
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007 1727

I n t e r a c t i v e I s o s u r f a c e R a y T r a c i n g o f T i m e - V a r y i n g T e t r a h e d r a l V o l u m e s

Ingo Wald, Heiko Friedrich, Aaron Knoll, and Charles D. Hansen, Senior Member, IEEE

Abstract— We describe a system for interactively rendering isosurfaces of tetrahedral finite-element scalar fields using coherent ray tracing tech
niques on the CPU. By employing state-of-the art methods in polygonal ray tracing, namely aggressive packet/frustum traversal of a bounding volume
hierarchy, we can accomodate large and time-varying unstructured data. In conjunction with this efficiency structure, we introduce a novel technique
for intersecting ray packets with tetrahedral primitives. Ray tracing is flexible, allowing for dynamic changes in isovalue and time step, visualiza
tion of multiple isosurfaces, shadows, and depth-peeling transparency effects. The resulting system offers the intuitive simplicity of isosurfacing,
guaranteed-correct visual results, and ultimately a scalable, dynamic and consistently interactive solution for visualizing unstructured volumes.

Index Terms—Ray Tracing, Isosurfaces, Unstructured meshes, Tetrahedra, Scalar Fields, Time-varying data.

------------------------------ ♦ ------------------------------

1 Introduction

Visualization of large unstructured volumes is a persistent challenge
in data analysis. Due to its adaptive nature and simplicity, finite el
ement (FE) analysis has experienced widespread adoption in simu
lations for numerous computational scientific and engineering disci
plines such as CFD, meteorology, geology, and astronomy. With in
creasingly sophisticated simulation techniques and powerful parallel
computing environments, the effective size of finite element fields is
quickly outpacing the memory capacity of commodity graphics pro
cessors (GPUs). Nonetheless, scientists generally desire accurate vi
sualization of these data sets in their entirety, with few, if any, com
promises. Ideally, the visualization system should allow for dynamic
changes in camera, lighting, isovalue and time step, without sacrifice
in interactivity.

A conventional method of rendering isosurfaces of volume data has
been extraction via marching cubes or marching tetrahedra, followed
by Z-buffer rasterization on GPU hardware. While more than adequate
for small data, this approach faces difficulties for large, high-frequency
volumes, where significant amounts of geometry must be extracted to
faithfully reproduce a surface. View-dependent and multiresolution
extraction methods can reduce the amount of geometry, but ultimately
extraction is bound by geometric complexity.

Recent techniques for rendering unstructured data have leveraged
the power of GPU hardware, applying direct volume rendering (DVR)
techniques to depth-sorted tetrahedra. Large data has been addressed
through multiresolution and progressive rendering techniques, as well
as out-of-core mechanisms. While powerful, these methods incur lim
itations, as interactivity is realized through simplification or temporary
omission of the full data set. Conversely, ray tracing methods on CPU
workstations can directly address large memory, and arc inherently
scalable to multiple processors and large data.

Multi-core CPU's arc increasingly prevalent. Large-scale multi
core architectures, such as Terascale [141, arc clearly on the horizon.
Current cc-NUMA workstations support 16 to 32 cores, and can di
rectly address nearly two orders of magnitude more memory than a
GPU. Algorithmic flexibility and SIMD instructions on the CPU en
courage coherent ray tracing techniques, which amortize the costs of

• Ingo Wald is with the SCI Institute, University o f Utah, as well as with
Intel Corp. Santa Clara, CA; E-mail: wa/d(s>sci.Utah.edu.

• Heiko Friedrich is with the Computer Graphics Group at Saarland
University, Saarbriicken, Germany; E-mail: heiko(s>graphics.cs.uni-sb.de.

• Aaron Knoll is with the SCI Institute, University o f Utah; E-mail:
knotta @ sci. utah.edu.

• Charles D. Hansen is with the SCI Institute, University o f Utah; E-mail:
hansen(s>cs.utah.edu.

Manuscript received J t March 2007; accepted t August 2007; posted online
27 October 2007. Published 14 Septem ber 2007.
For information on obtaining reprints o f this article, please send e-mail to:
tvcg(s>computer.org.

acceleration structure traversal and primitive intersection across multi
ple rays. Unstructured tetrahedral volumes encourage adaptive accel
eration structures, such as bounding volume hierarchies (BVHs), that
have proven efficient for dynamic triangle mesh ray tracing. Isosur
faces for first-order FE arc inherently polygonal, allowing for fast ray
tracing via simple geometric intersection tests.

In this paper, wc propose a new approach to directly ray-trace iso
surfaces defined over tetrahedral domains by combining recent ad
vancements in polygonal ray tracing with existing techniques for un
structured isosurface extraction. Wc detail a novel packct-tetrahedron
intersection algorithm inspired by marching tetrahedra, and its inte
gration with a coherent implicit BVH traversal. Wc extend this tcch
niquc to practical shading and visualization features such as multiple
transparent isosurfaccs and dynamic shadows. Ultimately, wc find that
ray tracing unstructured data on the CPU allows for interactive perfor
mance on current laptop hardware, flexible and correct visualization of
isosurfaccs, and the ability to render large time-varying unstructured
data, limited only by the size of CPU main memory.

2 Related Work

2.1 Iso su rfac e E xtraction

Marching cubcs was first applied to isosurfacc extraction of structured
data by Wyvill ct al. [411, and Lorcnscn & Cline [211. Doi & Koidc [81
developed a similar and arguably simpler algorithm based on march
ing tetrahedra for isosurfacing unstructured scalar fields. Nonetheless,
naive extraction of surfaces is bound by data complexity, and often
slow. Rcccnt works have accclcratcd marching tct extraction on the
GPU. Pascucci [251 showed that the vertex processor can be utilized
to crcatc appropriate quadrilaterals for the isosurfacc within a tetrahe
dron. Similarly, Klein ct al.fl 51 exploit fragment programs for their
quadrilateral computation. These GPU approaches yield overall ren
dering frame rates from 1 fps for million-tct data to 60 fps for smaller
data sets. Though not implemented for dynamic unstructured extrac
tion, tcchniqucs exist to improve performance on complcx geometry,
such as vicw-dcpcndcnt frustum culling f201, adaptive extraction f381,
and implicit occlusion culling f261.

2.2 U n stru c tu red Volume R en dering

Garrity f91 first applied ray casting to unstructured meshes, by com
puting the entry and exit points of cach ray with a facc of the tct mesh,
and accumulating opacity as in volume ray casting. Shirley & Tuch-
man f291 presented an approach similar to splatting, based on rasteri
zation of depth-sorted projcctcd tetrahedra (PT). Due to the power of
rasterization hardware, methods involving projection and sorting have
bccomc popular, such as vertex shader methods for performing PT
classification f401- Callahan ct al. f51 proposed an extremely cfficicnt
GPU method of partially ordering projcctcd tct fragments by depth in
both image and objcct spacc. The HAVS method has been extended
to handle large data using LOD f41, progressive rendering, and out-of-
corc streaming f31. Their system allows for direct volume rendering

1077-2626/07/S25.00 © 2007 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:27:38 UTC from IEEE Xplore. Restrictions apply.

1728 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007

(c) (d)
Fig. 1. Several samples of our interactive system running at 1024 x 1024 pixels:
a) tjet (1m tets) with shadows, transparent depth-peeling, and multiple isosur
faces b) SF1 (14m tets) with four isosurfaces. c) buckyball with two a clip-box,
multiple isosurfaces and shadows, d) Time step 60 of the time-varying fusion
data set (3m tets, 116 time steps), rendered with four isosurfaces, clip box,
shadows, and transparency. With a 1024 x 1024 frame buffer, these examples
render at 2.0, 3.1 5.4, and 0.8 fps, respectively, on an Intel Core 1 Duo 2.33
GHz laptop with 1 GB RAM; and and 11, 18, 52, and 10 fps, respectively, on a
16-core 3.0 GHz Opteron workstation with 64 GB RAM.

of unstructured data at real-time rates, albeit with minor artifacts and
delayed full visualization of large data. Bemardon et al. [11 modified
HAVS to visualize isosurfaces. GPU fragment-program ray casting
approaches, as first proposed by Weiler et al. [371 have also proven
feasible. Georgii & Westermann [101 perform ray-casting through pro
jected cells on the GPU, and demonstrate performance gains over [3],
However, for all rasterization-based GPU techniques, interactivity de
grades significantly for larger datasets over 1 million tets.

2.3 In teractive Ray T racing on th e CPU

Instead of using rasterization techniques, our system builds on fast ray
tracing. Interactive ray tracing was first proven feasible on commod
ity CPU's by Wald et al. [361, using SIMD instructions on coherent
ray packets in a kd-tree. More aggressive coherent methods involve
culling geometry outside the packet bounding frustum (e.g. Dim-
itriev et al. [71), or frustum traversal of wide packets (e.g. Reshetov et
al. [271, or Wald et al. [321), both of which ideas we will employ. Ray
tracing today can easily trace millions of rays on desktop PCs, and an
imated scenes (the counterpart to time-varying data) have successfully
been addressed [32, 34, 19, 351. Of particular interest to our approach
is the dynamic BVH traversal proposed by Wald et al. [321.

2.4 In teractive Iso su rfac e Ray Tracing

Isosurface ray tracing on the CPU has been explored before, particu
larly for large data applications. Parker et al. [241 employed a hier
archical grid to ray trace isosurfaces on a small supercomputer; De-
Marie et al. [61 extended this implementation to clusters. Knoll et
al. [161 proposed losslessly compressed octree volumes for rendering
larger data. Wald et al. [331 showed how coherent optimizations could
be applied to ray trace isosurfaces interactively on small workstations,
using implicit min-max kd-trees; our method is heavily inspired by
this work. Marmitt & Slusallek [221 proposed a new ray marching al
gorithm for directly traversing tet meshes using Pliicker coordinates.
Optimized coherent ray tracing has not yet been applied to unstruc
tured isosurfacing.

3 Coherent Ray Tracing of Tetrahedral Isosurfaces

Our core approach to ray tracing unstructured scalar fields is an im
plicit dynamic bounding volume hierarchy in the spirit of implicit kd-
trees [331, combined with aggressive large-packet coherent ray traver
sal; and a specially designed packet-isopolygon intersection technique
inspired by fast packet-triangle intersectors and the Marching Tetrahe-
dra algorithm.

In unstructured grids, the scalar field is defined through linear inter
polation over tetrahedral primitives; each such isotetrahedron can then
contain one or more more isosurfaces given user-specified iso values.
As with implicit kd-trees [331, we build a hierarchical data structure
over these primitives such that each node in the hierarchy contains the
minimum and maximum of the scalar field below that node's subtree;
these isoranges can then be used during traversal to discard subtrees
that cannot contain the isovalue. Instead of kd-trees, we opt for bound
ing volume hierarchies. In practice, they are at least as fast, equally
efficient for time-varying data, and better suited to the irregular, over
lapping geometry of unstructured volumes.

The implicit bounding volume hierarchy encourages a variation of
the aggressive packet-frustum BVH traversal that was recently pro
posed for polygonal ray tracing [321. This operates on much larger
packets (typically 8x8 or 16x16 rays) than the 4-ray SIMD traversal
proposed for implicit kd-trees, and uses frustum culling and spec
ulative descent to minimize the number of ray-node traversal steps.
Larger packets also imply better amortization of per-packet costs, and
thus help in hiding the overhead induced through implicit culling.
Since the implicit BVH is built over the space of all isovalues, the
isovalue(s) of interest can be changed interactively any time, and even
multiple isovalues can be trivially supported. A BVH also allows for
easily updating the data structure once the scalar field or even ver
tex positions change, and thus allows for naturally supporting time-
varying data.

When a packet reaches a leaf of the BVH, we intersect the isote-
trahedra contained in that leaf using a new technique inspired both by
marching tetrahedra [81 and fast packet-polygon tests. In both inter
section and traversal, we will make heavy use of large-packet/frustum
techniques recently developed in polygonal ray tracing. Unless other
wise specified, both intersection and traversal are assumed to operate
on packets of 16 x 16 rays.

4 Isosurface Intersection

An isosurface is the implicit surface f(x) = v where a scalar field f(x)
takes on a given isovalue v. For conventional first-order finite ele
ments, the scalar field is given as a tetrahedral mesh in which the scalar
values are specified at the vertices A , /?, C, and D: the scalar field inside
each isotetrahedron, or isotet, is defined by linear interpolation

f (x) =./'(«. P-Y- 5) = ocA + Pfi + yC + 5/X

where oc.p.y.5 are the barycentric coordinates of x.
To intersect a ray x(t) = o + td with any isosurface f(x) = v one

can immediately substitute the ray equation into the linear interpola
tion, solve a linear system for/, and check that the solution lies within
the isotet. However, we can also observe that for linear interpolation
the isosurface must be planar. This plane is bounded by line segments
along the edges of the isotet in which it exists, forming either a triangu
lar or quadrilateral polygon as shown in the various cases of Marching
Tetrahedra. and illustrated in Figure 3. We denote this polygon an
isopolygon (or isopoly), as it represents the base geometric primitive
we seek to ray-trace. Unlike solving the ray-parametrized implicit,
this isopolygon must only be computed once per isotet traversed; that
cost is amortized over all rays in the packet, and the full array of fast
ray-polygon techniques can be applied.

4.1 E xtracting th e Iso po lygon

To compute the plane equation and bounding edges of the isopoly
gon, we turn to the Marching Tetrahedra algorithm [8], Vertices of the
isopolygon lie on edges of the isotet, and isopolygon edges lie on the
tet faces. Polygon vertices will lie only on those tet edges for which

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:27:38 UTC from IEEE Xplore. Restrictions apply.

WALD ET AL: INTERACTIVE ISOSURFACE RAY TRACING OF TIME-VARYING TETRAHEDRAL VOLUMES 1729

Fig. 2. From left to right: ell32P (149k tets), bucky ball (177k tets), bluntfin (225k tets, two isosurfaces), tjet (1m tets), timestep 50 of the fusion data (3m tets), and
the sf1 seismic data (14m tets). With simple shading, these examples run at 14.2,13.3,18.9,10.1, 4.0 and 3.3 frames per second (1024 x 1024 pixels) on an Intel
Core 1 Duo 2.33 GHz laptop with 1GB RAM, and at 116,112, 95, 66, 57, and 32 frames per second on a 16-core 3.0 GHz Opteron workstation.

one vertex is greater and one is smaller than the isovalue. Having four
vertices, there are only 16 cases for which a given vertex is either larger
or smaller than the isovalue. For each of these cases, we can store how
many vertices the resulting polygon will have, and the indices of the
two tet vertices that span the edge on which that polygon vertex must
lie. In SSE, this lookup is particularly simple: after loading the four
vertices’ isovalues into a SIMD register, an SSE comparison followed
by a movema.sk operation will return the desired case. The result is
conveniently returned in a 4-bit integer (one bit for each comparison)
that can be directly used to index into the aforementioned table of 16
cases. Once we know which tet edges contain isopolygon vertices,
each isopoly vertex can be computed by linear interpolation along the
two vertices of the corresponding tet edge.

4.2 R ay-Isopolygon In tersec tio n

Once the vertices of our polygon are known, we can use an extension
of Wald’s triangle test [31] to intersect it. As shown in Figure 3 (left),
ray-isopolygon intersection first computes the distance to the precom
puted plane, then projects the ray hit point onto a suitable 2D coordi
nate plane. Here, each of the edges defines a (2D) half-space, which
we orient to point towards the inside of the isopolygon. Since the
isopolygon must be convex, we can then take the projected hit point
and perform a 2D half-space test with each of the edges, rejecting the
hit point as soon as any of these tests fails. This test can be performed
efficiently for four rays in SSE for both triangle and quad cases.

4.3 SIMD F ru stu m Culling

In addition to fast SIMD intersection, we also apply conservative “full
miss” and “full hit” tests for the entire packet, using packet frustum
culling, e.g. [7, 2|. These tests require computation of the four comer
rays bounding the packet frustum in SSE. For a given isopolygon, we
can forgo individual ray intersections when all four bounding rays fail
for the same 2D half-space test (Figure 3, right). Similarly, if all four
rays pass all half-space tests, the entire packet passes through the trian
gle, and we must only perform a distance test for our component rays.

Fig. 3. Ray-lsopolygon Intersection in an Isotetrahedron. Knowing that the iso
surface inside the tetrahedron is a plane, we first extract an isopolygon. We
then compute the point where the ray pierces that polygon's supporting plane,
and project both the polygon and that hit point to a 2D coordinate plane. In 2D,
we then perform a point in (convex) polygon test by considering if the point is
on each of the edges' positive half-spaces. The test can trivially be extended
to support frustum culling: If all corner rays of the bounding frustum fail at the
same edge, all the rays inside the frustum must fail.

Thus, intersection tests for individual rays are only required when the
frustum neither fully misses nor fully hits.

The efficiency of frustum culling depends on the relative areas of
the frustum and isopolygon within the plane. For complex scenes,
tets are too small to have full hits, and frustum culling rarely suc
ceeds. However, full misses are quite common due to the loose nature
of the implicit BVH, making this test highly effective overall. Typ
ically, frustum culling can reject 40-60% of the packet-isopolygon
tests, though this ratio declines for larger models. Every time SIMD
frustum culling rejects a packet test, all individual ray-isopolygon tests
are avoided, e.g. 256 for a 16 x 16 ray packet,

4.4 Iso p o ly g o n P re-C om puta tion

lsopolygon computation can be executed in three ways:

1. Full pre-computation. F*i'e-compute all isopolys every time the
user changes the isovalue(s) of interest,

2. On-the-fly computation from scratch on demand.

3. On-the-fly computation with caching. Compute isopolys only
when needed, but keep a cache of already computed isotets; clear
the cache every time the user changes the isovalue(s) or time step.

Full precomputation maximizes performance for navigation with static
isovalues, but requires larger memory footprint and incurs delays when
the user changes isovalue or time step. On-the-fly computation is
slower during rendering, but offers greater flexibility with scene in
teraction. Caching in theory offers a compromise, but in practice is
quite complicated in a multi-core environment, as it requires the reso
lution of cache conflicts in a thread-safe manner, requiring significant
synchronization overhead. We therefore opt for pure on-the-fly com
putation by default. Due to the use of large packets - which allow for
amortizing the on-the-fly computations over all rays in the packet -
the overhead is in the range of 5-8%, which we believe is a tolerable
price for the ability to arbitrarily change the time step or isovalue.

5 The Implicit Bounding Volume Hierarchy

The concept of the implicit BVH is similar to that of the implicit kd-
tree [33] in that the acceleration structure is not built for a single iso
value, but rather as a tree of min-max isovalue ranges (e.g. Wilhelms
6 Van Gelder [39]). Each node stores the minimum and maximum
of all scalar field values contained within that subtree. During traver
sal, we can consequently cull all BVH nodes that do not contain our
desired isovalue. Once built, the implicit BVH structure is valid for
all isovalues, and thus allows for simultaneously rendering multiple
isosurfaces from the entire range of isovalues. As subtrees that do
not contain the isovalue are never traversed, the only effective cost of
supporting arbitrary isovalues is a slightly looser-fitting BVH.

5.1 Building th e BVH

Building an implicit BVH for tets in fact is similar to building a BVH
for triangle meshes. Most mesh-BVH builds rely on bounding boxes
or centroids of their primitives as construction metrics [32, 30], and
tets behave similarly to triangles in this regard.

Traditional bottom-up BVH builds (e.g. [11]) generally result in
inefficient BVHs [13|. Recent BVH literature has favored top-down
builds, which recursively partition primitives into two subgroups. Two

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:27:38 UTC from IEEE Xplore. Restrictions apply.

1730 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007

partitioning strategies are of particular interest: Wald et al.’s sweep
surface area heuristic (SAH) build [32], and Wachter et al.’s fast spa
tial median build as proposed in his bounding interval hierarchy (BIH)
paper [30]. The SAH build employs a surface area heuristic [11, 13]
to select a partition with lowest expected cost, but is costly to build.
The BIH-style build is closer in spirit to spatial median builds and,
as it requires no cost function evaluation, it builds significantly faster
than SAH methods. In both constructions, nodes are partitioned until
leaves contain 12 or fewer tet primitives. Empirically, we have found
this fixed value to work best.
BVH Structure. Our BVH node employs the same structure as [32],
with a crucial modification: we interpret the isovalue v as a 4th dimen
sion of the bounding volume, leading to 4D bounds {x,y,z,v}. This
can then be stored and processed as SSE vectors. Integers for the child
node index and traversal bookkeeping follow, padded to ensure SSE-
friendly 16-byte alignment. Storing isovalues alongside geometric ex
tents allow all dimensions to be processed simultaneously in SSE.

5.2 Implicit BVH Traversal
Having constructed the implicit BVH, we now proceed to traversal.
As previously mentioned, we employ the coherent traversal algorithm
of Wald et al. [32], and extend it to implicit iso range culling. In gen
eral, this algorithm operates on large packets of rays, and tracks both a
bounding frustum and the first “active” ray in the packet that intersects
a current BVH node. Instead of intersecting each traversed node with
all the rays in the packet, it employs optimizations such as speculative
descent and frustum culling of nodes. With the implicit BVH, nodes
not containing an isovalue in their min-max range are culled.
I) Implicit culling.. At the heart of implicit BVH traversal lies the
concept of culling subtrees that are known to be inactive - those whose
isorange does not contain an isovalue. As this test is very cheap, we
naturally perform it first. In addition, we observe that each active node
must have at least one active child, and if the first child is inactive, we
can proceed to its active sibling. Only at bifurcation nodes - where
both children are active - do we actually revert to the geometric tests
outlined below. In the worst case, this behavior causes us to descend
several times into a subtree that is not actually visible. Since these
speculative descents are fast, however, this is still quicker than testing
all the nodes for visibility; and even if the fast descent led to a sub
tree that is outside the packet’s bounding frustum, this node would be
immediately rejected by the frustum test outlined below.
II) Speculative first-active descent.. For our first geometric traversal
test, we examine the first active ray in the packet. If that hits the current
node, we can immediately descend without performing any more ray-
box tests, as illustrated in Figure 6(a). Since we never test whether any
of the other rays actually hit the current node, this test is speculative.
Though it may cause modest extra work when few rays in the packet

isovalue = 39

Fig. 5. Implicit Culling. The implicit BVH is a min-max tree containing only a
subset of BVH nodes containing our desired isovalue(s). We can speculatively
descend the min-max tree until we reach a leaf, or an intersection test fails.
Only at bifurcation nodes (dark blue) must we resort immediately to geometric
packet-BVH traversal computation. Thus, geometric tests are performed as if
the BVH had only been built over active nodes for a single isovalue.

Fig. 6. First-active descent, frustum test, and active ray tracking. Given a BVH
node, we speculatively test the first “active” ray in the packet against the bound
ing box, and immediately descend if it hits (left). If this test fails, we perform a
frustum test to reject nodes completely outside the frustum (center). If neither of
these tests prove successful, we test all rays sequentially in a packet until one
hits; rays that missed are deactivated for future traversal steps (right).

are also active, this strategy allows many ray-box tests to be skipped
when numerous consecutive rays are active.
III) Frustum test.. If the first active test fails, we know that the packet
at least partially misses the box, and can perform a frustum test to
conservatively determine if the entire packet misses. Technically we
employ an interval arithmetic (e.g. [27, 2]) test instead of a geometric
frustum test, but the effect is similar in behavior. If the full packet
missed, we reject the current node and go to the next node on the stack
(see Figure 6(b)).
IV) First-active ray tracking.. If both the speculative descent and
frustum tests fail, we test all remaining rays until we find the first active
one that hits the current node. Those rays that failed the test are marked
inactive by tracking the index of the first active ray in the packet (all
rays with a smaller index are known to be inactive). If no active ray
could be found, we reject the node and pop the next subtree from the
stack. Rays with indices higher than the first active one we found are
not tested, and are speculatively descended into the subtree as well.
V) Leaf traversal.. When encountering a leaf, we first perform a frus
tum test as for all other nodes. If that test passes, we iterate over all the
tets referenced in that node, then determine that tet’s isorange (which
may be smaller than the node’s isorange), test that range, and finally
either reject the tet or intersect it as described above.

6 T i m e - V a r y i n g D a t a

Time-varying data is extremely common in FE simulations. In the
simplest time-varying tet meshes, geometry remains constant and only
scalar values change. More complex scenarios include changing ge
ometry and topology, and potentially dynamic addition and removal of
elements from one time step to the next. To address these possibilities,
we propose two schema for BVH construction, balancing performance
and memory footprint. Results are analyzed in Sec. 8.6.

6.1 Schema I: Unique BVH Per-Step

The naive way of accommodating time-varying data is to compute a
unique BVH for each time step. No render-time computation is neces
sary to progress from one time step to the next, regardless of changes in
geometry or scalar element values. As we operate completely in host
memory, this approach is in fact very efficient. However, for large data
sets with many time steps such as the fusion data set in Figure 4, this
approach may entail a considerable memory footprint.

6.2 Schema II: Dynamic Refitting

Fully computing a new BVH on-the-fly during rendering is too costly
for large data, even using the fast BIH-style build. However, we ob
serve that when tet mesh vertices change position but connectivity re
mains constant, the BVH structure will not change between time steps.
Thus, simply refitting the nodes’ bounding extents will yield a correct
BVH. This technique has been successfully applied to ray tracing dy
namic triangle meshes [32, 19]. The main drawback is that, particu
larly in cases of extreme geometric deformation, the refit BVH may
perform worse than a BVH built from scratch for that particular time
step. Fortunately, for tet meshes and our BVH, this method works ex
tremely well due to the continuous nature of tet deformations in FE

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:27:38 UTC from IEEE Xplore. Restrictions apply.

WALD ET AL: INTERACTIVE ISOSURFACE RAY TRACING OF TIME-VARYING TETRAHEDRAL VOLUMES 1731

Fig. 4. Two examples of time-varying data sets, rendered at 1024 x 1024 pixels, using a 16-core 3.0 GHz Opteron workstation. Top: An artificially created
deforming bucky ball that shows severe deformation of its 226K tets, running at 50+ frames per second including shadows from a point light source. Bottom: The
fusion data set with a time-varying scalar field (3m tets, 116 time steps), rendered with four layers of isosurfaces, a crop box, shadows, and transparency, running
at 7 to 15 frames per second. Camera and light positions, time step, and number and parameters of the isosurfaces can be changed interactively.

simulation, particularly for rigid bodies. Moreover, when vertices re
main constant but the scalar field changes, the BVH is identical for all
time steps, as only the min-max isovalues must be updated.

As previously mentioned, minimum and maximum geometric
bounds and isovalues are stored adjacently in 4D SSE vectors. Re
fitting the 4D extents can thus be accomplished with one SSE min and
one SSE max per BVH node. Tet vertices and scalars are also stored
as 4D points; thus computing the 4D bounds of a tet is also extremely
efficient, requiring only 3 SSE min and max operations each per tet.
It is straightforward to parallelize the update process. After the initial
BVH has been built we find all the subtrees for a given level in the
BVH hierarchy, and store their indices. During a refit, we can then up
date these subtrees in parallel. Once all subtrees are updated, a single
thread refits the remaining few nodes close to the root node.

7 S hading and Interaction Modalities

Having leveraged these algorithms for efficient unstructured volume
ray tracing, we describe several visualization modalities that can assist
in understanding our data sets.

Shadows. Shadows add important visual cues in understanding shape
(see Figure 7). In casting shadow packets, rays are generally coherent
and share a common origin in the case of point lights. Unlike pri
mary rays, shadow rays do not inherently form a regular beam, and
thus have no concept of "comer rays” for SIMD frustum culling. For
tunately, shadow packets may still employ the Reshetov et al. [271
frustum-culling technique at traversal, as this requires no actual geo
metric frustum. The overall speed impact of shadow rays varies, but is
typically lower than 2x (see Figure 7a-b).

Multiple Isosurfaces. Supporting multiple isosurfaces in an implicit
BVH is straightforward, by simply testing whether a BVH subtree
overlaps any of the iso values before descending it. To follow the
SIMD paradigm, we currently support up to four different isosurfaces,
though it would be trivial to add more. Keeping the four isovalues in
a SIMD vector, we can test when a BVH node’s or isotetrahedron’s
iso range contains any of these four isovalues in parallel. These are
in turn intersected with all the rays that actually hit the leaf node.
Though rendering multiple surfaces can require tracing more rays per
image, particularly when transparency is enabled, it causes no signifi
cant computation penalty in and of itself.

Clipping Planes and Boxes. While isosurfaces provide an intuitive
way of visualizing a data set, one of their drawbacks is that the surface
often occludes the data set’s interior. For that reason, visualization
systems often employ clipping planes (or boxes) that allow for crop
ping certain parts of the model to expose its interior. We currently
allow for a single box that may or may not extend to infinity (to sim
ulate a plane), and use this to clip BVH sub-trees. During traversal, if

a node’s subtree is completely enclosed in the crop box, we skip the
subtree just as if it was out of the isorange. In SIMD, a box-in-box test
is very cheap and can be amortized per packet, incurring negligible
cost. An example of this feature is shown in Figure 7.

Transparent Depth Peeling. Rendering transparent isosurfaces also
provides better understanding of the dataset. Though straightforward
to implement, transparency multiplies the complexity of rendering an
image by the number of transparent hits required. Though it is pos
sible to implement by recording multiple hits per ray, in our packet
architecture it is more elegant to implement as a shader via secondary
rays. By simply specifying a minimum hit distance for each trans
parency ray, we can re-use the origin, comer rays and frustum of the
original ray packet. Rays that do not require a transparency ray are dis
abled, sometimes leading to partially-filled packets, but incurring no
additional traversal steps or isopolygon intersections. As shading is
performed front-to-back, shadows and transparency are always com
puted accurately (Figure 7).

(a)

(c) (d)
Fig. 7. Impact of adding additional shading effects: a) A bucky ball rendered
with a single isosurface, and diffuse shading, b) After turning on diffuse shading
with shadows, c) With a second isosurface and an interactive clip-box to expose
the interior, d) Adding transparency as well. At 1024 x 1024 pixels on a Intel
Core 1 duo laptop, these screenshots render at 15.6, 10.2, 5.4, and 2.6 frames
per second, respectively. On our 16-core Opteron 3.0 GHz workstation, they
render at 90, 70, 42, and 19 frames per second, respectively.

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:27:38 UTC from IEEE Xplore. Restrictions apply.

1732 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007

8 R e s u l t s a n d D is c u s s io n

In this section, we evaluate the system as a whole, and the overall
success of coherent BVH ray tracing for tet-volume isosurfaces. For
our benchmarks, we consider three representative machines: a laptop
equipped with an Intel Core (1) Duo 2.33 GHz and 1 GB RAM; a
4-core dual Intel Xeon 2.33 GHz desktop with 4 GB RAM; and a 8-
CPU dual-core (16 cores total) Opteron 3.0 GHz workstation with 64
GB RAM. Unless otherwise stated, all examples run at 1024 x 1024
pixels, and use packets of 16 x 16 rays. The data sets and scenes we
used for our comparisons are depicted in Figures 2 and 4.

8.1 Build T im e a n d P erfo rm an ce

Because a tetrahedral mesh has far less geometric variation than a
polygonal model (i.e., tets form a partition of space, and never over
lap or self-intersect), the qualitative difference between a SAH and
a BIH build is virtually nonexistent (Table l). Because of the lower
build times, we default to the BIH-style build. With the fast BIH-style
build, most of the smaller data sets could in fact be rebuilt from scratch
per frame.

e!132p bucky blunt tjet fusion ft=50) sfl
#tets 148.995 176.856 224.874 1.0m 3m x 116 14m

render perlormance (Irames per second)
BIH 48.0 39.4 53.8 28.5 11.8 13.1
SAH 43.7 39.5 57.1 27.7 12.3 13.1

build time fms. dual Intel Xeon 2.33 Gil/)
BIH 32 40 61 607 1402 4908
SAH 1647 1794 2710 20886 70119 311267

Table 1. BIH-style build vs SAH for building the implicit BVH. Because the
tetrahedra are distributed over space more evenly than triangles in a polygo
nal model, the render performance for between BIH-style build and SAH build is
very similar, but executing the BIH-style build is much faster.

8.2 R en d erin g P erfo rm an ce

As seen in Table 1 and Figure 2, all of the static examples can be
rendered at multiple frames per second even on the dual-core laptop.
For static scenes, performance is typically linear in the number of CPU
cores. Empirically, we found our application scales roughly linearly
with respect to the number of pixels per frame. Thus, a frame buffer
of 512 x 512 generally renders four times faster than at 1024 x 1024,
enabling interactive rates for difficult scenes on the laptop.

_________ | eH32p bucky blunt tjet fusion (1=50} si 1
render performance (frames per second)

laptop 14.2 13.3 18.9 10.1 4.0 3.3
desktop 48.0 39.4 53.8 28.5 11.8 13.1
workstation 116 112 95 66 57 32

Table 2. Performance in frames per second for various data sets and platforms.
Laptop is an Intel Core Duo 2.33 GHz, 1 GB RAM. Desktop is a 4-core dual
Intel Xeon 2.33 GHz, 4 GB RAM. Workstation is a 16-core cc-NUMA 3.0 GHz
Opteron, with 64 GB RAM. Refer to Figure 2 for images.

8.3 Scalab ility in m odel s ize

Performance degrades gracefully when increasing model size, drop
ping only by 4x from from the smallest model (feok, 121k tets) to the
most complex one (sfl, 14M tets). This is largely due to the loga
rithmic complexity of ray tracing efficiency structures, and the packet-
amortized cost of memory access. To further evaluate scalability to
large models, we have synthetically replicated a bucky ball n x n x n
times without instancing. As evident in Tab. 3, performance drops
moderately even for hugely complex models of up to nearly a billion
tets. Though they require workstation-class memory capacity, large
unstructured data such as the STP bullet simulation (36m tets) render
equally efficiently (Fig. 8).

replications 1 23 43 83 163
tets total 177k 1.4m 11,3m 90.4m 724m
frames per second 43 16.7 6.2 2.0 0.80

Table 3. Performance in frames per second on four Opteron 3.0GHz cores, for
varying numbers of replication of the bucky ball scene (no instancing is used).

Fig. 8. Left: 43 replicated buckyballs with 11.3m tets. Right: STP dataset with
36m tets. With simple shading, these datasets perform at 27.8 and and 26.9 fps
respectively on a 16-core 3.0 GHz Opteron workstation with 64 GB RAM.

8.4 T raversal Efficiency

The key to this interactive performance lies in the aggressive large-
packet traversal scheme, as seen in Table 4. Speculative descent and
frustum culling greatly reduce the number of individual ray-box tests
during traversal by roughly a factor of 18-51 compared to tracing 2 x 2
packets (the smallest an SSE-based system can trace). Using packets
allows for traversal and intersection code in SSE, which is crucial to
realizing the performance potential of modern CPU's. Because we
have transformed the ray-isotet intersection to a polygonal problem,
the same frustum culling techniques can also be used to significantly
reduce the number of individual ray-isopolygon tests, by about 2-3x ,
though for the most complex scene the number of ray-isopolygon tests
actually increases (see Table 4). Finally, larger packets allow for amor
tizing per-packet operations like isorange culling and isotet extraction
over the entire packet, thus reducing the total number of these oper
ations per frame. As evident in Table 4, this reduces the number of
isopolygon generations by about 6-40x, and the number of culling
tests by 22-55 x .

scene ell32P bucky bluntiin tjet fusion (t=50) sfl
number of individual packet-box tests
2x2 56.75 93.84 48.05 44.67 175.83 33.21
16x16 1.11 1.8 0.94 1.20 4.32 1.69
ratio 52/ 52/ 51/ 37/ 41 / 20/
number of individual ray-isopolygon tests
2x2 8.0 13.52 8.90 6.8 29.35 9.37
16x16 3.39 4.42 3.19 3.95 16.47 7.64
ratio 2.4/ 3.0/ 2.4/ 1.7/ 1.8/ 1.22/
number of total packet isorange tests
2x2 99.89 152.31 76.75 135.32 279.75 77.10
16x16 1.88 2.84 1.45 3.00 6.48 2.72
ratio 53/ 54/ 51/ 45/ 43/ 28/
number of total isopolygon extractions (■ 1000)
2x2 1908 354 2216 1154 7285 1943
16x16 64 10 69 110 296 373487
ratio 29/ 34/ 32/ 10.3/ 25/ 5.2/

Table 4. Traversal statistics of using our aggressive packet-frustum traversal
scheme (using 16 x 16 rays) vs. standard 2x2 packet traversal.

Isopolygon caching vs on-the-fly recomputation. Because the
large packets reduce the number of isopolygon extractions, caching
the isopolygons has a relatively low impact. Even when using only a
single CPU and a large enough cache (so no conflicts occur, and all
synchronization can be disabled), caching only increases total frame
rate by 5-8% over on-the-fly recomputation, thus we opt for the on-
the-fly recomputation by default.

8.5 M ultiple Iso su rfa c e s , S h ad o w s, a n d T ran sp aren cy

Rendering multiple isosurfaces in itself does not significantly raise the
cost of an image, due to the ray tracer's implicit occlusion culling -
the 2 x drop in framerate in Figure 7 is due to the 2 x higher projected
area of the model after adding the outer isosurface. However, as men
tioned in Section 7, advanced shading bears a significant cost due to
the higher number of rays traced. Shadows usually increase the render
cost by about 2x if the rendered object covers the entire screen, and

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:27:38 UTC from IEEE Xplore. Restrictions apply.

WALD ET AL: INTERACTIVE ISOSURFACE RAY TRACING OF TIME-VARYING TETRAHEDRAL VOLUMES 1733

somewhat less, otherwise (also see Figure 7). Transparency similarly
increases to the total number of rays traced per-frame, and thus in
creases the render cost. We typically limit the number of transparency
rays to a user-specified maximum (2 by default), which can be changed
interactively. All these effects can be supported simultaneously, even
for large time-varying data sets (see Figures 4 and 7),

8.6 Tim e-Varying D ata S e ts

Precomputing a BVH and replicating vertex arrays for each timestep,
as in Sec. 6.1, is only practical for small data or workstations with
copious memory. For the fusion dataset this requires over 22 GB in
memory footprint. Nevertheless, this scheme remains desirable, as
moving across timesteps incurs no noticeable penalty in frame rate.
Conversely, by employing a single BVH and refitting it per-frame
(Sec. 6.2), the BVH and all 116 time steps of the fusion data occupy
only 538 MB, allowing us to render that model on the laptop. How
ever, refitting requires updating the vertex array, all the BVH nodes,
and some precomputed shading data (e.g., per-tet gradients) per frame.
This update is fully parallelized, but scales poorly due to intensive and
asymmetrical memory access on our workstation's cc-NUMA archi
tecture. Effectively, refitting adds a significant per-frame cost that lim
its maximum performance to 3.5 fps on the workstation. Moreover,
precomputation and refitting offer a classical trade-off between per
formance and memory consumption.

8.7 M em ory O v erh ead

The bounding volume hierarchy structure occupies a significant foot
print in main memory. In our implementation, the BVH requires two
arrays: one for BVH nodes, at 32 bytes per node, and another for stor
ing the lists of tet IDs that the leaf nodes refer to. The tetID list uses a
constant amount of memory, requiring exactly 4 bytes per tet. The size
of the node array depends on how many nodes are allocated, which in
turn depends on the data and build strategy. In the worst case, a BVH
would always split until each tet is contained in exactly one leaf, in
which case a total of 2N — 1 nodes, (i.e., roughly 64 x N bytes) would
be allocated for the node array. In practice, the optimal BVH is much
shallower, and uses only a fraction of that memory (' / $th- ' / bth).

For that worst-case assumption, however, table 5 shows that for
static scenes, memory overhead is around 4x that of the raw input
data. For the time-varying deformed bucky and fusion data sets, this
overhead increases to a significant 18 x and 20x if a separate BVH
is stored per time step. If the BVH is shared over time, the overhead
drops to 92% for the deformed bucky while for the fusion data set the
overhead is only 18%. In general, more time steps reduce the relative
overhead, as they amortize input tet data footprint.

scene number of raw BVH per step shared BVH
tets verts steps mem mem ratio mem ratio

ell32p 149k 33k 1 2.8MB 9.6MB 4.1 - -
bluntfin 225k 41k 1 4.1MB 18MB 4.2,- - -
SF1 13.9m 2.5m 1 251MB 906MB 3.6,- - -
TJet 1m 163k 1 17.7MB 64.9MB 3.6,- - -
bucky 4' 11.3m 2.1m 1 205MB 734MB 4.2,- - -
STP 36m 6.3m 1 1.7GB 7.2GB 4.2,- - -
bucky. Jef. 176k 32k 20 12.7MB 234MB 18,- 11.7MB o Cp X

fusion 3.0m 622k 116 1.1GB 22GB 20,- 194MB p OC X

Table 5. Memory usage and BVH overhead. Note that we report a worst-case
upper bound on BVH memory (2 x N 1 nodes for N tets), as this is what our
system actually pre-allocates memory for. In practice, only about one fourth to
one sixth of that pre-allocated memory is actually used (i.e., memory overhead
could be reduced rather easily should that ever become an issue).

8.8 C o m p ariso n to E xisting CPU b a se d A p p ro ach es

Our results compare favorably to the performance achieved by Mar-
mitt et al.'s Plilcker-based tet marching algorithm [22], which reported
1.67 and 0.92 fps at 512 x 512 on a dual-Opteron for isosurfaces on
the bluntfin and buckyball, respectively. On comparable hardware and
frame buffer size, our system performs around 40 times faster. How
ever, it is important to note that the Marinitt et al. method also supports
semi-transparent volume ray-casting, which ours does not.

8.9 C o m p ariso n to E xisting GPU b a se d A p p ro ach es

GPU hardware is continually changing, so comparing to previously
published results would be an unfair comparison to already-outdated
hardware. For that reason, we have decided to base our comparisons
mainly on HAVS [4] and its isosurface extension [1], running on a
state-of-the-art nVidia 8800 GTX. HAVS is well-known and freely
available, thus an appropriate system for benchmarking GPU perfor
mance. As seen in Table 6, when isosurfacing small and moderate
sized datasets (less than 1M), ray tracing achieves roughly equivalent
performance on a 4-core Xeon as rasterization on the nVidia 8800
GTX in the same desktop. For larger data sets, however, our method
can outperform HAVS significantly, even for models that fit comfort
ably in GPU memory.

For small data such as the bluntfin, isosurfacing via the GPU ray-
casting method of Georgii & Westermann [10] reports 175 fps at
512 x 512 on an nVidia 7900 GTX; our system achieves 160 fps on
the 4-core Xeon desktop at the same resolution. However, their per
formance degrades significantly for larger datasets over 1M tets. We
refrain from absolute comparison, but our system achieves similar
performance for small data, and is substantially faster for large data.
Again, it should be noted these GPU methods are designed for object-
order volume rendering without acceleration structures, whereas our
technique relies on logarithmic-order BVH traversal and is restricted
to isosurface visualization. Nonetheless, these results suggest that
CPU ray tracing is roughly competitive in performance with GPU
methods for isosurface visualization of unstructured grids, and exhibits
better overall scalability.

scene e!132P bucky bluntfin tjet fusion SF1
Tetrahedra 149k 177k 225k 1m 3m 14m
BVH 48 39.4 53.8 28.5 11.8 13.1
HAVS 50 50 30 3.0 1.5 0.3

Table 6. GPU Performance Comparison, in frames per second, with HAVS [4,1],
running on an nVidia 8800 GTX, and our method on a 4-core Intel Xeon 2.33
GHz, at 1024 x 1024 resolution.

9 Conclusion

In this paper we have shown it is possible to ray trace isosurfaces of
tetrahedral scalar fields at interactive to real-time frame rates, purely
on the CPU. In doing so, we are able to correctly visualize large
unstructured volumes, interactively manipulate isovalues and shader
modalities, and handle time-varying data with hundreds of steps.

The main algorithmic contributions of this paper are the fast packet-
isotetrahedron intersection test and extension of the coherent BVH
to an implicit min-max tree over the tetrahedral volume. Our im
plementation naturally supports multiple isosurfaces, on-the-fly clip
ping, semi-transparent depth peeling, and shadows. Accommodation
of large data is limited only by host memory capacity, though the over
head of the BVH must be taken into consideration. Time-varying data
can be handled by either precomputing an implicit BVH per time step,
or by building a single BVH that is updated on the fly.

Compared to existing GPU methods, our system exhibits better
scalability to large data, and is not limited by the GPU memory capac
ity. However, our current system is limited to isosurfacing, whereas
existing GPU methods support direct volume rendering. Moreover,
multi-core CPUs are increasingly mainstream, and future GPUs will
likely evolve to run a ray-tracing system similar ours. Ultimately, the
question is not one of GPU vs CPU, but rather which rendering algo
rithm is used.

Our approach opens several avenues for future work. We could
extend BVH traversal to direct volume rendering methods, such as
maximum intensity projection (MIP) or full transfer-funetion meth
ods. Though the latter suffer from high traversal complexity, the BVH
could still be useful for space-skipping when the transfer function is
sufficiently sparse, as in [17], Another intriguing extension would
be support for higher-order finite elements in the spirit of Nelson &
Kirby [23] or Rossi et al. [28], This would require a completely dif
ferent intersection routine, but the BVH traversal would remain un
changed. Also of interest would be more advanced lighting effects

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:27:38 UTC from IEEE Xplore. Restrictions apply.

1734 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2007

such as soft shadows, ambient occlusion, or global illumination, which
can significantly improve understanding of data sets [12]. Finally, in
vestigating scalable build algorithms could allow for rendering even
complex data with arbitrary deformations without precomputation.

A c k n o w l e d g e m e n t s

This work was supported by the U.S. Department of Energy through
the Center for the Simulation of Accidental Fires and Explosions, un
der grant W-7405-ENG-48, and by the National Science Foundation
under CISE grants number CRI-0513212, CCF-0541113, and SEII-
0513212. It was also supported by the Director, Office of Advanced
Scientific Computing Research, Office of Science, of the U.S. Depart
ment of Energy under Contract No. DE-FC02-06ER25781 through the
SciDAC Visualization and Analytics Center for Enabling Technolo
gies (VACET), as well as through a visiting professorship by Intel
Corp. The fusion simulation was originally performed by Kruger et
al. [18]; the data set was made available to us by Allen Sanderson from
the SCI Institute. We would like to thank Steve Callahan for his as
sistance in comparing performance with GPU rendering using HAVS,
and the anonymous reviewers for their constructive comments.

R e f e r e n c e s

[1] F. F. Bemardon, S. P. Callahan, J. L. D. Comba, and C. T. Silva. An
adaptive framework for visualizing unstructured grids with time-varying
scalar fields. Parallel Computing, 2007. to appear.

[2] S. Boulos, T. Wald, and P. Shirley. Geometric and Arithmetic Culling
Methods for Entire Ray Packets. Technical Report UUCS-06-010, SCT
Institute, University of Utah, 2006.

[3] S. P. Callahan, L. Bavoil, V. Pascucci, and C. T. Silva. Progressive volume
rendering of large unstructured grids. IEEE Transactions on Visualization
and Computer Graphics, 12(5): 1307-1314, Sept/Oct 2006.

[4] S. P. Callahan, J. L. D. Comba, P. Shirley, and C. T. Silva. Interactive
rendering of large unstructured grids using dynamic level-of-detail. In
IEEE Visualization ’05, pages 199-206, 2005.

[5] S. P. Callahan, M. Ikits, J. L. D. Comba, and C. T. Silva. Hardware-
assisted visibility sorting for unstructured volume rendering. IEEE Trans
actions on Visualization and Computer Graphics, 11(3):285-295, 2005.

[6] D. DeMarle, S. Parker, M. Hartner, C. Gribble, and C. Hansen. Dis
tributed Interactive Ray Tracing for Large Volume Visualization. In Pro
ceedings o f the IEEEPVG , pages 87-94, 2003.

[7] K. Dmitriev, V. Havran, and H.-P. Seidel. Faster Ray Tracing with SIMD
Shaft Culling. Research Report MPI-I-2004-4-006, Max-Planck-Institut
fur Informatik, Saarbrucken, Germany, 2004.

[8] A. Doi and A. Koide. An efficient method of triangulating equi-valued
surfaces by using tetrahedral cells. lEICE Trans Commun. Elec. Inf. Syst,
E-74(l):213-224, 1991.

[9] M. P. Garrity. Raytracing Irregular Volume Data. Computer Graphics,
24(5), 1990.

[10] J. Georgii and R. Westermann. A Generic and Scalable Pipeline for GPU
Tetrahedral Grid Rendering. IEEE Transactions on Visualization and
Computer Graphics, 12(5): 1345-1352, 2006.

[11] J. Goldsmith and J. Salmon. Automatic Creation of Object Hierarchies
for Ray Tracing. IEEE Computer Graphics and Applications, 7(5): 14-20,
1987.

[12] C. Gribble. Interactive Methods fo r Effective Particle Visualization. PhD
thesis, University of Utah, 2006.

[13] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Faculty of
Electrical Engineering, Czech Technical University in Prague, 2001.

[14] Intel, http://www.intel.com/go/terascale/, 2006.
[15] T. Klein, S. Stegmaier, and T. Ertl. Hardware-accelerated Reconstruc

tion of Polygonal Isosurface Representations on Unstructured Grids. In
Proceedings o f Pacific Graphics '04, pages 186-195, 2004.

[16] A. Knoll, I. Wald, S. G. Parker, and C. D. Hansen. Interactive Isosurface
Ray Tracing of Large Octree Volumes. In Proceedings o f the 2006 IEEE
Symposium on Interactive Ray Tracing, pages 115-124, 2006.

[17] J. Kruger and R. Westermann. Acceleration Techniques for GPU-based
Volume Rendering. In Proceedings IEEE Visualization 2003, pages 257
292, 2003.

[18] S. E. Kruger, D. D. Schnack, and C. R. Sovinec. Dynamics of the major
disruption of a DIII-D plasma. Physics o f Plasmas, 12, 2005.

[19] C. Lauterbach, S.-E. Yoon, D. Tuft, and D. Manocha. RT-DEFORM:
Interactive Ray Tracing of Dynamic Scenes using BVHs. In Proceedings
o f the 2006 IEEE Symposium on Interactive Ray Tracing, pages 39-45,
2006.

[20] Y. Livnat and C. D. Hansen. View Dependent Isosurface Extraction. In
Proceedings o f IEEE Visualization ’98, pages 175-180, 1998.

[21] W. E. Lorensen and H. E. Cline. Marching Cubes: A High Resolution
3D Surface Construction Algorithm. Computer Graphics (Proceedings
o f ACM SIGGRAPH), 21 (4): 163-169, 1987.

[22] G. Marmitt and P. Slusallek. Fast Ray Traversal of Tetrahedral and Hex-
ahedral Meshes for Direct Volume Rendering. In Eurographics/IEEE-
VGTC. Symposium on Visualization (EuroVIS), pages 235-242, 2006.

[23] B. Nelson and R. M. Kirby. Ray-tracing polymorphic multi-domain spec
tral/hp elements for isosurface rendering. IEEE Transactions on Visual
ization and Computer Graphics, 12(1):114-125, 2005.

[24] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive
Ray Tracing for Isosurface Rendering. In IEEE Visualization ’98, pages
233-238, October 1998.

[25] V. Pascucci. Isosurface Computation Made Simple: Hardware Accelera
tion, Adaptive Refinement and Tetrahedral Stripping. In Eurographics -
IEE TCVG Symposium on Visualization (2004), pages 293-300, 2004.

[26] S. Pesco, P. Lindstrom, V. Pascucci, and C. T. Silva. Implicit Occluders.
In IEEE/SIGGRAPH Symposium on Volume Visualization, pages 47-54,
2004.

[27] A. Reshetov, A. Soupikov, and J. Hurley. Multi-Level Ray Tracing Al
gorithm. ACM Transaction on Graphics, 24(3): 1176-1185, 2005. (Pro
ceedings of ACM SIGGRAPH 2005).

[28] C. Rossi, F. Zeilfelder, G. Nurnberger, and H.-P. Seidel. Reconstruction
of Volume Data with Quadratic Super Splines. IEEE Transactions on
Visualization and Computer Graphics, 10(4):397-409, 2004.

[29] P. Shirley and A. Tuchman. A polygonal approximation to direct scalar
volume rendering. ACM Computer Graphics (Proceedings San Diego
Workshop on Vlume Visualization 1990, 24(5):63-70, 1990.

[30] C. Wachter and A. Keller. Instant Ray Tracing: The Bounding Inter
val Hierarchy. In Rendering Techniques 2006 - Proceedings o f the 17th
Eurographics Symposium on Rendering, pages 139-149, 2006.

[31] I. Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD
thesis, Saarland University, 2004.

[32] I. Wald, S. Boulos, and P. Shirley. Ray Tracing Deformable Scenes using
Dynamic Bounding Volume Hierarchies. ACM Transactions on Graphics,
26(1): 1-18, 2007.

[33] I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, and H.-P. Seidel. Faster
Isosurface Ray Tracing using Implicit KD-Trees. IEEE Transactions on
Visualization and Computer Graphics, 11(5):562-573, 2005.

[34] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray Tracing
Animated Scenes using Coherent Grid Traversal. ACM Transactions on
Graphics, 25(3):485-493, 2006. (Proceedings of ACM SIGGRAPH).

[35] I. Wald, W. R. Mark, J. Gunther, S. Boulos, T. Ize, W. Hunt, S. G. Parker,
and P. Shirley. State of the Art in Ray Tracing Animated Scenes. In
Eurographics 2007 State o f the A rt Reports.

[36] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive Rendering
with Coherent Ray Tracing. Computer Graphics Forum, 20(3): 153-164,
2001. (Proceedings of Eurographics).

[37] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based ray casting
for tetrahedral meshes. In Proceedings IEEE Visualization 2003, pages
333-340, 2003.

[38] R. Westermann, L. Kobbelt, and T. Ertl. Real-time Exploration of Regular
Volume Data by Adaptive Reconstruction of Iso-Surfaces. The Visual
Computer, 15(2): 100-111, 1999.

[39] J. Wilhelms and A. Van Gelder. Octrees for faster isosurface generation.
ACM Transactions on Graphics, 11 (3):201—227, July 1992.

[40] B. Wylie, K. Moreland, L. A. Fisk, and P. Crossno. Tetrahedral Projection
using Vertex Shaders. In Proceedings o f IEEE Volume Visualization and
Graphics Symposium, pages 7-12, 2002.

[41] G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft objects.
The Visual Computer, 2:227-234, 1986.

Authorized licensed use limited to: The University of Utah. Downloaded on June 29,2010 at 20:27:38 UTC from IEEE Xplore. Restrictions apply.

http://www.intel.com/go/terascale/

