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C O M B IN A T O R  EV A LU A TIO N  OF F U N C T IO N A L  P R O G R A M S  

W IT H  LOG ICAL V A R IA BLE S

A bstract

A technique is presented tha t brings logical variables into the scope of the well known Turner 
method for evaluating normal order functional programs by S, K, I combinator graph reduction. 
This extension is illustrated by SASL+LV, an extension of Turner’s language SASL in which gen
eral expressions serve as formal parameters, and param eter passage is done by unification. The 
conceptual and practical advantages of such an extension are discussed, as well as semantic pitfalls 
tha t arise from the attendant weakening of referential transparency. Only four new combinators 
(LV, BV, FN and UNIFY) are introduced. The resulting object code is fully upward compatible 
in the sense tha t previously compiled SASL object code remains executable with unchanged se
mantics. However, “read-only” variable usage in SASL-f LV programs requires a “multi-tasking” 
extension of the customary stack-based evaluation method. Mechanisms are presented for manag
ing this multi-tasking on both single and multi-processor systems. Finally, directions are examined 
for applying this technique to implementations involving larger granularity combinators, and fuller 
semantic treatm ent of logical variables (e.g. accommodation of failing unifications).
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1 E xtending Functional Program m ing W ith  Logical Variables

1.1 Added Power

Functional and logic programming languages are alternative approaches to  applicative (i.e. side- 
effect free) programming. While rivalry between partisans of these two approaches has at times 
been intense, there is now an atmosphere of detente , and each is adopting good ideas from the 
other. For example, a number of logic programming researchers are now carefully studying the data 
directionality  effects of functional programming in an effort to achieve a satisfactory formulation of 
AND-parallelism, and some functional language designers are coveting the elegance of unification.

We offer here another step down the la tter path, by considering how to incorporate logical vari
ables into a functional language while preserving determinacy. Logical variables are variables in the 
m athem atician’s sense rather than in the computer scientist’s: place holders for fixed but initially 
unknown quantities, which become known in stages by the application of equational constraints.

Logical variables can extend the power of functional programming in many im portant directions, 
including:

• Providing building blocks for monotonically refineable data  structures (e.g. Prolog-style dif
ference lists), aiding in the coordination of parallel processes;

• Representation of constraint-based problem solvers such as the Milner polymorphic typing 
algorithm [Mil78];

• Deft treatm ent of forward reference problems, such as symbol table management in compilers 
[CH87];

• Modeling of fundamentally bidirectional information flow, such as buses and pass transistors 
in hardware specification systems [She85,CGM87,PSE85], and

• Playing a “micro object” role in object oriented programming dialects (e.g. for shareable 
message “mailboxes” ) [KTMB86,Lin87b].

Note th a t none of these fundamentally depends on m ulti-path search, backtracking or even 
accommodation of failing unification (although the semantic merit of such extensions is undeniable). 
Thus our viewpoint throughout will be tha t a failing unification constitutes a run-time error. Only 
in Section 8.1 will we briefly consider the semantic and operational consequences of responding to 
unification failures.

1.2 E xisting Language D esigns

The design of FGL+LV, a normal order (lazy) functional language with logical variables, is described 
in [Lin85j. FGL+LV is based on the function graph language FGL [KJRL80]. More recently, the 
MIT Dataflow Architecture Group has extended the dataflow language Id to “Id Nouveau” , which 
offers a specialized form of logical variables through write-once I-structures [NPA86], Danforth has 
critically examined this language design area as a whole [Dan85].
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1.3 Prior Im plem entations

A single processor implementation of Id Nouveau has recently been announced [Nik87], An imple
m entation of FGL+LV in the context of the Rediflow multiprocessor architecture [KL84] is outlined 
in [Lin87a]. The la tter design is the only one known to us tha t combines logical variables and nor
mal order evaluation in a thorough way. However, it was never implemented (or simulated), due 
primarily to its complexity and specific dependence on the Rediflow architecture. This complexity 
arose from two factors:

1. The use of two levels of explicit demand (nonassertive , or conventional demand, and assertive, 
arising from unification operators-, powerful enough to  elicit logical variable references as well 
as ordinary values);

2. The Rediflow two level task notification scheme (according to whether notification is within 
or across code blocks).

In retrospect, both these difficulties are due to Rediflow’s one-to-one mapping of complete function 
definitions to  individual large granularity combinators. By compiling to fine granularity com
binators, both these problems are eliminated. (In Section 8.2 we briefly return to the issue of 
incorporating logical variables into “super” combinators.)

2 Com piling to  Com binators

2.1 Basics

A combinator is an environment-free function.

• Environment-free means tha t a combinator involves no “im ports” , “fluids” , “globals” , or 
identifier scoping (static, dynamic, or otherwise), although senses of these can be supported 
indirectly through compilation (see Section 4.4).

• Function  means tha t a combinator can be applied to argument(s) to compute a result without 
incurring any semantic effect except production of tha t result (i.e. no side-effects).

Combinators are typically curried , i.e. defined on one param eter at a time. Thus a curried 
add function might be p lu s  a b, so tha t one'could define p lu s l  = p lu s  1, and then apply p lu s l  
several times, e.g. p lu s l  2 yielding 3, p lu s l  10 yielding 11, etc.

2.2 SKI Com binators

The combinator notion originated with the S , K, I family, developed by Curry and Feys as a con
tribution to the foundations of mathematics [CF58]. In addition to S, K, I ,  this family generally 
includes curried combinators for the primitive operators of interest (e.g. +, OR, P (pair), HD (head), 
etc.), and conditional COND.

In 1979 Turner discovered [Tur79] tha t this family could plausibly be used for executing normal 
order functional programs, with several advantages:
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a+b
where x = 1 : (add l x)

add l (h : t )  = (h+1) : (add l t )  .
a : (b : c) = x

Figure 1: Sample SASL source code.

1. Their fine granularity provides a homogenous program representation (e.g. all programmer 
defined function boundaries disappear) tha t greatly simplifies evaluation and storage man
agement. •

2. The two most im portant semantic features of modern functional languages, viz. normal order 
evaluation and higher order functions, are elegantly supported.

3. Opportunities for concurrent evaluation naturally arise at non-unary s tr ic t  combinators, i.e. 
those known a priori  to require the evaluation of two or more arguments.

4. The evaluation rules for the S, K, I  family have direct interpretations as graph reduction 
rules. Moreover, “full laziness” results: subgraphs are evaluated at most once, even when 
shared across curried functions [AKP84].

2.3 SASL

The base language for our extension is a subset of SASL, a predecessor of M iranda1 [Tur85]. A 
very simple example of SASL source code is shown in Fig. 1. This program defines the function 
add l which maps a stream (infinite list) of integers into another stream with component-wise 
inc rem en ta tion^  : v denotes a right-associative pair construction, i.e. the Lisp (cons u v)). The 
function addl is used to define x, a stream representing the infinite sequence of natural numbers 
starting with 1 (note the cyclic definition of x). Finally, the first two elements a and b of x are 
summed to yield the program’s overall result.

All SASL functions are curried, and syntactically parentheses are necessary only where default 
left associativity is not desired. Thus (+ 1 (* 2 3 ) )m e a n s ( (+  1) ((*  2) 3 )) ,  which evaluates 
to 7; (+ 1 * 2 3) evaluates to either an arithmetic error or to itself (i.e. it is already in normal 
form), depending on the error checking policy adopted. We will employ this minimal parenthesis 
notation henceforth.

2.4 Turner C om pilation

Reference [Tur79] gives a method for compiling SASL to combinators, which we call Turner com
pilation.

1 “Miranda” is a trademark of Research Software Ltd.



1. Since SASL is already curried, to compile expressions we need only convert their infix oper
ators to their corresponding curried prefix form. For example, 1+3 : 2* (5 -8 ) compiles to 
(P (+ 1 3) (* 2 ( -  5 8 ) ) ) ,  where the P combinator is the curried prefix version of the 
infix : operator.

2. Applications of programmer defined functions compiled similarly, e.g. (f (1:3:TRUE)) com
piles to  (f ’ (P 1 (P 3 TRUE) ) ) ,  where f ’ is the compilation of SASL function f (see step 3).

3. Function definitions are compiled using the cornerstone of the Turner method, the abstraction  
operation  [x]exp: .

[x](f p) = S [x]f [x]p [x]y = K y [x]x = I

This operation is the inverse of function application, in the sense tha t 

([x]E x) = E

A  sample application of this operation is shown below on twist a b = b:a (using the second 
optimization described in Section 4.5).

twist = [a]([b]b:a)

= [a] ( [b] (P b a))

= [a] (S [b](P b) [b] a)

= [a] (S (S [b]P [b]b) (K a))

= [a] (S (S (K P) I) (K a))

= [a]C(S C(S (K P)) I)) (K a))

= S [a](S ((S (K P)) I)) [a](K a)

= S (K (S ((S (K P)) I))) (S [a]K [a] a)

= S (K (S (CS (K P)) I))) (S (K K) I)

= S (K (S (S (K P) I))) (S (K K) I)

This compilation method (without optimizations) is illustrated more fully in Fig. 2 on the program 
in Fig. 1. Note tha t direct “knot-tying” is used to  represent recursion, rather than the more elegant 
but less efficient Y combinator (although the Y combinator has the advantage of yielding only acyclic 
graphs). Roots of shared subgraphs are prefixed by i-> labels, and references (after the leftmost, 
in place of which the shared subgraph is shown) are indicated by ->i notations. (We refrain from 
using the more traditional 1: ( . . . )  notation, in light of possible confusion with SASL’s : infix 
pair constructor.)

3 Com binator Evaluators

3.1 Sequential

The Turner compilation algorithm is accompanied by a clever sequential evaluation method. By 
repeatedly performing the outermost reduction, this method mechanizes normal order (lazy) se
mantics without explicit demand indicators or simulated multi-tasking. This approach underlies
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(+ (HD

(2->(S (S (K P) (S (S (K +) (U (S (K K) I))) (K 1)))

(S (U (S (K K) (K ->2))) (U (K I)))) ->1)))

(HD (TL ->1)))

Figure 2: SKI combinator object code (unoptimized).

all efficient sequential evaluation methods for larger granularity combinators, e.g. the G-machine 
[Joh84].

Outermost reductions are efficiently located by a recursive traversal algorithm. In typical im
plementations this traversal is administered by a link reversal method which eliminates the need 
for an explicit stack (see Fig. 3). Since this technique forms the basis for our SASL+LV evaluation 
method, we review it briefly here. The key ideas are:

1. Two pointers are used, c ( current) and p (previous). Initially c points to the root of the graph 
to be evaluated, and p has a n u l l  value. These pointers are used to  traverse the graph by a 
technique known as link perm utation  [Lin73].

2. We assume tha t each pointer value, when stored, also records whether it resides in the left or 
right half of its node (the lowest order bit is generally available for this purpose, given byte 
addressing). This pointer tagging (not indicated in our figures) is sufficient for the evaluator 
to always be awaxe of whether it is ascending or descending to the current node c.

3. When descending from a node, the “backpointer” (old p value) is always stored in the right 
half of the node (this convention will simplify our extended method described in Section 3.2).

3 .2  M u lt i -T a s k in g

As remarked in Section 3.1, the Turner evaluation method performs lazy evaluation simply by 
steadily performing the outermost reduction until normal form results. On a sequential machine, no 
further evaluation order embellishment is necessary. However, natural opportunities for concurrency 
arise within this framework which can be exploited on parallel architectures. The simplest non- 
speculative such opportunities are generated by non-unary (henceforth, binary) strict operators, 
e.g. addition [CP85]. A very clean technique exploiting these opportunities by stack discarding and 
reconstruction has been presented by Hughes [Hug87].

We sketch another approach here, exploiting link permutation:

1. Each task in our system is represented by a [c , p] pointer pair. We assume there is a 
background mechanism for allocating tasks to reduction processes.

1->(P 1
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c —►a c - * C H

4 -

n ~ m
c —► b

x:

E n i

I V

a:
v = val(a)

w

b:
w = val(b)

I v + w

Figure 3: Normal order evaluation by link permutation.



2. Each node is augmented by a busy bit, set to 1 iff a task is currently evaluating tha t node. 
If busy (n) = 1, we say node n is busy.

3. When a task descends to a binary strict operator, it digresses to evaluate the operator’s first 
argument. Before beginning that evaluation, however, a new task is created for evaluating 
the second argument. By convention, new tasks always are created in the descending mode.

4. If a task [ c , p] descends to a busy node n, information is enqueued to permit creation of a 
new task [n, p] when evaluation of n is completed. Note that: _

• Any node undergoing evaluation has a backpointer (or set of backpointers, see below) 
in its right half. ’

• Furthermore, since necessarily c = n, we need only record p to represent task [ c , p] .

• Finally, we note tha t the backpointer in r ig h t  (n) is simply another such p ’ from a task 
[n , p ’] tha t happened to arrive at n first. Hence we view r ig h t  (n) as holding a set  of 
pointers.2

5. Now suppose tha t evaluation of a busy node n is completed, with the waiting task set in
r ig h t ( n )  equal to { p i ........... pk}. Then the current task continues as [ p i ,  n ] , and the
remaining pointers are used to create tasks [n , p2] , . . . , [n , p k ] . For consistency (see 
point 3), these k-1 tasks are restarted created in the descending mode. However, they will 
reverse direction when they determine tha t node n is already in normal form (a normal_f orm 
mark bit could expedite this).

Fig. 4 illustrates this mechanism on an addition subgraph. Conceivably, this technique could have 
formed the basis of a shared memory multiprocessor version of the Burroughs Norma co-processor 
[Sch86], or the SKIM machine [CGMN80].

4 Introducing Logical Variables

4.1  S A S L + L V

Given our focus on semantic and implementational m atters, we wish to put aside the im portant 
language design issues of how logical variables should be introduced in a full, “rounded” manner 
into a lazy functional language. Thus we seek here an expedient approach which permits us to 
explore the fundamental “semantic im pact” of logical variables when introduced into a mature 
base language.

Our choice for this purpose is SASL+LV, a subset of SASL extended to include logical variables 
and param eter passage by unification. SASL+LV is a “laboratory” language, and is not claimed 
to be complete or useful in any practical sense. However, it is more than simply a “gedanken” 
language, since serious implementations are being constructed (see Section 7.1).

2We assume availability of a second low order pointer bit (in addition the bit indicating l e f t / r i g h t  source, see 
Section 3.1) to distinguish the final value in a task descriptor chain. Two such bits are available under byte addressing, 
assuming nodes are at least four bytes wide, and word alignment is observed.
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Figure 4: Strictness-based multi-tasking evaluation.



SASL+LV differs syntactically from SASL only through the generalization of formal parameters 
to  arbitrary expressions, rather than the customary sequence of distinct identifiers (or patterns 
reducing to such). The informal semantics of a SASL+LV function f  fo rm al = body applied to 
exp are:

1. Create new instances of form al and body;

2. Unify exp with this instance of form al;

3. If successful, return the value of this instance of body under the bindings tha t resulted from 
the unification;

4. Otherwise, return an error indication. .

4.2 Sem antic Im pact

The impact of logical variables on the formal semantics of SASL+LV is essentially the same as in 
FGL+LV: the injection of a well-behaved (i.e. monotonic) form of side-effects. In particular, the 
sharing  of all references to a given logical variable is semantically visible via unification. Conse
quently, the law of “referential transparency” (roughly, tha t replication of expressions is semanti
cally invisible) must be partially repealed.

To illustrate, consider the SASL+LV function d i f f  a:b b :c = a:c, which mimics the Prolog 
append relation on “difference lists” . We assume tha t a, b, and c all denote logical variables. 
Then the application d i f f  ( 1 :2 :x) :x ( 3 :n i l )  : n i l  (where n i l  is a special list ending constant) 
returns ( l : 2 : 3 : n i l )  :n i l .  Its correctness directly depends on all occurrences of the symbol x 
denoting the sam e  logical variable.

4.3 R epresentation

A logical variable is represented by an “application” of the new combinator LV, e.g. (LV t a i l x ) .  
As noted in Section 4.2, shared references to such nodes are crucial to correct logical variable 
semantics. Hence in Section 5.2 when reduction rules on LV combinators are described, we will 
refine this notation to x->(LV t a i l x ) ,  in the manner of Fig. 2. Initially, an LV application has a 
cyclic self-reference as its argument, i.e. x->(LV x). This configuration indicates tha t the set (or 
chain) anchored  at x is empty. In Section 5.3 we shall see tha t when two distinct LV combinator 
nodes are unified, their chains are merged, and one has its combinator transformed to BV ( “bound 
variable”).

4.4 C om piling Logical Variables

Given the semantic visibility of logical variable sharing, we must ensure tha t each logical variable 
in a SASL+LV function is instantiated precisely when semantically dictated, i.e. once per function 
application. Any less and function bodies are no longer “pure code” ; any more and we lose some 
unification correctness (e.g. desired inter-task communication effects). To arrange this:



1. We assume tha t every  variable is a logical variable if not immediately bound by appearance 
in the left side of an equation.

2. We treat each logical variable in a function definition as a special kind of formal param eter that 
gets bound to  a “fresh” LV instance prior to each application of the function tha t introduces 
it.

However, this semantic requirement poses a language design question concerning the interaction 
of logical variables and currying. To illustrate, consider the SASL+LV function d i f f , defined in 
Section 4.2. W hat should be the meaning of df = d i f f  x:y? Clearly, we must create an'instance 
of the d i f f  function with a unified to x, and b unified to y. But should this be done:

• once when d f is created by the application of d i f f  to x :y , or .

• repeatedly when df is applied to various arguments?

Either approach is semantically defensible and implementationally viable. However, we adopt 
the first policy, on the basis of consistency with conventional currying.

• For a curried function of n  arguments, there are n opportunities for the instantiation of logical 
variables, i.e. after application to the i-th argument, for i =  1, ...,n .

• Each logical variable x occurring in a formal param eter expression is instantiated at the z-th 
stage of curried application, for the minimum i such tha t x occurs in the i-th formal parameter 
expression.

• Logical variables occurring only in the function body are considered to  occur in the last formal 
param eter expression.

Thus we compile d i f f  in two stages, as though it were defined:

d i f f  a :b  = d i f f l  
where

d i f f l  b :c  = a :c

The compiled representation c d i f f  of d i f f  uses the new combinator FN:

c d i f f  = FN [ a ] ( [b ](P  (a :b )  e d i f f l ) )  
c d i f f 1 = FN [c ](P  (b :c )  ( a :c ) )

As always, the Turner abstraction operator is applied innermost-first, so the construction of e d i f f l  
is done before c d i f f  is constructed.

The resulting compiled form c d i f f  thus has two levels of currying: an inner one needing one 
logical variable “param eter” (c), and an outer one needing two (a and b). These needs are satisfied 
at application time by the complementary action of “distributing in” appropriate numbers of new 
logical variables (see Section 5.2).

In summary, the general rule for compiling a function f  form al = body is as follows. Suppose 
fo rm al introduces n logical variables, v l , . . . ,  vn. Then the compiled image of f  is FN fb , where:

10
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• [Rule CFNO:] If n = 0, fb  is simply the Turner compilation of P fo rm al body. However, 
function definitions within body (or form al, for tha t m atter!) must be compiled with aware
ness of rules CFNO and CFN1.

• [Rule CFN1:] Otherwise, n > 0. In this case fb  is g ’ , where:

-  g ’ is the compilation of g v l . . .  vn = P form al body.

-  Since the variables v l ........... vn are all distinct, conventional Turner compilation ap
plies, i.e. g ’ = [ v l ] ( . . . ([v n ](P  fo rm al b o d y )) . . . ) .

-  As in rule CFNO, inner function definitions must be compiled in cognizance of rules CFNO 
and CFN1. ,

4.5 R ecognizing Logical Variables

In Section 4.4 it is assumed tha t every  symbol not occurring in the left side of an equation is a logical 
variable. This is a safe assumption, but can lead to needless overhead whereby ordinary parameter 
passage is done by unification. Much better object code can result by recognizing contexts where 
the standard Turner compilation method can be applied.

To assist in this, one may simply adopt the Prolog convention of using uppercase initial letters to 
designate logical variables. Alternatively, one can use a simple contextual discrimination method, 
as follows. A variable x is considered to denote a logical variable only if at least one of the following 
conditions applies:

1. x occurs more than once in the formal param eter sequence of a function.

2. x occurs in a complex  formal param eter expression, i.e. one containing operator or function 
applications.

3. x occurs only in the function body, and is not defined by an equation (i.e. x is free in the 
function body).

Now, suppose tha t in compiling f  fo rm al = body as described in Section 4.4, form al is deter
mined by the above analysis to be an ordinary param eter x. In this case, compilation to the FN 
combinator is not obligatory, and the Turner compilation [x]body can be applied. No confusion 
will occur at application time, for the resulting compiled form will not have FN as its outermost 
combinator.

Finally, we note tha t one well known optimization continues to apply to the Turner compilation 
method, as extended here. The compilation of [x] (fn  arg ) yields S [x ]fn  [x ]a rg . This roughly 
doubles code size, and repeated application for heavily curried functions can be burdensome in both 
space and run time. However, if x is known by pre-scan not to occur in fn  arg , the compilation 
can be short-circuited to K (fn  a rg ) . More generally, [x]E can compile to K E if x is known not 
to occur in E. Since rule CFN1 performs abstraction over logical variables by converting them to 
ordinary param eters, this optimization applies equally to logical variables and ordinary parameters.

11
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5 R eduction  R ules

5.1 Special Precautions

We now present a reduction semantics for SASL+LV. For truly functional languages, reduction 
semantics are sound  in the sense tha t appropriate rules can always be applied without compromising 
semantic validity. Strategic application of these rules is thus an operational, but not semantic, issue.

However, this is not true of SASL+LV, since unneeded (or “speculative” [Bur85]) UNIFY re
ductions can cause binding conflicts tha t would not otherwise arise. A suitable rule application 
strategy will be described in Section 6. For the present, we enumerate the “bare” reduction rules 
for SASL+LV, assuming temporarily tha t somehow all, and only, appropriate rules are applied 
during evaluation. •

5.2 FN R eduction

Consider now the actions to be taken when we apply a function tha t has been compiled to FN fb. 
New instances of all the logical variables introduced in fb  must be created and distributed into a 
new copy of fb  prior to commencing unification. This is accomplished by the following rules:

FN (P fo rm al body) a c tu a l  => [Rule RFNO]
CDND (UNIFY form al a c tu a l)  body ERROR

FN fb  a c tu a l  => [Rule RFN1]
FN (fb  new_lv) a c tu a l

Note that:

1. Rule RFN1 is to  be applied only if rule RFNO does not apply.

2. Rule RFNO is the “base case” resulting from compilation rule CFNO, i.e. where no further logical 
variables need to be instantiated and distributed into fo rm al or body.

3. Correspondingly, rule RFN1 applies to representations resulting from compilation rule CFN1. 
Since compile time abstraction was done over at least one variable, the outermost combinator 
cannot be P.3 /

4. The notation new_lv indicates the creation of a new logical variable node x->(LV x) in 
initialized self-referential form.

5.3 UNIFY R eduction

An application UNIFY a b has the following informal semantics:

3If certain optimizations are applied, this criterion may not be totally reliable. For example, headl b = 1 :b might 
be compiled to P 1. If this is a possibility, a combinator FNO could be introduced to indicate explicitly the rule CFNO 
case.
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(H ighest priority)

[Rule UNI] UNIFY x->(LV tailx) x->(LV tailx) => I TRUE

[Rule UN2] UNIFY x->(LV tailx) y->(LV taily) => I TRUE

• x->(LV tailx) => x->(LV taily)

y->(LV taily) => y->(BV tailx)

[Rule UN3] UNIFY x->(LV tailx) y => UNIFY tailx y

x->(LV tailx) => x->(I y)

[Rule UN4] UNIFY x->(BV tailx) y => UNIFY tailx y

x->(BV tailx) => x->(I y)

[Rule UN5] UNIFY x y->(LV taily)) => UNIFY x taily

y->(LV taily) => y->(I x)

[Rule UN6] UNIFY x y->(BV taily) => UNIFY x taily

y->(LV taily) => y->(I x)

[Rule UN7] UNIFY x->(I z) y => I TRUE

[Rule UN8] UNIFY x y->(I z) => I TRUE

[Rule UN9] UNIFY (P ax bx) (P ay by) => AND (UNIFY ax ay)

(UNIFY bx by)

[Rule UN10] UNIFY x x => I TRUE

[Rule UN11] UNIFY x y , => I FALSE

(Low est priority)

[Rule BV1] f (BV tail) => f tail

Figure 5: Unification combinator reduction rules.
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z:

Figure 6: Unification rule UN2.
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• Expressions a and b are evaluated to  normal form, which can now include “applications” of 
the LV combinator.

• If a and b evaluate to the sam e  logical variable, UNIFY a b simply reduces by rule UNI to I 
TRUE (see Fig. 6).

• If a and b evaluate to  different logical variables x->(LV t a i l x )  and y->(LV t a i l y ) ,  then 
the two logical variables are equated in rule UN2 by:

— interchanging t a i l x  and t a i l y ,  and ■
— changing the LV combinator of one variable (say y) to BV.

This merges the two cyclic lists anchored by x and y into one cyclic list with x remaining as 
the LV anchor. UNIFY a b reduces to I  TRUE.

• If one of a or b (say a) evaluates to a logical variable x->(LV t a i l x )  and the other (say 
b) evaluates to  some y which is not a logical variable, then we bind x to y by reducing it 
to x -> (I  y) (rules UN3 and UN5). The process is then repeated by rules UN4 and UN6 if BV 
combinator nodes are in the chain tha t was anchored at x. Ultimately the base of the cyclic 
chain at x is reached, i.e. UNIFY x -> (I  z) y (rules UN7 and UN8), at which time this binding 
sequence is completed.4

• Otherwise, a and b have evaluated to x and y, respectively, neither of which are logical 
variables. We then do the usual unification case analysis:

— If x and y are pairs P ax bx and P ay by, respectively, then UNIFY a b reduces by rule 
UN9 to AND (UNIFY ax ay) (UNIFY bx by).

— Otherwise, UNIFY a b reduces to I TRUE or I FALSE, according to whether x is the same 
as y (rules UN 10 and UN 11).

This informal reduction semantics is formalized by the reduction rules in Fig. 5. Also included 
is rule BV1, which removes BV node references from the set of normal forms (i.e. forces a chain of 
BV nodes to be “walked” to its LV node anchor).

5.4 A C lo ser  L o o k  at UNIFY

This formulation of unification takes a middle road with respect to each of three controversial issues.

T re a tm e n t o f  e q u a lity : Rules UN10 and UN11 call for UNIFY a b to reduce to I TRUE or 
I FALSE according to whether a and b are the same. To remain on semantically solid ground, 
this “sameness” condition should only apply to identical symbols. However, we suggest tha t two 
references to the same node should also be considered to be the same. This policy is trivial to 
implement (like Lisp’s eq), and does extend unification completeness (see below), albeit at the cost 
of further erosion of referential transparency.

Occur check: The underlying normal order (lazy) semantics means tha t our computational 
domain includes meaningful infinite structures (e.g. x = 1 : (add l x) in Fig. 1), in contrast to

4Necessarily, y = z  in this case, but no test for this condition is required.
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the Herbrand domain underlying Prolog. Hence unifications resulting in expressions with infinite 
denotations must not be rejected as semantically meaningless.

Our unification algorithm is incomplete in dealing with infinite structures (whether represented 
cyclically or by infinite recursion). Roughly speaking, it is complete in unifying u and v if each 
selector (h e a d /ta il)  sequence applied to u and v yields an atom or an unbound logical variable 
in either u or v (or the same node, see previous point). For example, x in Fig. 1 would unify 
with 1 : 2 : y where y is an unbound logical variable, but not with z = 1 : (addl z). A more 
powerful unification method involving node equivalencing is reported in [Har8l]; related techniques 
have been developed for applicative caching [Hug85]. '

Unification of functions: Genera} unification of functions constitutes higher order unification, 
which is known to be undecidable. Many approaches involving unification of functions represented 
by compiled code take the simplifying view that functions are atom s , and hence are equal only 
if identical (i.e. have the same code pointer). In our approach, functions are networks of nodes 
just like any other value. Hence functions can be unified to unbound logical variables, an essential 
feature for retaining the crucial capability of using functions as actual parameters.

But should we allow two functions to be unified? The rules in Fig. 5 are conservative in this 
respect, perm itting successful unification of two functions only if their representations are identical,
i.e. are the same subgraph (assuming rules UN10 and UN11 are given eq interpretations). However, 
a change to rule UN9 can permit other function unifications to succeed: we simply replace it with 
UNIFY (ax bx) (ay by) => AND (UNIFY ax ay) (UNIFY bx by) (note the original effect of rule 
UN9 is subsumed by this new specification).

Now two functions will unify not only if they share the same representation, but also if they 
have unifiable representations. Of course, this is still theoretically incomplete, even though normal 
order evaluation effects will permit some differing representations to unify (e.g. + ( * 2  3) and + 
6). Nevertheless, this approach does permit unification to play a role in computation on functional 
values, e.g. on-the-fly function construction as in interpretive Lisps.5

6 Sequential Im plem entation  o f SASL+LV

6.1 Basic R equirem ents

As suggested in Section 5.1, there are three areas in which the operational semantics of SASL+LV 
presents special challenges in comparison to SASL and other purely functional languages:

1. The set of normal form values must be enlarged to include references to  logical variables;

2. Access of a variable can occur before the source of its binding is known [Red86]. Hence 
Turner’s stack-based normal order evaluation is no longer adequate, and some means of 
m ulti-thread control is inescapable [LGY87b].

3. Special care must be taken to avoid making reductions tha t are uncalled for by normal order 
semantics, lest conflicting unifications be applied needlessly.

5The problem of unifying “equal” objects with differing representations is not new to anyone who has tried using 
floating point numbers in a Prolog system.
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Fortunately, the absence of reduction rules for the LV combinator (outside the UNIFY rules) 
means de facto  the set of normal form expressions is enlarged to include LV references. However, 
we do need to extend our evaluation method so tha t when a x->(BV t a i l x )  node is descended 
to, the chain at t a i l x  is “walked around” until LV node anchoring the chain is reached. This w*as 
specified in Fig. 5 by rule BV1; however, we now need to “step over” chained task pointers as well. 
This is achieved by the following “pseudo”-reduction rule applied when a task [ c , p] descends to 
a BV node at c:

c = x->(BV t a i l x )  =>
re p e a t c := r i g h t ( c ) ;  
u n t i l  l e f t ( c )  ='LV;
c <-> p; /*  swap c and p * / *

6.2 (LV . . . )  Values

We now must decide what combinators are to do when they need an “ordinary” value (atom or 
pair), but are delivered instead an x->(LV t a i l x ) .  The answer is clear: trea t such situations as 
read-only accesses, a la Concurrent Prolog [Sha83,Sha86]. This involves ending the task evaluating 
tha t combinator, in the assurance tha t a new task will resume its evaluation when the logical 
variable at x is bound to  an ordinary value.

To implement this, we simply use t a i l x  as a chain, just as is done for references to busy nodes. 
Specifically, assume task [c , p] ascends to c with a value p = x->(LV t a i l x ) .  This results in a 
reference to task [c , p] being added to the set chained at r ig h t  (x ). Again, since p is implicitly 
represented by x, the LV base of the chain, we need only chain store c in the chain anchored at p:

r ig h t ( x )  := n o d e(c , t a i l x ) ;

To review, we now have two representations for sets of waiting tasks, which are kept distinct 
and never directly interact:

1. Linear chains originating in the r ig h t  field of busy nodes, holding tasks awaiting tha t node’s 
value, and

2. Cyclic chains anchored at LV nodes, holding equivalenced BV nodes and tasks awaiting binding 
of tha t logical variable. '

6.3 B ind O peration

Consider now what happens when an LV node is bound to a non-LV value y. The applicable 
reduction rules from Fig. 5 (ignoring symmetric cases) are:

[UN3] UNIFY x->(LV t a i l x )  y => UNIFY t a i l x  y
x->(LV t a i l x )  => x -> (I  y)
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[UN4] UNIFY x->(BV t a i l x )  y => UNIFY t a i l x  y
x->(BV t a i l x )  => x -> (I  y)

[UN7] UNIFY x -> (I  z) y => I TRUE

The sequence of actions represented by this rule set is a good candidate for macro execution in a 
real implementation. In such a routine, we must (first!) reduce x to I  y to  record its evaluation to 
y, and then create new tasks as indicated in the chain at t a i l x :

q := r i g h t ( x ) ;
l e f t ( x )  := I ;  r ig h t ( x )  := y; /*  Reduce x to  ( I  y) * /  
w hile  (q != x) ,
{ i f  ( l e f t ( q )  != BV)

/*  s te p  over BV nodes * /
c re a te _ ta s k (x ,  l e f t ( q ) ) ;  /*  descending mode, as always * / 

q := r ig h t ( q ) ;  >

6.4 B V  Com binator

L et’s now examine the role of BV nodes in cyclic chains anchored by LV nodes. Beyond being 
simply vestiges of LV equivalencing, BV nodes constitute potential “entry points” for subsequent 
LV accesses. Recall tha t in rule UN2 a y->(LV t a i l y )  which is bound to a x->(LV t a i l x )  gets 
converted to y->(BV t a i l x ) .  Later, a shared access of y may cause some other task to descend 
to y and walk the chain to the base x->(LV t a i l x )  (or its successor by equivalencing). The task 
will then access x as the “value” of y, i.e. the unique representative of the LV equivalence class 
containing x and y.

All this is achieved by the pseudo-reduction rule given in Section 6.1. Note, however, that 
if the access is from a combinator needing an “ordinary” (non-LV) value, then tha t task can be 
directly spliced into the chain at y->(BV t a i l y ) ,  since in this case the exact identity of the base 
LV occurrence is irrelevant.

7 Parallel Evaluation

7.1 Pseudo-Parallel Im plem entation

A prudent step in the development of any parallel programming system is the construction of a 
pseudo-parallel version in which concurrency is simulated on a single processor. In such a system 
every “active phase” between scheduling operations is de facto  an atomic action. This intermediate 
development stage facilitates verification of task representation and coordination techniques, before 
dealing with issues of true concurrency (locking, load distribution, concurrent storage management, 
etc.).

The link-permutation SASL evaluator described in Section 3.1 has been implemented in C, and 
is currently being extended to execute SASL+LV via multi-tasking (the two issues are inseparable,
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as explained in Section 6.1). This is being done very conveniently via the tasking library [Str85] of 
C H—|— [Str86].

This simulation is based on a “task heap” model, whereby a fixed number of processes draw 
tasks from a central pool. Tasks are matched to processes through a dual queue, in which either 
task or process descriptors are enqueued, depending on which at the moment is in surplus. If the 
dual queue is nonempty, it contains exclusively tasks or exclusively processes, since available tasks 
are paired to  waiting processes without delay.

7.2 Concurrent Im plem entation

Upon completion of its pseudo-parallel implementation, our SASL+LV evaluator will be ported 
to the true multiprocessing environment of our 18-node BBN Butterfly. This machine offers a 
shared memory abstraction, whereby local and nonlocal memory can be uniformly addressed, with 
approximately 4 to 1 speed penalty for nonlocal accesses. Our selection of the dual queue task 
management model is motivated by the Butterfly’s hardware support for this mechanism, as well 
as our belief tha t a m ultisequen tia l  (one process per processor) [TL87] process organization is 
economically most appropriate in this environment.

In a concurrent implementation, care must be taken tha t certain test and set operations occur 
atomically. We now enumerate those operations for our SASL+LV evaluation method. In the 
following, t> and <] mark the beginning and end of an atomic action, respectively.

1. Descend: When a task [c , p] undertakes the evaluation of the node at c, t> (i) test if 
busy (c) = 1, and if so, enter p into the chain at r ig h t  (c) ;<] otherwise (ii) set busy (c) = 1 
<1, and begin evaluation at c.

2. Combinator application: When a task [c , p] completes evaluation of node c, it must t> 
(i) save r ig h t ( c )  in a temporary variable; (ii) rewrite node c, and (iii) set busy (c) = 0 <d. 
Other tasks are now perm itted to access node c in its evaluated state, while tasks are created 
from the set of pointers obtained from r ig h t  (c ).

3. Stric t node rendezvous: When a task [ c , p] completes the evaluation of an operand to a 
binary strict operator at a node c it must: t> (i) test if the other operand at c has been 
evaluated, and if so, <d perform the operation obtaining result v a l (see step 2), and continue; 
otherwise: (ii) permute links a t c O and terminate.

4. Enqueueing a read-only task: When a task [ c , p] ascends to a node c needing an ordinary 
value, it must: t> (i) test if p points to an LV combinator node; if so, (ii) do r ig h t  (p) : = 
n o d e(c , r ig h t ( p ) )  <], otherwise: (iii) <i continue evaluation at c.

5. Binding a logical variable: Recall tha t a task accessing a logical variable is enqueued in 
tha t variable’s chain only when its value (reference) is reported to a combinator needing an 
ordinary value. Hence any number of active tasks may hold outstanding accesses on a given 
logical variable. When a UNIFY node attem pts (by rule UN3) to bind a node x->(LV t a i l x )  
to a value v a l, it must be prepared to react if the variable at x is in fact already bound 
by the time it seeks to do so. In this case, the recursive comparison of values in UNIFY is 
resumed using v a l and the new value, via rules UN9 - UN 11 [Lin84], The only critical region
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in this binding operation as described in Section 6.3 is t> q := r i g h t (x) ; left(x) := I ;  
r ig h t  (x) := y; <3. This can be accomplished by a simple spin lock at x.

6. Equating two logical variables: Similarly, the operation of unifying two logical variables must 
be robust enough to  arbitrate among all competing such actions involving one of the variables. 
Fortunately, the cycle merging technique described in Section 5.3 lends itself well to this 
requirement. A distributed (message based) version of this operation is presented in [Lin87a]. 
Again, only test and set operations on individual nodes are required.

7. Dual queue operations: The dual queue operations Wait_DualQ() and Post_DualQ() used for 
allocating tasks to processes are guaranteed to be atomic by the Butterfly hardware.

Finally, we acknowledge tha t a heap-intensive concurrent programming system such as this must 
include an efficient, reliable parallel garbage collection facility. General methods such as [AH87] 
can be applied; however we point out tha t in our approach all “extra” nodes created simply to 
chain tasks are guaranteed not to be shared, and can summarily be recycled when removed from 
their chain.

8 Future Work

Two clear paths lie ahead for this work: completing and critically appraising our concurrent eval
uator, and gaining understanding of the many unresolved language design issues through experi
m entation with significant sized programs. In addition, three deeper areas beckon.

8.1 D ealing W ith  U nification Failures

In SASL+LV a unification failure results in an ERROR value. Since no rules are specified to con
sume this value, the only reductions tha t will ensue are those which are not strict on tha t value. 
Eventually, the reduction evaluation will halt with the resulting normal form providing in effect a 
postmortem of the context(s) in which tha t ERROR blocked further evaluation.

Why not support conditional unification by testing for resulting ERROR values? There are good 
reasons, both semantic and pragmatic.

• Semantic:  Determinacy would be lost, since if two unifications apply conflicting bindings to 
a shared logical variable, the first to occur would succeed, and the second  would fail. For 
determinacy to be retained, one would need FALSE above TRUE (so  f a r )  in the underlying 
domain, and no result depending on a TRUE value could ever be fully trusted!

• Pragmatic: Detecting a failing unification is not sufficient; all bindings done in tha t failing 
attem pt would need to be retracted. In a distributed reduction model, the feasibility of this 
in general is dubious.

However, some cold comfort may be drawn from the committed choice logic programming 
community, which is experiencing a similar conundrum. Their reaction has been to introduce
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“flat” indeterminacy [IMT87,TSS86,FT87,Mie84], whereby unifications are done on a “shadow” 
basis until commitment, and relations in guards are required to be primitive.

We conjecture tha t an analogous policy is feasible within an extension of our reduction model 
for SASL+LV. To illustrate, we note tha t a restricted form of committed choice indeterminacy is 
supported by the current model, if the binary combinator COMMIT is added:

COMMIT x y => TRUE /* if x is not equal to ERROR */

COMMIT x y => FALSE /* if y is not equal to ERROR */

COMMIT ERROR ERROR => TRUE . '

COMMIT ERROR ERROR => FALSE

COMMIT is clearly a pseudo-combinator, because the value of COMMIT x y for if x and y are either 
both equal or both unequal to ERROR is indeterminate. The easily implemented operational intent 
of COMMIT is to evaluate its arguments in parallel, and return TRUE or FALSE as soon as either 
argument evaluation term inates, according to whether or not tha t argument delivered ERROR.

Now suppose we wish to hold a committed choice “competition” between two SASL+LV func
tions f 1 and f2 each applied to the same “goal” param eter g. Importantly, we only consider here 
the case where at least one of fl and f2 are sure to succeed on g, and their unifications are ex
clusively one-way , i.e. only bind variables they introduce. Bindings of non-local variables are of 
course perm itted in the bodies of f 1 and f2 after commitment. We endow f 1 and f2 with an 
extra param eter, used to signal commitment, e.g. f 1 actual goahead = body. Then the desired 
committed choice effect is obtained by the SASL+LV function solve, defined as follows:

solve fl f2 g = if commit x y 

then x true 

else y true

where x = fl g 

y = f2 g

8.2 Larger G ranularity Com binators

The initial excitement with Turner’s application of SKI combinators to functional programming has 
been tempered by empirical evidence tha t their granularity is too fine for efficient implementation 
on the architectures of today. In response, a wide range of “supercombinator” schemes have been 
proposed [Hug82,GH85,Joh84,Kie85]. These approaches exploit compile time analysis to aggregate 
operators into clusters tha t can be mapped to blocks of conventional machine code. We are currently 
examining how one such method, based on automated strictness analysis [LGY87a], can be adapted 
to include logical variables.

8.3 G eneralized A bstract Interpretation

Finally, it has been pointed out tha t strictness analysis, polymorphic type checking [KM87], and 
logical variable mode analysis [DW86] are all complementary facets of the general technique of
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abstract interpretation on applicative languages. We seek as a longer term goal to construct a 
suitable domain for combining these analyses into one comprehensive method, and applying its 
results to the optimized compilation of an advanced language integrating functional and logic 
programming.
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