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INTRODUCTION

This paper is an extract from a Ph.D. thesis written by Johanson 

in the Department of Mechanical Engineering, College of Engineering, 

University of Utah; it follows earlier publications by Jenike [e.g. 1,5].

The purpose of the work has been to develop a mathematical theory 

of flow of bulk solids. The term 'bulk solids' encompasses both frictiona 

(granular) and cohesive materials, and specifically describes such solids 

as ore, coal, concentrates, chemicals, flour, sugar. While there exist 

papers describing the behavior of these solids in bins and hoppers, 

the authors believe that this is the first time that stress and velocity 

fields have been computed mathematically for steady flow in converging 

channels under the action of gravitational forces. The method used in 

this paper is based on the concepts of soil mechanics and plasticity 

adapted by Jenike and Shield [3] to permit the steady flow of frictional 

solids.

In Chapter I the applicable features of the theory of steady state 

flow are stated. The solution of the general problem of stress and 

velocity fields for plane strain and axial symmetry requires the solu­

tion of two systems, each comprising two hyperbolic differential equations

In Chapter II the differential equations are transformed into 

difference equations in preparation for the numerical work which follows 

in Chapter IV. Types of possible boundary conditions are considered 

and the difference equations are adapted to those types. Useful combina­

tions of boundary conditions are then described.

A particular solution, called the radial stress field, is described



in Chapter III. This solution applies to converging channels with 

straight walls and has been treated at length in reference 5. In this 

paper experimental observations are given to substantiate the existence 

of such fields.

Certain cases of more general boundary conditions are computed 

and observed in Chapter IV. They substantiate the existence of radial 

stress fields and verify experimentally the physical assumptions made 

in the derivation of the theory.
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... ' NOTATIONS

rectangular coordinates 1 *

spherical coordinates ,

time • ■ ■ ' v ; ' ' '

bulk density

effective, angle of friction of a solid

angle of internal friction of a solid • : •

angle of friction between a flowing solid and a wall

angle of inclination of the wall of a channel measured
from the vertical axis

Angle between the directions of major pressure and of 
the stress characteristics

the acute angle between a wall and the direction of 
the major pressure

the angle between the x-axis and the direction of the
major pressure measured counterclockwise from the x-axis

% .

pressure components in the x, y and z direction

major and minor principal pressures in the x-y or r- 0 planes

third principal pressure : : * ... :

mean pressure in the x - y  plane "

shear strain rate components in rectangular coordinates

normal strain rate components in the x, y and z direction

shear strain rate components in rectangular coordinates

Velocity components in the x and y direction

magnitude of the velocity vector in the x - y  plane

velocity components in the first and second character- ’ 
istic directions
Angle of inclination from the horizontal to a traction-
free top boundary.

' ‘



CHAPTER X
-•‘J .7 ,X

THEORY OF STEADY FLOW s; , . t

The reader may find many of the concepts encountered in the theory 

of bulk solids flow very similar to those found in soil mechanics and 

plasticity. However, when applied to bulk solids, these concepts under-" 

go subtle but significant changes. In this chapter the physical as well 

as the theoretical meaning of steady flow as ifc relates to some of the 

well known concepts of plasticity and soil mechanics is discussed.

The Steady Flow Condition :

The stress and velocity fields discussed in this paper apply to 

conditions of steady flow. This means that the stress and velocity at 

any point are unchanged with time. The boundaries are also assumed 

unchanged with time. As the solid flows out of a channel the channel 

is refilled at the top in such a way as to maintain constant boundaries.

• In applications this condition is rarely achieved, however, if the change 

with time is small and continuous, the steady flow fields calculated from 

the boundary conditions at a given time will closely approximate the 

real fields. & , .... ,t>. ■

Steady flow in a converging channel is characterized by a continuous 

deformation without change in the stress at a given point. It appears 

from experimental evidence that this type of flow occurs only for certain 

stress conditions. Results of the shear test procedure proposed by 

Jenike [1] show that Mohr circles representing a steady flow stress are 

approximately tangential to a straight line through the point of zero



stress, Figure 1. Be Jong [2] shows the same results in a test in which 

+ a2 is held constant and ~ is increased until continuous deforma­

tion occurs without change in stress. The envelope of Mohr circles

defined in this manner is termed the effective yield locus, EYL, and
C1 ~  J2 ■ is expressed by the equation---—— — = sin. 6 where a1 and are theo1 0 J.

major and minor principal stresses in the plane of deformation with 

compression taken as positive. From experimental evidence it appears 

that the value of & is essential!;;" ir.d.i-;pe:r).der,t of the magnitude of the 

third principal stress cr̂ . The ITSX. trasnforma t«to 0 , °g co­

ordinates as the plane

: 0j(l - sin 6) - $2 ' 1 + sia 5) = 0 (1)

which passes through the o„ axes and makes: an angle B = tan — S ;n, . 3 , 1  + sin 5

with the ct̂  axis Figure 2. By cyclic renumbering of the variables in

equation (1), six such planes can be coiistracted each passing through one

of the axes and making an angle fi with oae of the other axes. The

surface formed by these planes, 2‘ig.-.re 3, is called the effective yield

pyramid. Stress conditions for steady flow are represented by points

lying on the surface of this pyramid. Since the plane of any side of

the pyramid can be derived from any other plane simply by permutating the

subscript of a^, a^, cr̂ one need only consider one of the sides in order

to represent all possible stress conditions. If the principal stresses

are ordered so that ^  O3 ̂  0  ̂then the pyramid side AFO need only be

considered. Along OA > cr̂ and along OF a = < cr̂ .

The strength of a bulk solid varies with the pressure under which it

was consolidated. This is shown experimentally by subjecting a sample



of solid to continuous steady flow with a given Figure 1. Observe 

that the Mohr circle for this condition is tangential to the EYL. The 

stress is removed in such a way that no further deformation occurs. The 

sample now has certain strength properties which can be determined by 

restressing several such samples under different values where the 

subscript f indicates failure conditions. The result of such a test 

carried out as outlined in [1] is shown in Figure 1. It is necessary 

that > a.^ because for the condition < a^ the solid would again 

assume a condition of flow and different stength properties would develop.

The Mohr circles for failure are tangent to a line called the yield 

locus, YL, which represents the normal and shear stress on slip-planes 

of the solid along which full frictional conditions develop. In steady 

flow the stress at the slip planes are located at point E. In general,

a different a. will have a different YL. The YL near point E can beJL3
approximated by a straight line indicated by the dashed line. This line 

in (7p  a c r ^  coordinates, transforms, as did the EYL, into a pyramid, 

Figure 4, where the planes of the sides are given by

■ a^(l - sin .0) - + s*'n ^ cos ^ = 0 - (2)

Jenike and Shield [3] have proposed that this pyramid be terminated by 

a base plane perpendicular to the octahedral axis Point E, Figure 1, 

then corresponds to a point at the intersection of the base plane 

with the side planes. The intersection of a given EYL function and the 

plane of the YL function is shown in Figures 2 and 3 as a vertical line 

AF„. As a^ changes along this line of constant and , the base of the 

YL pyramid must also change for steady flow. In general, steady flow



requires not only the base of the Yi pyramid to change but the entire 

pyramid must change from one stress condition to another The physical..

interpretation of this is that a solid flowing in a channel has a —  

strength at a generic point dependent on t-he stress condition at that" .3 .

point. . ..

. Plastic Potential and Steady Flow

Plastic potential or normality states that ^
. dF • V  ' ..

Ei ‘ v.
1

where F is the yield function. Geometrically this meaas that when e andi
0̂  coordinates are aligned, the vector formed by the components is !

normal, or perpendicular, to the yield surface. In this paper c^and are

positive for compression and contraction, respectively. In particular,

consider one side of the yield pyramid given by equation (2), then

ex = X = X(1 - sin & >, e2 = X ̂ ~  = ~X(1 + sin p) e3 = X = 0.
1 2  s .

The e vector is X [(1 - sin i ), -(1+ sin i>) , 0], normal to the given

plane. At the sharp edges or corners of the yield function, is defined —

only to within the limits imposed by the intersecting surfaces [ 4].

For steady flow the stresses are located on the base of the yield function

thus giving the maximum freedom to the direction of the e vector.

The continuity of the solid is expressed by

e, + e0 + e„ = e + e + e = ~  4 ?K- ■.■5- v 2 3 x y z y dt

where y is the specific weight of the solid and, in general, is a function 

of x, y, z and t. It has been shown that y can be assumed constant without

- 5-



greatly affecting the solution[3j, The resulting condition

el + e 2 + e 3 = 0 (3)
restricts the strain rate vector to a plane perpendicular to the

octahedral axis. The strain rate vector M ( 1  " sin $), - ( 1 +  sin$), 0]

normal to the side of the yield pyramid does not satisfy this condition.

One now sees the necessity that point E, Figure ljcorrespond to a point

on the base of the pyramid, where the e vector has enough freedom to

satisfy this condition. It should be noted that plastic potential implies

normality with respect to the yield surface not to tfe.e effective yield
surface. . . , .■

In the case of plane strain, which is characterized by deformation

in one plane only, eg. <7̂ , plane, velocity irf zero in the direction ...

of the this implies = 0, which together with (3) define the -r,

direction of the strain rate vector such that the normality limitations

can only be satisfied at point F, Figure 3. Thus,, with no density

change, normality limits the plane strain stresses to = cr̂ < Oj. In

the case of axial symmetry a unique direction of the strain rate vector

is not specified. However, in a converging channel it seems natural to

assign the circumferential stress as major since the solid contracts

along the circumference. This assumption restricts the stress to point

A on the yield pyramid where < cr̂ = Normality at this point

gives certain limits for the e vector but does not specify it uniquely.

; Isotropy in Steady Flow

In steady flow different points in the material may have different 

yield function?? however, material properties at any one point are assumed 

isotropic, i.e. independent of direction. It will be shown that this

- 6 -  .



usually implies that the directions of principal stress and strain rate

coincide. This coincidence is expressed by
2t T ,.s 

--- - +  tan 2a> - — S L _  (4)
ct - ct e - ex y x y

where to is the angle measured counter clockwise from the x direction

to the direction of major principal stress and strain rate, Figure 5.

To show the coincidence of directions consider the most general

expression for the shear strain rate

T = G(cr , ct s a , t , t 3 t  s e 9 e , e , r > T ) xy x y z xy yz xz x y z xz yz

Since the solid is isotropic the function G will be the same regardless

of orientation of x, y, and z. In particular, consider the coordinates

aligned with the directions of principal stresses. The terms t  , t ,° xy yz
x are now zero. A new coordinate system formed by rotating the originalXZ
by 180° about the y axis is given by x* = -x, y' = y, z! *=- -z and

, t' , e' , e* , €' , r ’ , r 1 ),1 yzJ x y z xz yz

, T* = T* = T* = 0, 6 1 = e ,xy xz yz 3 x x
= -Y T 1 — -T yz yz’ xy xy’

V  Tk z ’ V  ‘ ~^'xy ‘

V  < - V !
If G is an even function with respect to T and r that is ifxz yz

G[(-rxz), <-ry2>] - G(rx2, Tyz), then

G « -G = 0 = T and therefore x, y, and xy J 9
z are directions of principal strain rates coinciding with directions of 

principal stresses. Since most stress-strain relationships involve shear

r' =xy = G(a' , o’ , o' x y z» T ' T 'xy * xz

where a' «X ct , ct" = x y >y ct' = ctZ X
g ' =y e ey> 1 = e , r' z z xz = ”rxz’ r

Hence r =xy G(a , a , v x 5 y V £ , € j ( x y’
= - G[ct , a , x y ’ CTz» € j e >* x ’ y*



strain rates as a function of stress only as is the case of plastic 

potential, the restriction that G be even is usually satisfied. •

Basic Equations -

The equilibrium equations ;

Sa S t .
T (5)

da St___X + — 22 =Sx Sy

St^ Sa
I + — 2 -”Sx Sy

for plane strain, and

T T
Sx 3 y

St Sa a —  an 
2SX + ^-2 + - X ™ _ L  = o ox oy y

(6)

for axial symmetry, together with the steady flow condition (1), and 

appropriate boundary conditions are sufficient to define a stress solution. 

The x, y coordinates are shown in Figure 6 , where gravity acts in the 

positive x~direction„ The axis of symmetry coincides with the x-£.xis 

These equations can be combined with the aid of Mohr circle geometry to

(1 + sin 5 cos 2co) ^  + sin 5 sin 2co ^  - 2a sin & sin 2cd ^  +ox oy ox
■ Sco o •+ 2a sin 8 cos = T ~ m — sin 5 sin 2CD . .oy 7 (7)

sin & sin 2co ^  + (I - sin & cos 2<& ) ^  + 2a sin 5 cos 2 + ox " oy ox

' 1 + 2a sin 5 sin 2<u ~  = m “ sin 8 ( 1 + cos 2cd) .oy y

where a = ———j— ■ = — m = 0 for plane strain and m = 1 for axial

- 8 -



(8)

symmetry [5].

Equations (3) and. (4) describing continuity with no density change 

and isotropy, respectively, are sufficient to define the velocity field 

in plane strain and in axial symmetry. In accordance with Figure 4, 

u and v are velocity components in the x and y directions and by defini­

tion, taking contracting strain rates as positive,

du c)v , c)v . Su
€x dx3 ey ciy’ an ^xy dx ^ by'

‘yIn plane strain e z - 0 while in axial symmetry e^= - ~ for symmetry 

conditions, where cx is the circumferential coordinate. With these 

definitions, equations (3) and (4) become, respectively,

|s + + m 2  . 0dx dy y

Su , Sv
dv Sx tan 2to = d̂u dv
dx oy

These equations with well posed boundary conditions on the velocity can 

be solved provided CD is known. Since co is determined by the stress 

field, this condition ties the velocity and stress fields together, 

however, the velocity field is not dependent upon the magnitude of stress

o and the stress boundary conditions do not determine the velocity boundary 

conditions. Hence, it is not uncommon for the stress field to be symmetric 

while the velocity field is nonsymmetric.

It is of interest to note that the plastic potential or normality 

does not influence the basic equations in any way. The discussion of 

normality was simply to show that the conditions of steady flow do not 

violate this principle.



• Physical Limitations of Steady Gravity Flow ;;

The requirement of steady gravity flow imposes certain restrictions 

on the stress and velocity field that are not inherent in the equations. 

These are: •' ... ... : . ,... ... ■ ..... ;., .

1. Due to the nature of the EYL, stress must always be compressive.

2. Since gravity is the only outside force acting on the solid 

there should be no upward component of velocity, (i.e., u 0) .

. 3. Assuming density to be a function of pressure it follows that 

discontinuities in pressure imply discontinuities in density.

If the solid were to flow from one stress (and density) region 

. to another an infinite acceleration would have to occur. Since

this is physically impossible stress discontinuities in steady 

flow can only occur along streamlines. Since discontinuities 

r usually start at some streamline boundary and continue away

from the boundary, stress discontinuities seldom occur in the 

interior of the field. . : •

4. Singular points of stress, that is multiple values of a and CD 

at a single point are physically impossible because multiple

a values would imply multiple density values at the same point. 

However, in the case where a = 0 multiple values of co are

• permitted.

5. Accelerations of individual particles must be finite. This
•- i i ,

means that a particle cannot flow across a velocity discontin­

uity, '

- 10-



Boundary Conditions for Gravity Flow

Figures 6 and 7 illustrate the most common boundary conditions 

occurring in gravity flow. In Figure 6 the bulk solid flows along a 

rigid side wall such as a steel plate while in Figure 7 the solid flows 

along itself. One can also visualize combinations of these conditions. 

The top boundary of the bulk solid is assumed traction-free. If in 

addition to being traction-free the surface also satisfies the EYL 

condition for steady flow, the stress state of the surface is defined by 

point 0 in Figure 1 and is therefore, stress-free.

The Mohr circle for this condition degenerates to a point a = t = 0, 

however, the direction of principal stress co can be determined as a 

function of the angle of inclination e of the stress -free boundary,

Figure 6 . This is accomplished by observing that the directional 

derivation of a

da = ~~ dx + dy dx oy
dxalong —  = - tan e is zero. This condition together with equations (7) 

for a = 0 can be solved for e and u> giving•S
o • /<•> \ sin eSin (2o) - e) - - s i n g>

the pertinent root of which is

2oo = e + sin  ̂S,'j'n ^ + n. (9)s s m  6

The subscript s indicates the values along a stress-free boundary.

It should be noted here that for a = 0 all terms in equations (7)

involving m disappear; hence equation (9) applies for both axial symmetry

and plane strain.

- 11-



When the solid flows on rigid side walls the normal and shear stresses 

along the wall are found experimentally to lie approximately on a straight 

line as shown in Figure I by the 'wall yield locus', WYL. The angle ft is 

said to be the angle of friction between the rigid wall and the solid under 

steady flow. The angle between the direction of the major principal 

stress and the slope of the wall, is called v' . From the geometry of 

Figure 1 one obtains the relation . . . ; ; ...

■ : r. ■ ; ... 5..;. ..,. . . i, „ , . sin $  . '/
sxn 5 .

the pertinent root of which is | -

• ' '  ■ ' 2v' = Jt -  sin"^ (1 0 )■ ■ . s m  o • ■

Thus vr is a function of the solid property 5 and the angle of friction 

between the solid and the wall ft . Figure 6 shows angle ©' defined in 

such a way that = tan (-6') is the equation of the right side wall

where 6' = v ‘ - cjd1, • V ;*• . -s ... ' (10a)

. At the point of intersection of a stress-free boundary and a rigid 

side wall (e.g., point F in Figure 6), the direction of the principal 

stress is defined by the wall and does not coincide with the direction 

defined by the stress-free boundary unless

co1 = v' - O' = 03 = ^[e + sin  ̂ e + it] .s sin

In other words the relation (

, . -I sin e ,, . - 1 sin fte + s m  - - p - s m  ■— £ - 28sin o s m  o

must be satisfied between e, ft, 9' and S. In the case when 0)' >

(as illustrated in the upper Figure 8), the direction of the principal

-12



stress can be rotated from to cd' without causing a stress discontinuity 

in the interior of the material. The singularity of cu at P is admissible 

since a - 0 and therefore no singularity in a occurs. Such a stress 

condition is referred to as a centered fan in [6]. For the case of a)' < cjds
illustrated in the lower Figure 8, a discontinuity in stress is required.

As was previously stated in the limitations of steady flow, a discontin­

uity must coincide with a streamline. In this case the streamline at 

point P would coincide with the wall, the discontinuity would be in 

the interior of the solid, therefore, this condition is not acceptable.

The solid near point P would not deform but would remain rigid 

(or elastic), it would either flow or remain in place. In this case 

the top boundary would, be traction* free, but the stresses would not be 

those defined by the effective yield condition. It should be noted here 

that the condition a>s < co' is only a necessary condition and not sufficient 

to guarantee deformations at point P. The complete boundary condition is 

the determining factor not one point alone.

When the solid flows on itself there no longer exists a frictional 

surface as with a rigid side wall where the material flows along the 

specified shape of the wall. In flowing along itself the solid is quite 

free to choose its own flow pattern dependent on the top boundary condi­

tions. The normal stress and the shear stress along such a side boundary 

must satisfy the slip-line condition for the solid, point E, Figure 1.

The wall is then defined by = tan [cd - (~ - -̂ )] where i> is the angle 

of internal friction at point E. This angle is found experimentally to 

be bounded by

6 > (5 > 0

- 13-



Since this wall has the greatest frictional value of all the walls, it 

will be referred to as a 'rough wall1, while walls made of extraneous 

materials will be referred to as 'weak walls',,



CHAPTER II

SOLUTION BY METHOD OF CHARACTERISTICS

In this chapter the characteristic equations of the stress anA 
velocity solutions are introduced and their properties* as they 
relate to the flow of bulk solids are discussed. The numerical 
solution of the stress and velocity fields by the method of character­
istics using a high speed digital computer is given in detail.

Equations of the Characteristics
Equations (7) and (8) can be expressed as the matric equation

A U + B U + d = 0x y

where A and B are n x n matrices,

u =
SU j
5x , u =X
d Un
ax

y

and d is a n x 1 matrix. If the system is subjected to a non­
singular linear transformation T such that T A = C T B where C 
is diagonal [7], the system reduces t o T A U ^ + T B U  + T d  = 0
or C A* U + A* U + d* = 0 where A* = T‘ B and d* = T d. A singlex y &
equation of the system is of the form

a*Kl (CK U"1 + U1) + d*K = 0x y 1=1

K thwhere C is the K diagonal element of C. Now consider the direction



where du is the directional derivitive of u in the direction
. i s  = CKdy * ‘

ttlThis direction is called the K characteristic direction and

dx _ pK 
d ? - c

„this the equation of the K characteristic,, It is evident from this 
that the characteristic directionshave the property that the partial 
derivatives of the dependent variables become total directional 
derivatives in these directions. This property makes the character­
istics important in solving a problem numerically. A necessary 
condition for I A - C I B is that the diagonal elements of C be 
solutions of jA - X b J = 0„ For hyperbolic type equations the X's 
will be real and distinct so that the above interpretation of them 
is always possible. •

In the particular case of equations

A = 1 0 
Tan 2,ty -1

IJ

0 1 
-1 Tan 2\|r U =x

m v
dy y= dv d =
dy 0

du
dx
sE
dx

and the characteristic directions are

In these directions equations (8) become
' m v
- ■’ ■ dx vdu + dv ~  -dy Cos 2co dx = 0

These equations can be expressed in the cannonical form

dj = dx Tan fco + ^
dp de ian { 4 (a)

16



m v
^  + f| Tan (* + |) + - 2 - _ _  . || = 0 (b)

( 11)

^  Tan (cn - |) (c) 

m v
Su , dv ™ it, y chi „ , .T - + T" Tan (co - — ) - — 1— — - = 0 (d)o t  d«* 4 cos 2cd S'* v '

where c* and 0 are functions of x and y such that o< is constant along 
the first characteristic

S  - T“  (“ + !>

and 0 is constant along the second characteristic

S  ■ Tan <“  - f>-

The cannonical equations for the stress equations (7) can be 
derived in a similar way and are

! f +  2, t a  8 §j»- a | f

(12)

Tan (to - M )

- X  S in (cu  + (J..) + Cos 0) Cos u „+ ---------- " m _— -------- ----—  — tL a tan §
Cos 5 Cos(co -  [ i )  y  Co s ( cd -  p,.)

- 17-



1

and o< is constant along the first characteristic and 0 is constant 
along the second characteristic. .

The velocities determined from equations (11) are unique to 
an arbitrary multiplicative constant. The stress solution can also 
be found in terms of an arbitrary constant length S by defining 
new variables: x ! = x/£ , y ’ = y/j? , and a' = a/yX • Equations (12) 
in terms of these new variables are the same as shown except T = 1 
in a and b. In plotting these non-dimensional variables no scale 
is shown. The reader may assume any scale as long as the dimensions 
o f a n d  y are compatible. These new variables will be used throughout 
the remainder of the paper. ’ . • •

In the xy plane the stress characteristics are at angles - p, 
from the direction of major principal, stress while the velocity 
characteristics are at * ir/4 as shown in Figure 5. The stress and 
velocity characteristics do not coincide except for the case of 
6 = 0 .  Figure 9 shows the shape of the characteristics in a typical 
symmetric converging channel. Because of this physical interpretation 
of characteristics and their role in defining the regions of unique 
solutions, the types of boundary problems as applied to gravity 
flow of bulk solids will now be reviewed.

Boundary Problems - ..
The first type of a well posed boundary problem, or Cauchy 

problem [8], is when/ sufficient conditions are imposed on a line 
that at no point coincides in direction with a characteristic.
Figure 10 shows such a line AB. The region in which a unique solution 
is defined is the curvilinear rectangle ACBD formed by the character­
istics through the end points of AB. In all of the figures the first 
characteristics will be represented by a long and short dashed line 
and the second characteristics by a dashed line. The most common 
problem of this type occurring in gravity flow is that of a stress 
free surface as illustrated by AB in Figure 13. This boundary is 
nowhere characteristic, (provided |e| <5), and the two dependent 
variables a and oo are determined by the shape of AB. The region of

- 18-



unique solution for the stress field is the triangle ABC. For this 
boundary to be a Gauchy problem in a velocity field the velocity 
would have to be given along AB.and, after the stress field had 
been calculated the unique solution for this boundary would be in 
a corresponding triangle formed by the velocity characteristics.

Another type of well posed boundary problem, is when only part pf 
the unknowns are specified along two intersecting lines. (This 
is often referred to as a mixed boundary value problem.,) One common 
occurrence of this problem is when one of the lines is a given 
characteristic and the other is non-characteristic with one of the 
dependent variables given along it. Figure 11a shows the region 
ABCD in which a unique solution is determined if the given character­
istic is long in relation to the given non-characteristic line.
Figure lib shows the region ABC defined when the. non~characteristic 
line is long.

An example of this problem, illustrated in Figure 13, is the 
stress characteristic BC previously calculated and the rigid side 
wall BF along which a)' = 0' - v '  where v’is given by equation (10). 
The region determined is BCD. A similar situation in the velocity 
field occurs when a velocity characteristic is determined by a 
Cauchy problem along AB and the wall BF is a streamline, that is

v =-Tan 0'.u
In a symmetric channel the centerline condition co = Jt/2.with th< 
characteristic AC serve to define a well posed problem for the 
stress field.

A third type of problem is when two lines}both characteristic, 
are given. (This is referred to as a Goursat problem in [8].)
As shown in Figure 12 the region of solution is the curvilinear 
rectangle ABCD, This problem is illustrated in Figure 13 by the 
characteristics EC and DC determined from previous calculations.
The region of solution is CDHE„ By repeated application of the 
last two boundary problems discussed, the calculation can be com­
pleted to the first characteristic GF, Figure 13, where F is the



last point given on the wall. It should be noted that a character­
istic with dependent and independent variables given along a segment 
of it does not define uniquely a region of solution. . /

" > Properties of Stress and Velocity Solutions ....
' Without actually solving the. equations, one can draw some 
general conclusions about the solutions in certain regions or 
along certain lines. In this section some of these conclusions 
will be discussed.

Consider a solution of a system of hyperbolic, type equations, 
such as equation (7) or (8), given in region R, Figure 14. The 
solution defined by a well posed boundary value problem with 
boundaries in R and boundary values in accordance with the given 
solution is equal to the given solution at every point common to 
R and to the region of unique solution of the boundary problem.
This follows directly from the uniqueness of solution of a well 
posed problem. In particular, if a non-characteristic line AB 
has assigned dependent variables along it in accord with the given 
solution in R, the Cauchy problem thus described will yield the 
given solution in region ACBD„ Similarly the given solution would 
be determined in region ACBD by the problem defined by having both 
dependent variables given along characteristic AC and any one 
dependent variable given along AB in accord with the. given solution. 
The solution of a boundary value problem is continuously dependent 
on the initial data [8]. Hence, if the dependent variables assigned 
in the problems described above closely approximate the given 
solution, the solution defined by such boundary values will approxi­
mate the original solution in region AjCBD.

These properties of hyperbolic systems yield some interesting 
results when applied to equations (7) and (8). The condition 
u = c, v = ( 1 - m)d where c and d are constants, is a solution to 
equations (8). Hence, if condition u = c, v = 0 is assigned along 
the non-characteristic top boundary AD of Figure 1.5, the resulting 
Cauchy problem enforces this solution in ABC. The problem formed



by the characteristic AC and the centerline condition v = 0, 
compatible with the described solution, enforces this solution in 
ACD. If the weak wall BE is vertical, thus causing v = 0 along it, 
the wall, together with BD, enforces this solution in region BDE.
The constant solution, continues down to a first characteristic FG 
where F is the lowest point at which the wall is vertical.

Suppose velocity was not assigned along AB but it was observed 
that u = c along the portion of the vertical wall BE. This would 
enforce the solution u = c, v = 0 in region ABFG. The conclusion 
from this is that if the velocity along a sufficient portion of 
a vertical weak wall is observed constant, the velocity field must 
be constant down to the point at which the wall no longer is vertical. 
The length of the observed portion must be such that the unique field 
determined by it includes at least one point along the centerline.
If u is approximately constant along such a section, then the field 
determined would approximate u = c, v = 0.

The solution, of equation (7) for = it/2, a - a{x)is

da _ T 
dx ■; sin & 

or
a - a - r . Cx ' xo>- o 1 - sxn o

An example of a boundary defining such a field is the horizontal 
stress-free boundary shown in Figure 16. Since 6 = 0  equation (9)

/ Yvimplies co - n/2 while a - 0 along x = 0; hence, a = —---- :— -5 ’ * 1 - sin &
in region ABG. If the x axis is the centerline, thus enforcing 
o> = rt/2 along it, then this solution also occurs in the region ACD.

Properties of Characteristics
Consider a first stress characteristic given by y — f(x), then 
Tan 

equation
y '  - Tan (cd + (i) or (fi = Tan  ̂y ! - p. = to(x) . The characteristic

”  + 2a Tan S ~  = a (go) dx dx
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i ' : - _ ' ' ■ 
reduces to the form -\

r , 4 s + Of F (x) = G (x)' ' dx

where :
F (x) = 2 Tan cd —  ^  . -. ■ _• - : - . . • ■ : ■ dx ■ ■

and
; > . G (x) = a ̂  cd (x)J .

This can be integrated to give a as a function of x to within an 
arbitrary constant. A similar equation can be derived for a given 
second characteristic.

In the velocity field, if a first velocity characteristic is 
given as y = f (x) , then co = cd(x ) , and if a relation between u and 
v, u = u(v) , is given along the characteristic, then equation (16) 
becomes

- - v ■- ' m v "■ ■ ' .
d u M  + dv + — 1----_.= Q •
dx dx cos 2 cd •

which can be solved for v - v(x) along the characteristic.
This illustrates the property of the. characteristics that if 

one dependent variable is given along a characteristic, the other 
may be calculated to within an arbitrary constant. This constant 
is usually determined by some physical boundary condition. Thus 
if in a symmetric channel such as is shown in Figure 13, the shape 
of the characteristic AD was given as cd = cd(x) and a at point A was 
given as a = 0, then a would be determined along characteristic AD. 
Since AG is the centerline along which cd = Jt/2, then AG, AD, and 
the wall conditions of DF would be sufficient to determine a unique 
solution in region ADFG.

The velocity characteristic equations (lib) and (lid) can be
\

rewritten in terms of components of velocity and along the 
first and second characteristics respectively [5]. The equations 
resulting from the transformation of

u = - sin (cd - -|) + V2 sin (cd + ^)
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V = COS (to - cos (cd +

are

- 5 i + V 2 f + 2 5 ‘VX + V 2 tan(“ - ! ) > | - °

I r  -  ¥ 1 t i  +  %  t -  V 1 t a n  ( “  +  f >  +  V  ^  -  0

where and are velocity components in the direction of the first 
and second characteristics respectively. Two properties of velocity 
characteristics can be readily seen with the equations in this form:
First, if the velocity characteristic is also a streamline (i.e.,

= 0 for the first characteristic and = 0 for the second), then 
the velocity component in the direction of the characteristic is

= Ay and = By m‘ ̂  for the first and second characteristics 
respectively. Second, if the characteristic is straight (i.e., d 
dco = 0), the velocity in the direction of the characteristic is 
constant in plane strain.

In the section on boundary problems, it was pointed out that a 
characteristic with dependent and independent variables completely 
given along it does not uniquely determine a solution in a region.
However, any non-characteristic line with all variables given along 
it does define a region of unique solution since it forms a Cauchy 
problem. With this in mind, consider the right black drawn line in the 
photograph of Figure 49. In this picture the upper right side region 
was observed to move with a uniform velocity in the direction of the wall. 
Along the black line, the velocity changes magnitude and direction as is 
shown by the break in the white lines. Material is flowing through the 
black line and, therefore, it cannot be a velocity discontinuity because, 
if it were, the particles crossing DE would have to undergo an infinite 
acceleration which is physically impossible. The only alternative is for 
velocity along the black line to have the same value as in the upper side 
region. The break in the white lines is caused by a rapid change in 
velocity that starts at the black line and continues over a short but 
definite width.
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Lines along which rapid changes in velocity occur must be 
velocity characteristics. This is easily shown by assuming that such 
a line is not a velocity characteristic. Since velocity is given along 
it, a region of similar velocity would be determined in the region of 
unique solution of the Cauchy problem; hence, no rapid change could 
occur along it. In the particular case of plane strain, if velocity
along such a line is constant, the Cauchy problem defines a constant 
velocity in its region of definition, However, if AB is a character­
istic, no unique field is determined and an additional boundary 
condition may be assigned to give the observed rapid change in velocity.

The proof is now complete that rapid changes in velocity may occur 
only along velocity characteristics. However, one. should note that 
discontinuities in velocities, which are characterized by absence 
of flow across them, need not be velocity characteristics, but the 
direction of principal stress is governed by the frictional conditions 
between the two solids on either side of the discontinuity. In the 
case of flow of the solid on itself, such a discontinuity would have 
full friction developed between the flowing and the non-flowing solid, 
and would, therefore, be a slipline.

This property of rapid changes occurring along characteristics 
is not unique to the velocity field. In Figure. 43 one observes 
that the oscillations in a values are reflected along stress character­
istics. For example, the peak a value at point A on the centerline 
is reflected along the second characteristic AB to a peak value at 
point B at the wall, and this maximum in a is reflected from point C 
at the wall to point D at the centerline along the first character­
istic CD.

The First Basic Type of Numerical Calculation
The numerical solution by the method of characteristics consists 

of replacing the differential equations of the characteristics by 
finite difference equations and then calculating along the character­
istics .
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The calculation proceeds from a known point on a characteristic 
to an unknown point on the same characteristic. Let the known values 
be denoted, with a subscript 1 and 2 for a calculation along a first 
and second characteristic, respectively. Let the unknown values be 
denoted by the subscript p. With this notation, the characteristic 
equations for stress can be written in finite difference form

y “ y
- 1 _ = Tan (CD + n) (a)
X,— " Ap

(a - a ) + 2o(cd - cd ) Tan 5 = a (x_ - x ) (b)i p  i p  i i p

for the first characteristic, and

(13)

y2 " y
-----—  = Tan (cd - (i) (a)
2 ' XP

(14)

(,o ~ o ) " 2 a (cd - cd ) Tan 5 = b ( x„ - x ) (b)/ p Z p / Z p

for the second characteristic, where a and b are defined in 
equations (12). For the velocity equations (11), the finite difference 
form is

V1 ” Vp + m ---—— -—  = 0 (b)x- - x ---- -— v y cos 2 CD xi p x, - x1 P
for the first characteristic and

y? - ir— ---P = Tan (cd - — ) (a)x0 - x 42 P

(15)
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- m ---- 2L _  = o (b) (16)y cos 2 o)F
for the second characteristic.

In these finite difference equations, the dependent variables
05, a, u, and v occur other than as differences. The mean value 
theorem of calculus states that if - f(x), then

y-i - '■ r ... -i— P = f(X)
X1 " XP •

where X is a point in the interval from point 1 to p, In particular,
if the curve connecting 1 and p is an arc of a circle, then X is
the midpoint between points 1 and p. With this motivation it
appears that the accuracy of the finite difference calculation
can be improved by evaluating the dependent variables not occurring
in differences at the midpoints of the interval rather than at the
ends of the interval. For the first stress characteristic this means
. 03 + 0) a + a . ..I p ,  I P. o) = „ r and a = — ——— — .

In calculating from the boundary conditions previously discussed 
two basic types of calculations will suffice to determine the 
solution. When the dependent variables are known at two adjacent 
points not on the same characteristic, they can be computed at a 
third point lying at the intersection of characteristics through 
the given points. This type of calculation is the only one used in 
calculating a Cauchy problem. Figure 17 shows an example of this 
situation where 1. and 2 are the given points and p is at the inter­
section of the first characteristic through 1 and the second character­
istic through 2 . '

Using average o) and a values, equations (13a) and (14a) are 
combined to give
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60 + 0 0  CO +  CO

x:i Tan H — — ■- + u) “ x2 Tan " - m) + Y2 - yl
X D 0) +  CD, CD +  CD„

Tan C P 2 .1 + m> - Tan (~2~~ 2- - M-)

CD +  CD^

yP ’ (xP ' xi) Tan + “) + yr  (is)

Equations (13b) and (14b) are combined to give

F + A
co = G + B P

F = b„ (x0 = x )(cd Tan & - 1) + a1 (x., - x ) (co Tan S + 1)
Z Z p i  i , L p Z

+ (a - o ') (co - co )(co - co ) Tan2 5
1 Z Z p i  p

A = (c^ + cr2)(co1 + co2) Tan 6 + a -  a2

G - Tan 6  f a  (*j - Xp ) +  b 2  - y j

B = 2 Tan 5 (o.̂  + a^)

a.̂  (x.̂  - x ) + a [l - (cô  - co ) Tan 6j|
a = ---------— — ------------ ----- E__------
p 1 + (co., - co ) Tan 5

1 P

w h e r e

CO +  CD CO +  CO

- sin ( -P —  - n) cos (r^— Z---) cos \i
a = ---- ------— .—  ... . ------- + m —------ ---------—----- 2a, Tan 6

1 „ co + co_ p + c o ,  1cos 5 cos (_^___1 + ^  y1 cos (.__E____ 1 + ^

CO +  CO CO +  CO

sin (—P- „--- + |i) cos ( ~P ■ ---) cos |j.
b = ------ -— --- —— —  „ m ---- -— —---- --------  2 a. Tan 62 co + cô  co + <r>2 2

cos & cos (-P 2— — - |i) y2 cos (~E~^  - n)
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These four independent equations are solved for the four unknown
values x , y , co , and a at point C. An initial guess for 0) is P P P P P
made; then from equation (17) an approximate x^ is found. Using
this x and cd in the right hand side of equation (19), a refined P P
co is found. A refined x is now calculated using this new CD in P P P
equation (17). Using this x and cd equation (19) yields an evenP Pgreater refined cô . This process can be iterated until consecutively
calculated values of cd agree to a specified accuracy. With the
final x and cd one can now use equations (18) and ( 20) to find y P P P
and cJp, and the calculation is complete. The thought pattern or
flow chart for this procedure is given in Figure 18.

One problem encountered in using this first basic calculation
in the stress field is the convergence of the iteration at certain
points near a stress-free boundary. At these points the successively
calculated points would oscillate about the true value with increasing

thamplitude. In order to avoid this, the value of x used as the n 
approximation was taken as

x + x , n n- 1  ------- ------ .

In this manner convergence of the iterative scheme was achieved 
everywhere.

The first type of calculation for the velocity equations proceeds 
in somewhat of a different manner since cjd̂  is given by the stress field. 
Equations (15a) and (16a) can be combined to

CD +  CD CD +  CD

xi Tan(— r 1  + 4> - x 2 Tan <— r -* - + y 2 - *i ....x -------------------- T------------------- T -----------------  (2 1)
p CD, + CD CD, + CD

Tan ( - 1 2 P + |) - Tan (-^ ■ P - |)

CD +  CD

yp = y 1 + (xp - Xx) Tan (-------+ . (22)

Since cd is a known function of x and y an initial guess of cd̂  is
made. Then x and y are calculated from equations (21) and (22).P P
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With these, a new oo is calculated from the given function (jo(xy) . 
This process is iterated until consecutive values of £J0̂  agree to 
within a prescribed limit. Equations (15b) and (16b) combine to

Yi - yp y 2 ~ yp
ui " u2 + v i " v 2 7 7 ^ - f  v = __-------- _ 1 ----2------- 2_ £ _

p y2_1Z2 + _  m , [(yi - y ) + (y2 - y )]
(23)

x, - x x_ - x y cos 2 cu 1 P 2 p ' p
P .1

v - v v (24)
u = u „ (y - y )(— — ---E + m--B)p 1 •'l Jp x.. - x yI P 7P

and with proper values of x , y , and co calculated as above, uP P P P
and v can be found. The flow chart for this procedure is given P
in Figure 19.

A major problem in using this velocity calculation is in 
determining co(xsy) from the stress field calculations. Since the 
velocity and stress characteristics do not coincide, the point of 
calculation in the velocity field will not be the same as in the stress 
field. It is, therefore, necessary to interpolate values of 0) as 
calculated from the stress field. At first it was felt that a high 
order polynomial could be fitted thoughout the. entire field by a 
least squares method. This proved to be very inaccurate. After having 
the same problem of inaccuracy after dividing the field into several 
small regions, it was concluded that the best method would be linear 
interpolation between the closest points to the point in question.
This method required the storage of all the calculated stress points 
as well as a great deal of time for the computer to search out the 
closest of these points to the point in question. The limited capacity 
of the computer, therefore, eliminated the possibility of velocity 
calculation except for radial stress in which case a) is a function 
of one variable only and interpolation is feasible.
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.■ The Second Basic Numerical Calculation
In calculating a mixed boundary value problem the situation 

arises as illustrated in Figure 20 where the dependent variables 
are given at points along the characteristic 0A and relationships 
between them are given along an intersection line 0B„ In calculating 
a point p on OB near 0, the calculation proceeds from a given point
2 on 0A, along the segment of characteristic 2p„ The calculation 
is carried out by the use of the finite difference equations of the 
characteristic from 2 to p and the given information at p.

In particular consider the case for the stress field when OB 
is a straight rigid side wall with, angle of friction <j/>' „ Then cd̂  
is determined from equation (10a) when the slope of the wall is 
given. If 2p is a second characteristic, the relations

as the equation of the line OB, where cd is given, are combined to

(25)

(a -- a ) ~ (a + <j ) Tan B (cd - cd ) = b0 fx„ - x ) (2,6) P P P / z p
from the characteristic equations and

y = A x + B ‘ P P (27)

P

2
CD„ +  CD

p.) ~B
Xp

2
Equation (26) then yields

aP 1 - Tan 5 (cd. - cd ) 
L pP

and point p is completely determined.



At the centerline of the channel a similar calculation is 
encountered along a first characteristic. The centerline condition 
is expressed by cd̂  = it/ 2  and y^ = 0 which can be combined with 
equations (13) to give x^ and a at the centerline in terms of the 
variables at the neighboring point 1. It should be noted here that 
the axial symmetry term in the expression for a^ is not determined 
at the centerline and is, therefore, approximated by its value at 
point 1 .

In a more general case of this type of calculation when the 
line is not straight but given by x = f(y) and cd = co(y) the solution 
of point p may be more complicated and an approximate iterative 
method may be needed. As an illustration of this, consider a weak 
wall given by

x = f(y) (28)
The direction of principal stress is found from equation (10a) to 
be

c d = - 0 - v = -  cot  ̂ f'(y) - v. (29)

If2p is a second characteristic, then equations (25) and (26) apply 
and equation (25) can be expressed as

CD + co
yp = - [x2 _ f(y )J Tan (-- -— 2 - \i) + y2 . (30)

The iterative scheme is shown in the flow chart Figure 21 and 
consists of making an initial approximation for y , calculating 
Xp and cd from equations (28) and (29), then using these values 
in equation (30) to calculate a new y . This process is then 
iterated until consecutive y values agree to within a specified 
accuracy. One must use this procedure cautiously, however, since 
it may diverge instead of converge, depending on f(y) and the 
closeness of the initial y^ approximation to the actual y .

The second type calculation in the velocity field usually 
occurs when the direction of the velocity vector is given along 
some line like the wall of a channel or a centerline. In such a
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case the calculation of x and y is essentially the same as for
P P 'the stress field except [i is replaced by it/4. The. variables

and v can usually be calculated directly when x and y are known.P ' P P
For example, consider the situation shown in Figure 20 when the line
x = f(y) is the wall of the channel so that —  = f’(y) alone tbev
w^ll. Gonsider 2p as a second velocity characteristic. Then x 
and y^ are determined as for the stress field. Equation (16b) 
applies from 2 to p. When this is combined with

u_E,

one obtains

v

-c. = f 1 (y )
V p

U2 + V2.

f 1 (y ) + 1 + m
p (y9 + y ) Cos (cd + co ) ,i i  p p i

• i ■ ' '
u = v f1 (y ') . .

. . . . . .  P P P" : . . .  ■ .

The condition for the second type calculation along the center­
line is even simpler because v^ = 0. After calculating x^ and 
y^ in the same way as in the stress calculation except is replaced 
by Jt/4, ^  can be calculated directly from equation (15b) for v = 0.

The examples discussed, in connection with this type of boundary 
are certainly not the only possibilities. However, these will serve 
as a basis fpr dealing with others.

Combining Calculations Into a Complete Solution \
So far only the calculation of individual points has been 

discussed. In order to calculate a stress or velocity field, literally 
thousands of these calculations must be performed. When one considers 
the time required to calculate just one point, especially with the 
iteration involved in some of the calculations , the necessity of 
the use of the high speed digital computer becomes evident. To make



the computer program flexible enough so that any type of boundary 
problem could be solved, separate programs for each type of basic 
calculation were written. These programs for the Burroughs 205 
computer are found in the appendix along with instructions on how 
to use them. They were written in such a way that all the required 
data for a calculation is assumed stored in place before the program 
is started. The calculated values are stored in certain locations 
and then the program stops. In order to be useful, these basic cal­
culation programs must be manipulated and entered by a master cor­
relation program which, in general, will differ with different type 
boundary problems. To illustrate this9 the example given in Figure
13 is considered. Figure 22 shows this same example to a larger 
scale. The given boundary AB is divided into several segments by 
an arbitrary number of points. For illustrative purposes three 
points are used here. However, in practice many more would probably 
be used because the accuracy of the calculation is a function 
of the length of the divisions.

The order in which the calculations are performed is somewhat 
arbitrary. The order presented here was found to be useful for 
automatic high speed calculation. Points 33 and 22 are used in 
the first basic calculation to find point 32. Point 32 is then 
used in a second type of calculation with the centerline to determine 
point 42. Again using the first type of calculation, points 22 and
11 determine 21, 21 and 32 determine 31, and 42 and 31 determine 41.
The point 41 is then used in a second type calculation to find 51.
Point 21 is used in a second type calculation with the wall to find 
point 20. Points 20 and 31 are used to calculate 30. The calculation 
proceeds as above until point 60 is calculated. The pattern is now 
established. The first, characteristic is calculated point by point 
from its uppermost point to its last. Each time the characteristic 
is started with a second type calculation to the wall and is ended with 
a second type calculation to the centerline with all intermediate 
calculations of the first type. It is seen that this scheme can be
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continued as far as the wall conditions are defined. The flow chart 
describing this procedure is found in Figure 23. The programs for 
the Burroughs 205 Computer are found in the appendix.

One of the major problems with this numerical calculation along 
characteristics is the spacing of the points. One can not rely 
on a uniform spacing of the original data points to give uniform 
spacing to further calculations. In fact, the characteristics 
usually have the tendency to become closer together in some places 
and farther apart in others. When the characteristics become closer, 
or bunch up, the efficiency of the calculation is greatly reduced 
because the same accuracy could be achieved with less points calculated 
Even more important, the characteristics may become so close together, 
or the mesh of characteristics may become so elongated in one direction 
that the errors of calculation cause characteristics of the same 
family to appear to cross. This crossing if it were to occur 
legitimately would imply a discontinuity of some sort [9], however, 
if it is due merely to improper spacing of the points, it simply 
invalidates the calculation from that point on. To eliminate this 
problem, the spacing of the points along the wall was kept constant.
If one reviews the proceeding paragraph on the combined calculation 
it is evident that,, in general, the spacing of points along the wall 
is determined by the initial data spacing, but is unpredictable. In 
order to achieve the desired uniform spacing along the wall, the 
points determined by the initial data were used to interpolate 
points of uniform spacing along the wall. By controlling the 
spacing, any irregularities introduced by the original spacing 
can be controlled and eliminated in subsequent calculation. If 
with this controlled spacing( crossing of characteristics of the same 
family still occurs, then chances are good that there is an actual 
discontinuity in the neighborhood of the crossing. ... .

The procedure that will now be discussed is built into the 
second type wall calculations, A typical calculation situation is 
shown in Figure 24. The spacing is controlled by a constant vertical 
distance Ax between points along the wall. The second type
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calculation is employed from point 12 to the wall, point 22.
If |xn  - x22\ ^ ’ as case illustratedj the second type
calculation is repeated for point 13 to the wall and again |x;q " x £2 

is checked to see if it is greater than Ax. If it is not, the 
process is repeated until a point along the first characteristic 
is found such that the difference between x ^  and the x of calculated 
point is greater than Ax. In the example point 23 satisfies this 
condition. Values at point p are then calculated by linearly 
interpolating between points 11 and 23. In the case of a straight 
wall with constant frictional condition, one has

This control was used in most of the examples of calculated fields 
shown in this paper and was found to be very satisfactory.

x = x„„ + Ax , y = Ax Tan 0 ~ y ^  ,

c t .
11

c t ,23CO = CD , CT = Ax P 11 P X
11 23



' CHAPTER, H I  " ’ •

THE RADIAL STRESS SOLUTION

In this chapter a particular stress solution will be discussed:
. the direction of principal stress is radially symmetric about an 
origin,, This condition is compatible with the direction of the 
velocity vector being radial, but is also admissible to other velocity 

, fieldso The numerical solution of this stress field is discussed 
and the solutions are given, for a range of parameters for symmetric 
channels in plane strain and axial symmetry. Solutions are also 
given for a limited number of non-symmetric channels in plane strain.
The last three sections of this chapter show by calculation from 
general boundary conditions and by experimental observations that radial 
stress occurs, or at least is closely approached in all regions, where 
the side wall conditions in symmetric channels are compatible with it. 
Thus, this stresf field seems to be very basic to the flow of bulk 
solids in axial symmetry and plane strain.

Equations for,Radial Stress and Velocity
Equations (7) written in plane polar co-ordinates with the changes 

of variables

With the assumption ^(0) it can be shown that s = s(0) which is 
by definition radial stress [5j^ page .59, and f, g, h, and j evaluate 
at

a = T r s(0 ,r) 
CD = \jr + 0

are +  s ffr.0 ) +  e-fr.0 ) — 0
(31)

+ m (I + sin. 5) [sin 2\|r - cot 0(1 + cos 2\j0 ]
cos 6
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g(0) - - “§i~  sin(0 + 2t)
cos S cos 5

h(0) = 1 + 2(-^ + l)-in ^ (cos 2,\|/ ~ sin S) + d0 2 cos S

+ m -^— 2 (1 + sin 5)(cot 0 sin 2, + cos 2\|r - 1), 
cos &

, .. sin 5 „ , cos 0j(0) = - ' 2 c°s(0 + 2ijr) + 2, ■) cos g cos 6
and equations (31) become

where

F + m F
ds = ——-----—
d0 A

G + m G0 dilr* _ > __= q
d0 ” 2A

F^ = sin(2t* + 0) + s sin 2t*

F^ = - s sin d [(1 - cos 2^*) cot 0 + sin 2^*]

G^ - cos 0 + sin S €03(2^^ + 0) + s cos^S - 2A
s sin 6

G^ - -(I + sin 5) (sin 2t* cot 0 -*■ cos 2\|r* + 1)

A = cos 2ty* + sin 8

\jr* = i|r -  90° „
These equations can be written in an alternate form;

d0 « A __= F*
ds F^ + m F^

~ G-j m G0 —

(32)

( 33)

ds 2(F^ + m^2^
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The velocity equations (8) when written in terms of polar co­
ordinates with velocities u and u in the r and 0 directions respectivelyX5 \7
become . .. .

[r ur r (r sin S)m ]+ (r sin e)m]» 0

' ■ V  J l e . i  .

■ and ; Tan 2i|r (r, 0) = ~rd0 Sr r

For radial velocity .

u ™ V, u * 0r } 0 . -
and the velocity equations can be combined to give .

' t = t (0) . - 
- •
. . Y s y ° (T°):l+m e “ (2.+m)J a Tan ■2\|r d0 .
' " *r ‘

where V°s r°, and 0° are given constants. If some particular r = r° 
is considered and if the centerline velocity is assigned as one, then 
V° = 1 for r° = r, and 0° = 0. One observes from this solution that 

= (0) implies co - co(0) which is the condition for radial stress 
[5]. Thus, radial velocity implies radial stress. However, the 
converse is not true as will be shown by an example in a later section.

One observes that the radial stress equations are total differential 
equations and involve only one co-ordinate 0. This makes the solution 
much easier to obtain than in the general case with the partial differ­
ential equations. However, no closed form solution is found and 
numerical methods must be used. , '

Numerical Solution of Radial Stress
The numerical method used was the fifth order Runga-Kutta method 

for simultaneous first order equations, described in [10], When applied 
to equations (32) with 0 as the independent variable, successive 
values of s and are given by
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where
h d 1 - 0 . rrfl n “

K - hF0|r s , 0 ) o n n n
i

n + 2
j. 1m , s + —  o ’ n 2

+ 2~ n 2
' c 4. 1m I> n ”

K = hF (\(r + m s + k , 0 + h).j n / n L n '

m = hG(\|r , s , 0 )o n n n >

m. *■ hG(\[r + ~  m , s + ~  K , 0 + ~  h) .1 n 2 o n 2 o  n 2  '

m_ = hG0|r + ~  m_ , s + ~  K , 0 + —  h) 9

m = hG(t + m , s + K , 0 + h) . .. ■ ; ■ 3 n 2 n Z n . :

The error terra O(h^) is small, providsd h is small. This method 
has the advantage in that the size of h can be changed at any point 
without upsetting the previous calculations and without additional 
calculation. This same method may be used on equations (33) with s 
as the independent variable and i|r and 0 as dependent variables.

For boundary conditions in a symmetric channel, one has 0 = 0  
and \|r =rt/2 or \j/* » 0 at the centerline. Denoting the value of s at 
the centerline by s°, the functions involved evaluate to



F_] o - lim s° sin 5[(1 - cos 2\|i*) cot 0] *
1 s 0 

. © -  0
. 2

‘ = lim s° sin 5 2 S -  ■ cos 0 - 0* 
M r - 0  Sin 6
e - o  2

„ , 1 +  sin 5 + s° cos S - 2(1 +  sin 5)G ] o ---------- 3— :— r---------- *--------- *- 9
I s  s sm  5

G-] 6 = lim ~ ( 1 + sin &) (sin 2ty* cot 0 + 2) = -(1 + sin 6) (2 ■+ 2) -
2  s  t * -  o  d e

0 - 0
A] 0 * 1 + sin & s

dsl  nd0j \jr* * 0 9
0 - 0  
s - sc

T 2dM , 1 m_v xl 4- sin 5 + s° cos 5 -* m_
-dgilr* * 0 " u  ~ 2 n 2 s° sin 5.(1 + sin &) ' ” 2 9 

0 = 0

whereas the derivatives in equations (33) are not defined. For this 
reason equations (32) were used to start calculating from the center­
line. When A = 0 3 the derivatives in this equation become undefined 
and equations (33) are used to continue the calculations in the neighbor­
hood of A * 0.

Since the magnitude of the various derivatives varies greatly in 
different parts of the solution, it is necessary to change h accordingly, 
so as to maintain accuracy and yet allow h to be as large as possible 
in order to shorten the time of calculation. The flow chart ill Figure 
25 shows the scheme used to accomplish this and also to decide when to 
Use equations (33) instead of equations (32). The various constants 
A\|r* maximum, Aijr* minimum, A0 maximum, A0 minimum, A 0 change, and As 
maximum were determined by trial and error until two standard sets of 
constants were found to be suited to most problems. The accuracy of
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the calculation was checked by comparing the solution obtained using 
the standard program with the solution obtained using much smaller h 
values and checking the agreement of the two solutions at the extreme 
points from the original starting point.

The computer program for the Burroughs 205 digital computer with
instructions on how to use it is found in the thesis [II.]. with only
slight modifications3 as outlined in the thesis» the non.-symmetric
case of plane strain can be run, and with additional changes, the
program can be used to run the stress field with density as a function
of a in the form y = Tq o where (3 is a constant determined experimentally.
In addition to the values of s, i|/s and 0, this program also gives the
radial velocity V, flow factor ff, vertical force q, shear stress t ,
and normal, stress a acting on a radial wall.n

The general flow chart for the calculations is given in Figure 
26. Since this chart gives only a rough overall view of the cal­
culation, a more detailed flow chart of each section will now be 
discussed.

The solution by the Runga-Kutta method involves calculation of
F and G at various points near the given point. Thus, a program is
needed to calculate F(i|r + a , s  + b , 0  + c) and G(iir + a, s + b a 0 + c)n n n n n J n
where a, b, and c are arbitrary constants. The flow chart for this is 
shown in Figure 27. It is assumed that for this part of the program 

s^, 0^, a, b, and c are already stored in locations as required 
by the program. This program is called "Calculation of K^ and nu," 
in the Runga-Kutta program shown in flow chart form in Figure 28.
This Runga-Kutta solution program presupposes that s^, and 0^ are 
given in the proper locations for calculation as the input to this 
program. The output of the program is sn+i> anc* ®n+-l” After
this calculation, the equations of radial stress are essentially solved. 
However, for applications, it is desirable to calculate the vertical 
force acting on a horizontal cross section, the radial velocity profile, 
the flow factor as described in [5] , and the shear and normal stress 
components along the wall of the channel.
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The vertical force Q on a symmetric cross section of width B and 
length L in plane strain, or of diameter B in axial symmetry is given 
by Q = 2itm L^’m ^  crx y™ dy. For radial stress this transforms to

q = q r I.0 -*0 b (2+,j)

where : > .
„ m„cot 0 \ 2rhn rd tan 0 r, . . „ q = 2it (— — — ) ' s — —r- [ 1 + sin 5 cos 2( 0 + \|r)] d0

v . .... ' C O S  0 .

see reference [5}, page 82. For calculation of q, the integral is 
approximated by

* *n=N ,
rs +  s

n=0

1- sin 5 cos 2/' V l  + f , 0  , + 0 n + n- 1 n\- 2 2, j

- Cos3 / V l  + 9n\ .
Tan” f°n-l * an> he.

2
It is evident from this that it is necessary to have values of \|/n
s ,, and 0 , as well as t , s , and 0 in order to perform this n- 1 n- 1 n n n
calculation. Therefore, provision for keeping these values had to be 
made in the Runga-Kutta solution of the equations.

The radial velocity solution for r = r°, V° = 1, and 0° *» 0 is 
given by

Tr - (2 + m) \ Tan 2\|r d0.
■ . —  - . ; v = e . 0 ... ■ .

As with the vertical force calculation, the integral is approximated
by ' ; . ‘ ' ' ; -

Tan 2( ^ 1  + ^n) A@. . ' ^
. .. ■: : n=0 2 - :... /

The values calculated by the program are typical for any constant radius. 
One observes that at Ar* = it/4, V = 0, because Tan 2\|r •« at this point. 
In order to calculate the radial velocity field for \|r* >it/4 an arbitrary 
constant had to be assigned. Therefore, the magnitude of V for i)r* >n/4 
is not related to the magnitude of V for \|r* <Jt/4„ Since this velocity 
calculation is elementary, no flow chart is given.
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The computed solutions of the stress fields are shown in Figures 
29 through 38 for plane strain symmetry and axial symmetry for various 
values of the parameter S. The radial velocity field is shown for
6 = 50° in Figures 69 and 70. In plane strain, the radial stress 
field is not limited to symmetry. Figures 39 to 41 show the radial 
fields calculated for one vertical wall with 5 = 50° and various angle 
of friction values for the solid against the wall. For the interpretation 
of these graphs, it is convenient to use 4' in. place of i|r*. The relation 
between them as seen from the geometry of Figure 6 is \|r* = fl/2 - v, where 
v is given as a function of <f>' and 5 by equation (10). In using these 
graphs to determine the radial stress field in the symmetric case, one 
needs only to know the angle of friction 4' for the wall and solid, 
the slope of the wall. 0', and the. effective angle of friction 5. With 
the appropriate graph chosen for the 6 value., one now finds the point 
on the graph of the given 0 ’ and 4' where 4 ' is plotted vertically at 
the. right side and 0 ’ is plotted horizontally. The. curve that passes 
through the given, point describes the radial field for this symmetric 
boundary condition. Note that different boundary conditions may have 
the same radial solution in certain regions. For example, in Figure 
31 for plane symmetry 6 = 50°, wall conditions 4 l - 41°, 0 1 = 30° have 
the same solution as 4' ~ 33°, 9' = 13° in the region between 0' = 0 
and 0' = 13°.

For a non™symmetric channel, the solution has an additional 
parameter in that 0' and 4' must be given along both boundaries. The 
case illustrated in Figures 39 through 41 is for ore vertical wall. The 
appropriate frictional value along the vertical wall determines which 
chart to use. Then 0' and 0' of the sloping wall determine the curve 
describing the field. As before, different boundary conditions may have 
the same solution in certain regions.

Calculated Examples of Convergence to Radial Stress Field
In this section are given some examples of stress fields with boundary 

conditions chosen at random, which may or may not represent actual, physical 
conditions. In each, case the radial field compatible with the given 
straight wall conditions is closely approached in regions away from the
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the stress'free top boundary. It must be remembered that, although certain 

regions may be assigned as plastic or as non-plastic, the actual size of 

the plastic and non-plastic regions is governed by more than mere equilibriv 

of forces and may differ from those assigned in the examples. It will be j  

shown in a later section that the actual physical, boundary is such as to i 

approach radial possibly closer than in the examples given here. These . 

examples not only show the convergence tendency to radial stress, but also 

serve as a check point on the validity o f .the calculated radial stress 

fields and the method of characteristic & celc^ldfcions.

• In the. following examples a is shown, to approach, radial value, at 

the centerline and at the wall. To show that the stress fields in the 

given examples approach radial, it Is sufficient to show that the value 

of a along the, center line approaches radial.. This follows from the 

discussion on page 2,0 concerning the continuous dependence of the solution 

upon the boundary conditions in the region of unique, solution defined 

by such conditions. In these examples, the centerline has cd -  %f2, 

which is one condition necessary for • symmetric radial stress. If 

a = j x s(9), then the region of unique solution defined by the 

characteristics and shown by the shaded, region in Figure 42. is approx­

imately radial. The value of j at the wall is also shown, even though 

it is not necessary to establish the convergence to radial, stress.

Figure 43 shows a symmetrical top boundary with a non-flow region.

The convergence is very rapid for this situation. At one-half width, 

w /2 down from the point P the value of a° at the centerline deviates 

only 8% from radial while the value of o" at the wall deviates by 15%.

The o value oscillates about the radial value with a decreasing fre- ;

quency and amplitude as the vertex is approached,

Figure 44 shows the. stress field in a steeper channel with no 

dead region. The oscillations about radial are more severe near the 

top than in the previous example. This is due to the greater curvature 

of the stress free top boundary required to make the slope at point P 

compatible with the wall conditions. Here, as before, deviation from 

radial is within 20?= at w/2 down from P.



Sometimes a channel is formed by a vertical top portion and a 

sloping bottom section, joined by a sharp transition as shown in 

Figure 4.5 „ In such a case a non-flow region may occur at the sharp 

transition,, A possible stress solution in such a case is shown in 

Figure 45 . There, is a rapid drop in a at the centerline caused by 

the transition. This disturbance soon damps out and radial stress 

is again closely approximated.

Experimentally Observed Examples of Convergence

In this section it is shown experimentally that in large portions 

of a symmetric straight-walled converging channel, the stress field 

is radial or at least as close to radial as the experimental technique 

used could measure. It is conjectured on the. basis of this evidence 

that| if a radial stress field can develop, it will. Furthermore9 if 

conditions are not suitable for radial stresss the region where radial 

stress cannot exist will either not be plastic or will not flow 

steadily. Examples substantiating this are given in the following 

paragraphs.

In. the experiments, conditions of plane strain and axial symmetry 

were observed. The equipment for the plane strain tests, pictured 

in Figure 46, simply consists of a box with glass both front and 

back so that the flow patterns can be observed. To achieve a uniform 

and controlled feed of solid out of the box, a cylindrical roller was 

used, as shown. To eliminate the effect of the direction of rotation 

of the roller, a 2 inch vertical skirt section feeds the solid from 

the bottom of the box onto the roller. The inside dimensions of the 

box are 23 1/2 inches long, 9 1/2 inches deep, and 20 inches high.

The width of the slot opening at the bottom is 3/16 of an inch.

Inside the box, various wall conditions can be achieved as illustrated 

by the photographs throughout this chapter. In order that the flow 

patterns be observed and photographed, it was necessary to place thin 

horizontal layers of white powdered clay against the glass on the 

front side. These layers then deformed, showing the flow pattern. 

Caution should be used in interpreting the deformations of the layers,

-45-



because the result observed is the integrated effect of the flow . 

pattern on the layers,, For this reason, only the initial deformations 

are considered significant. ;

The axial symmetry equipment consists of right circular cones 

made of galvanized metal. After being constructed, these cones were 

reinforced by metal bands and then cut in half along a vertical plane 

of symmetry, as shown in Figure 54„ In performing an experiment,

. the cone is assembled in the vertical position. Thin layers of white 

clay are used as markers, as in the plane strain model. Some of the 

solid is allowed, to flow slowly out of the cone. The level of the 

solid is then made even with the top of the cone and both top and 

bottom are sealed. The cone is then placed with its axis horizontal, 

and the upper half of the cone is removed. The solid is scraped off 

to about i/16 of an inch above the bottom section of the Cone. The 

remainder of the solid is removed by gently blowing it away. The 

white layers o£ clay have sufficient cohesion to remain intact while 

the dark material, which is essentially cohesion'iess, is removed.

With this technique, the results of the action inside of the solid 

can be observed without actually disturbing it while the test is 

being run, ■

The material used in all of these tests was iron concentrate 

with 8 = 50° and an internal angle of friction 4> “ 33°. This is 

the most common value of 5 for commercially handled materials. In 

the tests, various wall materials were used. The angle of friction 

i>' for the solid on the wall was determined experimentally as outlined 

in [5 ] „ :

Figure 47 shows the plane strain model filled with the solid 

and with a horizontal top boundary. The walls are inclined from the 

vertical at 0 1 = 29° with = 24°. In this case, the entire solid 

was moving, including the upper side regions that appear undisturbed 

in the photograph. Hence, the observed breaks in the white lines 

must occur along velocity characteristics as discussed in the 

previous chapter. The equation of these characteristics is

= Tan (co - Jt/4) „ ':
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Figure 48 shows one of the. family of the solutions to this equation 

as calculated, assuming CD to be. given by the radial stress field 

for the boundary conditions 0* = 2,9°, p* = 24°, and 5 = 50°. This 

characteristic, was determined by a graphical solution of

= Tan (cd - n/4)
dx

along an appropriately interpolated solution curve in Figure 31.

The other members of the family of solutions are exactly of the same 

shape with respect to 0 and differ only by a scale factor in r, 

because CD = cd(0) for radial stress. Figure 49 shows the same photo­

graph as Figure 47, except a centerline is drawn in and the velocity 

characteristic is plotted starting at the same point on the centerline 

as the velocity characteristics observed in the model. The higher 

characteristic observed in the model, on the left deviates from the 

radial characteristic as it. approaches the wall. However, the lower 

characteristic at the right coincides with the radial characteristic 

as closely as can be determined from the photograph. From this it ear 

be observed that the radial stress is closely approached, for if 

cd = cd(0) is given as radial,, then, as was pointed, out earlier in this 

chapter, the stress field is radial. The deviation from the radial 

characteristic exhibited by the. upper left characteristic is to be 

expected since it starts at the centerline very close to the top$ 

stress-free boundary which requires a = y-—̂  ^ for a horizontal 

boundary with x measured from it.

To give an indication of the effect that deviation from radial 

stress lias on the shape of the characteristics, a comparison between 

two stress characteristics in Figure 4.3 is given. In the figure, AB 

is the characteristic computed from, the boundary conditions as shown, 

and AE is the stress characteristic for the radial, stress field, 

compatible, with the wall conditions. One observes that there is a 

noticeable difference in the two characteristics. The calculated 

value of a differs by about 15% from the radial value. One would 

expect the velocity characteristic from point A to show an even greater 

deviation from the radial characteristic since the relative length of 

them is greater than for the stress characteristics shown.
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Figure 50 shows the plane strain model with Q' = 29° but with 

the walls slightly rougher than in the previous case. As before, the 

appropriate radial velocity characteris tic is plotted and good agree­

ment occurs between the radial velocity characteristic and the observed 

characteristic.

Convergence to radial stress is not limited to horizontal stress- 

free boundaries„ As was indicated in the calculated fields, con­

vergence also occurs in a straight wall section below a vertical 

transition. Figure 51 shows such a case for 0' = 29° and &' = 24°.

As before, there is good agreement between the radial characteristics 

and the observed characteristics.

The examples given thus far all involve .straight walls and the 

radial, stress fields involved are determined by the slope 0 ! and 

frictional condition 6' of the walls. However, when there are no 

walls, there seems to be no basis for assuming that radial stress 

should occur. Figure 52 shows the plane strain flow pattern for a 

flat bottom. In this case, the side regions did not flow. Only 

the center portion flowed. The boundary between the flowing and the 

non-flowing regions has the possibility of being either a velocity 

characteristic or a slipline. The interior lines, however, must be 

velocity characteristics, because the whole mass in which they occur 

is flowing. One observes that the interior lines intersect the 

boundary line between the flowing and non-flowing. Since character­

istics of the same family cannot intersect, one concludes that the 

boundary is not a velocity c h aracteristicands hence, is a slipline. 

The line drawn in the photograph that closely approximates the boundary 

is a sliplme from the radial stress solution for 6 = 50° and 

s° = 0.105. This slipline, shown in Figure 53, has been calculated 

graphically as the solution of

~ ’ dx = Tan ^  ] -

where 4 - 33° is the angle of internal friction for the solid. This 

example indicates that even without walls compatible with the radial
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stress fieldg the stress solution closely approaches radial, if at 

all possible. In the case of the flat bottom, the radial stress field 

approached will be determined by the cohesive properties of the flowing 

solid3 or> more specifically, by the flow-factor [5].

In axial symmetry, radial fields occur only for certain boundary 

conditions. For example, if the wall has an angle of friction «4'= 20° 

for a solid with 5 = 50°, Figure .36 shows that 0'= 26° is the maximum 

that the half angle of the cone can be placed and still develop a 

radial stress field. To investigate the flow pattern in axial 

symmetry, cones with three different 0 1 angles were used. The friction 

of the cones was changed by covering them with sand paper and high 

gloss paper. The points plotted in Figure 36 are actual test points.

The circled points indicate that flow along the walls was observed, 

and the square points indicate no flow along the walls.

Figure 54 shows the flow pattern in a cone with 0 1 = 15° and 

js' = 2,4°. In this case, the 0',̂ 'point in Figure 36 is well within 

the radial stress region. The radial stress velocity characteristic 

is plotted in the photograph and seems to agree with the actual velocity 

characteristic. Figure 55 shows the flow pattern for a cone with 

O' = 21°, = 24°. This point lies just on the critical line of 

Figure 36. As can be readily seen, most of the flow occurred in the 

middle of the cone, however the sides did flow somewhat as is evidenced 

by the upward curvature of the white lines along the wall of the 

cone. It is of interest to note that for the same cone with jJ' = 23° 

the flow along the walls was much more rapid than for the case pictured 

in Figure 55 where = 2,4°. Figure 56 shows a cone with 0 '= 30° 

and = 24°, which point lies outside of the radial stress region in 

Figure 36. As can be seen, no flow occurred along the edges of the 

cone, but instead flow occurred only in a central plug. The remainder 

of the cases plotted in Figure 36 are not shown in pictures because 

they exhibited the same behavior as the three points already discussed. 

Thus it is seen that if the 0 ' values lay in the radial stress 

region, then flow occurred along the walls. If the point was outside 

the radial stress region, then only a vertical pipe flowed.
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The conclusion from this experimental evidence is that the 

radial stress field is a very basic element in axi•'•tfsrnmetric and 

plane strain gravity flow of bulk solids: wherever possible the 

stress field will be very close to radial, and where radial stress 

field is not possible, the flow will bd somewhat restricted as is 

evident in axial symmetry. Perhaps the most startling example of 

approximation to radial stress was the channel for a flat bottom 

plane strain model. This again substantiates the hypothesis that if 

a radial field can develop, it will.

The Velocity Field for Radial Stress

The photographs shown thus far often indicate a non-symmetric 

velocity field, especially in the region near the top boundary. This 

non-symmetric velocity does not enforce a non-symmetric stress field, 

because, under our assumptions, the only connection between velocity 

and stress fields is to. The choice of velocity boundary conditions 

therefore is independent of the stress conditions. However, it is 

only fair to point out that if inertial effects are included in the 

equilibrium equations, then the stress and velocity fields are dependent 

on each other and the non-symmetric velocity would influence the 

stress in a non-symmetric manner. Since velocities and accelerations 

are small in magnitude, the interrelationship between the velocity 

and the stress fields produces a negligible effect, and a slight 

change in the stress field may be accompanied by a drastic change 

in the flow pattern and velocity field.

Some calculated examples of symmetric velocity fields in plane 

strain will now be discussed. The assumption of symmetry restricts 

the use of these fields to the lower region of a converging channel 

where symmetry in the velocity field is usually observed even though 

the top region of the channel may exhibit non-symmetric flow. In the 

first section of this chapter, the condition for radial velocity was 

shown to be \|r = \K0) and it was pointed out that this condition 

enforces radial stress. Hence, a radial velocity field cannot occur 

unless there is a radial, stress field. However, a radial stress field



does not enforce radial velocity. In the following discussion of 

velocities, it is assumed that the stress is radial, that is cjd = co(0) 

determined by the stress field. With cd given, the shape of the velocity 

characteristics is also given. Figure 57 shows some of these character­

istics in a field where = 48°. It is observed that one of these 

characteristics is a straight radial line. Such a characteristic has 

the property that the component of velocity along it is constant in 

plane strain.

If velocity is assigned along a non-characteristic line AB,

Figure 9, the velocity field is only determined down to the first 

velocity characteristic GB, To continue the field further, velocity 

mast be assigned along the wall. In the examples, a constant velocity 

was assigned. This assignment is in accord with observed velocity 

fields £n tests with plane strain models. Figure 58 shows two velocity 

profiles along the arc DE. The unbroken vectors are the velocity 

from a constant radial velocity assigned along AB. The dash-dot 

vectors are the velocity resulting from a velocity decreasing 

proportionally to the distance from the centerline assigned along 

AB. In both cases in the region between the centerline and the straight 

characteristic, the velocities closely approach the radial profile 

as determined from Figure 69 and given by the dashed line in Figure 58. 

The velocity profile calculated in this way will never reach radial 

completely, because the radial profile demands the velocity to be 

zero at the straight characteristic.

It must be remembered that this convergence to radial was for a 

constant velocity along the wall. If the requirement that the velocity 

at point F, Figure 57, go to zero is imposed, and the wall velocity 

is allowed to change accordingly, a drastic deviation from radial 

velocity is observed along the first characteristic FG, Figure 58.

The deviation is allowed by the freedom of choice of the velocity 

along the wall. If the wall had frictional conditions such that 

the field did not include the straight velocity characteristic, 

such deviation would not be possible without deviation from the radial 

stress field, because the. velocity along the wall would be uniquely



defined by the conditions along the non-characteristic line AB„

Figure 59 shows the velocity along the arc PQ for the case of 

a wall coinciding with the straight velocity characteristic. The 

velocity along AB for the example was assigned constant and radial.

One can see from Figure 59 that the radial profile is not approximated 

very well near the wall, since the radial field requires zero velocity 

there. However, at a sufficient vertical distance from A, the wall 

velocity will be negligible compared to the centerline velocity, 

thus improving convergence to the radial velocity profile. This is 

because: to preserve continuity of the solid, the average vertical 

velocity must change inversely as the area through which it flows; 

since the wall velocity is constant the velocities at other points 

must become larger than the wall velocity as the vertical distance 

from A  increases and the area decreases in a converging channel.

A  similar reasoning can be applied as an indication of convergence 

to radial velocity to the previous case in which the field contained 

the straight characteristic and had constant velocity along the wall. 

However, in this case,, one would consider the velocity of the region 

between the straight characteristic and the wall as negligible 

compared with the velocities in the interior region of the straight 

characteristic. In these examples the velocity field tends to 

approach radial when the stress field is of the form a> = to(0)„ '
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CHAPTER IV

STRESS AND VELOCITY SOLUTIONS OTHER THAN RADIAL

In the previous chapter the importance of the radial stress 

solution was emphasized and it was shown that a. large portion of a 

converging channel approximated radial stress. In this chapter the 

stress and velocity solution outside the regions of radial stress . ' ' 

are discussed with emphasis on their limitations and relation to radial 

stress.

Straight Wall Symmetric Channels

The top,, tract!on-free boundary of a channel may take many shapes. 

The shape shown in the experiments discussed is straight, and horizontal. 

Other possible shapes are the convex type such as shown in Figures 4.3 

and 44 and the concave type shown in Figure 60, If the solid is allowed 

to flow in the channel without refilling, it usually assumes either a 

horizontal or a concave shape, In both cases the velocity field in 

plane strain is not symmetric; the solid will flow more rapidly from 

one side for awhile, then shift and flow more rapidly from the other 

side. In axial symmetry the velocity field in both cases tends to be. 

more symmetric than in plane strain. Figure 49 shows an example nf a 

channel in which the boundary tends to remain horizontal. Figure 61 

shows the horizontal position of the top boundary in this same channel 

after it has been nearly emptied. Figure 62 shows a channel of the same 

shape but with a slightly greater 6'~ 26.5°, In this case one clearly 

sees the tendency to form the concave type boundary where the slope 

of the top is at the angle of repose of the solid. The coefficient of 

friction at which a convex top occurs could be calculated approximately 

by assuming that the side regions in which deformation does not occur 

are rigid. The. forces acting on this rigid wedge could, then be summed, 

and in this way the required frictional force, and therefore could 

be approximated. This type of calculation is not carried out here but 

is left for some future date.



In chapter three it was shown that radial stress is closely

approached in the lower regions of a symmetric channel with straight

walls. This solution requires a = y r s° and to = it/2 for the stress

along the centerline. In the region of the horizontal stress free

boundary the stress field is given by a = *r— and cd = it/2 „
x °° s in C

At some point along the centerline these two stress conditions will be 

compatible. The calculation of this point is illustrated in Figure 63, 

Compatibility of the two stress fields requires . ; ; .

y  X  ~ 5: ‘'-v

. ■ y R s° = .. r . ..
• , ' . • 1 - sin b _... . . . . ̂  .

or ' , . , ; ' .. •

"• ■ • r . ■ X  = (1 ” sin 6) R 3° •• ■■■ :: }  ' y ~  '-
"■ ■' ... . r ‘ y

Let us suppose that the actual stress field in a channel is of this form.

The resulting cr along the centerline is plotted to the left in Figure 63.

The ramifications of such an assumption are? no plastic deformation

should be observed along the traction--free boundary beyond A because

this would extend the plastic or steady flow solution of a = —---—s-1 - s m o

below x^o Similarly, no plastic deformations should be observed along 

the wall above the intersection of the second stress characteristic 

and the wall, point C, because this would imply a continuation of the 

radial stress beyond the characteristic BG which would extend the „ , 

solution a ~ y r s° above x „ In other words, the region J&g&cima&t £ilxsw 

as a rigid wedge. Figure 49 shows these critical points plotted on the 

photograph of the flow patterns for a channel 5 = 50°, 6* => 29° and 

&' = 24°, Point C was determined by the radial stress characteristic 

through B, This stress characteristic is shown in Figure 48, As can 

be seen, the required flow conditions are satisfied at both critical 

points indicating that this proposed stress condition is possible, .

One point of interest is that the observed velocity characteristic on 

the left starts at the centerline at a point above the possible radial 

stress point, and, hence, is not expected to conform to the radial . 

stress velocity characteristic. This explains the deviation from radial



stress velocity characteristic as shown in Figure 49 and discussed on 

page 47. The actual stress field for the channel is probably different

from the one proposed here. However, the evidence indicates that this
T x

relatively simple combination of radial and a = —— g stress fields can
J r 1 sin o

closely approximate the actual field. Mi-.- bi 1 r ■ rr'i >.

In the case of top boundaries not horizontal one would expect a 

similar combination of stress fields to approximate the actual condition. 

However, the a near the top would not be the same as above but would be 

determined by the shape of the stress-free boundary. For a convex type 

boundary, a along the centerline increases slower than for a horizontal 

boundary. As shown in Figure 43, a starts at about the same rate of 

increase as for a horizontal boundary, but the rate gradually decreases 

as the curvature of the boundary increases. For this situation x̂ _ would 

be larger than for a horizontal boundary. One might conjecture that 

for the convex type boundary x^ would be smaller than for the horizontal 

boundary. '■ »r ■ • ■ J : .is n r " \ : ■

Iiiv «  5 b p - .  '

Transition Regions j.,. . .

In this section the stress solution is considered in the region of 

a sharp transition between a vertical and a symmetric sloping wall.

In the region of the transition three different flow patterns are observed: 

Flow may occur at the transition, a dead non-flowing region that is 

terminated by the vertical wall may form, or a dead region may form that is 

not terminated at the vertical wall, but is terminated by the traction- 

free top boundary. Each of these conditions will be discussed. ■- 

, Figure 64 shows an example of the first case when flow occurs 

at the transition. In this figure the velocity characteristics are 

smooth in the region of the transition, which implies that to is t. 

continuous in this region. Equation (10a) gives cd1 = v 1 - 0' where 0' 

is the slope of the wall and v' is a function of the friction condition 

along the wall. If it was assumed that v' has the same value for the 

sloping wall as for the vertical wall, a discontinuity in co would : 

be required at the intersection of the walls. Since no such discontinuity 

is observed, v' must not be the same for the vertical wall as for the

/ *
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sloping wall. If the solid flows along the wall, then v' is given by

(10). From Figure 64 it appears that flow does occur along both of

the walls; however, closer inspection of the marking line, shown in

Figure 65, reveals a narrow portion of white against the vertical wall.

This thin strip of solid tends to make the vertical wall rougher so

that v 1 along it decreases. The minimum that v' can attain is when the 
v v

slipline condition is reached and = Jt/4 - i/2. A necessary condition

for flow to occur at the transition is that co' of the vertical wall be
v

equal to cd' of the sloping wall. If oo' > jt/4 - i/2, the vertical wall 
s s

may exhibit enough roughness with the aid of the thin non-flow region

to make cor = <jo'„ In the event that oo1 < Jt/4 - i/2, the vertical wall 
s v s ’

cannot be made rough enough to make a>' continuous at the intersection,

hence, a dead region must form. It should be noted that cd' < rt/4 — <6/2
s

is sufficient but not necessary for a dead region to develop at the 

transition.

When a dead region forms at the transition, the boundary between 

the bead or non-flowing solid and the flowing solid is either a velocity 

discontinuity or a line of rapid change of velocity with velocity at 

the boundary zero. In the first case, the boundary must be a slipline. 

In the second case, the boundary must be a velocity characteristic.

By considering the possibility of velocity fields for each of these 

cases, it appears that both are possible. Figure 66 shows the 1 

approximate location of the velocity characteristics near the dead 

region. The dashed lines are velocity characteristics. The solid 

line CD is the slipline. The value of the coefficient of friction 

along the vertical wall from C to E changes continuously from full

friction or v' = rt/4 - i/2 at C to a smaller amount of friction or
v

>  Jt/4 - i/2 at E. Point A is the proper friction value to make 

the velocity characteristics tangential to the wall at A. If the 

boundary of the dead region was a characteristic, then the dead region 

would be AOB and AB would have velocity assigned as zero. If velocity 

was assigned along AF, such that at A velocity was zero but rapidly 

changing to a non-zero value near A, then this rapid change would 

propagate along AB and also along AG. Hence, the type of flow observed
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near the dead region can be achieved when the boundary is a velocity

characteristic. It is important to observe that the assigning of

velocities along FA and AB does not over-determine the field, but, on 
i

the other hand, it does uniquely determine the velocity field in the 

remaining upper and lower regions.

If the dead region was bounded by a slipline, then velocity along 

FA could be determined by any arbitrary boundary conditions above FA,

In order that the velocity solution calculation be continued, it is 

necessary that velocity be assigned along ACD, thus determining the 

velocity field in region ADH. This assigned velocity would have to be 

in the direction of the boundary ACD, Since the direction of the velocity 

vector at point D is discontinuous, the magnitude of the velocity must 

be zero there in order to avoid an infinite acceleration of particles 

at point D„ With these boundary conditions, the velocity field is not 

over-defined, but is uniquely determined in all regions; hence, the 

boundary could be a slipline. As the figure indicates, if the boundary 

is a slipline, the dead region will be smaller for the same wall conditions 

than if it is a velocity characteristic. If the boundary is a slipline, 

then there need not be a rapid change of velocity along AG as is required 

by the velocity characteristic boundary. Therefore, when there is no 

observed rapid change of velocity above the transition region, the boundary 

is a slipline. If there is an observed rapid change above the transition, 

the boundary can be either a slipline or a velocity characteri

Figure 67 shows the relation between the wall, the direction of a

and the direction of the slipline or velocity characteristic. For

convenience, call the angle between the wall and the slipline or velocity

characteristic a. Then a = v' - (it/4 - <t>/2) for the slipline and
s

a  - - jt/4 for the velocity characteristic. When a >  0' a dead region 

of the. type shown in Figure 66 where the boundary of the dead region 

terminates at the vertical wall will not form because the only possible 

boundaries for this region tend to go away from the vertical wall.

When a <  0' a dead region of the type shown in Figure 66 may form.

When the dead region is not terminated by the vertical wall, it must 

extend to the top, traction-free boundary. In the event that this top
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boundary is at a considerable distance above the transition, it seems 

very unlikely that the dead region could extend so far, especially when 

a <  0'. This indicates that there is some critical height for the 

solid above the transition. If the solid in the vertical section is 

above this height, then no dead region that does not terminate at the 

vertical wall will form. If the solid is below this height, then dead 

regions not terminating at the vertical wall but at the top boundary of 

the solid will form. By using the radial stress field developed in 

the previous chapter, this critical height can be determined.

In the discussion of radial stress, it was observed that the 

stress field tended to be radial wherever possible and where the radial 

field was not possible the flow tended to be restricted. In the examples 

of axial symmetry, if radial stress was not possible, the flow was 

restricted to a vertical pipe. One might suspect that, this same hypo­

thesis might apply in determining the critical height at which the flow 

will become more restricted in the sense that the dead region will 

increase in size. Figure 68 illustrates a typical situation with a 

dead region terminating at the vertical wall. Since AB is a straight 

wall with a constant friction condition, it is compatible with radial 

stress. Assume that radial stress occurs along A B „ AB is then the 

boundary of a Cauchy problem, and determines radial stress in the 

region ABCD where BC and AD are first and second characteristics.

The centerline condition along DC will automatically be satisfied 

because of the choice of symmetric radial stress along AB. BC and 

the centerline condition form a mixed boundary problem with boundaries 

compatible with radial stress and, therefore, define radial stress in 

region CBE where BE is a second stress characteristic. It is evident 

that for radial stress to exist along AB, this same stress condition 

must prevail up to point E at the centerline. For a horizontal^traction- 

free boundary, there is a minimum height x£ above E required to have 

a at E sufficiently large to be compatible with the radial a. For any 

height below this, radial stress cannot develop at point E and, hence, 

not at point B. By hypothesis, for any height below this critical height, 

the dead region should increase in size. /
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As can be seen from the geometry of the channel h = R +  x - — cot 0'
' c c 2

where x = R s°(l - sin 8). Finally 
c '

■— = H  jjL + s°(l - sin 8)^ - cot 6' (34)

where R, s°, 8 , and W are determined from the geometry and frictional 

conditions of the channel. Figures 64, 65, 71, 72, and 73 show the 

plane strain model with a vertical section on a symmetric channel with 

8 = 50°, 6 = 33°, 0' = 29°, and <f>' = 24°. For this friction condition 

v' = 62° as calculated from equation (1). Hence, a = 17° for the 

velocity characteristic boundary and a = 33.5° for the slipline boundary.

It is quite evident in Figures 64 and 65 that little if any dead region 

developed when there was considerable height of material above the 

transition. Apparently in this case the slip line, boundary for the 

dead region took precedence over the velocity characteristic boundary 

because the velocity characteristic boundary is such that a  <  0 ' and, 

therefore, would require a dead region. By comparing Figure 71 with 

Figure 72, one sees that flow has occurred in the transition region.

Figure 73 shows the pattern after more material has been removed at 

the bottom. In this case flow has definitely stopped in the region of 

the transition and the critical height of the material in the vertical 

section has been reached. In this case, since the dead region was non­

existent for sufficient height, the W in equation (34) becomes the 

width of the channel. Referring to Figure 48, which gives the shape 

of the radial stress characteristic for this channel, it is observed 

that R/W = 1.58, s° = 0.24. Hence, h^/W = 0.77. In Figure 73 flow 

at the transition had stopped and h/W = 0.72. In Figure 72 where flow 

at the transition was still taking place h M  - 0.85. This indicates 

that the actual critical h is between 0.72 and 0.85 which is in agreement 

with h /’W = 0.77 predicted on the assumption of radial stress. This 

gives further evidence of the validity of the hypothesis that radial 

stress will occur whenever possible.
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SUMMARY

The theory of steady flow of bulk solids consists mostly of 

the well know principles of equilibrium, isotropy and continuity 

of the solid. The one principle that is unique to the flow of bulk 

solids is the concept of the effective yield locus„ This concept 

is essentially experimental in nature and is very similar to the yield 

locus of plasticity and soil mechanics, however it is not the same.

A bulk solid will, in general^ have both an effective yield locus and 

an infinite number of yield loci. . :

■ The equation^ of steady flow as derived from the basic concepts 

can be written as two hyperbolic systems of two partial differential 

equations, each. One of these systems with proper boundary conditions 

can be solved for the stress field. The other system can be solved 

for the velocity field after the stress field is known. These equa­

tions do not include the physical limitations of gravity flow. There­

fore, these limitations must be stated explicitly and boundary conditions 

must be assigned so that these limitations are not exceeded anywhere 

in the field. The side boundary conditions of a flowing solid are 

determined by the frictional conditions between the flowing solid 

and the walls. This condition determines the direction of major 

principal stress in relation to the direction of the walls. The top 

boundary is traction-free which implies a zero stress condition if 

the solid is to obey the effective yield locus.

The general solution of the hyperbolic equations was accomplished 

in this paper by the method of characteristics. The characteristic 

directions are such that along them the partial derivatives of the 

hyperbolic equations can be replaced by total derivatives. This makes 

it possible to solve a problem by integrating in the directions of 

the characteristics. -

The boundary value problems encountered in calculating the stress 

and velocity fields are of three types: the Cauchy problem in which 

dependent and independent variables are given along some non­

characteristic

CM-
-60­



line, the mixed boundary value problem where the variables are specified 

along a characteristic and only partly specified along a non-characteristic 

line that intersects the given characteristic, and the Goursat problem 

in which the variables are given along two intersecting characteristics 

not of the same family. Each of these problems defines a unique 

solution, in a region bounded by characteristics. The solution is 

continuously dependent on the initial data. This property of uniqueness 

implies that if the given variables on a boundary are in agreement 

with a known solution of the equations being solved, then the known • 

solution is determined throughout the region of unique solution '

of the boundary value problem, If: the given variables in the problem 

closely approach a known solution, then the known solution is closely 

approached throughout the region of unique solution of the boundary 

■value problem. ■ •. - . - * ;r . '

The characteristics of the equations have, the property that, if . 

one dependent: variable is assigned along one of the characteristics, -. ' 

the other dependent variable may be calculated from the assigned , •, ■ 

variable to within an arbitrary constant:. Another property of the •- 

characteri•sties is that: rapi'jf. changes in the dependent variables 

occur along t:hem. This property is very significant i:::. thi study of 

the flow patterns it. bulk solids. , ■_ -......  ■ ' ; ■ .

The numerical solution of a problem by the method of character­

istics calls for only two basic types of calculation. The first type 

requires that two adjacent points-, not on the same characteristic-, 

be given. A third point can then be calculated at the intersection of 

the characteristics through the given points. The second type of •

calculation requires that one point be given adjacent to a line along 

which incomplete information is available. A second, point can then be 

calculated at the intersection of the line and the characteristic 

through the given point. These two basic calculations can be combined 

to solve whatever boundary problem or combination of boundary value 

problem may be presented. To facilitate the solution, computer 

programs for each type, of calculation were written as separate parts
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and then a master correlation program was written to combine these 

parts as needed for the specified boundary value problem. In order 

that a reasonable spacing of the calculated points be achieved in 

subsequent calculation, it was necessary at times to interpolate ' 

points between the calculated points,

A stress field compatible with a channel with straight sloping 

walls intersecting at point 0 is found in the radial stress field.

This stress field has the property that along every ray the stress 

is directly proportional to the distance from point 0. The direction 

of principal stress ia also constant along any ray through 0 for 

this radial stress field. With these conditions the partial differen­

tial equations for the stress field reduce to a system of total 

differential equations. The solution of the equations was not found 

in closed form, however, a numerical, solution by the use of the Runga- 

Kutta method was used for various solids flowing in symmetric channels. 

This method of solution was chosen because of the ease in changing the 

size of the step of the calculation. In the calculation, the size of 

the step was changed automatically so as to maintain accuracy and yet 

allow the step to be as large as practical.

The radial stress solution is a very basic element in the gravity 

flow of bulk solids. When stress fields are calculated by the method 

of characteristics for various top boundaries with straight walls as 

side boundaries, the radial stress solution is approached in the lower 

portion of the channel. The velocity characteristics observed in 

models of plane strain and axial symmetry correspond to those required 

by radial stress. When the solid is allowed to flow without the 

influence of walls the radial stress flow pattern is also observed.

The radial stress fields for axial symmetry do not exist for certain 

boundary conditions for straight walled channels. When the solid is 

-required to flew in such a channel flow will not occur along the walls 

but in a vertical pipe, -
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When the solid is required to flow in channels with boundary conditions 

for which a radial field exists, flow does occur along the walls. These 

results indicate that if possible the radial stress field tends to 

develop and if it is not possible for radial stress to develop the flow 

will be restricted.

Another property of the radial stress field is that it is required 

if the velocity is to be iotte radial direction throughout the field, 

however, it is not necessary to have radial velocity when the stress 

field is radial. The velocity field may be non-symmetric and still 

have a symmetric radial stress field. For certain conditions it 

appears that radial velocity is approached in the lower region of the 

radial stress channel.

In straight walled symmetric channels rigid r eg tori 5 foxiu ..at the 

sides near the top traction*free boundary. These regions may move 

with a uniform velocity or they may remain stationary depending on the 

frictional condition of the wall, along which they must. flow.

It was proposed that the stress condition of the solid not in these rigid 

regions be approximated by radial stress except for a small region at 

the centerline near the top boundary. The minimum size of the rigid 

regions can be predicted by this stress field and agrees with experimental 

evidence.

When the channel is formed by straight sloping symmetrical walls 

in the lower region and vertical walls in the upper region, three 

flow-patterns may occur at the. intersection of the sloping and vertical 

walls: Flow may occur at the intersection, a small non flowing region 

terminated by the vertical wall may form at the intersection, or a 

large non-flowing region terminating at the top boundary may form.

The first two conditions occur only when there is sufficient height of 

solid in the vertical portion of the channel and the third condition 

occurs whenever the. height of the solid is below a certain value. This 

value can be calculated on the basis of radial stress and shows good 

agreement with experimental evidence.

One of the major values of the paper is the agreement shown between 

the theory and. the actual observations of flow in channels. This
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agreement is most remarkable when the possible chances for introducing , 

errors are considered; In the theory there are certain simplifying , 

assumption such as no inertial effects, isotropy, and no density change. 

The calculations based on the theory were carried out numerically 

and are therefore subject to error. Finally, the test procedure 

determining the flow properties of the solid could possibly introduce 

errors. The agreement of the calculatedfields with experiment therefore 

indicates the validity of the theory, calculations and test procedure.

Another contribution of this paper is that the radial stress field 

is basic to the flow of bulk solids. In reference [5] a proof is given 

that any stress field with boundaries intersecting at a point converges to 

radial at the intersection, however, no indication is given as to the 

validity of radial stress at regions away from the intersection point.

This paper indicates the importance of radial stress in regions 

removed from the intersection. To prove rigorously that radial stress 

is basic, it appears that some additional physical concept need be . 

added to the theory.

This becomes evident when the arbitrary size of the rigid regions 

in a symmetric straight walled channel is considered. The approximate 

size of these was determined on the basis of radial stress and was 

observed to conform with experiment results, however, stress fields 

could be calculated which would require much larger or smaller rigid 

regions. These stress fields will not be radial near the top but they 

will still satisfy all the requirements of the theory. It is possible 

that a concept of minimum energy or the most even distribution of energy 

dissipation is the additional information required. As a future research 

project the determination of this additional concept might be undertaken.

Vr._.
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Figure 10

Experimental results showing the yield, 
effective yield, and wall yield loci’



Figure 2.

Construction of the effective yield locus
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Figure 3.

The effective yield pyramid
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Figure 4 

The yield pyramid
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Figure 5„

Orientation of the stress and velocity characteristics 
with respect to the direction of
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Figure 6.

The co-ordinate system for the symmetrical 
converging channel
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Figure 7

Gravity flow channel for 
the solid flowing on itself
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Figure 8.

Possible stress conditions at the 
intersection of a stress free boundary and a wall
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✓-Typical stress characteristics

Figure 9.

Shape of the characteristics in a typical 
. ,.p. symmetric channel
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Figure 10,

Cauchy Boundary Problem

Mixed boundary problem
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Figure 12 

Goursat boundary problem
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Figure 13„

Application of the boundary problems 

to a converging channel



Figure 14 

An, illustration of uniqueness
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Figure 15

Constant velocity in a vertical channel
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Figure 16 

Horizontal stress free boundary
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Figure 17

The first basic numerical calculation
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Calculation finished.

i: ■ . i V ; j  53 I ■ ■

Figure 18

Flow chart for first basic stress calculation
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End of Calculation

Figure 19 

EXow chart for the first 

basic velocity calculation



Boundary 

= f(y) i = ^(x)



Start

Figure 2,1

Flow chart for iterated 

second basic condition



Combining calculations into a complete 
solution
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1
Store point A as first

data point p ^

Figure 23

Flow chart for the correlation program
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First characteristic 

13

Figure 24

Typical wall calculation for equal 
spacing of points along the wall
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Figure 26

Flew chart for radial stress solution
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' - Figure 28 

Flow chart for the Ruaga-Kutta solution
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Function s, 8 = 30°

Plane symmetry (symmetric plane flow)
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Fig. 30 

Function s, 8 = 40°

Plane symmetry (symmetric plane flow)
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Fig. 31 

Function s, 8 = 50°

Plane symmetry (symmetric plane flow)
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Fig. 32

Function s, 5 =■ 60°

Plane symmetry (symmetric plane flow)
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Function s, 8 = 70°

Plane symmetry (symmetric plane flow)
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Fig. 34

Function s, 6 = 30°

Axial symmetry (conical flow)

-98-



1
0

X
1

0
 

PE
R

 
IN

C
H

50

Function s, S = 40° 

Axial symmetry (conical flow)

- 99*



IO 
X 

to 
PC*

 
IN

C
H

v  -

Fig. 36 

Function s, 6 = 50° 

Axial symmetry (conical flow)
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Fig 37

Function s, S = 60*

Axial symmetry (conical flow)
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' - Fig. 38

Function s, 5 = 70° 

Axial symmetry (conical flow)
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Function s, S = 50°, ^ = 20°

Plane asymmetry (Plane flow - one vertical wall)

-103-



Fig. 40

Function s, 5 = 50°, = 30°

Plane asymmetry (Plane flow - one vertical wall)
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Fig. 41

Function s , 5 = 50°, = 40° .

Plane asymmetry (Plane flow - one vertical wall)
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Figure 42

Region of Radial Stress Defined 

a = yxs° along the centerline



Figure 43

Stress in a converging channel 

with a non-flow region

5 * 50°, 0' = 20 , f  = 30c
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Figure 44 

Stress in a converging channel 

5 = 60°, e" * 1.50 6" « 42°
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Stress in a transition from vertical wall co e ' -  20c

& ■* 50s , - 30°
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Figure 46 

Equipment for plane strain testing
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Figure 47

Plain strain model with a horizontal top boundary

6 = 50°, 0' - 29° , <t>' - 24
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Radial stress and velocity characteristics 

6 * 50°, rf'- 24° 0* * 29a
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Figure 49

Plane strain model with radial velocity characteristics
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Figure 50

Plane strain model 6 = 50°, O' = 29°, = 26.5°
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Figure 51

Plane strain model with a vertical section, 
8 = 50°, 6' =29°, </>' = 24°
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Figure 52

Plane strain flow pattern for flat bottom,
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Figure 53„

Plane strain radial slipline  

6 = 50° ,  0 ' -  20° , h  -  33°
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Figure 54

Axial symmetry model,
6 - 50°, 6' - 15°, /' - 24°
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Figure 55

Axial symmetry model,
6 - 50°, 0' - 21°, o' = 24°
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Figure 56

Axial symmetry model,
5 = 50°, 6' = 30°, /' = 24°
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Figure 57

Velocity field characteristics for radial stress
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■ Figure 58 .

Examples of velocity with radial stress 
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^■'̂ _,/*fc.adia.l Velocity Profile

Figure 59 

Radial stress velocity with the 

straight characteristic as a wall



Figure 60.

Concave type top boundary



Figure 61

Plane strain model showing tendency of top boundary to 
remain horizontal, 5 = 50°, 9' = 29°, f>1 = 24°
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Figure 62

Plane strain model showing tendency of top boundary to 
for concave shape, 5 = 50°, 0' = 29°, /6' = 26.5°
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in this region

traction-free boundary

Stl

^second stress/characteristic

V

Figure 63.

Approximate stress field for converging 
channels with horizontal top boundaries



Figure 64

Plane strain flow pattern for a sharp transition from 
vertical to a sloping wall, 5 = 50°, 6 ' « 29°, /' = 24
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Figure 65

Details of the flow pattern near the transition
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Figure 66

The velocity characteristics near the transition.
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Figure 67 

The relation between a  and 9'
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h = W/2 cot 6' 
c

Calculation of the critical height h
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Figure 71

Plane strain sharp transition, 5 = 50°, 0' = 29°, = 24°
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Fig. 70 

Function V/V°, 6 = 50° 

Axial symmetry (conical flow)
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Figure 71

Plane strain sharp transition, 6 = 50°, 6' = 29®, ^ = 2 4
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Figure 72

Plane strain sharp transition, 5 = 50°, 0' = 29°, /' = 24°
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Figure 73

Plane strain sharp transition, 6 = 50°, 0' = 29°, <f1 = 24°
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