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Abstract

We suggest a new approach for inspection and reverse engineering applications� In particular� we

investigate the use of discrete event dynamic systems �DEDS	 to guide and control the active exploration

and sensing of mechanical parts for industrial inspection and reverse engineering� We introduce dynamic

recursive 
nite state machines �DRFSM	 as a new DEDS tool for utilizing the recursive nature of the

mechanical parts under consideration� The proposed framework uses DRFSM DEDS for constructing an

observer for exploration and inspection purposes�
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� Introduction

Developing environments for inspection and reverse engineering applications is an essential activity in many

engineering disciplines� Usually� too much time is spent in designing hardware and software environments�

in order to be able to attack a speci
c problem�

One of the purposes of this work is to provide a basis for solving a class of inspection and reverse

engineering problems� The technique to be explored can hopefully be used for a variety of applications� We

use an observer agent to sense the current world environment and make some measurements� then supply

relevant information to a control module that will be able to make some design choices that will later

a�ect manufacturing and�or inspection activities� This involves both autonomous and semiautonomous

sensing�

We use a recursive dynamic strategy for exploring machine parts� A discrete event dynamic system

�DEDS	 framework is designed for modeling and structuring the sensing and control problems� Next�

we discuss the objectives and research questions� then we discuss the DEDS and recursive automata

approaches� We conclude by detailing the visual processing involved and some results�

� Objectives and Questions

The objective of this research project is to explore the basis for a consistent software and hardware envi

ronment� and a �exible system that is capable of performing a variety of inspection and reverse engineering

activities� In particular� we will concentrate on the adaptive automatic extraction of some properties of the

world to be sensed and on the subsequent use of the sensed data for producing reliable descriptions of the

sensed environments for manufacturing and�or description re
nement purposes� We use an observer agent

with some sensing capabilities �vision and touch	 to actively gather data �measurements	 of mechanical

parts�

Our thesis is that �

� Discrete Event Dynamical Systems �DEDS	 provide the base for de
ning consistent and adaptive

control structures for the inspection and reverse engineering problem�

If this is true� then we will be able to answer the following questions �

� What is a suitable algorithm to coordinate sensing� inspection� design and manufacturing �

� What is a suitable control strategy for sensing the mechanical part �

� Which parts should be implemented in hardware vs� software �

� What are suitable language tools for constructing a reverse engineering and�or inspection strategy �

We describe DEDS in more detail later� but they can be simply described as �

Dynamic systems �typically asynchronous	 in which state transitions are triggered by dis

crete events in the system�
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It is possible to control and observe hybrid systems �systems that involve continuous� discrete and symbolic

parameters	 under uncertainty using DEDS formulations ��������

The applications of this work are numerous � e�g�� automatic inspection of mechanical or electronic

components and reproduction of mechanical parts� Moreover� the experience gained in performing this

research will allow us to study the subdivision of the solution into reliable� reversible� and an easytomodify

software and hardware environments�

� Methodology for Inspection

In this section we describe the solution methodology and discuss the components separately� The control

�ow is also described and the methods� speci
c equipment and procedures to be designed and implemented

are also discussed in detail�

We use a vision sensor �B�W CCD camera	 and a coordinate measuring machine �CMM	 with the

necessary software interfaces to a Sun Sparcstation as the sensing devices� The object is to inspected by

the cooperation of the observer camera and the probing CMM� a DEDS is used as the highlevel framework

for exploring the mechanical part� Dynamic recursive 
nite state machines �DRFSM	 are used to exploit

the recursive nature of the parts under consideration� We next discuss DEDS in general and the recursive

DRFSM implementation of DEDS� then we proceed to apply the framework for the inspection process�

��� Discrete Event Dynamic Systems

Discrete event dynamic systems are dynamic systems �typically asynchronous	 in which state transitions

are triggered by the occurrence of discrete events in the system� DEDS are usually modeled by 
nite

state automata with partially observable events together with a mechanism for enabling and disabling a

subset of state transitions ���������� We propose that this model is a suitable framework for many reverse

engineering tasks� In particular� we use the model as a highlevel structuring technique for our system�

We can represent a DEDS by the following quadruple�

G � �X��� U��	

where X is the 
nite set of states� � is the 
nite set of possible events� U is the set of admissible control

inputs consisting of a speci
ed collection of subsets of �� corresponding to the choices of sets of controllable

events that can be enabled and � � � is the set of observable events�

We can visualize the concept of DEDS by means of the example in Figure �� The graphical representa

tion is quite similar to a classical 
nite automaton� Here� circles denote states� and events are represented

by arcs� The 
rst symbol in each arc label denotes the event� while the symbol following ��� denotes the

corresponding output �if the event is observable	� Finally� we mark the controllable events by ��u�� Thus�

in this example� X � f�� �� �� �g� � � f�� �� �g� � � f�� �g� and � is controllable at state � but not at state

��

An alive state is a state that can never undergo transitions leading to a state that has no outgoing

transitions �a dead state	� A system A is alive if all its states are alive� Stability can be de
ned with respect

to the states of a DEDS automaton� Assuming that we have identi
ed the set of �good� states� E� that

we would like our DEDS to �stay within� or to not stay outside for an in
nite time� then stabilizability

can be formally de
ned as follows�
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Figure �� A Simple DEDS Example

Given a live system A and some E � X � x � X is stabilizable with respect to E �or Estabilizable	

if there exists a combination of controllable events �control pattern	 K such that x is alive and does not

stay outside E forever �Estable	 when K is used� A set of states� Q� is a stabilizable set if there exists a

control pattern K so that every x � Q is alive and stable in AK �A under the control pattern K	� and A

is a stabilizable system if X is a stabilizable set�

A DEDS is termed observable if we can use any sequence of observable events to determine the current

state exactly at intermittent points in time separated by a bounded number of events� More formally� take

any su�ciently long string� s� that can be generated from any initial state x� For any observable system�

we can then 
nd a pre
x p of s such that p takes x to a unique state y and the length of the remaining

su�x is bounded by some integer no� Also� for any other string t� from some initial state x
�

� such that t

has the same output string as p� we require that t takes x
�

to the same� unique state y�

The basic idea behind strong output stabilizability is that we will know that the system is in state

E i� the observer state is a subset of E� The compensator should then force the observer to a state

corresponding to a subset of E at intervals of at most a 
nite integer i of observable transitions� If Z is

the set of states of the observer� then � A is strongly output Estabilizable if there exists a state feedback

K for the observer O such that OK is stable with respect to EO � f�x � Z j �x � Eg�

We advocate an approach in which a stabilizable semiautonomous visual sensing interface would be

capable of making decisions about the state of the observed machine part and the probe� Thus providing

both symbolic and parametric descriptions to the reverse engineering and�or inspection control module�

The DEDSbased active sensing interface will be discussed in the following section�

Modeling and Constructing an Observer

The tasks that the autonomous observer system executes can be modeled e�ciently within a DEDS frame

work� We use the DEDS model as a high level structuring technique to preserve and make use of the
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information we know about the way in which a mechanical part should be explored� The state and event

description is associated with di�erent visual cues� for example� appearance of objects� speci
c �D move

ments and structures� interaction between the touching probe and part� and occlusions� A DEDS observer

serves as an intelligent sensing module that utilizes existing information about the tasks and the environ

ment to make informed tracking and correction movements and autonomous decisions regarding the state

of the system�

In order to know the current state of the exploration process we need to observe the sequence of events

occurring in the system and make decisions regarding the state of the automaton� State ambiguities are

allowed to occur� however� they are required to be resolvable after a bounded interval of events� The

goal will be to make the system a strongly output stabilizable one and�or construct an observer to satisfy

speci
c taskoriented visual requirements� Many �D visual cues for estimating �D world behavior can be

used� Examples include� image motion� shadows� color and boundary information� The uncertainty in the

sensor acquisition procedure and in the image processing mechanisms should be taken into consideration

to compute the world uncertainty�

Foveal and peripheral vision strategies could be used for the autonomous �focusing� on relevant aspects

of the scene� Pyramid vision approaches and logarithmic sensors could be used to reduce the dimensionality

and computational complexity for the scene under consideration�

Error States and Sequences

We can utilize the observer framework for recognizing error states and sequences� The idea behind this

recognition task is to be able to report on visually incorrect sequences� In particular� if there is a pre

determined observer model of a particular inspection task under observation� then it would be useful to

determine if something goes wrong with the exploration actions� The goal of this reporting procedure is

to alert the an operator or autonomously supply feedback to the inspecting robot so that it could correct

its actions� An example of errors in inspection is unexpected occlusions between the observer camera and

the inspection environment� or probing the part in a manner that might break the probe� The correct

sequences of automata state transitions can be formulated as the set of strings that are acceptable by the

observer automaton� This set of strings represents precisely the language describing all possible visual task

evolution steps�

Hierarchical Representation

Figure � shows a hierarchy of three submodels� Motives behind establishing hierarchies in the DEDS

modeling of di�erent exploration tasks includes reducing the search space of the observer and exhibiting

modularity in the controller design� This is done through the designer� who subdivides the task space

of the exploring robot into separate submodels that are inherently independent� Key events cause the

transfer of the observer control to new submodels within the hierarchical description� Transfer of control

through the observer hierarchy of models allows coarse to 
ne shift of attention in recovering events and

asserting state transitions�
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Figure �� A Hierarchy of Tasks�

Mapping Module

The object of having a mapping module is to dispense with the need for the manual design of DEDS

automaton for various platform tasks� In particular� we would like to have an o� line module which is to

be supplied with some symbolic description of the task under observation and whose output would be the

code for a DEDS automata that is to be executed as the observer agent� A graphical representation of

the mapping module is shown in Figure �� The problem reduces to 
guring out what is an appropriate

form for the task description� The error state paradigm motivated regarding this problem as the inverse

problem of determining acceptable languages for a speci
c DEDS observer automaton� In particular� we

suggest a skeleton for the mapping module that transform a collection of input strings into an automaton

model�

Mapping Module

DEDS Automaton

Conditions

Transition

Task Language

Figure �� The Mapping Module�

The idea is to supply the mapping module with a collection of strings that represents possible state

transition sequences� The input highly depends on the task under observation� what is considered as

relevant states and how coarse the automaton should be� The sequences are input by an operator� It should

be obvious that the �Garbageingarbageout� principle holds for the construction process� in particular�
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if the set of input strings is not representative of all possible scene evolutions� then the automaton would

be a faulty one� The experience and knowledge that the operator have would in�uence the outcome of the

resulting model� However� it should be noticed that the level of experience needed for providing these sets

of strings is much lower than the level of experience needed for a designer to actually construct a DEDS

automaton manually� The description of the events that cause transitions between di�erent symbols in the

set of strings should be supplied to the module in the form of a list�

As an illustrative example� suppose that the task under consideration is simple grasping of one object

and that all we care to know is three con
gurations� whether the hand is alone in the scene� whether there

is an object in addition to the hand and whether enclosure has occurred� If we represent the con
gurations

by three states h� ho and hc� then the operator would have to supply the mapping module with a list

of strings in a language� whose alphabet consists of those three symbols� and those strings should span

the entire language� so that the resulting automaton would accept all possible con
guration sequences�

The mapping from a set of strings in a regular language into a minimal equivalent automaton is a solved

problem in automata theory�

One possible language to describe this simple automaton is �

L � hh�hoh
�

o
hch

�

c

and a corresponding DEDS automaton is shown in Figure ��

HCHOH

Figure �� An Automaton for Simple Grasping�

The bestcase scenario would have been for the operator to supply exactly the language L to the

mapping module with the appropriate event de
nitions� However� it could be the case that the set of

strings that the operator supplies do not represent the task language correctly� and in that case some

learning techniques would have to be implemented which� in e�ect� augment the input set of strings into

a language that satis
es some predetermined criteria� For example� y� is substituted for any string of y�s

having a length greater than n� and so on� In that case the resulting automaton would be correct up to a

certain degree� depending on the operator�s experience and the correctness of the learning strategy�

��� Sensing Strategy

We use a B�W CCD camera mounted on a tripod� and a coordinate measuring machine �CMM	 to sense

the mechanical part� A DRFSM implementation of a discrete event dynamic system �DEDS	 algorithm

is used to facilitate the state recovery of the inspection process� DEDS are suitable for modeling robotic

observers as they provide a means for tracking the continuous� discrete and symbolic aspects of the scene

under consideration ���������� Thus the DEDS controller will be able tomodel and report the state evolution

of the inspection process�
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In inspection� the DEDS guides the sensing machines to the parts of the objects where discrepancies

occur between the real object �or a CAD model of it	 and the recovered structure data points and�or

parameters� The DEDS formulation also compensates for noise in the sensor readings �both ambiguities

and uncertainties	 using a probabilistic approach for computing the �D world parameters ����� The

recovered data from the sensing module is then used to drive the CAD module� The DEDS sensing agent

is thus used to collect data of a passive element for designing structures� an exciting extension is to use a

similar DEDS observer for moving agents and subsequently design behaviors through a learning stage�

��� Dynamic Recursive Finite State Machines

Dynamic Recursive Finite State Machines �DRFSM	 are a new methodology to represent and implement

multilevel recursive processes using systematic implementation techniques� By multilevel process we mean

any processing operations that are done repetitively with di�erent parameters� �DRFSM	 has proved to be

a very e�cient way to solve many complicated problems in the inspection paradigm using an easy notation

and a straight forward implementation� specially for objects that has similar multilevel structures with

di�erent parameters� The main idea of the �DRFSM	 is to reuse the conventional DEDS Finite State

Machine for a new level after changing some of the transition parameters� After exploring this level� it

will retain its old parameters and continue exploring the previous levels� Also� the implementation of such

machines can be generated automatically by some modi
cation to an existing reactive behavior design

tool called �GIJOE	 ���� that is capable of producing code from state machine descriptions �drawings	�

by adding a recursive representation to the conventional representation of 
nite state machines� and then

generate the appropriate code for it�

����� De�nitions

� Variable Transition Value� If the transition condition from state to state contains some variable

values that depends on the level of recursion� then this value is called Variable Transition Variable

� Variable Transition Vector� Is the vector containing all variable transitions values� and is dy

namically changed from level to level�

� Recursive State� Is the state calling another state recursively� and this state is responsible for

changing the variable transition vector to its new value according to the new level�

� Dead�End State� it is the state that does not call any other state �no transition arrows comes out

of it	� In DRFSM� when this state is reached� that means to go back to a previous level� or quit if

it was the 
rst level� This state is usually called Errortrapping state� It is desirable to have several

deadend states to represent di�erent types of errors that could happen in the system�

����� DRFSM Representation

We will use the same notations and terms of the ordinary FSM�s� but some new notations will be added

to represent recursive states and variable transitions� First� we will add a new type of transition arrows�

as shown in Figure �� this is called the Recursive Transition Arrow �RTA	� A recursive transition arrow

from one state to another means that the transition from the 
rst state to the second state is done by
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Figure �� A Simple DRFSM

a recursive call to the second one after changing the Variable Transition Vector� Second� the transition

condition from a state to another may contain variable parameters according to the current level� These

variable parameters will be distinguished from the constant parameters by the notation V�parameter name	�

All variable parameters of all state transitions will constitute the Variable Transition Vector� Figure � is

the equivalent FSM representation �or the �at representation 	 of the DRFSM shown in Figure �� and it

illustrates the compactness and e�ciency of the new notations for this type of processes� In many cases�

however� it is impossible to build the equivalent FSM for a process that has some values of its Variable

Transition Vector unde
ned until their corresponding level is reached� In these cases DRFSM�s are the

most appropriate way to deal with such applications�

����� Implementation of DRFSM

There is a software tool for designing reactive behaviors called GIJOE ��� which was developed recently in

the Computer Science Department� it facilitate drawing any FSM� then it generates the required C code

for this machine� And since we are going to use the same notations and terms of FSM�s� it is convenient to

modify this package by adding some facilities to allow drawing of DRFSM�s and to generate the appropriate

C code with a recursive call to some states with variable transition conditions� The required modi
cations

will be accomplished in two phases�

� Drawing Phase�

� Code Generation Phase�

In the drawing phase a new arrow will be added �RTA	 to represent a recursive call to any state� Also

a notation for variable transition value will be added as shown in Figure �

In the code generation phase� it is very important to preserve backward compatibility� fortunately� that

is easy since we can check for the existence of RTA�s� So� if no RTA is found� then it is a FSM and the
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Figure �� Flat Representation of a Simple DRFSM
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Figure �� New Notation for GIJOE
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code generated for this machine will be the same as before� On the other hand� if any RTA is found� then

the following steps are required�

� Collect all variable transitions to form the VTV�

� For each RTA in the 
gure build a userde
ned function called Get New VTV to be 
lled by the

user of GIJOE later� since this function is very application dependent� then its purpose is to get

the values of the new vector to be used in the new level of recursion� and it will be called from the

recursive state�

� All states� functions will have a parameter which is the VTV�

With these modi
cations backward compatibility is guaranteed and the implementation of any DRFSM

is easily maintained� In Appendix A� a generated code for the DRFSM is shown�

It should be clear� however� that the code generated by GIJOE is only a skeleton for the machine� and

has to be 
lled out by the users according to the tasks assigned to each states�

����� How to use DRFSM �

To apply DRFSM for any problem the following steps are required�

� Problem Analysis� Divide the problem into states� so that each state accomplish a simple task�

� Transition Conditions� Find the transition conditions between the states�

� Explore the repetitive part in the problem �recursive property	 and Specify the recursive states�

Some problems however may not have this property� In those cases a FSM is a better solution�

� VTV formation � If there are di�erent transitions values for each level� these variables have to be

de
ned�

� Error trapping � Using robust analysis� a set of possible errors can be established� then one or more

DeadEnd state�s	 are added�

� DRFSM Design � Using GIJOE to draw the DRFSM and generate the corresponding C code�

� Implementation � The code generated by GIJOE has to be 
lled out with the exact task of each

state� the error handling routines should be written� and the required output has to be implemented

as well�

����	 Applying DRFSM in Features extraction

An experiment was performed for inspecting a mechanical part using a camera and the coordinate mea

suring machine� A prede
ned DRFSM state machine was used as the observer agent skeleton� The camera

was placed on a stationary tripod at the base of the table so that the part was always in view� The probe

could then extend into the 
eld of view and come into contact with the part� as shown in Figure ���
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closed region
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Figure �� An Example for a Recursive Object

Symbolic Representation of Features� For this problem we are concerned with Open regions �O	 and

Closed regions �C	� Any closed region may contain other features �the recursive property	� Using Paren

thesis notation the syntax for representing features can be written as follow�

� feature � �� C�� subfeature �	 j C�	

� subfeature � �� � term �� � subfeature � j � term �

� term � �� O j � feature �

For example� the symbolic notation of Figure � is

C�O� C��C�O� C�		� O		� C�		

Figure � shows the graphical representation of this recursive structure which is a treelike structure�

Future modi
cations to DRFSM�s includes allowing di�erent functions for each level�

The Figure �� shows a simple DRFSM DEDS machine for the exploration and inspection of mechanical

parts� using both active vision and touch sensors� Further experiments will be detailed in future technical

reports�

� Visual Processing

In order for the state machine to work� it must be aware of state changes in the system� As inspection

takes place� the camera supplies images that are interpreted by a vision processor and used to drive the

DRFSM�

The vision processor provides two separate pieces of information that are required by the machine�

intrinsic information about the part to be inspected� and state information as the inspection takes place�
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��� Extracting Feature Information

The state machine requires information about the �D features on the part to be inspected� We divide

�D features into two categories� open features and closed features� An open feature is considered to be an

edge that� when followed� has no closure� Closed features have the property that� through an edge pixel

search� we are able to complete a closed loop�

After digitizing an image of the part� edge responses are captured using the zerocrossing technique�

Next� we search the edge responses for the feature type that they represent� Using a recursive search and

the orientation information given by the zerocrossing algorithm� we are able to label each edge as part of

a closed feature or open feature�

��� Deciding Feature Relationships

Once we have found all of the features� we now search for the relationships between them� In the 
nal

representation of intrinsic information about the part� it is important to know which feature lies �within�

another closed feature�

Consider a scene with two features� a part with an external boundary and a single hole� We would

like to represent this scene with the string� �C�C�		�� This can be interpreted as� a closed region within

another closed region�

To discover if feature F� is contained within F� given that we know F� is a closed feature� we select a

point �x�� y�	 on F� and another point �x�� y�	 on F�� Now� we project the ray that begins at �x�� y�	 and

passes through �x�� y�	� We count the number of times that this ray intersects with F�� If this is odd then

we can say F� is contained within F� otherwise is must lie outside of F�� �See Figures �� and ��	

This algorithm will hold true as long as the ray is not tangential at the point �x�� y�	 of feature F��

To avoid this case� we simply generate two rays that pass through �x�� y�	 and a neighboring pixel on

F�� If either of these have an odd number of intersections then F� is contained in feature F�� Knowing

what features are present in the part and their relationships with each other will allow us to report the

information in a string that is sent to the state machine� This process will be explained in detail in the

next section�

��� Visual Observation of States

The visual processor supplies the proper input signals to the DRFSM DEDS as the inspection takes place�

These signals are dependent upon the state of the scene and are triggered by discrete events that are

observed by the camera�

The visual processor layer is made up of several 
lters that are applied to each image as it is captured�

Several things must be known about the scene before a signal is produced� The location of the part� the

location of the probe� the distance between them� the number of features on the part� and the distance to

the closest feature�

First� the image is thresholded at a graylevel that optimizes the loss of background while retaining the

part and probe� Next� a median 
lter is applied that removes small regions of noise� The image is then
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Figure ��� Experimental Setup

parsed to 
nd all segments separated by an appropriate distances and labels them with a unique region

identi
er�

We are able to assume that the probe� if in the scene� will always intersect the image border� The probe

tip is the farthest point on the probe region from the border� This holds true because of the geometry of

the probe� An image with one region� that intersects the border� is the case in which the probe is touching

the part�

If we have more than one region� we must discover the distance between the tip of the probe region and

the part� This is done through an edge following algorithm that gives us the x� y positions of the pixels on

the edge of each region� We then 
nd the Euclidean distances between the edge points and the probe tip�

The closest point found is used in producing the signal to the state machine�

Once this information is known� we are able to supply the correct signal that will drive the DRFSM

DEDS� The machine� will then switch states appropriately and wait for the next valid signal� This process

is a recursive one� in that� the machine will be applied recursively to the closed features� As the probe

enters a closed region� another machine will be activated� that will inspect the smaller closed region with

the same strategy that was used on the enclosing region�

� Experiment

An experiment was performed that integrated the visual system with the state machine� An appropriate

DRFSM was generated by observing the part and generating the feature information� A mechanical part

was put on a black velvet background on top of the coordinate measuring machine table to simplify the

vision algorithms� The camera was placed on a stationary tripod at the base of the table so that the part

was always in view� The probe could then extend into the 
eld of view and come into contact with the

part� as shown in Figure ���

Once the 
rst level of the DRFSM was created� the experiment could proceed as follows� First� an
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Figure ��� State Machine Used in Test

image was captured from the camera� Next� the appropriate image processing takes place to 
nd the

position of the part� the number of features observed �and the recursive string	� and the location of the

probe� A program using this information produces a state signal that is appropriate for the scene� The

signal is read by the state machine and the next state is produced and reported� Each closed feature is

treated as a recursive problem� as the probe enters a closed region� a new level of the DRFSM is generated

with a new transition vector� This new level then drives the inspection for the current closed region�

��� DRFSM DEDS example

The speci
c dynamic recursive DEDS automata generated for the test was a state machine G� Where

X � fInitial�EOF�Error�A�B�C�Dg and � � f������������������eofg� The state transitions were controlled

by the input signals supplied by intermediate vision programs� There are four stable states A�B�C� and D

that describe the state of the probe and part in the scene� The three other states� Initial� Error� and EOF

specify the actual state of the system in special cases� The states can be interpreted as�

� Initial State� Waiting for 
rst input signal

� A� Part Alone in Scene

� B� Probe and Part in Scene� probe is far from part�

� C� Probe and Part in Scene� probe is close to part�

� D� Probe touching or overlapping part� �recursive state	
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Figure ��� A Hierarchy Example

� Error� An invalid signal was received�

� EOF� The End of File signal was received�

��� Results

Two typical sequences from a probing task were run� In the 
rst sequence� the probe was introduced into

the scene and moved in a legal way �accepted by stable states in the machine	 towards the part until

contact was made� Next� the probe backed o� and again approached until the probe and part overlapped�

The automaton was forced into an error state by approaching from the other side of the part much too

fast� The probe was not seen until it was too close to the object body� Because a transition from state A

to C is invalid� and error state is reached� The part used was a simple one with only one hole� that is� it

is represented by � C�C�		�

Another sequence was tried out� the part was more complex� the representation was recovered to be the

following string � C�C�	�C�C�		�C�		� The probe was introduced into the scene and moved legally towards

the part� Next� the probe backed o� and again approached until the probe and the part overlapped� The

automaton was forced into an error state by the sudden disappearance of the probe after it was very close to

the part� Because a transition from state C to state A is invalid� an error state is reported� Each image was

displayed on a terminal window as it was captured along with the corresponding state of the automaton�

The same state representations are displayed for di�erent layers in the DRFSM �i�e� for di�erent features	�
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STATE D:  Probe Touching Object
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STATE B:  Probe  Approaching  Object

��
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Figure ��� The graph associated with the example

� Constructing the Recursive Relation

One of the problems we have encountered in this experiment was converting the set of relations between

closed regions to the proposed syntax for describing objects� For example� the syntax of Figure �� is�

C�C�C�	�C�		�C�		

and the relations generated by the image processing program are�

B � A �� ��	

C � A �� ��	

D � B �� ��	

D � A �� ��	

E � B �� ��	

E � A �� ��	

These relations can be represented by a graph as shown in Figure ��� the target is to convert this

graph to an equivalent tree structure� which is the most convenient data structure to represent our syntax�

As a 
rst attempt� we have designed an algorithm to convert from graph representation to tree rep

resentation by scanning all possible paths in the graph and putting weights to each node according to

number of visits to this node� In other words� update the depth variable of each node by traversing the

tree in all possible ways and then assigning the nodes the maximum depth registered from a traversal� and

propagating that depth downwards� Then from these depth weights we can remove the unnecessary arcs

from the graph by keeping only the arcs that has a relation between a father of maximum depth and a
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Figure ��� The tree associated with the example

son� and eliminating all other father arcs� thus yielding the required tree �Figure ��	� The complexity of

this algorithm was O�n log n	�

However� we have developed a better algorithm that scans the relations� count the number of occur

rences for each closed region name mentioned in the left side of the relations giving an array RANK�x	�

where x � fA�B�C����g� and select the relations �x� � x�	 that satis
es the following condition�

RANK�x�	  RANK�x�	 � �

This guarantees that all redundant relations won�t be selected� the complexity of this algorithm is

O�n	� Applying this algorithm to the relations of Figure �� we have�

RANK�A	 � �

RANK�B	 � �

RANK�C	 � �

RANK�D	 � �

RANK�E	 � �

The selected relations will be�

B � A

C � A

D � B

E � B

Now arranging these relation to construct the syntax gives�

A�B�		 �� A�B�	�C�		 �� A�B�D�		� C�		 �� A�B�D�	�E�		�C�		

which is the required syntax� A tree representing this syntax is easily constructed and shown in

Figure ��� The next step would be to insert the open regions� if any� and this is done by traversing the
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tree from the maximum depth and upwards� Any open region can be tested by checking any point in it

and checking whether it lies within the maximum depth leaves of the closed regions� tree hierarchy �The

test is easily done by extending a line and checking how many times it intersects a closed region� as in the

test for closed regions enclosures	� Then the upper levels of the hierarchy are tested in ascending order till

the root is reached or all open regions have been exhausted� Any open region found to be inside a closed

one while traversing the tree is inserted in the tree as a son for that closed region� It should be noticed

that this algorithm is not a general graph �� tree conversion algorithm� it only works on the speci
c kind

of graphs that the image processing module recovers� That is� the conversion algorithm is tailored to the

visual recursion paradigm�

� Current Developments

The application environment we eventually intend to develop consists of three major working elements� the

sensing� design� and manufacturing modules� The ultimate goal is to establish a computational framework

that is capable of deriving designs for machine parts or objects� inspect and re
ne them� while creating

a �exible and consistent engineering environment that is extensible� The control �ow is from the sensing

module to the design module and then to the manufacturing component� Feedback can be resupplied

to the sensing agent to inspect manufactured parts� compare them to the originals and continue the �ow

in the loop until a certain tolerance is met� The system is intended to be ultimately as autonomous as

possible� We intend to study what parts of the system can be implemented in hardware� Some parts

seem to be inherently suited to hardware� which will be discussed later� some other parts of the system

may be possible to put in hardware� but experimentation will provide the basis for making that decision�

Providing language interfaces between the di�erent components in the inspection and reverse engineering

control loop is an integral part of the project�

��� Robotics and Sensing

We intend to use a robot arm �a PUMA ���	� a vision sensor �B�W CCD camera	 mounted on the end

e�ector and a coordinate measuring machine �CMM	� A discrete event dynamic system �DEDS	 algorithm

will be used to coordinate the movement of the robot sensor and the CMM� The DEDS control algorithm

will also guide the CMM to the relevant parts of the objects that need to be explored in more detail

�curves� holes� complex structures� etc�	

��� Computer Aided Design and Manufacturing

The data and parameters derived from the sensing agent are then to be fed into the CAD system for

designing the geometry of the part�s	 under inspection� We intend to use the � � design environment �������

for that purpose� The goal is to provide automatic programming interfaces from the data obtained in the

sensing module to the � � programming environment� The parametric and �D point descriptions are to

be integrated to provide consistent and e�cient surface descriptions for the CAD tool� For pure inspection

purposes the computer aided geometric description of parts could be used as a driver for guiding both

the robotic manipulator and the coordinate measuring machine for exploring the object and recognizing

discrepancies between the real part and the model�
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The computer aided design parameters are then to be used for manufacturing the prototypes� Con

siderable e�ort has been made for automatically moving from a computer aided geometric model to a

process plan for making the parts on the appropriate NC machines and then to automatically generate

the appropriate machine instructions ���� We intend to use the Monarch VMC�� milling machine as the

manufacturing host� The � � system will produce the NC code for manufacturing the parts�

��� VLSI and Languages

The software and hardware requirements of the environment are the backbone for this project� We intend

to select parts of the system implementation and study the possibility of hardwiring them� There has

been considerable e�ort and experience in VLSI chip design ����� and one of the subproblems would be

to study the need and e�ciency of making customized chips in the environment� The DEDS model� as

an automaton� is very suitable for Path Programmable Logic �PPL	 implementation� A number of the

visual sensing algorithms could be successfully implemented in PPL� saving considerable computing time�

Integrated circuits for CAGD surface manipulation is an e�ort that is already underway� We intend to

investigate a new area� the possibility of implementing the DEDS part of the system in integrated circuitry�

There is a lot of interfacing involved in constructing the inspection and reverse engineering environments

under consideration� Using multilanguage objectbased communication and control methodology between

the three major components �Sensing� CAD and CAM	 is essential� We intend to use a common shared

database for storing data about the geometric model and the rules governing the interaction of the di�erent

phases in the reproduction and inspection paradigms ������� We also intend to use a graphical behavior

design tool ��� for the automatic production of the sensing DEDS automata code� from a given control

language description�

� Conclusions

We propose a new strategy for inspection and�or reverse engineering� We concentrate on the inspection

of machine parts� We also describe a framework for constructing a full environment for generic inspection

and reverse engineering� The problem is divided into sensing� design� and manufacturing components with

an underlying software and hardware backbone� This project aims at developing control strategies for

sensing the world and coordinating the di�erent activities between the phases� We use a recursive DEDS

DRFSM framework to construct an intelligent observer module for inspection� The developed framework

utilizes existing knowledge to formulate an adaptive and goaldirected strategy for exploring mechanical

parts�
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Appendix A

�� Code Generated for a Simple Dynamic Recursive Finite State Machine ��

main��

�

�� Some initializations ��

VTV�ptr � get�VTV�� �

drfsm �VTV�ptr� �

�� Finish Up ��

�

���������������������������������������������������������������������

drfsm �VTV�ptr�

�

�� do some initializations for each level ��

state�A �VTV�ptr� �

�� do some cleaning ��

�

����������������������������������������������������������������������

state�A �VTV�ptr�

�

int finish � 	 �

�� do something ��

while � 
finish ��

get�action� �x� �

if ��x  VTV�ptr���� �� �x � VTV�ptr������

finish � � �

state�B �VTV�ptr� �

��



�

�

�

����������������������������������������������������������������������

state�B �VTV�ptr�

�

int finish � 	 �

�� do something ��

while � 
finish ��

get�action� �c� w� �

if ��c  	��� �� �c � 	����

finish � � �

state�A �VTV�ptr� �

�

if �w  ��	��

finish � � �

state�C �VTV�ptr� �

�

�

�

����������������������������������������������������������������������

state�C �VTV�ptr�

�

int finish � 	 �

�� do something ��

while � 
finish ��

get�action� �L�z�y� �

if �z  ��VTV�ptr����sin�VTV�ptr������

finish � � �

state�B �VTV�ptr� �

�

if �y  VTV�ptr�����

finish � � �

state�D �VTV�ptr� �

��



�

if �L  �	��

newVTV�ptr � get�VTV�� �

drfsm �new�VTV�ptr� �

�� Free memory allocated to new�VTV ��

�� Complete something ��

�

�

�

����������������������������������������������������������������������

state�D �VTV�ptr�

�

�� do something ��

�� end of this level ��� return to previous level ��

�

���������������������������������������������������������������������
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