
I s o s u r f a c e s a n d L e v e l - S e t

S u r f a c e M o d e l s a

Ross T. Whitaker

Technical Report U U C S- 02- 010

aVersions of these notes and the accompanying talk appeared

in tutorials at IEEE Visualization 2000 and 2001, and A CM SIG­
GRAPH 2001 and 2002.

School of Computing

University of Utah

Salt Lake City, U T 84112 U S A

April 3, 2002

A b s t r a c t

This paper is a set of notes that present the basic geometry of isosurfaces and the basic

methods for using level sets to model deformable surfaces. It begins with a short introduc­

tion to isosurface geometry, including curvature. It continues with a short explanation of

the level-set partial differential equations. It also presents some practical details for h o w

to solve these equations using up-wind scheme and sparse calculation methods. This paper

presents a series of examples of h o w level-set surface models are used to solve problems

in graphics and vision. Finally, it presents some examples of implementations using VIS-
Pack, an object oriented, C + + library for doing volume processing and level-set surface
modeling.

1 I n t r o d u c t i o n

1.1 Motivation

These notes address mechanisms for analyzing and processing volumes in a way that deals

specifically with isosurfaces. The underlying philosophy is to use isosurfaces as a m o d ­
eling technology that can serve as an alternative to parameterized models for a variety of

important applications in visualization and computer graphics. This paper presents the

mathematics and numerical techniques for describing the geometry of isosurfaces and m a ­

nipulating their shapes in prescribed ways. W e start with a basic introduction into the

notation and fundamental concepts and then presents the geometry of isosurfaces. W e de­

scribe the method of level sets, i.e., moving isosurfaces, and present the mathematical and

numerical methods they entail. This paper concludes with some application examples and

describes VISPACK, a C++, object-oriented library the performs volume processing and
level-set modeling.

1.2 Isosurfaces

1.2.1 Modeling Surfaces With Volumes

W h e n considering surface models for graphics and visualization, one is faced with a stag­

gering variety of options including meshes, spline-based patches, constructive solid ge­

ometry, implicit blobs, and particle systems. These options can be divided into two basic

classes — explicit (parameterized) models and implicit models. With an implicit model,

one specifies the model as a level set of a scalar function,

(1)(1)

where U C H 3 is the domain of the volume (and the range of the surface model). Thus, a
surface is

(2)

The choice of is arbitrary, and is sometimes called the embedding. Notice that surfaces
defined in this w a y divide into a clear inside and outside— such surfaces are always

closed wherever they do not intersect the boundary of the domain.

Choosing this implicit strategy begs the question of h o w to represent . Historically, im­

plicit models are represented using linear combinations of basis functions. These basis or

potential functions usually have several degrees of freedom including 3 D position, size,

and orientation. B y combining these functions, one can create complex objects. Typical

models might contain several hundred to several thousands of such primitives. This is the

strategy behind the “blobby” models proposed by Blinn [1].

While such an implicit modeling strategy offers a variety of n e w modeling tools, it has

some limitations. In particular, the global nature of the potential functions limits ones abil­

ity to model local surface deformations. Consider a point x G S where S is the level

surface associated with a model , and is one of the individual potential func­

tions that comprise that model. Suppose one wishes to mo v e the surface at the point in

a w a y that maintains continuity with the surrounding neighborhood. With multiple, global

basis functions one must decide which basis function or combination of basis functions to

alter and at the same time control the effects on other parts of the surface. The problem is

generally ill posed — there are ma n y ways to adjust the basis functions so that a; will move

in the desired direction and yet it m a y be impossible to eliminate the effects of those m o v e ­

ments on other disjoint parts of the surface. These problems can be overcome, however

they usually entail heuristics that tie the behavior of the surface deformation to the choice

of representation [2].

A n alternative to using a small number of global basis functions is to use a relatively large
number of local basis functions. This is the principle behind using a volume as an implicit
model. A volume is a discrete sampling of the embedding . It is also an implicit model

with a very large number of basis functions, as shown in Figure 1. The total number of basis

functions is fixed, as are their positions (grid points) and extent. One can change only the

magnitude of each basis function, i.e., each basis function has only one degree of freedom.

A typical volume of size 128 x 128 x 128 contains over a million such basis functions. The

shape of each basis function is open to interpretation — it depends on h o w one interpolates

the values between the grid points. A trilinear interpolation, for instance, implies a basis

function that is a piece-wise cubic polynomial with a value of one at the grid point and

zero at neighboring grid points. Another advantage of using volumes as implicit models,

is that for the purposes of analysis w e can treat the volume as a continuous function whose

values can be set at each point according to the application. Once the continuous analysis
is complete w e can m a p the algorithm into the discrete domain using standard methods

of numerical analysis. The sections that follow discuss h o w to compute the geometry of

surfaces that are represented as volumes and h o w to manipulate the shapes of those surfaces

by changing the gray-scale values in the volume.

Figure 1: A volume can be considered as an implicit model with a large number of local

basis functions.

1.2.2 Isosurface Extraction and Visualization

This paper addresses the question of h o w to use volumes as surface models. Depending

on the application, however, a 3 D grid of data (i.e. a volume) m a y not be a suitable model

representation. For instance, if the goal is make measurements of an object or visualize

its shape, an explicit model might be necessary. In such cases it is beneficial to convert

between volumes and other modeling technologies.

For instance, the literature proposes several methods for scan converting polygonal meshes

or solid models [3, 4]. Likewise a variety of methods exist for extracting parametric models

of isosurfaces from volumes. The most prevalent method is to locate isosurface crossings

along grid lines in a volume (between voxels along the 3 cardinal directions) and then to

link these points together to form triangles and meshes. This is the strategy of “marching

cubes” [5] and other related approaches. However, extracting a parametric surface is not

essential for visualization, and a variety of direct methods [6, 7] are n o w computationally

feasible and arguably superior in quality. These notes do not address the issue of extracting

or rendering isosurfaces, but rather studies the geometry of isosurfaces and h o w to manip­

ulate them directly by changing the grey-scale values in the underlying volume. Thus, w e

propose volumes as a mechanism for studying and deforming surfaces, regardless of the

ultimate form of the output. Their are ma n y ways of rendering or visualizing them and and

these techniques are beyond the scope of this discussion.

2 S u r f a c e N o r m a l s

The surface normal of an isosurface is given by the normalized gradient vector. Typically,

w e identify a surface normal with a point in the volume domain . That is

n (a0 = i where x e D. (3)
|V#e)|

The convention regarding the direction of this vector is arbitrary; the negative of the nor­

malized gradient magnitude is also normal to the isosurface. The gradient vector points

toward that side of the isosurface which has greater values (i.e. brighter). W h e n rendering,

the convention is to use outward pointing normals, and the sign of the gradient must be ad­
justed accordingly. However, for most applications any consistent choice of normal vector

will suffice. O n a discrete grid, one must also decide h o w to approximate the gradient vec­

tor (i.e., first partial derivatives). In ma n y cases central differences will suffice. However,

in the presence of noise, especially when volume rendering, it is sometimes helpful to c o m ­

pute first derivatives using some smoothing filter (e.g., convolution with a Gaussian). W h e n

using the normal vector to solve certain kinds of partial differential equations, it is some­

times necessary to approximate the gradient vector with discrete, one-sided differences, as

discussed in successive sections.

Note that a single volume contains families nested isosurfaces, arranged like the layers of

an onion. W e specific the normal to an isosurface as a function of the position within the

volume. That is, is the normal of the (single) isosurface that passes through the point

. The value associated with that isosurface is .

3 S e c o n d - O r d e r S t r u c t u r e

In differential geometric terms, the second-order structure of a surface is characterized by

a quadratic patch that shares first- and second-order contact with the surface at a point

(i.e., tangent plane and osculating circles). The principal directions of the surface are those
associated with the quadratic approximation, and the principal curvatures, , &2, are the
curvatures in those directions.

The second-structure of the isosurface can be computed from the first- and second-order

structure of the embedding, 0. All of the isosurface shape information is contained field of

normals given by . The matrix of derivatives of this vector,

^ = “1 ^ n y n z] (4)

The projection of this derivative onto the tangent plane of the isosurface gives the shape

matrix, . Let denote normal projection operator, which is defined as

m
tfiytfix 4)y fyyfyz

\ ^z^x ‘t'z^y t&z }
(5)

The tangential projection operator is , and thus the shape matrix is

fi = N T = TH^T, (6)

where is the Hessian of . The shape matrix has 3, real, eigenvalues which are

ei = ku e2 = k2,e3 = 0. (7)

The corresonding eigenvectors are the principle directions (in the tangent plane) and the

normal, respectively.

The mean curvature is the mean of the two principal curvatures, which is one half of the
trace of , which is equal to the trace of :

H = k1 ± h = 1 ^ (N)

2 2

&zz) 4̂ y{.4̂ xx ^zz) “I- &z($xx 4*yy) ^^x^y^xy ^^x^z^xz 2‘4>y4>z4(i8)
= 2(02 + (̂ + 02)3/2 (8)

The Gaussian curvature is the product of the principal curvatures:

K = A;1A;2 = e1e2 + e1e3 + e2e3 = 2Tr(N)2 ^ p N | | (9)

^z^xx^yy ~ xyxy) $y[$xx$zz ~ ^xz^xz) xiyy$zz ~ yzyz)
-f- 2 (<4*x(Py(,(Pxz(Pyz ~ 4*xy4*zz) 4* x lPz(,lPxylPyz ^xz^y y)+<f>y<f> zijPxyfyxz 4>yz4>xx)')

= m +<% + ti)2 ■

The total curvature, also called the deviation from flatness, £>, is the root sum of squares of

the two principal curvatures, which is the Euclidean norm of the matrix .

Notice, these measures exist at every point in U, and at each point they describe the geome­
try of the particular isosurface that passes through that point. All of these quantities can be

computed on a discrete volume using finite differences, as described in successive sections.

4 D e f o r m a b l e S u r f a c e s

This section begins with mathematics for describing surface deformations on parametric

models. The result is an evolution equation for a surface. Each of the terms in this evo­

lution equation can be re-expressed in a w a y that is independent of the parameterization.

Finally, the evolution equation for a parametric surface gives rise to an evolution equation

(differential equation) on a volume, which encodes the shape of that surface as a level set.

4.1 Surface Deformation

A regular surface S C]R3 is a collection of points in 3 D that can be be represented locally
as a continuous function. In geometric modeling a surface is typically represented as a

two-parameter object in a three-dimensional space, i.e., a surface is local a mapping S:

(10)r s x , y , z ’ v '

where , and the bold notation refers specifically to a parameterized surface

(vector-valued function). A deformable surface exhibits some motion over time. Thus

, where . W e assume second-order-continuous, orientable surfaces;

therefore at every point on the surface (and in time) there is surface normal .

W e use to refer to the entire set of points on the surface.

Local deformations of S can be described by an evolution equation, i.e., a differential equa­

tion on that incorporates the position of the surface, local and global shape properties,

and responses to other forcing functions. That is,

— = G (S , S r, S s, S rr, S rs, S ss, . . .) , (11)

where the subscripts represent partial derivatives with respect to those parameters. The

evolution of S can be described by a sum of terms that depends on both the geometry of S
and the influence of other functions or data.

There are a variety of differential expressions that can be combined for different appli­

cations. For instance, the model could m o v e in response to some directional “forcing”

function [8, 9], F : U ̂ H 3, that is

= F(S) . (12)

Alternatively, the surface could expand and contract with a spatially-varying speed. For

instance,

— = G (S) N (13)
(J v

where is a signed speed function. The evolution might also depend on the

surface geometry itself. For instance,

— = s rr + S ss (14)
ot

describes a surface that moves in way that is becomes more smooth with respect to its o w n
parameterization. This motion can be combined with the motion of Equation 12 to produce

a model that is pushed by a forcing function but maintains a certain smoothness in its shape

and parameterization. There are myriad terms that depend on both the differential geometry

of the surface and outside forces or functions to control the evolution of a surface.

Figure 2: Level-set models represent curves and surfaces implicitly using greyscale images:

a) an ellipse is represented as the level set of an image, b) to change the shape w e modify

the greyscale values of the image.

5 D e f o r m a t i o n : T h e L e v e l S e t A p p r o a c h

The method of level-sets, proposed by Osher and Sethian [10] and described extensively in

[11], provides the mathematical and numerical mechanisms for computing surface defor­

mations as time-varying iso-values of 0 by solving a partial differential equation on the 3 D

grid. That is, the level-set formulation provides a set of numerical methods that describe

h o w to manipulate the greyscale values in a volume, so that the isosurfaces of move in a

prescribed manner (shown in Figure 2).

W e denote the movement of a point on a surface as it deforms as , and w e assume

that this motion can be expressed in terms of the position of and the geometry of

the surface at that point. In this case, there are generally two options for representing such

surface movements implicitly:

Static: A single, static 4>{x) contains a family of level sets corresponding to surfaces as
different times . That is,

4>(x(t)) = k(t) => = (15)

To solve this static method requires constructing a (j) that satisfies equation 15. This
is a boundary value problem, which can be solved somewhat efficiently starting with

a single surface using the fast marching method of Sethian [12]. This representation

has some significant limitations, however, because (by definition) a surface cannot

pass back over itself over time, i.e., motions must be strictly monotonic — inward or

outward.

Dynamic: The approach is to use a one-parameter family of embeddings, i.e., <fi(x,t)
changes over time, remains on the level set of as it moves, and remains

constant. The behavior of is obtained by setting the total derivative of

k to zero. Thus,

This approach can accommodate models that move forward and backward and cross

back over their o w n paths (over time). However, to solve this requires solving the

initial value problem (using finite forward differences) on — a potentially

large computational burden. The remainder of this discussion focuses on the dynamic

case, because of its superior flexibility.

All surface movements depend on position and geometry, and the level-set geometry is

expressed in terms of the differential structure of . Therefore the dynamic formulation

from equation 16 gives a general form of the partial differential equation on 0:

where is the set of order- derivatives of evaluated at . Because this relationship

applies to every level-set of , i.e. all values of , this equation can be applied to all of ,

and therefore the movements of all the level-set surfaces embedded in 0 can be calculated
from Equation 17.

The level-set representation has a number of practical and theoretical advantages over con­

ventional surface models, especially in the context of deformation and segmentation. First,

level-set models are topologically flexible, they can easily represent complicated surface

shapes that can, in turn, form holes, split to form multiple objects, or merge with other ob­

jects to form a single structure. These models can incorporate m a n y (millions) of degrees of

freedom, and therefore they can accommodate complex shapes. Indeed, the shapes formed

by the level sets of 0 are restricted only by the resolution of the sampling. Thus, there is no

need to reparameterize the model as it undergoes significant deformations.

(f)(x(t), t) = k => (16)

(17)

Such level-set methods are well documented in the literature [10, 13] for applications such

as computational physics [14], image processing [15, 16], computer vision [17, 18], medi­

cal image analysis [19, 18], and 3 D reconstruction [20, 21]. For instance, in computational

physics level-set methods are a a powerful tool for modeling moving interfaces between

different materials (see Osher and Fedkiw [14] for a nice overview of recent results). E x ­

amples are water-air and water-oil. In such cases, level-set methods can be used to compute

deformations that minimize surface area while preserving volumes for materials that split
and merge in arbitrary ways. The method can be extended to multiple, non-overlapping
objects.

Level-set methods have also been shown to be effective in extracting surface structures

from biological and medical data. For instance Malladi et al. [18] propose a method in

which the level-sets form an expanding or contracting contour which tends to “cling” to

interesting features in 2 D angiograms. At the same time the contour is also influenced by

its o w n curvature, and therefore remains smooth. Whitaker et al. [19, 22] have shown that
level sets can be used to simulate conventional deformable surface models, and d e m o n ­

strated this by extracting skin and tumors from thick-sliced (e.g. clinical) M R data, and by

reconstructing a fetal face from 3 D ultrasound. A variety of authors [23, 24, 16, 25] have

presented variations on the method and presented results for 2 D and 3 D data. Sethian [11]

gives several examples of level-set curves and surface for segmenting C T and M R data.

5.1 Deformation Modes

In the case of parametric surfaces, one can choose from a variety of different expressions

to construct an evolution equation that is appropriate for a particular application. For each

of those parametric expressions, there is a corresponding expression that can be formulated

on , the volume in which the level-set models are embedded. In constructing evolutions

on levels sets, there can be no reference to the underlying surface parameterization (terms

depending on r and s in Equations 10 through 14). This has two important implications:

1) only those surface movements that are normal to the surface are represented— any other

movement is equivalent to a reparameterization 2) all of the derivatives with respect to

surface parameters and must be expressed in terms of invariant surface properties that

can be derived without a parameterization.

Consider the term from equation 14. If is an orthonormal parameterization,

the effect of that term is based purely on surface shape, not on the parameterization, and

the expression S rr + S ss is twice the mean curvature, H, of the surface. The corresponding
level-set formulation is given by Equation 8.

Table 1 shows a list of expressions used in the evolution of parameterized surfaces and

their equivalents for level-set representations. Also given are the assumptions about the

parameterization that give rise to the level-set expressions.

Effect Parametric Evolution
Level-Set

Evolution

Parameter

Assumptions

1 External force F F - V o None

2
Expansion/

contraction
G (x) N G(x)\V4>(x, t)\ None

3
M e a n

curvature
Srr Sss H |V0| Orthonormal

4
Gauss

curvature
Srr X Sgg K\V<f>\ Orthonormal

5 Second order Srr Or Sgg (H ± y j H 2 - K) |V0|
Principal

curvatures

Table 1: A list of evolution terms for parametric models has a corresponding expression on

the embedding, 0, associated with the level-set models.

6 N u m e r i c a l M e t h o d s

B y taking the strategy of embedding surface models in volumes, w e have converted equa­

tions that describe the movement of surface points to nonlinear, partial differential equa­

tions defined on a volume, which is generally a rectilinear grid. The expression u ^ k refers
to the nth time step at position i , j , k, which has an associated value in the 3 D domain of the
continuous volume . The goal is to solve the differential equation consisting of

terms from Table 5.1 on the discrete grid u"^.

The discretization of these equations raises two important issues. First is the availability

of accurate, stable numerical schemes for solving these equations. Second is the problem

of computational complexity and the fact that w e have converted a surface problem to a
volume problem, increasing the dimensionality of the domain over which the evolution
equations must be solved.

The level-set terms in Table 1 are combined, based on the needs of the application, to cre­

ate a partial differential equation on . The solutions to these equations are computed

using finite differences. Along the time axis solutions are obtained using finite forward dif­
ferences, beginning with an initial model (i.e., volume) and stepping sequentially through

a series of discrete times steps (which are denoted as superscripts on u). Thus the update
equation is:

< j j = <i,fc + A tA u tj,k> (18)

The term is a discrete approximation to , which consists of a weighted sum

of terms such as those in Table 5.1. Those terms must, in turn, be approximated using finite

differences on the volume grid.

6.1 Up-wind Schemes

The terms in Table 1 fall into two basic categories: the first-order terms (items 1 and 2 in

Table 1) and the second-order terms (items 3 through 5). The first-order terms describe a

moving wave front with a space-varying velocity (expression 1) or speed (expression 2).

Equations of this form cannot be solved with a simple finite forward difference scheme.

Such schemes tend to overshoot, and they are unstable. To address this issue Osher and

Sethian [26] have proposed an up-wind scheme. The up-wind method relies on a one-sided
derivative that looks in the up-wind direction of the moving wave front, and thereby avoids

the over-shooting associated with finite forward differences.

W e denote the type of discrete difference using superscripts on a difference operator, i.e.,

for forward differences, for backward differences, and for central differences.

For instance, differences in the direction on a discrete grid, , with domain and

uniform spacing are defined as

where w e have left off the time superscript for conciseness. Second-order terms are c o m ­

puted using the tightest-fitting central difference operators. For example,

The discrete approximation to the first-order terms of in Table 5.1 are computed using

the up-wind proposed by Osher and Sethian [10]. This strategy avoids overshooting by

approximating the gradient of using a one-sided differences in the direction that is up­

wind of the moving level-set thereby ensuring that no new contours are created in the

process of updating (as depicted in Figure 3). The scheme is separable along each

axis (i.e., , , and).

^x ^ H i , j , k) / h i

and

(19)

(20)

(21)

(22)

2
"t" tli— ~ ^ 7

/\ (y
and

(23)

(24)

(25)

Figure 3: The up-wind numerical scheme uses one-sided derivatives to prevent overshoot­

ing and the creation of new level sets.

Consider Term 1 in Table 5.1. If w e use superscripts to denote the vector components, i.e.,

F(x , y , z) = (F ^ (x , y , z) , F ^ (x , y , z) , F ^ (x , y , z)) , (26)

the up-wind calculation for a grid point is

F (x „ y „ z ,) - V 0 (x „ y „ z k, t) £ F<-"> (x„ y„ z.) [^
q£{xyz} v 9 \x i->yi->z i) < U

(27)

The time steps are limited— the fastest moving wave front can move only one grid unit per

iteration. That is

A t jp <C
1

T,q£{X,y,z} SUP,.,./,,; V{ y j , Zk) \Y
(28)

For Term 2 in Table 5.1 the direction of the moving surface depends on the normal, and

therefore the same up-wind strategy is applied in a slightly different form.

G(xi ,yj , zk)\V<f>(xi,yj, zk,t)\

G{x, .y, . max2(5+u" • fc, 0) + min2(5 u" • fc, 0) G(rcj, y*, z*) > 0g

min2(5+u lj k, 0) + m a x 2(5"m^ . fc, 0) G(g)(xi, yh zt) <qe{x,y,z} y K <} ' 1 v

The time steps are, again, limited by the fastest moving wave front:

1
A ir ; <

(29)

3 s u p , /<c v { Wr(:r,. i/;/. :/,) }
(30)

x

To compute approximation the update to the second-order terms in Table 5.1 requires only

central differences. Thus, the mean curvature is approximated as:

Tjn
i,j,k ($ x u i,j,k) + (5yu i,j,k) + (^ z u i,j,k) ^ (i ^ y U i,j,k) + (f*zU i,j,k) ^ ^xxu (3 1)

+ ((SZUi j k) + (SXUi j k) j + ((fix'U'ij'k) + (SVUi,j,k) j 5ZZUi,j,k

nn r\ nn r\ nn — nn r\ nn r\ nn
^ ux a i,j,kuy u'i,j,kuxy a i,j,k ^ uy a i,j,kuz a i,j,kuyz a i,j,k

OX n,n X n,n X n,n 1
" uz u'i,j,k x u,i,j,k zx u'i,j,kJ

Such curvature terms can be computing by using a combination of forward and backward

differences as described in [27]. In some cases this is advantageous— but the details are

beyond the scope of this paper.

The time steps are limited, for stability, to

Aiif < -• (32)
6

W h e n combining terms, the m a x i m u m time steps for each terms is scaled by one over the

weighting coefficient for that term.

6.2 Narrow-Band Methods

If one is interested in only a single level set, the formulation described previously is not
efficient. This is because solutions are usually computed over the entire domain of . The

solutions, <fi(x,y, z, t) describe the evolution of an embedded family of contours. While this
dense family of solutions might be advantageous for certain applications, there are other

applications that require only a single surface model. In such applications the calculation

of solutions over a dense field is an unnecessary computational burden, and the presence of

contour families can be a nuisance because further processing might be required to extract

the level set that is of interest.

Fortunately, the evolution of a single level set, <j){x,t) = A:, is not affected by the choice of

embedding. The evolution of the level sets is such that they evolve independently (to within

the error introduced by the discrete grid). Furthermore, the evolution of is important only

in the vicinity of that level set. Thus, one should perform calculations for the evolution of

only in a neighborhood of the surface . In the discrete setting, there

is a particular subset of grid points whose values control a particular level set (see Figure

4). Of course, as the surface moves, that subset of grid points must change to account for

its new position.

Figure 4: A level curve of a 2 D scalar field passes through a finite set of cells. Only those

grid points nearest to the level curve are relevant to the evolution of that curve.

Adalsteinson and Sethian [28] propose a narrow-band approach which follows this line of
reasoning. The narrow-band technique constructs an embedding of the evolving curve or

surface via a signed distance transform. The distance transform is truncated, i.e, computed

over a finite width of only m points that lie within a specified distance to the level set. The

remaining points are set to constant values to indicate that they do not lie within the narrow

band, or tube as they call it. The evolution of the surface (they demonstrate it for curves
in the plane) is computed by calculating the evolution of only on the set of grid points

that are within a fixed distance to the initial level set, i.e. within the narrow band. W h e n

the evolving level set approaches the edge of the band (see Figure 5), they calculate a new

distance transform and a new embedding, and they repeat the process. This algorithm relies

on the fact that the embedding is not a critical aspect of the evolution of the level set. That

is, the embedding can be transformed or recomputed at any point in time, so long as such

a transformation does not change the position of the &th level set, and the evolution will be

unaffected by this change in the embedding.

Despite the improvements in computation time, the narrow-band approach is not optimal

for several reasons. First it requires a band of significant width (m = 12 in the examples of
[28]) where one would like to have a band that is only as wide as necessary to calculate the

derivatives of near the level set (e.g.). The wider band is necessary because the

narrow-band algorithm trades off two competing computational costs. One is the cost of

stopping the evolution and computing the position of the curve and distance transform (to

sub-cell accuracy) and determining the domain of the band. The other is the cost of c o m ­

puting the evolution process over the entire band. The narrow-band method also requires

additional techniques, such as smoothing, to maintain the stability at the boundaries of the

band, where some grid points are undergoing the evolution and nearby neighbors are static.

Surface model (level set)

Figure 5: The narrow band scheme limits computation to the vicinity of the specific level

set. As the level-set moves near the edge of the band the process is stopped and the band

recomputed.

6.3 The Sparse-Field Method

The basic premise of the narrow band algorithm is that computing the distance transform

is so costly that it cannot be done at every iteration of the evolution process. The strategy

proposed here is to use an approximation to the distance transform that makes it feasible

to recompute the neighborhood of the level-set model at each time step. Computation of

the evolution equation is computed on a band of grid points that is only on point wide.

The embedding is extended from the active points to a neighborhood around those points

that is precisely the width needed at each time. This extension is done via a fast distance

transform approximation.

This approach has several advantages. First, the algorithm does precisely the number of

calculations needed to compute the next position of the level curve. It does not require

explicitly recalculating the positions of level sets and their distance transforms. Because

the number of points being computed is so small, it is feasible to use a linked-list to keep

track of them. Thus, at each iteration the algorithm visits only those points adjacent to

the -level curve. For large 3 D data sets, the very process of incrementing a counter and

checking the status of all of the grid points is prohibitive.

The sparse-field algorithm is analogous to a locomotive engine that lays down tracks before
it and picks them up from behind. In this w a y the number of computations increases with

the surface area of the model rather than the resolution of the embedding. Also, the sparse-

field approach identifies a single level set with a specific set of points whose values control

the position of that level set. This allows one to compute external forces to an accuracy that

is better than the grid spacing of the model, resulting in a modeling system that is more

accurate for various kinds of “model fitting” applications.

The sparse-field algorithm takes advantage of the fact that a &-level surface, S', of a discrete

image (of any dimension) has a set of cells through which it passes, as shown in Figure

4. The set of grid points adjacent to the level set is called the active set, and the individual
elements of this set are called active points. As a first-order approximation, the distance
of the level set from the center of any active point is proportional to the value of divided

the gradient magnitude at that point. Because all of the derivatives (up to second order)

in this approach are computed using nearest neighbor differences, only the active points

and their neighbors are relevant to the evolution of the level-set at any particular time in

the evolution process. The strategy is to compute the evolution given by equation 17 on

the active set and then update neighborhood around the active set using a fast distance

transform. Because active points must be adjacent to the level-set model, their positions lie

within a fixed distance to the model. Therefore the values of for locations in the active

set must lie within a certain range. W h e n active-point values move out of this active range

they are no longer adjacent to the model. They must be removed from the set and other grid

points, those whose values are moving into the active range, must be added to take their

place. The precise ordering and execution of these operations is important to the operation

of the algorithm.

The values of the points in the active set can be updated using the up-wind scheme for

first-order terms and central differences for the mean-curvature flow, as described in the

previous sections. In order to maintain stability, one must update the neighborhoods of

active grid points in a w a y that allows grid points to enter and leave the active set without

those changes in status affecting their values. Grid points should be removed from the

active set when they are no longer the nearest grid point to the zero crossing. If w e assume

that the embedding is a discrete approximation to the distance transform of the model,

then the distance of a particular grid point, , to the level set is given by the

value of at that grid point. If the distance between grid points is defined to be unity, then

w e should remove a point from the active set when the value of u at that point no longer lies

in the interval [—|, |] (see Figure 6). If the neighbors of that point maintain their distance

of 1, then those neighbors will move into the active range just is ready to be removed.

There are two operations that are significant to the evolution of the active set. First, the

values of at active points change from one iteration to the next. Second, as the values of

active points pass out of the active range they are removed from the active set and other,

neighboring grid points are added to the active set to take their place. In [21] the author

gives some formal definitions of active sets and the operations that affect them, which show

that active sets will always form a boundary between positive and negative regions in the

image, even as control of the level set passes from one set off active points to another.

Because grid points that are near the active set are kept at a fixed value difference from the

active points, active points serve to control the behavior of non-active grid points to which

they are adjacent. The neighborhoods of the active set are defined in layers,
and , where the indicates the distance (city block distance) from the nearest

active grid point, and negative numbers are used for the outside layers. For notational

convenience the active set is denoted .

The number of layers should coincide with the size of the footprint or neighborhood used

to calculate derivatives. In this way, the inside and outside grid points undergo no changes

in their values that affect or distort the evolution of the zero set. Most of the level-set work

relies on surface normals and curvature, which require only second-order derivatives of .

Second-order derivatives are calculated using a 3 x 3 x 3 kernel (city-block distance 2 to

the corners). Therefore only five layers are necessary (2 inside layers, 2 outside layers, and

the active set). These layers are denoted , , , , and .

Outside cell Outside cell Inside cell Inside cell
Outside (layer -2) (layer-1) Active cell (kyer 1) (layer 2} Inside

Outside cell Outside cell Inside ccll Inside cell
(layer-2> (layer-1> Active cell (layer!) (layer 2) Inside -

zero crossing

I __ ■
Spatial dimension (x) Spatial, dimension (:r>

Figure 6: The status of grid points and their values at two different points in time show that

as the zero crossing moves, activity is passed one grid point to another.

The active set has grid point values in the range |], The values of the grid points in

each neighborhood layer are kept 1 unit from the next layer closest to the active set (as in

Figure 6). Thus the values of layer Lt fall in the interval [i — i + |], For 2N + 1 layers,

the values of the grid points that are totally inside and outside are N + | and .A r — |,

respectively. The procedure for updating the image and the active set based on surface

movements is as follows:

1. For each active grid point, , do the following:

(a) Calculate the local geometry of the level set.

(b) Compute the net change of , based on the internal and external forces, using

some stable (e.g., up-wind) numerical scheme where necessary.

2. For each active grid point add the change to the grid point value and decide if the

new value 1 falls outside the [—|, |] interval. If so, put xm on lists of grid points

that are changing status, called the status list; S i or S - 1, for > 1 or -u"^1 < — 1,

respectively.

3. Visit the grid points in the layers L* in the order i = ±1,... ± N , and update the grid
point values based on the values (by adding or subtracting one unit) of the next inner

layer, . If more than one LiTi neighbor exists then use the neighbor that indicates
a level curve closest to that grid point, i.e., use the m a x i m u m for the outside layers

and m i n i m u m for the inside layers. If a grid point in layer has no neighbors,

then it gets demoted to , the next level away from the active set.

4. For each status list S±i, S±2, ■ ■ ■, S±n do the following:

Layer -1 Active List Layer 1

Figure 7: Linked-list data structures provide efficient access to those grid points with values

and status that must be updated.

(a) For each element on the status list , remove from the list , and add

it to the list, or, in the case of , remove it from all lists.

(b) A d d all LiTi neighbors to the Si±i list.

This algorithm can be implemented efficiently using linked-list data structures combined

with arrays to store the values of the grid points and their states as shown in Figure 7.

This requires only those grid points whose values are changing, the active points and their

neighbors, to be visited at each time step. The computation time grows as ra"-1, where m is

the number of grid points along one dimension of u (sometimes called the resolution of the

discrete sampling). Computation time for dense-field approach increases as . The

growth in computation time for the sparse-field models is consistent with conventional

(parameterized) models, for which computation times increase with the resolution of the

domain, rather than the range.

Another important aspect of the performance of the sparse-field algorithm is the larger time

steps that are possible. The time steps are limited by the speed of the “fastest” moving level

curve, i.e., the m a x i m u m of the force function. Because the sparse-field method calculates

the movement of level sets over a subset of the image, time steps are bounded from below

by those of the dense-field case, i.e.,

su p (g(a:)) < s u p (g (x)) ,
x e A c x x e x

(33)

Results from previous work [21] have demonstrated several important aspects of the sparse-

field algorithm. First, the manipulations of the active set and surrounding layers allow the

active set to “track” the deformable surface as it moves. The active set always divides the

inside and outside of the objects it describes (i.e., it stays closed). Empirical results show

significant increases in performance relative to both the computation of full domain and

the narrow-band method, as proposed in the literature. Empirical results also show that the

sparse-field method is about as accurate as both the full, discrete solution, and the narrow­

band method. Finally, because the method positions level sets to sub-voxel accuracy it

avoids aliasing problems and is more accurate then these other methods when it comes to

fitting level-set models to other surfaces. This sub-voxel accuracy is important aspect of the
implementation, and will significantly impact the quality of the results for the applications

that follow.

where is the space varying speed function and is the active set.

7 A p p l ic a t io n s

This section describes several examples of h o w level-set surface models can be used to ad­

dress problems in graphics, visualization, and computer vision. These examples are a small

selection of those available in the literature. All of these examples where implemented us­

ing the sparse-field algorithm and the VISPack library, which is described in the section

that follows.

7.1 Surface Morphing

This section summarizes the work of [29], which describes the use of level-set surface

models to perform 3 D shape metamorphosis. The morphing of 3 D surfaces is the process
of constructing a series of 3 D models that constitute a smooth transition from one shape to

another (i.e., a homotopy). Such a capability is interesting for creating animations and as a

tool for geometric modeling. There is not yet a single, general method for generating such

transitional shapes. However, there are several desirable aspects of morphing algorithms

that allow us to compare the adequacy of different approaches to surface morphing. Several

desirable properties of 3 D surface morphing are:

1. The transition process should begin with an initial surface and end with a specified
target surface.

2. The morphing algorithm should apply to a wide range of shapes and topologies.

3. Intermediate surfaces should undergo continuous 3 D transitions (rather than conti­

nuity only in the image space).

4. A 3 D morphing algorithm should incorporate user input easily but should degrade

gracefully without it.

5. Transitional shapes should depend only on the surface geometry of the two input

shapes and user input.

These requirements are not exhaustive, but they capture ma n y of the practical aspects of

3 D morphing.

In this section w e show h o w level-set models provide an algorithm for 3 D morphing which

meets most of these criteria and compare favorably with existing algorithms. Furthermore,

this algorithm is a natural extension of the mathematical principles discussed in previous

sections. The strategy is to allow a free-form deformation of one surface (called the initial
surface) using the signed distance transform of a second surface (the target surface). This
free-form deformation is combined with an underlying coordinate transformation that gives

either a rough global alignment of the two surfaces, or one-to-one relationships between a

finite set of landmarks on both the initial and target surfaces. The coordinate transformation

can be computed automatically or using user input (as in [30]).

M u c h of the previous 3 D morphing work has focused on morphing parametric models

[31, 32] and applies to only very limited classes of shapes and topologies. Several authors

have described volumetric techniques. Hughes [33] demonstrates h o w volumes can provide

topological flexibility in surface morphing. Lerios et al. [30] followed up with a volume-

based scheme which incorporates user input via underlying coordinate transformations (a

k n o w n generalization the image warping technique that is often used in image morphing).

Neither of these approaches have dealt with the deeper issue of deforming the level sets

of a volume, but rather rely on the properties of the embedding. Payne and Toga [34]

as well as Cohen-Or et al. [35] fix the embedding problem by using a signed distance

transform to create volumes from surfaces. However, interpolating distance transforms can

introduce artifacts that violate the previously stated properties, and both of these methods

use a discrete distance transform which introduces volume aliasing.

7.1.1 Free-Form Deformations

The distance transform gives the nearest Euclidean distance to a set of points, curve, or

surface. For closed surfaces in 3D, the signed distance transform gives a positive distance

for points inside and negative for points outside (one can also choose the opposite sign

convention).

If two connected shapes overlap then the initial surface can expand or contract using the

distance transform of the target. The steady state of such a deformation process is a shape

consisting of the zero set of the distance transform of the target. That is, the initial object

becomes the target. This is the basis of the proposed 3 D morphing algorithm.

Let be the signed distance transform of the target surface, , and let be the initial

surface. The evolution process which takes a model from to is defined by

3 t

— = N D(x) , (34)

where x(t) G St and St=o = A. The free-form deformations can be combined with an

underlying coordinate transformation. The strategy is to use a coordinate transformation

(for instance a translation and rotation) to position the two surfaces near each other. These

transformations can capture gross similarities in shape as well as user input. A coordinate

transformation is given by

x' = T(x , a) , (35)

where parameterizes a continuous family of these transformations that begins

with identity, i.e. . The evolution equation for a parametric surface is

dx
— = N D (T (x , 1)), (36)

and the corresponding level-set equation is

d̂ A = |V $(*,i)| D(T(x , 1)). (37)

This process produces a series of transition shapes (parameterized by). The coordinate

transformation can be a global rotation, translation, or scaling, or it might be a warping
ofthe underlying 3D space as was used by [30]. Incorporating user input is important for
any surface morphing technique, because in ma n y cases finding the best set of transition

surfaces depends on context. Only users can apply semantic considerations to the trans­

formation of one object to another. However, this underlying coordinate transformation

VII/

Figure 8: A 3 D model of a jet that was built using Clockworks, a C S G modeling system.

can, in general, achieve only some finite similarity between the “warped” initial model and

the target, and even this m a y require a great deal of user input. In the event that a user is

not able or willing to define every important correspondence between two objects, some

other method must “fill in” the gaps remaining between the initial and target surface. In

[30] they propose alpha blending to achieve that smooth transition— really just a fading

from one surface to the other. W e are proposing the use of the free-form deformations,

implemented with level-set models, to achieve a continuous transition between the shapes

that result from the underlying coordinate transformation. W e have also experimented with

ways of automatically orienting and scaling objects, using 3 D moments, in order to achieve

a significant correspondence between two objects.

Figure 8 shows a 3 D model of a jet that was built using Clockworks [36], a C S G modeling

system. Lerios et al. [30] demonstrate the transition of a jet to a dart, which was accom­

plished using 37 user-defined correspondences, roughly a hundred user-defined parameters.

Figure 9 shows the use of level-set models to construct a set of transition surfaces between

a jet and a dart. The triangle mesh is extracted from the volume using the method of march­

ing cubes [5]. These results are obtained without any user input. Distance transforms on

the C S G models are computed near the level surface using an analytical description and

extended into the volume using a level-set method [37].

The application in this section shows h o w level-set models moving according to the first-

order term given in expression 2 in Table 1 can “fit” other objects by moving with a speed

that depends on the signed distance transform of the target object. The application in the

Figure 9: The deformation of the jet to a dart using a level-set model moving with a speed

defined by the signed distance transform of the target object.

next section relies on expression 5 of Table 1, a second-order flow that depends on the

principal curvatures of the surface itself.

7.2 Filleting and Blending Solid Objects

The construction of blending surfaces is an important tool in solid modeling. Geometric

solid primitives and their intersections often produce sharp corners or creases that are often

not consistent with the real-world objects that they are intended to represent. This section

shows h o w blending can be described as a deformation process, where surfaces move under

a geometric flow that can add or remove material based on local curvature information. The

result is a method for solid object blending that does not depend on any particular model

representation. Thus this method is not restricted to a specific class of shapes or topologies.

Additionally, the results are invariant; they do not depend on arbitrary choices of coordinate

systems or bases. The only requirement is that the blended objects must be closed surfaces

with some known inside-outside function.

Surface blending techniques are typically tied very closely to the choice of geometric primi­

tives. For instance, Middleditch and Sears [38] propose a set-theoretic method for blending

solids which relies on low-order algebraic primitives. A fillet at the joint of two tori re­

quires the solution of a degree 32 polynomial. Bloomenthal and Shoemake [39] propose

a modeling system based on convolutions, which relies on a skeletonized representation

of objects. In general the use of convolution to achieve deformations on implicit shapes

results in shapes that reflect both the shape of the model and the embedding, $.

The blending method proposed in this section implements an interative smoothing scheme

that smooths only along the level set; the final result is independent of the embedding.

Consider the case of fillets. W e propose that a fillet can be constructed from a process of

“filling in” material in places of high curvature. The curvature of a level-set model can be

calculated from the embedding, and the deformation of the level set is well defined by the

curvature terms in Table 1.

The strategy is to construct a curvature term, A;p, that consists of only positive curvatures.

1 The principal curvatures of the level sets of $ are functions of $ and its derivatives. For

a specific $ the principal curvatures are functions of 3-space h (x) and k2(x). For adding
material the joint between two objects, w e consider only the positive curvature components,

1The sign of curvature is defined by the direction of the normals— in this work normals point into the

volume enclosed by the object.

(c) (d)

Figure 10: T w o rectangular solid models are joined by a volumetric fillet that is created

from a positive curvature flow.

= v<l> kv = V<I> k; - V<I> k. , . (38)
a t

where &+ consists of only the positive parts of A; and is defined as zero elsewhere. Because

the use of separate curvature terms can cause over-shooting, the up-wind scheme (treating

as a space-varying velocity in the normal direction) is used for this evolution.

Figure 10 shows h o w the positive-curvature flow can be used to construct fillets. N o knowl­

edge of the underlying models is necessary. The fillets grow larger as more time passes.

The physical extent or position of the fillet can be controlled by either specifying a region

of action or by placing a small blob of deformable material in the joint that requires a fillet.

Figure 11 shows h o w such a blending capability can be useful in animation. In this case a

pair of superquadrics undergo a rigid transformation that controls their relative positions.

Level-set models with a positive-curvature flow are used to create a smooth joint between

these two primitives. Notice that the positive curvature method does not suffer from the

growth or expansion artifacts that are often associated with distance-based blending meth­

ods [40].

Thus, a second-order flow can create smooth blends between objects in a way that does

not require specific knowledge of the shapes or topologies of the object involved. The

application in the next section, 3 D scene reconstruction, shows h o w a combination of first-

order and second-order terms from Table 1 are combined to create technique that fits models

to data while maintaining certain smoothness constraints and thereby offsetting the effects

of noise.

i.e.,

7.3 3D Reconstruction from Multiple Range Maps

Level-set models are useful for problems related to 3 D reconstruction. Previous work has

presented level-set results derived from noisy 3 D data such as M R I [19] and ultrasound

[41]. In [42] w e have shown h o w the reconstruction of objects from multiple range maps

can be formulated as a problem of finding the surface that optimizes the posterior probabil­

ity given a set of measurements (noisy range maps) and some information about the a-priori

probability of different kinds of surfaces. That optimization problem can be expressed as a

volume integral which can be solved with level-set models. This section presents the math­

ematical expressions that result from those formulations and presents some new results:

the reconstruction of entire scenes by fitting level-set models to the data from a scanning

L A D A R (laser ranging and detection) system.

A range map is a collection of range measurements taken along different directions (lines

(a) (b)

Figure 11: A short animation is created by specifying the relative motion between two

superquadric components of an object. A positive-curvature flow (applied frame by frame

to the joint between the two 3 D models) creates a smooth, flexible object.

of sight) but from a single point of view. Range maps could come from any number of dif­

ferent sources including laser scanners, structured light depth systems, shape from stereo,

or shape from motion. W e assume that such range maps are noisy and uncertain. The goal

is to combine a number of range maps from different points of view to create a 3 D structure

that reflects the collective confidence and depth measures.

Several examples in the literature have applied parametric models to this task. Turk and

Levoy [43], for instance, “zip” together triangle meshes in order to construct 3 D objects

from sequences of range maps from a laser range finder. They perform minor adjustments

to the surface position in order account for ambiguity in the range maps. Their approach

assumes very little noise in the input, which is reasonable given the high quality of their

range maps. Chen and Medioni [44] use a parametric (triangle mesh) model which expands

inside a sequence of range maps. Curless and Levoy [45] describe a volume-based tech­

nique for combining range data. They use the signed distance transform to encode volume

elements with data that represent the averages (with some allowance for outliers) of mul­

tiple measurements. Surfaces of objects are the level sets of volumes. Related approaches

are given in [46, 47]. Bajaj et. al. [48] use a Delaunay triangulation to impose a topol­

ogy on a set of unordered 3 D points and then fit trivariate Bernstein-Bezier patches— i.e.

a higher-order implicit model— to the data. Muraki [2] uses implicit or blobby models to

reconstruct objects from range data. The individual blobs are spherically symmetric 3 D

potentials that are combined linearly so that they blend together. The resulting models,

with approximately 400 primitives are quite coarse.

This work differs from previous work in two ways. First, rather than heuristics, our recon­

struction strategy is based on a strategy that solves for the optimal surface estimate. This

optimal estimate includes information about one's expectations of the likelihood of differ­

ent surfaces. The result is not a closed-form solution, but an iterative process that seeks to

fit a level-set model to the data while enforcing a kind of smoothness on the data.

7.3.1 Objective function for multiple range m a p s

The evolution equation for the estimation of optimal surfaces is shown in [42] to consist of

two parts:
3 t
- = - G (x) N + p(S). (39)

This first part, , is the data term, which is a movement with variable speed (as

in expression 2 from Table 1) that is the cumulative effect from all of the individual range

maps. The second part is the prior, which describes the likelihood of the surface indepen-

dent of the data. The data term is

G{x) = ^ c ^ (x) D ^ \x) oj (p ^ (x f j ^ (x) , (40)

j

where is the signed distance along the line of sight from a range measurement in range

m a p associated passing through . The function is a windowing function

that limits the penalty of any one range measurement, and is a confidence function,

which is inversely proportional to the level of noise in the range measurement associated

with the same line of sight. The term is an integration constant that takes into account

the curvilinear coordinate system of the range scanner.

Thus, a set of range maps creates a scalar function of 3D, which describes the movement of

a surface model as it seeks the optimal surface position. In the absence of a prior, p = 0, the

zero set of this function is the final position (steady state) of that evolving surface. Thus, in

the absence of a prior, one could sample and obtain an approximation to the optimal

surface estimate. This strategy results in an algorithm that is very mu c h like that of [45].

There are several reasons for going to an iterative scheme for finding optimal solutions.

First is the use of a prior. In surface reconstruction, even a very low level of noise can

degrade the quality of the rendered surfaces in the final result, and in such cases better

reconstructions can be obtained by introducing a prior. Second is aliasing. Discretizing

and finding the zero crossings will cause aliasing in those places where the transition

from positive to negative is particularly steep. A deformable model can place the surface

m u c h more precisely. The third reason for going to an iterative scheme is that despite the

windowing function there is interference between different range maps at places of

high curvature. This problem is addressed by introducing a nonlinearity which is solved in

an iterative scheme given by equation 39. In the work described in [21], the solution of the

linear problem, the zero set of g(x), serves as the initial estimate for the nonlinear, iterative
optimization strategy that results from the inclusion of a prior and a nonlinear term that

compensates for lack of any explicit model of self occlusions.

Equation 39 includes a prior, which is a likelihood function on surface shape. A reasonable

choice of prior is one that models objects with less surface area as more likely than objects

with more surface area. Alternatively, one could say that given a set of surfaces that are

near the data, the algorithm should choose a surface that has less area. Often, but not

always, this will be the smoother surface. The p(S) that results from this prior is the mean
curvature. Therefore the evolution of the surface, using the level-set formulation, that seeks

to maximize the posterior probability (given a set of range maps and a prior that penalizes

(a) (b)

Figure 12: Range maps: Synthetic range data 200 200 pixels with 2 0 % Gaussian white

noise of a torus end (a) and side (b).

surface area) is

d $(x , t)
dt

V$(*)| ̂ D ^ (x) u (p ® (*)) x 7 Ci), x C^Hx

\

(V $ - n ^ (x) y

V $ • n ^ (x)
+ P H ,

(41)

where is the line of sight from a range finder to a 3 D point, , is a free parameter

that controls the level of smoothing in the model, and is the expression for the mean

curvature given in equation 8.

Figure 12 shows a pair of simulated range maps constructed from an analytical description

of a torus. These 200 x 200 pixel range maps are corrupted with additive Gaussian noise that

has a standard deviation of 2 0 % (as a function of the smaller of the two radii). Six synthetic

noise-corrupted viewpoints of a torus are combined to create a level-set reconstruction of

a torus. Figure 13(a) shows the initial model (80x80x40 voxels) used for fitting a level-

set models to the range data. Figure 13(b) shows the result of the level-set models that

uses 13(a) as an initial state and has a value of /3 equal to 0.5. The result is a reasonable
reconstruction of the noiseless model (Figure 13(c)) which combines the six points of view

and the smoothing function.

Figure 14(a) shows a range m a p taken with the Perceptron model P5000, an infra-red, time-

of-flight laser range finder with a pan-tilt mechanism. Figure 14(b) shows the amplitudes

associated with the return signal (an intensity), and 14(c) shows a surface plot of the range

(a) (b) (c)

Figure 13: (a) A n analytically-defined model of a torus. (b) A n initial model (80x80x40

voxels) is constructed by combining six points of view of a torus and solving for g(x) = 0.

(c) The model, which is attracted to the range data but subject to internal forces, evolves

and settles into a smoother steady state.

m a p to demonstrate the degree of noise (additive and outliers). Figure 14(d) shows the

confidence values associated with those range measurements. These confidence values are

derived from empirical data about the level of noise in the range finder (which depends

on the return amplitude), and some analysis, from first principles, about the effects of

uncertainty in the 3 D positions of the scans and the model — which results in the lower

confidence at edges as described in [42]. W e combined twelve such views from different

locations in the room to generate the results that follow.

Figure 15(a) shows the initial estimate based on the zero crossings of g(cc), and 15(b) shows

the result of 32 iterations with the prior term and the correction for the surface normal direc­

tion. The size of the volume is 300 x 150 x 180 voxels, and the resolution is 1.8 cm/voxel.

These results show the ability of the statistically-based approach to overcome the noise in

the scanner, and they show that the inclusion of iterative, model-fitting scheme helps create

more accurate reconstructions. The resolution of the model falls below that of the scans,

because it was limited by the random-access-memory available on our workstation. S o m e

small features, such as the arm rests of the chairs, are lost because of the inaccuracies in

the registration of the individual range maps.

(c) (d)

Figure 14: (a) One of twelve range maps (b) The associated amplitude m a p (c) A surface

plot of the range data to show the level of noise. (d) The confidence measures associated

with those range values.

Figure 15: (top) The 3 D reconstruction resulting from the zero crossings of g(x) gives
some averaging, but includes no prior. (bottom) The result of 32 iterations with the iterative

scheme includes the prior and excludes influences of data on surfaces that face away from

the scanner.

8 V I S P A C K

8.1 Introduction

V I S P A C K is a set of C++, object-oriented libraries for image processing, volume process­
ing, and level-set surface modeling. It consists of five libraries: Matrix, Image, Volume,

Util, and Voxmodel (level-set modeling). These libraries can be used separately or together

when creating applications.

V I S P A C K incorporates eight basic design attributes. These are

Data Handles/Copy on Write: VISPack is an object-oriented library, and as such w e

allow the objects to handle m e m o r y management, and relieve the programmer (in

most cases) from having to worry pointers and the corresponding m e m o r y alloca­

tion/deallocation problems. For this w e use the data handles with a copy on write
protocol. Copy constructors perform a shallow copy with reference counting until a
non const operation on the underlying buffers forces a deep copy. Thus deep copies
are performed only when necessary, but all m e m o r y is maintained by the objects and

objects behave as “variables” rather than pointers.

Modified Data Hiding: Access to data in objects is generally through access methods,

however, pointers to buffers for fast implementations are available.

Templates: VISPack utilizes the templating construct of C + + virtually throughout. M a n y

of the objects, including images, volumes, lists, and arrays, are intended to support

a wide range of data types. Thus, via templating programmers can define the pixels

of different images of different types, such as floating point, 24-bit color, and 16-bit

greyscale.

Use of Standard File Formats: W h e n appropriate VISPack uses standard file formats.

W e choose formats that are well known and have publicly available libraries that can

be distributed with our libraries. The matrix library uses a simple text format. The

image library uses TIFF and FITS file formats. Because no standard format exists

for saving volumes of data w e do use a raw file format.

Operator Overloading: Proper use of operator overloading gives users a convenient

w a y to execute operations on an object. W h e n compined with the copy-on-write

convention, operator overloading allows programmers to treat ma n y heavy-weight

objects (e.g. images and volumes) as variables. For instance, the following code

computes non-maximal edges in a on a filtered volume.

V o l u m e < f l o a t > dx, dy, dz;

V o l u m e < f l o a t > v o l _ g a u s s = v o l .g a u s s (0.5);

V o l u m e < f l o a t > v o l _ o u t = (((dx = v o l _ g a u s s . dx ()) .p o w e r (2)

* v o l _ g a u s s . d x (2)

+ ((dy = v o l _ g a u s s . dy ()) . p o w e r (2) * v o l _ g a u s s . d y (2)

+ ((dz = v o l _ g a u s s . dz ()) . p o w e r (2) * v o l _ g a u s s . dz (2)

+ d x * d y * (d x) . d y () + d x * d z * (d x) . d z ())

+ d y * d z * (d y) . d z ()))) . z e r o C r o s s i n g s ()

&& ((d x . p o w e r (2) + d y . p o w e r (2)) > T*T));

8.2 Level-Set Surface-Modeling Library

The Level-Set Surface-Modeling (LSSM) Library is an implementation of the level-set

technique [10, 13] specifically for deforming surface models embedded in volumes. The

implementation uses the sparse-field method described in [20]. The library implements all

of the basic numerical algorithms and handles all of the data structures required to perform

L S S M . The strategy for using this library is to subclass the object V o x M o d e l , set some

parameters, define a set of simple virtual functions that control the deformation process,

initialize the model, and then direct the model to iteratively deform according to those

equations. This section describes the relationship between the mathematics of previous

sections and the VISPack library. Its also presents an example of using VISPack libarary

to do 3 D shape metamorphosis as described in Section 7.1.

8.2.1 Surface Deformation

The L S S M library allows one to solve for surface deformations, as a function of time, for

general level-set surface movements of the form:

3 x
— = a F(x , N (x)) + f3G(x, N (x)) N (x) + 7 N (x) + r/E (ki(x), &2(a ;))), (42)

where x is a point on the surface. This equation is solved by representing the surface as the

th level set of an implicit function . This gives

^ = a F { x , V0)) • V 0 + /3G(x, V0)|V0| + 7 |V0| + 1]E(D<P, D 20), (43)

where and are collections first and second derivatives of , respectively. This

equation is solved on a discrete grid using an up-wind scheme gradient calculations, central
differences for the curvature, and forward finite differences in time. The L S S M library uses

the sparse-field method described in Section 6.3 and in [21].

Thus, the L S S M library offers the following capabilities:

1. Creates an initial model (with associated active set) from a volume.

2. Calculates and using virtual functions (defined by subclasses) that de­

scribe and , and parameters (values set by the subclass) , , , and .

3. Performs an update on the values of .

4. Maintains the list of active grid points and updates the layers around those points in
order to maintain a neighborhood from which to calculate subsequent updates.

5. Provides access to the volume that defines uti,k and the linked list of active grid
points.

Given the volume defining , one can then rely on the functionality of the volume library

for subsequent processing, file I/O, or surface extraction.

8.2.2 Structure and Philosophy of the L S S M Library

The library is organized (mostly for ease of development) into a base class, L e v e l S e t -

Model, and a derived class, V o x M o d e l . The base class does all of the book keeping

associated with the active set and surrounding layers, the link lists associated with those
sets, and initializing the model. Thus it adds and removes voxels from the active set (and

surrounding layers) in response to an update operation. The base class assumes that the

subclasses k n o w h o w to update individual voxels. Applications are built by subclassing

V o x M o d e l and redefining a small set of virtual functions that control the movement of the

model.

The subclass, V o x M o d e l , performs update on the grid points in the active set of the form

given in Equation 18, using functions and and parameters , , , and . It also calcu­

lates the m a x i m u m At that ensures stability. Thus a user w h o wishes to perform a surface

deformation using the L S S M library, would create subclass of V o x M o d e l and define the

appropriate virtual functions and set the parameters to achieve the desired behavior.

8.2.3 The L eve lS etM od el Object

The L e v e l S e t M o d e l contains a volume of values, a volume of status flags, five lists

(one active list, two inside lists, and two outside lists), and three parameters that determine

the origin of the coordinate system form which the model performs its calculations.

There are two constructors, L e v e l S e t M o d e l () and L e v e l S e t M o d e l (c o n s t

V I S V o l u m e < f l o a t > &). The first simply initializes the data structure, and the second

also set the values of the model volume (.values) to the input. Once the values have been

set, one can create an initial volume from those values by calling c o n s t r u c t L i s t s (),

which can also take a floating-point argument that controls the scaling of the input relative

to a local distance transform near the zero set.

The list that keeps track of the active set, called _active_list, keeps track of the location

of those grid points and a single floating-point value, which stores the change in their values

from one iteration to the next.

Another important methods for users of this object is u p d a t e (f l o a t) , which changes

the grey-scale values of the grid for the active set according to the values stored in

_active_list, and updates the status of elements on the active list as well as the val­

ues and status of nearby layers (2 inside and 2 outside). The floating point argument is

the value of A t from Equation 18, and the return value is the m a x i m u m change that oc­

curred on the active set. Finally, the method i t e r a t e () calls the virtual method c a l -

cu l a t e . c h a n g e , a virtual function which sets the values of A uf j jk and returns the m a x ­
i m u m value of A t for stability, and then calls update. For this object the function c a l -

c u l a t e . c h a n g e performs some trivial (i.e., useless) operation.

8.2.4 The V o x M o d e l Object

The V o x M o d e l object is a subclass of L e v e l S e t M o d e l , and it add three things to the

base class.

1. c a l c u l a t e . c h a n g e () is redefined to implement the surface deformation de­

scribed in Equation 43.

2. The virtual functions are declared for F (called force) and G (called grow). These

functions are defined to return zero for this object.

3. The parameters that control the relative influence of the various terms are read from

file by a routine loacLparams.

4. A method r e s c a l e (f l o a t) is defined, which resamples the volume of grid-point

values into a new volume with different resolution and redefines the lists (and thereby

the model) in this new volume. This method is for performing coarse-to-fine defor­

mation procedures.

8.3 Example: 3D Shape Metamorphasis

The M o r p h object allows one to construct a sequence of volumes or surface meshes using

the 3 D shape metamorphasis technique described in Section 7.1, which was first proposed

by Whitaker and Breen [20]. This technique relies distance transforms for both the source

and target objects and uses a L S S M s to manipulate the shape of the source so that it coin­

cides with the target. The surface deformation that describes this behavior is

3 t

— = / 3G(T(x)) N(x) , (44)

where is simply the distance transform (or some monotonic function thereof) of the

target, and is a coordinate transformation that aligns the source and target objects. The

level-set formulation of this is

« = , 9 G (T W)|V0|. (45)

The morphing process consists of several steps:

1. Read in distance transforms (in the form of volumes) for both source and target.

2. Initialize the L S S M by fitting it to the zero set of the source distance transform.

3. Update the L S S M according to Equation 45.

4. Save intermediate volumes/surfaces at regular intervals.

The remainder of this section lists the code and comments for three files, morph.h (which

declares the M o r p h object), morph.C (which defines the methods) and main.C (which

performs all of the I/O and uses the M o r p h object to construct a sequence of shapes.

8.4 Morph.h

//
// morph .h
//
//

i f n d e f i r i s _ m o r p h _ h
d e f i n e i r i s _ m o r p h _ h

i n c l u d e " v o x m o d e l / v o x m o d e l . h "
i n c l u d e " m a t r i x / m a t r i x . h "

d e f i n e IN IT_STATE 0
d e f i n e MORPH_STATE 1
//
// T h i s i s t h e morph o b j e c t . I t u se s a l l o f t h e m ac h in e r y o f t h e ba se
// c l a s s t o m a n i p u l a t e l e v e l s e t s . I t n e eds t o have an i n i t i a l vo lume
// and a f i n a l v o lume (wh ich wou ld t y p i c a l l y be t h e d i s t a n c e t r a n s f o r m ,
// i t m i g h t n e ed a 3D t r a n s f o r m a t i o n , and i t n e ed s t o r e d e f i n e t h e
// v i r t u a l f u n c t i o n " g r o w " , wh i ch t a k e s 6 f l o a t s as i n p u t , t h e p o s i t i o n
// f o l l o w e d by t h e no rma l v e c t o r s (a l l w i l l c a l c u l a t e d and p a s s e d i n t o
// t h i s method by t h e b as e c l a s s) . I t m i g h t a l s o have a s t a t e , t h a t
// i n d i c a t e s w h e t h e r o r n o t i t ' s b e en i n i t i a l i z e d .
//
// F u n c t i o n s n o t d e f i n e d h e r e s h o u l d be d e f i n e d i n "morph .C"
//
c l a s s M or p h : p u b l i c VoxMode l

{
p r o t e c t e d :

V I S V o l u m e < f l o a t > _ d i s t _ s o u r c e ;
V I S V o l u m e < f l o a t > _ d i s t _ t a r g e t ;
V I S M a t r i x _ t r a n s f o r m ;

//
// T h i s i s t h e f u n c t i o n t h a t i s u sed by t h e b a s e c l a s s t o m a n i p u l a t e t h e
l e v e l
// s e t . You can d e f i n e i t t o by a n y t h i n g you wan t . F o r t h i s o b j e c t , i t
w i l l
// r e t u r n a v a l u e f r o m t h e d i s t a n c e t r a n s f o r m o f t h e t a r g e t .
//

v i r t u a l f l o a t g r o w (f l o a t x , f l o a t y , f l o a t z,
f l o a t nx, f l o a t ny, f l o a t n z) ;

// T h e r e a r e two s t a t e s . I n t h e f i r s t s t a t e , t h e mode l i s t r y i n g t o f i t
// t o t h e i n p u t d a t a . I n t h i s way t h e mod e l s s t a r t s by l o o k i n g j u s t l i k e

// t h e i n p u t d a t a
i n t _ s t a t e ;

p u b l i c :

M o r p h (c o n s t Morph& o t h e r)

{
_ d i s t _ t a r g e t = o t h e r . _ d i s t _ t a r g e t ;
_ i n i t i a l = o t h e r . _ i n i t i a l ;
_ s t a t e = MORPH_STATE;
_ t r a n s f o r m = V I S V I S M a t r i x (3 , 3) ;
_ t r a n s f o r m . i d e n t i t y () ;

// i n i t i a l i z e () ;

}

M o r p h (V I S V o l u m e < f l o a t > i n i t , V I S V o l u m e < f l o a t > d)
: V o x M o d e l ()

{
_ d i s t _ t a r g e t = d;
_ i n i t i a l = i n i t ;
_ s t a t e = MORPH_STATE;
_ t r a n s f o r m = V I S V I S M a t r i x (3 , 3) ;
_ t r a n s f o r m . i d e n t i t y () ;

// i n i t i a l i z e () ;

}

v o i d i n i t i a l i z e () ;

// f o r t h i s o b j e c t I assume t h a t t h e t r a n s f o r m i s j u s t a m a t r i x .
// bu t i t c o u l d be a n y t h i n g

v o i d t r a n s f o r m (c o n s t V I S V I S M a t r i x & t)
{ _ t r a n s f o r m = t ; }

c o n s t V I S V I S M a t r i x & t r a n s f o r m ()
{ r e t u r n (_ t r a n s f o r m) ; }

v o i d d i s t a n c e (c o n s t V I S V o l u m e < f l o a t > d)
{ _ d i s t _ t a r g e t = d ; }
V I S V o l u m e < f l o a t > d i s t a n c e ()
{ r e t u r n (_ d i s t _ t a r g e t) ; }

} ;
e n d i f

8.5 Morph.C

i n c l u d e "mor ph . h "
i n c l u d e " u t i l / g e o m e t r y . h '
i n c l u d e " u t i l / m a t h u t i l . h '

//
// t h i s i s t h e v i r t u a l f u n c t i o n , t h a t i s t h e g u t s o f i t a l l .
//

f l o a t M o r p h : : g r o w (f l o a t x , f l o a t y , f l o a t z,
f l o a t nx, f l o a t ny, f l o a t nz)

{

// t h i s s ay s you a r e i n t h e morph s t a t e (t h i n g s have b e en i n i t i a l i z e d)
i f (_ s t a t e == MORPH_STATE)

{
f l o a t x x , y y , z z ;
V I S P o i n t p (4 u) ;
p . a t (0) = x;
p . a t (1) = y;
p . a t (2) = z;
p . a t (3) = 1;
V I S P o i n t p_ tmp;

// t h i s i s wher e you c o u l d put some o t h e r t r a n s f o r m .
p_tmp = _ t r a n s f o r m * p ;

xx = p _ t m p . x () ;
y y = p _ t m p . y () ;

zz = p _ t m p . z () ;

// make su r e you a r e no t ou t o f t h e bounds
// o f y o u r d i s t a n c e v o lume .

i f (_ d i s t _ t a r g e t . c h e c k B o u n d s (x x , y y , z z))
// i f n o t , g e t t h e d i s t a n c e (use t r i l i n e a r i n t e r p o l a t i o n) .

r e t u r n (_ d i s t _ t a r g e t . i n t e r p (x x , y y , z z)) ;
e l s e

r e t u r n (0 . 0 f) ;

}
e l s e

{
// i f you a r e s t i l l i n i t i a l i z i n g , t h e n move t o w a r d t h e z e r o s e t o f
// y o u r i n i t i a l c a s e

i f (_ i n i t i a l . c h e c k B o u n d s (x , y , z))
r e t u r n (_ i n i t i a l . i n t e r p (x , y , z)) ;

e l s e
r e t u r n (0 . 0 f) ;

}
}

// t h i s makes t h e mode l l o o k l i k e t h e i n p u t .
d e f i n e IN IT _ I TERAT IONS 5
v o i d M o r p h : : i n i t i a l i z e ()

{
_ v a l u e s = _ i n i t i a l ;
i n t s t a t e _ t m p = _ s t a t e ;
_ s t a t e = IN IT_STATE;
c o n s t r u c t _ l i s t s (D I F F E R E N C E _ F A C T O R) ;

// t h e s e c o u p l e o f i t e r a t i o n s a r e r e q u i r e d t o make su r e t h a t t h e z e r o
// s e t s o f t h e mode l match t h e z e r o s e t s o f t h e
//

f o r (i n t i = 0; i < IN IT _ I TERATIONS ; i + +)

{
// l i m i t t h e d t t o 1 . 0 so t h a t t h e mode l s e t t l e s i n t o a s o l u t i o n

u p d a t e (: : m i n (c a l c u l a t e _ c h a n g e () , 1 . 0 f)) ;

}
_ s t a t e = s t a t e _ t m p ;

}

8 .6 M a i n .C

i n c l u d e " v o l / v o l u m e . h "
i n c l u d e " v o l / v o l u m e f i l e . h "
i n c l u d e " i m a g e / i m a g e f i l e . h "
i n c l u d e "mor ph . h "
i n c l u d e < s t r i n g . h >

c o n s t i n t V_HEIGHT = (40) ;
c o n s t i n t V_WIDTH = (4 0) ;
c o n s t i n t V_DEPTH = (4 0) ;

d e f i n e XY_RADIUS (12) // t h i s matches t h e 2.5D d a t a g e n e r a t e d i n
t o r u s . C
d e f i n e T_RADIUS (4) // t h i s mat ches t h e 2.5D d a t a g e n e r a t e d i n t o r u s . C
d e f i n e S_RADIUS (12) // r a d i u s o f a s p h e r e

d e f i n e B_WIDTH (2 0 . 0 f)
d e f i n e B_HEIGHT (6 0 . 0 f)
d e f i n e B_DEPTH (2 0 . 0 f)

d e f i n e B_CENTER_X (1 2 . 0 f)
d e f i n e B_CENTER_Y (3 2 . 0 f)
d e f i n e B_CENTER_Z (1 2 . 0 f)

f l o a t s p h e r e (u n s i g n e d x, u n s i g n e d y , u n s i g n e d z) ;
f l o a t t o r u s (u n s i g n e d x, u n s i g n e d y , u n s i g n e d z) ;
f l o a t c u b e (u n s i g n e d x, u n s i g n e d y , u n s i g n e d z) ;

// T h i s i s a p r o g r am t h a t doe s t h e morph. I f you g i v e i t two
// a r gument s , i t r e a d s t h e i n i t i a l mode l and t h e d i s t t r a n s f o r t h e
// f i n a l mode l f r om t h e two f i l e names g i v e n , o t h e r w i s e , i t makes a
s p h e r e
// and d e f o rm s i t i n t o a t o r u s

m a i n (i n t a r g c , c h a r * * a r g v)

{

V I S V o l u m e < f l o a t > v o l _ s o u r c e , v o l _ t a r g e t ;
V I S V o l u m e F i l e v o l _ f i l e ;
i n t i ;
c h a r f n a m e [8 0] ;

v o l _ s o u r c e = V I S V o l u m e < f l o a t > (2 5 , 6 5 , 2 5) ;
v o l _ s o u r c e . e v a l u a t e (c u b e) ;

i f (a r g c > 2)

{
// r e a d i n t h e s o u r c e i n g mode l

v o l _ s o u r c e = V I S V o l u m e < f l o a t > (v o l _ f i l e . r e a d _ f l o a t (a r g v [1])) ;
// r e a d i n t h e d i s t t r a n s o f t h e f i n a l mode l

v o l _ t a r g e t = V I S V o l u m e < f l o a t > (v o l _ f i l e . r e a d _ f l o a t (a r g v [2])) ;

}
e l s e
// make up some vo lumes

{
v o l _ s o u r c e = V I S V o lu m e < f l o a t > (V _ W I D T H , V_HEIGHT, V_DEPTH) ;
v o l _ s o u r c e . e v a l u a t e (s p h e r e) ;
v o l _ t a r g e t = V I S V o lu m e < f l o a t > (V _ W I D T H , V_HEIGHT, V_DEPTH) ;
v o l _ t a r g e t . e v a l u a t e (t o r u s) ;

}

// c r e a t e morph o b j e c t
Morph m o r p h (v o l _ s o u r c e , v o l _ t a r g e t) ;
// l o a d s i n some p a r a m e t e r s (f o r mo rph ing t h e s e a r e a l l z e r o bu t one)
// i . e .
//
//
//
//
m o r p h . l o a d _ p a r a m e t e r s (" m o r p h _ p a r a m s ") ;
m o r p h . i n i t i a l i z e () ;
v o l _ f i l e . w r i t e _ f l o a t (m o r p h . v a l u e s () , " m o r p h 0 . f l t ") ;

f l o a t d t ;

// do 150 i t e r a t i o n s f o r y o u r mode l t o g e t f r o m s t a r t t o f i n i s h
// p r o b a b l y d o n ' t n e ed t h i s many i t e r a t i o n s

f o r (i = 0; i < 150; i + +)

{
d t = m o r p h . c a l c u l a t e _ c h a n g e () ;

/ / l i m i t d t t o 0 . 5 so t h a t mode l n e v e r o v e r s h o o t s g o a l
d t = m i n (d t , 0 . 5 f) ;
m o r p h . u p d a t e (d t) ;

p r i n t f (" i t e r a t i o n %d d t % f\n " , i , d t) ;

i f (((i + 1)%10) == 0)

{
/ / s a v e e v e r y t e n t h vo lume

s p r i n t f (f n a m e , " m o r p h _ o u t . % d . d a t " , i + 1) ;
v o l _ f i l e . w r i t e _ f l o a t (m o r p h . v a l u e s () , f n am e) ;

}
}

/ / s a v e a s u r f a c e mode l (i . e . m a r c h in g c u b e s) .
v o l _ f i l e . m a r c h (0 . 0 f , m o r p h . v a l u e s () , ' ' m o r p h _ f i n a l . i v ' ') ;

p r i n t f (" d o n e \ n ") ;

}

R e f e r e n c e s

[1] J. Blinn, “A generalization o f algebraic surface drawing,” ACM Trans. on Graphics,
vol. 1, pp. 235-256, March 1982.

[2] S. Muraki, “Volumetric shape description o f range data using “blobby model” ,” in
SIGGRAPH ’91 Proceedings (T. W. Sederberg, ed.), pp. 227-235, July 1991.

[3] G. Taubin, “An accurate algorithm for rasterizing algebraic curves and surfaces,”
IEEE Computer Graphics & Applications, March 1994.

[4] D. Breen, S. Mauch, and R. Whitaker, “ 3d scan conversion o f csg models into dis­
tance, closest-point and colour volumes,” in Volume Graphics (M. Chen, A. Kaufman,
and R. Yagel, eds.), pp. 135-158, London: Springer, 2000.

[5] W. Lorenson and H. Cline, “Marching cubes: A high resolution 3D surface construc­
tion algorithm,” Computer Graphics, vol. 21, no. 4, pp. 163-169,1982.

[6] M. Levoy, “Display o f surfaces from volume data,” IEEE Computer Graphics and
Applications, vol. 9, no. 3, pp. 245-261, 1990.

[7] R. A. Drebin, L. Carpenter, and P. Hanrahan, “Volume rendering,” in SIGGRAPH ’88
Proceedings, pp. 65-74, August 1988.

[8] M. Kass, A. Witkin, and D. Terzopoulos, “ Snakes: Active contour models,” Interna­
tional Journal o f Computer Vision, vol. 1, pp. 321-323, 1987.

[9] D. Terzopoulos and K. Fleischer, “Deformable models,” The Visual Computer, vol. 4,
pp. 306-331, December 1988.

[10] S. Osher and J. Sethian, “Fronts propagating with curvature-dependent speed: A lgo­
rithms based on Hamilton-Jacobi formulations,” Jrnl. o f Comp. Phys., vol. 79, pp. 12­
49, 1988.

[11] J. Sethian, Level Set Methods and Fast Marching Methods. Cambridge: Cambridge
University Press, second ed., 1999.

[12] J. A. Sethian, “A fast marching level set method for monotonically advancing fronts,”
Proc. Nat. Acad. Sci., vol. 93, no. 4, pp. 1591-1595, 1996.

[13] J. A. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics,
Computer Vision, and Material Sciences. Cambridge University Press, 1996.

[14] S. Osher and R. Fedkiw, “Level set methods: An overview and some recent results,”
Tech. Rep. 00-08, U C LA Center for Applied Mathematics, Department o f Mathemat­
ics, University o f California, Los Angeles, 2000.

[15] L. Alvarez and J.-M. Morel, “A morphological approach to multiscale analysis: From
principles to equations,” in Geometry-Driven Diffusion in Computer Vision (B. M. ter
Haar Romeny, ed.), pp. 4-21, Kluwer Academic Publishers, 1994.

[16] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” in Fifth Int. Conf.
on Comp. Vision, pp. 694-699, IEEE, IEEE Computer Society Press, 1995.

[17] B. B. Kimia and S. W. Zucker, “Exploring the shape manifold: the role o f conserva­
tion laws.,” in Shape in Picture: the mathematical description o f shape in greylevel
images (Y.-L. O, A. Toet, H. Heijmans, D. H. Foster, and P. Meer, eds.), Springer-
Verlag, 1992.

[18] R. Malladi, J. A. Sethian, and B. C. Vemuri, “ Shape modeling with front propagation:
A level set approach,” IEEE Transactions on Pattern Analysis and Machine Intelli­
gence, vol. 17, no. 2, pp. 158-175, 1995.

[19] R. T. Whitaker and D. T. Chen, “Embedded active surfaces for volume visualization,”
in SPIE Medical Imaging 1994, (Newport Beach, California), 1994.

[20] R. Whitaker and D. Breen, “Level-set models for the deformation o f solid objects,”
in The Third International Workshop on Implicit Surfaces, pp. 19-35, Eurographics,
1998.

[21] R. T. Whitaker, “A level-set approach to 3D reconstruction from range data,” Int. Jrnl.
of Comp. Vision, vol. October, no. 3, pp. 203-231, 1998.

[22] R. T. Whitaker, “Algorithms for implicit deformable models,” in Fifth Intern. Conf.
on Comp. Vision, IEEE, IEEE Computer Society Press, 1995.

[23] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi, “Gradient flows
and geometric active contour models,” in Fifth Int. Conf. on Comp. Vision, pp. 810­
815, IEEE, IEEE Computer Society Press, 1995.

[24] A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver, and A. Tannenbaum, “A geometric
snake model for segmentation o f medical imagery,” IEEE Transactions on Medical
Imaging, vol. 16, pp. 199-209, April 1997.

[25] L. Lorigo, O. Faugeraus, W. Grimson, R. Keriven, and R. Kikinis, “ Segmentation of
bone in clinical knee M RI using texture-based geodesic active contours,” in Medi­
cal Image Computing and Computer-Assisted Intervention (M ICCAI ’98) (W. Wells,
A. Colchester, and S. Delp, eds.), pp. 1195-1204, October 1998.

[26] S. Osher and J. Sethian, “Fronts propagating with curvature-dependent speed: A lgo­
rithms based on Hamilton-Jacobi formulations,” Jrnl. o f Comp. Phys., vol. 79, pp. 12­
49, 1988.

[27] X. Xue and R. Whitaker, “Variable-conductance, level-set curvature for image denois-
ing,” in IEEE International Conference on Image Processing, p. To Appear., October
2001.

[28] D. Adalstein and J. A. Sethian, “A fast level set method for propagating interfaces,”
Jrnl. o f Comp. Phys., pp. 269-277, 1995.

[29] D. Breen and R. Whitaker, “A level-set approach to 3D shape metamorphosis,” IEEE
Transactions on Visualization and Computer Graphics, p. To Appear., 2001.

[30] A. Lerios, C. D. Garfinkle, and M. Levoy, “Feature-Based volume metamorphosis,” in
SIGGRAPH ’95 Conference Proceedings (R. Cook, ed.), Annual Conference Series,
pp. 449-456, Addison Wesley, Aug. 1995.

[31] J. Kent, W. Carlson, and R. Parent, “ Shape transformation for polyhedral objects,” in
SIGGRAPH ’92 Proceedings, pp. 47-54, July 1992.

[32] J. Rossignac and A. Kaul, “AGRELS and BIPs: Metamorphosis as a bezier curve in
the space of polyhedra,” Computer Graphics Forum (Eurographics ’94 Proceedings),
vol. 13, pp. C-179-C-184, September 1994.

[33] J. F. Hughes, “ Scheduled Fourier volume morphing,” in Computer Graphics (SIG­
GRAPH ’92 Proceedings) (E. Catmull, ed.), vol. 26, pp. 43-46, July 1992.

[34] B. Payne and A. Toga, “Distance field manipulation o f surface models,” IEEE Com­
puter Graphics and Applications, vol. 12, no. 1, pp. 65-71, 1992.

[35] D. Cohen-Or, D. Levin, and A. Solomivici, “Three-dimensional distance field meta­
morphosis,” ACM Transactions on Graphics, vol. 17, no. 2, pp. 116-141, 1998.

[36] P. Getto and D. Breen, “An object-oriented architecture for a computer animation
system,” The Visual Computer, vol. 6, pp. 79-92, March 1990.

[37] D. Breen, S. Mauch, and R. Whitaker, “ 3D scan conversion o f CSG models into
distance volumes,” in Proceedings o f the 1998 Symposium on Volume Visualization,
pp. 7-14, ACM SIGGRAPH, October 1998.

[38] A. Middleditch and K. Sears, “Blend surfaces for set theoretic volume modeling sys-
terns,” in SIGGRAPH ’85 Proceedings, pp. 161-170, July 1985.

[39] J. Bloomenthal and K. Shoemake, “Convolution surfaces,” in SIGGRAPH ’91 Pro­
ceedings (T. W. Sederberg, ed.), pp. 251-257, July 1991.

[40] M. Desbrun and M.-P. Gascuel, “Animating soft substances with implicit surfaces,”
in SIGGRAPH ’95 Proceedings, pp. 287-290, August 1995.

[41] R. T. Whitaker, “Volumetric deformable models: Active blobs,” in Visualization In
Biomedical Computing 1994 (R. A. Robb, ed.), (Mayo Clinic, Rochester, Minnesota),
pp. 122-134, SPIE, 1994.

[42] R. T. Whitaker, “A level-set approach to 3D reconstruction from range data,” Int. Jrnl.
of Comp. Vision, vol. October, no. 3, pp. 203-231, 1998.

[43] G. Turk and M. Levoy, “Zippered polygon meshes from range images,” in Proc. o f
SIGGRAPH ’94, pp. 311-318, ACM SIGGRAPH, August 1994.

[44] Y. Chen and G. Medioni, “Fitting a surface to 3-D points using an inflating bal­
lon model,” in Second CAD-Based Vision Workshop (A. Kak and K. Ikeuchi, eds.),
vol. 13, pp. 266-273, IEEE, 1994.

[45] B. Curless and M. Levoy, “A volumetric method for building complex models from
range images,” in Proc. o f SIGGRAPH ’96, pp. 303-312, ACM SIGGRAPH, August
1996.

[46] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “ Surface recon­
struction from unorganized points,” Computer Graphics, vol. 26, no. 2, pp. 71-78,
1992.

[47] A. Hilton, A. J. Stoddart, J. Illingworth, and T. Windeatt, “Reliable surface recon­
struction from multiple range images,” in Euro. Conf. on Comp. Vision, Springer-
Verlag, 1996.

[48] C. Bajaj, F. Bernardini, and G. Xu, “Automatic reconstruction o f surfaces and scalar
fields from 3D scans,” in SIGGRAPH ’95 Proceedings, pp. 109-118, August 1995.

