcher et al. [15, 16] extend methods of 

averaging, principal component analysis and median computation to manifolds representing 

anatomical shapes. Davis et al. [17] further generalize the idea of kernel regression to 

diffeomorphisms. Pennec [18] also provides an overview of intrinsic methods of statistics in 

shape manifolds.

The question that still remains unanswered is how to link shape with clinical variables 

under these manifold representations. No statistical methods yet exist to relate multivariate 

Euclidean-valued clinical variables with manifold-valued shape descriptors (Figure 1.3). 

Conventional statistical methods of regression do not apply when variables live in dif­

ferent spaces. Further complications arise due to the high-dimensional nature of these 

shape representations but very limited number of subjects in clinical studies. Meaningful 

high-dimensional statistical analysis is possible only when the regression is carried out in the 

intrinsic space of shapes respecting its nonlinear nature. One of the goals of this dissertation 

is to address these questions.
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Abstract non-Euclidean space of brain anatomy Euclidean space of clinical measures 

Figure 1.3: Anatomy and clinical response. 

1.1.2 R epresen tin g  changes in anatom y over tim e

Another aspect of the “anatomy-clinical response” relationship concerns modeling of 

changes with time. It is also well known that both the complex structure of tissues in 

the brain as well as the associated neuropsychological response is affected by aging. While 

the shapes of brains of individuals across a population differ amongst each other, their 

dynamics of change may follow similar patterns. Moreover, these patterns may be affected 

in a characteristic way due to disease. For example, Alzheimer’s disease is characterized by 

the accelerated atrophy of gray and white matter tissues in the brain, along with behavioral 

impairment and overall cognitive decline. Several research questions interest neurologists 

and motivate modeling of dynamical processes governing brain tissue growth or decline. For 

instance, the study of the developing brain during early years of life and tissue atrophy in 

later years are two ends of the spectrum of interest to neurologists. To summarize what is 

normal and what is not could be the first objective of a clinical study. One may also be 

interested in characterizing anatomical and functional changes due to clinical intervention 

and therapy. In data analysis, such studies fall into the broad category of statistical analysis 

of longitudinal data sets.

Longitudinal analysis takes correlations within repeated measurements of homologous 

entities into account. Such a study involves summarizing variability within several mea­

surements of an individual and also provides a model for comparing trends among different 

individuals. In clinical studies, longitudinal modeling is needed whenever data is collected 

with repeated measurements of several individuals over time. This differs from the usual 

cross-sectional approach to data analysis, where correlations within the repeated measure­

ments of individuals are ignored. Cross-sectional analysis limits the capabilities of the
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model when used for the analysis of time-series data. Such a modeling is not appropriate 

for drawing statistical conclusions about dynamics of change in population studies. For 

instance, Figure 1.4 demonstrates this with a simple example of scalar measurement in Eu­

clidean space. It illustrates the importance of modeling correlations within each individual. 

Ignoring these correlations leaves us with a simple linear regression fit to the data, which 

does not reflect the longitudinal trends that individuals experience. In contrast, the group 

trend emerging out of longitudinal analysis of the same data, better summarizes the average 

behavior of the individual trends.

Well known methods of longitudinal analysis exist for the analysis of scalar univariate 

and multivariate measurements in Euclidean spaces. These methods seek to model vari­

ability in time and its effect on individuals and the group in a hierarchy and are termed as

Cross-sectional analysis

Independent variable, t Independent variable, t

Longitudinal analysis

Figure 1.4: Modeling of population with repeated measurements. Top row: Cross-sectional 
modeling using ordinary linear regression results in decreasing trend. Bottom row: More 
meaningful trend emerges when correlations within subjects are considered.
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hierarchical or mixed effects models. Extensive statistical theory developed for these models 

is attributed to the work by Laird and Ware [19]. However, the extension of such models to 

the longitudinal studies on shapes, as elements of manifolds, pose significant challenges. The 

biggest challenge in longitudinal modeling is the inherent nonlinear and high-dimensional 

nature of the geometrical entities in anatomical studies. There is no consensus on how to 

model complex shape changes in brain over time and across populations.

The difficulty in longitudinal modeling of shapes is further compounded because of 

the unbalanced designs in the acquired imaging and clinical data. The measurements not 

only differ in age, but also in the number of times of clinical follow up. This scenario of 

staggered measurements of individuals commonly occurs in data arising out of almost all 

medical studies. The existing manifold representations of shapes have proven to be effective 

mostly for only cross-sectional studies. Figure 1.5 depicts this longitudinal data design on 

a population of individuals in an abstract manifold representation of brain shapes.

For modeling growth or decline, methods of regression to represent trajectories of changes 

in anatomy under manifold representations have been recently proposed [20, 21, 22, 23, 24].

F igure 1.5: Longitudinal analysis in manifold of shapes.
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However, when used for a population study, regression does not model individual changes 

and hence is often incorrectly interpreted. Regression is not applicable for the same reason 

it fails for the simplest example presented in Figure 1.4 for the Euclidean case. Similarly, 

longitudinal shape models on maps of diffeomorphic transformations must also take into 

account the individual temporal dependence in their group summary representations. Thus, 

while models for cross-sectional analysis exist, computational anatomy, in particular, lacks 

a consistent framework of longitudinal modeling in high-dimensional nonlinear spaces of 

shapes. No natural generalization of the mixed effect models to the manifold of diffeomor- 

phisms yet exist. In general, the existing statistical tools for longitudinal analysis of shapes 

under manifold representations are far from sufficient. Comparisons with regression methods 

and those that represent group trajectories based on individual trends [25, 26, 27, 28] will 

be discussed in detail in Chapter 7 and Chapter 8.

One of the goals of this dissertation is to lay the foundation for longitudinal studies on 

manifold-valued data. It seeks to addresses the challenge of modeling the shape data with 

unbalanced designs arising as a result of follow-up medical studies.

1.2 Thesis and contributions
The thesis statement is as follows:

Regression models between deformation momenta, which encode nonlinear, high-dimensional 

shape changes, and Euclidean response variables, which encode linear variability in clinical 

scores, effectively explain the relationships between the two. In population studies, combin­

ing other high-dimensional complementary information with information about geometric 

variability improves prediction performance of such models. Hierarchical geodesic models 

under multilevel nested designs explain the group and individual variability over time for a 

population of shapes represented in the group of diffeomorphisms.

The contributions of this dissertation are:

1. A m ethod  of ex trac tin g  shape deform ation  p a tte rn s  th a t  explain m u lti­

varia te  clinical response. Partial Least Squares (PLS) regression explains vari­

ability in multivariate Euclidean neuropsychological measures with respect to the 

high-dimensional nonlinear variability in anatomical shape represented by the defor­

mation momenta maps. Successive latent variables explain orthogonal variance both 

in the shape space and neuropsychological response space. This framework effectively 

relates geometry changes in shapes to multivariate response variables [29].
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2. P red ic tio n  based m odeling in th e  tan g en t space of diffeom orphism s. High­

dimensional regression in the tangent space at the Frechet mean of the population 

of shapes via Kernel Partial Least Squares regression predicts neuropsychological 

response variables. The model estimates represent a geodesic direction of regression 

which quantifies the shape variability via geodesic evolution in the units of clinical 

response. This statistical framework also incorporates the control of confounding 

variables in the regression [30].

3. A m ultim odal analysis of s tru c tu ra l and function im aging d a ta  for dis­

ease prognosis. Supervised feature extraction via PLS optimally combines high­

dimensional medical imaging modalities with several other low-dimensional disease 

risk factors. This model extends our previous contributions to include information 

from both the structural as well as the functional imaging modalities. It also provides 

the means to assess the relative importance of imaging modalities for disease prognosis 

and prediction [31].

4. A generalization  of h ierarchical linear m odels to  m anifold of diffeom or- 

phism s. Hierarchical geodesic models (HGMs) for longitudinal modeling in diffeo- 

morphisms are proposed. We derive it as a natural generalization of hierarchical 

linear models to manifolds. More generally, this provides a mathematical foundation 

for longitudinal studies on manifold-valued data. This also addresses the challenge 

of modeling the shape data with unbalanced designs typically arising as a result of 

follow-up medical studies [32, 33, 34].

1.3 Outline
Chapter 2 covers the essential background of Lie group of diffeomorphisms as Rieman- 

nian manifolds. It includes an overview of the fundamental properties of the group of 

diffeomorphisms and introduces deformation momenta in the Riemannian setting.

Chapter 3 reviews the state-of-the-art in machine learning methods applied to brain 

imaging studies. In particular, regression and classification methods to relate brain anatomy 

and clinical measures are discussed.

Chapter 4 presents the first contribution of this work, which is a method of regression of 

manifold valued data with Euclidean response measures in high-dimensional low sample size 

(HDLSS) setting. Details on methods that use partial least squares regression to estimate 

regression geodesic in the manifold of diffeomorphisms are covered.
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Chapter 5 extends the method in Chapter 4 for medical diagnostic application utilizing 

information from structural and functional imaging modalities for disease prognosis in 

Alzheimer’s disease

Chapter 6 covers the contribution of this dissertation to momenta based registration 

methods. Vector momenta formulation of diffeomorphisms is derived for template estima­

tion methods of geodesic regression and atlas construction.

Chapter 7 presents the final contribution of this work, the hierarchical geodesic model for 

longitudinal study of shapes. It includes theoretical development of a generative longitudinal 

model in diffeomorphisms that summarizes a population of individual geodesic segments in 

the form of a group geodesic. This method is applied to study progression of aging and 

dementia in the human brain using a population of individuals repeatedly scanned in time.

Chapter 8 concludes with a discussion of contributions of this dissertation and possible 

future research on open questions.



CHAPTER 2

BACKGROUND ON DIFFEOMORPHISMS

This chapter provides the necessary background on the group of diffeomorphisms, which 

is the main mathematical concept used in this dissertation. It begins in Section 2.1 

with an introduction of geometric transformations to represent differences among shapes. 

Section 2.2 provides an overview of diffeomorphisms and their group structure. We discuss 

the effectiveness of this group to represent shape changes of geometric entities in images. 

Section 2.3 discusses the Riemannian manifold structure of diffeomorphisms. In Section 2.4, 

we study more fundamental properties of its group structure in detail. Finally, we cover 

necessary details about geodesics in the group of diffeomorphisms in Section 2.5.

2.1 Transformations and shapes
One of the most basic ways to describe a shape of an object is to say how different it 

is from another. This is no exception in medicine. For instance, clinicians compare tissues, 

organs and other geometric regions within the body of patients to detect abnormalities, 

diagnose disease or assess progression of a certain medical condition. A common way to 

describe differences in geometry is to summarize it using transformations. For example, 

a combination of translation and a rotation may be sufficient to describe the difference 

between two equilateral triangles. Transformations are fundamental mathematical objects 

and have long been known to effectively represent biological changes in organisms [35, 36].

The simplest of the transformations may represent only the translation and rotation 

of an object. These are termed as the rigid transformations and are useful to summarize 

pose differences within objects. When combined with scaling, as well as with stretching 

and shearing, the resulting collection of transformations is referred to as the affine trans­

forms [37]. These transforms can also be represented as matrix operations. They have 

limited degrees of freedom and thus are also called as the low-dimensional transforms. 

An example of a classical statistical method of aligning shapes using low-dimensional 

transformations is due to Procrustes [38]. More generally, these transforms are coarse
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and are helpful to describe simple changes in geometry of objects. While such transforms 

are useful to summarize global differences, they are incapable of representing fine and 

subtle differences within complicated shapes that are commonly seen within the anatomy 

of biological organisms.

In order to better represent local details of complex anatomical structures, several 

methods have emerged. These methods add flexibility to the transformations by defining 

local functions on each pixel of the image grid. Figure 2.1 presents this idea where a function, 

0(x), defines how each pixel location, x, in the image, I , moves to give a deformed image, 

J . A common method is to define 0(x) with a collection of displacement maps obtained 

using displacement vector fields at each pixel [39]. This is most commonly known as the 

elastic or small deformation model. A regularization over the vector fields must be imposed 

to avoid ill-posedness in the resulting deformation estimation problem. Such regularizers 

typically impose smoothness on the displacement fields. Even though these regularizers

I
-1

1
1

H

Figure 2.1: Change in geometric entities in images represented as transformations of the 
underlying coordinate grid.
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result in smooth deformations, such a formulation does not guarantee invertibility of 0(x). 

This is critical in the study of anatomy, especially because of the requirement to establish 

one-to-one anatomical correspondences. This limitation of the small deformation model led 

to the development of what is now broadly referred to as the large deformation diffeomorphic 

metric mapping framework (LDDMM) [40, 41, 42]. At its core, the LDDMM framework 

exploits ideas from fluid mechanics and builds maps of diffeomorphisms as flows of smooth 

velocity fields. The next section formally describes the most fundamental concept in the 

LDDMM framework: the group of diffeomorphisms.

2.2 Diffeomorphisms
Diffeomorphisms offer a way to represent smooth and invertible spatial transformations 

that match one shape to another. For the purpose of this dissertation, the shapes refer to 

objects embedded in 2D or 3D images. We define an image, I , as a real-valued L2 function 

on a domain Q c  Rd, where d =  2 or d =  3 for 2D or 3D images, respectively.
We define a diffeomorphism 0 as a mapping of Q that assigns every point x £ Q a  new 

position X  =  0(x) £ Q. Under this definition, we restrict to transformations that satisfy 

the following rules of smooth bijection, 0 should be:

1. Onto: All points in X  £ Q should be image of some point in domain Q

2. One-to-one: Two different points should not map to one single point, i.e., 0(x) = 

0(y) x =  y

3. Smooth: 0 is C^  or more generally Ck, i.e., k differentiable.

4. Smooth inverse: 0 -1 is C ^  or more generally Ck, i.e., k differentiable.

The deformation of an image I  by 0 is defined as the action of the diffeomorphism, 

given by 0 ■ I  =  I  o 0 -1 . A natural way for generating diffeomorphic transformations is 

by the integration of ordinary differential equations (ODE) on Q defined via the smooth 

time-indexed velocity vector fields v(t,x)  : (t £ [0,1],x £ Q) ^  R3. The function 0v(t, x) 

given by the solution of the ODE ddt =  v(t, y) with the initial condition y(0) =  x defines 

a diffeomorphism of Q. Diffeomorphisms thus generated as flows of velocity fields form 

a group under composition operation and denoted by Diff(Q). Such a definition imparts 

two important structures on this space, a) a group structure and b) a C ^  differentiable 

structure.
Figure 2.2 depicts an example of the action of a diffeomorphism on a gray-scale image. 

This image consists of an embedded shape, resembling a “plus” that smoothly deforms
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T Oi t f T

0
Figure 2.2: Initial velocity as a smooth vector field and the corresponding diffeomorphic 
flow that transforms the shape, “plus” to “flower”.

into a shape, resembling a flower. It is helpful to think of this deformation as a dynamic 

process that changes the image as time passes. The initial velocity, at t =  0, consists of a 

smooth vector field over the coordinate grid. This vector field associates an initial direction 

of motion at each pixel location (red arrows). Integration of this vector field over time 

generates the diffeomorphism, 0. The column on the right shows the results of the actions 

of this diffeomorphism on the initial image as well as on the underlying image grid.

This means, we can: a) construct diffeomorphisms by integrating velocity fields, and
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b) combine diffeomorphisms using compositions. This enables us to generate large defor­

mations while maintaining the diffeomorphic property. The smooth differentiable structure 

on the group of diffeomorphisms makes it a Lie group. Lie group is a group that is also 

a smooth manifold. Some of the standard texts to review Lie groups include those by 

Chevalley [43] and Adams [44]. In the next section, we discuss the Riemannian structure 

of the group of diffeomorphisms.

2.3 Riemannian metrics on the space of diffeomorphisms
A right-invariant Riemannian metric on the space of diffeomorphisms is obtained by 

choosing a positive-definite, self-adjoint linear differential operator, L , which acts on velocity 

fields, v £ V . The operator, L, is a combination of higher spatial derivatives. This operator 

induces the Hilbert structure on the collection of velocity fields, V, as per the associated 

metric, (■, -)v. Given two tangent vector, u, v £ V, the inner product is defined as:

(v,u)v = (Lv(x),u(x))dx,  
n

where (■, ■) denotes the dual pairing.

This metric naturally induces the norm on a velocity field, ||v||V =  f n (Lv(x), v(x))dx.
One defines a Riemannian metric on the space of diffeomorphisms by inducing an 

energy via this Sobolev norm. The distance between the identity transformation and a 

diffeomorphism, ^ , is thus defined as the minimization

d (Id ,^ )2 =  min j  J  (Lv(t, 0,v(t, -))d£ : (1, ■) =  ^ ( o j . (2.1)

The distance between any two diffeomorphisms is defined as d (0 ,^) =  d(Id,^ o 0 -1).

Now, the tangent space at identity, V =  T dDiff(Q), consists of all vector fields with 

finite norm. Its dual space, V* =  Tj*dDiff(Q), consists of vector-valued distributions over Q. 

The velocity, v £ V, maps to its dual deformation momenta, m £ V*, via the operator, L, 

such that m = Lv and v =  Km.  The operator, K  : V* ^  V, denotes the inverse of L. For 

an in-depth review of Riemannian geometry, please refer to do Carmo [45], Spivak [46] and 

Boothby [47]. They provide comprehensive details and their review is recommended for an 

in-depth understanding of differential geometry.

2.4 Adjoint representation
We will first introduce the adjoint representation of Lie groups in general. This will 

include a discussion about the operators, Ad and ad that are fundamental to the group. We 

will later cover derivation of these operators for the group of diffeomorphisms, Diff(Q). The
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operators for adjoint representation of a group are fundamental to transport of relational 

structures such as velocities and their duals. Some of the classic texts for a thorough 

understanding of representation theory include those by Curtis et al. [48] and Fulton et 

al. [49].

2.4.1 A djoint rep resen tation  in general

2 .4 .1 .1  N ota tion s

Let G be the Lie group, g be an element of G, and g be the Lie algebra. A Lie algebra 

associates an algebraic structure to a Lie group. In particular, it is the tangent space at 

the identity of a Lie group. We will use superscript indices for components, v%, of a vector, 

v £ V , and subscript for the basis elements, e» of V, such that, v =  v%ê . Also, we use 

subscript indices for components, mj  of a dual element, m £ V*, and superscript for the 

dual basis, ej of V*, such that m = mjej .

2.4 .1 .2  Inner autom orphism  group, Inn(G)

If we denote an inner automorphism: : G ^  G, such that, (h) =  ghg-1 , then the 

inner automorphism group, Inn(G), is the collection of all inner automorphisms of the form 

, Vg £ G.

• Inn(G) is a group because:

^i^m(g)  =  lmgm-1l-1 ,

= lmg(lm)-1 =  ^ im(g).

• Inn(G) is also a Lie group. An element in Inn(G) is a smooth combination of elements 

of G. Since G is a Lie group, so is Inn(G).

• Notice that this definition encodes commutativity of the group action (Figure 2.3). In 

other words, it tells us how non-Abelian the group G is. The size (or cardinality) of 

Inn(G) is also informative. For instance, for an Abelian group, since ghg-1 =  hVg,h, 

Inn(G) has only a single element, i.e., the identity map, Id. The commutativity can 

be seen as follows:

h-1ghg-1 =  e, 

hh-1 ghg-1 g =  heg, 

gh =  hg.
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hg 1

Figure 2.3: Inner automorphism and commutativity

• Inn(G) and the center of G: Recall that the center of a group, G, is defined as, 

Z(G) =  {z £ G|Vg £ G,zg =  gz}. The quotient group, G / Z (G), is isomorphic to 

Inn(G). For an Abelian group, Z(G) =  G. A group is said to be centerless if Z(G) is 

trivial, i.e., consists only of the identity element.

2 .4 .1 .3  G roup representation

A representation of a group G is a group homomorphism mapping, p : G ^  GL(V ). This 

means that the elements of the group G can be represented in terms of linear transformations 

on V. In particular, if V is finite-dimensional, group elements can be represented as matrices 

and the group operation by matrix multiplication.

2 .4 .1 .4  R epresen tation  o f Lie groups, Adg and adv

It is helpful to think of tf, Ad and ad first without subscripts as mappings:

tf : G x G ^  G,

Ad : G x g ^  g, 

ad : g x g ^  g.

To begin, we take derivatives of the inner automorphism map . We will take the derivative 

of the mapping, tf, along the second argument, h, at the identity to get Ad and further 

take the derivative of Ad at the identity along first argument, g, to get ad.

2.4 .1 .5  For m atrix  groups

The group operation is matrix multiplication. We discuss below the derivation for the 

group, GL(n). The derivation for all the matrix groups (GL(n), SL(2), SO(3)) trivially 

follows from this. For g,h £ GL(n), the n x n invertible matrices, we have: (h) =  ghg-1 .



18

For Adg: We take the derivative of inner automorphism with respect to h at the identity. 

This is done as follows:

For adw: Similarly to take the derivative with respect to g, we parameterize g by e as ge

2 .4 .1 .6  D ual pairing and conjugates

A 3-tuple (V*, V, (,)) where V * and V are vector spaces over same field, F, and (,) is a 

bi-linear form, (,) : V* x V ^  F. V* is called as dual space to V. In particular, continuous 

linear forms on V forms its topological dual, V*.

Thus, pairing of dual element, m £ V*, with element, v £ V, is written as: (m,v). 

Remember m is a function such that m : V ^  R. In particular,

If ei are basis of the vector space, V, such that an element v e V is written as v =  viei 

(using Einstein’s summation notation). A dual element, m, is written in terms of dual basis, 

ei, such that m =  miei. Dual basis is defined such that ei(ej-) =  Sj. Thus,

In (h), parametrize h by e as he such that h0 =  e and h^ L 0 =  v for (h) 

gheg_1.

Adg v =  gvg 1.

such that g0 =  e and ge | e=0 =  w for Adgev =  gevge 1.

adw v =  wv — vw.

(m, v) =  m(v)

(m,v) =  m(v) =  vim(ei),

=  vimiei (ei), 

(m, v) =  mivi . (2.2)

This defines the evaluation of m e V* at v e V via the dual pairing (m,v).
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2 .4 .1 .7  C onjugation  o f operators under dual pairing

Note that if A is a linear operator from V to V, its conjugate, A* : V* ^  V*, is defined

by:

(A *m, v) =  (m, Av). (2.3)

Now, since adwv and Adgv are both linear operators on V, we can talk about its conjugate 

(or dual), adW and Adg on V*.
Following from (2.2), for matrices the evaluation (m, Av) is written as:

(m, Av) =  m^Aj' vj . (2.4)

For all matrix groups m and v both matrices and operator A also a matrix. Thus, from 

(2.4), conjugate of an operator looks like a matrix transpose of A.

Thus, now:

For Ad*: Using Adgv =  gvg-1 , we have,

(m, Adgv) =  (m,gvg-1),

=  (gT m ,vg-1),

= (gT mg-T ,v).

Thus,

M * T —T*m = g mg .

For adW: Using adwv = wv — vw, we have,

(m, adw v) =  (m, wv — vw),

= (m,wv) — (m,vw),

=  (wTm, v) — (mwT, v),

=  (wT m — mwT, v).

Thus,

T Tadw m =  w m — mw .

2.4.2 A djoint represen tation  for Diff(Q)

The derivation of the adjoint representation for Diff(Q) is fundamentally analogous to 

the finite-dimensional matrix case. The matrix multiplication operation is replaced by 

the group composition operation to result in the following definition for conjugation in 

diffeomorphisms.
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2.4 .2 .1  Adg for Diff(Q)

Let 0, h £ Diff(Q). The mapping, ^  becomes

ty^h : h ^  0 o h o 0 1.

In ^^(h), parametrize h by e as he such that h0 =  Id and he|e=0 =  v. Now we take 

the derivative of this mapping with respect to e at e =  0, i.e., for the mapping,

ty^he : h ^  0 o he o 0 -1 .

We have,

d
de

de(0 o h- o 0-11 <=o-

D 0 |he o -̂1 v |^-1,
=  (D0 o 0 -1)v o 0—1.

Evaluation at e =  0 uses the fact that he =  Id.

2.4 .2 .2  adv for Lie algebra o f Diff(Q)

So far we have:

Ad^v =  (D0 o 0—1)v o 0 —1.

For adjoint representation of Lie algebra, we need to take the derivative of this mapping 

with respect to 0 at identity. We do this by taking the variation in 0, such that ^  | 0 =  w. 

We have,

d | 
adwv =  — ((D0e o 0—1)v o 0—1 ) |£=0,

de 
d

= de((D0e o 0—1
d |

+  DId ̂ (v o 0—1)L=o.

The above is the product rule. Also notice the Jacobian of the identity transformation is
W 11
d  le=0the identity. For the second term we will use the fact that | =0 =  —w. The first term
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will use the relation for total derivative, -fLf (e,0 (e)) =  f  +  f  d ; , and that spatial and 

e derivatives commute. This gives,

^(Dw +  0)v — Dvw

Dwv — Dvw. (2.6)

Now we discuss the derivation of the conjugate operator adWv with respect to the dual 

pairing between V and V*.

2 .4 .2 .3  ad* for dual to  Lie algebra o f Diff(Q)

We use Riesz representation theorem to first define the pairing as a linear operation [50, 

51]. For a scalar function, f  £ Cc( X ), let X  be a locally compact Hausdorff space. For any 

positive linear functional, ^  on Cc(X), there is a unique Borel regular measure, ^  on X , 

such that,

We extend it for our case where f  is continuous vector valued, say v , and not a scalar 

function. The dual pairing written for the m(v) as (m, v) is written as:

Notice, m =  u^  where u is a smooth vector field and ^  is Lebesgue measure on Q. The 

requirement for Lebesgue will become clear soon when we derive the dual of the ad operator. 

The above pairing can also be written as:

(uy,v) = v(x) ■ u(x)dy, 
n

where ‘-’ is the dot product operation.

Now, as per (2.3), the definition of the conjugate of adw is:

(adWm,v)  =  (m, adwv). (2.7)

Starting with the RHS of the above equation:

(m, adwv) =  / adwv(x)dm. 
n

I adwv (x )■ u(x)dy. 
n
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We will use the expression for adw from (2.6). We now want to move around variables, 

so that, finally in the above integral we can separate out v, and the remaining terms look 

like operations on m (or u).

(adWm, v) = (Dwv — Dvw)(x) ■ u(x)d^,
J n

= (Dwv)(x) ■ u(x)d^ — (Dvw)(x) ■ u(x)d^,
Jo in

= ((Dw)Tu)(x) ■ v(x)d^ — (Dvw)(x) ■ u(x)d^,
Jn Jn

= ((Dw)Tu)(x) ■ v(x)d^ — (Dvw)(x) ■ u(x)d^.
n n

We have separated, v for the first term. For second term, we separate w from Dv using the 

Frobenius norm trick that says:

Ab ■ c =  (A, c x 6}f ,

where F  represents the Frobenius inner product and x represents the cross product. Thus,

(adWm,v) =  / ((Dw)Tu)(x) ■ v(x)d^ — (Dv(x),u(x) x w(x)}^d^.
./n ./n

Now, we use another trick that conjugate of D is negative divergence.

(adWm,v)= /  ((Dw)Tu)(x) ■ v(x)d^ +  [  (v(x), div(u(x) x w(x))}fd^.
w n n

The above relation implies that as an operator,

adW^ =  (Dw)T^ +  div(^ x w). (2.8)

Note that the second term is tensor divergence and it can further be split as:

div(^ x w) =  D^w +  ^V ■ w.

2.5 Geodesic evolution and deformation momenta
If Q is the coordinate space of the image, I , and diffeomorphism, 0(t), corresponds to 

the flow of smooth, time-indexed velocity field, v(t). As mentioned earlier, the deformation 

of an image I  by 0 is defined as the action of the diffeomorphism, given by 0 ■ I  =  I  o 0-1 . 

Also, the choice of a self-adjoint differential operator, L determines the right-invariant 

Riemannian structure on the collection of velocity fields with the norm defined as, ||v||2 = 

Jn(Lv(x), v(x))dx.

The tangent space at identity, V =  TjdDiff(Q), consists of all vector fields with finite 

norm. Its dual space, V* =  Tj*jDiff(Q), consists of vector-valued distributions over Q. The
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velocity, v e V, maps to its dual deformation momenta, m e V*, via the operator L such 

that m =  Lv and v =  Km. The operator K  : V* ^  V denotes the inverse of L. Note 

that constraining 0 to be a geodesic with initial momentum, m(0), implies that 0, m, and 

I  all evolve in a way entirely determined by the metric, L, and that the deformation is 

determined entirely by the initial deformation momenta, m(0). Given the initial velocity, 

v(0) e V, or equivalently, the initial momentum, m(0) e V*, the geodesic path, 0(t), is 

constructed as per the following Euler Poincare (EPDIFF) equations [52, 53]:

dtm =  —ad*m = —(Dv)T m — Dmv — (div v)m, (2.9)

where D denotes the Jacobian matrix, and the operator ad* is the dual of the negative 

Jacobi-Lie bracket of vector fields [52, 53, 42] such that, advw =  —[v,w] =  Dvw — Dwv. 

The deformed image I(t) =  I (0) o 0-1 (t), evolves via: dtI  =  — v -V I .

In the diffeomorphic image pair registration problem, it has been shown that the optimal 

initial momentum is orthogonal to the level sets of the deforming image [53]. That is, 

m(x) =  a(x)V I(x) for a scalar function a  at all times. Note that constraining 0 to be a 

geodesic with initial momentum m0 =  m(0) implies that 0, m, I , and a  all evolve in a way 

entirely determined by the metric L, and that the deformation is determined entirely by 

the initial scalar function a 0 =  a(0). For a more in-depth treatment of this background on 

shapes and diffeomorphisms, refer to the textbook by Younes [54].



CHAPTER 3

STATISTICAL LEARNING IN SHAPE 

ANALYSIS

This chapter provides a brief review of statistical and machine learning methods of shape 

analysis. It gives an overview of the state-of-the-art methods where clinical responses are 

modeled as functions of anatomy. It also discusses methods that build prediction-based 

models of shapes and clinical funtions.

3.1 Clinical response as a function of anatomy
Shape analysis using large deformations under the diffeomorphic framework (LDDMM) 

has gained an increasing interest within the neuroimaging community in last two decades. 

For instance, large deformations have been used for the characterization of anatomical 

changes associated with various diseases [55, 56], including the analysis of changes in 

anatomy with normative aging [57]. Recently, there also has been a widespread interest 

within the community to combine machine learning and shape analysis techniques. This 

has provided effective tools for learning patterns in morphological shape changes occurring 

in the human brain during healthy aging and disease progression. Some of these studies 

exhibit potential for prognosis and prediction of neurological diseases. Traditional brain 

imaging studies have used the brain anatomy as the outcome variable and have correlated 

changes in the brain anatomy to age, gender, and cognitive status. However, only recently, 

there have been few attempts to predict cognitive function from brain MRI. The goal has 

been to determine the extent to which changes in the brain anatomical structure account 

for the variance of cognitive function in normal aging and Alzheimer’s disease.

Conventional approaches involve analysis of only the segmented substructures, such as 

the hippocampus, which are already known to be important in AD. For instance, Wang et 

al. [58] uses large deformation diffeomorphic transformations to characterize group differ­

ences in the shape of the hippocampus. In another substructure focused study, Miller et 

al. [59] performed statistical analysis on surface-based deformation markers to characterize
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differential atrophy in amygdala between the mild cognitive impairment (MCI) and the 

AD group. Mild cognitive impairment is an intermediate stage between healthy aging 

and dementia; patients diagnosed with MCI are at high risk of developing Alzheimer’s 

disease (AD). More recently, Li et al. [60] studied a variety of sparse regression methods 

on summary measures derived only from left and right hippocampus, such as volumes and 

surface deformations of hippocampii.

Alzheimer’s is a complex disease. The models that rely only on specific regions, ignore 

substructures and their cumulative effects on disease. Such an approach that ignores the 

global anatomy and its network, lose any hope of discovering complex disease related 

patterns. In this dissertation, we present a multivariate analysis of diffeomorphic transfor­

mations of the whole brain for relating complex anatomical changes with neuropsychological 

responses, such as clinical measures of cognitive abilities, audio-verbal learning, logical 

memory, and measures of executive functions.

Some of the other studies on characterization of neuroanatomical changes in the brain 

have focused on the statistical analysis of deformation maps, either using the associated 

Jacobian of the transformations, as in the now ubiquitous deformation-based morphome­

try [56], or directly using the displacement maps. Rather than using the associated Jacobian 

of transformations, we formulate the regression problem in terms of initial momenta maps 

that completely encode the geodesics on the manifold of diffeomorphisms. Deformation 

momenta is a scalar-valued signature that summaries the complete shape variability infor­

mation for an individual [61]. The momenta is comprised of both the local divergence and 

curl components of associated deformation fields and not only the local scaling represented 

by the Jacobians. The choice of deformation momenta as signature representation of local 

shape changes in the whole brain volume has several advantages over Jacobians:

1. it preserves the underlying geometry of space owing to its dual nature with respect 

to the metric in that space,

2. it summarizes the nonlinear, large deformation information of shape variability,

3. it is a compact and unique representation of the complete geodesic path in diffeomor- 

phisms.

We formulate regression models on momenta to study the covariance of the anatomical 

structures in the entire brain volume without any segmentation or a priori regions of interest 

identification. The main goal is to extract and identify shape deformation patterns in brain 

anatomy that relate to observed clinical scores depicting cognitive abilities. Furthermore,
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this regression scheme under the LDDMM framework enables us to visualize and quantify 

the amount of localized shape atrophy observed and relate it to attenuation in neuropsy­

chological response.

Another interesting question about the cause-and-effect relationship between variables 

concerns the confounding effect of extraneous variables, which may lead to false inter­

pretation in the statistical analysis. Frank et al. [62] give a comprehensive account of 

such issues. Since we attempt to understand the “neuroanatomical shape—neurological 

response” relationship, this particularly is of considerable importance for our shape analysis 

and regression modeling. Both the anatomical shape and clinical response are well known 

to be affected by several demographic variables. We formulate a modeling approach that 

takes into account a control for these variables in order to avoid spurious interpretations of 

our results. We also report the prediction accuracy to understand the stability of the model 

and find the results comparable to some of those reported in previous attempts. Our results 

also show that anatomical measures, such as cortical thickness, hippocampal volume and 

atrophy in amygdala, emerge naturally as in previous studies of Alzheimer’s and related 

dementia.

3.2 Prediction based methods
Several studies have used machine learning methodologies to predict cognitive and 

disease states from neuroimaging data. Some of these works in Alzheimer’s disease are 

by Vemuri et al. [63], Davatzikos et al. [64], Fan et al. [65], Cuingnet et al. [66], Zhang et 

al. [67] and Li et al. [60] (see Weiner et al. [68] for detailed review on this ongoing re­

search). Vemuri et al. [63] used linear support vector machines (SVM) to build classifiers to 

discriminate Alzheimer’s disease from cognitively normal patients using tissue densities 

extracted from structural MR brain images. In another study, Davatzikos et al. [64] 

used high-dimensional pattern classification to develop efficient classifiers on a smaller 

cohort comprising of individuals with AD and frontotemporal dementia (FTD). Disease 

categorization between AD and FTD was performed based on features summarizing the 

amount of gray matter and white matter in brain tissues. Extensive analysis is presented in 

Cuingnet et al. [66], summarizing disease categorization performances of classifiers targeting 

primarily the classification between AD, MCI (convertors and nonconvertors) and control 

groups. This study evaluates multiple feature extraction methodologies such as voxel based 

summaries, cortical thickness and the hippocampus volume. Zhang et al. [67] proposed 

a multikernel method to combine both structural and functional imaging modalities and
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evaluated their method on the classification of the MCI group. Batmanghelich et al. [69] 

have recently developed an approximate inference algorithm to solve probabalistic models 

based on classification of disease phenotypes: AD, MCI and healthy controls, utilizing 

features derived from both the structural MRI as well as from genetic sequences in the form 

of single nucleotide polymorphisms (SNPs). However, this framework in its current form, 

is also not generalizable to regression with continuous clinical variables.

While many of above studies involve categorical classifications of disease, regression- 

based predictive analysis of continuous clinical measures have been given little attention. 

Modeling symptomatic measures of neuropsychological response as a function of anatomy 

has recently found increasing interest within the neuroimaging community. The progression 

of disease associated with aging such as the AD is characterized by gradual and continuous 

changes. Thus, regression analysis using continuous clinical response variables is a natural 

choice and more informative of disease progression than just the classification-based ap­

proach for the study of such neurological disorders. Cohen et al. [70] give a comprehensive 

review of such techniques and cover a gamut of studies that relate continuous clinical 

variables with neuroimaging data in various neurological disorders. Another review article 

by Filipovych et al. [71] also suggests the use of clustering-based approaches for categorical 

analysis and high-dimensional regression approaches for understanding continuous clinical 

progression.

Some of the works to predict neuropsychological characteristics from imaging data in 

Alzheimer’s disease are from Duchesne et al. [72] and more recently by Stonnington et al. [73] 

and Wang et al. [74]. Duchesne et al. [72] have used linear regression models on features 

derived from MRI data to predict clinical decline for the Mild Cognitive Impairment (MCI) 

disease group. The latter two works, however, are more closely related and comparable to 

our study. They have considered a continuum of disease states in Alzheimer’s and have used 

similar predictive modeling on the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

neuroimaging and neuropsychological data. Stonnington et al. [73] employed Relevance 

Vector Regression (RVR) techniques on the ADNI baseline MR scans and baseline clinical 

evaluation scores for a continuum of disease states, with the similar datasets as has been 

used in this study. Wang et al. [74] have employed regional-based clustering approach on 

tissue density maps (TDM) for feature selection, followed by RVR based bagging model. 

Although they report higher correlation, Wang et al. used only a subset of the baseline MRI 

scans from ADNI, and their response variable was the average clinical score over timepoints.

Besides neuroimaging, momenta under the currents framework has been used as a
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summary measure of shape changes in a cardiac study. Mansi et al. [75] evaluate the 

regional impact of valve regurgitation and heart growth upon the end-diastolic right ventricle 

(RV) using shape changes summarized by deformation momenta. With the motivation 

of adressing the problem of multicollinearity in high-dimensional regression problems this 

work also employs partial least squares regression and reports improved predictions when 

compared to using principal component analysis (PCA) regression. This work applies 

the partial least squares regression method on moments using L2 scalar product between 

moments which is ill-defined. The regression coefficient thus obtained does not have an 

interpretation of being a moment and hence cannot be interpreted as the regression geodesic.

The focus of pattern recognition and machine learning methods for both classification 

and regression analysis in recent neuroimaging studies has primarily been to predict. Even 

though these approaches were able to extract and visualize the pattern-maps of brain 

atrophy that are most informative for prediction, none of the above studies answered 

questions about interpretation of the model in a way that would enable them to quantify 

the amount of anatomical shape changes. Our goal here is centered around quantifying 

the shape deterioration observed in brain tissue that would explain continuous clinical 

progression. An important statistical consideration towards this end is the need to control 

for the confounding variables, such as age, gender, handedness, and patient education. 

Previous predictive-modeling approaches have not included any explicit control for such 

confounding variables and does bring into question the biological interpretability of the 

patterns recognized by the regression coefficients obtained in these approaches. We address 

this by formulating a regression model between the residual in deformation momenta and 

residuals in clinical response, obtained after regressing out confounders such as age, gender, 

and education.

Some of the other works that have recently provided more insights in the understanding 

of dynamics of shape changes in Alzheimer’s disease include those by Lorenzi et al. [27, 

76], Niethammer et al. [20] and Hong et al. [77]. Lorenzi et al. [27] have developed a 

hierarchical approach that combines subject specific tissue atrophy to obtain population 

level longitudinal changes. This framework is used to investigate the effects of positivity of 

CSF A^1—42 levels on brain atrophy in healthy aging. In the work that followed, Lorenzi et 

al. [76] suggest a methodology to decompose individual’s brain atrophy into complementary 

components comprised of AD specific and healthy aging based on the projections defined 

under stationary velocity fields (SVF) framework. Niethammer et al. [20] proposed a novel 

idea of generalizing the notion of least squares regression to manifold of diffeomorphisms.
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This method is effective in summarizing changes in atrophy along with age for a single 

individual. Hong et al. [77] further extend geodesic regression to derive an approximate 

algorithm under the metamorphisis framework. This method of geodesic regression, in its 

current form, is generally applicable to explaining atrophy with aging. The anatomical 

shape is treated as a response variable to independent aging progression. These methods 

are not applicable where neuropsychological characterstics are sought to be modeled as a 

functions of anatomy.



CHAPTER 4

RELATING ANATOMICAL SHAPE TO 
NEUROPSYCHOLOGICAL 

MEASURES

This chapter presents the first contribution of this dissertation. It describes a novel 

multivariate statistical framework to relate continuous clinical variables in the Euclidean 

space with anatomical shape representations in the manifold of diffeomorphisms. It also 

summarizes the analysis in support of the first two claims laid out in Chapter 1:

1. It presents a model for the extraction of shape deformation patterns that explain 

variability in multivariate clinical response.

2. It extends this model for the purpose of prediction of clinical variables using anatomi­

cal shape descriptors as regressors. Such a modeling also enables explicit quantification 

of anatomical variability in units of clinical response.

We first begin with a review of the partial least squares methodology in the context of di­

mensionality reduction and regression problems under the Euclidean setup. We later extend 

this technique to model regression in the tangent space of the manifold of diffeomorphisms 

acting on images.

4.1 Partial least squares (PLS)
The statistical analysis pertaining to data configurations with high dimensions but a 

small number of observations has been referred to as a “high dimensional low sample 

size” (HDLSS) [78] problem. This has also been popular in the probability and statistics 

literature as the “small n large p” problem [79, 80]. This characteristic property is typical 

to neuroimaging data, where the dimensionality of the acquired images far outpaces the 

number of subjects in the study. The statistical technique of Partial Least Squares (PLS) 

has been shown to be effective in the HDLSS setting, where the problem is particularly
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susceptible to multicollinearities. Multicollinearity in the context of regression refers to 

the situation when two or more regressor variables are highly correlated and are linearly 

dependent [81]. There are several variants of PLS both for univariate and multivariate 

responses [82, 83].

The PLS regression is a supervised dimensionality reduction technique based on a latent 

decomposition model. This is done by extracting a small number of latent components 

or projection scores that are linear combinations of the original variables to avoid multi- 

collinearity. Unlike Principal Component Regression (PCR) [84], where the dimensionality 

reduction of the data is carried out independent of the response variable by maximizing 

the variance within the regressors alone, PLS models the regression by maximizing the 

covariance between the regressors and response. The latent components are extracted in 

the independent and dependent data spaces such that the covariance between the two is 

maximum.

4.1 .1  PLS for d im en sion ality  reduction

Traditionally, Partial Least Squares (PLS) has been used to characterize pertinent 

directions summarizing relevant information between blocks of data in a high-dimensional, 

multivariate setting. This approach to multivariate analysis using PLS was introduced 

in the neuroimaging community by Bookstein [85] with a detailed review by McIntosh et 

al. [86] and references therein.

Let us say we are interested in finding meaningful relationships between two sets of 

random variables, say x £ Rr and y £ Rs. If we denote the n observations as pairs, 

(xl ,y l)i=1,...,n, the data design can be written in the form of two blocks of matrices, X  and 

Y, such that:

X  =  (x1x2 ■ ■ ■ xn)T and Y = (y1y2 ■ ■ ■ yn)T .

For a typical neuroimaging study, at least one of the r or s is big. We choose x to be 

the variable containing the high-dimensional information extracted from the imaging data. 

Thus, the matrix X  is n x r where r > >  n and the matrix Y is n x s.

As a dimensionality reduction technique, PLS represents X  and Y as latent components 

or projection scores that are linear combinations of the original variables. Unlike Principal 

Component Analysis (PCA) where the dimensionality reduction of the data is carried out 

independent of the response variable by maximizing the variance within the X  matrix alone, 

PLS estimates latent components by maximizing the covariance between the X  and Y. The 

latent components are extracted in both the data spaces, row(X) and row(Y), such that
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the covariance between the two is maximum. Geometrically, PLS estimates the directions, 

w in row(X ) and c in row(Y), such that data projected onto these, t and u, have maximum 

covariance. In its classical form of regression between X  and Y, PLS method solves the 

following optimization problem to estimate weight vectors, w and c, that maximize sample 

covariance, cov(t,u), between the scores, t and u:

{w,c} =  argmax cov({a,x%), (b,y%)),
a,b

subject to wTw =  1, cTc =  1.

Rank-one approximations of the estimated score vectors, t and u are subtracted from 

matrices X  and Y, respectively. This process is called deflation of X  and Y :

x % ^  x% — (w, x%)w and y% ^  y% — (c, y%)c.

The above optimization problem can be solved by the singular value decomposition 

(SVD) of the cross-covariance matrix X TY  by using the square root transformation, result­

ing in the equivalent formulation:

w,c  =  argmax aTX T Yb, (4.1)
a,b

subject to wTw =  cTc =  1. The corresponding direction vectors, w ’s and c’s, are the 

respective left and right singular vectors. The successive latent variables, t ’s and u ’s, are 

computed once by a single SVD.

4 .1 .2  PLS for regression

We discuss here the formulation of regression modeling to predict s-dimensional response 

variable, y1,y2 . ..  ,ys represented by a vector y, using r predictor variables, x 1, x 2, . . .  , x r 

represented by a vector x .

As discussed above, PLS decomposes the matrices, X  and Y  into latent components T  

and U . Original matrices, X  and Y  can now be written as regression functions of these 

components such that:
X  =  T P T +  E,

T (4.2)
Y =  UQt  +  F,

where T  and U are the matrices of projections (scores) and the matrices P  and Q represent 

the loadings. The matrices E  and F  are the error matrices respectively. In its interpretation 

for regression formulation between X  and Y , the PLS method is based on the nonlinear 

iterative partial least squares (NIPALS) algorithm of Wold [87]. This algorithm solves
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the following optimization problem in (4.1.1) to estimate weight vectors w and c, subject 

to wTw = 1, cTc =  1. NIPALS algorithm, based on similar principles as the power 

method, is a robust procedure for solving singular valued decomposition problems. The 

NIPALS algorithm initializes a random estimate of u and iteratively updates u until converge 

according to the sequence:

1. w =  4. c =U1 U t1 t

2. w =  - —-  5. c =  -T-w1 — -1 -

3. t =  X w  6. u =  Yc

After convergence, the loading vectors, p and q are extracted by regressing out t and u 

from X  and Y, respectively, as per regression equations in (4.2) using least-squares estimates 

such that:

X Tt , YTu 
p =  -7TT-— and q =  .tTt uTu

The above process for estimation of score and loading vectors is repeated on these deflated 

matrices to compute the successive latent variables. The PLS latent variables extraction 

process can be repeated until the required number of latent variable, l, or until the rank of 

X  or Y is reached. The optimal number number of latent variables are generally selected 

based on cross-validation and similar component selection techniques.

There are several variants of PLS algorithms, which primarily differ in the deflation 

step during the computation of successive latent variables. For this study, we focus on the 

most widely used variant based on the assumption that PLS score vectors, (tj}i=1, are good 

predictors of response, Y. This added asymmetry of predictor and response is encoded in 

the deflation scheme such that the component of the regression of Y on t is removed from 

Y at each iteration of PLS:

ttTX  ttTY
X  ^  X  -  t t T^  and Y ^  Y -  t tT^ . (4.3)

The regression problem for PLS can also be written in the form that relates the input 

data matrices X  and Y as:

Y =  X B  +  F,

where B is the regression coefficient and F  is the error matrix. The matrix B is of the form:

B =  W  (PT W  )-1CT .
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As derived by Rosipal and Trejo [88] using the relations between W , T , U and P  from 

Manne [89], Hoskuldsson [90] and Rannar et al. [91], the expression for B takes the form:

B =  X T U (Tt X X t U )-1 Tt Y. (4.4)

Notice that in this resulting expression, B depends upon the data inner product matrix, 

X X T, and is invariant of scalings of score vectors in matrices, T and U.

4 .1 .3  K ern el partial least squares regression

The kernel version of PLS algorithm by Rosipal and Trejo [88] attempts to find the 

relationship between datablocks when the dependent variable, xi, is an element of the 

reproducing kernel Hilbert space, H, equipped with the inner product. The goal is to 

formulate the PLS model in the Hilbert space, H. We denote the matrix of inner products 

(Gram matrix) of the data points in H as G. The NIPALS algorithm described above 

can be extended to use this inner product matrix of the data points. This can be seen by 

merging steps 1 to 3 to give the following algorithm:

L t =  Gu 4. c =  ill

2. t =  Ml 5. u =  Yc

3. c =  yT t 6. u =  Tiuu

Similar to the deflation Equation 4.3 for the Euclidean case, the deflation of Gram 

matrix, G can be written as:

G ^  (I — ttT)G (I — ttT).

Moreover, we can write the regression coefficient for the regression with kernel Gram 

matrix, B as:

B  =  U (Tt  GU )-1Tt  Y. (4.5)

For prediction on the test data we need to get the Gram matrix for test data that is 

comprised of the inner products of test data points with the training data points. Also, 

the estimate of B as in Equation (4.4) can be obtained by linear combination of input data 

points, i.e., the B =  X TB.

4.2 Atlas and deformation momenta
As detailed in the background Chapter 2, we use the general framework of computational 

anatomy by Dupuis et al. [92] in which the anatomical variation within a population is
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characterized by a template, or atlas, and the space of transformations that maps the 

atlas to each individual subject of the population. We briefly revisit some notations and 

definitions relevant for this chapter. Let Q be the coordinate space of the atlas. The 

smooth time-indexed velocity vector fields are denoted as v(t,y) : (t e [0,1],y e Q) ^  Q. 

The function, 0v(t,x), given by the solution of the ODE, =  v(t,y), with the initial 

condition, y(0) =  x, defines a diffeomorphism of Q. In other words, y(t) denotes the path 

of each voxel along the flow while x denotes the starting location in the coordinate grid, 

Q. Thus, 0v(t,x) =  y(t), represents the diffeomorphism of the entire grid as a function of 

time, t. One defines a Riemannian metric on the space of diffeomorphisms by inducing an 

energy via a Sobolev norm with the partial differential operator, L, on these velocity fields. 

The distance between the identity transformation and a diffeomorphism, -0, is defined as 

the minimization

d(id, 0 )2 =  min |  J  (Lv(t, -),v(t, -)}dt : 0v(1, ■) =  0 ( - ) | . (4.6)

The distance between any two diffeomorphisms is defined as d(0,0) =  d(id, 0  o 0 -1).

This Riemannian metric defined on the space of diffeomorphisms can now be used to 

compute a deformation that matches two images. If the problem is to register an image, I , 

over the target image, J , then image at time, t, is defined as, It =  I  o 0 - 1, i.e., I0 =  I . The 

goal is to generate the diffeomorphism, 0, parameterized by the “optimal” time-varying 

velocity field, v, that best aligns It with J .

It has been shown by Miller et al. [93, 94] that the distance metric in Equation (4.6) on 

diffeomorphisms also establishes the notion of distance between two anatomical images, I  

and J. The length of the shortest path on diffeomorphisms connecting image I  to J  defines 

a metric on the image orbit under the group action of diffeomorphisms. For exact matching 

where I  o 0-1 =  J , the distance between images is written as,

d(I, J ) 2 =  min f  (Lv(t, -),v(t, -)}2dt. (4.7)
v:jt=vt(jt) J0

Motivated from the above, for inexact matching, a penalization to force closeness of the 

match is usually added [93, 94] resulting in the minimization problem:

J 1 1 
E(v) =  .min (Lv(t, -),v(t, -)}2dt +  —̂ ||Io  0 -1 — J , (4.8)

v:j>t=vt{<jt) J0 a

where a is a free parameter controlling the tradeoff between exactness of the match and 

smoothness of the velocity fields. The existence of a minimizer in Equation (4.8) is shown 

in Dupuis et al. [92].
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4.2 .1  Sh ooting-based  im age m atch ing and deform ation  m om enta

The minimizer in Equation (4.8) solves the LDDMM image matching problem. An 

important consequence is that the Euler-Lagrange equations associated with the LDDMM 

problem coincide with the Euler-Lagrange equations of geodesics on the group of diffeomor- 

phisms. As shown in Younes et al. [42], the geodesic equations are completely determined 

via the initial momenta, Lv0, and furthermore it is in the direction of the gradient of 

deforming image. The vector image, a 0V / (or the scalar image, a 0), is referred to as the 

initial momenta. The scalar quantity, a 0, completely encodes the geodesic flow from the 

initial image to the final image for the metric defined by the choice of operator, L, as per 

Equation (4.6) and the gradient of the initial image, V / .

A very effective and standard algorithm for the solution of above LDDMM problem was 

proposed by Beg et al. [95]. While the energy minimization of E(v) over v is efficient in 

matching complex shapes, at convergence, this algorithm does not yield accurate estimates 

of the initial momenta. Vialard et al. [61] has suggested another algorithm to accurately 

estimate the initial momenta. This shooting algorithm optimizes directly on scalar initial 

momenta by solving the adjoint system of Hamiltonian equations.

The minimization of the functional in Equation (4.8) can be done efficiently by ensuring 

the accuracy of estimated initial velocity, and thus the initial momenta, when the opti­

mization is carried over the set of geodesic flows as shown by Vialard et al. [61]. The time 

integral over velocity can be replaced by the Hamiltonian of the system at t =  0 expressed 

in terms of initial momenta, a(0). This leads to minimization of the functional, P(a(0)), 

over initial momenta:

P(a(0)) =  <V/0a(0, - ) ,K* V /ja(0 , -))L2 +  -1 ||/1 — J | |2,a 2 (4.9)

a (0 ,.) =  argm inP(a(0)),
a(0,-)

subject to the geodesic evolution constraints given by:

v(t) +  K *  V /ta(t) =  0 

dta(t) +  V ■ (a(t)v(t)) =  0 

dtlt +  V/t ■ v(t) =  0

(4.10)

(4.11)

(4.12)

Equation (4.12) is the infinitesimal action of the velocity field, v, on the image, while (4.11) 

is the conservation of momenta.
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The gradient for energy functional in (4.9) is expressed in terms of time-dependent 

Lagrangian multiplier over the path of geodesics. The gradient of P  is given by:

a(0) is computed by solving the following system of adjoint equation by backward time- 

integration:

and a(t) and It are the solution of the system of shooting Equations (4.10)-(4.12). Thus, to 

estimate a(0) for matching image, I , to target image, J , a gradient descent based iterative 

algorithm is implemented. Since the gradient of energy functional as per Equation (4.13) is 

dependent upon the values of the adjoint variable, a(0), at t =  0, the Equations (4.14) to 

(4.16) are integrated backward in time in every iteration. Thus, the gradient descent step 

on initial momenta is taken based on computed gradient of energy as per Equation (4.13) 

using these adjoints until convergence.

4.2 .1 .1  A tlas C onstruction

The empirical estimate of Frechet mean of images, I, can now be presented using the 

distance metric on images defined in Equation (4.7). The goal is to compute the unbiased 

atlas image, II, that minimizes the sum of squared distances to the given population of 

images [96]. Given a collection of anatomical images, { I l ,i =  1 , . . . ,n } ,  the atlas can be 

defined as a solution to the minimum mean square energy criteria,

The minimum mean squared energy atlas construction problem is that of jointly esti­

mating an image, I, and n individual deformations.

The algorithm described in Section 4.2.1 is effective for image matching but is nu­

merically unstable when a template estimation is involved. The numerical instabilities of

Va(o)p  =  — a(0) +  Vio ■ K  -k (a (0)VIo). (4.13)

dtIt +  V ■ (vIt) +  V ■ (aV) =  0 

dta  +  v ■ V a  — V I  ■ V =  0

V +  K  k (ItV I  — aVa)  =  0

(4.14)

(4.15)

(4.16)

subject to initial conditions

Ii =  J  — Ii,

a  (1) =  0,
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geodesic shooting-based template construction algorithms are studied later in Chapter 6. 

In this study, the atlas construction step is decoupled from the geodesic shooting-based 

image matching optimization because the template construction using scalar deformation 

momenta is known to suffer from numerical instabilities and is difficult to converge to 

a stable mean image. Therefore, for template construction, we have used the standard 

algorithm mentioned in Joshi et al. [96] that does not involve geodesic shooting based 

optimization. The accurate shooting-based deformation momenta are estimated by solving 

N  image matching problems as a secondary step. Following is the two-step approach used 

in this study to estimate deformation momenta that accurately encode geodesics:

1. Estimating the unbiased atlas, I, using the truncated mean as per the framework of 

Joshi et al. [96] and

2. Estimating the initial momenta from this atlas by registering I  to all images indi­

vidually using the iterative backward-integration based gradient descent algorithm as 

described in Section 4.2.1.

For the atlas construction step, we note that both the estimate of the mean anatomy 

and the stable convergence of the estimation algorithm can be affected by outliers, often 

resulting from errors during automated image preprocessing such as poor skull-stripping. 

As the number of images used in atlas construction increases, thorough hand-validation of 

each input image becomes prohibitive. To mitigate the effects of such outliers, we compute 

a truncated mean in place of the full mean, where at each iteration of the atlas estimation 

algorithm all deformations are updated, but the estimate of the mean is updated based on 

the current most-central 90% of the deformations using the distance metric, d(I, I k), as per 

Equation (4.7).

For the second step, atlas image, / ,  is registered to each image to solve the n LDDMM 

image matching problems thereby resulting in the estimate of n geodesics emanating from 

the atlas towards each image. The geodesic equations are completely determined via the 

initial momenta, Lv0, corresponding to each individual image deformation direction. This 

implies that for each of the n image matching problems, the initial velocity is given by the 

equation, L v * ( 0 , x )  =  a 0 (x )V /(x ). The quantity, a0, completely encodes the geodesic flow 

from the atlas image to each of the individual images, i.e., a0’s have all that we need to 

know to traverse the geodesic joining the atlas to the contributing images.

The two-step approach above not only improves the accuracy of the initial momenta 

computation but also decouples the individual subjects by recomputing deformation fields
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from the atlas to individual subjects. This allows separation between training and testing 

data, which is important for prediction-based regression modeling. Another benefit is that 

one can choose any atlas and model the shape variations from any coordinate system of 

choice.

4.2.2 GPU implementation
Two main challenges exist in implementing the LDDMM atlas building framework: 

the intensive computational cost and large memory requirements. Even with a very low- 

resolution time discretization, and efficient multithreaded implementation, atlas generation 

takes lot of time and memory on a high-end, multicore, shared-memory machine. This 

makes parameter tuning and cross-validation schemes impractical, and limits the size of the 

population for which an atlas can reasonably be generated.

We implemented the GPU version of the algorithm as in Joshi et al. [96]. For a fixed 

atlas image, I, the n individual deformations are updated by performing a gradient step of 

(4.8). This is implemented as a parallel alternating algorithm by interleaving the updates 

of the optimal deformations and the estimate of the atlas image, I. These deformations 

are completely independent of each other, naturally yielding to a distributed memory 

implementation. Further, the parallel nature of many of the image processing algorithms 

used in the deformation update process lend themselves to an efficient and massively 

parallel GPU-based implementation. An implementation of LDDMM atlas building for 

use on a GPU computing cluster was therefore developed, based on MPI and the GPU 

image processing framework by Ha et al. [97]. Individual deformation calculations are 

distributed across computing nodes, and nodes further distribute deformation calculations 

among GPUs. In this manner, the only inter-GPU and internode communication required 

is in the atlas update step. Inter-GPU atlas computation is done in host (node) shared 

memory, and internode atlas computation is efficiently done by a parallel-reduce summation 

MPI call.

The GPU cluster used consists of 64 8-core computing nodes and 32 NVIDIA Tesla 

s1070 computing servers, each containing four GPUs. Each node controls two of the four 

GPUs contained in a s1070. Using 55 nodes of the GPU cluster, the resulting implemen­

tation generated the atlas of the population of 566 brain images with much higher time 

discretization, in under 40 minutes.
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4.3 PLS on the manifold of diffeomorphisms
We utilize this machinery provided by the kernel PLS methodology and extend the idea 

of supervised dimensionality reduction as well regression on a manifold (Figure 4.1). We 

do this by incorporating the inner-product structure of the momenta space into the PLS 

framework. Given the Frechet mean atlas of the image ensemble, the initial velocities (v0, 

i =  1 , . . . ,n )  and corresponding initial momenta (a0, i =  1 , . . . ,n )  for all contributing 

images defined in the tangent space at the atlas obtained as a consequence of solving the 

LDDMM energy minimization problem, we can construct a kernel formulation of the PLS 

algorithms.

The Sobolev operator mentioned in Section 2.3, which also relates to deformation 

momenta as Lv =  - a V I ,  defines the kernel function for the mapping. Here, L is the 

self-adjoint differential operator of the form:

L =  - a V 2 -  $V  +  yI, (4.17)

where the first two terms control the smoothness of the registration while the last term 

ensures the invertibility of the operator. These operators are borrowed from the theory 

of fluid mechanics and were introduced in image registration by Christensen et al. [98]. 

Holden et al. [99] review the class of such operators for fluid image registration in detail. 

The compact self-adjoint smoothing operator, K , is thus related to the operator, L, as:

KLv  =  v.

For a pair of geodesics emanating from the atlas towards each image, we can compute 

the inner product between initial velocities, v0 and v0, in the tangent space at the atlas and

T ra ils

Figure 4.1: Tangent space at the atlas (I) and emanating geodesics towards contributing 
images. The geodesics in red and blue represent regression coefficient for clinical variables 
and need to be estimated.
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relate it to the inner product between initial momenta as:

<V0,V0) v  =  (Lv0,V0) l  =  < V /a i ,K *  ( V /a j ) ) l . (4.18)

Now, if we were given only the initial deformation momenta, a0 and a0, and the common 

gradient image ,V / , we represent this inner product between a pair of initial deformation 

momenta as:

<a0,a0)v* =  < V /a j,K *  ( V /a j ) )L2, (4.19)

where V * represents the space of deformation momenta.

For kernel PLS detailed in Section 4.1.3, the space, H, is the Hilbert space of momentum 

maps, V *. H is equipped with the inner product defined by Equation (4.18). The initial 

momentum, a0, captures the shape variations from the atlas in the form of the geodesic 

direction it encodes.

Now we define the anatomical shape vs. clinical response regression on the manifold of 

diffeomorphism (in the space of momenta maps, V *). Specifically, the problem is to find 

a direction governing the geodesic flow that predicts the clinical response, y. For a single 

clinical measure represented by a univariate response variable, y, this can be modeled as 

per the regression set up:

y =  <a0,^ a)v  * +  e, (4.20)

for a given geodesic characterised by the initial momenta, a 0. Note that a 0 e V * is an 

initial momentum map image for the geodesic corresponding to the regressor shape data 

and y the univariate dependent response. /a e  V * is the regression coefficient that needs 

to be estimated under the PLS formulation. We use the subscript, a, with the regression 

coefficient to emphasize that it represents a deformation momentum map. To solve this, 

projection operations in the PLS formulation must all be carried out in the tangent space 

using the Sobolev inner product in the space of momenta as per Equation (4.19). We further 

define /a as a linear combination of input data points, a0, i =  1 , . . . ,  n and represent:
n

=  Y ,  a 0 ^  (4.21)
i=1

The regression problem in (4.20) becomes:
n n

y =  (a o ,^ a 0 /3 *  ) v  * +  e =  ^  /^(ao,a0 ) v  * +  e. 
i=1 i=1

This implies that the regression is formulated using only inner product evaluations of 

the input data points. Further, the kernel PLS algorithm can be written entirely in terms of
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the kernel Gram matrix, G , of inner products, (a0, a0)V*, between all data points in vector 

space V *. For solving this kernel PLS problem, we use the kernel algorithm presented in 

Section 4.1.3. Given the initial momenta maps for each individual, we can compute the 

Gram matrix, G, of Sobolev inner products on the tangent space pairwise for all geodesics. 

The kernel PLS performed up to l latent vectors yields the estimate of / ,  which can then 

be transformed to / a , into the space of initial momenta using (4.21), and interpreted as a 

scalar momentum map image representing a geodesic direction for this regression.

We also note that this framework extends naturally for multivariate response using the 

kernel PLS when q >  1. This implies that we learn multiple clinical tasks simultaneously 

for prediction as per the kernel PLS formulation in Section 4.1.3. However, for multivariate 

response there in no direct interpretation of the regression coefficient, B, on the manifold of 

diffeomorphisms without ignoring the correlations within the dependent outcome variable. 

The following section covers the details about interpretation of the PLS and the regression 

coefficient in the tangent space for univariate response.

4.4 Results and statistical analysis
We performed a comprehensive analysis of the ADNI database for individuals at their 

baseline visit. This section details our extensive study on the structural magnetic resonance 

image (MRI) and clinical data from ADNI. We first describe the ADNI data and detail the 

procedure for deformation momenta estimation. Section 4.4.3 details results of our statis­

tical analysis for relating multivariate response and brain anatomy as per the symmetric 

partial least squares discussed in Section 4.1.1. In Section 4.4.4, we report our analysis of 

the model for prediction of clinical response using anatomy as regressors as per partial least 

squares discussed in Section 4.1.2

4.4.1 DATA: M RI and clinical variables
All the baseline and screening T1-weighted, bias-field-corrected and N3 scaled structural 

MRIs were downloaded from the ADNI. The brainmasks for skull stripping and Talairach 

transforms that had passed ADNI quality control were also retrieved and matched against 

the images. The corresponding neuropsychological data was also downloaded from ADNI. 

We included only the subjects for which the clinical scores were recorded within 3 months 

of their MRI scans. The above filtering procedure from the ADNI database resulted in 

a total of 566 subjects. The population of subjects downloaded primarily consisted of 

three diagnostic groups: Healthy Individuals or Normals (NL, N=153), Mild Cognitive 

Impairment (MCI, N=265) and Alzheimer’s Disease (AD, N=132) and 16 subjects without
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any diagnosis information. In this study we consider the AD, MCI and NL subjects as a 

continuous class rather than discrete classes.

We used thirteen global cognitive and functional assessment test scores for the analysis 

(Table 4.1). The first two were variants of the modified Alzheimer’s Disease Assessment 

Scale modified cognitive battery (ADAS) a) One that includes delayed word recall and 

number cancellation (ADASTOTALMOD); and b) The other that does not include delayed 

word recall and number cancellation (ADASTOTAL11). The next two were the Mini 

Mental State Examination (MMSE) and the Clinical Dementia Rating scale, Sum of Boxes 

(CDRSB). Episodic memory was assessed using the Rey Auditory Verbal Learning Test 

(AVLT) and the Logical Memory test of the Wechsler Memory Scale-Revised. Both memory 

tests had immediate recall (AVLTIMM, LOGICIMM) and 30 minute delayed recall (AVLT- 

DEL, LOGICDEL). Boston Naming Test score (BNT) is also included. Note the AVLT 

used the immediate recall after the 5th learning trial. The tests for executive functions: 

Trail Making Test (TRAILSA & TRAILSB), constructional ability: Clock Drawing Test 

(CLOCK), and working memory: Digits Span Forward Test (DIGIT) were also considered. 

Preprocessing the MRI involved skull stripping and registration to Talairach coordinates 

using Freesurfer [100] as a part of the ADNI preprocessing pipeline. We performed tissue- 

wise intensity normalization for white matter, gray matter, and cerebrospinal fluid using 

the expectation maximization (EM) based segmentation [101] followed by the histogram 

matching for each region.

Table 4.1: Response variables: Total of 566 MRI imaging data

n V a range
ADASTOTAL11 548 11.9276 6.6093 1.00 - 42.67
ADASTOTALMOD 544 18.7096 9.4361 1.67 - 54.67
MMSE 565 26.6690 2.7564 18 - 30
CDRSB 566 1.8498 1.8754 0 - 9
TRAILSA 548 47.9854 26.9674 17 - 150
TRAILSB 539 135.1095 80.2142 0 - 300
CLOCK 550 4.0745 1.1452 0 - 5
LOGICIMM 566 8.1343 4.9335 0 - 22
LOGICDEL 566 5.6961 5.4836 0 - 22
AVLTIMM 549 32.1421 11.8276 0 - 69
AVLTDEL 549 3.5883 3.9993 0 - 15
DIGIT 546 37.1282 13.3481 0 - 80
BNT 544 25.2188 4.9519 1 - 30
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4.4.2 Atlas and deformation momenta estimation

We generated the atlas of subjects on the GPU cluster. We did the accurate estimation 

of geodesics by computing initial momenta, a0, via registering the atlas to each individual 

subjects MRI by the iterative gradient descent using shooting optimization and backward 

integration scheme.

The registration parameters were fixed in the beginning of the analysis. The smoothness 

and invertibility of deformation fields are controlled by the parameters of the fluid operator, 

L, as mentioned in Equation (4.17). In our experiments, these parameters are fixed to the 

standard values of a =  0.01, =  0.01, and y =  0.001. These fluid parameters have been 

used in several previous studies [57, 29, 31] and are known to ensure sufficient smoothness 

of deformations fields for registration of MRI brain images. The parameter a that controls 

the trade-off between the exactness of the match and smoothness regularity was also set a 

priori to the least possible value that ensured successful registration and also resulted in 

smooth and invertible deformation fields.

We evaluated the underlying smooth deformations, 0*, corresponding to estimated mo­

menta for stability and invertibility. We deformed the atlas forward using the estimated 

deformation field (0) and the subject’s MRI backward using inverse of this deformation 

field (0 -1 ). The underlying Jacobian images for the deformation and the difference images 

for matching of the deformed images with the the corresponding target endpoints were 

confirmed visually for all the subjects.

4.4.3 Relating multivariate clinical variability with anatomical
shape

In this section we present results of our analysis for relating multivariate clinical response 

to anatomical shape using the PLS method discussed in Section 4.1.1. We focus on the 

analysis of subjects that are known to exhibit the most anatomical variability, the mild 

cognitive impairment group (MCI). We consider a subset of clinical scores for this analysis: 

ADASTOTALMOD, CDRSB, AVLTIMM, AVLTDEL, LOGICIMM and LOGICDEL. The 

main purpose is to model the inherent relation between anatomical shape and these clinical 

measures and evaluate its statistical significance.

The atlas was constructed with MCI subjects and the associated initial momenta fields 

were computed. The gram matrix of pair-wise inner products, G, was used to solve kernel 

PLS between G  and the matrix Y  of six dimensional clinical response. Using the inner 

product (Equation (4.19)), we performed the kernel PLS on initial deformation momenta 

with the smoothing kernel against the clinical response variables (Section 4.3). The signif­
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icance tests for the extracted momenta direction and the clinical response directions were 

performed using 100,000 permutations as per the procedure given below.

The statistical significance of the directions extracted by PLS analysis can be assessed 

using the projected data (the latent variables) t ’s and u ’s. We use nonparametric per­

mutation tests for calculating the significance of the regression of t ’s on u ’s and use the 

ofu (the covariance between t ’s by u ’s) as the test statistics. The distribution of the 

covariance statistic under the null hypothesis is calculated by randomly reordering the 

momenta and clinical response association and then recalculating the new SVD and its 

associated atu each time. The significance of a particular latent variable is measured by 

the p-value from the empirical distribution. In this work we consider the MCI subjects as 

a continuous class rather than a discrete class. We show in our results that anatomical 

measures, such as cortical thickness and hippocampal volume, used in previous studies of 

Alzheimer’s and related dementia emerge naturally as the result of our analysis. In our 

results we found that the first three latent variables (LV1, LV2 and LV3) had the lowest 

p-values with the first one being highly significant (Table 4.2). We analyzed the extracted 

deformation directions for the three latent variables by evolving the atlas image, / ,  along 

the geodesic in the corresponding projected momenta directions (w) and interpreting the 

association with the directions extracted in their clinical response counterparts (c). The 

log Jacobians of the deformation, overlaid on atlas image, / ,  resulting from shooting I  
along the geodesic with these momenta are shown in Figure 4.2, Figure 4.3 and Figure 4.4, 

respectively. Figure 4.5 displays the sagittal slices of the 3D MRI deforming brain from 

the atlas along the geodesic for the equal intervals, t, both in the positive and the negative 

LV1 direction (t =  0 correspond to the atlas image, I). The selected slices from this 3D 

overlay, shown here, capture relevant regions of the neuro-anatomical structures, such as 

hippocampus and ventricles, pertinent to cognitive impairment in Alzheimer's and related

Table 4.2: Significance test - 100000 permutations

LV 1 2 3 4 5 6

&tu 6.3369 3.4156 3.2210 2.2528 2.1039 1.5282
p-value 0.0006 0.0550 0.0161 0.2223 0.4631 0.3280
A D A SC O G 0.4936 -0.0197 0.0200 -0.3808 0.7712 -0.1254
CDRSB 0.2160 -0.4719 -0.8459 0.0895 -0.0843 -0.0010
AVLTIM M -0.5149 0.2714 -0.3337 -0.4668 0.0211 -0.5758
AVLTDEL -0.4559 0.2886 -0.3030 0.2527 0.5185 0.5334
LOG ICIM M -0.3452 -0.5755 0.1723 -0.5895 -0.0218 0.4147
LOG ICD EL -0.3429 -0.5374 0.2264 0.4667 0.3582 -0.4430
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Figure 4.2: LV1 log Jacobians overlaid on atlas. Red denotes regions of local expansion 
and blue denotes regions of local contraction.

F igure 4.3: LV2 log Jacobians overlaid on atlas.

F igure 4.4: LV3 log Jacobians overlaid on atlas.

(a) t =  -1 .00  (b) t =  -0 .66  (c) t =  -0 .33  (d) t =  0.00 (e) t =  0.33 (f) t =  0.66 (g) t =  1.00

Figure 4.5: Deformation of mean brain along LV1: t is the scaling parameter along LV1. 
The value t =  0 corresponds to the mean brain.

dementia. The major observation in these results is that the shape deformation patterns in 

anatomical structures show up evidently as a result of the PLS analysis of the momenta. 

We notice the expansion of lateral ventricles and cerebro spinal fuild (CSF), together with 

the shrinkage of cortical surface along LV1 (Figure 4.2 and Figure 4.5). The corresponding 

neuropsychological clinical response direction is that of increasing ADASCOG and CDRSB 

(measures of increasing cognitive degeneration) and decreasing AVLT and logical scores
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(measures of audio verbal learning and logical memory).

Another critical observation is the clearly evident shrinkage of the hippocampus and 

cortical and subcortical gray matter along these directions. Such patterns of atrophy are well 

known to characterize the disease progression in AD and related dementia. The LV2 and LV3 

explain the orthogonal set of anatomical deformation patterns that relate to corresponding 

patterns in audio-verbal learning scores and memory scores (immediate and delayed recall). 

The LV3 mainly explains deformations for learning and memory, owing to high absolute 

weights for AVLT and logic scores and CDRSB but very low weights to ADASCOG. The 

regions around Broca’s area show up. The deformation patterns in anatomy (Figure 4.4) 

show almost unchanging hippocampal region.

4.4.4 Prediction of clinical scores using anatomy
Figure 4.6 summarizes the key steps of our regression modeling framework. It starts 

from preprocessed MR brain images and follows three steps of processing. (A) The first 

step computes a stable and unbiased atlas and estimates the geodesics emanating from this 

estimated atlas towards each subject. This is analogous to shape feature-extraction such 

that the estimated initial deformation momenta are compact representations of anatomical 

shape variations corresponding to each subject.

(B) We compute the Gram matrix of pairwise inner products and solve the regression

Figure 4.6: Shape— clinical response regression modeling framework. Block A. represents 
initial shape feature extraction process, Block B. represents the regression on manifold and 
Block C. represents the interpretation of the estimated regression coefficient on the manifold 
and quantifying corresponding anatomical shape deformations.
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model for shape-clinical response regression using kernel PLS or kernel relevance vector 

regression (RVR) (Appendix A.2) to give the estimate of the regression coefficient that 

encodes a geodesic direction. (C) Finally, we deform the atlas image and segmented ROIs 

from the atlas along this estimated geodesic via geodesic shooting to quantify the amount 

of shape deformations.

PLS and RVR both work on the kernel Gram matrices of size N  x N , where N  is the 

number of subjects in the study. Thus, the running time of the entire procedure is dominated 

by the deformation momenta estimation step, Block A, that works on all p voxels of the 

image.

We generated the atlas with the 566 subjects on the GPU cluster. To assess the stability 

of atlas construction, we generated atlases using a truncated mean with different percentages 

of outliers removed each time. Figure 4.7 shows the atlas obtained for first two trimming 

levels. The generated atlases were stable and did not change up to 30% of truncation. 

Thus, as a conservative estimate and with the assumption that there are no more than 10% 

outliers in the preprocessed imaging data, we selected the atlas with 10% trimming level. 

The difference in average image residuals with 10% trimming and without trimming was less 

than 3%. We did the accurate estimation of geodesics by computing initial momenta, a0,

(a) No trimming (b) 10% trimming (c) 30% trimming

(d) No trimming (e) 10% trimming (f) 30% trimming

Figure 4.7: Stability of atlas using trimmed mean.
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via registering the atlas to each individual subject’s MRI by the iterative gradient descent 

using shooting optimization and backward integration scheme. We evaluated the underlying 

smooth deformations, ft* corresponding to estimated momenta for stability and invertibility. 

We deformed the atlas forward using the estimated deformation field (ft) and the subject’s 

MRI backward using inverse of this deformation field (ft-1 ). The underlying Jacobian 

images for the deformation and the difference images for matching of the deformed images 

with the the corresponding target endpoints were confirmed visually for all the subjects.

Using the inner product (Equation (4.19)), we performed the kernel-PLS on initial 

deformation momenta with the smoothing kernel against the clinical response variables 

(Section 4.3). We assessed the stability of the model by evaluating the accuracy of prediction 

on the regression model using the leave-one-out cross-validation (LOOCV) scheme. The 

atlas, deformation momenta and regression model were recomputed each time using only 

the training data and the resulting regression model was tested on the left-out individual. 

Further, the stability of resulting regression coefficients were evaluated using bootstrap 

experiments. Finally, we quantified the deformations by shooting the atlas using an ap­

propriately scaled regression coefficient (Section 4.3). The amount of deformation was 

visualized by overlaying the log of Jacobians of deformations over the atlas achieved at the 

end point of the geodesic. To further evaluate the stability of modeling, we also performed 

the regression of initial momenta with clinical variables using RVR. For details about RVR, 

see A.2.

We controlled for confounding demographic variables using the regression procedure 

described in A.1. Table 4.3 details the demographic information such as age, gender, 

handedness, and years of education for the population under consideration. The effect 

of age, for instance, can be seen by visualizing the regression coefficient obtained from the 

regression of shape with age. In this case, we performed the linear regression of initial 

momenta and visualized (Figure 4.8) the regression coefficient by shooting the atlas along 

the geodesic encoded by the coefficient. In general, the ADAS, MMSE score and TRAILSA

Table 4.3: Demographic information

diagnosis 153 Normals, 265 MCI, 132 AD , 16 no diagnosis
education ^ =  15.43 and a  =  3.14
age ^ =  75.45 and a  =  7.01
gender 268 Females and 302 Males
handedness 530 Right and 36 Left
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Figure 4.8: Regression coefficient for shape regression with age. Red denotes the regions 
of local expansion and blue denotes the regions of local contraction.

score reported some correlation with years of education with p-values 0.001, 0.000 and 

0.004 (The significance test of correlation for null hypothesis, r =  0) while no such trend 

was observed with age. Table 4.4 details the residuals in the clinical response obtained after 

regressing out age, gender and education. Figure 4.9 shows the regression of individual 

clinical variables with demographic variables.

To control for confounders, we repeated the PLS and cross-validation analysis with the 

residuals in momenta and residuals in clinical scores; the residuals were from their respective 

regressions with confounding variables. We ensured the training and test data separation 

right at the first step, i.e., the residuals were computed under complete isolation in the 

cross-validation (refer to A .1).

Table 4.4: Residuals in clinical response after regressing out demographic variables

n a range
AD ASTO TAL11 548 6.5218 -10.3468 to 30.0943
A D A STO TA LM O D 544 9.3098 -17.5333 to 35.1846
MMSE 565 2.6859 -8.5865 to 5.0305
CDRSB 566 1.8554 -2.6515 to 7.4980
TR A ILSA 548 26.7489 -32.5173 to 106.2147
TRAILSB 539 77.8597 -149.5055 to 194.6877
CLO CK 550 1.1225 -4.0949 to 1.6570
LOG ICIM M 566 4.7171 -9.5218 to 13.2546
LOG ICD EL 566 5.2864 -8.8638 to 15.2274
AVLTIM M 549 11.3933 -31.2308 to 37.6304
AVLTDEL 549 3.9245 -5.0557 to 11.8789
DIGIT 546 12.8555 -41.2448 to 42.7871
BNT 544 4.7129 -24.2047 to 9.1309
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Figure 4.9: Regression of clinical response with demographic variables (solid line). The 
correlation, r and slope m of the regression are reported. The dashed line corresponding to 
slope 1 is shown for comparison.
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4.4.5 Analysis

The goal of our regression analysis is to relate anatomical shape changes and neurological 

response and to quantify the shape changes that are most predictive of clinical decline. Table

4.5 reports the correlation of predicted vs. actual value, rtest, for test data in leave-one-out 

cross-validation for two independent regression schemes (PLS and RVR). The table also 

reports comparisons of the analysis done with and without the control for demographics. In 

terms of execution time, PLS outperformed RVR for the same input— up to three orders of 

magnitude for all the clinical variables. For detailed analysis, we have focussed on the results 

obtained for regression with ADAS, MMSE and TRAILSA. This is because the predicted 

ADAS reported best correlation with actual ADAS for regression with anatomical shape. 

The MMSE score was selected since it reported the best improvement in prediction when 

compared to that reported in previous studies. Similarly, the TRAILSA test was selected 

since it reported the best numbers within all the regression results of shape with clinical 

scores for test of executive function.

The LOOCV predicted scores vs actual scores correlation plots for ADAS, MMSE, and 

TRAILSA regression are shown in Figure 4.10 for PLS with residuals. Together with rtest, 

we also report the slope of correlation fit between actual clinical score and predicted score, 

m, and the normalized root mean squared error of cross-validation (NRMSE). Here,

NRMSE_ \/Mean Squared Error of Prediction
Range .

We noticed in general that predictive power in terms of cross-validation correlation values 

between actual and predicted response variables (rtest) improved after adding the control

Table 4.5: Leave one out cross-validation -  correlation of predicted vs actual for test data

Without control Control for demographics
Kernel PLS (rtest) Kernel RVR (rtest) Kernel PLS (rtest) Kernel RVR (rtest)

ADASTOTAL11 0.53 0.52 0.56 0.55
ADASTOTALM OD 0.57 0.56 0.60 0.59
MMSE 0.52 0.49 0.53 0.49
CDRSB 0.54 0.50 0.59 0.53
TRAILSA 0.35 0.34 0.40 0.37
TRAILSB 0.34 0.32 0.39 0.36
CLOCK 0.30 0.29 0.32 0.29
LOGICIMM 0.46 0.44 0.53 0.50
LOGICDEL 0.45 0.43 0.50 0.48
AVLTIMM 0.47 0.44 0.45 0.43
AVLTDEL 0.37 0.34 0.38 0.34
DIGIT 0.36 0.33 0.38 0.34
BNT 0.42 0.39 0.41 0.35
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Figure 4.10: PLS with residuals: Regression of LOOCV predicted residuals vs actual 
residuals (solid line) for the left-out test data. The correlation, r and slope, m are reported. 
The dashed line corresponding to slope 1 is shown for comparison. Normalized Mean 
Squared Error (NRMSE) for PLS cross-validation is also reported. The significance test for 
correlation (null hypothesis, r =  0) resulted in p-values <  10-15 for all.

of confounding demographic variables in the regression. Moreover, the cross-validation 

performance results for PLS and RVR were comparable. The most stable regression results 

were obtained for regression with ADAS (ADASTOTALMOD: rtest =  0.60 for PLS, rtest =  

0.59 for RVR after control for confounders).

For visualizing the direction and the amount of local anatomical deformations, we present 

the Jacobians of the deformation of the atlas image at different points along the regression 

geodesic for regression with residuals in Figure 4.11. Selected slices from this 3D overlay 

capture relevant regions of the neuro-anatomical structures, such as hippocampus, amygdala
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Figure 4.11: PLS WITH RESIDUALS: Deformation of atlas with changing clinical residual 
score. The middle column represents the atlas with zero average clinical residual. Red 
denotes the regions of local expansion and blue denotes the regions of local contraction.

and ventricles, pertinent to cognitive impairment in Alzheimer’s and related dementia. 

Figure 4.11 shows the local shape deformation patterns that overlay the atlas image for the 

kernel PLS regression geodesic shooting results for ADAS, MMSE and TRAILSA. We notice 

the expansion of the lateral ventricles and CSF with increasing ADAS residual scores. The 

most critical observation is the clearly evident shrinkage of the hippocampus and amygdala 

along this geodesic direction. Such patterns of atrophy are known to characterize the disease 

progression in AD and related dementia.

The RVR analysis also resulted in very similar shape deformation patterns as were 

obtained with PLS. For comparison, Figure 4.12 shows the deformation patterns for the 

regression geodesic obtained for RVR analysis with ADAS. This suggests that our proposed 

methodology of regression on the shape manifold of diffeomorphisms is generic and generate 

reliable shape deformation patterns under different choices of regression schemes.

The other global measures of dementia such as MMSE and CDRSB also reported good 

accuracies. The MMSE score regression particularly showed improvement in prediction 

accuracy over results reported by some of the previous work (refer to Section 4.5). For 

MMSE score, we found the rtest =  0.52 for PLS and rtest =  0.49 for RVR. The analysis

0
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Figure 4.12: RVR WITH RESIDUALS: Deformation of atlas with changing ADASTO- 
TALMOD residual score.

with the MMSE residuals reported rtest _  0.53 for PLS and rtest _  0.49 for RVR. We again 

noticed the corresponding shape changes obtained in traversing along MMSE regression 

geodesic (Figure 4.11 for MMSE residual) showed patterns dominating in hippocampus, 

amygdala and CSF shape changes. The results exhibited the expansion CSF regions and 

the shrinking hippocampus and amygdala with decreasing MMSE residual. Overall, in 

terms of predictive accuracy and shape deformation patterns extracted, our method fared 

well for regression with global measures of cognition and memory scores.

For regression with tests for executive function, the cross-validation correlation results 

were not very promising. Other than the tests for global measures of dementia and memory 

functions, our best results were for regression with the TRAILSA executive function score: 

correlation values for cross-validation, rtest _  0.35 for PLS, rtest _  0.34 for RVR, rtest _

0.40 for PLS with residuals and rtest _  0.37 for RVR with residuals. However, we found 

interesting shape changes for regression with TRAILSA. We noticed that no shape variations 

in hippocampus or amygdala were reported when the atlas was deformed along the geodesic 

direction for the TRAILSA score (Figure 4.11). While the hippocampus and amygdala 

emerge as mainly responsible for regression with global measures of dementia and changes 

in memory function, they do not seem be a determinant factor for the executive function.

To verify this observation further, we evolved the left and the right hippocampus and 

amygdala along the estimated regression geodesic encoded by deformation momenta. For 

this purpose, the atlas image, /  was segmented for the hippocampus and the amygdala. The 

segmented regions were then deformed along the geodesics represented by the regression 

coefficients for each clinical variable by using only the momenta within the volume of 

hippocampus and amygdala in the atlas, I. Table 4.6 details the difference in the volume 

of these tissues obtained after traversing along the geodesic in the direction, one standard 

deviation away along the corresponding clinical variable and one standard deviation opposite 

to it. With clinical scores for global measures of Alzheimer’s dementia, i.e., ADAS and 

MMSE, we noticed clear trends in tissue atrophy while not much was seen for executive
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Table 4.6: Volume changes (mm3) in hippocampus and amygdala along extracted regres­
sion coefficient from —a to + a  of change in clinical response.

Left Right Left Hip­ Right Hip-
Amygdala Amygdala pocampus pocampus

A D A STO TA LM O D -105.47 -99.609 -76.172 -99.609
MMSE 85.938 89.844 54.688 80.078
TR A ILSA -1.9531 -7.8125 35.156 25.391

function score TRAILSA. Figure 4.13 also shows this comparison in hippocampus and 

amygdala atrophy for ADAS, MMSE and TRAILSA score. The volume change is reported 

at multiple timepoints away from the atlas on the estimated geodesic, both in the direction 

of dementia and opposite to it. This also suggests the clear atrophy in right and left 

hippocampi and amygdalae with increasing ADAS and decreasing MMSE as compared to 

that with TRAILSA. The changing shape of these substructures with changing ADAS is

(a) Hippocampus

-1  - 0 .5  0  0.5  1 
C h a n g e  in c lin ica l va ria b le  (o)

-1  - 0 .5  0  0.5  1 
C h a n g e  in c lin ica l va ria b le  (o)

(a) (b)

(b) Amygdala

(c) (d)

Figure 4.13: Change in volume compared to change in clinical residual in terms of standard 
deviations (a). To capture the tissue atrophy towards neurodegeneration, the X-axis for 
MMSE score is reversed for comparison.
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also visualized in Figure 4.14.

4.4.5.1 Stability of regression coefficient
An important consideration for regression analysis under the HDLSS regime is the 

effect of size of the population on the estimates of regression coefficient. To assess the 

robustness of the proposed method when population size is varied, bootstrap experiments 

were performed by sampling with replacement, the momenta and clinical response pair. 

The regression coefficient was estimated for each of the bootstrap replicate. The 99% 

confidence bounds were computed based on the percentile of the empirical distribution of 

1000 bootstrap replicates [102]. Brain regions were extracted where the regression coefficient 

is different from zero with 99% confidence, i.e., the regions where zero does not lie within the 

99% confidence interval. These maps represent anatomical regions that have high weights 

in regression coefficient with low standard error. It was observed that high regression 

weights were concentrated on boundaries of relevant regions even when the sample size 

was varied with N  =  250,300, 350,400,450, 500. For instance, Figure 4.15 details the 

width of the confidence interval in these regions of high weight and high confidence of 

the regression coefficients for regression with ADAS score (ADASTOTALMOD). It clearly 

exhibits the consistent patterns around the boundaries of hippocampus and amygdala for 

different population sizes. More regions emerge when sample size is increased along with 

consistent appearance of hippocampus and amygdala.

Figure 4.16 compares extracted regions with high regression weights and high confidence 

for PLS regression with ADAS, MMSE and TRAILSA score. Hippocampus and amygdala 

are the most important regions among all the voxels in the brain for regression with ADAS

Left Hippocampus Right Hippocampus Left Amygdala Right AmygdalaA - e % * * % %
C - m m • • • 1 «
S '> -X \  \ ¥ ¥ % %

-a +a -a +a -a +a -a +a
Figure 4.14: Change in hippocampus and amygdala with changing ADAS residual score 
in terms of standard deviations (a). The maps are obtained by deforming the probabilistic 
segmentation maps along the regression geodesic estimated for kernel PLS regression with 
ADAS residual.
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N = 250 300 350 400 450 500

Figure 4.15: Bootstrap stability of regression coefficient as a function of sample size for 
PLS regression with ADAS. Red denotes regions where regression coefficient is different 
from zero with 99% confidence. Regions with high confidence increase with sample 
size. Regression coefficient is consistent around hippocampus and amygdala regions with 
changing sample size.

F igure 4.16: Bootstrap width of the 99% confidence interval (CI-width) for PLS. With 
99% confidence, regions in red have regression coefficient different from zero. Coefficients 
are concentrated around hippocampus and amygdala that relate to test scores for memory: 
MMSE and ADAS. However, putamen and thalamus are more important for regression with 
executive function score, TRAILS.
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and memory scores. However, neither the hippocampus, nor the amygdala regions are 

high weights regressors for the executive function score, TRAILSA. A critical finding was 

the appearance of thalamus and putamen as the most important regions that relate to 

executive function. Atrophy in putamen and thalamus is known to be related to cognitive 

performance in neurodegenerative disorders such as the Alzheimer’s disease and Hunting­

ton’s disease [103, 104, 105]. These resulting anatomical regions were consistent with very 

high confidence irrespective of the size of the population used in the study (Figure 4.16)

Further, we extend the regression methodology with control for demographic confounders 

to learn all thirteen clinical variables simultaneously using multivariate kernel PLS as 

explained in Section 4.1.3. Table 4.7 details the cross-validation results. The results 

are similar to separate learning of clinical variables. We do not get any improvement in 

predictive power while predicting multiple variables together.

4.4.6 Extension to predicting rate of cognitive decline

The early detection of Alzheimer’s disease is of high clinical relevance. Timely detection 

of memory loss or cognitive impairment is important to assess the risk of AD and other 

dementia in an elderly population. It is therefore important to not only relate the anatomical 

shape with current neuropsychological function at baseline but also to answer questions 

about the future trends of cognitive function decline. The anatomical shape regression

Table 4.7: Leave one out cross-validation for multivariate kernel PLS with control for 
confounders

Kernel PLS (rtest)
ADASTOTAL11 0.56
ADASTOTALMOD 0.60
MMSE 0.53
CDRSB 0.58
TRAILSA 0.32
TRAILSB 0.41
CLOCK 0.32
LOGICIMM 0.53
LOGICDEL 0.52
AVLTIMM 0.48
AVLTDEL 0.40
DIGIT 0.38
BNT 0.41
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framework presented in this work can be extended to relate the rate of change of clinical 

response using only the information available from baseline scans. For this purpose we 

extract the information that describes the linear trend in terms of the slope of the regression 

with cognitive decline for clinical measures obtained from measurements done on a subject 

in subsequent visits. The slope of the linear regression for clinical scores regression over 

time for each subject can be related to shape anatomical variation across the population of 

subjects. The “anatomical shape vs. rate of clinical decline” model thus learned on training 

data is used to predict the rate of the cognitive decline of the new subject using only the 

baseline MRI scan. The ADNI data consists of follow-up clinical measurements at an interval 

of 6 months from baseline for up to 48 months. For this part of the study, we selected all 

the subjects that had at least three or more clinical follow-ups recorded so as to get an 

estimate of the trend in linear least squares sense. The slope thus obtained was regressed 

against the corresponding deformation momenta using the kernel PLS (Section 4.1.3) with 

the control of demographic confounders (Section A .1). Table 4.8 reports the correlation of 

predicted vs actual rates of clinical change residuals for leave-one-out cross-validation. In 

general, the baseline anatomical shape did not offer much predictive power for prediction 

of the rate of clinical decline. Relatively, we obtained the best correlation of predicted and 

actual rates of decline, rtest =  0.41 for regression with global measures of dementia, i.e., 

ADAS, MMSE and CDRSB.

Table 4.8: Leave one out cross-validation for predicting rate of cognitive decline

Kernel PLS (rtest)
ADASTOTAL11 0.39
ADASTOTALMOD 0.40
MMSE 0.41
CDRSB 0.41
TRAILSA 0.18
TRAILSB 0.16
CLOCK 0.20
LOGICIMM 0.23
LOGICDEL 0.18
AVLTIMM 0.26
AVLTDEL 0.03
DIGIT 0.18
BNT 0.21
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4.5 Discussion
This dissertation chapter presents a novel approach to study the nonlinear changes in 

geometry of local anatomical regions in the brain and accounts for the shape variations that 

relate to clinical response for neuropsychological functions. More generally, the proposed 

methodology enables us to investigate high-dimensional, nonlinear trends in shape variations 

in an ensemble of complicated shapes that can be treated as regressors for the prediction 

of Euclidean response variables.

We utilize computational differential geometry to model shape variations on the manifold 

of diffeomorphisms and statistical machine learning techniques to model prediction-based 

shape regression on this manifold-valued shape data. We harness the properties of the 

Hilbert space of momenta, V * equipped with the inner product to compare geodesic trends. 

Kernel Partial Least Squares (kernel PLS) enables us to study the high-dimensional co­

variance of the anatomical structures in the entire brain volume, without any segmentation 

or a priori regions of interest identification, directly on the tangent space at the atlas. 

Furthermore, this regression scheme under the LDDMM framework enables us to visualize 

and quantify the amount of localized shape atrophy observed and relate it to attenuation 

in neuropsychological response.

4.5.1 Comparison to previous work
We compare the predictive accuracy results with some of the previous closest works that 

have formulated predictive models for clinical response using shape information extracted 

from the structural MRI. Using relevance vector regression (RVR), Stonnington et al. [73] 

have reported the best numbers for LOOCV predictive accuracy to be around rtest =

0.57 for ADASCOG and rtest =  0.48 for MMSE, using the ADNI baseline MRI scans 

and baseline clinical evaluation scores. The LOOCV accuracy of prediction attained by our 

kernel PLS modeling on manifold gives rtest =  0.60 for ADASCOG. For MMSE, we found 

further improved accuracy with rtest =  0.53. In another related work, Wang et al. [74] 

have employed a regional based clustering approach on tissue density maps (TDM) for 

feature selections, followed by RVR-based machine learning bagging predictive models on 

subsampled ADNI data to give a much more successful model using the baseline MRI scans 

(rtest =  0.75), with average MMSE over timepoints taken at an interval of 6-months. It 

is important to note that the study by Wang et al. [74] is done on the very different and 

sampled subset of the ADNI data. Moreover, the response variable that this RVR regression 

model predicts is different from our work and that of Stonnington et al. [73]. Their approach 

also differs fundamentally from ours at the bagging framework setup, where they build
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ensemble regressors derived from multiple bootstrap training samples. Thus, we stress that 

the numbers presented by Wang et al. [74] are not directly comparable to that reported in 

our work. In contrast, the regression modeling and the independent and dependent data as 

presented in the work of Stonnington et al. [73], are much closer in principle to our work and 

hence we can draw a direct comparison to their approach. Furthermore, both Stonnington et 

al. [73] and Wang et al. [74] use segmentation of individual tissue types— gray matter (GM), 

white matter (W M), cerebro spinal fluid (CSF) or Tissue Density Maps (TDM) and do 

subsequent feature extraction. However, in our study we consider raw MRI as a whole 

without any segmentation. This enables us to talk about anatomical shape changes more 

naturally since the results and its interpretability can be directly translated back to original 

structural MRI space.

4.5.2 Stability of modeling and generalizability properties,
RVR vs. PLS

To answer the question about stability of our modeling in general and choice of regression 

schemes in particular, we have also reported results with the RVR style of formulation as 

used in both of the above related works under discussion. We also stress that the method 

of analysis proposed in this chapter is generic. We can use any choice of regression analysis 

as long as it can be kernelized, i.e., valid regression schemes that can be formulated as inner 

products of the mapped data. We notice that in the comparative study for the choice of 

two such schemes, kernel PLS and kernel RVR, reported stable results. The pattern maps 

obtained using two independent regression methodologies yield very similar geodesics of 

regression coefficients for all the clinical response variables. The leave-one-out predictive 

accuracy obtained in both are also comparable. In terms of execution times we found PLS 

to be much faster than RVR; up to three orders of magnitude for all the clinical variables.

4.5.3 Deformation based morphometry and LDDM M  momenta

The scope of LDDMM based methods is much beyond just their predictive capabilities 

and the potential to extract relevant deformation patterns. The LDDMM framework 

although computationally more intensive, has several advantages over conventional Ja­

cobian based statistical analysis akin to deformation based morphometry (DBM) [106]. 

Deformation momenta obtained in LDDMM are scalar-valued signatures that summarize 

the voxel-wise large deformation information about anatomical variability. The scalar 

momenta are comprised of both the local divergence and curl components of associated 

deformation fields and not just the local scaling represented by the Jacobians. Another
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important difference between these two approaches is the interpretation of the resulting 

coefficients in regression analysis. In DBM, even though the regression coefficients can be 

visualized to understand the patterns or weight maps of clusters important for prediction, 

the scaling of the regression coefficient does not tie with the inherent nonlinearity of 

the underlying space. The scaled coefficients cannot be naturally interpreted under the 

nonlinear regression framework. In LDDMM, since the statistics are done on Riemannian 

manifold of diffeomorphism, the regression coefficient has a meaning as a mathematical 

quantity— it is an element of V *. The amount of scaling of the regression coefficient 

translates naturally to how far along the geodesic we intend to travel away from the 

Frechet mean image in deformations— which correspond to scaled units of changes in clinical 

response.

The proposed modeling enables us to identify local shape deformation patterns by 

performing a global analysis of the structure of the human brain. We notice that the evolving 

atlas shows distinct trends in hippocampus and amygdala shape changes whenever the 

regressed response variable is a measure of memory and cognitive function, the determinants 

of Alzheimer’s Disease progression. Putamen and thalamus were found to be important to 

the regression with executive function. The results were consistent with both the PLS as well 

as the RVR. These resulting anatomical regions were consistent with very high confidence 

irrespective of the size of the population used in the study.

We stress the fact that no additional clinical prior on the hippocampus was added and 

no priori information about the disease state was used in modeling. This is unlike most of 

the contemporary shape analysis studies in AD and related dementia, where the statistics 

are performed on the specific region of interests already clinically known to be affected. 

The style of global analysis presented in this chapter holds promise for discovering new 

patterns of shape changes in the human brain that could add to our understanding of 

disease progression in AD.



CHAPTER 5

MULTIMODALITIES FOR DISEASE 
PROGNOSIS

With the advent of advanced imaging techniques, genotyping, and methods to assess 

clinical and biological progression, there is a growing need for a unified framework that could 

exploit information available from multiple sources to aid diagnosis and the identification 

of early signs of Alzheimers disease (AD). This chapter extends the methods presented 

in Chapter 4 and develops a modeling strategy using supervised feature extraction to 

optimally combine high-dimensional imaging modalities with several other low-dimensional 

disease risk factors. The motivation is to discover new imaging biomarkers and use them 

in conjunction with other known biomarkers for prognosis of individuals at high risk of 

developing AD.

5.1 Overview
Mild cognitive impairment (MCI) is an intermediate stage between healthy aging and 

dementia. Patients diagnosed with MCI are at high risk of developing Alzheimer’s disease 

(AD), but not everyone with MCI will convert. Accurate prognosis for MCI patients is 

an important prerequisite for providing the optimal treatment and management of the 

disease. The complex anatomical shape changes that occur during disease progression can 

be extracted from magnetic resonance images (MRI) of the brain. Decreased synaptic 

response and brain function can be measured using functional imaging modalities, such as 

[18F]-fluorodeoxyglucose positron emission tomography (FDG-PET). Additional potential 

risk biomarkers include blood and cerebrospinal fluid (CSF) markers, including genetic 

susceptibility assessed by apolipoprotein E (APOE) genotype and plaque deposition as­

sessed by concentration of A,0-42 and ptau181. The challenge for predicting conversion is to 

combine these heterogeneous data sources, some of which are high-dimensional (MRI and 

PET) and some low-dimensional (clinical, CSF, APOE carrier), by selecting features that 

optimally weight the relative contribution from each modality.
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Recent studies have examined the role of different classes of biomarkers, cognitive 

measures, and genetic risk factors either in combination with a single imaging modality 

or independently for predicting conversion from MCI to AD [107, 108]. Weiner et al. [68] 

offer a comprehensive review of this ongoing research. Despite evidence for the predictive 

capability of individual biomarkers, cognitive measures, or neuroimaging data, relatively 

little attention has been given to combining information available from multiple imaging 

modalities with the biomarkers [109]. In one such study, Kohannim et al. [109] combine 

FDG-PET-derived numerical summaries, MRI-derived volume measures, CSF biomarkers, 

APOE genotype, and subject demographics for the task of discriminating MCI from AD. 

However, their work did not address prediction of conversion to AD.

In this chapter, we present a unified framework to combine the high-dimensional infor­

mation available from multiple imaging modalities, anatomical shape atrophy (derived from 

MRI) and neuronal hypometabolism (derived from FDG-PET), with other low-dimensional 

biomarkers, such as APOE carrier status, A^-42 and ptauisi concentration. We use 

partial least squares as a supervised dimensionality-reduction technique to fuse the weighted 

combination of the two imaging modalities together with the clinical information. This 

data-driven formulation finds the optimal combination of these high-dimensional modalities 

that best characterize the disease progression. The focus of this work is to assess the 

combined predictive capability of this model for early detection of conversion of MCI to AD 

by using only the information available at baseline.

5.2 Methodology
We use the general framework of computational anatomy [42] to characterize the anatom­

ical shape variation. Since the anatomical shape and neuronal metabolic activity are two 

separate measures obtained from independent imaging modalities, we combine the two to 

form a product space of the joint imaging modalities. To make pattern analysis robust, we 

propose a supervised dimensionality reduction to represent this high-dimensional data in 

terms of a few features, specifically selected to best explain factors relevant to dementia. 

Further, the extracted imaging features are used in conjunction with APOE genotype and/or 

CSF biomarkers for assessing the risk of conversion of an MCI individual to AD. Figure 5.1 

summarizes our feature selection and classification framework.

5.2.1 FDG-PET metabolism activity— SSP
As the disease advances the progressive neurodegeneration is accompanied by reduced 

neuronal metabolism and increased synaptic dysfunction. This results in decreased up-
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Figure 5.1: MCI-C/MCI-NC prediction framework. Block A: Feature extraction process 
from high-dimensional imaging data. Block B: Classification.

take of [18F]-fluorodeoxyglucose (FDG) measured by positron emission tomography (PET) 

functional imaging. ADNI FDG-PET images are registered to the Talairach atlas space 

using neurostat [110]. Peak pixel values are selected and 3D-stereotactic surface projection 

(3D-SSP) maps of glucose metabolism are computed relative to pons. Corresponding 

statistical maps of Z-scores, pi(i =  1, ■ ■ ■ ,N ), are generated in comparison to cognitively 

normal control subjects (^age =  69.6 ±  7.7). It is important to note that coregistration 

of modalities is not required because we model the combined space as a product space 

as discussed in next section. In fact, this method is generic and applicable to combining 

complementary information from images of different parts of the body.

5.2.2 Combining structure and function

The shape space represented by the space of deformation momenta, S , and the space of 

neuronal metabolic activity represented by 3D-SSP, P , are both high-dimensional spaces. 

Since the anatomical shape and metabolic activity are two separate measures obtained from 

independent imaging modalities, we combine the two spaces to form a product space that 

defines the combined space of imaging modalities, M , such that: M  =  S x P . Inner product 

between a pair, mi =  (ai,pi) e  M , and mj =  (a j,p j) G M ,  is defined via a their convex 

combination as: (mi,m j )m =  n{ai,a j )s +  (1 — n)(pi,Vj)p . The factor, n, is interpretable 

as a relative weight when both the modalaties are normalized to have unit variance.
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5.2.3 Supervised dimensionality reduction via partial
least squares

The structural and functional information extracted from two imaging modalities results 

in a feature space with much higher dimension than the population size. Although classifiers 

utilizing kernel approaches such as support vector machines (SVM) could work in the high­

dimensional imaging feature space, for linear discriminant analysis (LDA), dimensionality 

reduction has to be performed. We adopt a well known methodology for regression called 

partial least squares (PLS) [85]. The partial least squares can be interpreted as a supervised 

dimensionality reduction technique based on latent decomposition model. We adapt the PLS 

methodology for the purpose of extracting relevant features from the combination of shape 

and 3D-SSP data supervised by the clinical scores such as MMSE, ADAS, CDR and clinical 

cognitive status that are treated as global measures of dementia. We find directions, m, 

in the combined product space of imaging modalities, M , and directions, y, in the clinical 

response space, Y , that explain their association in the sense of their common variance. 

The projections of shape and pet data along the directions, rhi, are treated as the features 

for the classifier. The PLS problem is given by:

max cov((m ,m i), (fj,yi)) subject to ||m|| =  1 , ||y|| =  1. (5.1)

The subsequent directions are found by removing the component extracted (deflating the 

data) both in space, M , and the clinical response space, Y , as:

mi ^  mi — (m , mi)Mm, and yi ^  yi — (y, yi )yy.

The solution to this covariance maximization problem is the Singular Value Decom­

position (SVD) of the cross covariance matrix. The corresponding direction vectors, m ’s, 

and y ’s are the respective left and right singular vectors. The maximum number of pos­

sible latent vectors are limited by the inherent dimensionality of the two spaces, i.e., by 

m in(dim (M ), dim (Y)).

Note that the efficient implementations of solution to the PLS via SVD uses the Gram 

matrix of inner products of the data. If we denote the Gram matrix of momenta by Gs 

and that of 3D-SSP by GP, the fused Gram matrix for the product space weighted by n 

can be written as: Gm =  nGS +  (1 — n)Gp . The projection scores, thus obtained by PLS, 

have combined information of anatomical shape and glucose metabolic activity that is used 

as features together with low-dimensional modalities such as genetic biomarkers of APOE 

carrier status and/or CSF biomarker available from spinal tap tests.



68

5.2.4 APOE carrier status— genetic biomarker
A confirmed risk factor for Alzheimer’s disease is the status of apolipoprotein E (APOE) 

gene in an individual. APOE exhibit polymorphisms with three major isomorphisms or 

alleles: APOE e2, APOE e3 and APOE e4. A majority of the population with late-onset 

of AD is found to be dominant in APOE e4 allele. APOE carrier status is computed based 

on the allele copy inherited from parents in an individual. We consider the binary status 

for APOE genetic risk based on whether the individual has at least one copy of allele e4 

and treat those subjects as APOE-carrier.

5.2.5 Prediction of conversion to AD
Distinguishing the probable convertors from the population of MCI is a binary classi­

fication problem. While there are several ways to look at this problem, we present here a 

formulation of the classifier supervised by the AD group and healthy control group (NL). 

In other words, the classifier is trained on the AD and NL but is used as a “recommender” 

for the test MCI subject. Based on the classification score obtained on the MCI subject, 

the prediction of the classifier is interpreted. We denote the test MCI subject as “AD-like” 

when the classifier recommends AD and treat them as predicted MCI-C, otherwise termed 

as “Stable-MCI” or predicted MCI-NC. The classifier accuracy is assessed by comparing the 

predicted MCI-C or MCI-NC status with the conversion status from the follow-up study 

for that test MCI subject. The proposed methodology is evaluated using the LDA, its 

quadratic variant-quadratic discriminant analysis (QDA), and SVM as binary classifiers.

5.3 Results
All the baseline and screening T1 weighted, bias-field-corrected and N3 scaled structural 

magnetic resonance images were downloaded from the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) database. Preprocessing the MRI involved skull stripping and registration 

to Talairach coordinates as a part of the ADNI preprocessing pipeline. Tissue-wise intensity 

normalization for white matter, gray matter, and cerebrospinal fluid was performed using 

the expectation maximization based segmentation followed by the piecewise polynomial 

histogram matching algorithm. The FDG-PET data was processed to get 3D-SSP. The 

corresponding clinical test score, the CSF-biomarker data and the APOE genotype informa­

tion were also retrieved. The baseline subjects that had all the clinical, APOE genotyping, 

FDG-PET imaging and MRI imaging data from the ADNI database comprised of a total 

of 242 individuals. Table 5.1 reports the details about the subject demographics, diagnosis, 

APOE carrier status and future conversion status.
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Table 5.1: ADNI data details

Diagnosis 54 Stable NL controls, 127 MCI, 61 AD
Education ^ =  15.27 and a  =  3.23
Age ^ =  75.56 and a  =  6.65
Gender 98 Females and 144 Males
Handedness 229 Right and 13 Left
A PO E  positive 13 NL’s, 70 M C I’s, 41 A D ’s
Follow-up From baseline up to 48 months
M C I-C /N C  status 54 out o f 127 MCI converted to AD

To extract the anatomical shape features, the unbiased atlas, J, is constructed from 

the preprocessed baseline MR brain images on the Graphical Processing Unit (GPU) [96]. 

The geodesics emanating from this estimated atlas towards each subject are estimated by 

warping J to each of the baseline subjects to give initial deformation momenta, a l (0)(i =

1, ■ ■ ■ , N ) [61]. The corresponding 3D-stereotactic surface projection (3D-SSP) maps, pi(i =

0, . . . , N), of glucose metabolism from FDG-PET are computed using neurostat [110] to 

give Z-score maps. The supervised PLS dimensionality reduction is applied on combined 

imaging data of AD and NL subjects. Since the response is 4D, the resulting feature space 

is 4D and is represented by m i (i =  1, . . . ,  4). The imaging features are then combined 

together with low-dimensional biomarkers such as APOE carrier status to train the binary 

classifier for AD/NL classification. The independent test MCI subject is projected into 

the shape and PET feature space defined by the training AD and NL group in terms of 

m i’s. The imaging features for the test MCI subject are combined with its APOE carrier 

status. The trained AD/NL-classifier’s prediction on MCI baseline features is then used as a 

recommendation for future conversion to AD. Note that for the test MCI subject, no clinical 

scores such as ADAS, MMSE, CDR or diagnostic information in any form is used during 

feature extraction from imaging data or classifier prediction. The accuracy of prediction is 

evaluated by comparing against the actual conversion status using the follow-up diagnosis 

data.

Figure 5.2 shows areas under the receiver operating characteristic curve (AUC) as a 

function of the weighting factor, n, for the three separate classifiers discriminating MCI-C 

vs MCI-NC. The accuracy of prediction of MCI to AD conversion and the associated n is 

given in Table 5.2.

The reported numbers correspond to optimal n based on AUC. QDA performed the 

best with accuracy of 66% and AUC of 0.72 at n =  0.8. Also, the optimal combination 

of PET and shape performed much better as compared to only using PET or anatomical 

shape information irrespective of the choice of classifier used (Figure 5.3). The analysis was
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PET and MRI w e igh ting  factor,n  

Figure 5.2: Shape and PET weighting factor, n for different classifiers based on AUC.

Table 5.2: MCI-C vs. MCI-NC classification results for noPT.

AUC A cc
(%)

Sen(%) Spec(% ) n

QDA 0.72 66.14 64.81 67.12 0.8
LDA 0.69 63.78 74.07 56.16 0.7
SVM 0.69 64.57 72.20 58.90 0.8

(a) LDA (b) QDA (c) SVM

Figure 5.3: Receiver operating characteristic curves (ROC) for MCI-C/MCI-NC classi­
fication with only shape information, only PET information and optimal combination of 
shape and PET as per nOPT.

repeated using only the left and right hippocampus volumes for predicting MCI conversion. 

The AUCs and accuracies for prediction using hippocampus volumes obtained for three 

classifiers were: accuracy=60.7%, AUC=63.8% for LDA, accuracy=61.6%, AUC=63.8% for 

QDA and accuracy=58.9%, AUC=63.4% for SVM. Overall, our proposed method resulted in 

improved prediction when compared to using only the hippocampus volumes for predicting 

MCI conversion.

Besides APOE carrier status, the above analysis was also done after adding log trans-
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formed CSF-biomarkers: A^-42 and ptauisi concentration, which reduced the study sample- 

size to only: 29 NL, 36 AD and 59 MCI. With CSF-biomarkers, a slight increase in accuracy 

was observed for QDA: accuracy=68% and AUC= 0.72 (n =  0.8).

The log Jacobians of the deformation, overlaid on atlas image, 7, resulting from evolving 

7 along the geodesic represented by the classifier weights are shown in Figure 5.4. The 

selected slices from this 3D overlay shown here capture relevant regions of the neuro- 

anatomical structures, such as hippocampus, pertinent to cognitive impairment in Alzheimer s 

and related dementia. Similarly, the PET classifier weights are translated back in the 

Z-score space of 3D-SSP (Figure 5.5). The spatial patterns of anatomical shape changes 

were primarily the expansion of lateral ventricles and CSF, together with the shrinkage of 

the cortical surface. Another critical observation was the clearly evident shrinkage of the 

hippocampus and cortical and subcortical gray matter along the discriminating directions. 

Such patterns of atrophy are well known to characterize the disease progression in AD and 

related dementia. We observed that the shape component dominated the model with up to 

80% contribution compared to only 20% contribution from the PET component, irrespective

■ 0.10 

0

1- 0.10
(a) R-sagittal (b) L-sagittal (c) Axial (d)

Figure 5.4: Shape: Discriminating regions obtained from classifier weights for prediction 
of MCI conversion to AD. Log of Jacobians overlaid on atlas. Red denotes regions of local 
expansion and blue denotes regions of local contraction.

R-Lateral L-Lateral Superior Inferior Anterior Posterior R-Medial L-Medial

Figure 5.5: FDG-PET: Discriminating regions obtained from classifier weights for predic­
tion of MCI conversion to AD in 3D-SSP Z-score space.

* * * * *
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of the classifier used.

5.4 Conclusion
The main contribution proposed in this chapter is the ability to extract, in order of rele­

vance, the disease-characterizing patterns from multiple imaging modalities. The motivating 

application is to discover new imaging biomarkers and use them in conjunction with other 

known biomarkers for prognosis of individuals at high risk of developing AD. This framework 

also has the ability to assess the relative importance of imaging modalities for predicting AD 

conversion. The challenge of combining heterogeneous data sources is addressed. Some of 

these data are high-dimensional (MRI and PET) and some low-dimensional (clinical, CSF, 

APOE carrier). The model selects optimal features from each modality and weighs them 

in order of their relative contribution in prediction. The presented framework has broad 

applicability to data analysis studies involving heterogeneous data sources, both in terms 

of modalities and dimensions.

The model presented in this chapter combines high-dimensional imaging modalities with 

several other low-dimensional disease risk factors but there is more work to be done to bring 

these methods into clinical use:

1. This method currently is only applicable to two imaging modalities. Higher-order 

partial least squares method could be developed to include multiple imaging modal­

ities. Methods of higher-order singular value decomposition (HOSVD) could also be 

explored to fuse information avaiable from more than two imaging modalities. Ad­

ditionally, expectation-maximization optimization techniques to estimate the optimal 

weighting coefficients of the different modalities could also be explored.

2. Cross-validation method is limited for parameter selection for only two imaging modal­

ities. Selection of optimal weighting parameter, n, needs to be devised such that it 

naturally extends to multiple imaging modalities.

3. The driving motivation of this work is to assess progression of disease with time. This 

model is currently limited to using cross-sectional imaging information only. The 

statistical method developed in this chapter would be more useful if it could utilize 

longitudinal imaging information from individuals.

Some of these issues will be discussed in the future work section in Chapter 8



CHAPTER 6

A VECTOR MOMENTA FORMULATION 
OF DIFFEOMORPHISMS

This chapter discusses a novel approach for diffeomorphic image regression and atlas 

estimation that results in improved convergence and numerical stability. We use a vector 

momenta representation of a diffeomorphism’s initial conditions instead of the standard 

scalar momentum that is typically used. The corresponding variational problem results 

in a closed-form update for template estimation in both the geodesic regression and atlas 

estimation problems. While we show that the theoretical optimal solution is equivalent 

to the scalar momenta case, the simplification of the optimization problem leads to more 

stable and efficient estimation in practice. We demonstrate the effectiveness of our method 

for atlas estimation and geodesic regression using synthetically generated shapes and 3D 

MRI brain scans.

6.1 Overview
Within the last 15 years, there has been extensive research in developing methods for 

representing shapes and their variability across a population [96] and over time [20] as 

diffeomorphic deformations of a template image. In particular, the optimization meth­

ods [20, 61, 111] based on initial deformation momenta, which encode full geodesic paths 

in the space of diffeomorphisms, have improved the state-of-the-art methods for shape 

statistics [31].

Previous approaches [20, 61, 111] represent the momenta as a scalar field multiplied by 

the initial image gradient. In these approaches, the forward evolution of a geodesic and the 

associated backward adjoint system involve imprecise finite difference gradients of a noisy 

image. Furthermore, the template and momenta must both be jointly estimated by iterative 

optimization, leading to poor convergence.

Instead of scalar momenta, we use vector momenta. In our formulation, the evolution 

of the geodesic and adjoint system is decoupled from the template image. We also derive a
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closed-form update for the optimal template, which results in more efficient optimization. 

This novel framework for template estimation applies to both the atlas estimation and the 

geodesic regression.

Let Q be the coordinate space of the image, I . A diffeomorphism, 0(t), is constructed 

by the integration of an ordinary differential equations (ODE) on Q defined via a smooth, 

time-indexed velocity field, v(t). The deformation of an image, I , by 0 is defined as the 

action of the diffeomorphism, given by 0 ■ I  =  I  o 0 -1 .

A right-invariant Riemannian metric on the space of diffeomorphisms is obtained by 

choosing a positive-definite, self-adjoint differential operator, L, which acts on velocity 

fields. This operator induces the structure of a Sobolev space on the collection of velocity 

fields and determines the norm of a velocity field, ||v||2 =  Jn(Lv(x), v(x))dx.

6.2 From scalar to vector momenta
6.2.1 Vector deformation momenta

The tangent space at identity, V =  TIdDiff(Q), consists of all vector fields with finite 

norm. Its dual space, V * =  TI*dDiff(Q), consists of vector-valued distributions over Q. The 

velocity, v e V , maps to its dual deformation momenta, m € V *, via the operator, L, such 

that m =  Lv and v =  Km . The operator, K  : V * ^  V , denotes the inverse of L.

In the diffeomorphic image pair registration problem, it has been shown that the optimal 

initial momentum is orthogonal to the level sets of the deforming image [53]. That is, 

m (x) =  a (x )V I(x ) for a scalar function, a, at all times. Note that constraining 0 to be a 

geodesic with initial momentum, mo =  m(0), implies that 0, m, I , and a  all evolve in a way 

entirely determined by the metric, L, and that the deformation is determined entirely by 

the initial scalar function, a 0 =  a(0).

6.2.2 EPDiff for geodesic evolution

Given the initial velocity, v0 e V , or equivalently, the initial momentum, m(0) =  m0 e 

V *, the geodesic path, 0(t), is constructed as per the following EPDiff equation [52, 53]:

dtm =  —ad*m =  —(D v)T m — Dmv — (div v)m, (6.1)

where D  denotes the Jacobian matrix. Operator ad* is dual of the negative Jacobi-Lie 

bracket of vector fields [53, 52, 42]:

adv w =  —[v, w] =  Dvw — Dwv. (6.2)
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The deformed image I(t) =  I0 ◦  1 (t) evolves via:

dtl =  —v ■ V I. (6.3)

6.3 Geodesic regression and atlas estimation
Geodesic regression in the space of diffeomorphisms is a natural generalization of Eu­

clidean least squares regression. The parameter estimates consist of an intercept, i.e., a 

template image at the initial time point, and a slope, i.e., an initial momenta defining 

a diffeomorphic geodesic evolution of the template image that best describes the time- 

dependent image data. The atlas estimation problem can be thought of as a special case 

of the geodesic regression problem, with the initial momenta removed. This is analogous 

to how linear regression reduces to mean estimation when the slope term is removed. In 

this section we present a novel formulation of the template estimation problem in geodesic 

regression and atlas construction using vector momenta, which unlike the scalar momenta 

formulation has the advantage of stable, closed-form updates to the template.

6.3.1 Geodesic regression
Given N  observed images, J i , at time points, ti , for i =  1 .. .N  such that, t1 =  0, and 

tN =  1, the geodesic that passes closest, in the least squares sense, to the data minimizes 

the energy functional

where I0 and m0 are the initial “intercept” and “slope” to be estimated, which completely

by introducing time-dependent adjoint variables, m , I  and V, as per the EPDiff evolution 

equations (2.9) to give

The optimality conditions for m, I, v are given by the following time-dependent system of 

ODEs, termed the adjoint equations:

(6.4)
i=1

parameterize the geodesic. Here, I(ti) =  $>m° (ti) ■ I0. As per optimal control theory, we add 

the Lagrange multipliers to constrain fim° (ti) to be along the geodesic path. This is done

—m +  adv m +  -0 =  0

—I — V  ■ (Iv) =  0 > , 

adm m +  IV I  — LV =  0

(6.5)
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subject to boundary conditions

m (1) =  0 , I  (1) =  ^  (I  (tN) — JN), (6.6)
a2

with added jump conditions at observed measurements, ti, such that, I (ti+) — I(ti - ) =  

- ~ 2  (I(ti) — Ji), where I (ti+) and I(ti - ) denote the limits from above and below, respectively, 

of the integrated, I  .

Finally, the variation of E with respect to the initial momenta is

5mo E =  K-kmo — mo, (6.7)

and the variation of E with respect to the initial image, 5IoE, can be directly computed 

from the energy functional, E. Notice only the second term has a dependence on I0, i.e., 

I(ti) =  0mo(ti) ■ I0 =  I0 o 0m°o, where 0™O denotes the inverse of 0mo(ti). A change of 

variable for 0 implies the derivative with respect to I0 is

N
SIoE =  £ ( I 0 — Ji o 0mo(t))\D0m° (ti)|. (6.8)

i=1

This results in a closed-form solution for I0 at optimum:

I0 =  E i= i JNo 0mo\D 0 m ( m  . (6.9)
Y,N=1 \D0m (ti)\ ' '

Notice, at optimum, the resulting vector momentum are horizontal, i.e., along gradient of 

the image. This follows from taking the gradient in Equation (6.4) with respect to velocity, 

v0, instead of momenta, m0, and a change of variables for 0 such that:

£voE =  V0 — K *  -1  V  \D0vo(ti)\[I0 — Ji O 0vo(ti)]VI0. 
a2

6.3.2 Comparison to optimization with scalar momenta
The above analytical update on image, Equation (6.9) results in a robust algorithm that 

does not require joint parameter tuning during optimization unlike previous methods based 

on scalar momenta. The numerical schemes only optimize on momenta.

However, previously proposed scalar momentum based optimization involves joint opti­

mization over both the template image and the momenta. Moreover, computation of the
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gradient for image update involves integration of higher order spatial derivatives along time 

as per the following equations mentioned by Niethammer et al. [20]:

Si0£ =  — V  ■ (aoK  * (V/qOq))

+  E  |DftoA |(I ( f ) — J") o fto,*̂ .

The numerical instability of the optimization for template update for scalar momentum is 

also evident from this gradient of the energy functional with respect to the template.

6.3.3 Atlas construction
The Riemannian metric on the space of diffeomorphisms also establishes the energy 

minimization problem for atlas construction based on initial momentum, m0. The minimum 

mean squared energy, Frechet atlas construction problem is that of jointly estimating an 

image, I  and N  individual geodesics emanating from the atlas towards each individual 

image. The joint energy functional over atlas image, I , and initial momenta, mQ, for 

i =  1 • • • N  is:

variations with respect to atlas image, I, and N  initial vector momentum result in the

Similar to the geodesic regression case, this results in a closed-form solution for atlas 

estimate, I  at optimum:

where I"(t) =  ftm0 (t) ■ I  is the image along the geodesic parameterized by initial momenta 

for the ith individual. Similar to the geodesic regression case, solving the constrained

similar time-dependent adjoint equations corresponding to m1 and I % for each geodesic. 

The variation of £ with respect to initial momenta for individual geodesics, 5mi £, is:

£ =  K * m0 — ^ ( 0 ) . (6.11)

(6.12)

6.4 Results
Our implementation of geodesic regression and atlas building is developed based on 

the MPI and the GPU image processing framework by Ha et al. [97]. We evaluate our
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proposed shooting method using synthetic and real 3D structural MRI data both for the 

geodesic regression and the atlas construction problem. In our experiments, the kernel, K , 

corresponds to the invertible and self-adjoint fluid operator, L =  —aV2 — bV(V^) +  c, with 

a =  0.01, b =  0.01 and c =  0.001.

6.4.1 Experiments with synthetic data

6.4.1.1 For geodesic regression
We generated ground truth geodesic on diffeomorphisms by solving the image matching 

problem and generated sampled shapes along the geodesic. Figure 6.1 (top) shows our 

example of shapes along this geodesic: plus to flower. To validate the robustness of 

estimation of initial conditions at t =  0, geodesic regression was performed given the sampled 

shapes only for t > 0.5 as input to the algorithm. We used closed-form image update 

and a simple constant step-size gradient descent for momentum update. The resulting 

estimated baseline template for this experiment (Figure 6.1, bottom right) closely matches 

the ground truth image at t =  0 (Figure 6.1, bottom left). The estimated initial deformation 

momenta vectors also closely match the ground truth. Figure 6.2 reports our experiment 

with results for assessing the stability of optimization when compared to scalar momenta

Figure 6.1: Top: Shapes sampled uniformly along the ground truth geodesic. Bottom: 
ground truth I  and m at t =  0.0 (left), and estimated I  and m at t =  0.0 (right) using only 
the shape data for t > 0.5
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GD Iterations

Figure 6.2: Convergence comparison for same input.

geodesic regression. The comparison was done based on constant stepsize gradient descent 

on exactly the same input to both the algorithms. Identical numerical integration methods 

(fourth order Runge-Kutta) were used in both the algorithms for integrating the evolution 

equations. We observe that the scalar momentum has difficulty converging even with very 

small steps for image update while vector momentum converges early to a stable energy.

6.4.1.2 For atlas construction
The atlas was estimated from uniformly rotated ellipses across 180°. Figure 6.3 shows 

the input to the atlas algorithm and the estimated template. The average shape given 

equally rotated ellipses were expected to be a circle. A perfect circle shape was recovered 

as the estimated template by our algorithm.

6.4.2 Experiments with brain images from ADNI
The geodesic regression was performed on longitudinal scans of a subject with Alzheimer’s 

disease (AD) from the ADNI database (adni.loni.ucla.edu). This individual had MRI scans 

taken at uneven time intervals, i.e., at ages =  70.75, 71.38, 71.78 and 72.79. Figure 6.4

Figure 6.3: Left: evenly rotated ellipses. Right: estimated atlas.



80

70.75 yrs 71.38 yrs 71.78 yrs 72.79 yrs

Figure 6.4: Top row: Original timepoint scans of an individual overlaid on its baseline scan. 
Bottom row: Estimated geodesic regression overlaid with original scans at each timepoint. 
Red indicates mismatch.

(top) shows the original MRI scan data: comparison of the MRI scans with the baseline 

scan at age=70.75. Expansion of lateral ventricles in this individual is more evident by the 

end of the second year of scans. Our geodesic regression algorithm captures the estimates of 

the smooth trend of atrophy (Figure 6.4 (bottom)). To illustrate reliability of our method, 

we use the estimated initial conditions to predict the future trend of atrophy (Figure 6.5) 

for this Alzheimer ’ s subject. The estimated 3D MRI template at t =  70.75 is evolved for

70.75 yrs 72.75 yrs 74.75 yrs 76.75 yrs

F igure 6.5: 6 years predicted future brain atrophy.
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6 years in the future. The resulting generated brains exhibit a clear trend in shrinking 

hippocampus, and expanding ventricles along with cerebro spinal fluid across the whole 

brain with time. These patterns of atrophy are well known to characterize the disease 

progression in AD. Figure 6.6 shows our atlas estimate of 50 cognitively normal subjects in 

ADNI database.

6.5 Conclusion
In this chapter, we presented a vector momenta based formulation of initial conditions 

for geodesics in diffeomorphisms. This vector formulation results in improved optimization 

schemes for template estimation algorithms. It is applicable, in general, to all exact geodesic 

shooting based algorithms where a template image needs to be estimated. In particular, we 

demonstrate the applicability of vector momenta to geodesic regression and atlas estimation 

methods on 3D images in this chapter. The algorithms developed in this chapter were also 

effectively used in the recent work by Zhang et al. [112] to estimate regularization parameters 

in registration and atlas building methods under Bayesian models.

This contribution is one of the main building blocks for Chapter 7. It lays down 

the foundation for defining the longitudinal model to explain the population of shapes 

as hierarchy of geodesics in diffeomorphisms.

One improvement to the proposed method in this chapter is to generalize geodesic 

regression to higher orders. Only straight-line generalization, i.e., estimation of geodesics 

in diffeomorphisms have been studied in this dissertation. The open problem is to derive 

the solutions to polynomial regression problems in diffeomorphisms. This will be discussed 

further in the future work section in Chapter 8.

F igure 6.6: Shooting atlas generated from 50 3D MRI scans.



CHAPTER 7

A HIERARCHICAL GEODESIC MODEL FOR 
DIFFEOMORPHIC LONGITUDINAL 

SHAPE ANALYSIS

Hierarchical linear models (HLMs) are a standard approach for analyzing data where 

individuals are measured repeatedly over time. However, such models are only applicable 

to longitudinal studies of Euclidean data. In this chapter, we propose a novel hierarchical 

geodesic model (HGM), which generalizes HLMs to the manifold setting. Our proposed 

model explains the longitudinal trends in shapes represented as elements of the group of 

diffeomorphisms. The individual-level geodesics represent the trajectory of shape changes 

within individuals. The group-level geodesic represents the average trajectory of shape 

changes for the population. We derive the solution of HGMs on diffeomorphisms to estimate 

individual-level geodesics, the group geodesic, and the residual geodesics. We demonstrate 

the effectiveness of HGMs for longitudinal analysis of synthetically generated shapes and 

3D MRI brain scans.

A longitudinal study of neuroanatomical aging, development and disease progression 

necessitates modeling anatomical changes over time. As in previous chapters, we use 

maps of diffeomorphisms of a template image as convenient representations of anatomical 

variability. In Chapter 6, we presented methods of geodesic regression, which represent 

smooth trajectories of changes in anatomy. However, regression is not an appropriate model 

of longitudinal data.

Related work [25, 26, 27] estimate the group trajectory by averaging individual trajecto­

ries in the diffeomorphic setting. Durrleman et al. [25] estimate a spatiotemporal piecewise 

geodesic atlas. Although this method estimates a continuous evolution of spatial change, it 

does not guarantee smoothness of the resulting average estimate across the time span. The 

average shape trajectory estimates by Fishbaugh et al. [26] are also not guaranteed to be 

smooth in time. The approach based on stationary velocity fields presented by Lorenzi et
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al. [27] does not model distances between trajectories, which makes it difficult to compare 

the differences in trends for statistical analysis.

A more critical shortcoming of the contemporary methods of averaging trajectories is 

that they do not apply when the time ranges of measurements of individuals are staggered. 

For instance, Durrleman et al. [25] and Fishbaugh et al. [26] both require extrapolation 

and resampling for each individual trajectory estimates outside their time-range before an 

average evolution of the population can be computed. Muralidharan et al. [28] address 

these problems and estimate smooth geodesic representations for individual and group 

trends for a population of staggered individual measurements. They utilize a Sasaki metric 

on the tangent bundle of the manifold of finite-dimensional shapes to compare geodesic 

trends. However, their methods are difficult to apply to the infinite-dimensional space of 

diffeomorphic transformations, due to the need for curvature computations of the underlying 

manifold.

In this chapter, we present a hierarchical geodesic model (HGM) on diffeomorphisms, 

which generalizes classical hierarchical linear models (HLMs) on Euclidean spaces. HGMs 

utilize the metric on the space of diffeomorphisms to define the group geodesic given a 

population of geodesics. It applies to commonly occurring unbalanced designs in medical 

imaging data where measurements are staggered, i.e., not every individual is measured 

at the same time points. The consequence of this modeling is an estimate of a smooth 

“average geodesic” and a common reference coordinate system to represent longitudinal 

trends of multiple individuals for longitudinal studies.

7.1 Hierarchical geodesic models
We begin by defining HGMs in the simplest scenario in which the data lie in a Euclidean 

space. In this case, the geodesic models of longitudinal trends reduce to straight lines, and 

we give a procedure for estimation of model parameters defining the group-level trend in a 

hierarchical fashion. We later present the generalization of this model and its estimation to 

diffeomorphisms.

7.1.1 Hierarchical geodesic models in Euclidean space

Consider the univariate longitudinal case with independent time variable, t, and de­

pendent response variable, y. Say we are given a population of N  individuals with Mj 

measurements for the ith individual. The design can be unbalanced, meaning there are 

potentially a different number of measurements for each individual. Denote y j  as the jth
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measurement of the ith individual at time t j . Motivated by classical hierarchical linear 

models [19] for repeated measurements, this is modeled in two levels as:

Group Level: Individual Level:
a  ~  N (a  +  /tio , a|), yij ~  N (at +  bi(tij -  tio), a2).
bi ~ N ( / , a | ).

The estimation of the parameters for this model proceeds in two stages. First, the 

individual-level parameters, ai and bi , are estimated. These estimates are then used to 

estimate a  and /  at the group level. The solution to this model thus corresponds to 

minimizing the negative log-likelihood at individual and group levels, respectively, where

1 Mi
-  log (p (y i jK  bi)) =  - 2^2 [yij -  (ai +  bi (tij -  ti0))]2, (7.1)

i j=1

1 N 1 N 
log(p(a^ bi1 a  / ) )  — =  ^ [(a +  ^ — ti0) — ai] 2 + -^2  [ /  — bi]2. (7.2)

2aI • 1 2a S • 11 i=1 S i=1

A detailed treatment for individual-level is already presented in Chapter 6. In this 

chapter, we cover the solution of group-level estimation problem in detail.

7.1.1.1 Individual level

The solution for the slope-intercept pair, (ai ,bi), in the individual level that mini­

mize (7.1) is given by the standard ordinary least-squares regression solution. An equivalent 

solution more directly generalizable to the diffeomorphic case is to solve this problem as 

an optimal control, as detailed in Chapter 6. A derivation for the Euclidean case is also 

presented by Niethammer et al. [20]. It is done by adding Lagrange multipliers to constrain 

the curves to be straight lines and deriving the system of equation termed the adjoint 
equations.

7.1.1.2 Group level

The maximum likelihood group estimate represents an average line, a(t), that best 

matches the individual lines, (ai ,bi), in least-squares sense. From an optimal control 

viewpoint, we add Lagrange multipliers to constrain the curve, a(t), to be a straight 

line. This is done by introducing time-dependent adjoint variables, Aa and A^, in the 

log-likelihood in (7.2), giving

ftN , 1 N 1 1
E (a  ft) =  (A“ (a — ft) +  A^/j)dt +  — V '' ( —2 (a (ti) — ai)2 +---- 2 (^ (ti) — bi)2) .

Jo 2 i—1
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The gradients of this functional are, £a(0)£ =  —Aa (0- ), and £g(0)E =  — (0- ). These 

are evaluated by integrating backwards the adjoint equations, —Aa =  0, and A  ̂ =  —Aa, 

subject to the following boundary and jump conditions:

1
A° (tN) = -----2 (a(tN) — aN),— T Â  (tN) = -----2 (0 (tN) — bN),

Â  (tfc) — A  ̂(t- ) =  “ 2 (0 (ti) — b-^-?

- t

A“ (tfc ) — A“ (tfc ) =  -2  (a (ti) — a-) .— r

Notice that unlike least-squares regression, the velocity term in the group log-likelihood 

at the group level also influences the group estimate. In particular, the jumps in integrating 

are interpreted as the forces by the initial velocities pulling the group geodesic. The 

solution for a(0) and ,0(0) in this Euclidean case corresponds to the solution of the linear 

system, Ax =  b, where:

/  n - 1*

A =  ^  y N  t-V 2 ^ i=0 'S 7

Notice that if there is no slope term in the energy functional, i.e., as -S  ^  t o , this 

reduces to the standard ordinary least squares solution for linear regression. On the other 

hand, the solution of this system is ill-determined when only the matching of slopes is 

enforced, i.e., when - 2 ^  t o .

An example of synthetically generated longitudinal data is shown in Figure 7.1. This 

example illustrates the importance of modeling correlations within each individual by in­

cluding individual slope terms in the likelihood function. Ignoring these correlations leaves 

us with a simple linear regression fit to the data, which does not reflect the longitudinal 

trends that individuals experience. In contrast, the group trend, a(t), estimated in the 

hierarchical model by including slope terms, better summarizes the average behavior of the 

individual trends.

Before introducing our longitudinal model on manifolds of anatomical shape changes, 

for the sake of notations, we again review some necessary background of the mathematical 

framework of diffeomorphisms. For more details, please refer Chapter 2.

7.1.1.3 Diffeomorphisms

Let Q be the coordinate space of the image, / .  A diffeomorphism, ft(t), is constructed by 

the integration of an ordinary differential equations (ODE) on Q defined via a smooth, time- 

indexed velocity field, v(t). The deformation of an image, / ,  by ft is defined as the action of 

the diffeomorphism, given by, ft-/ =  /  oft-1 . The choice of a self-adjoint differential operator,
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Figure 7.1: Comparing HGM and OLS in Euclidean space.

L, determines the right-invariant Riemannian structure on the collection of velocity fields 

with the norm defined as, ||v||2 =  Jn(Lv(x),v(x))dx.

7.1.1.4 Deformation momenta and EPDiff evolution
The tangent space at identity, V  =  TIdDiff(Q), consists of all vector fields with finite 

norm. Its dual space, V * =  Ti*jDiff(Q), consists of vector-valued distributions over Q. The 

velocity, v e  V , maps to its dual deformation momenta, m £ V *, via the operator, L, such 

that, m =  Lv and v =  Km. The operator, K  : V * ^  V , denotes the inverse of L. Note 

that constraining 0 to be a geodesic with initial momentum, m(0), implies that 0,m, and 

I  all evolve in a way entirely determined by the metric, L, and that the deformation is 

determined entirely by the initial deformation momenta, m(0). Given the initial velocity, 

v(0) e  V , or equivalently, the initial momentum, m(0) e  V *, the geodesic path, 0(t), is 

constructed as per the following EPDiff equations [52, 53]:

dtm =  —ad*m =  - (D v )T m — Dmv — (div v)m, (7.3)

where D  denotes the Jacobian matrix, and the operator, ad*, is the dual of the negative 

Jacobi-Lie bracket of vector fields [52, 53, 42] such that, advw =  — [v,w] =  Dvw — Dwv. 

The deformed image, I (t) =  I (0) o 0 -1 (t), evolves via: dtI  =  —v - V I .
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7.1.2 Hierarchical geodesic models for diffeomorphisms

Similar to the setup discussed for Euclidean data, we are given a population of N  

individuals with M i measurements for the ith individual. There can be a variable number 

of measurements for each individual. Denote H ij  as the jth  measured image of the ith 

individual at time, tij . Figure 7.2 shows a schematic of the HGM. We model geodesic trend 

for an individual with a diffeomorphism, { i (t) (brown). The initial image, or intercept, 

Ji (0), and the initial momenta, or slope, ni (0), fully parameterize the trajectory for the ith 

individual. At the group level, we model the group geodesic trend with the diffeomorphism, 

•0(t), (red) starting at identity, parameterized by initial momenta, m(0). Let 0 i denote 

the diffeomorphism that matches individual baseline, Ji (0), from identity and pi denote 

the residual geodesic between ^ (ti) and 0i : pi =  0i o ^ - 1(ti). The initial momenta, pi (0), 

parameterize residual, pi .

We now present the hierarchical geodesic estimation procedure on diffeomorphisms in 

two stages. For the first stage, we note that estimates at the individual level amounts to 

solving N  geodesic regression problems for each individual as proposed by Niethammer et 

al. [20] and Singh et al. [32]. We briefly review it here under the vectorized deformation 

momenta formulation (details in the work by Singh et al. [32]). In the second stage at the 

group level, we address the more interesting question of averaging the individual geodesics 

in the space of diffeomorphisms.

7.1.2.1 Individual level

Given M i observed images, Hij , at time points, tij , for an individual such that, j  =

1, . . . , Mi, the geodesic that passes closest, in the least squares sense, to the data minimizes 

the energy functional:

F igure 7.2: Hierarchical geodesic modeling in diffeomorphisms.
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1 1 Mi
E (Ji (0) ,h i (0)) =  -  ||hi(0 )||K +  2 ^ 5 ^  II Ji (tij) -  Hij\\h,

j j =1

where Jj(0) and mj(0) are the initial “intercept” and “slope” to be estimated that completely 

parameterize the geodesic for the ith individual. Here, Jj(t) =  ^ (t) ■ Jj(0), and ||.||K is the 

norm defined by the kernel, K , in the dual space of momenta, as per the metric induced by 

Sobolev operator, L, on velocity fields. This is done by adding time-dependent Lagrange 

multipliers, h ,  J ,  and w , to constrain £j(t) to be along the EPDiff geodesic path:

E(Jj(0 ) ,h j(0 ))=  E +  J  (hi,hi +  adWih j)L2dt

+  / (Jj,Ji +  VJj ■ Wj)L2dt +  / (Wj,hj -  Lwj)L2dt. 
0 0

The variation of E with respect to the initial momenta is

Sn,i(0)^ =  K  * h j(0) -  h j(0). (7.4)

The optimality conditions for hi and Ji result in the time-dependent adjoint system of ODEs 

which are integrated backward in time to obtain hi (0) to compute gradient update in (7.4). 

The variation of E with respect to the initial image, 5ji(0)<S, can be directly computed from 

the energy functional, S. Since, Ji (t) =  { i (t) ■ Ji (0) =  Ji (0) o {j_1(t), a change of variables 

for { i , followed by taking the derivative with respect to Ji (0), results in the closed form 

solution for optimum initial image, Ji (0), as

, , ^ i =i1 Hij ◦  ^i(tij)|DCi(tij)|
Jj(0) =  — ---------M-------------------------.

( )  E J =1 |DCi (tij )|

The solution to the geodesic regression problem at the individual level is presented in 

Chapter 6 . In the discussion that follows, for clarity and ease of notation, we will use, 

Ji =  Ji(0), to denote the initial “intercept” and hi =  hi (0) to denote initial “slope” for an 

individual.

7.1.2.2 Group level
At the group level (Figure 7.2), the idea is to estimate the average geodesic, ^ (t), that is 

a representative of the population of geodesic trends denoted by the initial intercept-slope 

pair, (Ji , hi), for N  individuals, i =  1 , . . . ,  N . The required estimate for ^(t) must span the 

entire range of time along which the measurements are made for the population and must 

minimize residual diffeomorphisms, pi , from ^(t).
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Analogous to the Euclidean case, we propose a formulation that includes influences from 

forces by initial velocities along with initial intercepts from each individual. The following 

energy functional generalizes the log-likelihood presented for the group estimate in the 

Euclidean case:

1 1 N /  \
E I  (ti)) =  ^ (1))2 +  2^2 (̂ d (e  Pi)2 +  yPi ■ I  (ti) -  Jilli2 J

1 N
+  2 ^ ^  llPi ■ m(ti) -  ni yK , (7.5)

S i=1

where d is the distance metric on diffeomorphisms, which corresponds to the norm of initial 

momentum under unit-time parameterization of the geodesic. The energy, E, is to be 

minimized subject to geodesic constraints on ^(t) and pi for i =  1 , . . . ,  N . Here, and 

represent the variances corresponding to the likelihood for the intercept and slope terms, 

respectively. Also, pi ■ I(ti), is the group action of the residual diffeomorphism, pi , on the 

image, I (t i), and pi ■ m(ti) is its group action on the momenta, m(ti). This group action on 

momenta also coincides with the co-adjoint transport in the group of diffeomorphisms.

The energy functional is written in terms of initial conditions of the group geodesic as:

E (^ , Pi, m (0) ,pi(0 ),I  (0)) = 2  ||m(0)|K (7.6)IK 
N

+  2^2 X / (|p(0)i yK +  llpi ■ ^ (ti) ■ 1 (0) -  Ji yL2) (7.7) 
1 i=1 

1 N

+  2^2 E  Hpi  ̂^ (ti)  ̂m(0) -  ni UK. (7.8)
S i=1

This optimization problem corresponds to jointly estimating the group geodesic flow, ^, 

and residual geodesic flows, pi , and the group baseline template, I (0).

7.1.3 Gradient computations

We introduce the time-dependent Lagrange multipliers, m , / ,  v, to constrain the group 

trend, ^, to be a geodesic and rpi,p i,iii to constrain the residuals, pi , to be geodesics. We 

write the augmented energy as:

i  =  e +

/ (m , m +  ad*m)L2dt +  / ( / , /  +  V I  ■ v )L2dt +  / (£, m -  Lv)L2dt+
o
N /* 1 /* 1 /* 1

^  /  (Pi,Pi +  adU,Pi)L2ds +  / (Ui,pi -  Lui)L2ds +  / (pi, p>i o p- 1 -  Ui)L2ds. (7.9) 
i= ^ o  ./o ./o
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The variation of the energy functional, E, with respect to all time dependent variables

added jump conditions. For clarity we report derivatives first for the residual geodesics 

followed by that for the group geodesic.

7.1.3.1 For the residual geodesics, pi, parameterized 
by s

The resulting adjoint systems for the residual geodesics for i =  1 ,. . .  ,N  are:

The gradients for update of initial momenta, pi , for residual diffeomorphisms are:

The initial momenta, pi (0), for each individual is updated via gradient descent, using the 

gradient in (7.12), by first evaluating pi(0) via backward integration of N  adjoint systems in 

(7.10) starting from initial conditions in (7.11) for each individual. It is important to note 

that the residual diffeomorphisms, pi, are not estimated using the usual image matching 

solution. Rather, this estimate maximizes the combined matching of both the base image, 

Ji, with I (ti), under the group action on images, and the momentum, ni, with m(ti), under 

the co-adjoint transport, jointly over all the individuals.

7.1.3.2 For the group geodesic parameterized by t

The resulting adjoint system for the group geodesic:

results in ODEs in the form of dependent adjoint equations with boundary conditions and

Ui — pi +  adMi pi =  0 

Pi — LUi — adj5i pi =  0 , 

—pi — adUi pi =  0

(7.10)

with boundary conditions:

pi ( 1 ) = 0, and Pi(1) =  — —-g [(I (t i) o p- 1 — Ji ) ]V (I (t i) o p- 1)
G TI (7.11)

I
(7.12)

—m +  adv m +  v =  —0 

I  — V  ■ (Iv) =  —0 > , 

adm m +  I V I  — Lv =  0

(7.13)

with boundary conditions:

_I(1) =  0 , and m (1) =  0 , (7.14)
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with added jumps at measurements, ti , such that,

/ ( t i+) — / ( t i - ) =  -1 |Dpi|(1 (ti) o p- 1 — Ji) o pi 
- /

m(ti+) — m(ti - ) =  ^ 2  Adp- i  (K  * (A d*-im (ti) — ni))
(7.15)

- S

Finally, the gradients for update of the initial group momentum is:

^m(0)£ =  K * m (0 ) — m(0). (7.16)

The variation of E with respect to the group initial image, 5/0E, can be directly computed 

from the energy functional, E. Since, pi ■ ^ (ti) ■ I (0) =  I (0) o ^ - 1(ti) o p- 1(1) =  I (0) o 0 -1 , 

a change of variable for 0 i followed by taking the derivative with respect to I (0) results in 

the closed form solution for optimum initial image, I (0), for the group geodesic as:

1(0) =  E i ! 1 J i o ^i|D^i|. (7.17)
( ) EN=1 |D0 i| ( )

During the joint optimization for computing group geodesic, the initial momenta, m(0), 

is updated via gradient descent, using the gradient in (7.16), by first evaluating m(0) via 

backward integration of the adjoint system for the group in (7.13) starting from initial 

conditions in (7.14) with added jumps in (7.15). This can be interpreted as forces influ­

encing the group geodesic by the individual initial images, Ji , and the momenta, ni , that 

parameterize the individual trends. Thus, in effect, such a formulation incorporates the pull 

arising from the “differences” in the individual trajectories with the group trajectories and 

not just their base images. The energy functional at the group level is jointly minimized 

such that the group estimates, I (0),m (0), and all the N  residual estimates, pi (1),pi (0), are 

updated at each iteration of gradient descent according to (7.12), (7.16) and (7.17).

7.2 Parallel algorithm for HGM
The estimation of the initial conditions of the group geodesic, as presented above, is 

computationally intensive and also has massive memory requirements. A naive serial com­

putation of gradient updates results in a very slow algorithm. Additionally, the single-GPU 

based implementations easily hit the limits of the available memory in the state-of-the-art 

computing architectures even for a small population study. In this section, we discuss a fast 

and parallel GPU-based algorithm, which easily scales to big longitudinal studies.

Equation (7.16) suggests that the gradient depends upon the adjoint variable, m(0), 

corresponding to momenta, m, at t =  0 . At a given iteration of gradient descent, m(0) 

must be computed by a backward integration of the adjoint system (7.13). To realize the
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parallelism in the computation, we must note that in each iteration of the optimization 

algorithm:

1. The backward integration of the adjoint system (7.13) is conditional on the estimates 

of geodesic paths, ^  and pj’s.

2. The jumps added to m(t) as per (7.15) during this integration are independent of each 

other.

3. Integration is a linear operator. In fact, the objective function in (7.8) is separable 

for N individual. Thus, the jumps are also linearly separable.

The above imply that the m(0) is a result of accumulating the integrated jumps that are 

independent and linearly separable, given the current estimates of the group and residual 

geodesics. The backward integration thus lends itself to a division into parallel computations 

of the jumps independently, followed by their independent backward integrations along the 

group geodesic. This computation is divided over L subsets of the full population. Each of 

the L processes computes the adjoint variable for NL individuals and results in its own version 

of m(0), denoted as the m i(0). This results in m i(0) (for l =  1 . . .  L), which represent effects 

of the pull by only the respective subset of individuals. Due to linearity of integration, the 

m(0) is the sum of the adjoints computed over the L subsets such that:

L
m(0) =  ^  m l(0). (7.18)

i

Note that the image update step in Equation 7.17 is trivially parallel since it does not involve 

any backward integration and only relies on current estimates of the geodesics. Both the 

numerator and the denominator in Equation 7.17 can be parallelly computed along with 

the L subprocesses. If we denote A =  ^ N=1 J - o ftj|Dftj| and B =  ^ N=1 |Dftj|, such that Al 

and B l are the accumulated sums only on the 1th subset, then we have:

L L
A =  A i, and B =  B i.

i i

A pseudo-code for this parallel computation is detailed in Algorithm 1. Step 3 in this 

algorithm computes the geodesics all the way to baseline points of the individual subjects 

along their respective residual geodesics. Step 4 performs the backward integration of 

adjoint variables starting from these end points to the initial baseline time of the group 

geodesic. Both of these steps work parallelly as L processes on L subsets of the population.
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A lgorith m  1: HGMParallel
input : Initial image and momenta pair (Jj, nj) for individual geodesics i =  1 . . .  N .
output: Initial image and momenta pair for the group geodesic (I(0 ),m (0))

1 begin
2 w hile not converged do

// spawn L processes, each working on N /L  individuals, e.g.,

using MPI

3 (•0(t),pi) ^  ForwardEvolveGeodesics(/(0),m(0))
4 (mj(0), A , B ^  BackwardIntegrateAdjoints(J1,n1,^(t1 ),pj)

// E.g. MPIReduce m z(0),Az, B
5 m(0) ^  SumAcrossProcesses(mi(0))
6 A ^  SumAcrossProcesses(A^)
7 B  ^  SumAcrossProcesses(B^)

// Updates as per Equations (7.16) and (7.17)
8 m(0) ^  UpdateMomenta(m(0),m (0))
9 I (0) ^  UpdateImage(A,B)

10 end
11 return ( I (0), m (0))
12 end

7.3 Results
We evaluate our proposed model using synthetic and 3D structural MRI data. Our focus 

in these experiments is to evaluate our primary proposed contribution, i.e., the estimation 

of group level trajectory given a population of trajectories. In these experiments, the kernel, 

K , corresponds to the invertible and self-adjoint fluid operator, L =  —aV 2 — bV(V-) +  c, 

with a =  0 .01 , b =  0 .01 , and c =  0 .001 .

7.3.1 Validation with synthetic data
To test the group estimation in HGM, we generated the synthetic data using the forward 

model. We first generated a ground truth group geodesic in diffeomorphisms by solving 

the image matching problem to give initial conditions, I (0), and m(0). The image, I(t), 

and momenta, m(t), can be generated along the group geodesic via the EPDiff evolution 

equations. Figure 7.3 (first row) visualizes the trajectory of this group trend in terms of 

sampled shapes along this geodesic: plus to flower.

To generate the individual, random perturbations from the group trend were computed. 

This was done by generating initial conditions: images, Jj(0), and momenta, n^0), for the ith 

individual at time, t^ In particular, the Jj(0) are constructed by shooting the image, I(t^), 

along the group geodesic at time, tj, with a randomly generated momenta that consequently 

also defines a residual geodesic diffeomorphism, p^ for this individual. Correspondingly, the
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Figure 7.3: First row: Synthetically generated ground truth group shape geodesic. Second 
Row: An example of a perturbed individual starting at t=0.2. Twenty-four randomly 
perturbed individuals along the span of the geodesics were generated. Only the initial 
conditions of the perturbed individuals were used in the group trend estimation. Third Row: 
Recovered ground truth geodesic by HGM overlaid with difference in intensities relative to 
ground truth (in red).

initial individual momenta, ^ ( 0), are generated by co-adjoint transport of m(ti) along the 

diffeomorphisms, pi . In Figure 7.3 (second row), we visualize one such individual’s own 

EPDiff geodesic evolution, for which the initial conditions are generated at time, t =  0.2. 

Using this procedure, we generate 24 such randomly perturbed trends from the group trend. 

The HGM algorithm only uses the initial conditions of the individual geodesics as input, i.e., 

images, Ji (0), and initial momenta, ni (0), for all individuals, i =  1 , . . . ,  24, for estimation 

of the group geodesics initial conditions, m(0), and I (0). The resulting estimated group 

trend closely matched the ground truth geodesic, Figure 7.3 (third row). Head-to-head 

comparison of the initial conditions between estimated and ground truth are depicted in 

Figure 7.4, together with an example of one of the individual’s perturbed initial conditions.

7.3.2 H GM  on structural M R  brain images
We performed the HGM analysis on longitudinal MRI sequences for individuals down­

loaded from the OASIS database. Note that the demented group is comprised of individuals 

with very mild to mild AD. This discrimination is based on the CDR score. Marcus et
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Figure 7.4: Left: Initial conditions, intercept image and slope for ground truth group 
geodesic. Center: Example of the initial conditions for one perturbed individual from the 
group trend. Right: Recovered initial conditions for the group geodesic from randomly 
perturbed initial conditions using 24 individuals.

al. [113] explain this in detail.

We used the Freesurfer longitudinal stream for skull stripping and intensity normaliza­

tion of images. For each individual, this pipeline aligns each time-point of this subject to 

a common unbiased within-subject template generated using all its timepoints [114, 115]. 

Each image was visually verified for errors in skull stripping. Images for about ten indi­

viduals were discarded due to bad skull stripping by Freesurfer. Table 7.1 mentions the 

details of the remaining imaging data. The maximum scan range for individuals across the 

entire population is 5 years. The age range for the population is 60-90 years. The number of 

timepoints for individuals vary from two to four. At the individual level of HGM, individual 

geodesic regressions are performed independently on the time-series of scans. At the group 

level, the initial conditions of the average geodesic are estimated based on the estimated 

initial conditions of individuals at individual level.

Table 7.1: OASIS longitudinal imaging data

Group Nondemented Demented
N 69 51
Age range (yrs) 60-90 61-90
Scan range (yrs) 1-5 1-5
Number of timepoints 2-4 2-4
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7.3.3 Model selection for HGMs: estimation of variance
parameters

Based on the assumption of fixed covariance structures at the group and individual 

levels, the proposed longitudinal model is interpreted as a generative model. In particular, 

using the forward model, the group estimates can be propagated along geodesics trajectories 

to summarize subject specific trends. Recall that the following are the estimates from the 

HGM model:

1. The group geodesic, parameterized by its initial conditions, /(0 ) and m(0).

2. Residual geodesics, parameterized by its initial conditions, / (tj) and p»(0).

3. Individual geodesics, parameterized by its initial conditions, Jj (0) and n (0).

The initial conditions of the group geodesic are evolved along these estimated geodesics 

using the group action of diffeomorphisms on image and momenta. A transport of the initial 

image and the initial momenta, i.e., the pair ( / (0) ,m (0)), from t =  0 to each time-point of 

every individual involve the three transports:

1. First, transport ( / (0 ),m (0)) along ^(t) to get (^(tj) ■ / (0),'0(tj) ■ m(0)) at baseline 

time of an individual.

2 . Second, transport (^ (tj) ■ /(0 ), ^ (tj) ■ m(0)) along the geodesic of the residual specific 

to that individual, pj (s). This results in transported quantities, (p(1) ■ ̂ (tj) ■ /(0 ), p (1)■ 

^(tj) ■ m (0)).

3. Finally, images of this individual at different age are generated by traversing along 

the individual geodesic parameterized by (p(1) ■ ^ (tj) ■ / ( 0), p (1) ■ ^ (tj) ■ m (0))

The results of this transport from the forward model are used to define the measure of 

“goodness” of the fit by the HGM model. The generated images of individuals for all their 

timepoints are compared against the actual measurements using the L2 metric on images. 

This is also in accordance with the likelihood of the data defined by the HGM model in 

Equation 7.5.

7.3.3.1 Leave-one-out on 2D images

We propose a leave-one-out cross validation strategy for the selection of the variance 

parameters in the HGM. The accuracy of the trained model is evaluated by comparing the 

generated images at each time-point for an “unseen” individual, not used in estimation of
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the model. In each iteration of the leave-one-out procedure, for a fixed 0 /  and 0  s , the HGM 

model is created on the training set of individuals and tested on the left-out individual. The 

residual geodesic for the left-out individual is estimated by solving the optimization problem 

of matching of slope and intercept. The individuals initial conditions are matched to those 

obtained by transporting group intercept and slope along the group geodesic estimated on 

training data to the baseline time of that individual. The initial conditions of the trained 

group geodesic are first evolved along the trained group geodesic, followed by the residual 

geodesic, and finally along the individual geodesic as described in the previous section.

The testing error is based on the sum of L2-based differences of generated images from 

the actual scans at each time-point for the test individual. This is repeated for each of the 

N  individuals in the population. The total leave-one-out accuracy for a choice of variance 

parameters is the sum across all N  runs.

This procedure is repeated for different choices of variance parameters. Note that the 

0 /  and are also interpreted as the relative weights on the intercept and slope match 

terms. Therefore, we study the effect of increasing weights on the slope terms in the model. 

We achieve this by varying 0 S from 10 to 0.001 while keeping the 0 /  constant at 0.1. We 

report the results for leave-one-out crossvalidation for 2D axial slices from structural brain 

images of 51 subjects categorized as demented [113] from the OASIS database (Figure 7.5 

and Table 7.2). For fair assessment across parameters, we use identical integration schemes 

and the constant stepsize gradient descent with identical stepsizes for optimization for 

0 S G 10.0,1.0, 0.50, 0.10, 0.05. The algorithm had trouble converging when 0 S was very low 

and hence smaller stepsizes were used for 0 S =  0.01 and 0 S =  0 .001 .

We observe that changing 0 S results in a different estimate of group initial image 

(Figure 7.5). The group initial image changes when we enforce matching of the slope 

along with intercepts. We observe increased contrast between gray matter and white 

matter regions in estimated initial image for 0  s =  0.1 when compared to that obtained 

for 0 s =  0.001. We also observe that for higher variance on the momenta matching term, 

the resulting deformation directions exhibit patterns of deformation across the whole brain

Table 7.2: Leave-one-out cross validation error

0 / 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0S 10.00 1.00 0.50 0.10 0.05 0.01 0.001
Total L2 image error 3.28538 3.27613 3.26578 3.10849 3.11085 7.25445 10.72304
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10.00 1.00 0.50 0.10 0.05 0.01 0.001

Figure 7.5: HGM model estimates for different choices of cts. Top row: Group initial 
images, I (0) . Middle row: Group initial momenta, m(0). Bottom row: Diffeomorphisms 
along group geodesic path, •0 (1).

(Figure 7.5 middle and bottom row). This is because variability across the subjects is very 

high. These deformations are capturing variability in brain shape across the population 

more than representing an average trajectory within an individual and hence are not a 

representative of the longitudinal trend in the population.

Lowering the variance in the momenta matching term results in deformation patterns 

around regions expected to be changing for an individual as time progresses. The infor­

mation about individual trajectories are taken into account in the averaging process more 

than intersubject variability information, thus resulting in an average shape change that 

represents the longitudinal trend in the population. This is evident from dispersed patterns 

of momenta across the whole brain for cts =  10.0 when compared to cts =  0.1. This 

is in accordance with the simple Euclidean case presented earlier (Figure 7.1) where the 

the average line obtained using ordinary least squares regression does not represent the 

longitudinal variability in the population. It thus fails to represent an average trajectory of 

changes in the dependent variable. Further, the deformation grids obtained for traversing 

along the geodesic paths also suggests that more information about longitudinal variability 

in the population is taken into account when we include the slope term.

Overall, this analysis suggests that resulting estimates are of the best quality when 

a balance in the slope and momenta match is achieved. In other words, an optimal
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combination of these parameters results in a better quality of group image when compared 

to that obtained for high image match only or high slope match only configurations in the 

model. Table 7.2 reports the leave-one-out accuracy in terms of the L2-error as a function of 

these parameters. It suggests that a minimum in the error occurs at - /  =  0.1 and - S =  0.1. 

The quantitative assessment of error as well as the visual assessment of estimated group 

initial conditions result in the same conclusion.

7.3.4 Population study using H GM  on 3D M R  brain images

Using the parameters found by leave-one-out crossvalidation on 2D slices of MR images, 

we now construct models on the longitudinal dataset of 3D MR images. The group geodesic 

estimates of HGM are presented for 3D structural MR images for the demented and the 

nondemented group in Figure 7.6. We notice from visual inspection that both the initial 

image as well as the initial momenta for the two groups are different. We must also note 

that the demented group is comprised of individuals with very mild to mild Alzheimer’s 

disease. The top two rows display the group initial image and the group initial momenta 

estimated for the two populations using HGM at the age of 60. While there is a slight 

difference in the estimated initial images for the two groups, their initial momenta direction 

markedly differs. For details about the imaging data, please refer to Table 7.1.

The deformation momenta at the age of 60 depict realistic directions of atrophy in the 

average representation of longitudinal changes in the population. The initial deformation 

direction suggests accelerated changes for the demented group in the frontal lobe compared 

to that for the nondemented group (blue block). Additionally, a higher concentration of 

momenta vectors near the hippocampus region for the demented group suggests an increased 

shrinkage for this group (cyan block). Overall, this group shows more expansions in the 

lateral ventricles as compared to that seen for the nondemented group (violet block). The 

bottom row displays the smooth deformation of the coordinate grid when the group image is 

deformed along the group geodesic for 30 years from the age of 60 years. In this visualization, 

we again notice clearly expanding ventricular regions accompanied by shrinking subcortical 

regions for both the groups. The difference between the two groups is also evident in this 

visualization (red block).



100

Figure 7.6: Hierarchical geodesic model for a population study using 3D MRI. Top Row: 
Estimated baseline image at age 60 for the group. Middle Row: Estimated initial direction of 
atrophy at 60 for the group. Bottom Row: Smooth deformation grid for 30 year deformation 
ie., from 60 to 90 yrs.

7.4 Conclusion
In this chapter we presented hierarchical geodesic models (HGM) in diffeomorphisms for 

longitudinal modelings of population of shapes. The HGMs are a generalization of classical 

hierarchical linear models (HLMs). We derived the solution to estimate parameters of the 

HGM for diffeomorphisms and presented a gradient descent scheme for estimating initial 

conditions of the group geodesic and residual geodesics.

The models presented in this chapter summarize longitudinal trajectory for a population 

of geodesics but there are several open questions that need to be addressed:

1. The hierarchy of the parameter estimation in HGM is unidirectional. The group 

geodesic estimation takes into account individual variabilities but the estimation for 

individual geodesics does not incorporate information about the group variability. A
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joint estimation method of group and individual geodesics needs to be derived.

2. Can we generalize methods of statistical inference such as hypothesis tests for group 

difference from Euclidean space to diffeomorphisms?

3. How can HGM models be extended to related longitudinal changes in continuous 

clinical test scores to longitudinal changes in shape?

4. Theoretical questions about confidence intervals and uncertainty measures on indi­

vidual and group-level estimates in HGM need to be addressed.

We will discuss these issues in the future work section in Chapter 8 .



CHAPTER 8

DISCUSSION

This chapter reviews the contributions of this dissertation and discusses unsolved ques­

tions and possibilities of future work.

8.1 Summary of contributions
This section lists each claim presented in Chapter 1, followed by a discussion on how it 

was accomplished in this dissertation.

1. Regression models between the deformation momenta, which encode nonlinear, high­

dimensional shape changes, and the Euclidean response variables that encode linear 

variability in clinical scores, effectively explain the relationships between the two.

Computational anatomy has provided the notion of deformation momenta that 

parameterize geodesic paths in diffeomorphisms. Their applicability for regression in 

intrinsic space of diffeomorphisms was discovered and presented in Chapter 4. The 

choice of deformation momenta to represent shape is natural in the sense that:

(a) it preserves the underlying geometry of space owing to its dual nature with 

respect to the metric in that space,

(b) it summarizes the nonlinear, large deformation information of shape variability, 

and

(c) it is a compact and unique representation of the complete geodesic path in 

diffeomorphisms.

A new model to relate high-dimensional shape information and neuropsychological 

response was developed. Deformation momenta in the tangent space of diffeomor- 

phisms were treated as independent variables for regression with Euclidean-valued 

clinical response. This model is based on the principle that regression on manifold­

valued information must rely on the intrinsic geometry of that space.
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Kernel partial least squares regression solves the high-dimensional and low sample- 

size regression model that relates deformation momenta with clinical response in the 

tangent space of diffeomorphisms. The proposed models thus respect and harness the 

Riemannian structure of the manifold of diffeomorphisms. Moreover, the resulting co­

efficients of regression have a meaning as mathematical quantities— they are elements 

of the dual to the tangent space of diffeomorphisms. The magnitude of regression 

coefficients encodes the amount of shape deformation in terms of the length of the 

geodesic in this nonlinear space.

The proposed intrinsic formulation of multivariate regression of clinical test scores 

on deformation momenta also enables explicit quantification of the nonlinear relation 

of changes in anatomy with neuropsychological response. This was demonstrated by 

extensive experiments on a large population study of brains in Chapter 4.

This dissertation also provided a rigorous evaluation of this model using multiple 

statistical criteria:

(a) Bootstrap methods assessed the stability and reported confidence bounds on 

the estimates of regression coefficients for several measures of neuropsychological 

response.

(b) Different choices of multivariate regression schemes were tested under this method 

for consistency of obtained geodesics of regressions. The methods included partial 

least squares regression and relevance vector regression.

(c) Cross-validation methods such as leave-one-out validation also benchmarked the 

performance of this model with respect to other state-of-the-art extrinsic meth­

ods.

(d) This model also extended trivially to include statistical criteria such as the control 

for confounding variables in the context of regression.

2. In population studies, combining other high-dimensional complementary information 

with information about geometric variability improves prediction performance of such 

models.

In Chapter 5, we developed models of regression in the intrinsic space of diffeo- 

morphisms to include complementary information from multiple imaging modalities. 

In particular, models that combine information about neuronal metabolism from 

[18F]-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) imaging and
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anatomical shape from structural Magnetic Resonance Imaging (MRI) were presented. 

A metric structure on the space of imaging modalities was constructed by mixing the 

kernel representations in complementary spaces of structure and function. We also 

showed that the kernel partial least squares effectively summarized intrinsic informa­

tion relevant to dementia when used for dimensionality reduction in the supervised 

sense in the space of imaging modalities.

This chapter demonstrated that combining multiple imaging modalities results 

in improved performance of regression models. For example, such models improved 

the accuracy of prediction for the task of detection of individuals at high risk of 

developing AD within the MCI group. In other words, the statistical tests demon­

strated that this model performs better as compared to using the imaging modalities 

alone. Cross-validation method to find an optimal combination of modalities was 

also presented. This method was also tested for consistency using different types 

of classifiers. Such a modeling facilitates the use of multiple modalities and enables 

clinicians to exploit complementary information available from the newly invented 

advanced imaging techniques in a unified framework.

3. Hierarchical geodesic models under multilevel nested designs explain the group and 

individual variability over time for a population of shapes represented in the group of 

diffeomorphisms.

Chapter 6 and Chapter 7 built the mathematical foundation of longitudinal anal­

ysis on manifolds. In particular, a hierarchical geodesic model was invented for 

longitudinal analysis of shapes represented in the group of diffeomorphisms. It is 

natural in the sense that:

(a) it generalizes the likelihood in the classical hierarchical linear models [19], and

(b) it uses only the intrinsic distances and geodesics in the manifold of diffeomor- 

phisms.

The model uses the hierarchy of geodesics in diffeomorphisms. All geodesics are 

parameterized using vector momentum, which is a new method proposed in Chapter 6 . 

The individual level geodesics represent the trajectory of shape changes within indi­

viduals. The group level geodesic represents the average trajectory of shape changes 

for the population. The derivation for the solution to HGMs on diffeomorphisms to 

estimate individual level geodesics, the group geodesic, and the residual geodesics was 

presented.
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An efficient implementation of the HGM was also developed which makes it ac­

cessible for clinical studies with large populations. This implementation exploits the 

inherent parallelism resulting from linear separability in objective function. Leave- 

one-out validation methods based on the “goodness of fit” criteria according to the 

data likelihood were presented for the selection of variance parameters in this model. 

This also solves the problem of model selection for HGMs.

8.2 Future work
This section proposes possibilities of extending the research in this dissertation. Many 

of these were alluded to in the conclusions of Chapter 4, 5, 6 and 7. We briefly review these 

topics here.

8.2.1 Longitudinal partial least squares
In Chapters 6 and 7, we presented hierarchical geodesic models that extend cross­

sectional analysis to longitudinal analysis of shapes. A longitudinal partial least squares 

is one promising extension to relate longitudinal progression in clinical scores with changes 

in shape over time under HGMs. The models based on kernel PLS on deformation momenta 

presented in Chapter 4 could extend to relate both the within-subject variability as well as 

the across-subjects variability in anatomy to covariance of changes in clinical scores with 

time.

This analysis would use the transported momenta that summarize longitudinal variabil­

ity to a common reference point in time. Summary estimates of the mixed effects model in 

Euclidean space of clinical variables could then be used as response variables for regression 

with these transported momenta. For this purpose, co-adjoint or parallel transport on 

momenta are choices for transport of initial conditions of the residual geodesics as well as 

the individual geodesics to a baseline time on the group geodesic.

8.2.2 Improvements in hierarchical geodesic models

Some questions about hierarchical geodesic models need to be answered.

8.2.2.1 Intrinsic methods of statistical inference
The field of computational anatomy is deficient, in general, on the theory of statistical 

inference under intrinsic models on manifold of diffeomorphisms. It is because no consensus 

on the theory of probability distributions in such spaces yet exists. However, one possibility 

is to use nonparametric ways of inference in these spaces and use intrinsic geodesic distances
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to define a test statistic. For example, the idea of Hoteling’s T 2 test [116] for testing 

differences in groups could be generalized to use the test statistics derived out of metric 

distances of residual geodesics in HGM. Random permutations could be used to simulate 

the emperical distribution of the null hypothesis.

8.2.2.2 Confidence bounds

One of the questions that needs attention is about the theoretical bounds on confidence 

of the estimates of HGMs. Both the spatial as well as the temporal uncertainty in estimates 

need to be quantified. An immediately accessible goal should be to devise emperical methods 

to quantify these limits of confidence. For instance, Monte-Carlo methods hold promise for 

exploring emperical distributions on estimates of initial momenta.

8.2.2.3 Joint estimation of levels in HGM

The sequence of the parameter estimation in HGM as solved in Chapter 7 is unidi­

rectional. The group geodesic estimation takes into account individual variability but 

the estimation for individual geodesics does not incorporate information about the group 

variability. It is possible to write the joint likelihood for the group and individual variability 

and derive the gradient updates for optimization. The variations governing the joint update 

in both levels will be slightly different than in the step-wise method. While computing the 

variations is possible, the main challenge, however, is to devise an effective implementation 

capable of handling data for population studies. For a complete joint optimization, at both 

levels, computations and memory requirements will explode even with few subjects in the 

population.

8.2.2.4 Higher-order extensions

The natural extension in any modeling is to increase the “flexibility” of the model. 

Both the geodesic regression model as well as the HGMs are first order models in the 

diffeomorphisms parameterized using only the intercept and the slope. In this context, 

improving the flexibility refers to increasing the order of parameterization in the model. 

Extensions of the idea of polynomials to geodesic regression and HGMs on manifolds 

has potential modeling benefits. For instance, quadratic and cubic polynomials in finite 

dimensional point-set shape spaces have been shown to outperform geodesics [23]. As in 

lower orders, model selection would be an immediate challenge for such higher-order models 

in diffeomorphisms.
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8.2.3 Suggested clinical applications and other improvements
The methods in this dissertation have potential benefits for clinical applications. Some 

of the following extensions could improve their accessibility to clinicians.

8.2.3.1 Comorbidity of Alzheimer’s
The presence of more than one distinct medical condition in a single individual is loosely 

referred to as comorbidity. There is by far no consensus on a quantitative metric or even 

on a precise definition for comorbidity of a disease in medicine [117]. In the context of 

Alzheimer’s disease, it is seen that many patients diagnosed with AD also exhibit symptoms 

of other medical conditions which are not characteristic to the condition of AD. Of these, 

depression is the most commonly found medical condition accompanying AD. A patient 

may also be diagnosed with anxiety, agitation or aggression. Identification and treatment 

of comorbidities in AD is an increasing concern [118, 119, 120].

Since most of the clinical studies consider medical conditions independently, the asso­

ciation between comorbidity and cognitive decline remains unclear. The regression models 

presented in Chapter 4 could apply to study the effect of multiple medical conditions 

independently and in tandem. For instance, geriatric depression scale (GDS) could be 

used as a clinical measure of depression for every individual. This score is between 0 to 15. 

A higher score implies high levels of depression. The following two types of models could 

be analyzed for disentangling AD comorbidities.

1. A control for the depression related comorbidity in AD could be added by treating 

GDS as a confounder in the regression of shape with clinical symptoms of AD. 

For example, one can formulate a model of regression between MMSE score and 

deformation momenta using residuals obtained after regressing out GDS from both. 

One could then qualitatively compare the shape regression coefficient obtained with 

and without this control.

2. Regression models of secondary conditions with shape could be performed while 

controlling for the primary disease condition. For example, this model could control 

for MMSE to build relationships between residuals in deformation momenta with 

residuals in GDS.

Further conclusions about geometrical changes in anatomy could be drawn by comparing 

geodesics of regression obtained in models from (a) and (b). Other models that could give 

more insight may build multivariate regression to explain covariance in both MMSE and 

GDS by regression on deformation momenta.
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8.2.3.2 More than two imaging modalities
Chapter 5 presents a model that combines two imaging modalities in their respec­

tive intrinsic spaces and demonstrates improvement in clinical tasks. It is possible to 

extend the above described framework to three and more modalities. For more than 

two modalities a single weighting factor is not sufficient. Unlike in two modalities, an 

exhaustive search of the weighting parameter is no longer feasible. One possibility is to 

use the expectation-maximization algorithm to estimate the optimal weighting coefficients 

of the different modalities. Such a modeling will directly inform us of the most effective 

combination of imaging modalities and cognitive tests for clinical trials.

8.2.3.3 Prediction of shape of the brain

According to the hierarchical geodesic models presented in Chapter 7, the individual 

velocity that summarizes the dynamics of an individual is a perturbation of the group 

velocity transported to the baseline time of an individual. Based on this, these models 

could be applied to estimate the subject specific trajectory based on the baseline scan for 

an individual. The motivation may be to estimate the future trend for an individual who 

visits the clinic for the first time based on the model created on the population of individuals. 

This is helpful for tracking the age and/or disease related changes in the shape of the brain 

of an individual with respect to the population.



APPENDIX A

ESSENTIALS FOR CROSSVALIDATION

A.1 Controlling effects of confounding variables
To understand the “neuroanatomical shape— neurological response” relationship, we 

take a modeling approach that controls for confounding variables in order to avoid spurious 

interpretations of our results. We want to know the relationship between the shape changes 

and the neurological response if the demographics of the population under study is made 

constant. When the demographic variables correlate both with the anatomical shape as 

well as the clinical response, they confound the regression analysis between the two. To 

address this problem, we define a model on the residuals. The residuals correspond to the 

regressions of the variables of interest (shape and clinical response) over the confounding 

variables (demographics). Consider the general problem of regression between variables 

X  and Y  controlling for the effects of variable Z . In other words, we wish to model the 

relationship between X  and Y  conditional on variable Z . A similar idea is used in the 

context of finding the degree of association between two variables and is referred to as 

partial correlation [121]. This is done via the correlation analysis between the variables 

after removing effects of the controlling variables.

The model is defined as:

Here X r and Yr are the residuals obtained after regressing out Z  from X  and Y, respectively, 

according to the regression models:

Yr — Xr ft +  6^ (A.1)

X  =  Zax +  6x

Y  -- Z a y +  6y

This gives,

a x =  ( z 'z ) - 1z ' x

ay =  (Z 'Z ) - 1Z 'Y

(A .2)

(A.3)



110

And also,

X r =  ( I  — Z  ( Z 'Z ) - 1 Z ') X  (A.4)

Yr =  ( I  — Z  (Z /Z ) -1 Z ')Y  (A.5)

Any suitable regression modeling can be done on residuals as in (A .1 ). The details about 

the kernel extension o f this modeling in the space o f residuals and the training and test 

data separation under cross-validation set up is covered in the next section.

A.1.1 Cross-validation set up with confounding variables
If we have the training data as X tr, Y tr and Z tr, and test data as X ts, Y ts and Z ts. 

For the training data:

1. Compute X", Y  and Z  and center the training data using the means.

2. Estimate a x, as per (A.2) and (A .3 ).

3. Using the above estimates, get the training data into residual space by computing X^r 

and Yrtr as per (A.4) and (A .5 ).

4. Estimate 3  (3 p l S or /3RVR) for model as in (A .1 ).

For prediction on the testing data:

1. Center the test data using X , Y  and Z  computed above from training data.

2. Get testing data into residual space by X rs =  X ts — Z tsd:x and Yrts =  Y ts — Z tsd y.

3. Get the prediction o f residual on test data by Yrts =  X ^ / p l s .

4. Evaluate the prediction accuracy by comparing Yrts and Yrts.

A.1.2 Kernel Method
W e extend the above to the case where we have data X , in the form of Kernel Gram 

matrix, K  of inner products, K j,j =  0 (x j)T0 (x j ). In matrix notation K  is a matrix which 

is of the form K  =  X M X / where M  represents the kernel.

The model is defined as:

Yr =  X r M X r  3  +  £r (A.6)

or in terms o f Gram matrix as:

Yr =  K /  +  £r (A.7)

If N tr is the number of training samples and N ts the number o f testing samples.
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We have the K tr as the N tr x N tr matrix of inner products of the training data. The 

Gram matrix for test data would be a matrix of inner products of all test data with training 

data: N ts x N tr matrix 

For the training data:

1. Center the training Gram matrix by: K tr =  M trK trM tr where M tr =  (I  — N f  1) 

where 1 is the matrix of ones of size N tr x N tr.

2 . Compute Y  and Z  and center the training Y tr and Z tr using the means.

3. Compute Bz =  ((Z tr) 'Z tr) - 1(Z tr)  from training data.

4. Get the training data Gram Matrix of inner products in residual space: =  (I  — 

Z tr Bz )K tr (I  — Z tr Bz)'.

5. Estimate /3 (,0pLS or /3RVR) for model as in (A.7) by using kernel version of PLS or 

RVR.

For prediction on the testing data:

1. Center the test Y a n d  Z u s i n g  Y  and Z  computed above from training data.

2 . Compute M =  n^f 1 where 1 here is a matrix of ones of size N x  N tr.

3. Get testing Gram matrix into residual space by:

=  (K ts — M tsK tr — Z  tsBz M tr )M tr (I  — Z tr Bz). (A .8)

4. Get testing data for into residual space by Yrts =  Y ts — Z tsO!y. Note, ay =  Bz Y tr.

5. Get the prediction of residual on test data by =  Krs/3pLS.

6 . Evaluate the prediction accuracy by comparing Y/-5 and Yrts.

The derivation for equation (A .8) is explained in the next section.

A.1.3 Computing Gram matrix of residuals for test data

The testing Gram matrix of residuals should be a matrix of inner products of test 

data with the training data in residual space such that the {i, j } th entry of matrix is:

K rs,j = ft (x 5)T ft (x r)

Thus, we need to compute: =  X rsM (X tr)'.
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Assuming M  =  I , we derive this for Identity kernel matrix and first formulate the 

expression in terms of inner products. We have,

K ts =  X ts(X tr)

Assuming X ts and X tr are centered with the training mean X .

K f  =  [X ts -  Z tsBzX tr][X ts -  Z tsBzX tr]'

=  [X ts(X tr)  -  Z tsBzX tr(X tr) '] [ / -  Z trBz]

=  [ K -  Z tsBzK tr][ / -  Z trB z] (A.9)

Equation (A.9) assumes K ts and K tr as centered kernel matrices. Since the training and 

test kernel centering is given by:

K tr =  M tr K tr M tr

K ts =  (K ts -  M tsK tr)M tr

For noncentered kernel matrices, (A.9) takes the form:

Krs =  [Kts -  M tsK tr -  Z tsBzM trK tr]M tr[I -  Z trBz]. (A.10)

A.2 Relevance Vector Regression (RVR)
We discuss briefly the principle behind the Relevance Vector Regression (RVR) since 

we have used it as an independent methodology for validation of our shape regression 

framework. RVR was originally introduced to the machine learning community by Tip­

ping [122]. It is an extension to the popular classification algorithm, Support Vector 

Machine (SVM). RVR provides probabilistic interpretation to regression modeling under 

the Bayesian framework. While SVM employs the L2 prior on the reproducing kernel 

Hilbert space of kernel functions, RVR induces the sparsity prior (L 1-norm regularizer) on 

the basis functions. RVR is one of the most successful regression methodologies in terms of 

the accuracy of prediction and generalizability [74, 73], and is suitable when the data-set has 

few samples compared to the dimensionality of input images. Thus, we have used RVR as 

an alternative HDLSS regression methodology to plug-in to our shape regression framework 

with deformation momenta. The objective is to test the stability of the prediction in terms of 

both the accuracy of prediction on unseen data and the stability of the estimated regression 

coefficient.
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Given a data set of n input-target pairs (xi, ti)i=\̂  ̂,n and the additive independent 

Gaussian noise model:

ti =  y(xi; fi) +  ti,

where ei follows a zero-mean Gaussian distribution with variance a 2. The y(x) is the linear 

combination of basis functions, 0 (x ,x i) =  K (x ,x i), of the form:

i=1

If we denote fi =  (fi1, ■ ■ ■ , fin)T as a weight vector, the Gaussian model on ti gives:

t =  y(x) +  e =  $fi,

where e is the vector of error, ei in measurements and $  is n x n +  1 design matrix with 

$ i,j =  0(x i, x j ) =  K ( x i, x j ) and 0(x i , x o) =  1. The assumption of independence of ti gives 

the likelihood of the complete data as:

The MAP estimation on the above is done by adding a sparsity prior on fi in the form of an 

L 1 constraint. This forces most of the elements of fi to go down to zero. The optimization 

on the posterior is done using the above likelihood and the prior. The optimization details 

can be found in Tipping et al. [122]. We used the implementation of the RVR as available 

from the author’s website at http://www.miketipping.com/index.php. The RVR iterative 

algorithm was run using the same kernel function as was used with the PLS. The Gaussian 

noise model was assumed with the noise parameter a, fixed at 10% of the standard deviation 

of the clinical response variable.

n

p(t|fi, a 2) =  (2na2) n/2 ex p {-^ | | t -  $fi||2}

http://www.miketipping.com/index.php


APPENDIX B

SUPPLEMENT TO ADJOINT 
REPRESENTATION 

B.1 Frobenius norm, outer product and dot 
product trick

We need to prove that:

Ab ■ c =  (A, c x 6} f  (B.1)

where A is a matrix, b, c are vectors, ■ is the usual dot product between vectors, x is the 

outer product between vectors and (., .}f  denotes the Frobenius inner product for matrices 

(summing of the element by element multiplication). LHS is written as:

Ab ■ c =  ^  b^AyCj (B.2)
i,j

Using relation between trace and Frobenius inner product we write RHS as:

(A, c x b}F =  tr(ATcbT) =  tr((cbT)TA) (B.3)

Also, since tr (X TY ) =  ^ iy- X y  Yij, we have RHS as,

tr (cbT )T A =  ^  cibj Aij (B.4)
i,j

which is same as the expression for LHS in (B.2).

B.2 Tensor divergence computation
We detail the finite difference computation for div(u x v)(x) where u and v are vector 

fields, x  G Q and x is the outer product.
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The tensor divergence is written in terms of partial spatial derivatives as:

v . s = §  e,  <b *5)

where Einstein summation is used. For 2D, this is equivalent to writing:

v ( u  x v) =  (—  +  - w ] & + ( —  +  “ a y r  > dy (B -6)

Note that while implementing the above, it is not required to store the premultiplied four 

different component-wise matrices.



APPENDIX C

DERIVATIONS FOR REGRESSION WITH  
VECTOR MOMENTA

The forward evolution along geodesics in diffeomorphisms is governed by the set of three 

time dependent constraints written as the following PDEs:

d t/ +  V /  ■ v =  0

dtm +  adV m =  0 > (C.1)

m — Lv =  0

Along the geodesic, each one of m (t ) ,/(t ),v (t ), evolve with time. As mentioned in 

Chapter 6, the energy functional for geodesic regression with M  measured image scans is 

of the form:

1 1 
S (m (0)) =  - (m (0 ).K * m (0 )}L» +  5 - 2  E  11/«') — J 'll2 <C-2)

i=0

Here are the timepoints where the noisy data, J i!s are observed and 0 < =  < =  1. 

Extending the functional, S with the Lagrange multipliers (adjoint variables), we get:

S =  S +  /  (m,rh +  ad*m} L2 (C.3)
Jo

+  f  ( / , . f  +  V /  ■ v}L2 (C.4)
0

+  f  (v ,m  — Lv} L2 (C.5)
0

We now evalute variations of S with respect to paths of each of the time-dependent 

variables, m, / ,  v.
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For dmS:

dmS =  (Sm(0),K *  m(0)) +  —
d

(m, dt(m +  eSm) +  adV(m +  eSm))
e=0 \ . 0̂

1

+  J  (v,m  +  eSm — Lv)^

=  (Sm(0), K  * m(0)) +  /  (m,Srh +  ad^Sm) +  /  (v, Sm)
Jo Jo

=  (S m (0 ),K * m(0)) +  /  (m,Sm) +  /  (m,ad*Sm) +  /  (v,Sm)
0 0 v 0

=  (Sm(0),K *  m(0)) +  (m, Sm)

0
t= 1 /* 1 /* 1 /* 1

— / (mi, Sm) +  / (advm,Sm) +  (v,Sm) 
t=0 -'0 ./o ./o

dmS =  (Sm(0),K *  m (0)) +  (m(1), Sm(1)) — (tn(0),Sm(0))

— (m ,Sm) +  (adv m,Sm) +  (V,Sm) (C .6)
0 0 0

1 M d (  [1 \
d/S =  (SI(ti) , I ( t i) — Ji) +  ^  Jo (V, dt(I  +  eSI) +  V (I  +  eSI) ■ v) Ja 2

i=0 
1 M-1

a2 i=0
1 M -1 

a2

- 1  1 
V ( S I (ti) , I ( t i) — Ji) +  /  ( / ,S /  +  VSI ■ v) 
i=0 0 
W- 1  1 1
E ( s i (ti) ,I ( t i) — J i) +  /  ( / , s/ )  +  /  ( I , v s i  ■ v)

0 0
1 M
^  ^  (SI (ti) , I  (ti) — J i) +  (V,SI)a i=0

i=0
M —1 t=1 . 1 . . 1

— (I, SI) +  / (I, VSI ■ v) 
t=0 J0 J0

1 M—1 1 ,
=  12 E  (SI(ti), I (t i) — J i) +  (V(1), SI(1)) — (v (0), SI(0)) — (I, SI) 

a2 i=0 0

+  I  (Iv, VSI )
0
1 M —1

^ S  =  - 2  E  (SI(ti), I (t i) — J i) +  (V(1), SI(1)) — (v (0), SI(0)) 
a2 1=0 

— /  (I, SI) — /  (V - (Iv) ,SI ) (C.7)
0 0

For «S:
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ft c 9 dv S  = de 
1

/0
d_ 

de 
1

( /  (m , m +  adV+e(5vm)) +  J  ( /,  /  +  V /  ■ (v +  e5v ) ) L2 

+  J  (v,m  — L(v +  e5v))^

(" [  (adv+e5v?m, m)) +  [  ( / , /  +  V /  ■ (v +  e6v))L2
e=0 V .70 .7 0

+  J  (v,m  — L(v +  e5v))^
0
9_

de
r-l

 ̂ (—adm(v +  e5v),m) +  /  ( /,  /  +  V /  ■ (v +  e5v ) ) L2 
e=0 \ ^o Vo

+  /  (v,m  — L(v +  e5v))^
0

=  /  (—adm5v,m) +  /  (c , V /  ■ 5v) +  /  (c, —L(5v))
.70 .70 .70

=  /  (—ad^mm, 5v) +  /  (-TV/, 5v) — /  (Lc, 5v) (C .8)
.70 .70 .70

Collecting all variations together:

—m +  adv m +  c =  0

—/  — V  ■ (/v ) =  0 (C.9)

—ad̂ m m +  / V /  — Lc =  0

subject to boundary condition,

(C.10)
mc (1) =  0 

/ ( 1) =  0 j

and, adding jump conditions at observed data points tj , Vi =  1, ■ ■ ■ , M , (while integrating 

/ backwards) i.e., for, / ( t j+ ) — / ( t j - ) =  ^2 ( / (tj) — J j)

/ ( t j - ) =  / ( t j+ ) +  5j } (C.11)

where c (tj+ ) and c (tj - ) denote the values of the integrated /  just the right and left, respec­

tively, of the observed data point at tj . Also, jumps, 5j =  — ̂ 2 ( / (tj) — J j) Vi =  0 , ■ ■ ■ , M  — 1. 
Finally the variation of S with respect to 5m(0) is:

5S =  (K * m (0 ) — m (0),5m (0)) (C.12)

and, the variation of 5  with respect to 5 /(0) is:

5S =  (—1 (0 ),5 /(0)) (C.13)

Note that Equation set (C.9) can be written as:

—m +  advm +  K  * ( / V / ----- adm m) =  —0 ]
, . (C.14)
/  — V  ■ (/v ) =  0 J
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or equivalently,
—m +  advm — ad^v +— K  * ( I V / ) =  —0

/  — V  ■ (/v ) =  0
(C.15)

C.1 Backward integration of adjoint system
Note that the solution to equation for /  under no jump conditions is:

/ (t) =  |D0t,i|/(1) o 0t,i (C.16)

With jumps in /  along the integral, the solution takes the form:

I (t) =  |D0t,i|/(1) o 0t,i +  ^  |D0t,ti|<P o 0t,ti (C.17)
t>ti

Notice, we can further simplify Equation (C.17) using splatting operators S^(a) =  

|D0- i |a o 0 -1 .:

1 (t) =  ( / ( 1)) +  £  (5*) (C.18)
t>ti

C.2 Gradient descent with transported variables at t = 0
We begin with formulating integral formula for Equation set (C.9) along with jump 

conditions. Note that advm =  (Dv) ■ m — (Dm) ■ v and there is a vector advection of m. Our 

goal is to avoid explicit integration of adjvection while evaluating gradients. We rewrite the 

set (C.9)
m — (Dv) ■ m +  (Dm ■ v — v =  0 

/  +  V  ■ (/v ) =  0 

K  * ( I V /  — admmm) =  v

(C.19)

Separating out advection Dm ■ v and V  ■ (Iv) in terms of their closed form integrals already 

known, the integral formulation for the above looks like:

1
m(t) =  m(1) o 0t1 — [(Dv) ■ m +  v ] o 0t,sds

1 (t) =  |D0 t,i|/(1) o 0 t,i +  X )  |D0 t,ti^  o 0 t,ti
t>ti

v (t) =  K  * (admmm(t) +  I (t)V I(t))

We use the following definition for m(t) and /(t ):

m(t) =  m (t) o 0 o,t

m(t) =  m(t) o 0 t,o

(C.20)

(C.21)

(C.22)
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and

/(t )  =  |D0o,t|/(t) o 0Q,t (C.23)

/(t )  =  |D0t,o|- (̂t) ◦  0t,o (C.24)

Equation (C.20) simplifies to:

m(t) =  m(1) -  / [(Dv) ■ m +  7] o 0o>sds I
Jt > (C.25)

-(t) =  - «  +  E  |D0 o,ti|^ o 0 o,ti I
t>ti )

Further, because of boundary conditions i.e., m(1) =  0 and /(1 ) =  0, we also have 

m(1) =  0 and /(1 ) =  0. Thus, the integral equation becomes:

m(t) =  -  / [(Dv) ■ m +  v] o ^o>sds
Jt V (C.26)

^ ( t ) ^  |D0 o,ti|^ o 0 o,ti 
t>ti

Also, since m(0) =  m(0) and 7(0) =  /(0 ), the gradient update step for - ( 0) and m(0) 

becomes:

mk(0) =  mk -1(0) -  em(vfc-1(0) -  mk -1(0)) ] 
k k i i (C.27)-fc (0) =  -fc- 1  (0) +  e /( / fc-1(0)) J

C.3 Closed form update for I (0)
Looking closely at the originial energy functional in (C .2), we notice that the second 

term is the only dependence on -(0 ) by noting that - (tl) =  -(0 ) o 0ti,o. The norm in the 

second term is expanded to write:

S (m (0 ),- (0)) =  1  (m(0), K *  m (0))L2 

1 M—1 ['
+  2“ 2 E  (-(0) o ^ti,o(x) -  J *(x )  -(0 ) o ^ti,o(x) -  J i(x ))L2dx (C .28) 

i=o Q

A change of variable, x =  0o,ti (y) such that dx =  |D0o,ti (y)|dy gives,

S(m (0), -(0 )) =  1  (m(0), K  * m (0))L2
1 M- 1

+  2~2 5 -  / ( - ( 0)(y) -  o ^o,ti(y ^ -  (0)(y) -  o 0 o,ti(y) )L2|D^o,ti(y)|dy 
i=o n

(C.29)



which gives,

1 1 M -l _______
S  (m (0 ) , /  (0)) =  2 (m (0 ) ,K * m (0 )}L2 + 2 ^  ^  ||(/(0) — Ji O 0o,ti ̂  |D^0,ti 111■ 2 0 2

i=0

This implies the derivative with respect to /(0 ) becomes:

M -l _______
d/(0)S =  ^  d/(o)||(/(0) — Ji O 0 o,t*) ^ D ^ r  

i=0
M -l _______ _______

=  ^  ((/(0 ) — Ji O 0 o ,t * ^ |D0 o,t*1, ^ |D^0,t*1} 
i=0 

M -l
=  ^  (/(0 ) — Ji O 0 o,t*)|D0 o,t*1 

i=0

Equating (C.31) to zero at optimal,

M - l
^  (/(0 ) — J* O 0 o,t*)|D^0,t41 =  0
i=0

M -l M -l
^  1 (0)|D0 o,t*1 — ^  Ji O 0 o,t* |D0 o,t*1 =  0
i=0 i=0

M-1 M-1
1 (0) ^  |D0 o,t*1 =  ^  Ji O 00 ,t*|D0 o,t*1

i=0 i=0

/ (0) =  ^ M= o l J * O 00 ,t* |D0o,t*1

E M -  |D0o,tiI
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2 (C.30)

(C.31)

(C.32)



APPENDIX D

DERIVATIONS FOR HIERARCHICAL 
GEODESIC MODEL

D.1 Group geodesic initial conditions in hierarchical
geodesic model (HGM)

At the group level (Figure 7.2), the idea is to estimate the average geodesic, ^ (t), that is 

a representative of the population of geodesic trends denoted by the initial intercept-slope 

pair, (J*, n*), for N  individuals, i =  1 , . . . ,  N . The required estimate for ^(t) must span the 

entire range of time along which the measurements are made for the population and must 

minimize residual diffeomorphisms p* from ^(t).

The augmented Lagragian for the group geodesic as presented in Equation (7.9) in 

Chapter 7 is

S =  E+

/ (m , m +  ad*m}L2dt +  / ( /,  /  +  V /  ■ v}L2dt +  / (v,m — Lv}L2dt+
.70 .70 .70
N /* l /* l /* l

/  (j5*,p* +  adUp*}L2ds +  / (u*,p* — Lu*}L2ds +  / (p*,p* o p- 1 — u*}L2ds. 
j= ^ 0  Jo Jo

The added constraints in the form of integrals represent geodesic constraints on ^(t) 

and p* for i =  1 , . . . ,  N . Notice, and represent the variances corresponding to the 

likelihood for the intercept and slope terms, respectively. Also, p* ■ / (t*) is the group action 

of the residual diffeomorphism p* on the image, / (t*), and p* ■ m(t*) is its group action 

on the momenta, m(t*). This group action on momenta also coincides with the co-adjoint 

transport in the group of diffeomorphisms. This optimization problem corresponds to jointly 

estimating the group geodesic flow, ^, and residual geodesic flows, p*, and the group baseline 

template, / ( 0).

The variation of the energy functional E with respect to all time dependent variables 

results in ODEs in the form of dependent adjoint equations with boundary conditions and
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added jump conditions. We first report derivatives for the residual geodesics followed by 

that for the group geodesic.

D.1.1 For the residual geodesics, pi parameterized by s

For the sake of clarity we omit script i representing each residual for an individual. For 

each of the residual geodesics, the derivation proceeds as follows:

For dp£:

For dp£:

dp£ =  de
(p , ds(p +  e5p) +  adU(p +  e5p)

e=0 \ •'0

+  /  (u ,p +  e^p — Lu)^

=  (p , ^p +  adU^p) +  (u , 5p) 
0 0

=  /  (p , £p) +  /  (p , adU^p) +  f  (u , 5p) 
0 0 0

=  (p , ^p)
s=1

— (p , £p) +  / (ad„p, 6p) +  / (u , 6p) 
s=0 J 0 J 0 Jo

dpE =  (p (1),5p(1)) — (p (0),5p(0))

— (p , 6p) +  / (adup , 6p) +  /  (u, 6p)
0

ap£  =  de

0 0

l
- - 2  (J(ti) ◦  p- 1 — J M (t i) ◦  p- 1 — J i)

e=0 V 2—/
l

+------2 (A d*-im (ti) — ni , K  * (A d*-im (ti) — ni))
2 — 2 Pe Pe

=  _ (5p, ( j ( t i) ◦  p- 1 — J i)V ( / ( t i) ◦  p-1 ))1
-

+  ^2 (^Adp-im(ti), K  * (A d*-im (ti) — ni))
-

+  /  (p , (^P)P — (pp ) (^PP ))
0

=  J_(£p, ( j ( t i) ◦  p- 1 — J i)V (J(ti) ◦  p-1 ))

+  - j (—ad p̂0p-i Adpm(t i ) ,K * (Ad* -im (f ) — ni)) — ~ ' e

(D .l)

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

(D.7)

(D.8)

(D.9)

1

1 1 1
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For du£:

r 1 d
+  J (P, (dS^PP-1 ) — ad«(5pp-1 )) (D .10)

=  -1 (5p, ( / (t-) ◦  p- 1 — J j)V ( / ( t j) o p-1 )) (D.11)
- 2

+  ^ 2 (Adpm(tj), —ad5pop- iK  * (A d * -m (t j) — nj)) (D.12)Pc
r1 d

+  /o  (—d s p — adUp ,5pp-1) (D .13)

1 „ -1 Tj\^/7- /W„~ - 1>

1 d
+  /o (—d s p — adUp ,5pp-1) (D .16)

=  - 2 (5p, ( / (tj) o p- 1  — J j)V ( / ( t j) o p-1 )) (D.14)
- 2

+  HI ̂ P ™ ^  adK*(Ad*_ 1 m(ti)-ni)^p 0 p-1) (D .15)
- S p-

d rt — ad* c5rtp -1
/ 0 ds

dpE =  -1 (5p, ( / (tj) o p- 1 — J j)V ( / ( t j) o p-1 )) (D.17)
- 2

+  - 2  (adK*(Ad*_1 m(ti)-ni) Ad*m (t-),5p o p-1) (D .18)
- S p-

d p — ad* c, 5rtp-1 '
/ 0 ds

1 d
+  /o  (— dsp — adUc , 5pp-1) (D .19)

(D.20)

«  p -  d
de

1 f 1(p,p +  adU+e(suP)) +  / (u,p — L(u +  e5u)) (D.21)

+  J  (c, Pp 1 — (u +  e^u))^

=  (—adp5u,p) +  / (u, —L(5u)) +  / (c, 5u) 
0 0 0

=  /  (—ad*p, 5u) — /  (Lu, 5u) +  /  c, 5u) (D.22)
.70 .70 .70

Collecting variations together, the resulting adjoint systems for the residual geodesics 

for i =  1 , . . . , N  are:
u- — p5j +  adMi pi =  0 ^

pj — LUj — ad*5i p- =  0

—̂  — adUi p- =  0

with boundary conditions:

p - ^ ) ^ ,  and # (1 ) =  — —2 [ ( / (t-) o p- 1 — J-)] V (/(t - )  o p - 1)
- /

— - 2  (adK*[Ad* _ 1 m(ti)-rai]A d * - 1-  S Pi 1

(D.23)

(D.24)
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The gradients for update of initial momenta, p* for residual diffeomorphisms are:

£pi(o)£ =  -1  K * p i (0 )  -  p*(0). (D.25)

D.1.2 For the group geodesic parameterized by t

The derivation of the adjoint system for the group geodesic is exactly same as that for 

the individual geodesic regression except for the extra slope match term that results in 

added jumps for the adjoint equation for momenta.

For dm£:

=  (5m(0), K  * m(0))
M 1

( 2~^ ^  (Adp-i (m(t*) +  e5m (f)) -  n*, K  * (Adp-i (m(t*) +  e5m(t*)) -  n*) 
'  i=o

+  / (m ,dt(m +  e5m) +  adV(m +  e5m))
Jo

+  /  (v,m +  e5m -  Lv)^

1 M-1
(5m(0), K  * m(0)) +— 2 —  (A dp-i5m (f), K  * (A d p -im (f) -  n*))

i=o

+  / (m , 5m +  ad*5m) +  / (v,5m)
Jo Jo

1 M-1
=  (5m(0), K  * m(0)) +— 2 —  (5m(t*), Adp- iK  * (A d p -im (f) -  n*))

i=o

+  / (m ,5m ) +  / (m , ad^m ) +  / (/,5m )
o o v o

M 1
(5m(0), K  * m (0)) +  ^  ^  (5m(t*), Adp- iK  * (Adp-im(t*) -  n*))

+  (m , 5m)
t=1 J 1 J 1 J 1

-  / (m ,5m) +  / (advm,5m) +  / (/,5m ) 
t=o o o o

M 1
=  (5m(0), K  * m(0)) +— 2 ^  (5m(t*), Adp- iK  * (Adp-im(t*) -  n*))

+  (m(1), 5m(1)) -  (m(0), 5m(0))

-  / (m,5m) +  / (advm,5m) +  / (/,5 m ) (D.26)
o o o

For d/E:
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1 M 1

a /2

1

a i

1

d_
de =0 0

9/£ =  - 2  E  (SI(ti) , I (ti) — Ji) +  a 2
/ i=0

M— 1 , 1
V ( s i (ti) , i ( t i) — j 1) +  /  ( I , sI  +  v s i  ■ v)

/ i=0 0 
M—1 r1 r 1
E  (SI(ti) ,I ( t 1) — J1) +  / (I,SI)  +  / (V, VSI ■ v)

<.f, ^ ( I  +  eSI) +  V (I  +  eSI) ■ v)

a

1

2
/ i=0 

M 1
0

2
M—1 t=1 f 1 . r 1 
E  (SI(ti) ,I ( t 1) — J1) +  (I, SI) — (I, SI) +  /  ( /,  VSI ■ v)
„_n t=0 •'0 ./0

1
/ i=0 

M —1
E  (SI(t1) , I(t1) — J1) +  (I (1 ),SI(1)) — (v(0) , SI(0)) — /  ( / , SI) 

/ i=0

+  [  (Iv, VSI )

a 0

0

1 M 1
9/E =  - 2  E  (SI(ti) ,I ( t 1) — J1) +  (I (1) ,S I (1)) — (v(0) , SI(0))

aI i=0

f  (I, SI) — [  (V - (Iv) ,SI )
0 0

For dv £:

«  p 9dv E =  TT de e=0 V ./0
1 Z1 V •
(m, rh +  adV+e V̂m)) +  / ( /,  I  +  V I  ■ (v +  eSv) ) L 2

+  J  (v,m  — L(v +  eSv))^
0

de
1 f 1 -  ■(adv+e<svm,m)) +  ( I , I  +  V I  ■ (v +  eSv) ) L 2

e=0 V -/0 -/0

+  J  (v,m  — L(v +  eSv))^
0

de
1  f 1  —(—adm(v +  eSv),m) +  ( I , I  +  V I  ■ (v +  eSv) ) L 2

e=0 V -/0 -/0

+  J  (v,m  — L(v +  eSv))^

(D.27)

10

=  /  (—admSv,m) +  /  ( /,  V I  ■ Sv) +  /  (v, — L(Sv))
J0 J0 J0

=  /  (—admm,Sv) +  /  (IVI,Sv) — j  (Lvj,Sv) (D.28)
./0 ./0 ./0

Collecting all variations together resulting adjoint system for the group geodesic:

—m +  adv m +  v =  —0

I  — V  ■ (-Tv) =  —0 > 

adm m +  - V I  — Lv =  0

(D.29)

l

0



with boundary conditions:

/ (1 )  =  0, and m(1) =  0, (D.30)

with added jumps at measurements, t*, such that,
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1
A t*+) — ^(t* ) =  ~2 |Dp*|(/(t*) O p- 1 — J*) O p*

1

Finally, the gradients for update o f the initial group momentum is:

m(t*+ ) — m(t*- ) =  -1 Ad - i  (K  * (Ad*-im(t*) — n*))
(D.31)

^m(0)£  =  K * m ( 0 )  — m(0) (D.32)
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