
COMBINATOR EVALUATION
OF

FUNCTIONAL PROGRAMS
WITH

LOGICAL VARIABLES1

Technical R eport U U C S-87-027

Goran Bage
Computer Science Laboratory

Ericsson Telecom
S-126 25 Stockholm Sweden

Gary Lindstrom
Department of Computer Science

University of Utah
Salt Lake City, Utah 84112 USA

O cto b er 1 9 8 7

*The research was supported in part by grant CCR-8704778 from the National Science Foundation, and
an unrestricted gift from Telefonaktiebolaget LM Ericsson, Stockholm.

C O M B IN A T O R EV A LU A TIO N OF F U N C T IO N A L P R O G R A M S

W IT H LOG ICAL V A R IA BLE S

A bstract

A technique is presented tha t brings logical variables into the scope of the well known Turner
method for evaluating normal order functional programs by S, K, I combinator graph reduction.
This extension is illustrated by SASL+LV, an extension of Turner’s language SASL in which gen
eral expressions serve as formal parameters, and param eter passage is done by unification. The
conceptual and practical advantages of such an extension are discussed, as well as semantic pitfalls
tha t arise from the attendant weakening of referential transparency. Only four new combinators
(LV, BV, FN and UNIFY) are introduced. The resulting object code is fully upward compatible
in the sense tha t previously compiled SASL object code remains executable with unchanged se
mantics. However, “read-only” variable usage in SASL-f LV programs requires a “multi-tasking”
extension of the customary stack-based evaluation method. Mechanisms are presented for manag
ing this multi-tasking on both single and multi-processor systems. Finally, directions are examined
for applying this technique to implementations involving larger granularity combinators, and fuller
semantic treatm ent of logical variables (e.g. accommodation of failing unifications).

C ontents

1 E xtend ing Functional Program m ing W ith Logical V ariables 1

1.1 Added P o w e r1

1.2 Existing Language Designs1

1.3 Prior Im p lem en tations..2

2 C om piling to C om binators 2

2.1 B a s ic s ..'2

2.2 SKI C om binato rs ..2

2.3 SASL ..3

2.4 Turner Compilation3

3 C om binator E valuators 4

3.1 S eq u en tia l...4

3.2 M ulti-Tasking.. ... 5

4 Introducing Logical V ariables 7

4.1 SA SL +L V7

4.2 Semantic I m p a c t9

4.3 R e p re se n ta tio n9

4.4 Compiling Logical V ariab les9

4.5 Recognizing Logical V ariab les11

5 R ed uction R ules 12

5.1 Special P recau tions..12

5.2 FN R e d u c t io n ...12

5.3 UNIFY R e d u c tio n ..12

5.4 A Closer Look at U N I F Y15

6 Sequential Im plem entation o f SA SL +L V 16

6.1 Basic Requirem ents...16

6.2 (LV . . .) V a lu e s17

6.3 Bind O p e ra tio n17

6.4 BV C om binator... ..18

7 P arallel E valuation 18

7.1 Pseudo-Parallel Im plem entation.. 18

7.2 Concurrent Im p lem en ta tion 19

8 Future W ork 20

8.1 Dealing W ith Unification F ailu res.. 20

8.2 Larger Granularity C o m b in a to rs .. 21

8.3 Generalized Abstract Interpretation .. 21

1 E xtending Functional Program m ing W ith Logical Variables

1.1 Added Power

Functional and logic programming languages are alternative approaches to applicative (i.e. side-
effect free) programming. While rivalry between partisans of these two approaches has at times
been intense, there is now an atmosphere of detente , and each is adopting good ideas from the
other. For example, a number of logic programming researchers are now carefully studying the data
directionality effects of functional programming in an effort to achieve a satisfactory formulation of
AND-parallelism, and some functional language designers are coveting the elegance of unification.

We offer here another step down the la tter path, by considering how to incorporate logical vari
ables into a functional language while preserving determinacy. Logical variables are variables in the
m athem atician’s sense rather than in the computer scientist’s: place holders for fixed but initially
unknown quantities, which become known in stages by the application of equational constraints.

Logical variables can extend the power of functional programming in many im portant directions,
including:

• Providing building blocks for monotonically refineable data structures (e.g. Prolog-style dif
ference lists), aiding in the coordination of parallel processes;

• Representation of constraint-based problem solvers such as the Milner polymorphic typing
algorithm [Mil78];

• Deft treatm ent of forward reference problems, such as symbol table management in compilers
[CH87];

• Modeling of fundamentally bidirectional information flow, such as buses and pass transistors
in hardware specification systems [She85,CGM87,PSE85], and

• Playing a “micro object” role in object oriented programming dialects (e.g. for shareable
message “mailboxes”) [KTMB86,Lin87b].

Note th a t none of these fundamentally depends on m ulti-path search, backtracking or even
accommodation of failing unification (although the semantic merit of such extensions is undeniable).
Thus our viewpoint throughout will be tha t a failing unification constitutes a run-time error. Only
in Section 8.1 will we briefly consider the semantic and operational consequences of responding to
unification failures.

1.2 E xisting Language D esigns

The design of FGL+LV, a normal order (lazy) functional language with logical variables, is described
in [Lin85j. FGL+LV is based on the function graph language FGL [KJRL80]. More recently, the
MIT Dataflow Architecture Group has extended the dataflow language Id to “Id Nouveau” , which
offers a specialized form of logical variables through write-once I-structures [NPA86], Danforth has
critically examined this language design area as a whole [Dan85].

1

1.3 Prior Im plem entations

A single processor implementation of Id Nouveau has recently been announced [Nik87], An imple
m entation of FGL+LV in the context of the Rediflow multiprocessor architecture [KL84] is outlined
in [Lin87a]. The la tter design is the only one known to us tha t combines logical variables and nor
mal order evaluation in a thorough way. However, it was never implemented (or simulated), due
primarily to its complexity and specific dependence on the Rediflow architecture. This complexity
arose from two factors:

1. The use of two levels of explicit demand (nonassertive , or conventional demand, and assertive,
arising from unification operators-, powerful enough to elicit logical variable references as well
as ordinary values);

2. The Rediflow two level task notification scheme (according to whether notification is within
or across code blocks).

In retrospect, both these difficulties are due to Rediflow’s one-to-one mapping of complete function
definitions to individual large granularity combinators. By compiling to fine granularity com
binators, both these problems are eliminated. (In Section 8.2 we briefly return to the issue of
incorporating logical variables into “super” combinators.)

2 Com piling to Com binators

2.1 Basics

A combinator is an environment-free function.

• Environment-free means tha t a combinator involves no “im ports” , “fluids” , “globals” , or
identifier scoping (static, dynamic, or otherwise), although senses of these can be supported
indirectly through compilation (see Section 4.4).

• Function means tha t a combinator can be applied to argument(s) to compute a result without
incurring any semantic effect except production of tha t result (i.e. no side-effects).

Combinators are typically curried , i.e. defined on one param eter at a time. Thus a curried
add function might be p lu s a b, so tha t one'could define p lu s l = p lu s 1, and then apply p lu s l
several times, e.g. p lu s l 2 yielding 3, p lu s l 10 yielding 11, etc.

2.2 SKI Com binators

The combinator notion originated with the S , K, I family, developed by Curry and Feys as a con
tribution to the foundations of mathematics [CF58]. In addition to S, K, I , this family generally
includes curried combinators for the primitive operators of interest (e.g. +, OR, P (pair), HD (head),
etc.), and conditional COND.

In 1979 Turner discovered [Tur79] tha t this family could plausibly be used for executing normal
order functional programs, with several advantages:

2

a+b
where x = 1 : (add l x)

add l (h : t) = (h+1) : (add l t) .
a : (b : c) = x

Figure 1: Sample SASL source code.

1. Their fine granularity provides a homogenous program representation (e.g. all programmer
defined function boundaries disappear) tha t greatly simplifies evaluation and storage man
agement. •

2. The two most im portant semantic features of modern functional languages, viz. normal order
evaluation and higher order functions, are elegantly supported.

3. Opportunities for concurrent evaluation naturally arise at non-unary s tr ic t combinators, i.e.
those known a priori to require the evaluation of two or more arguments.

4. The evaluation rules for the S, K, I family have direct interpretations as graph reduction
rules. Moreover, “full laziness” results: subgraphs are evaluated at most once, even when
shared across curried functions [AKP84].

2.3 SASL

The base language for our extension is a subset of SASL, a predecessor of M iranda1 [Tur85]. A
very simple example of SASL source code is shown in Fig. 1. This program defines the function
add l which maps a stream (infinite list) of integers into another stream with component-wise
inc rem en ta tion^ : v denotes a right-associative pair construction, i.e. the Lisp (cons u v)). The
function addl is used to define x, a stream representing the infinite sequence of natural numbers
starting with 1 (note the cyclic definition of x). Finally, the first two elements a and b of x are
summed to yield the program’s overall result.

All SASL functions are curried, and syntactically parentheses are necessary only where default
left associativity is not desired. Thus (+ 1 (* 2 3))m e a n s ((+ 1) ((* 2) 3)) , which evaluates
to 7; (+ 1 * 2 3) evaluates to either an arithmetic error or to itself (i.e. it is already in normal
form), depending on the error checking policy adopted. We will employ this minimal parenthesis
notation henceforth.

2.4 Turner C om pilation

Reference [Tur79] gives a method for compiling SASL to combinators, which we call Turner com
pilation.

1 “Miranda” is a trademark of Research Software Ltd.

1. Since SASL is already curried, to compile expressions we need only convert their infix oper
ators to their corresponding curried prefix form. For example, 1+3 : 2* (5 -8) compiles to
(P (+ 1 3) (* 2 (- 5 8))) , where the P combinator is the curried prefix version of the
infix : operator.

2. Applications of programmer defined functions compiled similarly, e.g. (f (1:3:TRUE)) com
piles to (f ’ (P 1 (P 3 TRUE))) , where f ’ is the compilation of SASL function f (see step 3).

3. Function definitions are compiled using the cornerstone of the Turner method, the abstraction
operation [x]exp: .

[x](f p) = S [x]f [x]p [x]y = K y [x]x = I

This operation is the inverse of function application, in the sense tha t

([x]E x) = E

A sample application of this operation is shown below on twist a b = b:a (using the second
optimization described in Section 4.5).

twist = [a]([b]b:a)

= [a] ([b] (P b a))

= [a] (S [b](P b) [b] a)

= [a] (S (S [b]P [b]b) (K a))

= [a] (S (S (K P) I) (K a))

= [a]C(S C(S (K P)) I)) (K a))

= S [a](S ((S (K P)) I)) [a](K a)

= S (K (S ((S (K P)) I))) (S [a]K [a] a)

= S (K (S (CS (K P)) I))) (S (K K) I)

= S (K (S (S (K P) I))) (S (K K) I)

This compilation method (without optimizations) is illustrated more fully in Fig. 2 on the program
in Fig. 1. Note tha t direct “knot-tying” is used to represent recursion, rather than the more elegant
but less efficient Y combinator (although the Y combinator has the advantage of yielding only acyclic
graphs). Roots of shared subgraphs are prefixed by i-> labels, and references (after the leftmost,
in place of which the shared subgraph is shown) are indicated by ->i notations. (We refrain from
using the more traditional 1: (. . .) notation, in light of possible confusion with SASL’s : infix
pair constructor.)

3 Com binator Evaluators

3.1 Sequential

The Turner compilation algorithm is accompanied by a clever sequential evaluation method. By
repeatedly performing the outermost reduction, this method mechanizes normal order (lazy) se
mantics without explicit demand indicators or simulated multi-tasking. This approach underlies

4

(+ (HD

(2->(S (S (K P) (S (S (K +) (U (S (K K) I))) (K 1)))

(S (U (S (K K) (K ->2))) (U (K I)))) ->1)))

(HD (TL ->1)))

Figure 2: SKI combinator object code (unoptimized).

all efficient sequential evaluation methods for larger granularity combinators, e.g. the G-machine
[Joh84].

Outermost reductions are efficiently located by a recursive traversal algorithm. In typical im
plementations this traversal is administered by a link reversal method which eliminates the need
for an explicit stack (see Fig. 3). Since this technique forms the basis for our SASL+LV evaluation
method, we review it briefly here. The key ideas are:

1. Two pointers are used, c (current) and p (previous). Initially c points to the root of the graph
to be evaluated, and p has a n u l l value. These pointers are used to traverse the graph by a
technique known as link perm utation [Lin73].

2. We assume tha t each pointer value, when stored, also records whether it resides in the left or
right half of its node (the lowest order bit is generally available for this purpose, given byte
addressing). This pointer tagging (not indicated in our figures) is sufficient for the evaluator
to always be awaxe of whether it is ascending or descending to the current node c.

3. When descending from a node, the “backpointer” (old p value) is always stored in the right
half of the node (this convention will simplify our extended method described in Section 3.2).

3 .2 M u lt i -T a s k in g

As remarked in Section 3.1, the Turner evaluation method performs lazy evaluation simply by
steadily performing the outermost reduction until normal form results. On a sequential machine, no
further evaluation order embellishment is necessary. However, natural opportunities for concurrency
arise within this framework which can be exploited on parallel architectures. The simplest non-
speculative such opportunities are generated by non-unary (henceforth, binary) strict operators,
e.g. addition [CP85]. A very clean technique exploiting these opportunities by stack discarding and
reconstruction has been presented by Hughes [Hug87].

We sketch another approach here, exploiting link permutation:

1. Each task in our system is represented by a [c , p] pointer pair. We assume there is a
background mechanism for allocating tasks to reduction processes.

1->(P 1

5

c —►a c - * C H

4 -

n ~ m
c —► b

x:

E n i

I V

a:
v = val(a)

w

b:
w = val(b)

I v + w

Figure 3: Normal order evaluation by link permutation.

2. Each node is augmented by a busy bit, set to 1 iff a task is currently evaluating tha t node.
If busy (n) = 1, we say node n is busy.

3. When a task descends to a binary strict operator, it digresses to evaluate the operator’s first
argument. Before beginning that evaluation, however, a new task is created for evaluating
the second argument. By convention, new tasks always are created in the descending mode.

4. If a task [c , p] descends to a busy node n, information is enqueued to permit creation of a
new task [n, p] when evaluation of n is completed. Note that: _

• Any node undergoing evaluation has a backpointer (or set of backpointers, see below)
in its right half. ’

• Furthermore, since necessarily c = n, we need only record p to represent task [c , p] .

• Finally, we note tha t the backpointer in r ig h t (n) is simply another such p ’ from a task
[n , p ’] tha t happened to arrive at n first. Hence we view r ig h t (n) as holding a set of
pointers.2

5. Now suppose tha t evaluation of a busy node n is completed, with the waiting task set in
r ig h t (n) equal to { p i pk}. Then the current task continues as [p i , n] , and the
remaining pointers are used to create tasks [n , p2] , . . . , [n , p k] . For consistency (see
point 3), these k-1 tasks are restarted created in the descending mode. However, they will
reverse direction when they determine tha t node n is already in normal form (a normal_f orm
mark bit could expedite this).

Fig. 4 illustrates this mechanism on an addition subgraph. Conceivably, this technique could have
formed the basis of a shared memory multiprocessor version of the Burroughs Norma co-processor
[Sch86], or the SKIM machine [CGMN80].

4 Introducing Logical Variables

4.1 S A S L + L V

Given our focus on semantic and implementational m atters, we wish to put aside the im portant
language design issues of how logical variables should be introduced in a full, “rounded” manner
into a lazy functional language. Thus we seek here an expedient approach which permits us to
explore the fundamental “semantic im pact” of logical variables when introduced into a mature
base language.

Our choice for this purpose is SASL+LV, a subset of SASL extended to include logical variables
and param eter passage by unification. SASL+LV is a “laboratory” language, and is not claimed
to be complete or useful in any practical sense. However, it is more than simply a “gedanken”
language, since serious implementations are being constructed (see Section 7.1).

2We assume availability of a second low order pointer bit (in addition the bit indicating l e f t / r i g h t source, see
Section 3.1) to distinguish the final value in a task descriptor chain. Two such bits are available under byte addressing,
assuming nodes are at least four bytes wide, and word alignment is observed.

p —► r
c : 1: 3 ^

x:

r

4-d — r i 1 1 i l H
x:

T T c —► HEO

ta s k
[x , r *]
a r r iv e s

r' r

EEx : ?

P - > E O

r' r

new task
[b .x]
c re a te d

c —h h - 1 t—►r

r' r

U
x:

P —Hoi + 1 ~v~1
v « val(a)

x:

E C T

r' r

M :

task dies

c - M U
x:

r' r

■U

Lot + 1 y 1 P —H o i 1 1 w~|
b:

w = val(b)

c -► r r ' + - P

two tasks continue

Figure 4: Strictness-based multi-tasking evaluation.

SASL+LV differs syntactically from SASL only through the generalization of formal parameters
to arbitrary expressions, rather than the customary sequence of distinct identifiers (or patterns
reducing to such). The informal semantics of a SASL+LV function f fo rm al = body applied to
exp are:

1. Create new instances of form al and body;

2. Unify exp with this instance of form al;

3. If successful, return the value of this instance of body under the bindings tha t resulted from
the unification;

4. Otherwise, return an error indication. .

4.2 Sem antic Im pact

The impact of logical variables on the formal semantics of SASL+LV is essentially the same as in
FGL+LV: the injection of a well-behaved (i.e. monotonic) form of side-effects. In particular, the
sharing of all references to a given logical variable is semantically visible via unification. Conse
quently, the law of “referential transparency” (roughly, tha t replication of expressions is semanti
cally invisible) must be partially repealed.

To illustrate, consider the SASL+LV function d i f f a:b b :c = a:c, which mimics the Prolog
append relation on “difference lists” . We assume tha t a, b, and c all denote logical variables.
Then the application d i f f (1 :2 :x) :x (3 :n i l) : n i l (where n i l is a special list ending constant)
returns (l : 2 : 3 : n i l) :n i l . Its correctness directly depends on all occurrences of the symbol x
denoting the sam e logical variable.

4.3 R epresentation

A logical variable is represented by an “application” of the new combinator LV, e.g. (LV t a i l x) .
As noted in Section 4.2, shared references to such nodes are crucial to correct logical variable
semantics. Hence in Section 5.2 when reduction rules on LV combinators are described, we will
refine this notation to x->(LV t a i l x) , in the manner of Fig. 2. Initially, an LV application has a
cyclic self-reference as its argument, i.e. x->(LV x). This configuration indicates tha t the set (or
chain) anchored at x is empty. In Section 5.3 we shall see tha t when two distinct LV combinator
nodes are unified, their chains are merged, and one has its combinator transformed to BV (“bound
variable”).

4.4 C om piling Logical Variables

Given the semantic visibility of logical variable sharing, we must ensure tha t each logical variable
in a SASL+LV function is instantiated precisely when semantically dictated, i.e. once per function
application. Any less and function bodies are no longer “pure code” ; any more and we lose some
unification correctness (e.g. desired inter-task communication effects). To arrange this:

1. We assume tha t every variable is a logical variable if not immediately bound by appearance
in the left side of an equation.

2. We treat each logical variable in a function definition as a special kind of formal param eter that
gets bound to a “fresh” LV instance prior to each application of the function tha t introduces
it.

However, this semantic requirement poses a language design question concerning the interaction
of logical variables and currying. To illustrate, consider the SASL+LV function d i f f , defined in
Section 4.2. W hat should be the meaning of df = d i f f x:y? Clearly, we must create an'instance
of the d i f f function with a unified to x, and b unified to y. But should this be done:

• once when d f is created by the application of d i f f to x :y , or .

• repeatedly when df is applied to various arguments?

Either approach is semantically defensible and implementationally viable. However, we adopt
the first policy, on the basis of consistency with conventional currying.

• For a curried function of n arguments, there are n opportunities for the instantiation of logical
variables, i.e. after application to the i-th argument, for i = 1, ...,n .

• Each logical variable x occurring in a formal param eter expression is instantiated at the z-th
stage of curried application, for the minimum i such tha t x occurs in the i-th formal parameter
expression.

• Logical variables occurring only in the function body are considered to occur in the last formal
param eter expression.

Thus we compile d i f f in two stages, as though it were defined:

d i f f a :b = d i f f l
where

d i f f l b :c = a :c

The compiled representation c d i f f of d i f f uses the new combinator FN:

c d i f f = FN [a] ([b](P (a :b) e d i f f l))
c d i f f 1 = FN [c](P (b :c) (a :c))

As always, the Turner abstraction operator is applied innermost-first, so the construction of e d i f f l
is done before c d i f f is constructed.

The resulting compiled form c d i f f thus has two levels of currying: an inner one needing one
logical variable “param eter” (c), and an outer one needing two (a and b). These needs are satisfied
at application time by the complementary action of “distributing in” appropriate numbers of new
logical variables (see Section 5.2).

In summary, the general rule for compiling a function f form al = body is as follows. Suppose
fo rm al introduces n logical variables, v l , . . . , vn. Then the compiled image of f is FN fb , where:

10

9

• [Rule CFNO:] If n = 0, fb is simply the Turner compilation of P fo rm al body. However,
function definitions within body (or form al, for tha t m atter!) must be compiled with aware
ness of rules CFNO and CFN1.

• [Rule CFN1:] Otherwise, n > 0. In this case fb is g ’ , where:

- g ’ is the compilation of g v l . . . vn = P form al body.

- Since the variables v l vn are all distinct, conventional Turner compilation ap
plies, i.e. g ’ = [v l] (. . . ([v n](P fo rm al b o d y)) . . .) .

- As in rule CFNO, inner function definitions must be compiled in cognizance of rules CFNO
and CFN1. ,

4.5 R ecognizing Logical Variables

In Section 4.4 it is assumed tha t every symbol not occurring in the left side of an equation is a logical
variable. This is a safe assumption, but can lead to needless overhead whereby ordinary parameter
passage is done by unification. Much better object code can result by recognizing contexts where
the standard Turner compilation method can be applied.

To assist in this, one may simply adopt the Prolog convention of using uppercase initial letters to
designate logical variables. Alternatively, one can use a simple contextual discrimination method,
as follows. A variable x is considered to denote a logical variable only if at least one of the following
conditions applies:

1. x occurs more than once in the formal param eter sequence of a function.

2. x occurs in a complex formal param eter expression, i.e. one containing operator or function
applications.

3. x occurs only in the function body, and is not defined by an equation (i.e. x is free in the
function body).

Now, suppose tha t in compiling f fo rm al = body as described in Section 4.4, form al is deter
mined by the above analysis to be an ordinary param eter x. In this case, compilation to the FN
combinator is not obligatory, and the Turner compilation [x]body can be applied. No confusion
will occur at application time, for the resulting compiled form will not have FN as its outermost
combinator.

Finally, we note tha t one well known optimization continues to apply to the Turner compilation
method, as extended here. The compilation of [x] (fn arg) yields S [x]fn [x]a rg . This roughly
doubles code size, and repeated application for heavily curried functions can be burdensome in both
space and run time. However, if x is known by pre-scan not to occur in fn arg , the compilation
can be short-circuited to K (fn a rg) . More generally, [x]E can compile to K E if x is known not
to occur in E. Since rule CFN1 performs abstraction over logical variables by converting them to
ordinary param eters, this optimization applies equally to logical variables and ordinary parameters.

11

9

5 R eduction R ules

5.1 Special Precautions

We now present a reduction semantics for SASL+LV. For truly functional languages, reduction
semantics are sound in the sense tha t appropriate rules can always be applied without compromising
semantic validity. Strategic application of these rules is thus an operational, but not semantic, issue.

However, this is not true of SASL+LV, since unneeded (or “speculative” [Bur85]) UNIFY re
ductions can cause binding conflicts tha t would not otherwise arise. A suitable rule application
strategy will be described in Section 6. For the present, we enumerate the “bare” reduction rules
for SASL+LV, assuming temporarily tha t somehow all, and only, appropriate rules are applied
during evaluation. •

5.2 FN R eduction

Consider now the actions to be taken when we apply a function tha t has been compiled to FN fb.
New instances of all the logical variables introduced in fb must be created and distributed into a
new copy of fb prior to commencing unification. This is accomplished by the following rules:

FN (P fo rm al body) a c tu a l => [Rule RFNO]
CDND (UNIFY form al a c tu a l) body ERROR

FN fb a c tu a l => [Rule RFN1]
FN (fb new_lv) a c tu a l

Note that:

1. Rule RFN1 is to be applied only if rule RFNO does not apply.

2. Rule RFNO is the “base case” resulting from compilation rule CFNO, i.e. where no further logical
variables need to be instantiated and distributed into fo rm al or body.

3. Correspondingly, rule RFN1 applies to representations resulting from compilation rule CFN1.
Since compile time abstraction was done over at least one variable, the outermost combinator
cannot be P.3 /

4. The notation new_lv indicates the creation of a new logical variable node x->(LV x) in
initialized self-referential form.

5.3 UNIFY R eduction

An application UNIFY a b has the following informal semantics:

3If certain optimizations are applied, this criterion may not be totally reliable. For example, headl b = 1 :b might
be compiled to P 1. If this is a possibility, a combinator FNO could be introduced to indicate explicitly the rule CFNO
case.

12

(H ighest priority)

[Rule UNI] UNIFY x->(LV tailx) x->(LV tailx) => I TRUE

[Rule UN2] UNIFY x->(LV tailx) y->(LV taily) => I TRUE

• x->(LV tailx) => x->(LV taily)

y->(LV taily) => y->(BV tailx)

[Rule UN3] UNIFY x->(LV tailx) y => UNIFY tailx y

x->(LV tailx) => x->(I y)

[Rule UN4] UNIFY x->(BV tailx) y => UNIFY tailx y

x->(BV tailx) => x->(I y)

[Rule UN5] UNIFY x y->(LV taily)) => UNIFY x taily

y->(LV taily) => y->(I x)

[Rule UN6] UNIFY x y->(BV taily) => UNIFY x taily

y->(LV taily) => y->(I x)

[Rule UN7] UNIFY x->(I z) y => I TRUE

[Rule UN8] UNIFY x y->(I z) => I TRUE

[Rule UN9] UNIFY (P ax bx) (P ay by) => AND (UNIFY ax ay)

(UNIFY bx by)

[Rule UN10] UNIFY x x => I TRUE

[Rule UN11] UNIFY x y , => I FALSE

(Low est priority)

[Rule BV1] f (BV tail) => f tail

Figure 5: Unification combinator reduction rules.

13

z:

Figure 6: Unification rule UN2.

14

• Expressions a and b are evaluated to normal form, which can now include “applications” of
the LV combinator.

• If a and b evaluate to the sam e logical variable, UNIFY a b simply reduces by rule UNI to I
TRUE (see Fig. 6).

• If a and b evaluate to different logical variables x->(LV t a i l x) and y->(LV t a i l y) , then
the two logical variables are equated in rule UN2 by:

— interchanging t a i l x and t a i l y , and ■
— changing the LV combinator of one variable (say y) to BV.

This merges the two cyclic lists anchored by x and y into one cyclic list with x remaining as
the LV anchor. UNIFY a b reduces to I TRUE.

• If one of a or b (say a) evaluates to a logical variable x->(LV t a i l x) and the other (say
b) evaluates to some y which is not a logical variable, then we bind x to y by reducing it
to x -> (I y) (rules UN3 and UN5). The process is then repeated by rules UN4 and UN6 if BV
combinator nodes are in the chain tha t was anchored at x. Ultimately the base of the cyclic
chain at x is reached, i.e. UNIFY x -> (I z) y (rules UN7 and UN8), at which time this binding
sequence is completed.4

• Otherwise, a and b have evaluated to x and y, respectively, neither of which are logical
variables. We then do the usual unification case analysis:

— If x and y are pairs P ax bx and P ay by, respectively, then UNIFY a b reduces by rule
UN9 to AND (UNIFY ax ay) (UNIFY bx by).

— Otherwise, UNIFY a b reduces to I TRUE or I FALSE, according to whether x is the same
as y (rules UN 10 and UN 11).

This informal reduction semantics is formalized by the reduction rules in Fig. 5. Also included
is rule BV1, which removes BV node references from the set of normal forms (i.e. forces a chain of
BV nodes to be “walked” to its LV node anchor).

5.4 A C lo ser L o o k at UNIFY

This formulation of unification takes a middle road with respect to each of three controversial issues.

T re a tm e n t o f e q u a lity : Rules UN10 and UN11 call for UNIFY a b to reduce to I TRUE or
I FALSE according to whether a and b are the same. To remain on semantically solid ground,
this “sameness” condition should only apply to identical symbols. However, we suggest tha t two
references to the same node should also be considered to be the same. This policy is trivial to
implement (like Lisp’s eq), and does extend unification completeness (see below), albeit at the cost
of further erosion of referential transparency.

Occur check: The underlying normal order (lazy) semantics means tha t our computational
domain includes meaningful infinite structures (e.g. x = 1 : (add l x) in Fig. 1), in contrast to

4Necessarily, y = z in this case, but no test for this condition is required.

15

the Herbrand domain underlying Prolog. Hence unifications resulting in expressions with infinite
denotations must not be rejected as semantically meaningless.

Our unification algorithm is incomplete in dealing with infinite structures (whether represented
cyclically or by infinite recursion). Roughly speaking, it is complete in unifying u and v if each
selector (h e a d /ta il) sequence applied to u and v yields an atom or an unbound logical variable
in either u or v (or the same node, see previous point). For example, x in Fig. 1 would unify
with 1 : 2 : y where y is an unbound logical variable, but not with z = 1 : (addl z). A more
powerful unification method involving node equivalencing is reported in [Har8l]; related techniques
have been developed for applicative caching [Hug85]. '

Unification of functions: Genera} unification of functions constitutes higher order unification,
which is known to be undecidable. Many approaches involving unification of functions represented
by compiled code take the simplifying view that functions are atom s , and hence are equal only
if identical (i.e. have the same code pointer). In our approach, functions are networks of nodes
just like any other value. Hence functions can be unified to unbound logical variables, an essential
feature for retaining the crucial capability of using functions as actual parameters.

But should we allow two functions to be unified? The rules in Fig. 5 are conservative in this
respect, perm itting successful unification of two functions only if their representations are identical,
i.e. are the same subgraph (assuming rules UN10 and UN11 are given eq interpretations). However,
a change to rule UN9 can permit other function unifications to succeed: we simply replace it with
UNIFY (ax bx) (ay by) => AND (UNIFY ax ay) (UNIFY bx by) (note the original effect of rule
UN9 is subsumed by this new specification).

Now two functions will unify not only if they share the same representation, but also if they
have unifiable representations. Of course, this is still theoretically incomplete, even though normal
order evaluation effects will permit some differing representations to unify (e.g. + (* 2 3) and +
6). Nevertheless, this approach does permit unification to play a role in computation on functional
values, e.g. on-the-fly function construction as in interpretive Lisps.5

6 Sequential Im plem entation o f SASL+LV

6.1 Basic R equirem ents

As suggested in Section 5.1, there are three areas in which the operational semantics of SASL+LV
presents special challenges in comparison to SASL and other purely functional languages:

1. The set of normal form values must be enlarged to include references to logical variables;

2. Access of a variable can occur before the source of its binding is known [Red86]. Hence
Turner’s stack-based normal order evaluation is no longer adequate, and some means of
m ulti-thread control is inescapable [LGY87b].

3. Special care must be taken to avoid making reductions tha t are uncalled for by normal order
semantics, lest conflicting unifications be applied needlessly.

5The problem of unifying “equal” objects with differing representations is not new to anyone who has tried using
floating point numbers in a Prolog system.

16

Fortunately, the absence of reduction rules for the LV combinator (outside the UNIFY rules)
means de facto the set of normal form expressions is enlarged to include LV references. However,
we do need to extend our evaluation method so tha t when a x->(BV t a i l x) node is descended
to, the chain at t a i l x is “walked around” until LV node anchoring the chain is reached. This w*as
specified in Fig. 5 by rule BV1; however, we now need to “step over” chained task pointers as well.
This is achieved by the following “pseudo”-reduction rule applied when a task [c , p] descends to
a BV node at c:

c = x->(BV t a i l x) =>
re p e a t c := r i g h t (c) ;
u n t i l l e f t (c) ='LV;
c <-> p; /* swap c and p * / *

6.2 (LV . . .) Values

We now must decide what combinators are to do when they need an “ordinary” value (atom or
pair), but are delivered instead an x->(LV t a i l x) . The answer is clear: trea t such situations as
read-only accesses, a la Concurrent Prolog [Sha83,Sha86]. This involves ending the task evaluating
tha t combinator, in the assurance tha t a new task will resume its evaluation when the logical
variable at x is bound to an ordinary value.

To implement this, we simply use t a i l x as a chain, just as is done for references to busy nodes.
Specifically, assume task [c , p] ascends to c with a value p = x->(LV t a i l x) . This results in a
reference to task [c , p] being added to the set chained at r ig h t (x). Again, since p is implicitly
represented by x, the LV base of the chain, we need only chain store c in the chain anchored at p:

r ig h t (x) := n o d e(c , t a i l x) ;

To review, we now have two representations for sets of waiting tasks, which are kept distinct
and never directly interact:

1. Linear chains originating in the r ig h t field of busy nodes, holding tasks awaiting tha t node’s
value, and

2. Cyclic chains anchored at LV nodes, holding equivalenced BV nodes and tasks awaiting binding
of tha t logical variable. '

6.3 B ind O peration

Consider now what happens when an LV node is bound to a non-LV value y. The applicable
reduction rules from Fig. 5 (ignoring symmetric cases) are:

[UN3] UNIFY x->(LV t a i l x) y => UNIFY t a i l x y
x->(LV t a i l x) => x -> (I y)

17

[UN4] UNIFY x->(BV t a i l x) y => UNIFY t a i l x y
x->(BV t a i l x) => x -> (I y)

[UN7] UNIFY x -> (I z) y => I TRUE

The sequence of actions represented by this rule set is a good candidate for macro execution in a
real implementation. In such a routine, we must (first!) reduce x to I y to record its evaluation to
y, and then create new tasks as indicated in the chain at t a i l x :

q := r i g h t (x) ;
l e f t (x) := I ; r ig h t (x) := y; /* Reduce x to (I y) * /
w hile (q != x) ,
{ i f (l e f t (q) != BV)

/* s te p over BV nodes * /
c re a te _ ta s k (x , l e f t (q)) ; /* descending mode, as always * /

q := r ig h t (q) ; >

6.4 B V Com binator

L et’s now examine the role of BV nodes in cyclic chains anchored by LV nodes. Beyond being
simply vestiges of LV equivalencing, BV nodes constitute potential “entry points” for subsequent
LV accesses. Recall tha t in rule UN2 a y->(LV t a i l y) which is bound to a x->(LV t a i l x) gets
converted to y->(BV t a i l x) . Later, a shared access of y may cause some other task to descend
to y and walk the chain to the base x->(LV t a i l x) (or its successor by equivalencing). The task
will then access x as the “value” of y, i.e. the unique representative of the LV equivalence class
containing x and y.

All this is achieved by the pseudo-reduction rule given in Section 6.1. Note, however, that
if the access is from a combinator needing an “ordinary” (non-LV) value, then tha t task can be
directly spliced into the chain at y->(BV t a i l y) , since in this case the exact identity of the base
LV occurrence is irrelevant.

7 Parallel Evaluation

7.1 Pseudo-Parallel Im plem entation

A prudent step in the development of any parallel programming system is the construction of a
pseudo-parallel version in which concurrency is simulated on a single processor. In such a system
every “active phase” between scheduling operations is de facto an atomic action. This intermediate
development stage facilitates verification of task representation and coordination techniques, before
dealing with issues of true concurrency (locking, load distribution, concurrent storage management,
etc.).

The link-permutation SASL evaluator described in Section 3.1 has been implemented in C, and
is currently being extended to execute SASL+LV via multi-tasking (the two issues are inseparable,

18

as explained in Section 6.1). This is being done very conveniently via the tasking library [Str85] of
C H—|— [Str86].

This simulation is based on a “task heap” model, whereby a fixed number of processes draw
tasks from a central pool. Tasks are matched to processes through a dual queue, in which either
task or process descriptors are enqueued, depending on which at the moment is in surplus. If the
dual queue is nonempty, it contains exclusively tasks or exclusively processes, since available tasks
are paired to waiting processes without delay.

7.2 Concurrent Im plem entation

Upon completion of its pseudo-parallel implementation, our SASL+LV evaluator will be ported
to the true multiprocessing environment of our 18-node BBN Butterfly. This machine offers a
shared memory abstraction, whereby local and nonlocal memory can be uniformly addressed, with
approximately 4 to 1 speed penalty for nonlocal accesses. Our selection of the dual queue task
management model is motivated by the Butterfly’s hardware support for this mechanism, as well
as our belief tha t a m ultisequen tia l (one process per processor) [TL87] process organization is
economically most appropriate in this environment.

In a concurrent implementation, care must be taken tha t certain test and set operations occur
atomically. We now enumerate those operations for our SASL+LV evaluation method. In the
following, t> and <] mark the beginning and end of an atomic action, respectively.

1. Descend: When a task [c , p] undertakes the evaluation of the node at c, t> (i) test if
busy (c) = 1, and if so, enter p into the chain at r ig h t (c) ;<] otherwise (ii) set busy (c) = 1
<1, and begin evaluation at c.

2. Combinator application: When a task [c , p] completes evaluation of node c, it must t>
(i) save r ig h t (c) in a temporary variable; (ii) rewrite node c, and (iii) set busy (c) = 0 <d.
Other tasks are now perm itted to access node c in its evaluated state, while tasks are created
from the set of pointers obtained from r ig h t (c).

3. Stric t node rendezvous: When a task [c , p] completes the evaluation of an operand to a
binary strict operator at a node c it must: t> (i) test if the other operand at c has been
evaluated, and if so, <d perform the operation obtaining result v a l (see step 2), and continue;
otherwise: (ii) permute links a t c O and terminate.

4. Enqueueing a read-only task: When a task [c , p] ascends to a node c needing an ordinary
value, it must: t> (i) test if p points to an LV combinator node; if so, (ii) do r ig h t (p) : =
n o d e(c , r ig h t (p)) <], otherwise: (iii) <i continue evaluation at c.

5. Binding a logical variable: Recall tha t a task accessing a logical variable is enqueued in
tha t variable’s chain only when its value (reference) is reported to a combinator needing an
ordinary value. Hence any number of active tasks may hold outstanding accesses on a given
logical variable. When a UNIFY node attem pts (by rule UN3) to bind a node x->(LV t a i l x)
to a value v a l, it must be prepared to react if the variable at x is in fact already bound
by the time it seeks to do so. In this case, the recursive comparison of values in UNIFY is
resumed using v a l and the new value, via rules UN9 - UN 11 [Lin84], The only critical region

19

in this binding operation as described in Section 6.3 is t> q := r i g h t (x) ; left(x) := I ;
r ig h t (x) := y; <3. This can be accomplished by a simple spin lock at x.

6. Equating two logical variables: Similarly, the operation of unifying two logical variables must
be robust enough to arbitrate among all competing such actions involving one of the variables.
Fortunately, the cycle merging technique described in Section 5.3 lends itself well to this
requirement. A distributed (message based) version of this operation is presented in [Lin87a].
Again, only test and set operations on individual nodes are required.

7. Dual queue operations: The dual queue operations Wait_DualQ() and Post_DualQ() used for
allocating tasks to processes are guaranteed to be atomic by the Butterfly hardware.

Finally, we acknowledge tha t a heap-intensive concurrent programming system such as this must
include an efficient, reliable parallel garbage collection facility. General methods such as [AH87]
can be applied; however we point out tha t in our approach all “extra” nodes created simply to
chain tasks are guaranteed not to be shared, and can summarily be recycled when removed from
their chain.

8 Future Work

Two clear paths lie ahead for this work: completing and critically appraising our concurrent eval
uator, and gaining understanding of the many unresolved language design issues through experi
m entation with significant sized programs. In addition, three deeper areas beckon.

8.1 D ealing W ith U nification Failures

In SASL+LV a unification failure results in an ERROR value. Since no rules are specified to con
sume this value, the only reductions tha t will ensue are those which are not strict on tha t value.
Eventually, the reduction evaluation will halt with the resulting normal form providing in effect a
postmortem of the context(s) in which tha t ERROR blocked further evaluation.

Why not support conditional unification by testing for resulting ERROR values? There are good
reasons, both semantic and pragmatic.

• Semantic: Determinacy would be lost, since if two unifications apply conflicting bindings to
a shared logical variable, the first to occur would succeed, and the second would fail. For
determinacy to be retained, one would need FALSE above TRUE (so f a r) in the underlying
domain, and no result depending on a TRUE value could ever be fully trusted!

• Pragmatic: Detecting a failing unification is not sufficient; all bindings done in tha t failing
attem pt would need to be retracted. In a distributed reduction model, the feasibility of this
in general is dubious.

However, some cold comfort may be drawn from the committed choice logic programming
community, which is experiencing a similar conundrum. Their reaction has been to introduce

20

“flat” indeterminacy [IMT87,TSS86,FT87,Mie84], whereby unifications are done on a “shadow”
basis until commitment, and relations in guards are required to be primitive.

We conjecture tha t an analogous policy is feasible within an extension of our reduction model
for SASL+LV. To illustrate, we note tha t a restricted form of committed choice indeterminacy is
supported by the current model, if the binary combinator COMMIT is added:

COMMIT x y => TRUE /* if x is not equal to ERROR */

COMMIT x y => FALSE /* if y is not equal to ERROR */

COMMIT ERROR ERROR => TRUE . '

COMMIT ERROR ERROR => FALSE

COMMIT is clearly a pseudo-combinator, because the value of COMMIT x y for if x and y are either
both equal or both unequal to ERROR is indeterminate. The easily implemented operational intent
of COMMIT is to evaluate its arguments in parallel, and return TRUE or FALSE as soon as either
argument evaluation term inates, according to whether or not tha t argument delivered ERROR.

Now suppose we wish to hold a committed choice “competition” between two SASL+LV func
tions f 1 and f2 each applied to the same “goal” param eter g. Importantly, we only consider here
the case where at least one of fl and f2 are sure to succeed on g, and their unifications are ex
clusively one-way , i.e. only bind variables they introduce. Bindings of non-local variables are of
course perm itted in the bodies of f 1 and f2 after commitment. We endow f 1 and f2 with an
extra param eter, used to signal commitment, e.g. f 1 actual goahead = body. Then the desired
committed choice effect is obtained by the SASL+LV function solve, defined as follows:

solve fl f2 g = if commit x y

then x true

else y true

where x = fl g

y = f2 g

8.2 Larger G ranularity Com binators

The initial excitement with Turner’s application of SKI combinators to functional programming has
been tempered by empirical evidence tha t their granularity is too fine for efficient implementation
on the architectures of today. In response, a wide range of “supercombinator” schemes have been
proposed [Hug82,GH85,Joh84,Kie85]. These approaches exploit compile time analysis to aggregate
operators into clusters tha t can be mapped to blocks of conventional machine code. We are currently
examining how one such method, based on automated strictness analysis [LGY87a], can be adapted
to include logical variables.

8.3 G eneralized A bstract Interpretation

Finally, it has been pointed out tha t strictness analysis, polymorphic type checking [KM87], and
logical variable mode analysis [DW86] are all complementary facets of the general technique of

21

abstract interpretation on applicative languages. We seek as a longer term goal to construct a
suitable domain for combining these analyses into one comprehensive method, and applying its
results to the optimized compilation of an advanced language integrating functional and logic
programming.

R eferences

[AH87] K. M. Ali and S. Haridi. Global Garbage Collection for Distributed Heap Storage Sys
tems. International Journal of Parallel Programming, 15(35):339-387, October 1987.

[AKP84] Arvind, Vinod Kathail, and Keshav Pingali. Sharing of Computation in Functional
Language Implementations. In Proceedings of International Workshop on High-level
Com puter Architecture, Los Angeles, May 21-25 1984.

[Bur85] F. W. Burton. Speculative Computation, Parallelism and Functional Programming.
IE E E Transactions on Computers , C-34(12):1190-1193, 1985.

[CF58] H. B. Curry and R. Feys. Combinatory Logic. Volume 1, North Holland, 1958.

[CGM87] Albert Camilleri, Michael C. Gordon, and Tom Melham. Hardware Specification and
Verification using Higher Order Logic. In Dominique Borrione, editor, Proceedings of
the IF IP Working conference “From HDL Descriptions to Guaranteed Correct Circuit
D esigns”, North-Holland, Grenoble, France, 1987.

[CGMN80] T .J.W . Clarke, P.J.S. Gladstone, C.D. Maclean, and A.C. Norman. SKIM - The S,
K, I Reduction Machine. In Proc. Symp. on Lisp and Func. Pgmming. and Computer
Architectures, pages 128-135, ACM, 1980.

[CH87]

[CP85]

[Dan85]

[DW86]

[FT87]

[GH85]

Jacques Cohen and Timothy Hickey. Parsing and Compiling Using Prolog.
Transactions on Programming Languages and S ys tem s , 9(2):125—163, 1987.

A C M

C. Clark and S. L. Peyton-Jones. Generating Parallelism From Strictness Analysis. In
Prof. Conf. on Func. Prog. Lang, and Comp. Arch., IFIP, Nancy, France, September
1985.

S. H. Danforth. Logical Variables for a Functional Language. Technical Report PP-
120-85, Microelectronics and Computer Technology Corp., 1985.

Saumya K. Debray and David S. Warren. Automatic Mode Inference for Prolog Pro
grams. In Robert M. Keller, editor, Symposium on Logic Programming , pages 78-88,
IEEE Computer Society, Salt Lake City, September 1986.

Ian Foster and Stephen Taylor. F lat Parlog: a Basis for Comparison.
Journal o f Parallel Programming, 16(2), April 1987.

International

B. Goldberg and P. Hudak. Serial Combinators: Optimal Grains of Parallelism.
In Proc. Conf. on Functional Programming Languages and Com puter Architectures,
pages 382-399, Springer Verlag, Nancy, France, 1985. Lecture Notes in Computer
Science, number 201.

22

[Hug82]

[Hug85]

[Hug87]

[IMT87]

[Joh84]

[Kie85]

[KJRL80]

[KL84]

[KM87]

[KTMB86]

[LGY87a]

[LGY87b]

[Har81]

[Lin73]

A. Seif Haridi. Logic Programming Based on a Natural Deduction System. PhD thesis,
Royal Institute of Technology, 1981.

J. Hughes. Super Combinators: a New Implementation Method for Applicative Lan
guages. In Proc. Symp. on Lisp and Func. Pgmming. and Com puter Architectures,
pages 1-10, ACM, Pittsburgh, Pa., 1982.

J. Hughes. Lazy Memo-functions. In Prof. Conf. on Func. Prog. Lang, and Comp.
A rch ., IFIP, Nancy, France, September 1985.

J. Hughes. A Simple Implementation of Concurrent Graph Reduction. In R. M. Keller
and J. Fasel, editors, Proc: Santa Fe Workshop on Graph Reduction, Springer-Verlag,
1987. Lecture Notes in Computer Science 279. ■

N. Ichiyoshi, T. Miyazaki, and K. Taki. A Distributed Implementation of Flat GHC on
the Multi-PSI. In Jean-Louis Lassez, editor, Proc. International Conference on Logic
Programming , pages 257-293, MIT Press, Melbourne, Australia, May 1987.

T. Johnsson. Efficient compilation of lazy evaluation. In Proc. Symp. on Compiler
Const., ACM SIGPLAN, Montreal, 1984.

R. B. Kiebutz. The G Machine: A Fast Graph-Reduction Evaluator. In Proc. Conf.
on Functional Programming Languages and Com puter Architectures, pages 400-413,
Springer Verlag, Nancy, France, 1985. Lecture Notes in Computer Science, number
201.

R. M. Keller, B. Jayaram an, D. Rose, and G. Lindstrom. FGL (Function Graph Lan
guage) Program m ers’ Guide. Technical Report AMPS Technical Memorandum No. 1,
University of Utah, Computer Science Departm ent, July 1980.

R. M. Keller and F. C. H. Lin. Simulated Performance of a Reduction-Based Multi
processor. IE E E Computer, 17(7):70-82, July 1984.

T.-M. Kuo and P. Mishra. On Strictness and its Analysis. In Proc. Symp. on Princ.
of Pgmming. Lang., ACM, Munich, West Germany, March 1987.

K. Kahn, E. D. Tribble, M. S. Miller, and D. G. Bobrow. Objects in Concurrent Object
Programming Systems. In Proc. O O P SL A ’86, pages 242-257, Portland, OR, 1986.

G. Lindstrom, L. George, and D. Yeh. Generating Efficient Code from Strictness
Annotations. In T A P S O F T ’87: Proc. Second International Joint Conference on Theory
and Practice of Software Development, pages 140-154, Pisa, Italy, March 1987. Springer
Lecture Notes in Computer Science No. 250.

Gary Lindstrom, Lai George, and Dowming Yeh. Compiling Normal Order to Fair and
Incremental Persistence. August 1987. Technical summary; 12 pp.

Gary Lindstrom. Scanning List Structures W ithout Stacks or Tag Bits. Information
Processing Letters, 2:47-51, 1973.

23

[Lin85]

[Lin87a]

[Lin87b]

[Mie84]

[Mil78]

[Nik87]

[NPA86]

[PSE85]

[Red86]

[Sch86]

[Sha83]

[Lin84]

[Sha86]

G. Lindstrom. OR-Parallelism on Applicative Architectures. In Pvoc. 2nd I n t ’l. Logic
Programming Conf., pages 159-170, Uppsala University, July 1984.

G. Lindstrom. Functional Programming and the Logical Variable. In Proc. Symp. on
Princ. o f Pgmming. Lang., pages 266-280, ACM, New Orleans, January 1985. Also
available as INRIA Rapport de Recherche No. 357.

G. Lindstrom. Implementing Logical Variables on a Graph Reduction Architecture.
In R. M. Keller and J. Fasel, editors, Proc. Santa Fe Workshop on Graph Reduction ,
Springer-Verlag, 1987. Lecture Notes in Computer Science 279. Summary appears in
Proc. ARO Workshop on Future Directions in Computer Architecture and Software,
Seabrook Island, SC, May 5-7, 1986.

G. Lindstrom. Objects in Functional and Logic Programming Languages. In Proceed
ings o f Object Oriented Programming Workshop, IBM Watson Research Center, 1987.
Paper subsequently invited as chapter for book on object oriented programming, to be
edited by Kristen Nygaard.

Colin Mierowsky. Design and Implementation of Flat Concurrent Prolog. MS Thesis,
Weizmann Institu te of Science, 1984.

R. Milner. A Theory of Type Polymorphism. J. of Comp, and Sys. Sci., 17(3):348-375,
1978.

R. S. Nikhil. Id World Reference Manual (for Lisp Machines). Technical Report Com
putation Structures Group Memo, MIT Laboratory for Computer Science, April 24,
1987.

R. S. Nikhil, K. Pingali, and Arvind. Id Nouveau. Technical Report Computation
Structures Group Memo 265, MIT Laboratory for Computer Science, July 1986.

Dorab Patel, M artine Schlag, and Milos Ercegovac. v T V , an Environment for the
Multi-Level Specification, Analysis and Synthesis of Hardware Algorithms. In Proc.
Conf. on Functional Programming Languages and Com puter Architectures , pages 238
255, Springer Verlag, Nancy, France, 1985. Lecture Notes in Computer Science, number
201.

U.S. Reddy. On the Relationship Between Functional and Logic Languages. In Logic
Programming: Functions, Relations, and Equations, Prentice Hall, 1986.

Mark Scheevel. NORMA: A Graph Reduction Processor. In Proc. Symp. on Lisp and
Func. Pgmming. and Com puter Architectures, pages 212-219, ACM, Cambridge, MA,
1986.

E.Y. Shapiro. A Subset o f Concurrent Prolog and Its Interpreter. Technical Report TR-
003, Institu te for New Generation Computer Technology, January 1983.

Ehud Shapiro. Concurrent Prolog: a Progress Report. IE E E Computer, 19(8):44-58,
August 1986.

24

[Str85]

[Str86]

[TL87]

[TSS86]

[Tur79]

[Tur85]

[She85] Mary Sheeran. Designing Regular Array Architectures Using Higher Order Functions.
In Proc. Conf. on Functional Programming Languages and Com puter Architectures,
pages 220-237, Springer Verlag, Nancy, France, 1985. Lecture Notes in Computer
Science, number 201. ■

Bjarne Stroustrup. A Set of C + + Classes for Co-routine Style Programming. 1985.
Appendix to UNIX (tm) System V C + + Translator Release Notes.

Bjarne Stroustrup. The C + + Programming Language. Addison-Wesley, 1986. Paper
back, ISBN 0-201-12078-X. -

P. Tinker and G. Lindstrom. A Performance Oriented Design for OR-Parallel Logic
Programming. In Jean-Louis Lassez, editor, Proc. International Conference on Logic
Programming, pages 601-615, MIT Press, Melbourne, Australia, May 1987.

Stephen Taylor, Shmuel Safra, and Ehud Shapiro. A Parallel Implementation of Flat
Concurrent Prolog. International Journal of Parallel Programming , 15(3):245-275,
June 1986.

D. A. Turner. A New Implementation Technique for Applicative Languages. Software
Practice and Experience, 9:31-49, 1979.

David A. Turner. Miranda: A Non-Strict Functional Language W ith Polymorphic
Types. In J.-P. Jouannaud, editor, Proc. Symp. on Functional Programming Languages
and Com puter Architectures, pages 1-16, Springer-Verlag, 1985.

