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ABSTRACT

Multiple studies have shown the potential for using implantable 

microelectrode arrays to record consciously modulated neural signals and to 

restore volitional control of external devices to patients suffering from various 

nervous system and motor disorders. However, despite the promising potential of 

this technology, achieving widespread clinical application requires improving 

recording consistency and quality over a clinically relevant time frame.

There is near consensus in the field that the foreign body response (FBR) 

that the brain mounts against implanted devices contributes to the observed 

recording instability. Available evidence suggests that pro-inflammatory and 

cytotoxic soluble factors secreted by reactive macrophages/microglia at the 

device-tissue interface mediate the cellular-level changes underlying the FBR. 

Based on this assumption, we hypothesize that implant designs that passively 

reduce the activation of these cells and the concentrations of their released 

soluble factors surrounding the implant will reduce the severity of the FBR.

To explore this hypothesis we have studied the FBR to a series of novel 

test devices based on single-shank, Michigan-style microelectrode arrays. These 

devices have modified architectures and altered constitutive properties intended



to reduce macrophage activation and/or the impact of their secreted factors. To 

facilitate the design and testing of these devices, we first created a series of 

three-dimensional (3-D) finite element simulations to predict the distributions of 

various macrophage-secreted factors around virtual device designs with altered 

architectures and permeability (Chapter 2). Building on predictions from these 

models, we have tested the efficacy of reducing the amount of device surface 

area presented for macrophage interaction/activation in altering the brain FBR 

(Chapter 3). Furthermore, we also examined the efficacy of increasing device 

permeability in altering the brain FBR by incorporating coatings that serve as 

cytokine sinks to passively absorb pro-inflammatory factors into the device and 

away from adjacent brain tissue (Chapter 4). In the final portion of this 

dissertation we move from these passive methods of limiting the extent and 

impact of activated inflammatory cells and describe the creation of extracellular 

matrix (ECM) based device coatings to bioactively reduce the FBR and drive 

improved healing and integration into tissue (Chapter 5).
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CHAPTER 1

INTRODUCTION

1.1 The impact of CNS injures, diseases and disorders 

Diseases and disorders of the central nervous system (CNS) as well as 

traumatic injury of these structures are among the most debilitating conditions 

afflicting patients in our healthcare system. Among these conditions are a 

number of neurodegenerative conditions such as Parkinson’s disease, 

Alzheimer’s disease and multiple sclerosis (MS) that affect over five million 

patients in the US [1-9]. Congenital disorders such as hydrocephalous, a buildup 

of excess cerebral spinal fluid (CSF) in the brain, affect over 700 thousand 

patients [10, 11]. Additionally traumatic brain injury (TBI) and spinal cord injury 

(SCI) impact over five million [12-14] and 250 thousand patients, respectively [15, 

16]. Each of these injured populations and their families has physical, social and 

emotional components of their lives affected through resulting conditions such as 

dementia, incontinence, or partial to full paralysis. Combined, these conditions 

directly impact over 50 million individuals in the US alone with an annual impact 

of over $400 billion to our economy when direct costs and indirect costs such as 

lost wages and productivity are taken into account. Table 1-1 summarizes the 

causes of these conditions and their subsequent impact.



Table 1-1: Overview of common CNS related conditions.
Estimated

Condition Population
Size

Direct & 
Indirect 
Costs

Causes & Pathology

Parkinson’s 350k $24 B Loss of dopamine- 
secreting cells

Alzheimer’s 5M $100B Accumulation of Beta- 
amyloid protein

Myelin degradation
MS 350k $7B and white matter 

deterioration

Hydrocephalous 700k $1B Ventricular 
accumulation of CSF

TBI 5M $76B Traumatic injury to 
various brain regions

SCI
Traumatic injury to 

250k $65B various spinal cord
structures



Related Symptoms
Current & 

Experimental 
Treatment Options

References

Tremor, rigidity, and 
bradykinesia

Various 
medications and 

deep brain 
stimulation

[1-3, 17-20]

Cognitive and memory 
deterioration, 

dementia, insominia

Various
medications

[4-6, 21-27]

Muscle weakness and 
spasm, bowel 

dysfunction, vision 
loss

IFB-1a injections 
and infusions of 

Natalizumab

[7-9, 28-34]

Elev. intracranial 
pressure, herniation, 

CNS degradation and 
death

Drainage shunting

[10, 11, 35- 

41]

Various physical, 
cognitive, social, and 

emotional effects

Hemostatic agents 
as well as 

regenerative 
medicine 

techniques

[12-14, 42- 

45]

Full to partial paralysis 
below injury site

Enzymatic 
cleavage of 

inhibitory molecules 
as well as bridging 

devices

[15, 16, 46]

K>
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1.2 Medical devices and biomaterials used in CNS treatments 

With such a large impact on both the direct patient population as well as our 

economy, a number of medical devices and therapeutics have been 

commercialized or are currently under investigation and development for treating 

CNS diseases and disorders. Of these devices, deep brain stimulation (DBS) 

electrodes are one of the most commercially and clinically successful devices to 

date with over 35,000 devices having been implanted worldwide. Deep brain 

stimulating devices are commonly used in the treatment of motor dysfunction 

associated with Parkinson’s disease. These devices are composed of a bilateral 

array of stimulating electrodes that are placed in the thalamus or basal ganglia 

and are connected to an impulse generator that is generally placed below the 

clavicle or in some cases, the abdomen. DBS electrodes are also being 

investigated for use in treating chronic pain [47], obesity, depression [48] and 

obsessive-compulsive disorder [48]. Treatment of other conditions entails shifting 

the leads to other brain regions such as the periaqueductal gray matter for 

treating nociceptive pain, and the internal capsule or ventral posterolateral 

nucleus for treating neuropathic pain.

Another set of clinically approved devices for CNS treatments are 

drainage shunts used to divert excess CSF from the brain of hydrocephalous 

patients. Shunts have changed little since their original design in 1955. These 

devices consist of three main components: a ventricular catheter placed in the 

ventricles, a one-way valve to control pressure within the brain and lastly, a distal



catheter to divert the excess CSF to an alternative cavity in the body such as the 

abdomen [36, 49].

Perhaps the ultimate goal of SCI injury treatment is to develop spinal cord 

bridging devices. These devices are intended to induce and guide the repair and 

regeneration of injured spinal cord tissues with the end goal of restoring normal 

function to SCI patients. Devices that have been investigated for this purpose 

include aligned polymer fibers, and more recently, engineered cell and 

extracellular matrix (ECM) constructs [50-59]. While a number of these types of 

devices have been used to improve functional regeneration through short 

peripheral nerve gaps, they have shown little success at improving functional 

regeneration in the damaged spinal cord.

An alternative area of research focused on restoring some level of 

independence to both patients suffering from SCI as well as limb amputation is 

the field of brain machine or brain computer interfaces (BMIs or BCIs, this first 

designation will be used throughout this manuscript). In these applications, a 

recording device is used to extract volitional intent in the form of consciously 

modulated neuronal signals from healthy portions of the nervous system. Using a 

variety of signal processing algorithms these signals can then be used to drive an 

external device such as a neuroprosthesis or a computer [60-62].

While functional information can be gained by nonpenetrating recording 

electrodes placed externally on the scalp or subdurally on the brain surface [63], 

many researchers believe that recording devices that penetrate into specific 

regions of nervous tissue will likely provide the most useful control signals for
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these types of systems. A number of devices have been designed for this 

purpose, including insulated microwires and microwire arrays which consist of 

insulated wires with exposed conducting tips for electrical interaction with the 

surrounding tissue [64, 65], and silicon based systems such as the Utah 

Electrode Array (UEA) that consists of an array of insulated doped silicon tines 

with exposed recording tips [66, 67] and the Michigan-style electrode array 

(MEA) which is an insulated planar array with multiple exposed recording sites 

located along a planar silicon shank [68-70]. Figure 1-1 offers examples of these 

penetrating microelectrode-recording devices.

1.3 Biocompatibility concerns of current and investigational treatments 

While a number of the devices discussed above are used clinically there is 

room for improvement and innovation with all of these devices. One of the largest 

areas where engineers and developers can improve is device biocompatibility.

5

Figure 1-1: Representative images of a variety o f m icroelectrode recording 
arrays includ ing (A) a m icrow ire array sim ilar to  those produced by FHC 
and other companies, (B) a 10x10 UEA produced by B lackrock 
M icrosystem s and (C) a variety o f s ing le  and m ulti-shank planar MI-style 
devices made by Neuronexus now a subsid iary o f Big Batch Incorporated.



The most widely cited definition of biocompatibility originated at the 1986 

consensus conference on biomaterials held in Chester, UK. Under this definition 

biocompatibility is: "the ability of a material to perform with an appropriate host 

response in a specific application.” This definition first refers to the requirement 

that the device is able to perform its designed function over the intended lifetime 

of the device. Secondly, this definition requires that the device not elicit an 

inappropriate host response in a given application that outweighs the intended 

function of the device. A new standard of biocompatibility has arisen with the 

increased understanding that we now have about the local and systemic impact 

of the host response as well as insights into how to modify this response. Ratner 

in his Biocompatibility Manifesto put forth a new definition for this critical device 

attribute in which he states that biocompatibility in a large number of cases may 

be better defined by clarifying the appropriate host response as "non-fibrotic 

wound healing, reconstruction and tissue integration [71].” Along with this refined 

definition, Ratner also proposed a new alternative classification, that of 

biotolerability, which describes the traditional set of chronic inflammation, fibrous 

encapsulation and other associated responses that we have observed around 

traditional devices used in the clinic today.

All devices used for treating CNS diseases induce chronic inflammation at 

the device/tissue interface and become encapsulated in fibrous tissue. Together 

these host responses to chronic device implantation are termed the foreign body 

response (FBR). This FBR can lead to both device dysfunction as well as other 

undesired local and systemic host responses that may outweigh the benefits of

6



device implantation. For example, a number of groups have shown that the 

fibrous encapsulation of DBS electrodes induces increased tissue impedance, 

which may limit device function over time and may necessitate premature device 

removal [72-80]. The biocompatibility of these devices comes into question 

further based on evidence indicating that chronic inflammation associated with 

DBS implantation leads to cognitive deficits in DBS recipients compared to those 

who do not receive a DBS [81-85]. While the risk benefit ratio of these devices 

may be acceptable to some patients and their physicians, it is clear that methods 

to reduce the FBR to these devices and improve their biocompatibility would be 

desirable.

Another set of devices with major biocompatibility concerns are 

hydrocephalous shunts. A staggering 40% of shunts become nonfunctional within 

two years after placement necessitating device replacement [86]. While device

associated infections do account for a portion of these failures, by and large the 

majority of failures are due to FBR related obstruction and occlusion of the 

drainage path [36, 87-90]. Beyond directly impacting device function, the impact 

of the FBR is further amplified as the shunt-associated FBR also has been 

implicated in observed long-term cognitive deficits in shunt recipients [91-93].

Beyond these clinically approved devices, a number of investigational 

devices have had their success and path to clinical application hampered by the 

FBR. For example, a number of methods have been investigated for spinal cord 

injury repair [50-59]. However, nearly all of these methods have failed to achieve 

reproducible and functional SCI repair. These failures have been attributed to the

7



inflammatory FBR that prevents direct neuronal contact with generally haptic 

mediated guidance cues.

1.4 The biocompatibility of microelectrode arrays 

Numerous studies have shown that using implanted microelectrode arrays, 

consciously modulated neural signals can be recorded in both animal subjects as 

well as human patients for periods of time ranging from months to multiple years, 

and that these recorded signals can be used to control a number of external 

devices [94-97]. Figures 1-2 and 1-3 give a historical summary of the longest 

recording durations reported in the literature for various types of implant as well 

as various animal models, respectively. Despite these promising results, 

achieving widespread clinical application of this technology requires both 

increasing the overall recording lifetime to a clinically relevant time frame as well 

as improving recording quality and consistency to maximize the amount of 

useable information extracted for neural interface applications [98-102].

A recent conference report by Baresse et al. as well as, yet unpublished, 

findings from our lab suggest that there are two major failure mechanisms limiting 

the overall lifetime of these devices [103]. These mechanisms include 

mechanical failures of the wire bundles and head stages currently used on 

commercially available devices as well as loss of integrity in the devices’ 

insulating layer(s). Further development and adoption of reliable wireless 

recording technology should prove a key first step in limiting mechanical failures 

of wire bundles and mounted head stages. To address the loss of insulation 

integrity there are two pathways where designers could focus their efforts. These

8
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involve either developing insulating materials that can withstand the harsh in vivo 

environment created by the brain FBR (extremely low local pH and high 

concentrations of oxidizing agents) or developing new devices that limit the FBR 

itself to reduce these harsh conditions to a point where traditional materials will 

suffice.

With regards to recording consistency and quality, the correlation between 

the FBR and device function remains unclear. However, there is increasing 

evidence suggesting that the FBR may be a primary hurdle that we need to 

overcome to improve the average quantity and usefulness of the signals we are 

recording. Rennekar et al. first demonstrated the correlation between the FBR on 

recording consistency by examining the effects of minocycline administration on 

the quality and longevity of chronic multi-channel microwire neural implants in rat 

auditory cortex [104]. Minocycline, a tetracycline derivative, is an anti

inflammatory drug known to down regulate macrophage activation and has been 

shown to have neuroprotective and neurorestorative effects in a number of 

inflammatory models. In control animals the authors observed a decrease in 

mean cohort signal to noise ratio (SNR) over the first month of implantation as 

well as a reduction in the number of channels that detected driven single unit 

activity. In contrast, rats that received an oral minocycline treatment showed a 

significant improvement in both SNR and the number of channels that recorded 

stimulus-driven activity.

Based on the role the FBR appears to play in both long-term performance as 

well as recording consistency/quality, understanding this set of responses and

11



developing techniques to reduce them are critical to achieving the promise of 

BMI technology. Over 65 years of studies have described consistent, stereotypic 

features of the brain FBR that occur irrespective of the type of implant, species 

studied, or implantation method [105]. Figures 1-4 and 1-5 give a historical 

summary of this FBR literature by breaking down where this information comes 

from based on type of implant as well as animal model. Figure 1-6 shows 

representative images of the stereotypic organization of the FBR to implanted 

planar MI-style electrodes and cylindrical microwire devices.

Due to the dense and, in many cases, highly vascularized nature of nervous 

tissue, medical device implantation inevitably causes injury. Following this initial 

iatrogenic injury, a number of acute cascades and processes are initiated to 

induce wound closure and promote tissue remodeling. The initial event is 

initiation of the coagulation cascade to form a provisional matrix in the area of 

damage and restore vascular integrity [106]. During this period of time a number 

of other events ensue including activation of the complement system, which can 

induce cell death through formation of the membrane attack complex as well as 

initiate local inflammatory events through the alternative arm of the cascade 

[107]. While much is known about these events and their role in injury and device 

implantation models, in other tissue compartments and with other devices, to 

date there has been little effort to describe these events for microelectrodes 

implanted in the CNS. The majority of what we know about the FBR to implanted 

microelectrodes has focused on later time points ranging from 1-16 weeks post

implantation and has come from end-point histological examination.

12



Figure 1-4: Historical breakdown of the electrode FBR literature (88 sources), by electrode type and half decade. 
Microwires have had the most consistent analysis over time. However, there has been a surge of interest in the 
FBR to planar MI-style microelectrodes in recent years.
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Figure 1-5: H istorical breakdown of the electrode FBR literature (88 sources), by animal model and half decade. 
An overwhelm ing m ajority o f recent studies have been performed in rat models. This is an interesting trend as 
alm ost all studies describ ing record ing over extended durations have been perform ed in larger animals such as 
nonhuman prim ates or in human patients.

14



15

ED1 ED-1

*

$  5GFAP
• 7* J r • '  '■ *  ♦ /  L  ^ ̂  i

• * jit
*. JfH .' i

i H

NeuN

*

NeuN

I------- 1------- 1------- 1------- 1------- 1-------1 — i-------1-------1-------1-------r -
0 100 200 300 400 500 600 -200 -100 0 100 200

Figure 1-6: Representative images depicting the stereotypic organization of 
the brain FBR surrounding a planar MI-style m icroelectrode (left) and a 
cylindrical m icrow ire (right) after four and 12-week implantation periods 
respectively. The response to both styles of devices is characterized by 
activated m icroglia/m acrophages (CD-68) at the device interface 
surrounded by a m inim ally overlapping layer of hypertrophic astrocytes 
(GFAP). This g lio tic  region also contains a reduced number of NeuN+ 
neuronal cell bodies. The distance shown on scale bars beneath the 
images is in microns. Only one sid e of the response to  the plana r Ml-styl e 
m icroelectrode is shown. Adapted front Biran et al. 2005 end W inslow and 
Tresco 2010 [108, 109].



Similar to the response in the rest of the body, a key feature of the brain 

FBR is persistent inflammation at the biotic-abiotic interface signaled by 

biomarkers (such as CD-68) for activated microglia and extravasated blood-born 

macrophages [108-111]. These cells play a primary role in phagocytizing 

damaged or dead cells and clearing residual debris left from the initial iatrogenic 

injury as well as subsequent chronic events [112]. Following phagocytosis, these 

cells are known to act as antigen presenting cells in a variety of disease and 

pathological states [113-118]. While yet unproven, this body of knowledge 

indicates that ongoing macrophage trafficking to and from the vasculature system 

may perpetuate blood brain barrier dysfunction and provide a persistent stimulus 

for the FBR via extravasated fibrinogen, complement factors and other blood 

products, which adsorb to the device surface.

In addition, multiple studies have shown that activated microglia and 

macrophages release a plethora of pro-inflammatory/cytotoxic molecules, which 

can damage healthy bystander cells such as neurons [108, 119-124]. 

Furthermore, previous work from our lab has shown that adherent-cells, retrieved 

on explanted devices secrete both tumor necrosis factor-alpha (TNF-a) and 

monocyte chemotactic protein-1 (MCP-1, Figure 1-7) [108]. TNF-a can have 

direct toxic effects on neurons and oligodendrocytes; while, MCP-1 is a 

chemokine involved in opening the blood brain barrier (BBB) and recruiting new 

macrophages to sites of injury and inflammation [119, 120, 124-132].

16
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Figure 1-7: (A) Representative phase-contrast image of an explanted 
m icroelectrode after one week of cu ltu re shows cells w ith  a m igratory 
phenotype. (B) Fluorescence image fo r the same panel as (A) show ing that 
the m ajority of these cells are CD68+(green) macrophages. (C) 
Representative data (mean + SEM) of MCP-1 and TNF-a concentrations in 
conditioned medium harvested from  explanted m icroelectrodes after the 
firs t 24hrs fo llow ing retrieval in serum -free culture. Scale bar = 200^m. 
Adapted from  Biran & Tresco 2005 [108].

Surrounding this inflammatory core, a region consisting of hypertrophic 

astrocytes as well as infiltrating fibroblasts and meningeal cells has been 

observed [105, 108-111, 133-140]. In healthy brain tissue, astrocytes regulate 

the local microenvironment by sequestering a number of neurotransmitters and 

ions as well as maintaining the BBB, isolating the cellular and ionic milieu of brain 

and supporting vasculature from one another [141-144]. Following injury, 

astrocytes increase the number and size of their cellular processes. These 

hypertrophic astrocytes are believed to play a similar role to that of reactive 

fibroblasts in the FBR in other tissue compartments, where they create a dense 

scar-like layer that limits volume transmission [145]. Many believe that this 

diffusion barrier may play a beneficial role in restricting the impact of macrophage 

secreted factors on the surrounding tissue [146-149]; however, it may also



increase the tissue’s impedance to small ion transport, potentially limiting 

recording function.

Associated with this region of inflammation and reactive gliosis, studies also 

have described a decrease in the local nerve fiber and neuronal cell body 

densities surrounding implanted devices [105, 108, 136, 140]. While a significant 

number of neurons remain within the recording range of these devices, the 

overall decrease in neuronal density (approximately 50-60%) indicates that the 

environment may no longer be ideal for promoting neuronal health and function. 

Clearly any compromise of this target cell population may influence device 

function.

From quantitative work performed in our lab, we know that this chronic 

inflammation and neuronal loss are associated with the continual presence of the 

implant and are not solely a result of iatrogenic injury related to device 

implantation as we have shown that these phenomena do not accompany stab 

wound injuries made with identical recording devices [108].

In recent years we have gained further insight into the time course of the 

FBR. Recent studies from our lab examined the time course of the FBR to both 

planar MI-arrays and single microwires at 2, 4 and 12 weeks post-implantation 

[109, 111]. These studies showed activated macrophages present at all time 

points regardless of microelectrode type. This finding is further corroborated by 

the presence of activated macrophages surrounding DBS electrodes up to 2 

years postimplantation [73-80, 150]. We did observe changes in the spatial 

distribution of these inflammatory cells over time, with a more dispersed,

18



activated macrophage distribution at 2 weeks compared to both 4 and 12 weeks. 

We observed no progression in the spatial distribution of reactive astrocytes or 

neuronal loss as a function of time over this indwelling period. These findings do 

not support several previous FBR associated recording failure mechanisms, 

including progressive increases in astrocyte encapsulation or progressive 

neuronal loss within the recording zone.

New observations from our lab have opened other potential explanations as 

to how the FBR could influence recording. As observed in many 

neurodegenerative disorders, we have found that the local BBB and myelin 

integrity are compromised in the tissue immediately surrounding an implanted 

device [109, 111]. These findings suggest that an altered local ionic milieu 

leading to neuronal silencing, decreased neuronal conduction, and/or 

compromised synaptic stability could all influence recording instability [151-153]. 

While we have not studied the progression of these phenomena over time, it is 

important to note that neuroinflammtory diseases such as MS exhibit BBB 

dysfunction and myelin disruption that are quite transitory [154, 155]. This fact 

adds credence to their possible role in recording inconsistency.

The impact of the FBR is not limited to the tissue immediately surrounding 

the implanted device. In, as of yet, unpublished work from our lab we have 

documented that chronic electrode implantation is accompanied by decreased 

neurogenesis in the subventricular zone of the dentate gyrus (DG). We observed 

this decrease in both microelectrodes implanted into CA1 of the hippocampus (a 

structure closely associated with the DG) as well as devices implanted solely in
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regions of the cortex away from either the hippocampus or DG. Similar to our 

findings regarding BBB dysfunction, decreases in neurogenesis have been 

observed in neuroinflammatory diseases such as Alzheimer’s disease [156]. In 

these conditions it is widely believed that these phenomena are caused by 

activated macrophages/microglia and their released soluble factors [157].

1.5 Previous efforts to improve the biocompatibility of microelectrodes 

Despite our increased understanding of the brain’s response to 

microelectrode implantation, whether it influences recording consistency, and 

how this might occur, it is still unclear if the goal of seamless integration into 

nervous tissue is possible and whether the FBR can be modulated by 

intentionally manipulating constitutive properties of the implant. A number of 

groups have investigated possible methods for improving the FBR, which have 

been met primarily with minor to moderate success.

There are a number of important facts to consider when comparing and 

analyzing findings from these studies. First, in almost all cases the devices were 

removed from tissue prior to analysis. As we have shown in our lab, device 

removal disrupts the tissue interface by removing adherent tissue and may 

influence data interpretation [108-111], especially for coatings that may improve 

cell attachment. Different groups also use a variety of different markers to 

describe the same cellular and molecular features of the FBR. An example of this 

is the use of pan-macrophage markers such as OX-42 and IBA-1 versus markers 

for activated macrophages such as CD-68. There are also large to subtle 

differences in the methods used to image and quantify these changes that can
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lead to differences in interpretation. Additionally, a number of groups present 

optimistic conclusions about the level of FBR reduction that are not shown by 

their representative figures or their quantitative metrics.

1.5.1 Altering device geometry and architecture

Szarwoski et al. conducted the first study investigating the potential of 

changing device architecture and geometry to alter the FBR [139]. In this study 

the authors studied the FBR to a variety of devices with different cross sectional 

areas, tip geometries, and surface roughness and concluded that the tissue 

response was independent of these electrode properties. We believe that their 

results and conclusions stem from the fact that while their devices were different 

in a number of parameters, that in fact, these slight differences were too minimal 

to induce changes in the FBR. These overly broad conclusions have since been 

contradicted in several recent studies looking at either planar or cylindrical 

devices as well as published work from our lab, which will be further discussed in 

Chapters 2 and 3 [136, 140, 158].

Of these contradicting studies, both Stice et al. and Thelin et al. provided 

evidence that changing device geometry and reducing presented surface area 

impacts the FBR [140, 158]. In these studies, both groups independently found 

significant differences in classic hallmarks of the FBR between microwires of 

different diameters. These groups hypothesized that reducing the initial 

iatrogenic injury by presenting a smaller cross-sectional area drove their results. 

However, this hypothesis is confounded due to differences between both the 

presented surface area and curvature of the disparate sized microwires. To
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elucidate a mechanistic understanding of the driving features of the FBR that can 

lead to improved device design and clinical impact, further effort must be taken to 

isolate design variables that could influence the FBR. The impacts of these 

improvements in the FBR have not been investigated on device function to date.

In a further contradicting study, Seymour and Kipke found significant 

differences in both the neuronal and non-neuronal cell responses between a 

parylene-C based electrode’s larger shank and an adjoining thin lateral platform 

designed with a variety of different sized subcellular lattice architectures [136]. In 

this work the authors used devices with identical penetrating profiles to remove 

the impact of the extent of iatrogenic injury on their findings. Seymour and Kipke 

originally hypothesized that presenting a structure below a critical surface area 

would result in a reduction in the FBR. While their findings did support this 

hypothesis, due to insignificant differences in the FBR to their lattice elements of 

different sizes, the group chose to adopt the theory of mechanical differences 

between the thin adjoining lattices and the larger primary solid shanks as the 

explanation of their results. While we acknowledge that mechanics may play a 

role in the FBR, as we will explain in Chapters 2 and 3, we believe that their 

original hypothesis may be the more accurate explanation as there were likely 

insufficient size differences between their small lattice elements to cause 

significant changes in the FBR surrounding these structures.

1.5.2 Mechanical mismatch and brain micromotion

Along with Seymour and Kipke, a number of other groups have investigated 

the hypothesis that brain micromotion in combination with the mechanical
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mismatch between the stiff electrode array materials and the softer brain tissue 

may induce shear and compressive forces that perpetuate the FBR, damage 

nearby cells, and induce relative displacement of the electrode recording site to 

cortical tissue. Goldstein and Salcman first put this idea forth in 1973, though the 

most cited work for this hypothesis is Edell et al. in 1992 [133, 159].

Based on this hypothesis a number of groups have investigated the use of 

softer materials to better match the mechanical properties of the brain and 

minimize forces exerted on the tissue, attenuating inflammation and repetitive 

tissue damage. For example, Harris et al. has shown that implantation of a 

nanocomposite microprobe with a Young’s modulus of 33MPa into a rat cortex 

for up to eight weeks demonstrated increased cell density at the biotic/abiotic 

interface and a lack of tissue necrosis [160, 161]. While these findings indicate 

that better mechanical matching may indeed improve the FBR, confounding 

factors also exist for these materials, which make arriving at a definitive 

conclusion difficult. One of these factors is the fact that many of these materials 

absorb a significant amount of water upon implantation and may also act as 

permeable sinks, improving clearance of macrophage-released factors from the 

surrounding tissue. This theory will be further described in Chapters 2 and 4.

One important finding from our lab that adds to this body of literature is the 

fact that implants that are anchored to the skull have a more severe FBR than 

free-floating implants [110, 162]. This finding has led to several groups pursuing 

free-floating devices that may limit mechanical strains on tissue at the 

biotic/abiotic interface. It should be noted that all of the work in this dissertation
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used devices that were fixed to the skull, and that despite this added hurdle that 

our strategies were still able to reduce the FBR which will be discussed further in 

Chapters 3 and 4.

1.5.3 Preventing cell adhesion

An alternative strategy to reduce the FBR that we investigated was the use of 

coatings that prevented cell adhesion to minimize activation of macrophages at 

the device surface [109, 163]. To test this hypothesis we compared the FBR of 

planar silicon microelectrodes that had a uniform coating of parylene C, which 

prevented cell attachment in vitro, to that of identical uncoated devices. 

Interestingly, we found no significant difference in the FBR to the parylene C 

coated devices at 2, 4 or 12 weeks compared to control uncoated devices. This 

finding indicated that cell adhesion is not necessary to drive the FBR or that 

close association of the electrode with brain tissue at the biotic/abiotic interface is 

sufficient to allow inflammatory cell invasion and persistent residence 

immediately surrounding the device. To our knowledge no type of inert coating 

has been shown to reduce the FBR in any other tissue or implant model.

1.5.4 Incorporating bioactive coatings

In contrast to our results using inert coatings, a number of groups have 

shown that bioactive coatings can be used to alter the FBR to microelectrodes. 

One bioactive coating strategy that has been effective in altering the FBR is work 

by He et al. [164]. In this study the authors showed that coating the device with 

the extracellular matrix (ECM) protein laminin (LN) alters the traditional
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microglia/macrophage and astrocytic response to implanted planar silicon arrays. 

Specifically, they observed an approximate 60% increase in CD-68 expression 

(described as a marker for activated macrophages) near LN-coated devices 

compared with uncoated devices one day post-implantation. However, after four 

weeks of implantation, the authors observed an approximate 20% reduction in 

CD-68 expression along with an approximate 50% reduction in GFAP expression 

surrounding the coated compared to uncoated devices. The authors concluded 

that their LN coatings had a stimulatory effect on early-phase microglia activation 

that improved early wound healing and the subsequent integration of the devices 

into tissue.

Another bioactive coating that has shown great potential is work by Azemi et 

al. [165, 166]. In this study the authors covalently immobilized the extracellular 

matrix, neural adhesion protein L1 to the surface of MI-style microelectrodes and 

compared the tissue response between coated and uncoated devices implanted 

in the rat cortex for one, four and eight weeks. In contrast to uncoated devices 

that exhibit a typical FBR, the L1 coated probes showed little neuronal loss, 

significantly increased axonal density relative to background, as well as lower 

activation of microglia and astrocyte hypertrophy. These findings provide further 

evidence for the usefulness of bioactive intervention strategies based on the 

ECM. An alternative bioactive strategy based on harvesting the extracellular 

matrix from immature astrocytes and glial-precursor cells will be discussed in 

Chapter 5.
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Though not specifically a study examining bioactive coatings, another theory 

that builds from an understanding of the ECM is work done by Moxon et al. [167

169]. These researchers examined the impact of presenting a roughened, porous 

silicon surface, which was designed to better mimic the nanostructured and 

fibrous nature of the extracellular matrix on the FBR. Implantation of nano-porous 

surfaces was found to induce less glial activation and to slightly improve neuronal 

density near the device. However, these findings have only been examined out to 

one week post-implantation and their lasting impact on the FBR is unclear.

1.5.5 Delivery of anti-inflammatory agents

Building off Rennekar’s work that administered the anti-inflammatory drug 

minocycline and saw improvements in recording performance [104], Zhong and 

Bellamkonda developed probe coatings that locally released the anti

inflammatory drug dexamethasone (DEX) [170]. DEX coatings significantly 

reduced both activated macrophage and hypertrophic astrocyte reactivity one- 

week postimplantation compared to uncoated controls. Interestingly, at four 

weeks postimplantation there was no significant difference in the reactivity 

between coated and uncoated cohorts for these markers. This discrepancy may 

have been due to exhaustion of the drug source between these time frames. If 

this were the case, it would signify that a chronic anti-inflammatory regimen might 

be needed to reduce the FBR through the lifetime of the implanted device.
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1.6 A new focus: Device design to limit the impact of activated 

macrophages and their secreted factors to improve the 

biocompatibility of microelectrode arrays

Despite some cases describing measured improvements in the FBR to 

implanted microelectrodes, this body of published work has been limited by a 

lack of hypothesis-driven testing based on a mechanistic understanding of the 

FBR. Without a knowledge regarding the cellular or molecular mechanism by 

which their design changes altered the FBR, translating and optimizing these 

approaches will be difficult. The work described herein is based on this desire to 

offer designers new tools and better strategies for reducing the FBR to improve 

device function and patient care that are based on a guiding-mechanistic 

understanding of the FBR.

When searching for cellular and molecular mechanisms that device designers 

can manipulate to improve the FBR, it becomes evident that pro-inflammatory 

and cytotoxic soluble factors secreted by reactive macrophages/microglia at the 

device-tissue interface are the most likely mediators of the cellular-level changes 

underlying the FBR. Based on this assumption, we hypothesize that implant 

designs that passively reduce macrophage activation or the concentrations of 

their released soluble factors surrounding the implant will reduce the severity of 

the FBR.

To explore this broader hypothesis and mechanism we have investigated a 

number of methods for reducing either the quantity and activation state of 

macrophages at the device interface or the distribution of their secreted factors
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through the use of passive design changes and the incorporation of bioactive 

coatings. To guide our passive design changes, we first created a series of 3-D 

finite element simulations to predict the distributions of various macrophage- 

secreted factors around virtual device designs (Chapter 2). Based on predictions 

from these models we have examined both the impact of simple architectural 

changes that reduce the number of inflammatory cells at the device interface 

(Chapter 3), as well as incorporation of passive permeable coatings to reduce the 

impact of their secreted factors (Chapter 4). Lastly we have developed new 

techniques to integrate ECM harvested from young immature astrocytes and glial 

precursor cells that have been shown to play a key role in down regulating 

macrophage activity in healthy tissue (Chapter 5).
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CHAPTER 2

TOWARDS INFORMED DEVICE DESIGN:

MODELING THE FOREIGN BODY 

RESPONSE TO DEVICES 

IMPLANTED IN THE CNS

2.1 Introduction

Numerous studies have shown the potential for using implanted 

microelectrode arrays to drive brain machine interface (BMI) applications for the 

rehabilitation of spinal cord injury (SCI) patients and those suffering limb 

amputation [94-97, 171]. Despite these promising results, achieving widespread 

clinical application of this technology requires improving recording consistency 

and quality as well as extending the lifetime of these devices to a clinically 

relevant time frame. It is widely accepted that one of the greatest challenges that 

we need to overcome to improve recording quality and device lifetime is the 

foreign body response (FBR) against implanted microelectrodes.

Numerous studies have described consistent, stereotypic features of the 

brain FBR that occur irrespective of the type of implant, species studied, or 

implantation method. The foremost hallmark of the brain FBR, as well as the FBR 

in other tissues, is persistent inflammation at the biotic-abiotic interface signaled



by biomarkers for activated macrophages and resident microglia [108, 109, 111, 

137]. Surrounding this inflammatory core, a region consisting of hypertrophic 

astrocytes, fibroblasts, and meningeal cells has been observed [108-111, 133, 

134, 136-139, 172]. Associated with this region of inflammation and reactive 

gliosis, local nerve fiber and neuronal cell body densities are also decreased [105, 

108-111, 133, 135, 137, 138]. These findings lead us to believe that the FBR to 

implanted devices may affect recording quality by electrically isolating the device 

from healthy viable neurons [108].

Additionally, when we examine the FBR to various microelectrode designs it 

becomes apparent that the FBR mirrors the geometry and architecture of the 

implanted device. Multiple studies have noted the fact that surrounding traditional 

planar MI-style devices that are approximately 100^m wide by 12^m thick, there 

is minimal impact surrounding the thin lateral edges of the device compared to 

the broad planar faces [108-111]. In contrast, cylindrical microwire devices 

usually have a more uniform, concentric, circular-shaped FBR [111]. In addition, 

the FBR to chronically implanted Utah Electrode Arrays (UEAs), that have a 

much more complex architecture, shows a gradient of severity as a function of 

depth from the cortical surface, with a severe reaction that spans the area 

underneath the base of the array near the top of the cortex down to a minimal 

reaction near the recording tips that is isolated to each penetrating tine. For 

images of the FBR to planar MI-style microelectrodes and microwire devices 

refer to Figure 1-7 in the previous chapter. The FBR to the UEA is shown here in 

Figure 2-1.
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Upper Cortical Layers:

Severe inflammation, 
astrocyte hypertrophy, 

and neuronal loss 
spanning the distance 

between tines

Lower Cortical Layers:

Limited inflammation, and 
reduced astrocyte 
hypertrophy that is 

isolated to each tine as 
well as minimal neuronal 

loss

Figure 2-1: (A & B) Representative gross level images of a cat cortex 
chron ica lly  implanted w ith  an UEA show ing s igns of tissue  erosion and 
device settling. (C-F) Representative horizontal sections show a graded 
response in the neuronal (NeuN -  red), macrophage (Lectin -  green), 
astrocyte (GFAP -  red) and overall ce llu lar reactions (DAPI -  blue) to  the 
implanted UEA w ith  a more severe reaction d irectly  underneath the base of 
the array compared to  that observed at the record ing tips.



Despite our increased understanding of the CNS’s foreign body response to 

chronically implanted devices, it is still unclear if the goal of seamless integration 

into the nervous system is possible and whether device designers can modulate 

specific aspects of the FBR by intentionally manipulating implant architecture or 

other constitutive properties [133, 136, 139]. Based on increasing evidence that 

macrophages and their released soluble factors play a key role in driving and 

shaping the cellular level features of the brain FBR, our group hypothesizes that 

implant designs that reduce the concentrations of these soluble factors adjacent 

to implanted devices will limit the severity of the FBR. However, to date, little 

effort in the field has been directed at studying the distribution of macrophage- 

released soluble factors surrounding implanted devices and, to our knowledge, 

no one has explored how device design can be altered to minimize their 

distribution and subsequent impact on surrounding tissue.

To address this need, we have developed a computational model to predict 

the steady-state distribution of macrophage-released soluble factors surrounding 

traditional and novel device designs. Due to the difficulty of analyzing the spatial 

distribution of macrophage-released factors in tissue, we validated the 

usefulness of our models and our underlying hypothesis using a number of 

indirect methods. In the first of these indirect methods, we investigated whether 

our model and hypothesis could explain differences in the shape and structure of 

the FBR to a variety of implanted microelectrodes with different architectures 

including planar MI-style arrays, cylindrical microwires and more complex 

devices like the UEA. To further our validation efforts we tested whether our
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model could explain the reduced FBR seen around semipermeable hollow fiber 

membranes (HFMs). Based on findings from these models, we present two 

potential design strategies to minimize the concentration/impact of macrophage- 

released factors in tissue surrounding implanted devices, namely (1) decreasing 

the amount of device surface area for macrophage interaction/activation and (2) 

incorporating permeable coatings to act as cytokine sinks to improve clearance 

of macrophage-released factors.

2.2 Methods

2.2.1 COMSOL model physical layout

3-D virtual devices were created using COMSOL Multiphysics (COMSOL 

Group, Stockholm, SE). The models created included traditional microelectrode 

designs such as planar MI-style microelectrodes, cylindrical microwires, and the 

more complex Utah Electrode Arrays (UEAs). We also modeled a 

semipermeable HFM to investigate whether our model could help elucidate why 

these devices have a significantly reduced FBR compared to other devices 

implanted in the CNS. Additionally, novel designs with altered architectures and 

incorporation of thick permeable coatings were created.

Surrounding these constructs, a concentric, scaled copy of the original 

construct was added to mimic the macrophage layer found surrounding all 

traditional devices implanted into the CNS. This macrophage layer acted as the 

source of cytokine production in the model. A further rectangular block acted as 

the surrounding brain tissue where diffusion and clearance of macrophage 

released factors occurred. Figure 2-2 shows the different regions involved in the

33



34

A

Figure 2-2: (A) Representative image of a planar, tapering MI-style 
microelectrode. Electrode tapers from approximately 200^m at the base to 
33^m at the last taper before the sharp tip. (B) 3-D planar tapering MI-style 
microelectrode model created within Co Ms OL. (C) Cross section of the MI 
model. At the center of the model is the impermeable electrode (grey). 
Surrounding this is a concentric macrophage layer (green) that acts as the 
source of cytokine production in the model. Diffusion and clearance of 
these cytokines occurs in this layer as well as the surrounding brain tissue 
(purple). Similar models were created for the other impermeable electrodes 
including cylindrical microwires, 10x10 UEA, 4x4 UEA, and lattice MI 
microelectrodes.



FE models for a planar MI-style microelectrode array. Similar regions were 

included in the cylindrical microwire and UEA models. Figure 2-3 illustrates the 

regions involved in the semipermeable HFM model.

2.2.2 Simulating macrophage-released factor distributions

We modeled soluble factor production from the macrophage layer via a 

zero-order reaction using reported literature values for macrophage production of 

TNF-a and MCP-1 in vitro (Table 2-1) [108, 173, 174].

We modeled diffusion of macrophage-released factors through brain 

tissue as well as the permeable HFM and alginate coatings via isotropic diffusion, 

where the flux of solute from a given point is governed by its local diffusivity and 

concentration gradient (Eq. 2-1). The apparent diffusivity of TNF-a and MCP-1 in 

cortical brain tissue, cerebral spinal fluid, the HFM wall and our permeable, 

alginate-hydrogel coating is shown in Table 2-1. We based these values on 

findings from the literature as well as previous cortical diffusion experiments 

conducted in our lab for molecules of similar size diffusing from a hollow fiber 

membrane system [108, 173-180]. We assumed an isotropic diffusivity for 

cortical tissue based on work by Vorisek and Sykova [178, 179]. We chose to 

use an apparent diffusivity value in place of standard diffusivity to account for the 

impact of tortuosity and other confounding variables on the transport of 

macrophage-released soluble factors through tissue and our various materials.
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Figure 2-3: (A) Representative image of a PAN-PVC HFM. (B) Cross section 
of the HFM show ing the porosity  o f HFM wall w ith  large m icron scale pores 
near the outer surface of the HFM and nanoscale pores on the inner 
surface. The size of these inner nanopores determ ines the HFM’s exclusion 
size. (C) 3-D HFM model created w ith in  COMSOL. (D) Cross section of the 
HFM model. The key difference between th is  model and the various 
m icroelectrode models is the inclusion of a permeable HFM wall layer and 
an inner lumen filled  w ith  CSF in place of the so lid  impermeable electrode 
material used in the other models. Scale bar shown in A = 500^m. Scale bar 
shown in B = 100^m.



The clearance/degradation of macrophage-released soluble factors in 

brain tissue and permeable coatings was modeled via first order elimination (Eq. 

2-2). The elimination rate constant, k, for different soluble factors of interest is 

derived from Eq. 3 and reported literature values for the half-lives (t1/2) of said 

factors (Table 2-1) [173, 174].

2.2.3 Assumptions

A no-flux boundary condition was incorporated for all solid device surfaces 

as well as the upper surface of the brain tissue block in our 3-D models. We 

applied an open boundary to the five remaining faces of the tissue block with an 

initial zero mol x L-1 concentration outside of the block.
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Table 2-1: Summary of model parameters fo r TNF-a and MCP-1.

Production 
Rate (molxL-

W )

Apparent 
Diffusivity 
in cortical 

tissue 
(m2 x s-1)

Apparent 
Diffusivity in 

CSF (m2 x s-1)

Apparent 
Diffusivity in 

alg.
(m2 x s-1)

Half
life

(min)
Refs

TNF-a 1.60 x 10-13 1.54 x 10-11 3.70 x 10-11 3.12 x 10-11 25 [108 , 173
180]MCP-1 5.92 x 10-12 2.22 x 10-11 5.23 x 10-11 4.41 x 10-11 45

Eq. 2-1 -  Isotropic, steady state diffusion governed by: 
V (-D y V cj) = Rj 
Nj = -Dj V Cj

Eq. 2-2 -  Soluble factor clearance and degradation: 
C, =  C0 * e~k‘

Eq. 2-3 -  Relation of elimination rate constant and half-life:
In  2

k = -----
t l / 2



2.2.4 Finite element meshing

To eliminate the effect of mesh quality and size on the results, simulations 

were performed with a variety of different mesh resolutions. Meshes that were 

finer than the size range determined to affect our results were used in all 

simulations.

2.3 Results and discussion 

To validate our models as well as to examine their usefulness, we first 

investigated whether they could predict and explain common observations 

surrounding traditional microelectrode implants including planar MI-style 

microelectrodes and cylindrical microwires. The predicted distribution of 

macrophage-released soluble factors from our model for a traditional planar MI- 

style array is shown in Figure 2-4. This model predicted a distribution of 

macrophage-released factors that had a similar shape to the device’s geometry 

as well as the typical FBR that has been documented surrounding these devices 

[108-110]. The greatest predicted concentration of released factors at any given 

depth was located at the center of the device where the greatest summation of 

soluble gradients from nearby macrophage sources could occur. There was a 

reduction in concentration along the thin 12^m wide lateral edges of the device 

compared to that at the center of the broad face. This finding provides a 

mechanism to explain common observations that the FBR is less severe along 

the thin lateral edges of MI style devices [108, 109, 136].

Similarly, our model for the cylindrical microwire devices predicted a 

distribution that coincided well with the documented structure and shape of the
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Figure 2-4: (A) Isotropic surface model showing the predicted TNF-a distribution surrounding a planar, tapering 
MI-style microelectrode. (B & C) Horizontal cross sections showing the predicted TNF-a distribution at depths of 
750 and 1500pm, respectively. As the tapering electrode shank decreases in size, the predicted distribution 
lessens, indicating that the amount of presented surface area impacts the predicted cytokine distribution. 
Simulated cytokine levels are relative to the peak concentration surrounding the uncoated 300pm solid array in 
Figure 2-8A. Scale bar = 100pm.
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FBR to these cylindrical devices (Figure 2-5). Moreover, our model predicted a 

reduced concentration of these factors surrounding the implanted device 

compared to the planar MI array. This reduction agrees well with our 

observations that there is a reduced FBR to this size of microwire device. 

compared to planar MI-devices when implanted using identical methods in our 

lab [108, 109, 111, 136].

As described in the introduction to this chapter, the FBR response to the UEA 

shows a gradient of severity as a function of depth from the cortical surface. 

Under the base of the array there is nearly complete loss of neurons, 

hypertrophic astrocytes that span the distance between tines and intense 

hypercellularity, indicative of a severe inflammatory reaction. These indicators of 

the FBR are significantly greater than that seen around single planar MI implants. 

In contrast to this severe response near the base, there is only minimal neuronal 

loss, astrocyte hypertrophy and hypercellularity near the recording tips with the 

overall response near any tine’s recording tip being less than that surrounding 

traditional planar MI-devices.

Our UEA model (shown in Figure 2-6) shows a similar gradient with 

extremely high concentrations of soluble factors under the base of the array and 

in the upper cortical regions with significantly reduced concentrations near the 

recording tips of each electrode tine. Excitingly, when compared to our planar MI- 

array models, the predicted concentrations of macrophage-released factors 

underneath the base of the array and at the tines follow a similar relative pattern 

as the differences in classic hallmarks of FBR between these devices.
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Figure 2-5: (A) Isotrop ic surface model show ing the predicted TNF-a d is tribu tion  surrounding a 75^m cylindrica l 
m icrow ire array sim ilar to  that used in W inslow  & Tresco 2010 [111]. (B) Horizontal cross section show ing the 
predicted TNF-a d is tribu tion  at a depth o f 750^m. The predicted d is tribu tion  surrounding m icrow ire is reduced by 
roughly 20% that o f a tapering MI-style device at a sim ilar depth. This find ing again, indicates that the am ount of 
presented surface area im pacts the predicted cytokine d istribu tion . S imulated cytokine levels are relative to  the 
peak concentration surrounding the uncoated 300^m solid  array in Figure 2-9A. Scale bar = 100^m.
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Figure 2-6: (A & B) Isotrop ic surface model show ing the predicted TNF-a d is tribu tion  surrounding a 10x10 UEA 
w ith  2mm long tines and 400^m tine  spacing. Only 25% of the  device is depicted to  enable view ing the relative 
concentration as a function  of depth in the center o f the array of tines. The relative concentration in (A) is set 
relative to  the maximum concentration surrounding the UEA in th is  model to  illustra te  differences between the 
predicted concentrations underneath the base of the device and at the tine  tips. This predicted maximum 
concentration is roughly tw ice  that o f the maximum surrounding the tapering MI-style device. To facilita te  
com parison of the UEA model w ith  all other models in th is  work, we have set the relative concentration in (B) to  
the same maximum as the other models. By doing th is, all areas above the maximum concentration surrounding 
the uncoated 300(jm so lid  array in Figure 2-9A are shown in deep red (100-200% scale).
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Beyond these traditional recording devices we also wanted to examine the 

usefulness of our models by testing to see whether they could explain the 

significantly low FBR that we have observed surrounding implanted semi- 

permeable HFMs. Despite having a larger penetrating profile, our HFM models 

had maximum concentrations at the device interface that were roughly 55% that 

of the maximum surrounding the planar-MI array model (Figure 2-7). However, 

making the HFM wall impermeable resulted in a near doubling of the predicted 

concentration making the maximum similar to that adjacent to the planar MI 

device (data not shown). These findings indicate that the permeable nature of the 

HFM was responsible for the predicted decrease in soluble factor concentration 

and provide a mechanism to explain the minimal FBR surrounding these devices 

when compared to other traditional devices implanted in the CNS.

Additionally, our modeling also predicts that reducing presented surface 

area or incorporating a permeable sink coating, such as a hydrogel, will improve 

clearance of macrophage-released factors from the surrounding tissue and may 

reduce the FBR. Figures 2-8 and 2-9 compare the predicted distributions for an 

uncoated planar 300^m-wide solid device to a lattice device with the same 

penetrating profile but reduced surface area and an identical solid device with a 

400^m-thick permeable coating.

In this work we have assumed that the majority of pro-inflammatory 

cytokines are created by activated macrophages. However, it has been 

suggested that other cell types involved with the brain FBR can also produce
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Figure 2-7: (A-B) Representative 12-week horizontal sections show ing (A) 
CD68 (ED-1) and (B) NeuN im m unoreactiv ity surrounding an implanted 
HFM. The PAN-Pv C Hf M autofluoresces to  some degree in both A  & B. We 
observed few ED-1+ cells and little  neuronal loss adjacent to  the HFM 
devices compared to  that surrounding trad itiona l m icroelectrode designs. 
(A) Predicted TNF-a d is tribu tion  surrounding a sim ulated HFM w ith  an 
outer diam eter o f 820^m and wall th ickness o f 80^m. Simulated cytokine 
levels are relative to  the peak concentration surrounding the uncoated 
300^m so lid  array in Figure 2-5A.
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Figure 2-8: 2-D slices showing the predicted TNF-a distribution in cortical 
layer V surrounding (A) 300^m-wide solid and (B) lattice microelectrode 
arrays w ith identical penetrating profiles. Concentrations are set relative to 
the peak concentration surrounding the solid device. Decreasing the 
surface area that is exposed to macrophages by using th is lattice structure 
decreases the peak concentration of released TNFa surrounding the lattice 
device by roughly 40%.
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Figure 2-9: 2-D slices showing the predicted TNF-a distribution 
surrounding (A) an uncoated 300^m-wide solid microelectrode and (B) an 
identical microelectrode with a 400^m-thick alginate hydrogel coating. 
Concentrations are set relative to the peak concentration surrounding the 
solid device. Despite having a larger surface area, providing a new 
transport pathway with the permeable hydrogel coating reduces the 
released soluble factor concentration surrounding the coated device by 
roughly 40% (400^m thick gel). For this strategy to be effective the coating 
must be thick enough to passively entrap the soluble factors until they 
have had sufficient time to become passivated by hydrolysis and other 
degradation mechanisms. This is demonstrated in (C) by comparing the 
maximum concentration of TNF-a at the device/tissue interface fo r coatings 
of various thicknesses.



these molecules to a lesser degree [181]. Histopathological studies from our lab 

and others have shown that these cells form a syncytium surrounding the layer of 

activated macrophages at the device-tissue interface. An expanded source 

region would impact the distributions of proi-nflammatory factors as predicted by 

our models. Nevertheless, by predicting solely the impact of macrophages, our 

model does elucidate the high importance of these cells in the FBR and allows 

the investigation of strategies targeted at manipulating this cell population.

While our results provide a first pass validation of the model, more in 

depth validation by measuring in vivo cytokine distributions surrounding 

implanted devices is needed to improve the accuracy of our results. We are 

currently investigating a number of methods to measure and profile cytokine 

distribution in tissue, including immunohistochemically labeling cytokines of 

interest as well as detecting cytokine mass fragments using imaging MALDI 

mass spectroscopy. Once more fully established, these methods for profiling 

cytokine distributions in tissue will provide information to validate our diffusion 

models and improve the accuracy of their predictions.

2.4 Conclusion

In this study, to better understand the potential impact of macrophage- 

released factors on the cellular-level changes underlying the FBR, we created 

computational models to predict the steady-state distribution of these factors 

surrounding implanted devices. Due to the difficulty of analyzing the spatial 

distribution of macrophage released factors in tissue, we validated the usefulness 

of our models and our underlying hypothesis by verifying that they could explain
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differences in the shape and structure of the FBR to a variety of implanted 

devices. In addition, we utilized our models to investigate a number of potential 

strategies to reduce the distribution FBR including (1) decreasing the amount of 

device surface area for macrophage interaction/activation and (2) incorporating 

permeable coatings to act as cytokine sinks to improve clearance of 

macrophage-released factors. Findings from these models further validate our 

hypothesis that macrophage-released soluble factors play a key role in driving 

and shaping the cellular level features of the brain FBR. Additionally, our findings 

indicate that implant designs that reduce the concentrations of these soluble 

factors adjacent to implanted devices limit the severity of the FBR.
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CHAPTER 3

REDUCING SURFACE AREA WHILE MAINTAINING 

PENETRATING PROFILE LOWERS THE 

BRAIN FOREIGN BODY RESPONSE TO 

CHRONICALLY IMPLANTED SILICON 

MICROELECTRODE ARRAYS

3.1 Introduction

Numerous studies have shown that using implanted microelectrode arrays, 

consciously modulated neural signals can be recorded in both animal subjects as 

well as human patients for periods of time ranging from months to multiple years 

and that these recorded signals can be used to control a number of external 

devices [94-97, 171]. Despite these promising results, achieving widespread 

clinical application of this technology requires improving recording consistency 

over a clinically relevant time frame. A widely accepted theory in the field is that 

the foreign body response (FBR) that the brain mounts against implanted 

microelectrodes contributes to the observed recording instability, currently 

limiting clinical application.



Since the original work by Collias and Manuelidis [105], over 60 years of 

studies have described consistent, stereotypic features of the brain FBR that 

occur irrespective of the type of implant, species studied, or implantation method. 

A key feature of the FBR is persistent inflammation at the biotic-abiotic interface 

signaled by biomarkers for activated microglia and macrophages [108, 109, 111, 

137]. Surrounding this, a region consisting of hypertrophic astrocytes, fibroblasts, 

and meningeal cells has been observed [108-111, 133, 134, 136-139, 172]. 

Associated with the region of inflammation and reactive gliosis, studies also have 

described a decrease in the local nerve fiber and neuronal cell body densities 

surrounding implanted devices [105, 108-111, 133, 135, 137, 138]. We have 

shown that persistent inflammation and neuronal loss does not accompany stab 

wound injuries made with recording devices, indicating that these responses are 

associated with the continual presence of the implant and are not solely a result 

of iatrogenic injury accompanying device implantation [108].

More recent studies from our lab have built upon these observations and 

have shown that, as observed in many neurodegenerative disorders, the local 

blood brain barrier (BBB) is compromised and decreased myelination is observed 

in the tissue immediately surrounding the recording device [109, 111]. These 

findings suggest new possible mechanisms for the observed recording instability 

including an altered local ionic milieu leading to neuronal silencing, decreased 

neuronal conduction, and/or compromised synaptic stability. Furthermore, our 

findings using single shaft recording devices did not support several previous 

hypotheses for FBR associated recording failure mechanisms, including
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progressive increases in astrocyte encapsulation or progressive neuronal loss 

within the recording zone, indicating that, at least for certain recording device 

designs, neuroinflammatory sequelae are a more likely candidate for causing 

chronic recording inconsistency.

Notwithstanding our increased understanding of the brain’s response to 

microelectrodes and how it might influence recording consistency, it is still 

unclear if the electrode designers can sufficiently manipulate constitutive 

properties of the implant to modulate specific aspects of the FBR and achieve the 

goal of seamless integration into nervous tissue [133, 136, 139]. We hypothesize 

that the chronic tissue reaction to implanted electrodes is primarily modulated by 

the sustained delivery of bioactive factors that are released into the adjacent 

tissue by activated macrophages at the device/tissue interface. Additionally, if 

macrophage released factors shape the tissue reaction, then we believe that 

implant architectures that reduce the number of activated macrophages at the 

interface should reduce the magnitude of the foreign body response and improve 

biocompatibility. To begin testing this hypothesis, using quantitative 

immunohistochemical methods, we studied the brain tissue reaction to planar 

silicon microelectrode arrays with identical penetrating profiles but different 

amounts of exposed surface implanted chronically in the rat brain.

51



52

3.2 Methods

3.2.1 Microelectrodes

Silicon microelectrode arrays were supplied by the Center for Wireless 

Integrated Microsystems at the University of Michigan. Both styles of 

microelectrodes had identical penetrating profiles with shanks that were 300^m 

wide x 12^m thick and 3.45mm in length including a tapered tip (Figure 3-1). 

Surface area measurements were calculated from SolidWork (Dassault 

Systemes SolidWorks Corp., Concord, MA) models of the implanted portion of 

the two styles of microelectrode arrays. To facilitate handling, the 

microelectrodes were attached to a 0.25mm diameter stainless steel wire with a 

UV-curable, medical-grade adhesive (MD-1187-M, Dymax, Torrington, CT) at the 

bond pads. All electrodes were cleaned by immersion in 70% ethanol and rinsed 

several times in sterile DI water, followed by sterilization with ethylene oxide. 

Sterilized samples were allowed to outgas for at least 48hrs prior to implantation.

3.2.2 Animal surgery

All procedures involving animals were conducted in accordance 

with the University of Utah Institutional Animal Care and Use Committee (IACUC). 

Methods used were similar to those described previously [109, 111]. Briefly, male 

Sprague Dawley rats (225-250g, n=4 solid, n=5 lattice) were anesthetized via an 

intraperitoneal injection of ketamine (65mg/kg), xylazine (7.5mg/kg) and 

acepromazine (0.5mg/kg). Animals’ heads were shaved and disinfected with 

70% IPA and betadyne prior to being transferred to a stereotactic frame. A
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Figure 3-1: (A) Representative images of the 300pm-wide planar solid and 
300^m-wide planar lattice microelectrode arrays used in the study. Both 
styles of electrodes were 12^m thick. (B) Calculated surface area exposed 
to brain microenvironment when implanted to a depth of 3mm that includes 
all surface areas measurements including all edges of the lattice. (C & D) 2
D slices showing the predicted TNF-a distribution in cortical layer V 
surrounding (C) 300^m-wide solid and (D) lattice microelectrode arrays 
w ith identical penetrating profiles. Concentrations are set relative to the 
peak concentration surrounding the solid device.



midline incision, extending the length of the skull, was made along with a 3mm 

diameter burr hole at -3.2mm of bregma, and 2.0mm lateral to bregma under 

stereotactic control. A single microelectrode array was stereotactically implanted 

into each animal with the 300^m-wide faces oriented rostral-caudal, to a depth of 

3mm from the top of the cortex, penetrating CA1 of the hippocampus. Electrodes 

were then fixed to the skull with a custom-fabricated polyurethane grommet using 

a UV curable, medical-grade adhesive [110, 162].

3.2.3 Euthanasia and tissue processing

At eight weeks postimplantation, animals were terminally anesthetized via 

an IP injection of ketamine (70mg/kg) and xylazine (30mg/kg) then transcardially 

perfused with PBS at 50ml/min followed by 4% paraformaldehyde in PBS. 

Following perfusion fixation, solid electrodes were carefully retrieved from tissue 

using microdissection forceps while fine surgical scissors were used to cut 

through the lattice electrodes and release them from their polyurethane 

grommets, leaving the lattice electrode shanks embedded in brain tissue 

throughout all subsequent processing steps. Retrieved brains were postfixed with 

4% paraformaldehyde for 24hrs at 4°C. Brains were then equilibrated in 30% 

sucrose. Following equilibration, brains were serially sectioned in the horizontal 

plane at 30^m thickness with a cryostat (Leica Microsystems, Bannockburn, IL).

3.2.4 Immunohistochemistry

Serial sections were processed using indirect immunohistochemistry for 

CD68 (ED-1, 0.5mg/ml, AbD Serotec, Raleigh, NC) to assess activated

54



microglia/macrophages, rat IgG (2.0mg/ml, Southern Biotech, Birmingham, AL) 

for blood brain barrier dysfunction, GFAP (2.4mg/ml, DAKO, Carpinteria, CA) for 

astrocytes, and NeuN (2.0mg/ml, Millipore, Billerica, MA) for neuronal nuclei 

using previously published conditions [109, 111]. In brief, antibodies were diluted 

in a blocking solution consisting of 4% (v/v) goat serum (Invitrogen, Carlsbad CA), 

0.5% (v/v) Triton-X 100, and 0.1% (w/v) sodium azide. Free-floating tissue 

sections were batch treated for 1 hr in blocking solution at room temperature, 

followed by incubation with primary antibodies overnight at 4°C. After three rinses 

in PBS at room temperature to remove excess antibody (1hr/rinse), appropriate 

fluorescently labeled secondary antibodies were applied in block for 1 hr at room 

temperature, followed by three washes in PBS (1hr/rinse). All sections were also 

counterstained with DAPI (10mM ) to identify cell nuclei. Tissue sections were 

mounted on microscope slides with Fluormount-G (Southern Biotech), and cover- 

slipped.

3.2.5 Quantitative analysis

Fluorescent images of tissue sections from Layers III - VI of the cortex 

were captured with a Coolsnap digital camera and a Nikon Eclipse E600 

microscope, using identical exposure times and conditions which were optimized 

for each immunomarker. All fluorescent images were lightfield corrected and 

background subtracted using primary controls prior to quantification [108].

The staining intensity for each immunomarker was quantified, averaged, 

and compared using a custom LabView-based image analysis program (National 

Instruments, Austin TX) as described previously [109, 111, 162]. In brief,
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fluorescent intensity as a function of distance from the implant site is extracted 

using a horizontal array of line profiles spanning the implant site. At each point 

along the lines, an anti-alias pixel extraction algorithm was used to derive the 

pixel intensity of the line profile arrays per section. The intensity profiles for a 

given immunomarker from one section for each layer, III -  VI, was averaged to 

obtain an average intensity profile for a given animal. The average intensity 

profile for a given animal was then averaged with other animal profiles receiving 

the same type of implant to obtain an average intensity profile for each cohort 

(solid or lattice).

In order to quantify changes in neuronal cell body distribution in the 

presumptive recording zone and in the tissue surrounding the device, the density 

of neuronal nuclei was calculated by counting the number of NeuN/Dapi+ cells in 

discrete bins every 50^m from the device interface out to 500^m in what 

appeared to be normal, undisturbed tissue. The number of neuronal nuclei per 

bin was then divided by the bin area to determine the average neuronal nuclear 

density as an estimate of the number of neuronal cell bodies surrounding the 

device.

3.2.6 Statistical analysis

The area under the curve of each average intensity profile for each 

immunomarker as well as the average neuronal nuclear density at 50^m intervals 

from the device interface was compared across cohorts (n=4 for solids and 5 for 

lattices) using one-way ANOVA and Tukey post-hoc tests (SPSS, IBM, Somers 

NY), with significance considered at p < 0.05. All data are Mean ± Std Dev.
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3.3 Results

Consistent with previous reports, explanted 300^m solid microelectrodes had 

minimal cell attachment (data not shown). These cells were primarily CD68+ with 

small numbers of GFAP+ cells present. We did not observe any NeuN+ cells 

attached to explanted microelectrodes. We did, however, observe DAPI+ nuclei 

that were not associated with either CD68+ or GFAP+ immunoreactivity, 

indicating the presence of further cell types. We observed no disruption of the 

tissue interface surrounding sectioned silicon lattice microelectrodes that 

remained embedded in tissue. Previously, we observed significant amounts of 

tissue that was immunohistochemically positive for CD68, GFAP, NF200 and 

MAP-2 associated with other explanted lattice electrode designs.

CD68, a lysosomal enzyme found in activated mononuclear phagocytes, 

was used to identify microglia/macrophage activation near the implant site of 

300^m solid and lattice microelectrode arrays. We observed CD68+ 

immunoreactivity surrounding both styles of microelectrodes (Figure 3-2A and C). 

Despite having a larger penetrating profile than previously studied planar solid 

microelectrode arrays, the distribution of CD68+ tissue surrounding 300^m solid 

arrays was similar to that described previously [108, 109]. Punctate CD68+ 

immunoreactivity was primarily localized adjacent to, and within, the electrode 

track. Immunoreactivity was greatest along the 300^m face of the planar 

electrode, as opposed to the 12^m edges (Figure 3-2A). For lattice electrodes, 

we observed punctate CD68+ immunoreactivity primarily at the interface of the 

15^m x 12^m silicon ribs and to a lesser extent, spanning the distance between
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Figure 3-2: Chronic macrophage/microglial response and estimate of blood 
brain barrier dysfunction adjacent to implanted solid and lattice silicon 
microelectrode arrays. (A & C) Representative horizontal sections showing 
CD68 immunoreactivity to (A) 300pm planar solid and (C) 300pm planar 
lattice arrays. (B and D) Representative horizontal sections through the 
implantation tract of a 300pm planar, solid shank array (B) and a 300pm 
planar lattice array (D) showing the distribution of IgG. (e and F) The 
results of a quantitative image analysis showing that lattice silicon 
microelectrode arrays with reduced surface area had a significantly 
reduced macrophage activation and blood brain barrier leakiness to IgG 
within the presumptive recording zone or first 100pm from the center of the 
electrode. (*) denotes significant difference with p<0.05. Data shown as 
mean +/- StdDev. Scale bar = 100pm.



ribs (Figure 3-2C). When the relative intensity profiles for CD68 were compared, 

we observed a significant reduction in immunoreactivity surrounding the 300^m 

lattice arrays within the first 0-50 and 50-100^m (Figure 3-2E) compared to solid 

controls.

To assess blood brain barrier dysfunction associated with microelectrode 

implantation, sections were reacted with antisera against rat IgG. In an uninjured 

rat cortex, IgG is restricted to the vasculature and removed upon perfusing the 

animal [152, 153]. However, in cases of blood brain barrier dysfunction, IgG 

leaks through the vasculature and remains in tissue after perfusion [151]. Figure

3-2B and D show representative images of the IgG immunoreactivity surrounding 

solid and lattice electrodes, respectively. Lattice micorelectrode arrays showed 

significantly reduced blood brain barrier dysfunction within the first 100^m from 

the center of the electrode compared to solid controls (Figure 3-2F).

The astrocyte specific intermediate filament marker GFAP was used to 

identify astrocytic hypertrophy surrounding implanted devices. Figure 3-3 shows 

representative images and quantitative analysis of GFAP immunoreactivity near 

solid and lattice microelectrode arrays. Similar to previous findings, both designs 

showed diffuse astrocytic hypertrophy near the device [109, 110]. We observed a 

significant amount of GFAP+ tissue ingrowth through the lattice architecture. 

Except for this ingrowth, no significant differences were observed in the GFAP 

immunoreactivity between the two designs.
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Figure 3-3: Chronic astrocyte response to implanted silicon microelectrode 
arrays. (A & B) Representative horizontal sections showing GFAP 
immunoreactivity adjacent to (A) 300^m planar solid and (B) 300^m planar 
lattice arrays. (C) The results of a quantitative image analysis showing that 
both designs exhibited astroytic hypertrophy surrounding the device, 
which differed in the significant amount of tissue ingrowth through the 
lattice architecture. Data shown as mean +/- StdDev. Scale bar = 100^m.

Antibodies against NeuN were used to examine the density of neuronal cell 

bodies near implanted devices. Representative images for NeuN 

immunoreactivity surrounding solid and lattice arrays are shown in Figure 3-4A 

and B. The density of neuronal nuclei surrounding both styles of devices was 

quantified in discrete bins every 50^m from the implant site through manual 

counting and is shown in Figure 3-4C. As observed previously, there was a 

significant reduction in neuronal cell body density compared to the density in 

uninjured tissue of approximately 60% and 10% surrounding 300^m solid arrays 

within the first 50 and 100^m respectively. In contrast, there was significantly less 

reduction, roughly 10%, surrounding lattice arrays within the first 50^m and no 

observable reduction between 50-100^m compared to uninjured tissue [108-111].
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Figure 3-4: Representative horizontal images of NeuN+ nuclei around (A) 
solid and (B) lattice microelectrodes. (C) Neuronal density is plotted as a 
function of 50-^m bins from 0 to 250 ^m from the microelectrode interface. 
Values were normalized to the average density of NeuN+ neurons observed 
in normal tissue 400-500^m from the electrode interface, and are therefore 
expressed as fraction of control. (*) Denotes significant difference 
compared to normal neuronal density and (**) denotes differences between 
solid and lattice cohorts. Both comparisons are p<0.05. Data shown as 
mean +/- StdDev. Scale bar = 100^m.

3.4 Discussion

In this study we demonstrate that altering the exposed surface area of an 

implanted microelectrode array while maintaining a similar penetrating profile is 

sufficient to significantly change the classic hallmarks of the chronic FBR 

including reducing the degree of inflammation, blood brain barrier leakiness and 

the amount of neuronal cell body loss. Our findings are supported by several 

recent studies looking at either planar or cylindrical devices [136, 140, 158]. 

Seymour and Kipke found significant differences in the neuronal and non

neuronal cell response between a parylene-based electrode’s larger shank and 

an adjoining thin lateral platform connected to the main shaft while both Stice et 

al. and Thelin et al. found significant differences in classic hallmarks of the 

foreign body response between microwires of different diameters. Our results 

agree with these observations, and disagree with Szarowski et al. who studied 

the FBR to a variety of devices with different cross sectional areas, geometries,



and roughnesses and concluded that the tissue response was independent of 

electrode properties [139]. In contrast to the study by Seymor and Kipke, here we 

used quantitative methods to investigate specific cellular and molecular features 

of the FBR rather than quantifying all non-neuronal cells as a single category, 

which allows us to determine which aspects of the brain FBR are affected by 

changes in implant architecture. Furthermore by studying the response to two 

planar devices with identical penetrating profiles we have also negated the 

influence of implant curvature and the extent of iatrogenic injury that is 

unavoidable when comparing cylindrical microwire devices of different diameters.

As described earlier, a key feature of the FBR to conventional 

microelectrode array designs is persistent inflammation at the biotic-abiotic 

interface signaled by biomarkers for activated microglia and macrophages [108

111, 137]. This observation is also supported by studies showing persistent 

inflammation surrounding other devices implanted into the central and peripheral 

nervous systems including Deep Brain Stimulating electrodes [72-80], numerous 

designs of hydrocephalic shunts [87-90] and peripheral nerve electrodes [182]. In 

this study we observed a similar pattern of inflammation eight weeks after 

implantation, a time point when recording inconsistency has been reported. The 

observation is signaled by similar CD68+ immunoreactivity, surrounding 300^m- 

wide, planar, solid silicon microelectrode arrays to that described around smaller, 

100^m-wide, planar, solid silicon microelectrode arrays [108-111].

The planar, silicon, lattice microelectrode arrays used here had identical 

penetrating profiles but exhibited significantly less inflammation-related
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biomarker distribution in the tissue surrounding the implanted arrays compared to 

solid shank designs. This finding is supported by in vivo work from Sanders et al. 

showing that single small-diameter polymer fibers elicit minimal macrophage 

encapsulation [183]. Additionally, Seymor and Kipke’s work showed qualitative 

differences between macrophage morphology and the amount of CD11b 

immunoreactivity surrounding different surface geometries contained within the 

same implant [136]. Sanders et al. suggested that the minimal encapsulation 

observed in their model may have been caused by a threshold surface area 

effect, or a critical surface curvature where below a certain threshold of cell— 

material contact or above a critical curvature, there is insufficient 

mechanotransduction to induce macrophage activation. Seymor and Kipke also 

proposed that a critical surface area concept may play a role in their results but 

favored the theory of mechanical property differences between the adjoining 

lattice and the primary solid shank as the explanation. We favor a critical surface 

area concept model. However, we do not believe that differences in mechanics 

between solid and lattice designs play as large of a role as attributed previously 

due to the similarity in findings between the soft, flexible parylene/SU-8 based 

structures used by Seymor and Kipke and our silicon based arrays that are 

orders of magnitude stiffer.

Our findings support the theory that the FBR is driven by macrophage- 

secreted factors. Moreover, differences between the FBR to our solid and lattice 

devices can be explained by our model described in Chapter 2 (Figure 2-8 and 

Figure 3-1), that takes into account the quantity of soluble factors released by
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inflammatory cells interacting with the device surface along with soluble factor 

diffusive distribution and clearance at the biotic/abiotic interface. Available 

evidence indicates that these macrophage-secreted soluble factors are 

responsible for neuronal loss and blood brain barrier dysfunction caused by a 

mixture of released pro-inflammatory and cytoxic cytokines such as IL-1B, IL-6, 

and TNF-a. While the cytophysiological sensitivity of adjacent neurons and glial 

cell types to these and other macrophage-secreted factors has begun to be 

established, the finer features of the picture are still emerging.

Another specific feature of the brain FBR that we examined in this work 

was blood brain barrier integrity. Recent studies from our lab have described 

disruption of blood brain barrier integrity, indicated by the presence of autologous 

IgG in the brain parenchyma, surrounding both microwire and planar silicon 

recording devices [109, 111]. Under normal conditions autologous IgG is 

excluded from the brain parenchyma but has been observed following BBB 

disruption [151-153]. This disruption of the BBB alters the local ionic milieu and 

may influence chronic recording consistency through neuronal silencing or 

alterations in conduction velocity. Similar to previous studies from our group, we 

observed significant BBB disruption, indicated by the presence of autologous IgG 

in the brain parenchyma, surrounding solid arrays with significantly less 

disruption, surrounding planar lattice microelectrodes with reduced surface area.

In accordance with our previous findings, the observed immunoreactivity 

for autologous IgG surrounding both styles of implanted arrays roughly 

colocalized with CD68 immunoreactivity [109, 111]. This observation and that of
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decreased BBB disruption surrounding the lattice implants that also exhibited 

reduced macrophage activation, further support our idea that macrophage- 

released factors and macrophage trafficking to and from the implant though 

adjacent post-capillary venules [184, 185] may underlie changes in BBB integrity, 

as well as explain some observations labeled as recording inconsistency.

Consistent with previous studies of neuronal viability surrounding 

recording devices, we observed a reduction in neuronal nuclei within the 

recoding zone surrounding solid arrays [105, 109-111, 133, 135, 137, 138, 186]. 

We found a more normal distribution of neuronal nuclei surrounding the lattice 

microelectrode arrays compared to solid devices of the same size and shape. 

This observation of reduced neuronal loss surrounding implants with reduced 

macrophage activation also supports our group’s hypothesis that implant design 

can be used to reduce the amount of macrophage activation at the biotic-abiotic 

interface and reduce the impact of their released factors, which should improve 

recording consistency and the lifetime of implanted microelectrode arrays.

Of interest was our observation that, except for astrocytic integration 

through the lattice structure, we found no significant difference between the 

relative GFAP intensity between the two designs studied. The relative intensity 

and spatial distribution of GFAP immunoreactivity was similar to that seen with 

other types of devices implanted in the CNS [134]. Astrocyte hypertrophy 

surrounding implanted microelectrodes has been put forward as a major 

contributor to chronic recording inconsistencies and failure [100]. Previous work 

from our lab using single microwires and single shaft, planar silicon
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microelectrode arrays indicated that the spatial distribution of GFAP does not 

increase with time over the indwelling period and did not support the "increase in 

astrogliosis over time hypothesis” as a dominant or general biologically-related 

failure mechanism for this type of microelectrode recording device [109, 111]. It is 

not clear if this observation will hold for multishaft penetrating arrays with more 

complicated geometries.

With regards to the observed integration of astrocytes through the device, 

Seymor and Kipke have suggested that this response may better anchor lattice 

architectures in place [136]. However, it should also be noted that complications 

might arise from the significant amount of tissue integrated through the lattice 

structure if the device ever needs to be explanted due to infection or other 

adverse clinical events, especially with larger multishank devices. Therefore, 

further efforts may be needed to find alternative methods other than open lattice 

architectures to reduce device-associated inflammation while preventing 

significant tissue ingrowth and the complication associated with implant retrieval 

should that be necessary.

3.5 Conclusion

In this study we show that it is possible for electrode developers to modulate 

specific aspects of the brain tissue FBR by intentionally manipulating the shape 

of the implant. The results of our work also support our theory that the FBR to 

implanted electrode arrays, and likely other devices, can be explained by the 

persistence of activated macrophages at the biotic-abiotic interface, which act as 

a sustained delivery source of bioactive agents that diffuse into the adjacent
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tissue and shape other features of the FBR including recruitment of 

macrophages, BBB dysfunction, local areas of demyelination, and a sustained 

reduction in the local number of neuronal cell bodies. Furthermore, our findings 

suggest that one method to improve recording consistency and lifetime of 

implanted microelectrode arrays is to design implants that reduce the amount of 

macrophage activation at the biotic-abiotic interface and/or improve the 

clearance or impact of their released factors. These results assist in further 

validating the usefulness of predictive models, described in Chapter 2, to drive 

future device designs that integrate into the body and avoid the FBR.
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CHAPTER 4

PERMEABLE CYTOKINE SINKS: A NEW APPROACH 

TO PASSIVELY REDUCE INFLAMMATION 

SURROUDING BIOMEDICAL DEVICES 

IMPLANTED IN THE CNS

4.1 Introduction

All chronic indwelling, biomedical devices implanted in the CNS would benefit 

from approaches that reduce chronic neuroinflammation at the brain tissue- 

device interface including hydrocephalic shunts, drug delivery systems, nerve 

regeneration substrates, deep brain stimulating (DBS) electrodes and chronic 

recording devices. Not only does persistent inflammation affect the function and 

viability of nearby tissue, but recent evidence suggests that it may impact 

cognitive function by reducing neurogenesis at more distant sites in the brain [81

85, 91-93]. Available evidence indicates that macrophage-secreted factors at the 

biotic-abiotic interface are likely responsible for the negative inflammatory 

sequelae.

Based on this assumption, implant designs that reduce the concentration and 

impact of inflammatory soluble factors should reduce gliosis, blood brain barrier 

(BBB) dysfunction, loss of neural cells and their more distant impact on



neurogenesis. To explore this hypothesis, we studied the chronic brain tissue 

response to planar, solid silicon microelectrode arrays with thick hydrogel 

coatings (cytokine permeability sinks) designed to passively absorb pro- 

inflammatory factors (released by reactive immune cells) into the device and 

away from adjacent brain tissue. Based on the fact that such molecules have a 

short biological half-life [173, 174], even absorbing these molecules into the 

permeable coatings for a short period of time will reduce their impact on the 

surrounding tissue. Using quantitative immunohistochemical approaches the 

FBR to these devices was compared to that surrounding uncoated cohorts as 

well as arrays with a thin nanoscale hydrogel coating, serving as a surface 

chemistry and functional sink control.

4.2 Methods

4.2.1 Microelectrodes:

Solid 300^m wide silicon microelectrode arrays, identical to those used in 

Chapter 3, were supplied by the Center for Wireless Integrated Microsystems at 

the University of Michigan. To facilitate handling, we attached the 

microelectrodes to a 0.25mm diameter stainless steel wire with a UV-curable, 

medical-grade adhesive (MD-1187-M, Dymax, Torrington, CT). We cleaned all 

electrodes by immersion in 70% ethanol followed by several rinses in sterile DI 

water. Following cleaning, we sterilized the devices with ethylene oxide. 

Sterilized samples were allowed to outgas for at least 48hrs prior to 

functionalization or implantation. An example electrode is shown in Figure 4-1.
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Figure 4-1: (A) Representative image of the 300^m-wide, 12^m-thick, planar 
microelectrode used in th is study. (B) Overview of our procedure for 
coating the device w ith a nanoscale and a 400^m-thick alginate coating. To 
improve integrity of the nanoscale coating we covalently coupled the 
polysaccharide to the electrode surface using silane chemistry. The 
divalent cation Ca2+ was used to induce gelation in the negatively charged 
alginate. Approximately 20 cycles through our coating scheme was 
necessary to achieve the desired gel thickness of 400^m.



4.2.2 Alginate hydrogel coating

To couple our alginate-hydrogel to the surface of the electrodes we first 

functionalized the surface with an epoxy-silane (3glycidoxypropyl-trimethoxy- 

silane) via a sterile chemical vapor deposition at 120°C in a N2 atmosphere for 

18hrs [187, 188]. After functionalization we repetitively dipped the electrodes in a 

sterile 1.5% (w/v) sodium alginate/DI H2O solution followed by immersion in a 

sterile 2% (w/v) CaCl2/DI H2O solution until the desired coating thickness was 

achieved. This calcium concentration was used to match the concentration within 

cerebral spinal fluid (CSF), better ensuring that the coating would not degrade or 

change volume due to calcium flux following implantation. The coating scheme is 

diagramed in Figure 4-1. We confirmed the presence and thickness of the 

nanoscale alginate coatings using X-ray photoelectron spectroscopy (XPS) and 

ellipsometry, respectively. For the thicker alginate coating the gel thickness 

(«400^m diameter through the 300^m wide face) was measured via light 

microscopy. This thickness was determined based on findings from our predictive 

models described in Chapter 2. Figure 4-2 reviews our modeling predictions for 

these devices as well as comparing the overall presented surface area and the 

number of activated macrophages expected at the device interface.

4.2.3 Animal surgery

We implanted three cohorts including an uncoated 300^m-wide solid, a solid with 

a nanoscale alginate coating (surface chemistry control), and a solid with a 

400^m-thick alginate coating. N=8 animals per group with each animal receiving 

only a single implant.
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Figure 4-2: (A & B) Relative TNF-a distribution surrounding (A) an uncoated 
300^m solid array (a near identical distribution was observed around solid 
array w ith a nanoscale alginate coating) and (B) a 400^m thick alginate 
coated solid. (C) To verify changes in the surface chemistry we used XPS. 
Following functionalization w ith alginate we measured an increase in the 
relative amount of carbon and a decrease in the amount of silicon on the 
device surface. We also observed new peaks corresponding to sodium and 
nitrogen in our alginate coatings. (D) To measure the nanoscale alginate 
coating’s thickness we used ellipsometry. (E) Comparison of the presented 
surface area and the expected activated macrophage coverage for the 
various electrode cohorts studied.



4.2.4 Euthanasia and tissue preparation

Methods used were similar to those described in Chapter 3 with minor 

differences. At 16 weeks postimplantation, we terminally anesthetized our 

animals via 5% isoflurane administration then transcardially-perfused the animals 

with PBS at 50ml/min followed by fixation with 4% paraformaldehyde in PBS. 

Following perfusion fixation all electrodes were cut free from their polyurethane 

grommets, leaving the electrode shanks embedded in brain tissue throughout all 

subsequent processing steps. Retrieved brains were postfixed with 4% 

paraformaldehyde for 24hrs at 4°C. Brains were then equilibrated in 30% sucrose. 

Following equilibration, brains were serially sectioned in the horizontal plane at 

30^m thickness with a cryostat (Leica Microsystems, Bannockburn, IL).

4.2.5 Immunohistochemistry

Serial sections were processed using indirect immunohistochemistry for 

CD68 (ED-1, 0.5mg/ml, AbD Serotec, Raleigh, NC) to assess activated 

microglia/macrophages, IBA-1 (0.5mg/ml, Wako, Richmond, VA) for all 

macrophages/microglia regardless of activation state, rat IgG (2.0mg/ml, 

Southern Biotech, Birmingham, AL) for blood brain barrier dysfunction, GFAP 

(2.4mg/ml, DAKO, Carpinteria, CA) for astrocytes, and NeuN (2.0mg/ml, Millipore, 

Billerica, MA) for neuronal nuclei using previously published conditions [189]. In 

brief, antibodies were diluted in a blocking solution consisting of 4% (v/v) goat 

serum (Invitrogen, Carlsbad CA), 0.5% (v/v) Triton-X 100, and 0.1% (w/v) sodium 

azide. Free-floating tissue sections were batch treated overnight in blocking 

solution at room temperature, followed by overnight incubation with primary
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antibodies also at room temperature. After three rinses in 1xPBS at room 

temperature to remove excess antibody (1hr/rinse), appropriate fluorescently 

labeled secondary antibodies were applied in block for 24hrs at room 

temperature, followed by three washes in PBS (1hr/rinse). All sections were also 

counterstained with DAPI (10mM) to identify cell nuclei. Tissue sections were 

mounted on microscope slides with Fluormount-G (Southern Biotech), and cover- 

slipped. Similar methods were used as described in Chapter 3 for fluorescence 

quantification and analysis [108-111, 189].

4.3 Results

We covalently coupled nanoscale alginate coatings to the electrode 

surface using silane chemistry [187, 188]. The presence of the coating was 

confirmed using XPS. Figure 4-2 shows representative XPS spectra for devices 

receiving only the silane treatment as well as both the silane and nanoscale 

alginate coating. Following functionalization with alginate we measured an 

increase in the relative amount of carbon and a decrease in the amount of silicon 

on the device surface. We also observed new peaks corresponding to sodium in 

our alginate coatings. These peaks were expected as the alginate we used in our 

coatings comes as a sodium salt.

To measure the nanoscale alginate coating’s thickness we used ellipsometry. 

Figure 4-3 shows changes in coating thickness through the various stages of our 

coating scheme. Our measured thickness changes correspond well with similarly 

coupled dextran coatings [187, 188]. To create an alginate coating that was 

400^m in diameter took approximately 20 cycles through our coating scheme of
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Figure 4-3: (A-C) Representative 16-week horizontal sections showing immunoreactivity for CD68 (activated 
macrophages) and IBA-1 (all macrophages regardless of activation state) surrounding (A) uncoated, (B) 
nanoscale coated and (C) 400^m thick alginate-coated solid arrays. Scale bar = 100^m.
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1.5% sodium alginate followed by 2% CaCl2 . The final coating thickness was 

verified using light microscopy. The thickness of our 400^m diameter coating did 

not significantly change after a three month incubation at 37°C in DMEM F12

with 2% CaCl2 indicating the robustness of our coating in an environment with

2 +similar Ca2 concentration as the rat brain (data not shown).

In contrast to the majority of studies in the field, we left all electrodes in place 

following perfusion and through all subsequent processing steps including 

cryosectioning and immunostaining. We observed little to no disruption of the 

device/tissue interface in our sections indicating that our findings may provide a 

more accurate depiction of the interface than previous studies from our lab and 

others in which devices were removed prior to processing [108-111, 139].

CD68, a lysosomal enzyme found in activated mononuclear phagocytes, 

was used to identify microglia/macrophage activation near the implant site of our 

uncoated and coated 300^m solid arrays. We observed CD68+ immunoreactivity 

surrounding all cohorts (Figure 4-3). Despite having a larger penetrating profile 

than previously studied planar solid microelectrode arrays, the distribution of 

CD68+ tissue surrounding 300^m solid arrays was similar to that described 

previously for 100^m wide planar Ml-arrays [108, 109]. Moreover, the distribution 

appeared similar to that surrounding identical devices implanted for eight weeks 

[189]. Punctate CD68+ immunoreactivity primarily localized and was greatest 

along the 300^m face of the planar electrode, as opposed to the 12^m edges. 

We observed similar immunoreactivity surrounding electrodes that received a 

nanoscale coating of alginate. In contrast, when the gel thickness was increased
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to 400pm we observed a significant decrease in CD68+ immunoreactivity within 

the first 0-50 and 50-100pm (Figure 4-4) compared to both uncoated solids and 

the nanoscale coated controls.

To further assess the macrophage response surrounding these cohorts of 

devices we used IBA-1, a pan-macrophage marker found in the membrane of 

these cells (Figure 4-3). We observed an increase in IBA-1+ immunoreactivity 

surrounding both the uncoated solids and the nanoscale controls compared to 

normal tissue approximately 350-400pm away from the device interface. These 

findings could indicate macrophage/microglial trafficking to and from the implant 

interface. Conversely, with devices that received a thick coating of alginate we 

observed a significant reduction in IBA+ immunoreactivity compared to control 

tissue that was 500pm away from the interface of the thick alginate gels (Figure 

4-5).

To examine blood brain barrier dysfunction associated with microelectrode 

implantation, sections were reacted with antisera against rat IgG. In an uninjured 

rat cortex, IgG is restricted to the vasculature and removed upon perfusing the 

animal [152, 153]. Alternatively, in cases of blood brain barrier dysfunction, IgG 

leaks through the vasculature and remains in tissue after perfusion [151]. Figure

4-6 shows representative images of the IgG immunoreactivity surrounding our 

three cohorts of implanted devices. We observed a significant reduction in blood 

brain barrier dysfunction within the first 100pm from device interface of our 

400pm thick alginate coated devices compared to uncoated and nanoscale 

coated controls (Figure 4-7).
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Figure 4-4: The results of quantitative image analysis showing that 400(jm alginate coated device had 
significantly reduced CD68+ immunoreactivity w ithin the presumptive recording zone (i.e. firs t 100^m from 
the center of the electrode). (*) denotes significant difference w ith p<0.05. Data shown as mean +/- StdDev.
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Figure 4-5: The results of quantitative image analysis showing that 400(jm alginate coated device had 
significantly reduced IBA-1+ immunoreactivity w ithin the presumptive recording zone (i.e. firs t 100^m from the 
center of the electrode). (*) denotes significant difference with p<0.05. Data shown as mean +/- StdDev.
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Figure 4-6: (A-C) Representative 16-week horizontal sections showing immunoreactivity for IgG (blood brain 
barrier dysfunction) surrounding (A) uncoated, (B) nanoscale coated and (C) 400^m thick alginate-coated solid 
arrays. Scale bar = 100^m.
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Figure 4-7: The results of a quantitative image analysis showing that 400^m alginate-coated device had 
significantly reduced blood brain barrier dysfunction, as assessed by positive immunoreactivity for extravasated 
rat IgG, w ithin the presumptive recording zone (i.e. firs t 100^m from the center of the electrode). (*) denotes 
significant difference with p<0.05. Data shown as mean +/- StdDev.
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The astrocyte specific intermediate filament marker GFAP was used to 

identify astrocytic hypertrophy surrounding implanted devices. Figure 4-8 shows 

representative images and quantitative analysis of GFAP immunoreactivity 

surrounding our three device cohorts. Similar to previous findings for identical 

uncoated devices after eight-weeks implantation, both uncoated and nanoscale 

coated devices showed diffuse astrocytic hypertrophy near the device [109, 110]. 

In contrast, there was a significant reduction in astrocyte hypertrophy 

surrounding devices that received a 400^m thick alginate coating (Figure 4-9).

Antibodies against NeuN were used to identify neuronal nuclei and to 

examine the density of neuronal cell bodies near implanted devices. 

Representative images for NeuN immunoreactivity surrounding uncoated solids 

as well as devices receiving a nanoscale or thick alginate coating are shown in 

Figure 4-10. The density of neuronal nuclei surrounding both styles of devices 

was quantified in discrete bins every 50^m from the implant site through manual 

counting. As observed previously, there was a significant reduction in neuronal 

cell body density compared to that in uninjured tissue of approximately 60% and 

10% surrounding 300^m solid arrays within the first 50 and 100^m, respectively. 

A similar level of loss was observed surrounding devices receiving a nanoscale 

alginate coating. In contrast, there was significantly less reduction, roughly 10%, 

surrounding devices that received our 400^m thick alginate coating within the 

first 50^m from the gel interface and no observable reduction between 50-100^m 

compared to uninjured tissue (Figure 4-11) [110].
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Figure 4-8: (A-C) Representative 16-week horizontal sections showing immunoreactivity for GFAP surrounding (A) 
uncoated, (B) nanoscale coated and (C) 400^m thick alginate-coated solid arrays. Scale bar = 100^m.
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Figure 4-9: The results of a quantitative image analysis showing that 400^m alginate-coated device had 
significantly reduced GFAP+ immunoreactivity w ith in the presumptive recording zone (i.e. firs t 100^m from 
the center of the electrode). (*) denotes significant difference w ith p<0.05. Data shown as mean +/- StdDev.
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Figure 4-11: Neuronal density as a function of distance from the biotic/abiotic interface in 50-(jm bins from 0 to 
400^m from the microelectrode interface. Values were normalized to the average density of NeuN+ neurons 
observed in normal tissue 350-400^m from the electrode interface, and are therefore expressed as percentage of 
control. (*) Denotes significant difference compared to normal neuronal density and (***) denotes differences 
between the 400^m alginate-coated devices and the two other cohorts (uncoated and nanoscale coated devices). 
Both comparisons are p<0.05. Data shown as mean +/- StdDev.
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4.4 Discussion

In this study we demonstrate that incorporating a permeable cytokine sink 

coating surrounding an implanted microelectrode array is sufficient to significantly 

change classic hallmarks of the chronic FBR including reducing the degree of 

inflammation, decreasing blood brain barrier dysfunction, limiting myelin 

degradation, decreasing astrocyte hypertrophy, and reducing the degree of 

neuronal loss. Our findings are supported by results from a number of studies 

that investigated a variety of semipermeable cell encapsulation devices and 

small metabolite sensors implanted in various tissues. For example, in our lab we 

have found a reduced FBR surrounding semipermeable hollow fiber membranes 

(HFMs), a type of cell encapsulation technology that is composed of a porous 

polymer wall structure surrounding a hollow lumen (see Figure 2-8) [177]. 

Additionally, work by La Flame et al. showed a similar reduction in the FBR, as 

well as complement activation, to stiff silicon and metal membranes with a similar 

nanoporous structure to our HFM systems used in novel implantable glucose 

sensor designs and cell encapsulation constructs [190, 191]. While all of these 

studies using semipermeable materials describe a reduction in inflammation and 

the FBR, our current study is the first to describe a common driving mechanism 

for how this could be occurring based on their role as cytokine sinks that 

passively reduce the distribution of macrophage-released factors in the 

surrounding tissue.

As stated previously in this work, a number of theories have been put forward 

to describe the driving mechanisms that perpetuate the FBR. One of the major
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theories that is gaining traction in the field is that perpetuation is due to a 

mismatch in mechanical properties between the stiff implanted material and the 

softer brain tissue, leading to repetitive, micromotion-induced damage at the 

biotic/abiotic interface [133, 159]. While better mechanical matching between our 

soft hydrogel and the surrounding brain tissue may contribute to reductions in the 

FBR surrounding our 400^m thick alginate coatings, the similarities of findings of 

the FBR to stiff semipermeable silicon devices suggests that mechanical 

matching is not the only factor involved. Additionally, these similarities in the FBR 

to devices of varying stiffness could suggest that micromotion may not play as 

large a role in perpetuating the FBR as previously hypothesized. Or, alternatively, 

these findings could indicate that while micromotion induced damage 

perpetuates the FBR that these semipermeable materials sufficiently reduce the 

impact of macrophage-released factors on the surrounding tissue to a degree 

that resulting hallmarks of the FBR are marginalized.

As described earlier, a key feature of the FBR to conventional microelectrode 

array designs is persistent inflammation at the biotic-abiotic interface signaled by 

biomarkers for activated microglia and macrophages [105, 108-111, 189]. This 

observation is supported by studies showing persistent inflammation surrounding 

other devices implanted into the central nervous system including deep brain 

stimulating electrodes and hydrocephalic shunts [36, 72-80, 87-89]. We have 

previously described that the distribution of CD68+ immunoreactivity does not 

change from four to 12 weeks postimplantation [109, 111]. The similarity between 

our 16-week results and the distribution of CD68+ immunoreactivity surrounding
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identical devices at eight-weeks postimplantation [189] further supports the 

theory that chronic inflammation persists through the entire indwelling duration of 

implant.

Despite having a large penetrating profile, we observed a reduction in the 

CD68+ and IBA+ immunoreactivity surrounding our devices that received a thick 

coating of alginate. As we described in Chapters 2 and 3, we believe that 

presented surface area can play a large role in the severity of the FBR. The fact 

that our devices with a thick alginate coating, which effectively doubled their 

presented surface area, showed a decreased FBR further indicates the power of 

permeable cytokine sinks or other methods of antagonizing macrophage- 

released factors to modulate the FBR.

Another specific feature of the brain FBR we examined in this work was blood 

brain barrier integrity. Recent studies from our lab have described disruption of 

blood brain barrier integrity, indicated by the presence of autologous IgG in the 

brain parenchyma, surrounding both microwire and planar silicon recording 

devices [109, 111, 189]. Under normal conditions autologous IgG is excluded 

from the brain parenchyma but has been observed following BBB disruption [152, 

153]. This disruption of the BBB alters the local ionic milieu and may influence 

chronic recording consistency through neuronal silencing. Similar to previous 

studies from our group we observed significant BBB disruption, indicated by the 

presence of autologous IgG in the brain parenchyma, surrounding both uncoated 

solid arrays and those that received a nanoscale coating with significantly less 

disruption surrounding planar microelectrodes with reduced surface area [189].
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In accordance with our previous findings, the observed immunoreactivity 

for autologous IgG surrounding both styles of implanted arrays roughly 

colocalized with CD68 immunoreactivity [109, 111]. This observation and that of 

decreased BBB disruption surrounding the lattice implants that also exhibited 

reduced macrophage activation, further support our idea that macrophage- 

released factors and macrophage trafficking to and from the implant though 

adjacent postcapillary venules [184, 185] may underlie changes in BBB integrity, 

as well as explain some observations labeled as recording inconsistency.

In addition to other hallmarks that indicate a reduction in the FBR to our thick 

alginate coated devices, we also found a significant reduction in the relative 

GFAP intensity surrounding these devices compared to our other two cohorts. 

The relative intensity and spatial distribution of GFAP immunoreactivity was 

similar to that seen with other types of devices implanted in the CNS [105, 108, 

110, 133-135, 137-139]. Astrocyte hypertrophy surrounding implanted 

microelectrodes has been put forward as a major contributor to chronic recording 

inconsistencies and failure [100] though recent work from our lab has shown 

evidence that this earlier hypothesis may not play as large a role as previously 

thought [109, 111].

Consistent with previous studies of neuronal viability surrounding recording 

devices, we observed a reduction in neuronal nuclei within the recoding zone 

surrounding solid arrays [105, 108-111, 133, 135, 137, 138]. We found a more 

normal distribution of neuronal nuclei surrounding the microelectrode arrays that 

received a 400^m thick alginate coating compared to solid devices with or
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without a nanoscale alginate coating. This correlation between improved 

neuronal density surrounding implants with a reduced inflammatory response 

supports our group’s hypothesis that implant design can be used to reduce the 

amount of macrophage activation at the biotic-abiotic interface and reduce the 

impact of their released factors, which should improve recording consistency and 

the lifetime of implanted microelectrode arrays.

While we have shown the usefulness of thick hydrogel coatings to reduce the 

FBR to microelectrodes, there are still questions concerning the impact that 

these types of coatings would have on the ability of the device to record from 

nearby neurons. Recent work by Rao et al. suggests that these permeable 

hydrogel coatings may not significantly impact device function, as ion transport is 

significantly higher through these materials compared to the highly tortuous 

tissue surrounding the device [192]. This increased ion transport in the gel would 

extend the effective recording range further than the well accepted 50-140^m 

maximum recording range for electrodes in direct contact with tissue. If recording 

ability is impacted there are also a number of strategies that could be 

implemented to utilize permeable cytokine sinks in recording applications 

including designing devices with recordings sites placed in proximity to the 

permeable gel surface using silicon spines (Figure 4-12) or creating permeable 

membrane electrode arrays that have a similar structure to a HFM with recording 

sites and leads placed in desired locations along a permeable wall structure 

surrounding a sufficiently large hollow lumen.
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Figure 4-12: (A) Example SolidWork® designs of a novel electrode 
incorporating a cytokine sink coating while also placing recording sites 
near neuronal targets using silicon spines that extend toward the gel 
surface. (B) Predicted distribution of TNF-a surrounding the virtual device. 
Even though the electrode recording sites are located near the gel surface 
where activated macrophages would be expected, by maintaining a large 
permeable volume around the spines we predict that we can minimize the 
FBR using a cytokine sink strategy.

In this study we have described a new strategy to reduce the FBR to 

implanted microelectrodes using permeable cytokine sinks. These sinks were 

designed to passively reduce the concentration of macrophage-released factors 

impacting the surrounding tissue by allowing them to diffuse into the device for a 

sufficient length of time so that they become inactive via hydrolysis and other 

mechanisms. Our findings provide further evidence that macrophage-released 

factors are key drivers of the FBR to implanted microelectrodes and that 

strategies to antagonize their impact on the surrounding tissue will improve this 

response. Beyond the use of cytokine sinks to improve the FBR to

4.5 Conclusion



microelectrode arrays and their recording ability, we believe similar methods 

could be used to improve the FBR and functionality of a number of device 

implanted in the CNS.
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CHAPTER 5

ASTROCYTE AND GLIAL RESTRICTED PRECURSOR- 

DERIVED BIOMATERIALS TO IMPROVE THE 

INTEGRATION OF MEDICAL DEVICES 

WITH THE CNS

5.1 Introduction

Neural interface devices have the potential to dramatically improve the lives 

of individuals suffering from a wide range of conditions, including paralysis and 

sensory and motor deficits. However, the foremost limitation to the clinical 

implementation of these devices is their failure to achieve high-quality recordings 

over extended periods of time. The poor recording quality and longevity of 

microelectrodes is widely believed to be due to poor wound healing and the 

chronic foreign body response (FBR) surrounding the synthetic materials 

currently used to fabricate these devices.

In contrast, cell-derived biomaterials composed of extracellular matrix (ECM) 

components exhibit superior biocompatibility and facilitate improved healing 

compared to synthetics [193, 194]. A number of ECM products have been 

developed to repair and regenerate tissues such as myocardium, kidney and



bladder. However, with the exception of the dura, similar materials have not been 

extensively developed for central nervous system (CNS) regeneration.

When attempting to adapt these materials from the field of regenerative 

medicine to use as coatings for more classic medical devices, there are a 

number of concerns that need addressing. For example, while the majority of 

proteins found in the ECM are well conserved between animals and humans, 

interspecies differences do exist. As a result, the implantation of even 

decellularized, xenogenic ECM components elicits an adaptive immune response 

that could negatively impact device function and health of the surrounding tissue 

[195-197]. Therefore, the development of approaches for producing autologous 

or allogenic materials may prove key to improving the clinical success of these 

types of products [198].

There is also evidence in the field of regenerative medicine that although 

ECM from various tissues share common protein and glycosoaminoglycan (GAG) 

components, subtle differences in ECM composition exist that may impact 

regenerative outcomes and device integration for specific tissues [199]. A 

number of studies have shown that culturing cells on tissue-specific ECM 

improves infiltrating cell proliferation rates and increases expression of desired 

phenotypic cell and tissue characteristics [200-204]. In contrast, other studies 

have shown that implantation of nontissue specific ECM materials induces the 

formation of undesired, phenotypically irregular tissue at the implantation site 

[205, 206].
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Adapting regenerative medicine approaches to limit the FBR to 

microelectrodes has been attempted previously. A number of groups have shown 

that coating devices with single, isolated components of CNS ECM, such as the 

proteoglycan laminin (LN) that is produced by astrocytes and other cells, limits 

the FBR to some degree [164]. However, we believe that presenting a more 

intact ECM that contains a similar profile of proteins, proteoglycans and 

gylcosoaminoglycans (GAGs) will improve the efficacy of these types of coatings 

in reducing the FBR. Work by Tanaka et al. demonstrated that activated 

microglia cultured on intact monolayers of astrocyte ECM displayed a ramified 

phenotype similar to the resting phenotype in healthy CNS tissue [207]. In 

contrast, this group observed that this ramification was greatly diminished in 

microglia cultured on single isolated ECM components such as fibronectin (FN) 

or LN. These findings indicate that multiple ECM components help to regulate 

macrophage activation and that developing coatings that mimic this 

biocomplexity could further improve the FBR to microelectrode arrays.

To investigate the potential of improving upon this earlier work that used 

isolated single bioactive molecules and to address the concerns raised with the 

use of xenogenic and nontissue-specific ECM, we have developed both a novel 

approach to harvest ECM produced by CNS cells and techniques to covalently 

immobilize and coat these materials onto silicon microelectrodes. Young 

immature astrocytes, which are the primary support cell in the CNS, and GRPs, 

an immature progenitor cell capable of differentiating into astrocytes and 

oligodendrocytes, were used for ECM production and harvest in this study.
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These cells and their produced ECM play important roles in nervous system 

development, and have been shown to promote regeneration following 

transplantation into spinal cord injury (SCI) models, and as stated assist in 

regulating the activation state of microglia [208, 209].

5.2 Methods

5.2.1 Sacrificial substrate preparation

Open-celled polymeric foams (Figure 5-1) were fabricated as previously 

described [210-212]. In brief, we dissolved pellets of a medical grade 

poylurethane elastomer (Tecoflex SG-80, Thermedics) in dimethyacetamide 

(DMAC) (10% w/v) overnight at 60°C. We then added a poloxamer solution 

(Pluronic 10R5, BASF, Germany) to the dissolved PU (1:2 v/v) and thoroughly 

mixed the resulting solution. We then cooled the solution to its cloud point at 

46°C, and pipetted it into plastic molds. To cause the PU to undergo phase 

inversion, we rapidly cooled the molds for 2.5mins through surface contact with a 

dry-ice/ethanol bath, followed by overnight precipitation in DI H2O. Following 

phase inversion, the material was removed from the molds, rinsed with multiple 

washes of DI H2O for 48hrs, frozen to -80°C, and lyophilized. We sectioned the 

lyophilized scaffolds into strips (30mm x 10mm X 2mm) and attached them to 

Mylar mounts using a medical grade, UV curable adhesive (MD 1180-M, Dymax, 

Torrington, CT). Mounted foams were sterilized using ethylene oxide (EtO). 

Following EtO sterilization we soaked the foams for 20mins in 70% ethanol to 

promote wetting, following which we rinsed the foams in sterile DI H2O. To
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promote cellular attachment, we incubated the foams in a fibronectin (FN) 

solution (20^g/ml in PBS) overnight.

5.2.2 Astrocyte and GRP seeding and culture

Following FN incubation, we seeded PU substrates with either primary 

astrocytes or GRPs, harvested from Sprague Dawley rats as described 

previously, at two million cells/cm3 [208, 213-215]. Astrocyte seeded substrates 

were cultured for three weeks in DMEM F12 supplemented with 10% fetal bovine 

serum (FBS) while GRP-seeded substrates were cultured for three weeks in 

SATO-. We exchanged the culture media every two-three days.
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Figure 5-1: (A) SEM Image of porous culture substrates fabricated from 
medical grade polyurethane. The substrates are soft, elastic, open-celled 
foams with a 70% void volume. (B) The substrates were formed into strips 
(30mm x 10mm x 2mm) and attached to Mylar mounts using a UV curable 
adhesive and (C) mounted into custom modified T-flasks, and cultured for 
three weeks.



5.2.3 Cell-derived material extraction

Following culture, samples were rinsed in DI H2O and frozen to -80°C. PU 

removal was performed as described previously with samples being weighed and 

then soaked in the solvent DMAC for 72hrs [212]. We exchanged the solvent 

seven times during the 72hr period, three times on the first day and then twice 

daily thereafter. An overview of the cell-derived material extraction process is 

shown in Figure 5-2.

5.2.4 Characterization of extracted material

Following PU removal, the remaining material was rinsed seven times in 

DI H2O, frozen, and then lyophilized. We calculated the yield of cell-derived 

material relative to the initial weight of the PU substrate (n=10 samples/cell type). 

To characterize the material’s bulk architecture, we imaged lyophilized samples 

using a dissection microscope and a Coolsnap digital camera.

We assessed the effectiveness of PU foam removal using Fourier 

transform infrared spectroscopy (FTIR). IR spectra were obtained in attenuated

total reflection mode (Bio-Rad). PU and cell derived material samples were

1 1 analyzed in the 900 to 1800cm-1 range with a resolution of one cm-1. To verify

removal of the PU from cell-derived samples, we examined the FTIR spectra for

the presence of urethane and amine absorbance peaks.

To identify extracellular matrix components present in the extracted

materials, astrocyte and GRP-derived material samples were processed using

indirect immunocytochemistry for fibronectin (CFN 1:500; Sigma), laminin (LN
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Figure 5-2: Schematic overview of the ECM extraction process. PU foams 
cultured for three weeks with either astrocytes or GRPs are exposed to the 
hydrophilic, aprotic solvent DMAC. Following solvent treatment to remove 
the pU foam we are able to harvest a synthetic free cell-derived material 
composed of the cultured cells and their ECM.

antibodies in a detergent-free blocking solution consisting of 4% (v/v) goat serum 

(Invitrogen, Carlsbad CA) and 0.1% (w/v) sodium azide in PBS. Free-floating 

material samples were batch treated for 1 hr in a detergent-free, blocking solution 

at room temperature, followed by incubation with primary antibodies overnight at 

4°C. After three washes in PBS to remove excess antibodies (1hr/rinse), 

appropriate fluorescently labeled secondary antibodies (Molecular Probes) were 

applied in block for 1 hr at room temperature, followed by three washes in PBS 

(1hr/rinse). Fluorescent images were captured with a Coolsnap digital camera 

and a Nikon Eclipse E600 microscope.

We analyzed a representative sample of each type of material with 

tandem mass spectroscopy (MS/MS), as described previously to more broadly 

determine their proteomic compositions. The cell derived material sample was 

washed with 50mM ammonium bicarbonate, denatured (Protease Max, Promega, 

Madison, WI) for 30mins at room temperature, trypsin (20ng/^l) digested 

overnight at 37°C, and purified (Ziptip, Milipore, Billerica, MA). The MS/MS



analysis was performed at the University of Utah proteomic core facility using a 

hybrid mass spectrometer (LTQ-FT, Thermo Scientific, Waltham, MA). Primary 

peptide molecular mass spectra were acquired by Fourier transform ion cyclotron 

resonance. The sequencing of individual peptide spectra was performed by 

collision-induced dissociation in the linear ion trap. Sample proteins were 

identified by comparison of MS/MS measured peptide sequences to a trypsin-cut 

specific protein database (Mascot ver. 2.2.1, Matrix Science Inc., Boston, MA).

5.2.5 Cytotoxicity and in vitro compatibility studies

Prior to seeding samples with either primary rat dorsal root ganglion cells 

(DRGs) or primary P2 rat microglia, we first decellularized the samples as 

described previously. In brief, cell-derived material samples were placed in 

hypotonic Tris-Hcl buffer (10 mM, pH 8.0) with 0.1% EDTA and 10 KIU/ml 

aprotinin (Sigma) for 1-2hrs at room temperature (R.T.) to disrupt integrin-ECM 

interactions and deactivate proteases that were released due to cell lysis. To 

remove lipids, we then immersed samples in Tris-Hcl buffer containing 0.1% SDS 

(10mM, pH 8.0) on a rocker at 100 rpm at R.T. overnight. Following lipid removal, 

we rinsed the samples three times, 30mins each, in PBS on a rocker. Lastly, to 

remove nuclear material, we treated samples with Tri-Hcl buffer (50 mM, pH 7.5) 

containing ribonuclease (1 U/ml, Sigma) and deoxyribonuclease (50 U/ml, Sigma) 

on a rocker at 37°C for 3hrs. Following nuclear material digestion, we again 

rinsed samples with three, 30min, PBS washes on a rocker. To assess the 

effectiveness of our decellularization process, we treated the control and 

decellularized material with the nucleic acid stain DAPI.
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Following decellularization, we seeded primary rat DRGs or primary P2 rat 

microglia on control glass coverslips or decellularized astrocyte and GRP-derived 

material samples at a density of 50k cells/cm2 (DRGs) or 100k cells/cm2 

(microglia) in DMEM/F12 + 10% FBS. We treated six of the 12 samples for 

neurite outgrowth studies with chondroitinase ABC (ChABC, 0.1 unit/ml in tris 

acetate buffer) for 4hrs at 37°C prior to seeding. We assessed neuronal viability 

and outgrowth with Calcein AM and indirect immunohistochemistry for 

NeuroFilament 160 (NF 160) respectively. Microglia morphology was assessed 

with indirect immunohistochemistry for Iba-1 and CD-68 using similar protocols 

as described above with the addition of 0.5% Triton X-100 to blocking and anti

body solutions to expose the intracellular antigens. We morphologically classified 

microglia as either ramified or amoeboid as described previously [207].

5.2.6 Cell-derived biomaterial coatings for Si microelectrode arrays

300^m-wide planar lattice microelectrode arrays were supplied by the 

Center for Wireless Integrated Microsystems at the University of Michigan. To 

covalently tether harvested cell-derived material to SiO2 electrode surface, we 

first functionalized the surface with an epoxy silane, glycidoxypropyl-trimethoxy 

silane (GPS), via chemical vapor deposition under vacuum at 110°C in an N2 

atmosphere [187, 188]. Following epoxy-functionalization, electrodes were 

exposed to astrocyte or GRP-derived material suspensions overnight. Following 

covalent coupling of the cell-derived material to the electrode surface, we 

sequentially exposed devices to a 2% (w/v) CaCl2/H2O solution and then a cell-
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derived material suspension. To test the robustness of the coating we implanted 

coated devices into an agar gel followed by immediate explantation.

5.2.7 Preparation of injectable, cell-derived biomaterials

Decellularized, cryo-ground astrocyte or GRP-derived material was 

solubilized over 48hrs in a 0.1N HCl/pepsin solution. Following solubilization, we 

brought the digested cell-derived material to pH 7.4 with addition of a 0.1N 

NaOH/PBS solution. Finally, we induced gelation by bringing the pH-balanced 

solution back to body temperature (37°C) [204].

5.3 Results

5.3.1 Characterization of extracted material

Similar to material derived from other cell types using similar harvesting 

methods, the isolated material from both astrocytes and GRPs was white, lacey 

and porous (Figure 5-3). The derived material had a shape and microstructure 

similar to the arrangement of the pores and cavities of the original sacrificial 

open-cell foam. Following a three-week culture period, astrocyte and GRP 

samples yielded 18±1.3 and 44±14mg of extracted material per gram of seeded 

foam, respectively (Figure 5-3).

-1PU foam FTIR spectra contained two distinct peaks centered at 1700 cm-1 

-1and 1100 cm-1 that is characteristic of the C-O-C stretching found within urethane 

bonds. We did not observe these characteristic urethane linkage peaks within the 

FTIR spectra of the cell-derived constructs after DMAC treatment. However, 

similar to the FTIR spectra of tissue [216, 217], the spectra of cell-derived
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constructs contained several distinct peaks corresponding to primary, secondary, 

and tertiary amines (Figure 5-4). We did not observe these amine peaks within 

the FTIR spectra of control PU foams.

To identify ECM components present in the extracted materials, astrocyte 

and GRP-derived material samples were processed using indirect 

immunocytochemistry for various ECM components found in the CNS. The cell- 

derived material was immunoreactive to antibodies against fibronectin, laminin 

and chondroitin sulfate gycosoaminoglycans (CS GAGs). Representative 

fluorescent images of these ECM components found in astrocyte and GRP- 

derived material are shown in Figure 5-5.
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Figure 5-3: (A and B) Representative images from pre- and post-DMAC 
treatment of unseeded and cell-seeded constructs. Cell-free control foams 
were completely dissolved (B-left well), however, substantial material 
remained following DMAC treatment of cell-seeded samples (B-right well). 
(C) Astrocyte and GRP seeded samples yielded approx. 1.8 and 4.4mg of 
material for every substrate, respectively.
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Figure 5-4: Representative FITR-ATR spectra of A) Tecoflex SG-80A PU and 
B) GRP cell derived biomaterial. We did not observe strong characteristic 
polyurethane linkage peaks (open arrows in A) within the FTIR spectra of 
cell-derived biomaterials. However, we did observe increased absorption 
corresponding to amine chemistries in the cell-derived biomaterials (solid 
arrows in B).
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Figure 5-5: (A and B) Representative light micrographs of astrocyte and 
GRP-derived biomaterials after dissolution of the culture substrate. 
Isolated material from both cell types was white, lacy and porous. Panels 
(C,E,G) and (D,F,H) show confocal images of astrocyte and GRP derived 
material stained for FN, LN and CSPG respectively.



To examine the effectiveness of our decellularization protocol, we 

examined the cell-derived materials for the presence of nuclear material and 

cytoskeletal components such as GFAP and actin. Following decellularization we 

observed no cell nuclei or cytoskeletal components within the astrocyte or GRP- 

derived materials indicating the successfulness of our protocols. Furthermore, all 

ECM components investigated with immunohistochemistry as described above 

remained following decellularization.

5.3.2 In vitro compatibility of cell-derived materials

Cytocompatibilty studies showed the cell-derived material to be nontoxic 

and adhesive to further cell culture with primary CNS cells. Figure 5-6 shows 

representative Calcien AM viability staining of P1 rat primary DRGs cultivated for 

48hrs on cell-derived biomaterials. Furthermore, using NF160 staining of P1 rat 

primary DRGs cultivated on non-ChABC treated or ChABC treated samples, we 

observed that digestion of chondroitin sulfate improved neurite outgrowth 

compared to outgrowth on control samples.

To categorize the activation state of microglia cultured on our cell-derived 

material, we used immunohistochemistry against Iba-1. Figure 5-7 shows 

representative microglial morphology cultured on glass, astrocyte-derived or 

GRP-derived biomaterials. Similar to studies examining microglial morphology on 

fixed astrocyte monolayers, a significant number of microglia cultured on our cell- 

derived biomaterials showed a more ramified, resting phenotype than those 

cultured on glass, even in the presence of serum [207].
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Figure 5-6: Cytocompatibilty studies showed the cell derived material to be 
nontoxic and adhesive to further cell culture. (A) Representative Calcien 
AM viability staining of P1 rat primary DRGs cultivated for 48hrs on GRP- 
derived biomaterial that was not treated with ChABC. Under these 
conditions living cells were well distributed throughout the material and 
sent out short, unbranched bipolar neurites. (B and C) Representative NF 
160 staining of P1 rat primary DRGs cultivated for 72hrs on ChABC treated 
samples. ChABC treatment qualitatively improved neurite outgrowth 
compared to those on non-ChABC treated samples.

Figure 5-7: Representative microglial morphology cultured on (A) glass, (B) 
astrocyte-derived biomaterial and (C) GRP-derived biomaterial. Cells were 
stained with antisera against CD-68 (a lysosomal enzyme found in 
mononuclear phagocytes), Iba-1 (a calcium binding molecule expressed in 
all macrophages and microglia) to visualize cell morphology, and 
counterstained with DAPI to label cell nuclei. (D) Similar to studies 
examining microglial morphology on fixed astrocyte monolayers, a 
significant number of microglia cultured on our cell-derived biomaterials 
showed a more ramified, resting phenotype than those on glass, even in 
the presence of serum.
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5.3.3 Astrocyte and GRP-derived ECM coatings for microelectrodes

We investigated whether we could use the cell-derived material as a 

coating for biomedical devices such as silicon microelectrode arrays with the end 

goal of improving their integration into CNS tissue. To accomplish this we 

covalently coupled the cell-derived material to the device’s SiO2 surface using 

the epoxy silane GPS. Figure 5-8 shows a representative 300^m wide silicon 

microelectrode array coated with our derived material. The resulting coating was 

robust enough to withstand implantation into an agar gel suggesting that the 

coatings can withstand surgical implantation into the CNS.

5.3.4 Other potential applications

The harvested astrocyte and GRP-derived material sheets were 

mechanically resilient and could be easily handled with hand-held forceps when 

lyophilized. Furthermore, upon rehydration when placed in contact with tissue, 

the material adhered well without the need for suturing suggesting that the 

constructs could be applied surgically as a regenerative scaffold or graft.

Lastly, we also investigated the potential of delivering the harvested cell- 

derived material in a solubilized form that is capable of spontaneous gelation 

under physiological conditions. Similar to methods used to create gels from 

collagen and other types of ECM, we found that we could digest the harvested 

ECM using a pepsin digest at low pH and induce gelation upon raising the pH, 

ionic concentrations and temperature to physiological conditions [204]. Figure 5-8 

shows the solubilized ECM prior to and following gelation. This minimally



invasive delivery form has vast potential as an alternative method for device 

coating as well as a cavity-filling agent or an injectable cell delivery vehicle for 

treatment of conditions ranging from traumatic brain and spinal cord injury (TBI & 

SCI) to stroke or Parkinson’s disease.

5.4 Discussion

The foremost limitation to the clinical implementation of microelectrode 

recording devices for use in brain machine interfaces is their failure to achieve 

high-quality recordings over clinically relevant time frames. The poor recording 

longevity of microelectrodes is widely believed to be due to poor wound healing

110

Injectable
cell-derived material

Figure 5-8: Cell-derived biomaterials can be prepared in various therapeutic 
formulations including (A) coatings of microelectrode arrays and other 
medical devices, (B) ‘as prepared’ decellularized sheets used in this case 
as a novel nerve cuff as well as (C &  D) injectable solutions that gel at 
biological pH and 37°C for use as injectable scaffold or hemostat or as a 
cell delivery vehicle.



and the chronic FBR surrounding the synthetic materials currently used for 

recording microelectrodes. In this study we have taken a regenerative medicine 

approach to reduce the FBR to microelectrode arrays by developing both 

approaches to harvest ECM produced by CNS cells, including immature 

astrocytes and glial restricted precursors (GRPs), and techniques to covalently 

immobilize and coat these materials onto silicon microelectrodes. Similar cell- 

derived biomaterials have previously been shown to exhibit superior 

biocompatibility and facilitate improved healing compared to synthetics in 

regenerative medicine applications [193, 194].

Our harvesting technique improves upon these traditional regenerative 

medicine approaches and other cell-derived products. Aside from donated 

human tissues and organs, to date the majority of cell-derived products that have 

been developed come from animal, primarily bovine and porcine, sources. These 

products range from simple grafts and powders to decellularized whole animal 

organs that maintain the complex structure needed for proper organ function. 

While the majority of proteins and GAGs found in the ECM are well conserved 

between animals and humans, interspecies differences do exist. As a result, 

although less vigorous than the response to similar cellularized materials, 

published studies indicate that chronic inflammation and graft rejection mediated 

by an adaptive immune response can occur with cross species implantation of 

even acellular ECM [195-197]. Therefore, while the implantation of readily 

available ECM from xenogeneic sources has clear value, the development of
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approaches for producing autologous or allogeneic materials may prove key for 

improving the clinical success of these products [198].

We have previously found that our method is not only compatible with various 

cell types, but also with cells from various species [212]. Thus, our method 

permits the creation of materials that are species-matched to the intended host, 

be it rat, rabbit, or human. Previous studies have found that allogeneic human 

ECM proteins are well tolerated by the host and do not appear to elicit either a 

cell mediated or humoral immune response [197, 198]. Therefore, allogeneic 

ECM materials harvested using our method may offer therapeutic advantages 

above and beyond xenogeneic ECM materials. Alternatively, a patient’s own 

biopsied cells could also be used to create autograft material using our method, 

however, the production of an autograft material would require preoperative cell 

harvest followed by a moderate cultivation period indicating the use of autograft 

material to clinical applications where time is not a critical factor.

Another limitation of a number of current cell-derived products is that they are 

not derived from the same type of tissue as that in which they are to be used. 

Although ECM from different tissues share common constituents, growing 

evidence suggests that subtle differences in ECM composition may influence the 

regenerative outcomes for specific tissues. A number of studies have shown that 

culturing cells on tissue-specific ECM improves infiltrating cell proliferation rates 

and increases expression of desired phenotypic cell and tissue characteristics 

[200-204]. In contrast, other studies have shown that implantation of nontissue
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specific ECM materials induces the formation of undesired, phenotypically 

irregular tissue at the implantation site [205, 206].

Our method allows for harvesting of tissue-specific matrix produced by any 

type of adherent cell seeded onto the original sacrificial foam substrate. In this 

study, with the goal of incorporating regenerative and antinflammatory properties 

found in ECM to microelectrode arrays that are implanted in the CNS, we have 

chosen to investigate the matrix harvested from astrocytes, the primary support 

cell in the CNS, as well as GRPs, an immature progenitor that can develop into 

astrocytes or oligodendrocytes. Importantly, these cells and particularly their 

produced matrix have been shown to play a number of important roles in the 

developing and adult CNS. In particular, it has been shown that the ECM 

produced by astrocytes may be involved in neuronal guidance during 

development as well as the regulation of the activation state of resident microglial 

cells in the adult CNS [207]. Additionally, the transplantation of immature GRPs 

into the lesion site has been shown to facilitate regeneration following SCI [208, 

209].

One obvious tissue-specific role that these materials must be able to perform 

in a CNS regeneration application is to support neuronal growth. Not surprisingly, 

our in vitro assays verified that both types of cell-derived biomaterials were 

nontoxic and promoted neurite outgrowth in primary neurons. In addition, similar 

to regeneration following SCI, improved outgrowth was observed following 

digestion of chondroitin sulfate glycosaminoglycans (CS GAGs) [218]. These 

GAGs have historically been considered to be neuroinhibitory [219-225], however,
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recent studies have shown that certain isoforms of CS actually facilitate neuronal 

outgrowth [226, 227]. Further studies that remove and modify only certain 

isoforms of CS using xylosides or other strategies may improve our materials 

further [228-233].

Another important tissue-specific role of the astrocyte is to assist in regulating 

the activation state of microglial cells, the resident macrophage of the CNS. 

While astrocytes are known to secrete a number of soluble factors that assist in 

microglial regulation, studies have shown that their secreted ECM also plays an 

intricate role. For example, Tanaka et al. showed that microglia cultured on fixed 

astrocyte monolayers, even in the presence of serum (a potent inflammogen), 

displayed a resting phenotype, indicating that cues presented by the astrocyte 

ECM are sufficient to regulate these potent inflammatory cells [207]. Additionally, 

these intact fixed ECMs showed a greater ability to induce this resting, ramified 

phenotype compared to single isolated ECM components such as the 

proteoglycan LN, which has previously been used as a microelectrode coating 

[164]. These findings indicate that multiple ECM components found in the 

astrocyte ECM help to regulate macrophage activation and that developing 

coatings that mimic this complexity could further improve the FBR to 

microelectrode arrays.

Excitingly, material harvested from both types of cells that was dried onto 

glass coverslips (a similar substrate to that used in planar MI arrays as well as 

UEAs) also demonstrated the ability to down regulate microglial activation. This 

finding further indicates that the bioactivity of the ECM was maintained following
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solvent exposure and subsequent processing steps. Additionally, this finding 

indicates another way in which our materials could improve CNS regeneration as 

well as opening up possible applications as coatings to reduce the FBR to 

traditional biomedical devices.

A limited number of alternative methods have been developed in our lab and 

others that can also create synthetic-free, nonxenogeneic, tissue matched ECM. 

One such approach is the fabrication of engineered multilayered cell sheets from 

planar surfaces [234-237]. The use of these materials has been directed towards 

the repair of cardiac, corneal, peripheral nerve and spinal cord tissues. However, 

we have observed that these methods produce limited amounts of ECM 

indicating that they may not be as well suited for large-scale development as the 

ECM harvesting technique described in this study.

The increased accumulation of ECM in our open celled foams may be 

explained by the increased surface to volume ratio of our foams compared to the 

planar substrates used in cell sheet engineering. The increased surface area 

may make available additional surfaces on which cells can accumulate and 

produce ECM. It is important to note that the accumulation of ECM within porous 

foams may also be the consequence of a molecular crowding phenomenon [238, 

239]. On planar tissue culture surfaces much of the secreted ECM diffuses away 

and is subsequently eliminated while exchanging the culture media. The tortuous 

architecture of the substrate likely facilitates this molecular crowding by reducing 

diffusive dispersion and subsequent loss of ECM. This suggests that foam design
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may be further optimized to accelerate ECM accumulation by developing new 

foam structures.

The approach introduced here is not limited to the open cell, PU foams as 

described herein. A wide range of thermoplastics whose structure consists of 

amorphous chain entanglements that can be overcome with polar aprotic 

solvents should make successful sacrificial scaffolds. Most hydrolytically 

degradable polymers could be used as well, as long as they have sufficiently 

short degradation times. For example, work by Lu et al. describes the use of 

PLGA in a similar method for harvesting ECM from human mesenchymal stem 

cells, articular chondrocytes and dermal fibroblasts [240]. Additionally, the 

fabrication techniques for the sacrificial substrate need not be limited to those 

produced by phase inversion. Other techniques that could be employed include, 

but are not limited to, gas foaming, particle leaching, hollow fiber extrusion and 

electrospinning [241-244].

5.5 Conclusion

In this study we have investigated novel methods to adapt regenerative 

medicine approaches for use in improving the integration of recording 

microelectrodes implanted in the CNS and limiting the FBR that occurs with 

chronic device implantation. To do this we have developed a simple method to 

harvest synthetic-free ECM material from astrocyte and GRP cells cultured within 

sacrificial polymer substrates. This approach represents a new method to create 

autologous and allogeneic cell-derived biomaterials for a variety of applications. 

In vitro cytocompatibility studies showed the material to be nontoxic and
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adhesive to various CNS cell types. Furthermore, in vitro assays indicated that 

these cell-derived biomaterials may improve neural regeneration or device 

integration by promoting neurite outgrowth of primary neurons and by down 

regulating the activation state of inflammatory microglia. Studies in progress are 

examining the usefulness of these materials in a wide range of regenerative 

medicine and neural engineering applications.
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CHAPTER 6

SUMMARY, CONCLUSION AND FUTURE WORK

6.1 Summary of presented work 

There is near consensus in the field that the foreign body response (FBR) to 

implanted microelectrodes contributes to recording inconsistency and may limit 

the functional lifetime of these devices. Available evidence suggests that soluble 

factors secreted by activated macrophages and/or microglia at the device-tissue 

interface mediate the cellular-level changes underlying the FBR. To explore this 

hypothesis and identify strategies that engineers can utilize to improve next 

generation devices, we have taken a comprehensive approach by first 

investigating implant designs that passively reduce the impact of these cells and 

their released soluble factors and secondly creating bioactive coatings to 

promote regeneration and down regulate inflammation in the surrounding tissue.

To facilitate the design and testing of our passive strategies for reducing the 

FBR, in Chapter 2 we developed a computational model to predict the steady- 

state distribution of macrophage-released soluble factors surrounding traditional 

and novel device designs. Due to the difficulty of analyzing the spatial distribution 

of macrophage-released factors in tissue, we validated the usefulness of our 

models using indirect methods such as comparing the predicted soluble factor



distributions to the structure and spatial distribution of well documented, 

downstream responses associated with the FBR to traditional electrode designs. 

Our predicted distributions align well with the shape and structure of the FBR to 

traditional, commercially available microelectrodes including planar MI-style 

microelectrodes, cylindrical microwires and more complex devices like the Utah 

Electrode Array (UEA). Based on our underlying hypothesis that macrophage 

released soluble factors drive other aspects of the FBR, the observed alignment 

between our predictions and FBR hallmarks indicates that our model is in fact 

useful for predicting the FBR to devices implanted in the CNS.

Expanding on our models, we virtually tested whether manipulation of a 

number of design parameters could reduce the FBR. Two of the most useful 

design changes indicated by our predictions include (1) reducing device surface 

area to limit the number of macrophages at the device tissue interface (and thus 

the concentration of their secreted pro-inflammatory factors) as well as (2) 

incorporating cytokine sinks to passively absorb pro-inflammatory factors into the 

device and away from adjacent brain tissue.

To further validate the usefulness of our model and to investigate whether 

reducing device surface area lowers the brain FBR, in Chapter 3 we studied the 

brain tissue reaction to planar silicon microelectrode arrays with identical 

penetrating profiles but different amounts of exposed surface implanted in rat 

brain for eight weeks. We found that altering the exposed surface area of an 

implanted microelectrode array while maintaining a similar penetrating profile is 

sufficient to significantly change the classic hallmarks of the chronic FBR
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including reducing the degree of inflammation, blood brain barrier leakiness and 

the amount of neuronal cell body loss.

Once again, building on the predictions from our models and the reduced 

FBR to semipermeable hollow fiber membranes (HFMs), in Chapter 4 we studied 

the chronic brain tissue response to planar solid silicon microelectrode arrays 

with thick hydrogel coatings (cytokine permeability sinks) designed to passively 

absorb pro-inflammatory factors that are released by reactive immune cells into 

the device and away from adjacent brain tissue. When compared to the response 

surrounding uncoated cohorts as well as arrays with a thin nanoscale hydrogel 

coating, serving as a surface chemistry and functional sink control, we observed 

a reduced degree of inflammation, improved blood brain barrier integrity, 

diminished astrocyte hypertrophy and reduced neuronal cell body loss.

Taken together the findings from these two in vivo studies show that it is 

possible for electrode developers to modulate specific aspects of the brain tissue 

FBR by intentionally manipulating device design. Additionally, these findings 

further validate the usefulness of our predictive model to drive future device 

designs that integrate into the body and avoid the FBR. On a broader level, these 

results support our theory that the FBR to implanted electrode arrays, and likely 

other devices, can be explained by the persistence of activated macrophages at 

the biotic-abiotic interface, which act as a sustained delivery source of bioactive 

agents that diffuse into the adjacent tissue and shape other features of the FBR.

Beyond these passive design strategies we also explored the possibility of 

adapting regenerative medicine approaches to improve the FBR to implanted

120



devices by creating bioactive coatings that may promote regeneration and may 

down regulate inflammation at the device interface. To do this we developed a 

simple method to harvest synthetic-free ECM material from astrocyte and GRP 

cells cultured within sacrificial polymer substrates. This approach represents a 

new method to create autologous and allogeneic cell-derived biomaterials for a 

variety of applications. In vitro cytocompatibility studies showed the material to be 

nontoxic and adhesive to various CNS cell types. Furthermore, in vitro assays 

indicated that these cell-derived biomaterials may improve neural regeneration or 

device integration by promoting neurite outgrowth of primary neurons and by 

down regulating the activation state of inflammatory microglia.

6.2. Future work

As described previously in this work, a number of other strategies have 

been investigated to reduce the FBR to microelectrodes; however, using 

traditional materials and device designs, isolating the impact of each of these 

strategies is difficult at best. For example, another major strategy in the field for 

reducing the FBR is the creation of soft polymer-based microelectrodes that 

better match the mechanical properties of the surrounding tissue. It is believed 

that this improved mechanical matching will limit repetitive, micromotion-induced 

damage at the biotic/abiotic interface, thus reducing a potential mechanism for 

propagation of the FBR.

While we believe that the reduced FBR achieved via either of our passive 

design strategies is primarily due to a reduction of activated macrophages and 

their released factors (discussed in Chapters 2-4), our findings are confounded to
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some degree by the difference in mechanical properties of the implanted cohorts. 

Conversely, many of the polymers used to create flexible, soft electrodes absorb 

a significant degree of water and are likely permeable to small molecules, adding 

the possibility that the findings in these studies have been influenced by 

improved clearance of macrophage secreted factors. Due to the potential that 

well established strategies for reducing the FBR could have, not only on 

recording microelectrodes, but also on all chronically implanted devices, studies 

aimed at characterizing the response field for the FBR to a variety of potential 

explanatory design variables are needed.

Central to this set of studies are novel test devices that isolate individual 

design elements; facilitating the examination of the ranges where specific 

property changes modulate the FBR. Additionally, these devices should allow for 

a number of explanatory variables to be manipulated in conjunction so that 

interactions between variables such as stiffness, permeability, roughness, 

surface chemistry, severity of iatrogenic injury, and architecture can also be 

investigated once the most promising explanatory variables are determined. One 

possibility for this type of device is shown in Figure 6-1. This design is based on 

elements from hollow fiber membrane (HFM) technology as well as planar MI- 

technology and allows for the examination of interaction between stiffness, 

permeability and roughness while controlling for differences in the severity of 

iatrogenic injury and surface chemistry.

Though our findings from the in vivo studies described in Chapters 2 and 3 

help to validate our model’s predictions as well as our underlying hypothesis that
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Figure 6-1: (A) Cross section of a novel test device to allow for the examination of the impact of both device 
mechanics and permeability on the FBR. (B) Expanded view of cross section in (A) showing the semipermeable 
wall structure of the top and bottom walls shown in (A) created using similar methods to those used by Lopez et 
al. [190, 191]. By making the structure from both silicon as well as adapting methods used by Seymor and Kipke 
[136] to make the device from soft polymers, both mechanics and permeability can be tested in designs that 
create similar penetrating injuries. Controlling wall thickness as well as the number and size of the grating 
channels permits tailoring the wall structures permeability.
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macrophage-secreted factors are the primary drivers of the FBR, additional work 

remains to be done to validate our predictions and to verify the mechanism or 

mechanisms underlying these reductions. One key aspect of this future work is to 

better validate our model by measuring in vivo cytokine profile surrounding 

implanted devices and to refine our model parameters based on these findings. 

We have investigated a number of methods to measure and profile cytokine 

distribution in tissue, including immunohistochemically labeling cytokines of 

interest as well as detecting cytokine mass fragments using imaging MALDI 

mass spectroscopy. Once more fully established, these methods for profiling 

cytokine distributions in tissue will provide information not only to validate our 

diffusion models but will be extremely useful in other areas, such as the study of 

neuroinflammatory conditions like MS and Alzheimer’s disease that share many 

commonalities with the inflammatory response surrounding implanted devices.

There are a number of other methods that could provide supplemental 

information regarding the role of macrophages and their released soluble factors 

in the FBR including laser capture microdissection (LCpD) in conjunction with 

quantitative PCR. LCpD enables the isolation of single labeled cells or 

populations of cells from a tissue section or in vitro culture (i.e. activated 

macrophages at the biotic-abiotic interface). Following isolation both gene 

expression and protein translation can be detected using quantitative PCR and 

SELDI-TOF mass spectroscopy as a means to further characterize the initial 

creation of soluble factors within inflammatory cells. While not a direct method 

toprofile soluble factor distribution in vivo, this method will add to the mounting
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evidence that macrophages at the device interface chronically produce 

inflammatory and cytotoxic factors that could play a primary role in the FBR to 

implanted devices.

Another macrophage/microglia area of research that needs further 

investigation and development deals with the physiology, basic functions and 

activation states of cells surrounding implanted devices. To date we are one of 

the few groups who use a marker specific for activated macrophages (the 

lysosomal enzyme CD-68) in place of, or in combination with pan-macrophage 

markers (IBA-1 or OX-42) to describe the FBR. However, an expanding field of 

literature has shown that the activation state of these cells is even more detailed 

and complex than can be observed with just CD-68. This range of activation 

states is commonly broken down into three categories: resting resident 

macrophages (M0) that are in a constant state of surveying their surroundings for 

possible stimuli such as pathogens or tissue damage, classically activated 

inflammatory macrophages (M1) that release a variety of proinflammatory 

cytokines and effector molecules, and prohealing macrophages (M2) that release 

a variety of growth factors to induce regeneration and tissue growth [123]. 

Further characterization of macrophages surrounding implanted devices using 

the evolving macrophage classification schemes will further help us to 

understand their role in various stages of the FBR and may better elucidate 

specific mechanisms that influence device performance as well as intervention 

strategies.
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Information regarding the state of macrophages/microglia at the implant 

interface would also be useful when analyzing our astrocyte and GRP ECM 

coatings. To date we have shown that these materials induce a ramified 

phenotype in microglia even in the presence of known inflamogens such as 

serum. This morphology change has traditionally been classified as an indicator 

of down regulated macrophage activity [207, 245]. However, implementing a 

more detailed analysis into macrophage activation could help us determine if 

these cells have merely been coaxed back into a resting M0 phenotype or if they 

may actually have led these cells to a prohealing M2 phenotype.

In addition to the local impact of inflammation and the FBR, there is also 

growing evidence that these responses impact vulnerable tissues and cell 

processes at considerable distance from the implant site. In, as of yet, 

unpublished work from our lab we have observed that chronic electrode 

implantation, even solely in the cortex, is accompanied by decreased 

neurogenesis in the subventricular zone of the dentate gyrus (DG). This zone 

has been shown to play a key role in learning and memory. Similar to our 

findings regarding BBB dysfunction, decreases in neurogenesis have been 

observed in neuroinflammatory diseases such as Alzheimer’s disease. In these 

conditions it is widely believed that these phenomena are caused by activated 

macrophages/microglia and their released soluble factors.

Though we have shown that device implantation impacts neurogenesis, 

and other groups have shown that inflammation in various disease states 

associated with various implanted devices correlates with cognitive dysfunction,
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further work needs to be done to more fully determine device related 

inflammation’s impact on end cognitive deficits, which would be of primary clinical 

concern. One method to bridge this gap would be the use of the novel object 

recognition tests in conjunction with device implantation. In these types of tests 

cognitive function is measured based on the difference in the amount of time an 

animal spends exploring a novel object compared to a familiar object. Other tests 

could also be used including Morris water mazes and episodic memory tests.

Encouragingly, unpublished work from our lab has shown that chronic 

implantation of lattice devices that were roughly half the overall size of the lattice 

devices described in Chapters 2 and 3 of this work did not induce a significant 

decrease in neurogenesis. Combining these observations with the results 

presented in this work indicates that a device’s influence on neurogenesis may 

be dependent on its inflammatory footprint. This assumption increases the need 

for strategies, such as those described in this work, to reduce the FBR and the 

importance of further investigations into detrimental systemic impacts of the FBR.

While we have shown the potential of our passive strategies to reduce the 

FBR to microelectrodes, there are still a number of ways that we could modify 

these strategies to further enhance their impact. For example, our permeable 

hydrogel coatings could be used to deliver therapeutic agents such as anti

inflammatory drugs. As described in the introduction, systemic applications of 

these molecules have been used previously to improve recording function. 

However, a sustained, systemic delivery of these agents may have undesirable 

long-term-effects. In addition to the delivery of pharmaceutics, primary cells could
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also be encapsulated and delivered using semipermeable hydrogels. The 

potential of using delivered cells as a source of therapeutics to reduce the FBR 

has been proven in previous work from our lab where we encapsulated immature 

astrocytes in a HFM system. These astrocyte-filled HFMs elicited a very minimal 

FBR that was even lower than the limited FBR to control empty HFMs.

When discussing the potential of various strategies to reduce the FBR and 

improve recording performance it should be noted that there are a number of 

discrepancies between the methods used by groups focused on device 

biocompatibility and those used by groups focused on the development of BMI 

applications. To date, the majority of studies examining the FBR have used 

single-shank devices such as planar MI-arrays or single cylindrical microwires. 

These simple devices have facilitated quantitative analysis of the FBR and the 

creation of several strategies to reduce the FBR. However, the BMI field uses 

more complex multitine arrays in order to gather a sufficient number of useful 

signals to drive their neuroprosthetic applications. There is minimal information 

regarding the FBR to these devices. To provide the most relevant information to 

improve these more complex and clinically relevant devices, specifically now that 

a number of strategies have been presented to improve the FBR to single-shank 

implants, further effort must be given to analyzing the FBR to the multitine 

devices used in the BMI field and to translate what we have learned from single

shank implants to improve these clinically targeted devices.

To bridge this gap, we have begun to analyze the FBR to both a limited 

cohort of 10x10 UEAs implanted in cat cortex as well as 4x4 UEAs implanted in
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rats. Additionally, we have created models, as described in Figure 2-6 and below 

in Figure 6-2, to verify that our model can explain unique features that we have 

observed in the FBR to the UEA. This model and our FBR data indicate that 

there is a minimal reaction near the recording tips of these devices. However, 

there is a very severe reaction underneath the base of the array that may reduce 

device performance or lead to device failure by disrupting cortical column 

circuitry, inducing extravastion of the device through the build up of fibrous tissue 

beneath the devices base, or device settling via chronic tissue necrosis and 

erosion. Encouragingly our model indicates that similar strategies used to reduce 

the FBR to single planar implants, reducing device surface area or incorporating 

permeable coatings, may reduce the severity of the FBR below the devices base. 

Figure 6-2 depicts the predicted distribution of macrophage-secreted factors 

below a 4x4 UEA with a solid base and one with a lattice base. Figure 6-3 

compares the predicted maximum concentration of released soluble factors 

surrounding these solid and lattice based UEAs with the 300pm planar and lattice 

devices as a function of depth into tissue.

Finally, one area that also needs to be addressed is the impact of these 

new design strategies on recording function. While there is evidence promoting 

the theory that the FBR impacts device function, showing that we can proactively 

improve performance will further verify and establish this theory and the 

importance of reducing the FBR to future device designs. To accomplish this we 

are collaborating with groups at the University of Michigan and with Blackrock 

microsystems.
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Figure 6-2: (A) Cross section of diffusion model for a 4x4 traditional solid 
base UEA. Concentrations are set relative to maximum in this model, not 
the 300^m solid as in other models. Similar to the graded severity of the 
FBR to traditional UEA designs, our model predicts greater concentrations 
of macrophage released factors underneath the base of the array and 
reduced concentrations near the recording tips. (B) Diffusion modeling 
predicts a significant reduction in the relative concentration of cytokines or 
other soluble factors surrounding a lattice base variant of the UEA.
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Figure 6-3: Comparison of the relative maximum concentration 
surrounding the solid and lattice based UEAs and MI arrays described in 
th is work. Our model predicts significantly higher concentrations in 
superficial regions of the cortex. This increased concentration is a likely 
cause for a number of documented failure mechanisms of the UEA. 
However, due to  the decreased profile and adequate tine spacing our 
model predicts a reduced distribution of macrophage released soluble 
factors at the recording tips even compared to our 300^m planar lattice 
design. By removing the majority of base material using a lattice design, 
our model predicts that we can significantly reduce the concentration of 
macrophage-secreted factors in th is  region, which should improve device 
function.
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