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ABSTRACT
Statistical shape analysis has emerged as an im portant tool for the quantitative analysis 

of anatomy in many medical imaging applications. The correspondence based approach 
to  evaluate shape variability is a popular method, based on comparing configurations of 
carefully placed landmarks on each shape. In recent years, methods for autom atic placement 
of landmarks have enhanced the ability of this approach to capture statistical properties of 
shape populations. However, biomedical shapes continue to  present considerable difficulties 
in autom atic correspondence optimization due to  inherent geometric complexity and the 
need to correlate shape change with underlying biological parameters. This dissertation 
addresses these technical difficulties and presents improved shape correspondence models.

In particular, this dissertation builds on the particle-based modeling (PBM) framework 
described by Joshua Cates’ 2010 Ph.D. dissertation. In the PBM  framework, correspon­
dences are modeled as a set of dynamic points or a particle system, positioned automatically 
on shape surfaces by optimizing entropy contained in the model, with the idea of balancing 
model simplicity against accuracy of the particle system representation of shapes. This 
dissertation is a collection of four papers th a t extend the PBM  framework to  include 
shape regression and longitudinal analysis and also adds new methods to  improve modeling 
of complex shapes. It also includes a summary of two applications from the field of 
orthopaedics.

Technical details of the PBM  framework are provided in Chapter 2, after which the 
first topic related to  the study of shape change over time is addressed (Chapters 3 and 
4). In analyses of normative growth or disease progression, shape regression models allow 
characterization of the underlying biological process while also facilitating comparison of 
a sample against a normative model. The first paper introduces a shape regression model 
into the PBM  framework to  characterize shape variability due to  an underlying biological 
parameter. It further confirms the statistical significance of this relationship via systematic 
perm utation testing. Simple regression models are, however, not sufficient to  leverage 
information provided by longitudinal studies. Longitudinal studies collect data  at multiple 
time points for each participant and have the potential to  provide a rich picture of the 
anatomical changes occurring during development, disease progression, or recovery. The



second paper presents a linear-mixed-effects (LME) shape model in order to  fully leverage 
the high-dimensional, complex features provided by longitudinal data. The param eters of 
the LME shape model are estim ated in a hierarchical manner within the PBM  framework.

The topic of geometric complexity present in certain biological shapes is addressed next 
(Chapters 5 and 6). Certain biological shapes are inherently complex and highly variable, 
inhibiting correspondence based methods from producing a faithful representation of the 
average shape. In the PBM  framework, use of Euclidean distances leads to  incorrect particle 
system interactions while a position-only representation leads to  incorrect correspondences 
around sharp features across shapes. The third paper extends the PBM  framework to  use 
efficiently computed geodesic distances and also adds an entropy term  based on the surface 
normal. The fourth paper further replaces the position-only representation with a more 
robust distance-from-landmark feature in the PBM  framework to  obtain isometry invariant 
correspondences.

Finally, the above methods are applied to  two applications from the field of orthopaedics. 
The first application uses correspondences across an ensemble of human femurs to  charac­
terize morphological shape differences due to  femoroacetabular impingement. The second 
application involves an investigation of the short bone phenotype apparent in mouse models 
of multiple osteochondromas. Metaphyseal volume deviations are correlated with deviations 
in length to quantify the effect of cancer toward the apparent shortening of long bones 
(femur, tibia-fibula) in mouse models.
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CHAPTER 1
INTRODUCTION

Statistical shape analysis is an im portant research tool in many fields such as medicine 
and biology. In general, researchers wish to  characterize shape variability and compute 
statistics to  test clinically relevant hypotheses. The focus of this work is the development 
of a general and robust system for shape modeling and analysis th a t researchers can easily 
use for multiple applications. This chapter lists the contributions of this dissertation and 
motivates them  in the context of the current shape analysis research.

1.1 Statistical Shape Analysis
Shape analysis involves autom atic com putation of models from populations of shapes, 

and the associated statistical testing framework. In biomedical applications, researchers use 
this framework to  characterize variability within shape populations and quantify differences 
between them. Each research problem requires unique analyses th a t statistical shape 
models provide. In neurological studies, statistical shape analysis has facilitated analysis 
of developmental processes, such as pediatric neurodevelopment and longitudinal studies 
of disease progression [1-3]. The study of how abnormalities in different structures of the 
brain influence the connections between them  is also of importance in studies of disorders 
like autism  [4]. In the orthopedics community, statistical shape analysis has been popular to 
study bone shapes in presence of pathology and for comparing normative and pathological 
populations, especially the knee and pelvic joints [5, 6]. Shape models have also been 
used for surface reconstruction for femur and pelvis shapes from sparse images [7, 8]. In a 
review, Klingenberg [9] notes th a t shape analysis has also been used extensively in studies 
of anthropology, paleontology, and evolution theory, apart from biomedical applications. 
Many of these studies use traditional morphometric techniques, relying on global measures 
such as length, angles, and areas [9].

1.1.1 M orphometrics
Morphometrics is the study of shape variation and its covariation with other vari­

ables [10, 11]. It represents a confluence of quantitative descriptions of morphological shape
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with statistical analyses describing patterns of variation within and among groups [12].

1.1.1.1 Traditional M orphometries
Early methods, also called traditional morphometrics [13] or multivariate morphomet- 

rics [14], apply statistical analysis and tools like the correlation coefficient [15], analysis of 
variance (ANOVA) [16], and principal component analysis (PCA) [17, 18] to collections of 
morphological measurements. The most popular measurements in traditional morphometry 
are linear distances, though angles, areas, and ratios [19] have also been used. An example 
from ornithology is shown in Fig. 1.1, where traditional measurements are useful indicators 
of growth.

However, many studies have also investigated allometry, trying to  separate overall size 
of a structure and its shape [20-22]. Since linear distance is usually highly correlated 
with size, a considerable effort has been put into extracting size-free measurements and 
using them  to  elucidate shape variation [23, 24]. Different size correction methods yield

j  m  i i i i . i  11  i r ' i n  |  i i  i r  i n  i i  i i  1 1 p  i ‘ i  i  t i i  i  f  t  i  p i p m  |  i i i . r  j  i  i n  r i . r  11  i i  i  n .  n  i  i r i . i  i . ' t  i  |  >  r ' r  i p - n r i  i  
l l  Z\ <. I 5 1 6 I 7 1 e l  6

F ig u re  1.1. Standard measurements of birds.
Reprinted with permission from W ikimedia Commons.
Available at: https://com m ons.wikim edia.org/w iki/File:BirdM orphom etrics.jpg.

https://commons.wikimedia.org/wiki/File:BirdMorphometrics.jpg
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different results, and this presents a problem since the separation of size from shape is 
an im portant consideration for allometric studies. Homology of commonly used distance 
measures (e.g., maximal width) is also difficult to  assess, as not all distances are measured 
between homologous points. These measures do not lend themselves easily for interpretation 
or visualization of shape variability [12, 25]. Thus, while traditional morphometrics possess 
a nice combination of multivariate statistics and quantitative morphological measurements, 
they have limited statistical power.

1.1.1.2 G eom etric M orphometrics
A series of advances exploring alternate methods of quantifying and analyzing morphol­

ogy, with particular interest in capturing the geometry of morphological shape, began to 
address the difficulties of traditional morphometrics. This was the geometric morphometric 
revolution described by Rohlf and Marcus [26]. Methods in geometric morphometrics 
employ a shape representation based on homologous landmarks, which is m athematically 
more systematic as compared to traditional methods and is also invariant to  size. Landmarks 
are explicitly defined coordinates of homologous points in two or three dimensions. They lie 
on the surface and are picked by an expert with domain knowledge. For example, Fig. 1.2(a) 
shows an example from an anthropology study where anatomically significant landmarks 
have been picked on a cichlid fish [12]. Landmarks represent the underlying geometry better 
than  traditional morphometrics measurements, which do not provide much information 
about shape homologies and may be corrupted by intra- and interobserver errors.

The most widely used framework for landmark-based shape analysis was proposed 
by David Kendall, who formulated a rigorous m athem atical definition of shape based on 
homologous landmarks, invariant to size and orientation [27-29]. In parallel, researchers 
developed the mathem atical tools required to  align and normalize landmark da ta  with

F ig u re  1.2. An example of geometric morphometry and its limitations: (a) Landmarks 
recorded on body of cichlid fish, (b) Landmarks of 412 specimens before and after GPA 
Reprinted with permission from Taylor & Francis, D. Adams, F. J. Rohlf, and D. Slice, 
Geometric morphometrics: Ten years of progress following the “revolution, Ital. J. Zool., 
vol. 71, no. 1, pp. 516, 2004.
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respect to  size and orientation. Most notable among these methods were Bookstein’s two- 
point registration and thin  plate spline (TPS) warping method [25, 30] and the generalized 
procrustes analysis (GPA) method pioneered by Goodall [31-33]. GPA removes variation 
in location, orientation, and size and aligns shapes in an arbitrary (yet common) coordinate 
system. This alignment results in points th a t can be projected into the tangent space 
of Kendall’s shape space [28]. Conventional statistical analyses can be carried out in 
the linear tangent space [11, 12]. Results of these statistical analyses can be visualized 
directly in term s of the landmark configurations since the geometry of shapes is preserved 
throughout the analysis. Shape differences can be visualized by interpolating the coordinate 
transform ations th a t warp one landmark configuration to  another, analogous to D ’Arcy 
Thom pson’s transform ation grids, which were interpolated using TPS [34].

While the landmark-based methods described above work well for small samples and 
simple shapes, they are limited by the need for manual landmarking. Manual landmarks are 
prone to observer error and difficult to reproduce. They may also miss subtle variations and 
fail to provide a complete analysis of shape variability. Fig. 1.2(b) shows landmarks from 412 
cichlid specimens before and after alignment using GPA. While geometric morphometrics 
captures the overall shape variability, it is difficult to  capture details of the cichlid shape with 
a just a few manually placed landmarks. Advances in three dimensional imaging modalities 
like magnetic resonance imaging and computed tomography has led to  increased use of 
computationally derived models, which have distinct advantages over manual landmarking 
methods.

1.1.2 C om putationally Derived M ethods
Computationally derived models provide a much more detailed representation of shape 

geometry and are able to capture more subtle shape variations. Visualization of shape 
variability and statistical results are also improved since a more detailed representation 
of the geometry is created and preserved during the analysis process. Computationally 
derived methods are unsupervised, making them  faster and more efficient. These methods 
are also less susceptible to  observer error and bias, and thus results are easy to reproduce. 
W ith the advent of noninvasive imaging, computationally derived shape models are an 
im portant tool for the study of anatomy in the presence of pathology and longitudinal 
studies of development and disease progression. Two categories of computationally driven 
shape models are popularly used. The first group, registration-based methods, considers 
shape to  be embedded in image intensity values and uses nonlinear alignment to  map 
these images to  a tem plate image or atlas. The second group, with which this dissertation
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is concerned, builds upon geometric morphometrics to  sample shapes systematically and 
obtain an arbitrarily dense set of correspondences for statistical analysis. The models in 
this category are known as point distribution models [35], point-based models [36], or simply, 
correspondence models.

1.1.2.1 R egistration-Based M ethods
Registration-based methods nonlinearly align image volumes to  a tem plate and con­

sider the population variability to be captured by the registration parameters. An early 
example of shape modeling using registration-based methods is the work of Bajcsy, which 
applied TPS methods to  model brain structures [37]. Wright and Ashburner introduced 
a more general framework based on registration for the study of brain structures. This 
framework includes voxel-based morphometry and deformation-based morphometry, which 
capture anatomical differences at the mesoscopic scale and can also be used to capture 
global anatomical differences via deformations [38, 39]. Several other researchers have 
also contributed to  shape modeling based on voxel and tensor-based methods, which are 
reviewed by Ashburner in [40]. These methods align a population of images to  a tem plate 
and then use distributions of transformed intensity values, transformed tensor values, or 
the transform ations themselves over a localized region to  compute statistics. Diffeomorphic 
registration forms another class of registration-based shape analysis methods. Miller et al. 
first proposed diffeomorphic image registration using geodesic fluid flow models and linear 
statistics in the space of initial momenta [41-43]. These methods have been used to  study the 
brain structure [42] and have also been applied for analysis of cardiac pathology [44]. Davis 
and Joshi note th a t diffeomorphic flows are invertible and further develop the approach by 
estim ating an unbiased anatomical atlas for regression analysis [45, 46].

1.1.2.2 Correspondence M ethods
Correspondence methods are autom ated extensions of landmark-based methods and 

work by randomly sampling shapes in a sufficiently dense manner, capturing detailed 
geometric variability in the shapes. Landm ark models have two main working assumptions. 
The first assumption is th a t the chosen homologous points represent anatomically significant 
positions on the shape and are linked by some biological process [11]. The second is tha t 
landmarks capture all variability in the underlying shapes relevant to  the biological problem 
being solved. These assumptions require landmark-based methods to  be supervised and 
carefully formulated by domain experts. Correspondence methods avoid both these a priori 
assumptions and attem pt to learn the variability present in the underlying shapes. S tatis­
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tical analysis for correspondence models can then be performed using the same techniques 
and approximations used for earlier landmark-based methods.

The problem of autom atically finding correspondence points across all shapes is ill-posed 
since potentially an infinite number of possible sets of correspondences can be picked for 
any given shape population. Regularization via geometric constraints is usually applied 
to  ensure a faithful representation of the underlying geometries. Several researchers have 
proposed methods th a t use purely geometric regularization, considering only one shape at 
a time. This type of regularization works by constructing a set of shape parameterizations 
then sampling surface point locations in a consistent fashion to  choose correspondences. 
An early example of purely geometric regularization is the use of Fourier descriptors used 
to  parameterize two-dimensional contours [47, 48]. Nain et al [49] have proposed similar 
approaches based on spherical wavelets. Medial representations of shape have also been used 
to  construct nonlinear shape models for neurobiological studies [1, 50]. Another method tha t 
constructs nonlinear models is the sliding landmark method, which builds correspondences 
via minimization of the bending energy of a TPS transform ation between correspondences 
on individual shapes and an atlas [51, 52].

One of the most popular approaches using purely geometric regularization is based 
on spherical harmonic descriptions of shape segmentations (SPHARM), by Brechbuhler 
et al. [1, 53]. The SPHARM description is computed from surface meshes using an area 
preserving, distortion minimizing spherical parameterization. Correspondences are then es­
tablished by aligning the first order ellipsoid from the SPHARM coefficients. An icosahedron 
subdivision scheme is used to  create triangulated surfaces (SPHARM-PDM), which are then 
aligned using GPA for statistical analysis. Thus, this method generates a param eterization 
of each sample shape individually, w ithout any knowledge of other shapes in the population. 
This poses a significant problem for populations with a large variability in the shapes. For 
example, consider the box-bump dataset described in [54] and displayed in Fig. 1.3(top), 
where a bump is randomly placed on a rectangular contour of constant dimensions. Since 
SPHARM-PDM models each shape individually, the method does not recognize the fact 
th a t the bump is a single feature w ith varying position. This happens because the focus is 
on area preservation and minimum distortion during SPHARM-PDM creation, and shape 
similarity is not optimized in a systematic manner, resulting in an incorrect model, as 
shown in Fig. 1.3(bottom). Styner et al. [55] also reiterate this lim itation in a recent review 
of correspondence methods for local shape analysis. A combination of purely geometric 
regularization with a consideration of population statistics like to tal variation or information
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F ig u re  1.3. Top: A training set of synthetic box bump shapes. Middle: The model built 
using the correct correspondence, which has just one mode of variation. Bottom: The 
first mode of a model built using an incorrect correspondence. For both models, examples 
generated by varying the first mode within the range ±3 \/A i are shown.
Statistical models of shape - optimisation and evaluation, Objective functions, 2008, 70, R. 
H. Davies, C. J. Twining, and C. J. Taylor, W ith permission from Springer.

content can be used to avoid this problem and obtain a model similar to Fig. 1.3(middle).
The idea of autom atically placing correspondences by minimizing information content 

across shape populations was first proposed by Kotcheff and Taylor [56]. Their objective 
function is the determ inant of the covariance matrix, which is optimized via a genetic 
algorithm to  obtain improved correspondences. It should be noted th a t this is similar to 
minimizing the total variance of the model. Davies et al. [57] propose a similar objective 
function based on the minimum description length (MDL) to  obtain a piecewise linear 
reparam eterization using a hierarchical minimization scheme. This approach works on the 
assumption th a t the best description of the population is given by the simplest possible 
description, one th a t encodes the da ta  and model parameters using the shortest length. 
Thus, the MDL model is optimized to  find the minimal cost of transm itting model param ­
eters based on the correspondences. An extension of the MDL method to  three dimensions
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is given in [58]. This extension requires a spherical param eterization as an input and 
creates octahedral subdivisions to  establish correspondences. These correspondences are 
m anipulated in the optimization iterations by using Cauchy kernels for smoothed updates. 
An im portant problem is how to  ensure th a t the resulting correspondences still represent 
valid shapes from the original population. Many methods have been proposed to regularize 
the MDL formulation and avoid this problem, but they introduce additional parameters 
and make the optimization more complex. Several extensions have been proposed [59, 60], 
but MDL continues to be prohibitive for surfaces, which do not exhibit a spherical topology. 
In spite of these difficulties, MDL models are effective for a large class of shapes and 
result in improved correspondences when compared to methods using purely geometric 
regularization, as shown in [55]. This work also notes th a t MDL performance is virtually 
the same as th a t of minimizing sample covariance or m inlog |£  +  a l | [61].

Cates et al. explore this property further in the particle-based modeling (PBM) frame­
work [36], in which shapes are modeled as nonparametric, dynamic particle systems th a t do 
not rely on a specific topology. Particle positions are directly optimized, w ithout the need for 
intermediate param eterization, and an extension to open surfaces is also implemented [62]. 
This framework explicitly constructs valid shape representations during optimization by 
optimizing an entropy measure on their distributions. The PBM  framework is compared to 
the MDL method using a set of box bump shapes similar to  the one described earlier. The 
result of this experiment, which used 24 shapes and is described in [36] shows tha t the first 
mode of variation for the PBM  framework remains faithful to the original population when 
varied within the range of ±3 standard deviations to  produce shapes similar to  Fig. 1.3 
(middle). Further m athem atical details of the PBM  framework are provided in Chapter 2. 
This dissertation extends and builds upon the PBM  framework by adding new criteria for 
correspondence optimization, thus making the framework applicable to  a broader class of 
shapes.

1.2 Motivation and Research Contributions
Shape analysis methods reviewed in the previous section have been successfully used 

in many biomedical applications. However, further improvements are required to  make 
these techniques more readily available to biologists and clinicians working with a broader 
class of problems. This dissertation aims to  build a robust shape analysis framework tha t 
biologists can easily apply to analyze populations of increasingly complex shapes. The 
framework also needs to  be flexible to let clinicians leverage growing amounts of longitudinal
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data  to study shape trends of normative development and compare them  with trends of 
disease progression. To achieve this, this work builds upon the PBM  framework by adding 
new correspondence optimization methods and also provides statistical methods relevant 
to  specific biological problems. This section further motivates and describes the research 
contributions of this work.

1.2.1 Shape Regression
Shape regression is an essential technology to  relate anatomical changes with an un­

derlying biological parameter, such as age. One clinical example is the study of brain 
development during childhood and adolescence. While there is a rich selection of studies 
th a t describe growth patterns based on volumetric measurements, there has been very little 
work on modeling early head and brain growth over time. Such a study of the influence of 
development on shape, via shape regression, can result in aggregate models of growth with 
variability and be of great use in developmental analyses for pediatric neurodevelopment. 
Shape regression not only provides basic insights into the evolution of shape as driven by the 
underlying biological parameter, but also has the potential to allow comparison of individual 
trends against normative models. The biggest bottleneck in obtaining such models is the 
difficulty in precise characterization of shape variability due to underlying model parameters 
and a systematic, unbiased way to  test for correlations in the high dimensional setting of 
imaging applications.

The first contribution of this work, presented in Chapter 3, is a method to  include shape 
regression within the PBM  framework and also provide a method to  test model significance 
via a specifically designed nonparam etric perm utation test. This work was done with Dr. 
Joshua Cates at the Scientific Computing and Imaging (SCI) Institute, University of Utah.

1.2.2 Longitudinal Analysis
Longitudinal studies provide a rich picture of anatomical changes occurring during 

normative development or disease progression by collecting imaging da ta  at multiple time 
points for each individual. Linear mixed-effects (LME) models [63] are a popular choice for 
longitudinal analysis of univariate data. However, these models find little to  no application 
in the high dimensional setting of most biomedical applications where the biggest bottleneck 
is the estim ation of a large number of model parameters. The recent use of mixed-effects 
models on a small number of manually selected landmarks [64] to model facial shape 
development is encouraging and can be adapted to  obtain dense correspondences.

The second contribution of this work, presented in Chapter 4, is an LME model for
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shapes. The param eters of the model are estim ated in a hierarchical fashion within the PBM 
framework. The estim ation process is interleaved with the correspondence optimization step 
to  yield correspondences based on the LME model. The significance of the model is tested 
using a specifically designed perm utation test. This work was done with Abhishek Singh 
at the SCI Institute, University of Utah. Further, this extension is applied to test for 
differences between low and high-risk groups in an autism  study. This work was done with 
Prasanna M uralidharan at the SCI Institute, University of Utah.

1.2.3 Nonregular Shapes
Medical or biological shapes are typically derived from the interfaces between organs or 

tissue types and present a significant challenge in the form of sharp features or regions with 
high curvature. Around such features, particle interactions in ambient space, coupled with 
the use of Euclidean distance, may result in incorrect correspondences. More specifically, 
points in different tangent spaces may interact and violate surface constraints, or seemingly 
nearby points may interact even though they sample completely different features on the 
shape. Nonregular shapes also pose a challenge in establishing correspondences across 
shapes. This is due to  the fact th a t most correspondence methods rely solely on point 
positions. In such cases, the best alternative is to  move away from sole reliance on particle 
position as a feature and consider the direction as well. Oguz et al. [65] propose a general­
ized entropy framework where functions of positions are considered in the correspondence 
optimization framework, rather than  the point positions themselves. However, it must be 
noted th a t it is not always convenient to  evaluate such functions for any given population.

This work extends the PBM  framework to  include geodesic distances for computing 
intrashape particle interactions, which results in a more sensitive representation of the 
underlying shape geometry. Geodesic distances are efficiently computed using the fast 
iterative method, described in detail in Chapter 2, on an intermediate triangle mesh shape 
representation. A new entropy term  based on surface normals is also introduced to  improve 
correspondences near sharp features across shapes. These methods, presented in Chapter 5, 
are applied to a study to  quantify shape differences between cardiac left ventricle walls from 
controls and patients w ith ischemia.

Geometric complexity of certain biological shapes (e.g., cortical surface) further exposes 
problems due to  sole reliance on particle position to  establish correspondence. In such 
cases, due to  the highly curved nature of the surface, even a strong degree of adaptivity 
may not produce a dense sampling such th a t nearby particles can be assumed to  lie on the 
local tangent planes, unless a very high number of particles are used. The use of such high
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number of particles incurs a high com putational cost and may still allow interaction between 
geodesically distant particles on highly folded surfaces. Widely used software packages 
such as FreeSurfer [66] and BrainVoyager [67] use cortex inflation—a process of removing 
cortical folds and then, typically, mapping to  a sphere—to overcome the complexity in 
matching cortical surfaces. Correspondence based on point positions is sensitive not only 
to  geometric complexity, but also to  anatomical variability in shapes where a failure to 
match common features across shapes can lead to inconsistent correspondences. It is also 
desirable to  have isometry invariant correspondences for a robust analysis of populations 
of highly nonregular shapes. The success of distance-to-landmark type features to  achieve 
an isometry invariant matching between two shapes [68-70] demonstrates th a t collections 
of such distances are rich, nearly complete descriptions of shapes and might be useful to 
obtain dense, isometry-invariant correspondences for shape populations.

The next contribution of this dissertation, presented in Chapter 6, is the use of geodesic 
distances to landmarks to provide improved, isometry-invariant correspondences on complex 
shapes like the human cerebral cortex.

1.2.4 A pplications to Orthopedics
Statistical shape models have long been popular in the orthopedics community to  study 

bone shapes in presence of pathology and for comparison of populations, especially the knee 
and pelvic joints [5, 6]. Shape models have also been used for surface reconstruction for 
femur and pelvis shapes from sparse images [7, 8]. Nonparam etric correspondence methods, 
like the ones presented in this dissertation, allow comparison of complex 3D morphology 
w ithout any assumptions about the ideal geometry associated with the bone under study. In 
cooperation with clinical collaborators, this dissertation attem pts to  validate the methods 
and apply them  to  explore specific clinical questions in the field of orthopedics, as described 
in Chapter 7.

Cam femoroacetabular impingement (CAM-FAI) is characterized by a malformed femoral 
head th a t may cause shearing between the femur and acetabulum, leading to joint damage 
and early hip osteoarthritis. Two-dimensional radiographic measurements are commonly 
used to  diagnose FAI, but provide only a planar view of the femoral head and often assume 
the ideal femur shape to be spherical. Furthermore, most radiographic measures do not 
provide quantitative information th a t translates well for preoperative planning (i.e., they 
cannot specify the location and extent of a lesion, nor the amount of bone th a t should be 
debrided). The shape analysis methods from this dissertation can be used to  objectively 
compare complex femur morphology without the need to  assume ideal geometry.
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The first application describes a study to  quantify 3D variation and morphological 
differences between control and CAM type femurs. This work was done in collaboration 
with Dr. Andrew Anderson and Dr. Michael Harris from the Departm ent of orthopedics, 
University of Utah.

Multiple osteochondromas (MO) is a heritable disorder of connective tissue character­
ized by multiple lesions on the metaphyses of long bones. Individuals with MO variably 
dem onstrate reduced linear growth of the long bones, which lead to  dram atic deformities 
and pose one of the many clinical challenges in the treatm ent/surgical planning process. 
One hypothesis relates to  a possible steal phenomenon, where the peripheral spread of the 
cancer steals the longitudinal growth potential of the affected bone.

The second application uses shape correspondences to  study MO in mouse models. This 
work was done in collaboration with Dr. Kevin Jones from the Huntsm an Cancer Institute, 
University of U tah School of Medicine.

1.3 Software
The ShapeWorks software [71] implements the PBM  pipeline as a collection of command 

line executables. The core library manages particle system representations of shapes and 
implements the original entropy-based correspondence optimization method [36]. There are 
additional libraries constructed using the Insight toolkit (ITK) [72] for numerical optimiza­
tions and a graphical user interface for visualization of results, built using the Visualization 
toolkit (VTK) [73] and QT [74]. The work in this dissertation includes extensions to 
the ShapeWorks core library to improve correspondences for highly nonregular shapes and 
incorporates simple linear regression and linear mixed effects shape models to  study shape 
change over time. These methods are incorporated as tem plated C + +  classes and are 
invoked via specific settings in the ShapeWorks param eter file. The updated ShapeWorks 
software is freely available on the SCI Institu te  software page [71]. Additional tools are also 
made available for geodesic distance computation, landmark annotation, and computing 
distance to  landm ark features. Statistical analysis and perm utation tests are implemented 
in the R environment [75].

1.4 Document Organization
This dissertation is presented as a hybrid collection of reprints of published papers and 

observations from collaborative clinical projects. The chapters are organized as follows:
C hapter 2 provides technical background for the PBM  framework and gives details of 

an efficient method used to  compute geodesic distances.
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Chapter 3 extends the PBM  framework to  include linear shape regression and develops 
methodology for testing model significance.

Chapter 4 describes the addition of the linear mixed-effects shape model into the PBM 
framework for longitudinal analysis.

Chapters 5 and 6 describe the general methodology and implementation to improve 
geometric correspondences for populations of nonregular surfaces via the substitution of Eu­
clidean distance measures with their geodesic counterparts (first contribution in Chapter 5), 
the use of an entropy term  based on surface normals (second contribution in Chapter 5) 
and the extension of correspondence optimization beyond ‘particle position’ via distance 
features from anatomically significant landmarks (Chapter 6).

C hapter 7 describes work with clinical collaborators to apply and validate the particle 
correspondence framework while addressing specific biomedical problems.

Chapter 8 provides a summary of the research contributions of this dissertation and also 
lists some limitations and directions for future work.
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CHAPTER 2
TECHNICAL BACKGROUND

This dissertation builds upon the PBM  framework proposed by Cates et al. [1] and 
applies it to  a wider class of biological shapes. The PBM  framework is extended to 
include models of shape change over time. This work also adds new features, based on 
geodesic distances, to improve sensitivity of the correspondences in presence of geometric 
complexity and high variability in certain shape classes. These new features involve com­
putation of geodesic distances between pairs of dynamic correspondences and also between 
correspondences and predefined landmarks. Computing such a large number of geodesic 
distances is prohibitive w ithout the use of fast, parallel algorithms for solving partial 
differential equations (PDEs). The meshFIM algorithm, given by Fu et al. [2], performs 
fast com putation of geodesic distances between vertices on a triangle mesh and has proved 
immensely useful in key aspects of this work dealing with correspondences for nonregular 
surfaces.

This chapter provides a detailed technical background of the two components mentioned 
above. The first half describes the PBM  framework and establishes relevant m athematical 
notation for the next four chapters. It also gives an overview of the shape analysis pipeline 
used in this work. The second half of this chapter discusses details of the meshFIM algorithm 
for fast geodesic distance com putation and concludes with a description of the preprocessing 
steps required to  obtain geodesic distances for the methods in this dissertation.

2.1 Particle Based Modeling (PBM) Framework
In accordance with the principal of parsimony in model selection, the particle-based 

correspondence optimization method [1, 3] seeks to  maximize geometric accuracy and 
statistical simplicity of the shape model. The general strategy of this method is to  represent 
correspondences as point sets th a t are distributed across an ensemble of similar shapes by 
gradient descent optimization of an energy function. Point sets are modeled nonparamet- 
rically as dynamic particle systems, a terminology from the computer graphics literature 
(e.g., [4]), in a method th a t operates with few free parameters. A complete description of
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the particle distribution model is beyond the scope of this dissertation and the reader is 
referred to [5]. Below is an overview of the m athem atical framework and the m ajor steps 
in the PBM pipeline.

2.1.1 Surface Representation and Correspondences
The PBM framework m athem atically defines a surface as a smooth manifold of co­

dimension one, embedded in a Euclidean vector space. The surface may be open or closed, 
based on whether the manifold has a boundary or not. A closed surface is a manifold 
with no boundary, containing a single connected component. Examples of closed surfaces 
studied in this dissertation include brain structures like the left, right hemispheres and the 
cerebellum. An open surface is a manifold with a boundary, defined in biological studies 
as a region of interest within a larger structure. An example of an open surface studied in 
this work is the head shape enclosing the brain structures and bounded by a cutting plane. 
Fig. 2.1 shows two views of the brain structures and head shape as examples of closed and 
open surfaces, respectively. The following discussion assumes closed surfaces. Open surfaces 
are discussed in C hapter 3.

The surface representation first proposed in [6] is employed and numerical approaches 
by Meyer et al. [4] are adapted to create a particle system representation for each shape 
in the population. These particle systems are then allowed to interact to obtain optimal 
correspondences across shapes in the population. Particle system representations avoid 
problems of param etric representations and are not limited to specific topologies. Individual 
particles also do not have fixed neighbors, unlike vertices on a mesh, and can freely move 
past one another in the optimization process to form an optimal model.

Given a sample of N  surface representations from a population of surfaces, embedded

F ig u re  2.1. Two views of closed surfaces: left hemisphere (violet), right hemisphere 
(green), cerebellum (yellow), and open surface: head shape (transperent orange), with 
the cutting plane used to define the head shape boundary
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in a d-dimensional Cartesian space, the correspondence model is defined as follows. The 
shape variation is modeled using a set of M  d-dimensional points (xi) on each of the N  
surfaces. Each of these points is called a correspondence. Following the convention in [7], 
the set of M  points is called a configuration, and the set of all possible configurations is the 
configuration space. An example of a shape configuration is shown at the left of Fig. 2.2. 
The M  x d m atrix of Cartesian coordinates in a configuration is the configuration matrix, 
C, shown to the right of Fig. 2.2. Correspondence between shapes is established by the 
ordering of points in the N  configurations and the rows of the m atrix C. The geometric 
variation in the shapes is then described by the variation in the rows of C.

Concatenating the correspondence positions for each configuration into a vector makes 
it possible to  map the configuration into a single point X  in a dM  dimensional space, 
called shape space. The set of shapes forms a distribution in shape space, whose statistical 
properties can be estimated. A cartoon depiction of the mapping of a configuration from the 
hand shapes to  a point in the high dimensional shape space is shown on the left of Fig. 2.3. 
The middle graph shows a hypothetical distribution of hand shapes in the shape space. Even 
though the graph is depicted to be two dimensional, the real shape space is dM  dimensional. 
Fig. 2.3 also illustrates a cartoon depiction of the basic correspondence optimization strategy 
from the initial distribution in shape space to  an optimized distribution with less variance. 
In this strategy, movement of individual points on a configuration results in a corresponding

F ig u re  2.2. An example of a shape configuration (left) and the configuration m atrix (right) 
for a set of hand shapes
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F ig u re  2.3. An illustration of the correspondence optimization in shape space

movement of the configuration in shape space.

2.1.2 Surface Entropy
Let a surface be defined as a smooth, closed manifold of codimension one, which is a 

subset of (e.g., d =  3 for volumes). This surface is sampled using a discrete set
of N  points th a t are considered random variables Z =  (X 1, X 2, . . . ,  X N)T, X  e drawn 
from a probability density function (PDF), p(X ). A realization of this PD F is denoted with 
lower case, to obtain z =  (x 1, x 2, . . . ,  x n ) t , where z e S N. The probability of a realization 
x  is p(X  =  x), which is simply denoted as p(x). The amount of information contained in 
such a random sampling is, in the limit, the differential entropy of the PDF, which is

H  [X] =  — / p(x) log p(x)dx =  —E  {log p(X )} (2.1)

where E {•} is the expectation.
Approximating the expectation by the sample mean gives

1
H  [X] ~  -  !og P (x,:) (2.2)

The PBM  algorithm manipulates particle positions using a gradient descent optimization
on a cost function C (x1, • • • , x M) ~  H  (X ), which is an approximation of negative entropy.
The resulting optimization problem uses a Gauss-Seidel update with forward differences.

dCEach particle therefore moves with a time step and positional update x* ^  x* — 7 ^ — . Thed x*
partial gradient of C for particle i evaluates to,

d c  =  ^  M  d X p (x j) 
dx* M  p (x j ) (2.3)

To estimate p(x*), a nonparam etric Parzen window estimation based on particle configura­
tions is used. The probability of the particle position is given by the mixture of multivariate 
Gaussian kernels,



24

p (x  a) -  M  £ G (x -  x j, a) (2.4)

where G (x — x j , a) is a d-dimensional, isotropic Gaussian with standard deviation a. To 
simplify the computation, the PBM  formulation instead considers p to be fixed for a given 
particle update: for j  =  i, the estim ation of the density function at j  is allowed to lag 
behind the update of particle position i. The final partial derivative of p with respect to 
position is computed then to  be

where wij  are Gaussian weights based on interparticle distance and ^ j  wij  =  1. To minimize 
C , the particles must move away from each other. Thus, particles move under a repulsive 
force and are constrained to  lie on the surface. The reader is referred to  [5] for the full 
m athem atical derivation of this gradient.

The minimization described above gives a uniform sampling of a surface. An adaptive 
sampling scheme is desired for some applications, where higher order shape information 
is more effective. Sampling high curvature regions more densely also ensures a reliable 
degree of regularity in the tangent planes between adjacent particles in these regions. Such 
an adaptive sampling can be obtained by modifying the Parzen windowing in Eqn. 2.4 as 
shown below.

where kj is a scaling term  proportional to  the curvature magnitude computed at each 
neighbor particle j . This scaling effectively warps space in response to  local curvature 
and computes a uniform sampling based on maximum entropy in the warped space. This 
results in an adaptive sampling in the unwarped space, with a more dense packing of points 
in regions of high curvature. The scaling term  given by Meyer et al. [4] is used. The reader 
is directed to  [5] for further details of the scaling term  and com putation of the modified 
gradient.

(2.5)

(2.6)

M
(2.7)

2.1.3 Ensemble Entropy
An ensemble comprised of M  surfaces, E =  z 1, . . . ,  zM can be described by a N d x  M  

m atrix of particle positions P  =  (x^), where k =  1 , . . . ,  M  and j  =  1 , . . . ,  N . Let z k e  KdN
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G (P) =  1 log |XT | =  1 log -Y t  Y  +  a l (2.8)

be an instance of a random variable Z, then, modeling p(Z) parametrically as a Gaussian 
with covariance X gives the entropy H (Z ) «  1 log |X| =  2 ^ l o g  a . , where A. are the 
eigenvalues of X. The covariance is estim ated from the data, letting Y  denote the m atrix 
of (centered) points for the ensemble, which gives X =  (1 /(d N M  — 1))Y Y t .

Because dN  >  M , covariance com putation is performed on the M  dimensional dual 
space. As detailed in [5], the covariances |X| and |X T| are equivalent up to  a constant 
regularizing factor a , thus giving the final cost function associated with ensemble entropy:

1
dN M  — 1

The com putation of the gradient com putation of the ensemble entropy, a strategy similar 
to  the gradient com putation for the surface entropy is applied, and the estim ation of the 
mean of the distribution Z is allowed to  lag behind the updates given by | p . This simplifies 
the gradient com putation by allowing the assumption th a t . This approximation
becomes more accurate as the number of shape samples is increased, and changes in 
individual particle positions have increasingly less of an effect on the sample mean. The 
m atrix of partial derivatives of G with respect to  Y , including the regularization, is given
by [5h

d p  «  Y (Y t Y  +  a I ) -1 (2.9)
The regularization a  thus accounts for a diminishing determ inant, and the negative gradient 
of G gives a vector of updates for the entire system and is recomputed once per system 
update.

2.1.4 Cost Function
The final energy function is a combination of the surface entropy (Eqn. 2.2) and the 

ensemble entropy (Eqn. 2.8), given by
M

Q  =  H  ( Z ) H ( X k) (2.10)
k= 1

Correspondence positions are optimized by gradient descent on the energy function Q, which 
balances the negative entropy of the distribution of particles in configuration space with 
the positive entropy of the distribution of the configurations in shape space.

The correspondence points are updated using a combination of the negative gradient 
from the ensemble entropy and the gradient of the surface entropy. The update for corre­
spondence point j  on shape k is given by

x k ^  x k +  y dG dC+d  x k d  x k (2.11)
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The reader is referred to [5] for further details on the various param eter settings.

2.1.5 ShapeW orks Pipeline
Any set of implicit surfaces can be used as an input to the PBM  framework. The shapes 

are preprocessed to  remove antialiasing artifacts using the r-tightening algorithm [8]. This is 
followed by distance transform  computation. Any suitably accurate distance transform  can 
be used as the implicit surface required for the PBM  framework. The final preprocessing step 
involves a Gaussian blurring of the distance transforms to remove high frequency artifacts 
th a t may be caused by numerical approximations.

The correspondences are initialized using a hierarchical splitting strategy. The initializa­
tion starts with a single particle on each shape, which is split to place a new particle nearby. 
This two-particle-per-shape system is allowed to  relax until it reaches a steady state. This 
splitting followed by optimization continues till a user-defined number of correspondences 
are obtained. The generated models increase in detail w ith every split.

Once the user-defined number of particles have been initialized, GPA [9] is applied at 
regular intervals in the optimization process to remove any residual nonshape information 
from the model.

2.2 Fast Iterative Method (FIM)
The distance between each point a on the surface and every other point, can be conceived 

as the solution to  the eikonal equation | Vu| =  1 (e.g., [10-12]), using the boundary condition 
u(a) =  0. The fast iterative method (FIM) [12] is extremely efficient on SIMD architectures, 
but works only for regular grids. An intermediate representation based on unstructured 
triangular meshes is used to describe surfaces used in this dissertation. An extension of 
the FIM for triangular meshes, meshFIM, given by Fu et al. [2] is used for fast, efficient 
geodesic distance computation.

2.2.1 Solution of Eikonal Equation
Geodesic distance can be conceived as the numerical solution of the Eikonal equation, a 

special case of nonlinear Hamilton-Jacobi partial differential equations (PDEs), defined on 
a two-dimensional manifold with a scalar speed function

|  H  (x. V «  =  |V s« x ) |2 -  - ^ = 0  Vx e i c * >  (212)
\  0(x) =  B (x) Vx e  Q c  § 

where § is a smooth two-dimensional manifold in K3, V§ is the gradient operator in the 
tangent plane to  the manifold, 0(x) is the travel time or distance from the source, f  (x) is
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a positive speed function defined on §, and Q is a set of smooth boundary conditions. The 
solution is approximated on triangulation of §, denoted §t  , and is represented point-wise 
on the set of vertices V in S t . This solution can be interpolated across triangles in a linear 
fashion.

2.2.2 Local Solver
In Eqn. 2.12, tessellation § t is available for the manifold §, and the numerical solution 

of the equation 0(x) is defined on the vertices of § t . The solution at each vertex, or the 
travel time, is computed from the current value at the vertex and its one-ring neighbors, 
using a linear approximation on each triangle face. An example tessellation and one-ring of 
vertex vi is shown in Fig. 2.4. At each vertex vi, The approximate solution 0i 0(x i), is 
set to  be the minimum among the n values associated with each triangle in the one-ring.

Considering a triangle Ti,2,3 in Fig. 2.5, an upwind scheme tha t complies with the 
causality property is used to  compute the solution 0 3, from values 0 1 and 0 2. Locally, 
the characteristics are perpendicular to the gradient of 0 and the travel time to v1 must 
be determined by time associated with a line segment lying in the triangle Ti,2,3. If the 
difference in travel time between v1 to  v2 is 0 1,2 =  0 1 — 02 and vertices v1 and v2 are

F ig u re  2.4. An example tessellation with the one-ring highlighted for vertex vi (modified 
from [2])
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F ig u re  2.5. Triangle representation for upwind update at vertex V3

upwind of V3, there is a characteristic passing through V3 th a t intersects edge e i ,2 at position 
xa =  x i +  Aei,2, where A is unknown and A e  [0 , 1] in order for the characteristic to  intersect 
the edge. The line segment th a t describes the characteristic across 71,2,3 is

eA,3 =  ei,3 — e i,A =  ei,3 — Aei,2 (2.13)

Thus the travel time from xa to  x 3 can be computed as ^a ,3 =  f  |e^,31 =  f  |e i ,3 — Aei,2|. 
Using linear approximation,

^A =  ^(xa) =  ^ i +  A^i,2 (2.14)
The solution at V3 is the solution at xa plus the travel time from xa to the vertex V3

^3 =  ^A +  ^A,3 =  A^i,2 +  ^ i +  f  |e i ,3 — Aei,2| (2.15)
A must minimize ^3 since the characteristic direction is the same as the gradient of 

the solution. Setting the derivative of Eqn. 2.15 with respect to A to zero, results in the 
quadratic equation

pA2 +  qA +  r  =  0 (2.16)
where

f P =  c2( f  2c2 — ^ , 2)
< q =  — 2bc(f2c2 — 4>{ 2) cos a  (2.17)

r  =  f  2c2b2 cos2 a  — ^ 2 2b2.
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The discriminant A is defined as

A =  4b2c2( f 2c2 -  01,2)01,2 sin2 a

and there are three possible cases in the solution. W hen ( f 2c2 — 01,2) >  0, the real 
root of Eqn. 2.16 exists, and solutions can be found on the line segment e1,2 under some 
conditions. Otherwise, the vertices v 1 and v2 are not upwind of v3. Further details about 
the implementation and the special case of obtuse triangles are elaborated in [2].

2.2.3 Algorithm  for C PU
Fig. 2.6 shows the CPU meshFIM algorithm based on asynchronous updates based on 

the upwind scheme.

meshFIM( V, B, L)

do

comment: 1. Initialization ( V : all vertices, L : active list, B\ seed vertices) 
for each u fc V 

' if
do then <— 0

k else * —  oo 
for each u C V

if any 1-ring vertex of u £ B 
then add -u to Z, 

comment: 2. Update vertices in L  
whileZ. is not empty

for each xi (z V

q * UpdateCu) 
if 1/7- 1̂ < e

" for each adjacent neighbor vn6 of n

{  *

do do
f  if x>nb is not in L

P '-^n b
then do then

q* Update(uflA)
\ip>q

add x>nb to Lthen
{

F ig u re  2.6. CPU algorithm for meshFIM updates, adapted from [2]
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Vertices are updated one at a time. After each vertex is updated, its value is consistent 
of its upwind neighbors, and each update is immediately transferred to the solution to  be 
used by subsequent updates.

The algorithm maintains a list of active vertices, and sequentially updates values using 
the upwind scheme described above, at vertices in the list until the last element is reached. 
Thereafter, the list simply loops back to the beginning. This process continues until the 
active list is empty. Once a vertex is updated, its value is consistent with the upwind neigh­
bors, and each update is immediately transferred to  the solution to  be used by subsequent 
updates.

A vertex is kept on the active list until the difference between the old and new value 
falls below a predefined tolerance e. Once the tolerance level is reached, this vertex is called 
e-converged and removed from the active list along with all of its potentially downwind 
neighbors. These downwind neighbors are updated one final time before removal and are 
added back to  the list if they are not e-converged. The reader is referred to [2] for further 
analysis and extensions of the meshFIM algorithm.

The CPU version of the meshFIM algorithm described above is used to  compute geodesic 
distances in this work. These distances are precomputed between all vertices of an inter­
mediate triangle mesh representation for all shapes in the population, and the values are 
interpolated on the implicit surface using a double-interpolation scheme detailed in Chapter
5.
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CHAPTER 3
PARTICLE BASED SHAPE REGRESSION  

OF OPEN SURFACES WITH  
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DEVELOPMENTAL 
NEUROIMAGING

This chapter is a reprint of Proc. MICCAI, Particle based shape regression of open 
surfaces with applications to developmental neuroimaging, vol. 2, 2009, pp. 167-174, 
M D atar, J Cates, P T  Fletcher, S G outtard, G Gerig, RT W hitaker, with permission 
of Springer
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Manasi D atar, Joshua Cates, P. Thomas Fletcher, Sylvain G outtard, 

Guido Gerig, and Ross W hitaker
Scientific C om puting and Im aging In s titu te  
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Salt Lake City, U tah

A b str a c t. Shape regression prom ises to  be an im portan t tool to  study  
the relationship betw een anatom y and underlying clinical or biological 
param eters, such as age. In th is paper we propose a new m ethod to 
building shape models th a t  incorporates regression analysis in th e  pro­
cess of optim izing correspondences on a set of open surfaces. T he sta tis­
tical significance of the  dependence is evaluated using perm u ta tion  tests 
designed to  estim ate the likelihood of achieving th e  observed sta tistics 
under num erous rearrangem ents of th e  shape param eters w ith respect 
to  the explanatory  variable. We dem onstrate the m ethod on syn thetic 
d a ta  and provide a new results on clinical M RI d a ta  related  to  early 
developm ent of the hum an head.

1 In tro d u ctio n
Technologies for shape representation and statistical shape analysis are impor­
tan t for several problems in medical imaging including image segmentation, 
quantitative analysis of anatomy, and group comparisons. A widely used ap­
proach is to evaluating shapes is assign correspondences or landmarks to shapes 
(curves, or surfaces) and to compare the positions or configurations of these 
landmarks. This approach has benefitted in recent years from methods for the 
autom atic placement of landmarks in a way th a t captures the statistical prop­
erties of an ensemble of images [1,2,3]. Finding correspondences tha t minimize 
description length [2] or entropy [1] has been shown to generate shape models 
th a t systematically capture the underlying variability of the population and con­
form, qualitatively, to the underlying anatomy. This paper extends the method 
of Cates et al. [1], which uses an variational formulation of ensemble entropy to 
position dense collections of landmarks, or particles.

On the clinical front, quantitative magnetic resonance imaging has signifi­
cantly advanced our understanding of brain development during childhood and 
adolescence. Courchesne et al. [4] describe differences in growth patterns in 
autism compared to controls. However, these studies do not include children 
below the age of 4 years. D ata measured in infants from birth to 4 years are 
mostly volumetric measurements, such as intracranial volume and volumes of
G.-Z. Yang et al. (Eds.): MICCAI 2009, Part II, LNCS 5762, pp. 167-174, 2009.(C Springer-Verlag Berlin Heidelberg 2009
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brain lobes and subcortical structures [5]. Whereas this selection of previous 
work demonstrates very active research towards determining brain growth at 
early stage of development, there is little data  on modelling head and brain 
growth across a continuum of time and almost no work on the study of how 
development influences shape.

In developmental analyses, such as paediatric neurodevelopment, shape re­
gression gives aggregate models of growth, with variability. Thus shape analysis 
promises to give not only basic insights into the process of development, but also 
allow comparisons of individuals against normative models. O f course, precise 
characterizations of these relationships will require shape models th a t can tease 
apart those aspects of shape variability th a t are explained by the underlying 
variables and those th a t are not. Likewise, in order to understand the statistical 
significance of such relationships we will need a systematic, unbiased method for 
testing these correlations. These are the topics addressed in this paper.

2 M eth o d o lo g y
This section gives a brief overview of the particle-system correspondence opti­
mization method, which is first described in [1]. The general strategy of this 
method is to represent correspondences as point sets th a t are distributed across 
an ensemble of similar shapes by a gradient descent optimization of an objective 
function th a t quantifies the entropy of the system. Our proposed extension to 
this method incorporates a linear regression model into the correspondence op­
timization. We also present a new methodology for correspondence optimization 
on open surfaces where surface boundaries are defined by arbitrary geometric 
constraints—which is im portant for studying paediatric head shape.
C o rre sp o n d e n c e  O p tim iz a tio n
We define a surface as a smooth, closed manifold of codimension one, which 
is a subset of (e.g., d =  3 for volumes). We sample a surface S  C 
using a discrete set of N  points th a t are considered random variables Z =  
(X i , X 2, . . .  , X N)T, X  £ drawn from a probability density function (PDF), 
p(X ). We denote a realization of this PD F with lower case, and thus we have 
z =  (x1,x 2, . . . , x n ) T, where z £ S N . The probability of a realization x  is 
p(X  =  x), which we denote simply as p(x).

The amount of information contained in such a random sampling is, in the 
limit, the differential entropy of the PDF, which is

H[X] =  — f  p (x)logp(x)dx =  —E{logp(X )}, (1)s
where E{-} is the expectation. Approximating the expectation by the sample 
mean, we have H[X] «  — ^  logp(xj). To estimate p(xj), we use a non- 
parametric Parzen windowing estimation, modified to scale density estimation 
in proportion to local curvature magnitude. The kernel width a  is chosen adap­
tively at each x* to maximize the likelihood of th a t position. We refer to the 
positions x  as particles, and a set of particles as a particle system.

168 M. Datar et al.
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Now consider an ensemble E, which is a collection of M  surfaces, each with 
their own set of particles, i.e., E =  z1, . . . ,  zM. The ordering of the particles on 
each shape implies a correspondence among shapes, and thus we have a m atrix 
of particle positions P  =  x k, with particle positions along the rows and shapes 
across the columns. We model zk £ ffiNd as an instance of a random variable Z, 
and minimize a combined ensemble and shape cost function

Q =  H (Z) -  £ H (P k), (2)
k

which favors a compact ensemble representation balanced against a uniform dis­
tribution of particles on each surface. Given the low number of samples relative 
to the dimensionality of the space, we use a parametric approach described in [1] 
for density estimation in the space of shapes. The entropy cost function Q is min­
imized using a gradient descent strategy to manipulate particle positions (and, 
thus, also correspondence positions). The surface constraint is specified by the 
zero set of a scalar function F (x). This optimization strategy balances entropy 
of individual surface samplings with the entropy of the shape model, maximizing 
the former for geometric accuracy (a good sampling) and minimizing the latter 
to produce a compact model.

Any set of implicitly defined surfaces is appropriate as input to this frame­
work. For this paper, we use binary segmentations, which contain an implicit 
shape surface at the interface of the labeled pixels and the background. To re­
move aliasing artifacts in these segmentations, we use the r-tightening algorithm 
given by Williams et al. [6]. Correspondence optimizations are initialized with 
the splitting strategy described in [1], starting with a single particle on each 
object. We use a Procrustes algorithm, applied at regular intervals during the 
optimization, to align shapes with respect to rotation and translation, and to 
normalize with respect to scale.
C o rre sp o n d e n c e  w ith  R eg ress io n  A g a in s t E x p la n a to ry  V ariab les . W ith 
the assumption of a Gaussian distribution in the space of shapes, we can 
introduce a generative statistical model

z =  fj< +  e,e ~  N (0 , E ) (3)
for particle correspondence positions, where ^  is the vector of mean correspon­
dences, and e is normally-distributed error. Replacing ^  in this model with a 
function of an explanatory variable t gives the more general, regression model

z =  f ( t)  +  eJ e ~ N ( ° , E ) - (4)
The optimization described in the previous section minimizes the entropy asso­
ciated with e, which is the difference from the mean. In this paper, we propose 
to optimize correspondences under the regression model in Eqn. 4 by instead 
minimizing entropy associated with e, the residual from the model. Considering 
particle correspondence to be a linear function of t, given as f  (t) =  a  +  bt, we

Particle Based Shape Regression of Open Surfaces 169
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need an estimate of parameters a  and b  to compute e. We estimate these with 
a least-squares fit to the correspondence data,

arg min E {a, b) =  ^ Y '  [(a +  btk) -  z k]T [(a +  btk) -  z k] . (5)a,b 2 ^k
Setting f f  =  =  0 and solving for a  and b, we have a  =  z k -  Efc b t k) ,
and b  =  (E  k tk z k — E  k zk E k  tk ) M E  k t k — (E  tk f )  .The proposed regression model optimization algorithm then proceeds as fol­
lows. Correspondences are first optimized under the nonregression model (Eqn 3) 
to minimize the entropy associated with the total error e, and to establish an 
initial estimate for a  and b. We then follow the same optimization procedure as 
described in Section. 2, but replace the covariance of the model with the covari­
ance of the underlying residual relative to the generative model. We interleave 
the two estimation problems, and thus the parameters a  and b  are re-estimated 
after each iteration of the gradient descent on the particle positions.
C o rre sp o n d e n c e s  on  O p en  S urfaces. To compute correspondence positions 
on a set of open surfaces, we propose an extension to the sampling method re­
viewed in Section. 2. The proposed method is to define the boundary as the 
intersection of the surface S  with a set of geometric primitives, such as cutting 
planes and spheres. Our goal is to formulate the interactions with these bound­
aries so th a t the positions of these constraints has as little influence as possible 
on the statistical shape model.

For each geometric primitive, we construct a vir­
tual particle distribution that consists of all of the 
closest points on its surface to the particles x* on S .
During the gradient descent optimization, particles 
x* interact with the virtual particles, and are there­
fore effectively repelled from the geometric primi­
tives, and thus from the open surface boundary. The 
virtual distributions are updated after each iteration 
as the particles on S  redistribute under the opti­
mization. Because the virtual particles are allowed 
to factor into the Parzen windowing kernel size es­
timation, particles x* maintain a distance from the 
boundary proportional to their density on the surface S . In this way, features 
near the boundary may be sampled, but particles are never allowed to lie on the 
actual boundary itself. One such configuration is shown in Figure. 1
P e rm u ta t io n  T est o f S ignificance. Analysis of variance (ANOVA) is the 
standard parametric test for testing if the explanatory variables have a significant 
effect in a linear regression. The test statistic used is

=  R 2/ ( m -  1)
( l - R ? ) / ( n - m y  { )
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F ig . 1. Particle  system  
w ith  geom etric prim itives 
defining the boundary
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where R 2 is Pearson’s coefficient of regression, generally defined as R 2 = 1 — ssTl > 
where SSerr is the sum-squared residual error, and S S tot represents total variance 
in the data. In general, R 2 can be related to the unexplained variance of the 
generated model, and is used to measure the goodness-of-fit for the regression 
model. When the residuals of the linear model are iid Gaussian, the statistic T  
follows an F  distribution with m  — 1 and n — m  degrees of freedom under the 
null hypothesis.

In this case where the outcome variables are correspondence-optimized shape 
parameters, the underlying assumptions of the parametric F -test may not hold. 
Furthermore, optimization with knowledge of the underlying param eter could 
lead to optimistic estimates of significance, because we are explicitly minimizing 
the residual. To overcome this, we propose a nonparametric perm utation test 
for significance. Perm utation tests for regression work by permuting the values 
of the explanatory variables. This allows us to compute a distribution of our 
test statistic under the null hypothesis th a t the explanatory variable has no 
relationship to the dependent variable. Given data  (zi , t i), we generate the kth  
permuted data  set as (zi , t 7rfc(i)}, where is a perm utation of 1 , . . . ,n .  For 
each perm utation we compute a test statistic Tk using (6). Then comparing our 
unpermuted test statistic T  to the distribution of Tk, we can compute the p- 
value as the percentage of Tk th a t are greater than T . Notice, th a t for the case 
of regression-optimized correspondences, described in Section 2, we perform a 
the correspondence optimization on each perm utation separately, and thus the 
results of our permutation test are not biased by the correspondence method.

3 R esu lts  and  D iscu ssio n
This section details experiments designed to illustrate and validate the proposed 
method. First, we present an experiment with synthetically generated tori to 
illustrate the applicability of the method and validation based on permutation 
tests. Next, we present an application to the study of early growth of head shapes 
extracted from structural MRI data.

To illustrate and validate the proposed methods, we performed two exper­
iments on sets of 40 synthetically generated tori, parameterized by the small 
radius r  and the large radius R. The values for the shape parameters were cho­
sen as independent functions of a uniformly distributed explanatory variable t. 
The definition of R 2, used to compute the test statistic as explained in Section. 2, 
is extended to include the two independent variables for this experiment:

P2 _ , (SS e r r ) r  (SSe r r ) R
=  ~  (SStot)r +  (SStot)R ' 1 j

We examine sets of time-dependent shapes with p-values {0.01, 0.1} in order 
to examine the performance of the system with and without significance. To 
construct these example data  sets, we use the value for the statistic T  (look 
up from the F-distribution) to generate a target R 2. The values of r  and R 
are chosen such that the R 2 of the generated set is approximately equal to the
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target R 2 for th a t experiment. Along with explicit correspondences generated 
from the standard torus parametrization, we use the correspondence methods 
from Section. 2, optimization with and without an underlying regression model, 
to optimize correspondences using 256 particles on each shape. An analysis of 
the resulting models showed th a t all three sets of correspondences exhibited two 
pure modes of variation.
S y n th e tic  D a ta  (T ori). Here we present the results of the statistical analysis 
of the tori test data  using perm utation tests consisting of 1000 permutations of 
the explanatory variable t. For the correspondences we compute the test statis­
tics using the two dominant modes from a PCA on the set of correspondences. 
The procedure described in Section. 2 is then applied to get the corresponding 
p-values. Table. 1 shows the results of the two perm utation tests for the explicit 
correspondences, and correspondences generated using the proposed methods. A 
comparison of the parametric p-value with the p-values obtained by the perm uta­
tion tests confirms th a t the proposed methods preserve the relationship between 
the explanatory variable and the dependent variables. The correspondence-based 
approaches, particularly with the regression model, show greater significance 
than the parametric case. This might be an inherent property of the statistic 
or it could be an artifact due to the limited number of example datasets and 
the limited number of permutations. Future work will include more datasets, 
more permutations, and a bootstrapping procedure to analyze variability of the 
p-values computed by the various methods.
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T ab le  1. R esults of perm uta tion  tests  (1000 perm utations)
p-value p-value C orrespondence Type
(theory) (param etric) Explicit Min. E ntropy Regression-based

0.01 0.011 0.011 0.007 0.004
0.1 0.095 0.095 0.067 0.066

H e ad  S h ap e  R eg ress io n . The proposed regression-based correspondence 
method is also used to study the growth of head shape from structural MRI 
data  obtained from clinical studies spanning the age range from neonate to 5 
year old. The 40 cases include 1.5T, T1-weighted MRI scans with resolutions of 
1mm x 1mm x 1mm  and 0.4mm x 0.4mm x 3.6mm. The scans are preprocessed 
and segmented to obtain the head surfaces, which are input to the optimization 
process. Manually placed landmarks on the bridge of the nose and the openings 
of the left and right ear canals define a cutting plane and a pair of spheres that 
we use as constraints, as in Section. 2, to repel the correspondences from the 
neck, face, and ears, in order to restrict the analysis to the cranium, which is 
most interesting from a neurological point of view. Figure. 1 shows the particle 
system distributed across one of the head shapes after optimizing 500 particles.

Head size, measured in volume or circumference is well known to correlate 
with age. This is confirmed by the linear regression plot (size versus log of age) 
with p < 2 x 10-16, shown in Figure. 2. Next, the shapes were preprocessed
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using methods mentioned in Section. 2 to remove the effects of size. Changes in 
head shape along the linear regression line (shape versus log of age) are shown 
in Figure. 3. Note the relative lengthening of the head, and the narrowing at the 
temples with increasing age. These shape changes are consistent with clinical 
observations th a t neonatal brain growth proceeds more rapidly in the forebrain. 
These results tie head shape to age in the paediatric setting.

The perm utation tests for both 
the proposed methods for this ex­
ample showed that none of 1000 
permutations gave a better corre­
lation than the input data. While 
this p =  0 result is not conclusive, 
it does give strong evidence for sig­
nificance. Future work will include 
more permutations to more accu­
rately evaluate the significance.

The experiments were run on a 
2GHz processor with run times of 
approximately 15 minutes for the 

tori (256 particles) and 40 minutes for the head shapes (500 particles). The per­
m utation tests (1000 permutations) were run as parallel processes on a 
16-processor machine.

0 0 0 0 0

F ig . 2. Changes in head size w ith age

F ig . 3. Overview of head shape regression: Changes in head shape w ith  age

4 C on clu sion
This paper describes a method for shape regression th a t accounts for explana­
tory variables in the placement of correspondences and allows for open surfaces 
with arbitrary geometric constraints, and presents a mechanism for hypothesis 
testing of the role of underlying variables in shape. Results from a study of head 
shape growth indicate th a t the proposed method can be applied to quantita­
tive characterization of the relationship between age and head shape in young
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children. Such analysis will generate data  beyond the currently established stan­
dard of head circumference measurements as an index of growth. Moreover, it 
will generate normative data  as a continuous growth model of shape, which can 
be useful in building optimal MRI head coils for young infants. The continu­
ous shape model could also find use in population studies where two groups are 
compared with respect to growth trajectory rather than differences at individual 
time points.
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A b str a c t. In this paper, we propose a new method for longitudinal 
shape analysis that fits a linear mixed-effects model, while simultane­
ously optimizing correspondences on a set of anatomical shapes. Shape 
changes are modeled in a hierarchical fashion, with the global population 
trend as a fixed effect and individual trends as random effects. The statis­
tical significance of the estimated trends are evaluated using specifically 
designed permutation tests. We also develop a permutation test based 
on the Hotelling T 2 statistic to compare the average shapes trends be­
tween two populations. We demonstrate the benefits of our method on 
a synthetic example of longitudinal tori and data from a developmental 
neuroimaging study.

1 In trod u ctio n
Longitudinal imaging studies involve the collection of imaging data  at multiple 
time points for each participant. Such studies have the potential to provide a 
rich picture of the anatomical changes occurring during development, disease 
progression or recovery. Tracking each individual in a longitudinal study gives a 
model of change with a clarity that cannot be achieved in a cross-sectional study. 
Further, a more accurate model is possible if each individual in a longitudinal 
study acts as their own control, that is, factors th a t vary between individuals 
remain constant within the same individual. This control over nuisance factors 
reduces the variance in measurements and results in higher statistical power to 
quantify change.
* The IBIS Network. Clinical Sites: University of North Carolina: J. Piven (IBIS Net­

work PI), H.C. Hazlett, C. Chappell; University of Washington: S. Dager, A. Estes, 
D. Shaw; Washington University: K. Botteron, R. McKinstry, J. Constantino, J. 
Pruett; Childrens Hospital of Philadelphia: R. Schultz, S. Paterson; University of 
Alberta: L. Zwaigenbaum; Data Coordinating Center: Montreal Neurological Insti­
tute: A.C. Evans, D.L. Collins, G.B. Pike, P. Kostopoulos; Samir Das; Image Pro­
cessing Core: University of Utah: G. Gerig; University of North Carolina: M. Styner; 
Statistical Analysis Core: University of North Carolina: H. Gu; Genetics Analysis 
Core: University of North Carolina: P. Sullivan, F. Wright.

S. Durrleman et al. (Eds.): STIA 2012, LNCS 7570, pp. 76-87, 2012.© Springer-Verlag Berlin Heidelberg 2012
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Previous work on characterizing anatomical shape changes has focused pri­
marily on the analysis of cross-sectional data. Approaches to the shape regres­
sion problem have been formulated for several shape representations or metrics, 
including diffeomorphic shape changes [1], medial shape representations [2], a t­
las appearance models [3], deformation tensors [4], and shape regression using 
particle-based representation in [5]. Work on longitudinal shape modeling in­
cludes the use of diffeomorphic mappings and parallel transport by Qiu et al. [6] 
to track changes in an individual and mapping the individual trends to a pop­
ulation atlas. Durrleman et al. [7] construct spatiotemporal image atlases from 
longitudinal data. Lorenzi et al. [8] use a hierarchical model on stationary ve­
locity fields, in a framework tha t does not include a Riemannian metric on the 
manifold of diffeomorphisms. Fishbaugh et al. [9] estimate smooth growth trajec­
tories as deformations defined through flows with regularized acceleration fields. 
Barry and Bowman [10] built mixed-effects models on a small number of man­
ually selected landmarks to model the development of facial shape. [11] develop 
a manifold version of a mixed-effects model to analyze longitudinal data  taking 
values on a Riemannian manifold.

Linear mixed-effects models, pioneered by Laird and Ware [12] have become a 
natural choice when modeling univariate longitudinal data. These models are hier­
archical, characterizing each individual trend as a linear model, which in turn  can 
be modeled as a perturbation of the overall population trend. While these models 
are powerful for analyzing univariate or low-dimensional multivariate data, little 
has been done in the high-dimensional setting, such as longitudinal data extracted 
from medical images. A major bottleneck is the difficulty of estimating the large 
number of parameters involved in covariances between random effects.

In this paper, we present a new method for characterizing longitudinal shape 
change that combines point correspondences across shapes with the statistical 
modeling of individual and population trends via the linear mixed-effects model. 
Our shape models are based on the particle correspondence framework intro­
duced by Cates et al [13], wherein, particle positions on the object surfaces 
are optimized in a variational framework that seeks a balance between model 
simplicity and geometric accuracy of the surface representations.

2 B ackground
In the following section we provide a brief overview the particle-system corre­
spondence optimization method as proposed in [13]. The general strategy of this 
method is to represent correspondences as point sets that are distributed across 
an ensemble of similar shapes by minimizing an objective function tha t quantifies 
the entropy of the system. We also review the linear mixed-effects model, de­
scribed by Laird and Ware [12], and used as the underlying statistical descriptor 
of longitudinal changes in our system.
2.1 C o rre sp o n d e n c e  O p tim iz a tio n
Let us define a surface as a smooth, closed manifold of codimension one, which 
is a subset of R d (e.g., d =  3 for volumes). We sample the surface S  C R d
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using a discrete set of N  points th a t are considered as random variables S =  
(Y 1,Y 2 , . . . ,Y n ) T , Y  E drawn from a probability density function (PDF), 
p(Y ). We denote a realization of this PDF with lower case, and thus we have 
s =  (y1, y 2, • • • ,y N)T , where s E S N . We refer to the positions y  as particles, 
and a set of particles, a particle system.

The amount of information encoded in this random sampling is, in the limit, 
the differential entropy of the PDF, given by H  [Y] =  —E{log p(Y)}, where E{-} 
is the expectation. Approximating the expectation by the sample mean, we have 
H[Y] i=a — logp(yi)- To determine the probability of a particle’s posi­
tion, p(yi), [13] uses a nonparametric Parzen-window density estimation given 
by a mixture of multivariate, isotropic Gaussian kernels with standard devia­
tion a  th a t determines the strength of particle interaction with N  neighbouring 
particles within the defined window. An ensemble comprised of M  surfaces, 
E =  s 1, •••, sM can be described by a N d  x M  m atrix of particle positions 
P  =  (yk), where k =  1 , . . . ,M  and j  =  1 , . . . ,N .  Let sk E R Nd be an instance 
of a random variable S, then, the combined ensemble and shape cost function is 
defined by

Q =  H  (S) — £  H  (P k) (1)
k

This cost function is composed of two interacting terms. The first term produces 
a compact distribution of samples in shape space, while the second term provides 
uniformly-distributed correspondence positions on the shape surfaces, to achieve 
a faithful shape representation. The optimization process of this cost function is 
defined via gradient descent as described in [13].

2.2 T h e  L a ird  a n d  W are  L inear M ixed-E ffec ts  M od el
In a linear mixed-effects model, the response or observed variable yi is assumed to 
have a set of parameters a, fixed across individuals. In addition, each individual 
i, is assigned a set of random parameters bi th a t model the deviation from the 
fixed effect a . For i E {1, 2 , . . . ,  m}, the model reads as follows:

yi =  X ia  +  Zi bi +  ei, (2)
where for the i th individual, X i and Zi are known independent variables which 
influence yi through fixed and random effects respectively. bi are distributed as 
N (0 ,D ), D being an arbitrary covariance matrix. ei models the error from the 
observed data, and is distributed as N (0 ,a 2I i), I i being an identity matrix.

A simple case of the mixed-effects model occurs when we have a single inde­
pendent variable (such as time or age) that is used for both fixed and random 
effects. In this case we have Zi =  X i and (2) simply reduces to

yi =  X i (a  +  bi) +  ei, (3)
where for the i th individual, a  and bi are 2-vectors interpreted as slope-intercept 
pairs of the group and random effects of the individual, respectively.
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t
F ig . 1. Example of randomly-generated, synthetic longitudinal data. Data points for 
each “individual” are displayed with different symbols. The estimated mixed-effects 
model is shown with both the fixed effects, i.e., group trend (solid black line), and 
random effects, i.e., individual trends (dashed lines). The estimated linear regression 
model, which ignores correlations within individuals, is shown as a red line.

An example of synthetically generated data  from the model (3) is shown in 
Fig. 1. This example illustrates the power of mixed-effects models and the impor­
tance of modeling correlations within each individual. Ignoring these correlations 
leaves us with a simple linear regression model. Fig. 1 shows the estimated linear 
regression model, which does not concur with the trends of the individuals. In 
contrast, the estimated a  from mixed-effects modeling optimally summarizes the 
overall group trend.

3 M eth o d o log y
The correspondence optimization framework described in Sec. 2.1 was extended 
to incorporate a linear regression based approach in [5]. However, this approach 
may not model longitudinal data correctly due to differences in relationships 
across individuals. To address this issue, we propose a method that incorpo­
rates the linear mixed-effects model described in Sec. 2.2 into the framework 
in Sec. 2.1. Param eters of the linear mixed-effects model are simultaneously 
estimated along with the correspondence optimization. The following section de­
scribes our approach and revisits the parameter estimation for the linear mixed- 
effects model given by [12].



46

3.1 C o rre sp o n d e n c e  w ith  L in ea r M ixed-E ffec ts  M o d elin g  o f S hapes
W ith the assumption of a Gaussian distribution in shape space, we can introduce 
a generative statistical model.

y  =  j  +  e,e ~ N ( 0 ,£ )  (4)
for correspondences, where j  is the vector of mean correspondences, and e is 
normally-distributed error. Replacing j  in this model with a function of an 
explanatory variable x gives the more general, regression model

y  =  f  (x) +  e  e ~ N ( 0 ,S ) . (5)
We propose to optimize correspondences under the linear mixed-effects model 
described in Sec. 2.2 to facilitate the estimation of individual and population 
trends in longitudinal data. Using the same explanatory variable (age of the 
individual, in case of real data) for both fixed and random effects as in (3), we 
assume that correspondences for shapes belonging to individual i are generated 
by the following analogous statistical model:

Y  =  X ia  +  Xibi +  ei, (6)
where Xi represents the explanatory variable (age; in the case of real data), 
Yi is the m atrix containing correspondences for all shapes in the population, a  
represents the fixed-effects parameters (slope, intercept), while bi represents the 
random-effects parameters (slope, intercept) for the individual i and ei represents 
the error in correspondences.

The algorithm proceeds as follows. (a) Correspondences are first optimized 
under the nonregression model (4) to minimize the entropy associated with the 
total error e, and are used to compute an initial estimate of the linear mixed- 
effects model parameters. (b) We then follow the optimization procedure as 
described in Sec. 2.1, with the replacement of the model covariance S  by the 
covariance S  of the underlying residual relative to the regression model. (c) We 
interleave the two estimation problems, re-estimating the mixed-effects model 
parameters after each iteration of the gradient descent on the correspondences.

3.2 E s tim a tio n  of P a ra m e te rs
We denote the parameters in the covariance m atrix D and a 2 by a vector d. We 
compute maximum likelihood (ML) estimates for a  and d and empirical Bayes 
estimates for bi . If we were to able to observe bi and ei , we could compute closed- 
form ML estimates of a  and d, but this is not the case. Therefore, an expectation 
maximization (EM) algorithm is used to estimate a  and d, treating bi and ei as 
hidden variables. The EM algorithm guarantees th a t the likelihood increases or 
stays constant at each iteration, but it can converge to a local maximum instead 
of the global one.

We model the response variable yi in (2) as being marginally distributed as 
N (a , a2Ii +  ZiD Z T). Since we don’t observe bi and ei , let us replace a 2 and D 
by their current estimates a 2(j) and D (j) at iteration j  of the EM algorithm. Let

80 M. Datar et al.



47

Mixed-Effects Shape Models for Estimating Longitudinal Changes 81

us also define r(j) := yi — X ia (j), and N := YI m= 1 ni . The ML estimate for a  is
given by

1
a (j) = w (j)Xi\  w (j) yi,

Vi=1 /  i=1

where W (j) =  ( V (j) Ii +  ZiD (j) Z f ) -1 .

The random-effects, bi, are estimated using empirical Bayes as

b(j) =  E [bijyi, a (j), j  =  D (j)Z f  w j  r(j)

The covariances a2 and D are estimated by taking the expectation over hidden 
variables ei and bi, conditioned on yi and the current estimates of a  and 6. This 
step combines both the estimation and a maximization. The resulting estimate 
for the error variance is

<t 2̂ +1) = ± -E  {  J 2  e j e t \Vi, a ® , \

N

1
N

i=1
m

y ,  \ef ei +  a2(j) tr (ii — a2(j) Wi(j)
i=1

where ei =  E[ei jyi, a (j), 6(j)] =  r(j) — Zib(j). Similarly, the estimate for covari­
ance matrix D is given by

i)(j) =  L e
m

1 "

^ b i b f  jyi, a (j), 6 (j)
,i=1

=  — '5 2 b ?)b ?)T +  D (j\ l  -  Z iW ^ Z iD ® ).
i=1

We initialize the covariance matrix D (0) to the identity matrix and a2(0) to i 
before starting the EM iterations.

3.3 Permutation Test for Significance o f Random-Effects

In the case of longitudinal data, correlations may exist within shapes at different 
time-points for a given individual and break the independence assumption of 
the simple linear regression model. Another assumption that can be broken is 
homoscedasticity, i.e., the property that the variance of the residuals is constant 
across the independent parameter. When these assumptions are not met, simple
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linear regression models give less reliable (i.e., higher variance) estimates of the 
a parameters.

We use a nonparametric permutation test based on an estimate of the error 
variance V£ to confirm the significance of the random-effects introduced in the 
mixed-effects model. This permutation test works by permuting the assignment 
of shapes to individuals. The explanatory variable for the shape is not permuted
- only “group memberships” are permuted. For every permutation, we can com­
pute the squared norm of the residual vector for each shape, and use the average 
value as an estimate of V£ in fitting the linear mixed-effects model to this per­
muted ensemble of shapes. This allows us to compute a distribution of V£ of the 
model as a test statistic and test the null hypothesis that random-effects have 
no effect on the final parameter estimates of the model, and consequently lead 
to unaltered V£ values across permutations. Then comparing our unpermuted 
V£ to this distribution, we can compute a p-value to test the null hypothesis. 
We perform the correspondence optimization on each permutation separately, 
and thus the results of our permutation test are not biased by the correspondence 
optimization method.

3.4 Permutation Test for Group Discrimination

One of the major motivations of longitudinal data analysis is to test if changes 
observed in one group differ from those found in another. For instance, one might 
ask if the brain anatomy of Alzheimer’s patients deteriorates faster than those 
of healthily aging subjects. In this section, we develop a permutation test on 
the Hotelling T 2 statistic to test the statistical significance of group-parameter 
differences between two groups of longitudinal data.

Recall the Hotelling T 2 statistic is a test statistic often used in a multivari­
ate test of the difference between sample means, p, q, of two groups of data 
{p1, • • • ,pm} and { q1 ,•••, qn}, with all pi , qi E Rd. The idea is to compare the 
difference between the two means, relative to the pooled sample covariance:

w  =  E M  -  P)(pi -  P)T + EM -  g)(gi -  q)T
m +  n — 2

The T2 statistic can be thought of as a squared Mahalanobis distance between 
the means, using this pooled covariance, W . The sample T 2 statistic is given by

12 =  J>m T w _ l
m +  n

The permutation test procedure is as follows: (a) compute the t2 statistic, (b) 
randomly permute (swap) data points between the p and q groups, computing 
a tk statistic for the permuted groups, (c) repeat step 2 for k =  1 , . . . ,P ,  (d) 
compute the p-value: p =  B/(P  +1), where B  is the number of tk < t2. The final 
p-value can be interpreted as the probability of finding a larger group difference 
by random chance under the null hypothesis (that there is no difference between 
the means).
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Consider the specific problem of comparing the mean trends in two different 
groups G and H . Let and be two sets of longitudinal data and the 
resulting parameter estimates for the two groups to be (& f, aG) and (aH, ). 
It is often most interesting to separate the tests of the slope parameter a 1 and 
the intercept parameter a 2. For example, in testing the differences in anatomical 
changes between a healthy and disease group, it is important to distinguish if 
the shape differences are present at baseline (intercept) or if they develop over 
time (slope). To make this distinction, we can separate the above Hotelling T2 
test into these two components. We will thus look at the two separated statistics, 
t2ai and t l 2 given by (7).

4 Results and Discussion

We validate the proposed method through experiments on synthetic longitudinal 
tori, and test the significance of our estimated parameters via a nonparametric 
permutation test. We present applications of the method in longitudinal studies 
of early development of brain shapes from a neuroimaging study.

4.1 Synthetic Tori

Test of model significance. We generated longitudinal tori comprising of 11 “in­
dividuals” , at 3 different time points. The two radii of the tori within a group 
are generated according to the mixed-effects model in (6).
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2.0 3.0 4.0 5.0 6.0 7.0

Fig. 2. Visualizing fixed effects on the synthetic data

For each individual i, X i ~  U(2,10) drawn independently, random-effects 
bi ~  N(0, 0.4), and errors ei ~  N(0, 0.3). The slope-intercept pair for the fixed- 
effects are given as: (a 1R,a 2R) =  (2, 30) and (a ir ,a 2r) =  (—1,15), where R, r 
are the outer and inner radii respectively. The particle correspondence positions 
and model parameters can then be estimated as prescribed in Section 3. Figure 2 
shows the change in shape obtained using the fixed-effects of particle positions. 
The parameter R, increases whereas r decreases, which is consistent with the 
slope parameters used in the generative model.

We evaluate the significance of the bi parameters using the nonparametric per­
mutation test described in Sec. 3.3. Each of the 11 groups are assigned 3 random 
shapes from the total pool without repetition. We generate 500 such permutations 
and estimate Ve(P ), for each permutation P . Over these permutations, Ve(P )
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ranges from 2500 to 6500. Ve for unpermuted group memberships is 940. This im­
plies a p-value ^ 0. If it was possible to explain the population by only using fixed- 
effects, the permutation of group memberships should not have affected Ve values 
significantly. This test shows that using random-effects gives significant reduction 
in Ve independent of the increase in the number of model parameters.

o  o  

o  o
0.0 0.5 1.0

Fig. 3. Visualizing the trends in the two groups created to test group differences: 
constant trend (top), trend with increasing r (bottom)
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Test for group differences. Here, we generate two groups of 11 “individuals” 
each, with 3 time-points per individual, with X i for each individual at 0, 0.5,1, 
random effects bi ~  N(0, 0.3), and errors ei ^  N(0, 0.1). For one of the groups, 
the fixed-effect slope is kept at zero, but for the other the r fixed-effect is given a 
slope 3. Figure 3 shows the tori generated using this configuration of parameters. 
When looking for group differences based on baseline intercepts, as expected, the 
permutation test prescribed in Section 3.4 did not a yeild a significant p-value. 
But when comparing groups based on the slope parameter, we obtained a p-value 
^ 0, which confirms a stark difference in group trends.

4.2 M ixed-Effects M odel for Brain Structures

Test for model significance and trend variation. In this experiment, we work with 
brain structures from a developmental neuroimaging study. We have 11 subjects 
scanned at approximately (6, 12, 24) months. The scans are preprocessed and 
segmented to obtain the brain structures (cerebellum, left and right hemispheres) 
which are input to the optimization process.

The fixed effects in Fig. 4 clearly show two changes happening in the infant 
brain. The first is an elongation of both hemispheres, which can be seen as 
a stretching of the frontal lobe and narrowing of the hemisphere shapes. The 
second effect is the growth near the top of the cerebellum. These trends are 
qualitatively consistent with the cross-sectional results found in [5].

The longitudinal model can tell us more, however, than a regression model of 
cross-sectional data. First, we know that these fixed effects are representative of 
the growth trend that individuals undergo on average, rather than a trend seen 
between multiple subjects. Second, and more interestingly, we can say something
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Fig. 4. Visualizing the fixed-effects of brain structures (blue denotes expansion, and 
yellow denotes contraction)

Fig. 5. Visualizing the random-effects of brain structures (red denotes high variance 
regions)

about the variability of these trends in the population. Fig. 5 encodes the vari­
ance of the random slopes at each point and is indicative of regions where the 
variation in the growth trend across individuals is high (red regions in Fig. 5). 
An example inference is that the elongating frontal lobe and expanding cerebel­
lum are relatively stable across the sample (i.e. the variance of these trends is 
low). We also evaluate the significance of the bi using the nonparametric permu­
tation test described in Sec. 3.3. Group memberships are permuted 500 times 
and Ve(P) is estimated for each permutation P . While Ve(P) ranges from 10000 
to 17000 for the permuted sets, the value for the unpermuted set is 5400. This 
suggests a p-value ~  0 and implies that the random effects play a significant role 
in describing the early development of the brain.

Test for differences in group trends. We also evaluate our method using a longi­
tudinal database from an Autism Center of Excellence, part of the Infant Brain 
Imaging Study (IBIS). The study consists of high-risk infants as well as controls, 
scanned at approximately (6, 12, 24) months. At 24 months, symptoms of autism 
spectrum disorder (ASD) were measured using the Autism Diagnostic Observa­
tion Schedule (ADOS). A positive ADOS score indicates the child has a high 
probability of later being diagnosed with autism. Finally, we have two groups: 
15 high-risk subjects with positive ADOS (HR+) and 14 low-risk subjects with 
negative ADOS (LR-).

Fig. 6 visualizes the group trends for the HR+ and LR- groups and clari­
fies that the global trends are similar across both groups. There are localized
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Fig. 6. Variation in group trends for the H R+ (top) and LR- (bottom) groups (yellow 
denotes contraction, blue denotes expansion)

differences near the frontal end of the hemispheres and also near the cerebel­
lum, but these are not found to be significant by the permutation test for group 
differences. The t2 statistic for differences in group trends in cerebellum, left 
hemisphere and right hemisphere independently were 6.1039, 5.155 and 4.5693 
respectively. The p-values were 0.112, 0.454 and 0.515 for the same.

5 Conclusion and Future Work

We presented a new mixed-effects shape model for analyzing longitudinal shape 
changes, which is based on a particle system representation and entropy mini­
mization framework for point correspondences. We demonstrated the ability of 
the model to characterize both group-level and individual-level shape trends on 
synthetic data and developmental brain data. As for future work, the current 
work does not handle spatial correlations between points on a shape. We plan to 
investigate this issue, possibly using a pseudolikelihood estimation of the covari­
ance matrix of the shape parameters, similar to [10]. Such an estimation could 
possibly take advantage of the entropy minimization, as this tends to decrease 
the dimensionality of the covariance matrix.
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Abstract. An ensemble of biological shapes can be represented and 
analyzed with a dense set of point correspondences. In previous work, 
optimal point placement was determined by optimizing an information 
theoretic criterion that depends on relative spatial locations on differ­
ent shapes combined with pairwise Euclidean distances between nearby 
points on the same shape. These choices have prevented such methods 
from effectively characterizing shapes with complex geometry such as 
thin or highly curved features. This paper extends previous methods for 
automatic shape correspondence by taking into account the underlying 
geometry of individual shapes. This is done by replacing the Euclidean 
distance for intrashape pairwise particle interactions by the geodesic dis­
tance. A novel set of numerical techniques for fast distance computa­
tions on curved surfaces is used to extract these distances. In addition, 
we introduce an intershape penalty term that incorporates surface nor­
mal information to achieve better particle correspondences near sharp 
features. Finally, we demonstrate this new method on synthetic and 
biological datasets.

1 Introduction

A well established method for performing statistics on an ensemble of shapes is 
to compare configurations of corresponding landmarks placed on the individual 
shapes. In recent years, several methods have proposed an automatic placement 
of landmarks in a way that captures statistical properties of an ensemble [1,2]. 
The method of Cates et al [1] uses a formulation of ensemble entropy to deploy 
a dense set of landmarks, or particles, which assign correspondences between 
shapes within a population. The positions of the particles on the shape surfaces 
are optimized using a variational framework that tries to find a balance between 
model simplicity via minimum entropy, and geometric accuracy of the surface 
representation. However, medical or biological objects shapes are often composed 
of sharp features and regions of high curvature. In such cases, nearby particles 
in the ambient space may be separated by a large distance on the object’s sur­
face (see Fig. 1). Thus, the Euclidean distance measure cannot capture correctly 
the underlying local geometry and prevents the method from producing a faith­
ful shape representation. This limitation reflects a failure of Euclidean distance

G. Fichtinger, A. Martel, and T. Peters (Eds.): MICCAI 2011, Part II, LNCS 6892, pp. 368—375, 2011. 
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 1. Points near sharp features (left) are not able to achieve good distributions 
with Euclidean distance, because they do not lie in the same tangent space, which is 
necessary for movement that is constrained to the surfaces. Points may be nearby and 
interact (center) even though they sample very different parts of the surface. Points 
on nearby features (right) on different shapes (blue and green) can come into incorrect 
correspondence if the system considers only distance.

to account for the intrinsic distances between points on the surface, suggesting 
geodesic distance as a better choice. However, geodesic distances are generally 
not computable in closed form, and interparticle interactions are part of the in­
ner loop of an interactive optimization process. Thus, the computational burden 
of geodesics are prohibitive. This paper makes several contributions that enable 
better modeling of ensembles composed of shapes with a complex geometric 
structure. First, we incorporate geodesic distance measures into the framework 
proposed by Cates, et al [1]. While accurate geodesic distance computation is 
unwieldy for implicit surfaces, very fast methods exist to compute geodesic dis­
tances between vertices of 3D mesh representations of shapes. Thus, we propose 
precomputing all pairwise distances on a somewhat fine 3D mesh of an input sur­
face and interpolate, as required, in the process of optimizing intrashape particle 
interactions. To address mismatches of correspondences on highly curved features 
across different shapes, we introduce an intershape penalty that accounts for the 
behavior of normals on highly curved geometry. Hence, the second contribution 
of our paper is to integrate this intershape penalty term into the variational 
framework for model optimization given in [1] to improve particle correspon­
dences near sharp features. As a final contribution we demonstrate the use of a 
correspondence-based method for the analysis of highly curved (or nonregular) 
shapes—the left ventricle myocardium of the human heart—which has, so far 
not feasible with point correspondences.

2 Background

In the following section we provide a brief overview the particle-system corre­
spondence optimization method as proposed in [1]. The general strategy of this 
method is to represent correspondences as point sets that are distributed across 
an ensemble of similar shapes by minimizing an objective function that quantifies 
the entropy of the system. We also describe an efficient, fine-grained algorithm 
for solving the eikonal equation on triangular meshes, as proposed by Fu et al [3]
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Correspondence Optimization. Let us define a surface as a smooth, closed 
manifold of codimension one, which is a subset of Rd (e.g., d =  3 for volumes). 
We sample the surface S C Rd using a discrete set of N points that are con­
sidered as random variables Z =  (X i ,X 2, . . . , X N)T,X  £ Rd drawn from a 
probability density function (PDF), p(X). We denote a realization of this PDF 
with lower case, and thus we have z =  (x1, x2, . ..  , xN)T, where z £ SN . We 
refer to the positions x as particles, and to a set of particles as a particle sys­
tem. The amount of information encoded in this random sampling is, in the 
limit, the differential entropy of the PDF, given by H[X] =  —E {logp(X )}, 
where E {■} is the expectation. Approximating the expectation by the sample 
mean, we have H[X] «  — l°g^(xi)- To determine the probability of a
particle’s position, p(x^), [1] uses a nonparametric Parzen-window density es­
timation given by a mixture of multivariate, isotropic Gaussian kernels with 
standard deviation a that determines the strength of particles interaction with 
N neighbouring particles within the defined window. An ensemble comprised of 
M  surfaces, E =  z1, . . . ,  zM can be described by a Nd x M  matrix of particle 
positions P  =  (xk), where k =  1 , . . . ,M  and j  =  1 ,.. . ,N . Let zk £ RNd be an 
instance of a random variable Z, then, the combined ensemble and shape cost 
function is defined by

Q =  H (Z) — £  H (Pk) (1)
k

This cost function is composed of two interacting terms. The first term pro­
duces a compact distribution of samples in shape space, while the second term 
provides uniformly-distributed correspondence positions on the shape surfaces, 
to achieve a faithful shape representation. The optimization process of this cost 
function is defined via gradient descent as described in [1].

Fast G eodesic Distance Com putation. The use of Euclidean distance be­
tween particles in the Parzen-window density estimation in [1] requires that 
nearby particles interact in the local tangent plane of the surface. However, it is 
not the case for thin structures with high curvature, such as the one illustrated in 
Fig. 1 (left). To address this, we replace the Euclidean distance in the kernel by 
the geodesic interparticle distance. However, this modification demands a large 
number of pairwise geodesic distance computations. Such computations are not 
feasible without the recent developments in fast, parallel algorithms for solving 
hyperbolic partial differential equations (PDEs) as well as extremely fast SIMD 
hardware in the form of graphics processors (GPUs). The distance between each 
point a on the surface and every other point, is given by the solution to the 
eikonal equation |Vu| =  1, as discussed in [4], using the boundary condition 
u(a) =  0. The computation of distances to many thousands of points on large 
ensembles of shapes is feasible only if the eikonal equation can be solved in a 
small fraction of a second. The fast iterative method (FIM) [4] for regular grids 
is not worst-case optimal, but is extremely efficient on parallel, SIMD archi­
tectures, such as GPUs. Here, we use an extension of the FIM for triangular 
meshes [3]. This algorithm computes, for instance, distances between nodes on 
a mesh with thousands of vertices in less than 30 seconds on a GPU.
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3 Methodology

The input to the shape correspondence system is a collection of implicitly de­
fined surfaces. For this paper, the input surfaces are binary segmentations, and 
we use the preprocessing, initialization, and particle optimization pipeline de­
scribed in [1]. Here we describe the integration of the geodesic distance for inter­
particle interactions and the surface normal based penalty term for intershape 
correspondence into the framework described in Sec. 2.
Particle Position Optimization using Geodesic Distances. A triangu­
lation of each input surface is generated using the algorithm described in [5]. 
An example triangulation is shown in Fig. 2(a) along with the corresponding 
synthetic shape. The numerical technique for fast distance computation on 3D 
triangulated surfaces described at the end of Sec. 2 is then used to precompute 
geodesic distances between each vertex and all other vertices within a prescribed 
distance, dmax. The parameter dmax is chosen to coincide with the limited range 
of influence of the Gaussian kernels that control the range of influence of each 
particle. This truncation results in a sparse, symmetric matrix of geodesic dis­
tances. The entries in this matrix are then converted into a fixed point format 
and stored using a List of Lists (LIL) representation for efficient memory us­
age and fast access. We call this matrix MG such that DG(vi, v2) =  [vi ,v2], 
where DG(vi ,v2) is the geodesic distance between vertices vi ,v2. Geodesic dis­
tances between particle positions on the implicit surface can now be computed 
via a barycentric interpolation scheme described below.
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(a) (b)

Fig. 2. (a) An example of a triangle mesh used for geodesic distance computations. 
(b) Configuration for two-layered interpolation of geodesic distance between arbitrary 
points: x and y are contained in triangles defined by vertices (x i, x 2, x 3) and (yi, y2, y 3) 
respectively. The geodesic distances between vertices for all shapes are precomputed 
on a GPU.

To use this discrete set of distances between particles, which lie in the volume 
and are constrained to lie on the implicit surface, we interpolate the mesh- 
vertex distances to the faces of the triangles. This requires two layers of linear 
interpolation on the faces of the mesh. Let the barycentric coordinates of a point 
x in a triangle Tx defined by vertices (vi ,v2,v3) be given by (a, ^ ,7 ) such that
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the location of x can be given as x =  av1 +  3v2 +  yv3 where a  +  3 +  y =  1. 
Consequently, any function of x can be interpolated as /  (x) =  a f  (v1) +  ̂ /(v 2) +  
Yf(v3) provided its value is known at all vertices in the mesh. For the case of 
geodesic distances, the function /  is the distance to another arbitrary point y, 
which can be evaluated on each vertex using this same interpolation scheme 
for the triangle Tx that contains y. To compute DG(x, y) in a fast and efficient 
manner, we first determine the triangle faces on the mesh that contain points x 
and y, by projecting them onto the nearest face in the mesh. Let these triangles 
defined by vertices (x1,x 2,x 3) and (y1,y2,y3), as shown in Fig. 2. Since the 
geodesic distance is a function defined between every pair of vertices in the 
mesh, we can approximate the geodesic distance between points x and y as
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Each D g (x i , yi) is simply an entry in the matrix MG as described above. Thus, 
using this two-layered interpolation scheme, we can approximate geodesic dis-

repulsion governing the motion of particles can then be computed as a function 
of these geodesic distances to improve sensitivity to the underlying geometry.
Correspondence Optimization with Surface Normals. The cost function 
described in Eq. 1 relies on particle positions to find a balance between a com-

However, with an ensemble containing highly curved or convoluted surfaces, like 
those shown in Fig. 1, a reliance on only positional information may lead to in­
correct correspondences. To address this shortcoming, we propose the addition 
of an intershape penalty term based on surface normals to disambiguate corre­
spondences near highly curved features. Thus, we associate with each particle 
on each surface a pair of d-tuples (xi ,ni) G Rd x S2, where S2 is the unit sphere.

We denote the total collection of N normals across M  shapes as V . With the 
assumption that N > M . Assuming a Gaussian model with a covariance E , we 
can compute the entropy

For the ith particle on the kth shape, nk =  d(nk,ni), where ni is the Frechet 
mean defined in [6]. Since the normals are points on the Riemannian manifold 
M eS2, nk =  Logfli (nk) [6]. In the tangent plane TnM , we have

Dg(x, y) «  aDG (x1, y) +  f3DCj (x2, y) +  yD g(x3, y), 
D G (xi, y) «  aD G (xi, y j  +  /3DCj(x i, y2) +  y D g ^ ,y 3).

(2)

tances between particle positions on the implicit surface. The Gaussian forces of

pact ensemble representation and a good distribution of particles on each surface.

(3)
i k

(4)

where Pt is the idempotent projection matrix given by (I — ni ■ (nk)T). Since E 
will not have a full rank in practice, we implement a regularization similar to that
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described in [1] to introduce a lower bound on the eigenvalues. The optimization 
problem in Eq. 1 can now be reformulated as

Q =  H (Z) -  £  H (P k) +  H (V) (5)
k

The Riemannian distances are functions of normals; nk =  f  (nk), which in turn 
are a function of position; nk =  n(xk), the gradient descent on H (V ) with respect 
to particle position xi is given by the chain rule:

dH{V)  _  8H{V)  d /(n k) dnjxf)  
dxf <9nk <9nk dxf

This incremental update gets projected onto the tangent plane of the surface, as 
part of the algorithm described in Sec. 2, in order to maintain the constraint that 
particles remain on the surface. As with the geodesic distances, the curvature, 
dnk/d xk, is precomputed. Here we use the formulation of curvature for the level 
sets of the volume using finite differences (combined with a Gaussian kernel of 
standard deviation 1.0). The means of the normals are updated after each full 
iteration (one update for every particle on every shape).

4 Results and Discussion

This section details experiments designed to illustrate and validate the proposed 
method. First, we present an experiment with synthetically generated coffee bean 
shapes, that consist of an ellipsoid with a slot or indentation, creating a high- 
curvature feature that would confound the previous approaches. We also present 
an application to a study of group differences in the left ventricular myocardium.

Synthetic Data
Computational solid geometry methods were used to compute the intersection of 
a small ellipsoid with axes a, b and c, and a larger ellipsoid with axes A, B  and C , 
to create a coffee bean shape. The slot was then moved and scaled stochastically, 
to create a population of 10 coffee bean shapes. The position of the slot was 
chosen from a uniform distribution in the range [—B /3,B /3], and its width was 
sampled from a Gaussian distribution of ^ =  8 and a =  2. Both, the method 
in [1] and the proposed method were applied to distribute 1024 correspondences 
across the ensemble. Both methods identified two dominant modes of variation, 
with significantly different amount of leakage into smaller modes. These modes 
are illustrated in Fig. 3 for both the methods, to 2 standard deviations. The 
proposed method lost 4% of the total variation into smaller modes, compared 
to 16% lost by the original method. Thus, the proposed method was able to 
characterize the variation in the population better than the original method, 
while remaining faithful to the original shape representation (as seen from the 
reconstructions in Fig. 3).

Application to Group Comparison. We applied the proposed methods to 
study group differences in the left ventricular myocardium of ischemic patients

Geometric Correspondence for Ensembles of Nonregular Shapes 373
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Fig. 3. Mean shape computed from the proposed method (left) and the original method 
(right), projected onto the first (top) and second (bottom) PCA modes, and ± 2  stan­
dard deviations

Fig. 4. Visualizing mean differences between normal and ischemic groups (blue denotes 
expansion and yellow denotes contraction) using [1] (top row) and the proposed method 
(bottom  row)

and non-ischemic controls, using segmented volumes of the left ventricular my­
ocardium at end diastole (ED) as inputs. The proposed method was used to 
initialize and optimize 1024 correspondences across the ensemble of 21 (12 pa­
tients, 9 controls) shapes. We then used parallel analysis to project the corre­
spondences into a lower dimensional space determined by choosing an optimal 
number of basis vectors from principal component analysis (PCA). A standard, 
parametric Hotelling T 2 test was used to test for group differences, with the null 
hypothesis that the two groups are drawn from the same distribution. In this 
case, the hypothesis test results in a highly significant p-value of 0.005, with 7 
PCA modes chosen by parallel analysis.

Fig. 4 (bottom row) shows the differences between the mean shape surfaces 
for the normal and ischemic groups. To visualize the group differences driving 
statistical results, we use the linear discriminant vector, rotated from PCA space 
into the full dimensional shape space, and mapped onto the mean group shape 
surfaces to give an indication of the significant morphological differences between
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groups. The above experiment was also conducted using the method described 
in [1]. The resulting group differences, visualized in Fig. 4 (top row), were also 
found to be statistically significant with a p-value of 0.005 using the Hotelling 
T 2 test. However, the shape differences obtained using the proposed method are 
found to be more consistent with previously published results presented in [7], 
as compared to those obtained using [1].

5 Conclusion and Future Work

This paper extends the method given by [1] to improve particle distribution and 
correspondences across an ensemble of highly convoluted surfaces. The first con­
tribution is the inclusion of geodesic distance to compute the intrashape particle 
interactions, which results in improved sensitivity of the particle distribution to 
the underlying surface geometry. The second contribution is the introduction of 
an intershape penalty term based on surface normals, to improve correspondence 
near sharp features. Results on synthetic and real data indicate that the pro­
posed method provides a practical solution to compute correspondence models 
of ensembles of highly convoluted surfaces in an efficient and robust manner.
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Abstract. Establishing correspondence points across a set of biomedi­
cal shapes is an important technology for a variety o f applications that 
rely on statistical analysis of individual subjects and populations. The 
inherent complexity (e.g. cortical surface shapes) and variability (e.g. 
cardiac chambers) evident in many biomedical shapes introduce signifi­
cant challenges in finding a useful set of dense correspondences. Appli­
cation specific strategies, such as registration of simplified (e.g. inflated 
or sm oothed) surfaces or relying on manually placed landmarks, provide 
some improvement but suffer from limitations including increased com­
putational complexity and ambiguity in landmark placement. This paper 
proposes a method for dense point correspondence on shape ensembles 
using geodesic distances to a priori landmarks as features. A  novel set 
of numerical techniques for fast computation of geodesic distances to 
point sets is used to extract these features. The proposed method mini­
mizes the ensemble entropy based on these features, resulting in isometry 
invariant correspondences in a very general, flexible framework.

1 Introduction

Establishing point correspondence between two or more shapes is a key 
algorithmic component in many medical image analysis applications. Various 
technical strategies— including registration, alignment to a template or matching 
features/measurements— have been used to study not only geometric changes in 
shape, but also image and model measurements relevant to specific applications. 
While many systems rely on alignment to a common template, the literature 
shows some advantages in building correspondences in an unbiased way by us­
ing an entire ensemble of subjects [1]. Automatic correspondence optimization 
has benefited from recent approaches like the spherical harmonics (SPHARM) 
description [2], which implicitly computes dense correspondences across shapes 
using a continuous one-to-one mapping of each shape to the unit sphere. The 
Minimum Description Length (MDL) method [3] also relies on spherical param­
eterization to compute correspondences but is computationally expensive and

K. Mori et al. (Eds.): M ICCAI 2013, Part II, LNCS 8150, pp. 19-26, 2013.
©  Springer-Verlag Berlin Heidelberg 2013
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thus rendered impractical. The point distribution model given by Cates et al [4] 
provides a flexible framework to establish dense point correspondences across 
shapes in a nonparametric fashion, without the constraint of a particular pa­
rameterization or topology.

The inherent complexity of certain classes of biomedical shapes presents sig­
nificant challenges in the establishment of point correspondences. For instance, 
studies of degenerative conditions such as autism and Alzheimer’s disease benefit 
from the analysis of local cortical thickness measurements of the brain and rely 
on shape matching for valid comparison between subjects. Some of these tech­
niques are initialized using manually delineated surface features (major sulci) 
to drive the matching procedure [5,6]. The many folds of the cortex can easily 
cause sulci to cross over each other and become aligned with the wrong features 
in the target or template. Widely used software packages such as FreeSurfer 
and BrainVoyager use cortex inflation— a process of removing cortical folds and 
then, typically, mapping to a sphere— to overcome the complexity in matching 
cortical surfaces. One of the goals of this work is to avoid this intermediate, 
inflated representation.

Correspondence based on point positions is sensitive not only to shape com­
plexity, but also to anatomical variability in shapes. This can lead to incon­
sistent correspondences on surfaces where it is difficult to automatically match 
landmarks across a wide range of shapes. An example is the structural analysis 
of the left atrium (LA), which is of particular interest in atrial fibrillation (AF) 
studies. Recent advances in MRI have enhanced structural imaging of the LA but 
a high degree of variability in the LA anatomy presents a significant challenge 
in automatic identification of anatomically significant landmarks for quantita­
tive analysis. The incorporation of a sparse set anatomically based landmark 
features, identified by either an expert or some automated process, can dramat­
ically improve dense automatic correspondence in these scenarios.

The strategy in this paper is motivated by two observations. First is the 
relative success of alignment techniques, such as [5], that rely on nearly isometric, 
smooth mappings to simplified parameterizations in order to find appropriate 
deformations to templates. This suggests that positions on the surface rather 
than the ambient space are an important in anatomical alignment. The second 
observation is the success of landmark-distance-based features in recognizing 
shapes in computer vision applications [7,8,9]. Although these methods rely on 
combinatorial matching algorithms, which are not particularly well suited to the 
applications we address here, these works do demonstrate that collections of 
geodesic distances are rich, nearly complete, descriptions of shapes.

2 Technical Background

The proposed method (geodesic distance method) builds on the correspondence 
optimization method proposed in [4] as well as efficient parallel solvers for the 
eikonal equation on triangular meshes proposed by Fu et al [10]. Here we give a 
brief review of the results from these works that are relevant to our method.

20 M. Datar et al.
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C orrespondence O ptim ization. We define a surface S C Rd (e.g., d =  3
for volumes), as a smooth, closed manifold of codimension one. We sample S 
using a discrete set of N  points that are considered as random variables Z =  
( X i ,X 2, . . .  ,X N)T,X  e Rd drawn from a probability density function (PDF), 
p (X ). An ensemble comprised of M  surfaces, E =  z1, . . . ,  z M can be described 
by a Nd x M  matrix of particle positions P  =  (xk), where k =  1 , . . . ,M  and j  =  
1 , . . . ,N .  Let z k e RNd be an instance of a random variable Z, then, modelling 
p (Z ) parametrically as a Gaussian with covariance E  gives the entropy H (Z) ~  
\ log \E\ =  | S j = 1 where A j are the eigenvalues of E. We estimate the
covariance from the data, letting Y  denote the matrix of (centered) points for 
the ensemble, which gives E  =  (1 /(M  — 1))Y Y T. Because N  > M , we perform 
the computations on the dual space (dimension M ). Thus, we have the cost 
function G associated with the ensemble entropy:

|E| «  G (P ) =  log M 1
dG

and -  —  =  Y {Y TY  +  a I ) -\  (1)

where |-| is the matrix determinant. The combined ensemble and shape cost 
function is defined by Q =  H (Z) — k H (P k). The optimization process of this 
cost function is defined via gradient descent, by moving individual points on the 
surface, as described in [4].

Fast G eodesic D istance Com putation. The proposed method requires the 
computation of geodesic distances to landmarks (points/curves) at all correspon­
dence positions. Performing these calculations over large ensembles of shapes is 
prohibitive without the use of fast, parallel algorithms for solving the hyperbolic 
partial differential equations (PDE) as well as extremely fast graphics processing 
units (GPUs). One such method, the fast iterative method (FIM) [11] formu­
lates the distance between each point a on the surface and every other point, 
as the solution to the eikonal equation |Vu| =  1, using the boundary condition 
u(a) =  0. An extension of FIM for triangular meshes [10] that performs fast 
computation of geodesic distances between vertices on a triangle mesh is used 
to compute geodesic distance features.

3 Methodology

Rather than use absolute particle positions, as in [4], we propose to leverage 
manually placed landmarks (points/curves) to guide correspondence optimiza­
tion via geodesic distances to these landmarks. Consider a manifold M  C Rd 
with a point x and a landmark I. We can define a mapping D  : R, where
D(x,  I) is the geodesic distance of point x to the landmark I. Given a triangulated 
surface to describe M  and a point set to describe landmark I, we can use the 
FIM method [10] to compute D(x, I) for all points x C M  by setting appropriate 
boundary conditions on the eikonal equation. In practice, we compute these dis­
tances to all points on the mesh and interpolate these discrete samples onto the
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triangle faces, as in [12]. Given an ensemble of shapes, as described in Sec. 2 and 
a set of T  landmarks (points/curves) for each shape, we can represent particle 
j  on shape k as a vector of geodesic distances: p j =  (D (x j, / f ) , . . . ,  D (x j , i f )) 
from T  landmarks. Using the entropy minimization framework from Sec. 2, the 
ensemble entropy term in (1) can be modified to compute covariance of the 
geodesic distance features instead of particle positions, giving

22 M. Datar et al.

G(P)  =  log 1 7Y t Y
m - r (2)

where, Y  is the matrix of geodesic distances to all landmarks at a correspondence 
point minus the mean geodesic distance to all landmarks for the same point 
across the ensemble. The derivative dG/dP is computed by the chain rule as

- ^  =  JT(YTY + a I ) - 1 (3)

where J  is the Jacobian matrix given by BD/BP and computed as a block 
diagonal matrix with diagonal blocks of T  x d submatrices of partial derivatives, 
computed numerically by projecting the correspondence points on to the surface. 
This gradient is used to update point correspondences in accordance with the 
optimization described in [4].

Fig. 1. Mean shapes from: (a) particle based automatic correspondence [4] , (b) includ­
ing fixed landmarks, and (c) and proposed method using geodesic distance features

P roo f-o f-C o n cep t E xperim ent, Computational solid geometry methods were 
used to compute the intersection of a pair of ellipsoids with axes a, b and c, with 
a larger ellipsoid with axes A, B  and C , to create a coffee bean shape with two 
slots— thus simulating an element of the cortical surface folds. The slots were 
then moved and scaled stochastically, to create a population of 10 coffee bean 
shapes. The position of the slots was chosen from a uniform distribution in the 
range [—B /3 , B /3], and the width was sampled from a Gaussian distribution of 
U =  8 and a =  2. The number of correspondences was set to 1024.

First, correspondences were distributed across the ensemble using the original 
formulation from [4]. The sole use of point positions, coupled with the complex­
ity of the shape led to inconsistent correspondences, and the method failed to
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compute a valid mean shape (Fig. 1(a)). Next, fixed landmarks were introduced 
(3 each in the two slots and 1 on the ridge between them) into the original 
formulation and the experiment was repeated. Fixed landmarks improved the 
consistency of correspondences, but position information alone is not isometry 
invariant, and thus resulted in a suboptimal mean shape (Fig. 1(b)). Finally, 
geodesic distances to these fixed landmarks were computed as described above 
and used to optimize correspondences in the proposed method. This resulted in 
isometry invariant, consistent correspondences, as evidenced by the mean shape 
(Fig. 1(c)).

4 Results and Discussion

Validation on  Cortical Surfaces. T1- and T2-weighted MRI scans were 
acquired for paediatric 2-year-old subjects as part of the Infant Brain Imag­
ing Study (IBIS) network (http://www.ibis-network.org). Ten of these subjects 
were randomly selected for this study. A  single subject was selected as template 
and an expert manually labelled 13 major curves on the template surface: supe­
rior temporal (STS), inferior temporal (ITS), medial-temporo-occipital (MTOS), 
central (CS), precentral (PreCS), postcentral (PostCS), inferior frontal (IFS) and 
superior frontal (SFS), intraparietal (IPS), cingulate (CingS), calcarine (CalcS), 
occipito-parietal (OPS), and sylvian (SylS) sulcus. Only left hemispheres were 
used. The input data was a set of segmented left hemispheres, with 13 sulcal 
curves each. 6 of these curves were selected as landmark curves (as shown in 
Table 1) and geodesic distances to these curves were used as features to opti­
mize 6144 correspondences on each cortical surface. Sulcal depth was also used 
as an additional feature to guide the correspondence optimization. Two views

Geodesic Distances to Landmarks for Dense Correspondence 23

Fig. 2. Two views of the mean shape of the ensemble of left hemisphere cortical 
surfaces

of the mean shape computed from this model are shown in Fig. 2. Note that 
it is possible to identify all of the major sulci, including the ones not used in 
the optimization. Given the lack of ground truth for cortical surface data, we 
validate these results via analyses of surface measures (depth, thickness) and 
cross-validation based on the geodesic distance features. A cross-subject vari­
ance estimate of sulcal depth was computed over all correspondences across all

http://www.ibis-network.org


69

shapes in the ensemble. The mean and std. deviation values of 1.39918 and 
0.769351 were found to be consistent with the literature. Additionally, a cross­
subject variance estimate of the cortical thickness was also performed, since the 
use of sulcal depth as a feature biases the previous test. The mean and std. 
deviation values of 0.494561 and 0.392878 were also found to be consistent with 
the literature [13].

Next, each set of curves was warped onto the mean space via thin plate spline 
warping and curve alignment was compared to the output of the CIVET pipeline, 
where major sulcal curves were initially mapped onto the common unit sphere 
by the surface registration method [14], and then further projected onto the 
template surface by a one-to-one mapping between the sphere and the template. 
Figure 3 shows a visual comparison of curve alignment from the geodesic distance

24 M. Datar et al.

(a) (b)

Fig. 3. Alignment o f cortical curves in the mean space using the geodesic distance 
method (a) and the CIVET pipeline (b). Note that the two surface templates are 
different: mean template from geodesic distance method (a), MNI template (b).

method (a) with curve alignment from the CIVET pipeline (b). In general, align­
ment for curves used as features in the geodesic distance method was better than 
the CIVET result, while maintaining the smoothness of the curves. For unseen 
curves, CIVET alignment appears to be better, however this may be achieved at 
the cost of smoothness, as shown in the inset images for the CS curve. We also 
quantify sulcal curve alignment in Table 1, by looking at the average dissimilar­
ity per curve, computed in a pair-wise manner using all points on the curve, over 
all pairs of shapes. Table 1 indicates that the geodesic distance method aligns 4 
of the 6 curves used as features better than the CIVET pipeline. Moreover, the 
same is true for 6 of the remaining 7 unseen curves. These values indicate that 
the correspondences are consistent and isometry invariant, even for sulci that 
are not part of the landmark set. Thus the geodesic distance method provides 
a framework for further statistical analysis of the cortical surface without the 
need for inflation.
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Table 1. Comparison of average dissimilarity per curve between proposed (top) and 
CIVET (bottom ) methods, for curves used in correspondence optimization (left) and 
unseen curves (right)

Geodesic Distances to Landmarks for Dense Correspondence 25

Curves used in optimization Unseen curves
CingS CS IPS STS SFS SylS CalcS IFS ITS MTOS OPS PostCS PreCS

Proposed 3.42 2.18 7.19 6.79 4.67 3.75 2.31 4.63 8.43 5.00 3.69 6.61 5.24
CIVET 3.49 2.90 10.68 9.95 4.55 3.54 2.08 4.95 11.32 5.41 3.97 8.61 7.15

A pplication  to A F . Thirteen shapes were retrospectively chosen from a 
database of patients who presented to the University of Utah for AF and un­
derwent late-gadolinium enhancement (LGE) MRI to imaging. There were 6 
patients with a pair of scans (pre- and post-ablation), and 1 singular post­
ablation scan. The input data for the proposed model consisted of segmenta­
tions of the LA and attached LA appendage, created by experts using Corview 
(www.corview.org). Landmark positions were manually identified using Corview 
for each of the pulmonary veins (left- and right-inferior and left- and right- 
superior) and the center of the mitral valve. As the most recognizable landmarks 
of LA, these structures are also the most appropriate features to drive corre­
spondence across subjects. Using a feature vector of distances to each of these 
landmarks, 2560 correspondences were distributed on the LA shapes. Given the

(a) (b) (c)

Fig. 4. Reconstructed median shapes for the pre-ablation (a) and post-ablation (c) 
groups, highlighting a particular correspondence. Overlay of the two median shapes, 
showing the high degree of variability (b).

variability of the LA, clustering the results into multiple means might be more 
interesting for specific applications. While such clustering is beyond the scope 
of this work, we can analyze the median shapes for each group, reconstructed 
using the correspondences. Figure 4 shows median shapes for the pre-ablation 
(a) and post-ablation (c) groups. A particular point is highlighted to display 
the proximity of the correspondences. An overlay of the group median shapes 
is shown in Fig. 4(b) to describe the variability present in the pre- and post­
ablation groups. In future work, we hope to better model variability of important 
structures in the LA by adopting an anatomically-based coordinate system that 
explicitly incorporates their positional information.

http://www.corview.org
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CHAPTER 7

APPLICATIONS

This chapter illustrates the application of techniques from this dissertation to under­

stand driving biological problems in the fields of orthopedics, cardiology, and neuroscience. 

These studies address a variety of biomedical problems and provide a framework to test 

specific clinical hypotheses. These applications were made possible with help from various 

collaborators, who are acknowledged at relevant places in the following paragraphs.

7.1 Applications to Orthopedics
The relationship between form and function has been of increasing interest the or­

thopedics community. For example, Beck et al. [1] observe that an abnormally shaped 
femur may cause damage to the acetabular labrum due to shearing during hip flexion. 

Researchers have also extensively applied shape models to study bone shape in presence of 
pathology. Active shape models (ASM) have been used to study the correlation between 

proximal femur morphology and the rate of hip fracture in women [2], with the goal of 

developing a model-based paradigm to assess the risk of the occurrence of pathology in 

the event of a fracture. Further, statistical shape models have been used in the analyses 

of tibiofemoral and patellofemoral joints and image-based 3D reconstruction methods from 

femur or pelvis shapes [3-5]. However, most methods using 3D reconstructions assume 

an ideal geometry as a reference for the underlying bone shape (e.g., a perfectly spherical 

femoral head) [6]. Nonparametric correspondence methods, like the ones presented in this 
dissertation, allow comparison of complex 3D morphology without any assumptions about 

the associated geometry.

7.1.1 Cam Type Femoroacetabular Impingement
(CAM-FAI)

In collaboration with Dr. Andrew Anderson and Dr. Michael Harris from the Dept. 

of Orthopedics at the University of Utah, the shape analysis methods developed in this 

dissertation were applied to a study of femurs inflicted by femoroacetabular impingement 

(FAI). This work has been published in the Journal of Orthopedics [7].
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FAI is caused by reduced clearance between the femoral head and acetabulum due 
to anatomic abnormalities of the femur (cam FAI), acetabulum (pincer FAI), or both 

(mixed FAI) [8]. Cam FAI is characterized by a malformed femoral head, as shown in 

the radiographs in Fig. 7.1. This condition may cause joint damage, leading to early hip 

osteoarthritis (OA) [9].
Two-dimensional radiographic measurements or a series of radial planes from CT or 

MR images are commonly used to diagnose cam FAI [10, 11]. While 2D measures provide 

initial diagnosis, they are largely unreliable [12], and there is no well-established normative 
range of measurements [13, 14]. Radiographic measures are also limited in their description 
of the variability in the femur shape in presence of FAI deformities and may lead to a 

high rate of misdiagnoses. 3D reconstruction of the femur from CT images provides a 

more comprehensive visualization of the entire femoral head and can be used to evaluate 

cam FAI. The statistical modeling methods presented in this dissertation were used to 

objectively compare femur morphology in the presence of deformities due to FAI, without 

any assumptions about the underlying geometry. Subsequent statistical analysis is expected 
to improve diagnosis of FAI and facilitate surgical planning. Further comparison with 

a healthy population may yield a quantitative measure of FAI severity, while analysis of 
shape variability may also find clinical use in the description of FAI deformities and their 

classification.

Figure 7.1. Radiographs showing healthy (left) and cam FAI (right) femurs. The circle 
indicates the anterolateral head-neck junction.
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7.1.1.1 Data
A cohort of cam FAI patients was retrospectively collected from the University of Utah 

and Intermountain Healthcare orthopedic centers. Subject selection and modeling received 

IRB approval from both institutions. Volumetric CT images of the pelvis and proximal 
femur were retrospectively acquired from 30 cam FAI patients (28 males, 2 females). CT 

scans for 79 possibly control femurs were retrospectively obtained (with IRB approval). Of 

these, 20 subjects received a CT arthrogram as part of a previous study [15]. These subjects 
had no history of hip pain and no radiographic evidence of OA. The remaining 59 femurs 

were from a database of cadavers that had been previously scanned [7].
The proximal femur to lesser trochanter of each femur was segmented and reconstructed 

from the CT image data using the Amira software (v5.4, Visage Imaging, San Diego, 

CA). Reconstructed surfaces were triangulated, and segmentation artifacts were removed by 

slightly smoothing surfaces using tools available in Amira. Reconstructions were cropped 

at the superior aspect of the lesser trochanter, considered to be the most inferior location 
where cam FAI deformities might extend. The cropped reconstructions were then aligned 

in Amira using a built-in iterative closest point algorithm to minimize the root mean square 

(RMS) distance between surfaces. Finally, surface reconstructions were converted to binary 

segmentations, which were input to the shape analysis pipeline.

Shape variation was also correlated with existing 2D and 3D measures of femoral anatomy 

using Pearsons correlation coefficient. A detailed correlation analysis is presented in [7].

7.1.1.2 Shape Analysis
The input binary segmentations were further preprocessed to remove aliasing artifacts, 

and 2, 048 particles were placed on each femur, using the method described in Chapter 5 

and the constraint for open surfaces described in Chapter 3. The generalized Procrustes 

algorithm was applied regularly during optimization to align shapes with respect to rotation 

and translation and to normalize with respect to scale. Group labels were used to separate 
the particle configurations of controls and cam patients, and the mean shape for each group 

was constructed as the mean of the particle configurations from all shapes belonging to that 

group [7].

Parallel analysis [16, 17] determined that the first six modes captured significant varia­

tion and were used for further analysis. The six modes captured 83.8% of the cumulative 

variation among all femurs. PCA, run on the control and patient groups independently, 
showed similar areas of intragroup variation.
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Qualitative and quantitative descriptions of variation captured by the first three modes 
are shown in Fig. 7.2. For both groups, variation in mode 1 was most substantial at the 

mediallateral distance from tip of greater trochanter to center of the head and the distance 
between the proximal tip of the greater trochanter and the proximal lesser trochanter. For 

the patient group, mode 1 also captured variation in concavity at the head-neck junction. 
For both groups, mode 2 primarily described variation in the diameter of the neck. Finally, 

mode 3 captured variation in the curvature of the greater trochanter in both groups.

Classification of these areas of high variation may assist in resolving the persistent clinical 
problem of establishing rubrics that can reliably distinguish normal and pathological femurs, 

based on morphology alone.

The patient mean was locally larger than the control mean by up to 3.3 mm at the 

anterolateral head-neck junction. Sustained protrusions of 2.5-3.0 mm were distributed 

from the AP midline of the femoral neck and distally along the anterior neck. The differences 

between mean control and cam FAI femurs correspond well with previous findings related to 

cam type lesions and interaoperative observations related to soft-tissue damage. A Hotelling 

T 2 test was used to test for group differences between the mean control and patient shapes, 
with the null hypothesis that the two groups were drawn from the same distribution. This 
test demonstrated significant differences between the patient and control mean shapes (p < 

0.001). Fig. 7.3 shows the morphological differences between the control and patient mean 

shapes.

7.1.1.3 Discussion
Statistical shape models were constructed to compare femoral head morphology between 

control and cam FAI femurs. Local shape differences between the mean shapes from the two 

groups were found to be consistent with the locations of the cam lesions and corresponding 

joint damage reported in literature [9]. Considerable variation was found in the shape 

and height of the greater trochanter among all femurs and between groups. There were 
also large variations among femurs in the distance between the greater trochanter and the 

center of the head (i.e., femoral offset) and the neck diameter, demonstrating the ability 
of the statistical model in providing a comprehensive picture of the variations in femoral 

shape and the spectrum of possible deformities.

A comparison of individual samples with the mean shapes can possibly be used to 

improve FAI diagnosis and treatment. As shown in Fig. 7.4, 3D reconstruction of a patient 
with cam FAI could be objectively compared to the mean control femur to produce a map
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Figure 7.2. Shape variation captured in the first 3 modes. Shapes at ±2 SD shown for 
each mode. Color plots indicate differences between various shapes and the means (shown).
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Figure 7.3. Mean control and cam femur shapes. Colors indicate difference between control 
(shown) and cam means. From M. D. Harris, M. Datar, R. T. Whitaker, E. R. Jurrus, 
C. L. Peters, and A. E. Anderson, Statistical shape modeling of cam femoroacetabular 
impingement, J. Orthop. Res.. Copyright ©  2013 by John Wiley Sons, Inc. Reprinted by 
permission of John Wiley & Sons, Inc.

elucidating the magnitude and location of bone debridement required for correction, thus 
facilitating exact surgical planning.

Another persistent problem with diagnosing cam FAI is the establishment of rubrics that 

can reliably distinguish pathologic from normal femurs. A comparison of individual patient 

samples with the mean pathological shape can be used to assess disease severity and develop 

new, perhaps more reliable measurements of anatomy to diagnose FAI. Also, [7] presents 

a detailed discussion of other findings from this study. On a final note, shape variability 

captured by the significant modes may also be useful in identifying shape changes that are 
contributing factors to FAI, rather than a retrospective evaluation of patient population 

variation. Such information may help in the characterization of morphological differences 

between healthy and pathologic bones and aid classification of extreme/unusual cases.

7.1.2 Mouse Model of Multiple Osteochondroma (MO)
This project involved application of the proposed shape analysis methods to study the 

short bone phenotype associated with multiple osteochondroma (MO). The cancer was 

studied in mouse models created by Dr. Kevin Jones, from the Huntsman Cancer Institute, 

University of Utah School of Medicine. This work has been published in the Journal of 

Orthopedics [18].
MO is a heritable disorder characterized by the variably penetrant development of
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Figure 7.4. Color plot of a single cam FAI femur (shown) and the amount it deviated 
from the average control femur. These plots could be used as guide for planning surgical 
debridement to relieve FAI. From M. D. Harris, M. Datar, R. T. Whitaker, E. R. Jurrus, 
C. L. Peters, and A. E. Anderson, Statistical shape modeling of cam femoroacetabular 
impingement, J. Orthop. Res.. Copyright ©  2013 by John Wiley Sons, Inc. Reprinted by 
permission of John Wiley & Sons, Inc.
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multiple cartilage-capped bony excrescences on the metaphyses of long bones, called os­
teochondromas or extostoses [19, 20]. Individuals with MO demonstrate visible shortening 

of the long bones, resulting in reduced stature and pronounced deformities. This short 

bone phenomenon presents great clinical challenges, but is still little understood. Mouse 

models have suggested that haploinsufficiency cannot induce the short bone phenotype, 
in that mice inheriting loss of a single functional copy of Ext1 or Ext2 in the germline 

do not have discernibly shortened bones [21, 22]. However, this suggests the hypothesis 

that multiple osteochondromas might directly lead to a steal phenomenon, in which some 
physeal chondrocytes are redirected to grow peripherally rather than contribute to longi­

tudinal growth. Studying longitudinal growth variation in humans is very difficult since 

this variation is typically small (approximately 10% of length) as compared to the wide 

population variation in bone lengths. However, the mouse model, previously described 

in [23], provides a tight control group of littermates, and induction of osteochondromas can 

be timed at different points during growth to achieve an anticipated range of severity in 

osteochondroma formation at different ages.

7.1.2.1 Mouse Model and Data
For these particular experiments, mice were induced to lose both functional copies of 

Ext1 via the transgene Cre-recombinase, in a minority of chondrocytes by administration of 

doxycycline in the drinking water (4 mg/ml) for a duration of 8 days beginning during the 

first, second, or fourth week of life (with the approval of the IACUC). All mice were male and 

euthanized for imaging at 12 weeks age. Controls were littermates, lacking Cre-recombinase, 

having similarly received doxycycline. Shape analysis of subsequent CT scans can then be 

used to measure bone lengths as well as compute volumes of bones and localized deviations 

of volume by comparison with a mean shape from control littermates [18].

CT scans obtained at 46 mm resolution were exported as DICMs and analyzed. Binary 

segmentations of the femora and tibiae, derived from the CT scans, were used as input to 
the statistical shape modeling process.

7.1.2.2 Shape Analysis
The segmentations were preprocessed to remove aliasing artifacts, and 2,048 corre­

spondences were initialized and optimized on each bone, using the strategy described in 

Chapter 5. The generalized Procrustes algorithm was applied at regular intervals during 
the optimization to align shapes with respect to rotation and translation and to normalize 

with respect to scale. Group labels were used to separate the point representation of controls
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and mice with MO, and the mean shape for each group was constructed as the mean of the 
correspondences from all shapes belonging to that group.

Mice forming osteochondromas were noted to have shorter femora and tibiae, most 

consistently among those induced to lose both functional copies of Ext1 at a young age. 
An analysis of the group mean shapes showed that bones from mice with osteochondromas 

were both shorter overall and wider in the metaphyses as shown in Fig. 7.5.
The femora and the tibiae were analyzed separately, starting with a few common steps. 

Principal component analysis (PCA) was used to reduce the dimensionality required to 
examine variation among the different bones. Parallel analysis was then performed to 
determine the number of principal component modes representing significant variations 

among the bones. This analysis determined that the first five modes were significant for 

the femora, while the first four modes should be used for further analysis of the tibiae.
Using the significantly contributing modes designated by parallel analysis, a standard 

parametric Hotelling T2-test was used to test for group differences (control vs. doxycycline 
at 1, 2, or 4 weeks), with the null hypothesis that the two groups are drawn from the 

same distribution. For both the femora and the tibiae, the Hotelling T 2-test resulted in a 

significant difference in the group mean shapes (p <  0.01). The group mean differences are 

visualized in Fig. 7.6 and show mean surface expansion/contraction for each of the three 

disease groups as compared to the mean control shape.
Comparing individual bones from induced mice to the control mean shape revealed 

that large metaphyseal shape deviations were only weakly correlated with shortening of the 

bones, as shown in Fig. 7.7.
After aligning femora at the knee and cropping distal femoral volumes to include only 

the metaphyses and discard the impact of volume deviation due to overall bone shortening, 
deviations of metaphyseal volumes from the mean of the control femora demonstrated no 

correlation with length as shown in Fig. 7.8.
While there is a severe reduction in length among some femora with large peripheral 

gains in metaphyseal volumes, others have abundant osteochondromas and metaphyseal 
volumetric expansion but minimal to no shortening.

7.1.2.3 Discussion
When induction of osteochondromagenesis was initiated early in skeletal development, 

femora and tibiae were approximately 10% shorter at the end of skeletal growth, but were 
not smaller in total volume, as the metaphyseal expansion in the form of osteochondromas 

compensated for and generally even slightly overcompensated for the loss of volume due to
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Figure 7.5. Volumetric overlay of mean shape of murine femora and tibiae following 
induction of homozygous loss of Ext1 in a minority of chondrocytes at variable ages during 
skeletal growth. Aligned here at the distal femur (upper) and proximal tibia (lower) to 
demonstrate the overhanging metaphyseal width in each osteochondroma forming group 
(left, doxycycline at 1 week; middle, doxycycline at 2 weeks; right, doxycycline at 4 weeks) 
and the overhanging length of the control group mean shape. From K. B. Jones, M. 
Datar, S. Ravichandran, H. Jin, E. Jurrus, R. Whitaker, and M. R. Capecchi, Toward 
an understanding of the short bone phenotype associated with multiple osteochondromas, 
J. Orthop. Res., vol. 31, no. 4, pp. 651657. Copyright ©  2013 by John Wiley Sons, Inc. 
Reprinted by permission of John Wiley & Sons, Inc.
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Figure 7.6. Mean shape of murine femora and tibiae following induction of homozygous 
loss of Ext1 in a minority of chondrocytes at variable ages during skeletal growth. All 
three groups (Doxycycline beginning during week 1 on left, 2 in the middle, and 4 on 
right) demonstrated similar mean shape changes compared to controls, with shortening 
demonstrated by bone-end yellow-coloration indicating surface subtraction and metaphyseal 
widening demonstrated by blue-coloration indicating surface expansion. FromK. B. Jones, 
M. Datar, S. Ravichandran, H. Jin, E. Jurrus, R. Whitaker, and M. R. Capecchi, Toward 
an understanding of the short bone phenotype associated with multiple osteochondromas, 
J. Orthop. Res., vol. 31, no. 4, pp. 651657. Copyright ©  2013 by John Wiley Sons, Inc. 
Reprinted by permission of John Wiley & Sons, Inc.



83

nwMww
Doxycycline at 1 week

m r o m n m
Doxycycline at 2 weeks

m m i m
Doxycycline at 4 weeks

Figure 7.7. Metaphyseal widening does not consistently increase with decreasing length 
in the femora of mice that develop osteochondromas. Ordered from longest to shortest in 
each group, individual femora from mice treated with doxycycline at 1, 2, or 4 weeks age 
are depicted as rendered shapes, with colors indicating the deviations from the mean shape 
with regard to volume. While some of the shortest specimens have abundant red showing 
large deviations in volume, other specimens with large deviations are much longer in length. 
From K. B. Jones, M. Datar, S. Ravichandran, H. Jin, E. Jurrus, R. Whitaker, and M. R. 
Capecchi, Toward an understanding of the short bone phenotype associated with multiple 
osteochondromas, J. Orthop. Res., vol. 31, no. 4, pp. 651657. Copyright ©  2013 by John 
Wiley Sons, Inc. Reprinted by permission of John Wiley & Sons, Inc.
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Figure 7.8. Femur length deviation correlates poorly with metaphyseal volumetric growth. 
Phenotypic metaphyseal widening, estimated by the deviation from the control mean in 
cropped volumes correlated poorly with less shortening, rather than more shortening, thus 
countering a simple steal phenomenon as the mechanism of shortening. From K. B. Jones, 
M. Datar, S. Ravichandran, H. Jin, E. Jurrus, R. Whitaker, and M. R. Capecchi, Toward 
an understanding of the short bone phenotype associated with multiple osteochondromas, 
J. Orthop. Res., vol. 31, no. 4, pp. 651657. Copyright ©  2013 by John Wiley Sons, Inc. 
Reprinted by permission of John Wiley & Sons, Inc.
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shorter length. Induction at later ages resulted in less consistent shortening, but sometimes 
much greater total bone volumes. The natural variation in severity of osteochondroma 

formation did not correlate with reduced length. These data lead us to reject the model of 
a steal phenomenon at work in the pathogenesis of the short bone phenotype.

7.2 Applications in Cardiology
Availability of quality cardiac imaging data has led to an increasing number of studies 

to characterize the morphology and epidemiology of cardiac diseases [24, 25] and also to 

analyze data from clinical trials [26]. However, many of these images are used to investigate 

outcomes specific to a study and are not available for wider use [27]. There has been an 

effort to combine imaging data from multiple studies to build atlases and facilitate the 

study of population-wide changes in anatomy and function in the context of known cardiac 

conditions [28]. One example is the study by Lewandowski et al. to characterize differences 
in cardiac shape between healthy children born premature and those born full-term [29]. 

An atlas-based method is used to study the regional shape bias in population studies due 
to differing imaging protocols [27]. Atlas-based methods rely on a template created from 
a specific training set and thus might be limited in their application. For example, it is 

difficult to warp pathological shapes to an atlas created from a training set of healthy 

controls. Furthermore, shape differences related to underlying biological factors such as age 

are often neglected during atlas creation. The shape modeling methods described in this 

dissertation do not require a training set and are capable of modeling shape changes related 

to external factors such as age, thus providing a statistical framework to investigate clinical 

hypotheses.
This section describes the use of methods from Chapters 4 and 5 toward cardiac shape 

analysis in the context of ischemia and atrial fibrillation. A group comparison for the is­

chemia study, corroborating the results of [30], has been included in the MICCAI publication 

reproduced in Chapter 5. The other applications in this section have not been published 
previously.

7.2.1 Ischemia
One of the major causes of morbidity and mortality in the United States is heart failure 

caused by coronary artery disease with infarction and the consequent ischemic cardiomy­

opathy (ICM) [31]. Quantification of shape changes related to heart failure remodeling is 

challenging due to the nonregular shape of the left ventricle (LV) and the sparse availability 

of anatomical landmarks in the heart. The method to model nonregular shapes described
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in Chapter 5 of this dissertation provides a framework to study anatomic variability and 

perform hypothesis testing in the context of LV remodeling. This study was performed in 

collaboration with Dr. Raimond Winslow from the Johns Hopkins University.

The data comprised of 25 end-diastole (ED) cardiac segmentations from 13 global 
nonischemic cardiomyopathy (NICM) controls and 12 ICM patients. Further description 

of data is provided in [32]. Four datasets (1 patient and 3 controls) displayed a feature 
(Fig. 7.9) that might be the result of incorrect segmentation or severe pathology. These 

datasets were excluded from the population, and the remaining 21 shapes were used to 

create a statistical model as described in Chapter 5.
The mean shape of the NICM group differed in shape and length of the long axis as 

compared to the ICM group and also in size and orientation of the opening at the atrial 
ventricular (AV) junction, as shown in Fig. 7.10. Another interesting observation was the 

variation in the atrial base point on the LV. These results were found to be consistent with

Figure 7.9. Example of skipped dataset: Note the ‘bump’ on the right

O

' 9

Figure 7.10. Multiple views of the group mean shapes: NICM group (top) and ICM group 
(bottom)
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the inferences made from knowledge of the segmentation process. Since the LV wall was 

well segmented, there was no other source of variability in the images, indicating that the 

variation at the AV junction was real. Further, as shown in Fig. 7.11, the top modes of 

variation across groups captured variation in the same features as those described in the 
analysis of the mean shape.

A qualitative analysis of the within class variation also led to observed differences in the 

wall thickness between the two groups. This difference has been described as one of the 
distinguishing features separating the two groups in literature [30]. Further analysis of the 

differences in the group means is described in detail in Chapter 5.

7.2.2 Atrial Fibrillation
Atrial Fibrillation (AF) is a heart condition characterized by chaotic electrical activ­

ity and irregular contractions in the atria. AF is a progressive disease, with increasing 

fibrillation duration and frequency that is correlated with the electrical remodeling of left
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Figure 7.11. Group differences across five major modes in the range of [-a , + a ]
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atrium (LA) tissue and an increase in LA volume. Studies have shown, however, that after 

successful radiofrequency ablation to cure AF, an enlarged LA often returns to a more 
normal volume again over time [33]. While volume changes have been observed, there has 

been little analysis of changes in the shape of the LA, which could provide greater insight 

into the mechanisms behind AF. Shape analysis of the LA is a challenging problem due 

to the high variability in LA shapes and may benefit from the increased statistical power 

offered by mixed-effects modeling.
This section describes two studies where the linear mixed-effects model described in 

Chapter 4 is applied in the context of AF.

7.2.2.1 Human Study
In collaboration with Dr. Josh Cates from the Comprehensive Arrythmia Research 

and Management (CARMA) Center, the linear mixed-effects shape model described in this 

dissertation was applied to a proof-of-concept study of LA shape change after successful 

radiofrequency (RF) ablation.
The data for this study consisted of LA chamber segmentations (excluding the LA 

appendage) from MRI scans of 12 patients who successfully underwent RF ablation to cure 
AF. These shapes were retrospectively chosen from a database of patients for ongoing clinical 

studies at the CARMA Center. All patients underwent late-gadolinium enhancement (LGE) 

MRI scans and the LA chamber was manually segmented by an expert in cardiac anatomy. 

A linear mixed-effects correspondence model was constructed using two segmentations for 

each patient: the first immediately preablation and a second from approximately 3 months 
postablation. The explanatory variable for the model was time in days from ablation.

Fig. 7.12 shows the intercept shape of the LA model from four different viewing angles. 

The color encodes the dot product of the fixed-effect slope with the shape normal at 

that point. The results suggested shrinkage after ablation mainly in the inferior LA and

Figure 7.12. Visualization of the fixed effects for the left atrium data, (l-r) posterior, 
sagittal (left), anterior, and sagittal (right), respectively
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the posterior region where the pulmonary veins empty into the LA, with some dilation 

concentrated in the inferior region of the posterior view. Further, an analysis of variance 

in the random-effects slopes across individuals showed that areas of high intersubject vari­

ability on the LA were concentrated around the posterior region, a result consistent with 
empirical observations in the literature regarding the high variability of pulmonary vein 

configurations. These shape differences between pre- and postoperative LA shapes was 

shown to be insignificant by a multivariate Hotelling T 2 test (p > 0.05).
These results indicate that mixed-effects models could be used to uncover subtle shape 

changes beyond simple volume differences and suggest that further investigation with a 

larger cohort of cases may be warranted to investigate clinical hypotheses regarding LA 

shape and its relationship to AF.

7.2.2.2 Canine Study
In collaboration with Jason Jensen and Dr. Josh Cates from the Comprehensive Arry- 

thmia Research and Management (CARMA) Center, the linear mixed-effects shape model 

described in this dissertation was used to investigate population trends in atrial shape 
change during AF in a canine model.

Data were obtained retrospectively from five different canines, treated according to 

IACUC standards. AF was induced through rapid atrial pacing (average 319 ±  150 days). 

Volumentric segmentations of the LA blood pool were created from LGE-MRI using the 

CORVIEW software (Marreck Inc., SLC, UT). In order to account for high variability in the 

Left Atrial Appendage (LAA) and pulmonary veins (PV), four models were created for each 
MRI scan: with PV but without LAA, with neither PV nor LAA, with LAA but without 

PV, and with both LAA and PV. Canines were grouped according to cardiac phase, with 

12 scans in diastole and 16 scans in systole. Linear mixed-effects models were constructed 

for each group using the number of days paced as the explanatory variable.
Mixed-effects analysis demonstrated trends of local contraction and expansion, consis­

tent across all diastolic and systolic groups. A representative result is shown in Fig. 7.13 

and displays the global LA blood pool shapes generated from the mixed-effects model at 
three time points over the period of pacing. Global trends showed a clear increase in atrial 

size over time (Fig. 7.13 (a-c)), but also captured the local shape changes (Fig. 7.13 (d)).
A permutation test based on the variance of individual slopes was performed to test the 

significance of the random-effects and after 100 permutations, indicated that the random- 

effects were indeed significant (p < 0.05). A comparison was also made with the simple 
linear regression shape model described in Chapter 3, where only the first PCA mode was
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Days Paced 0 150 300

Figure 7.13. Representative result of mixed-effects analysis on canine LA shapes. (a-c) 
Global LA blood pool shape at three time points in long term canine AF model and (d) 
model demonstrating trends in local expansion (red) and contraction (blue) over time.

found to be statistically significant across groups (p < 0.05) and denoted a general increase 

in size. This was true only for the diastolic category.

The linear mixed-effects model consistently detects subtle atrial shape changes across 

groups in spite of the variation in anatomy across individuals. Such a model can potentially 
be leveraged for clinical assessment of AF progression and correlation of shape change to 

function.

7.3 Preliminary Studies
This section describes various studies that were started using the methods described 

in this dissertation and showed promising preliminary results. These results are yet to be 

published, but the respective collaborations are currently being pursued with more rigor by 

various students at the SCI Institute, University of Utah.

7.3.1 Huntington’s Disease
The objective of this study was to make the linear mixed-effects shape model, described 

in Chapter 4, accessible for further exploration of Huntington’s Disease (HD) based on the 

longitudinal data made available by the PREDICT-HD study, led by Dr. Hans Johnson at 

the University of Iowa. Preliminary work was done at the NA-MIC Summer Project Week 

2013.

A subset of the PREDICT-HD database, with seven control subjects and six subjects 

representing varying probability of onset of HD symptom manifestation, was used for this 

study. All subjects had at least three scans acquired approximately 1 year apart. The input 

data consisted of five segmented subcortical structures (caudate, globus, hippocampus, 
putamen, thalamus) each from the left and right hemispheres of the brain, which were 

manually verified and cleaned [34]. These structures are labeled in Fig. 7.14. These
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Figure 7.14. Subcortical structures segmented for shape analysis for the HD data

longitudinal data were used to generate a linear mixed-effects shape model as described 
in Chapter 4.

Fig. 7.15 gives an overview of the fixed-effects trends from the linear mixed-effects shape 

model. The color map is computed using the fixed-effects slope and indicates local expansion 

(blue) or contraction (yellow). The local expansion in the thalamus and the tip of the 

putamen is consistent with the morphological shape changes expected with HD progression. 

These results are encouraging, but will need to be confirmed with a comprehensive analysis 

of group differences. This was not carried out in the preliminary study due to the small 
number of cases available for each group.

7.3.2 Acetabular Cartilage in FAI
This study extended the analysis for CAM-FAI described in Sec. 7.1.1 to include the 

acetabulum shape. The aim was to display shape differences in acetabular cartilage between 

controls and dysplasia patients to give a preview of how form (i.e., shallow acetabulum) 

relates to function (e.g., altered cartilage contact pressures). Preliminary work for this 

study was done in Summer 2012.

The data consisted of 10 segmented acetabular cartilage shapes, with an equal number 

of healthy controls and patients with hip dysplasia. The major challenge with this dataset 

was the high amount of variability in the shapes, even within the same group. A statistical 
shape model was created for the acetabular cartilage using methods for nonregular shapes
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Figure 7.15. Visualization of the fixed-effects slope for the Control group (top) and the 
HD group (bottom)
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described in Chapter 5.
Dysplasia patients typically have a very shallow acetabulum compared to controls, visible 

in the shape of both the acetabular bone and the acetabular cartilage. This difference is 

qualitatively illustrated in the mean shapes as shown in Fig. 7.16, especially in the anterior 

perspective view. A Hotelling T 2 test also found significant differences in the group means 

(p < 0.05).
These results provide a proof of concept that the methods described in this dissertation 

can be applied to further analysis of acetabular cartilage shapes, in spite of the high amount 
of variability inherent in the population. These results have been included in a joint grant 

proposal between the Department of Orthopedics and the SCI Institute. The collaboration 

is being extended to the study of other orthopedic applications like design of shoulder 

implants, which will involve the use of methods from this dissertation to model the scapula.

Figure 7.16. Four different views of the mean acetabular cartilage shape for the control 
(yellow) and patient (red) groups
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CHAPTER 8

SUMMARY

This chapter concludes the dissertation with a brief summary of the contributions and 

a discussion of the shortcomings while using the ShapeWorks software. Some directions for 

future work are also listed.

8.1 Research Contributions
This dissertation extends the PBM framework to enable modeling of shape change over 

time and also to improve correspondences for populations of complex shapes. The methods 

are further applied to address specific biomedical problems. Cross-sectional shape regression 

is introduced, and a novel permutation test is designed to test model significance. Longi­

tudinal analysis of shape populations is made possible via the use of an LME shape model 
within the PBM framework. Additional features like surface normal entropy and geodesic 

distance to landmarks are introduced to obtain robust and consistent correspondences across 
geometrically complex and highly variable shapes.

The general methodology and robust implementation developed in this dissertation is 

further evaluated in the context of neurological, cardiac, and orthopedic applications. Sta­

tistical analysis is performed by extending existing multivariate methods and constructing 

novel permutation tests. The methods described in this dissertation, combined with the 

statistical analyses, have provided new ways to explore scientific hypotheses and the results 

represent a comprehensive validation of the engineering contributions of this work.

8.2 Practical Considerations and Shortcomings
The statistical shape modeling methods described in this dissertation have been suc­

cessfully applied to a variety of biomedical problems. However, there are some technical 

shortcomings that require careful consideration. As described in Chapter 2, the ShapeWorks 

pipeline consists of four stages: preprocessing, initialization, optimization, and analysis. A 
careful consideration of parameter values and settings is necessary in each of the first three 

stages. The analysis of results is specific to each hypothesis and has been performed outside
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of ShapeWorks for the use cases described in this dissertation. The following paragraphs 
describe the various parameters and settings to be considered while using ShapeWorks for 

statistical shape modeling.

8.2.1 Preprocessing
An appropriate input to ShapeWorks is a set of implicit surfaces, such as a set of 

binary segmentations from which a distance transform representation can be computed. 

Typically, all shapes in a population are not acquired using the same scanner settings, 

leading to varying geometric parameters (e.g., bounding box). Aliasing artifacts resulting 
from numerical approximations are also observed in binary masks. Preprocessing such input 

data is tedious in the current implementation of ShapeWorks and needs to be performed 

carefully to avoid errors in subsequent stages of the pipeline.
An important consideration is the input geometry. The current implementation requires 

all shapes to have a common bounding box and the center of rotation (or coordinate (0, 0, 0)) 

to be in the middle of the volume. This requires customized preprocessing steps for each 

application due to the lack of standardized acquisition settings for shape analysis studies. 

However, the capability to store and process geometric parameters related to input shapes 
will help alleviate this problem and aid implementation of generic, automated geometric 

preprocessing filters.
Further consideration is required while performing Gaussian smoothing to remove alias­

ing artifacts in the input data since many geometrically complex shapes are sensitive to the 
smoothing parameter. An incorrect setting may lead to holes in the shapes and result in 

numerical inaccuracies in further steps of the pipeline. A potential solution to this problem 

could be the automatic determination of the smoothing parameter based on local feature 

size.

8.2.2 Initialization
In the current implementation of ShapeWorks, correspondence initialization begins with 

a single particle on each implicit surface. This particle is duplicated, or split, to produce a 
neighboring particle at regular intervals in the initialization process. Initial particle positions 

can also be provided as a text input. In general, this procedure is reliable for classes of 
closed shapes with fairly smooth surfaces.

Careful consideration is required for initialization over nonregular surfaces similar to 

those described in Chapter 5, as particles can easily cross over to opposite sides (for thin 

structures or sharp features) of such shapes. The surface normal penalty is useful during the
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initialization stage for such shapes. It helps initialization near sharp features by constraining 

not only the position, but also the direction of correspondences across shapes.
Local curvature adaptive sampling is a useful feature in the initialization process. How­

ever, it is important to note that the adaptivity parameter is unconstrained and an incorrect 

value can result in unexpected initial particle configurations or failure of the initialization 
process. In the current implementation, this parameter is set empirically. However, auto­

matic computation of this parameter based on local feature size may help obtain a more 

stable initialization.

8.2.3 Optimization
The ShapeWorks optimization proceeds as described in Section 2.1, starting with an 

initial set of particle positions and a set of implicit surfaces (e.g., distance transforms). 

Optimization based on surface normals or geodesic distance features is highly sensitive to 

the complexity and variability inherent in the shape population being studied and can be 
unreliable if parameters are not set using domain knowledge and experimentation. For each 

of the methods described in this dissertation, the selection of features for optimization is 
critical and needs to be performed carefully. A learning approach might provide better 
control over reliability and sensitivity of the optimization process. Practical considerations 

specific to some of the methods from this dissertation are as follows.
The LME model described in Chapter 4 currently requires that all subjects have the 

same number of time points. Implementation level changes will be required to accommodate 

a varying number of time points for each subject. This will be a good feature to have since 
in theory the LME model has no such restrictions.

The use of geodesic distances described in Chapter 6 helps obtain robust correspondences 

for nonregular brain shapes, but in spite of an optimized data structure, the associated 
memory footprint is considerably large. One way to reduce the memory footprint would 

be to switch from implicit surfaces to surface meshes as inputs, allowing near real time 

computation of geodesic distances using efficient algorithms (Section 2.2) and releasing 

memory required to store pairwise geodesic distances. However, careful consideration will 

be required to extend the surface constraint to the mesh representation.
A similar trade-off is required to use the surface normal entropy as described in Chap­

ter 5. Precomputing surface normals for all voxels is a memory intensive operation, while 

computing them on-the-fly along with the Frechet mean and covariance for the entropy 

computation is computationally intensive and has an adverse effect on the speed of opti­
mization. A practical solution would be to penalize correspondences for deviating from
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local the average direction, thereby getting rid of the computationally intensive covariance 

calculation. However, the weight of this penalty term must then be chosen empirically.

This section describes the challenges that still remain within the scope of the topics 

addressed in the previous chapters and also prescribes possible solutions.

The PBM framework assumes a normal distribution in the shape space and models 

particle position p(Z =  z) parametrically using an anisotropic Gaussian with covariance S. 
Thus, the ensemble entropy is given as H (Z) «  2 log |S|. In practice, we have N shapes in 

R d, each sampled using M  correspondences. Here, S  is the classical covariance, estimated 
from the data and given as S  =  ( dMN — 1) -1  (P — ^1T)(P  — ^1T)T, where P are the 

sample vectors and ^ is the sample mean. This measure uses an L2 norm, making the 

model described by this covariance susceptible to outliers.

In order to construct a model description robust to outliers in the shape space, the 

classical covariance S  could be closely approximated by the Absolute Deviation (AD) 

covariance S AD, as described in [1]. The Mean (average) Absolute Deviation (MAD) is an 
L1 metric defined as

Considering S  =  a2 and using (8.1) and (8.2), we can write the AD covariance as

This formulation of S ad  from (8.3) can be used in the entropy minimization scheme for the 
PBM framework. Since L 1 metrics are known to be robust to outliers, it can be assumed 

that such an estimate of model covariance will be able to deal with outlier shapes.

A potential problem with this strategy may arise if S a D does not preserve the properties 

of a covariance matrix (e.g., invertability). In such an event, the pseudoinverse may be used 

to compute an update for the correspondence position. It is also important to note that 
the results in [1] appear very preliminary and rigorous experimentation will be required to 
confirm that this paradigm will indeed work.

8.3 Challenges and Future Work

8.3.1 Outlier Shapes

D (Y )=  E [|Y — |̂] (8.1)

From [1], we have

(8.2)

S ad  =  (D (Y ) )2 (8.3)
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8.3.2 Missing Features
The original entropy formulation prescribed by the PBM framework in Section 2.1 

introduces a generative statistical model of the form

z =  fi +  e,e (0, £) (8.4)

for correspondence, where z e is an individual surface modeled as an instance of a 

random variable Z, i  is the vector of mean correspondences, and e is normally distributed 
error.

The system is implemented such that each shape is sampled using the same number 

of correspondences. As such, there are no features missing in any configuration space. 

However, in case the ensemble has outlier shapes (i.e., shapes that do not belong to the 

population, or have missing parts), correspondences on such shapes may be incorrectly 
optimized. Since the model is described by the mean shape computed using an L2 norm, 
it is highly sensitive to such outliers and may fail to generalize. Moreover, the ensemble 

entropy is computed using distance from this mean, and such outliers affect optimization 

in the shape space and consequently in the configuration space as well.

One possible solution is to replace the mean shape with the median shape (Li norm) 

in (8.4). Since the L1 norm is robust to noise and outliers, the median shape is a more 

robust representative of the ensemble and should not be affected very much by the presence 

missing features. The ensemble entropy, computed using distance from the new median, 
might also provide a degree of robustness against outliers in the shape space as well.

While this formulation has advantages, the biggest challenge is to compute the median 

shape (L1 norm) at every iteration of the correspondence optimization process. [2] reports 

various ways of computing the median shape and also provides an algorithm invariant to 
rigid transformations. Since the correspondences move incrementally on a static shape 

ensemble, the computation of the median shape can possibly be allowed to lag for a few 

iterations without becoming degenerate.

8.3.3 Growth Models
Clinicians are not only interested in linear shape changes but would also like to view 

localized shape changes driven by a clinically relevant growth model to better correlate 

changes in anatomy with underlying biological parameters like age. It is therefore desirable 

to substitute the linear model described in Chapter 3 with a nonlinear model of growth, 
such as the Gompertz growth function [3].
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The Gompertz function, given as f  (t) =  ae êlt, uses intuitive parameters related to 
delay (5 ), rate of change (7 ), and expected asymptotic value (a), which are useful in 
understanding and comparing growth trajectories. Considering f  (t) to be the Gompertz 

growth function, the regression model parameter estimation described in Chapter 3 can be 

replaced with the estimation of the Gompertz parameters a,  fl, and 7  using the Levenberg- 

Marquardt (nonlinear least squares) method. This method has been implemented within 
the ShapeWorks framework, and preliminary results are promising.

The inclusion of this nonlinear growth model does not change the assumptions or the 

inferential statistics of the population. However, if additional measurements related to 
growth (e.g., volume measurements, functional MRI activation maps) are available, it would 
be promising to look at the changes in these measurements localized to their source on the 

brain surface and governed by a clinically relevant growth model. With the further aim of 

modeling trajectories for individual subjects, a Gompertz mixed effects model, similar to 

the one described by Sadeghi et al. [4], may also be formulated.
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