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ABSTRACT

Concurrent programs are extremely important for efficiently programming future

HPC systems. Large scientific programs may employ multiple processes or threads to

run on HPC systems for days. Reliability is an essential requirement of existing con-

current programs. Therefore, verification of concurrent programs becomes increasingly

important. Today we have two significant challenges in developing concurrent program

verification tools: The first is scalability. Since new types of concurrent programs keep

being created, verification tools need to scale to handle all these new types of programs.

The second is providing formal coverage guarantee. Dynamic verification tools always

face a huge schedule space. Both these capabilities must exist for testing programs that

follow multiple concurrency models.

Most current dynamic verification tools can only explore either thread level or

process level schedules. Consequently, they fail to verify hybrid programs. Exploring

mixed process and thread level schedules is not an ideal solution because the state space

will grow exponentially in both levels. It is hard to systematically traverse these mixed

schedules. Therefore, our approach is to determinize all concurrent APIs except one

API whose schedules will then be explored.

To improve search efficiency, we proposed a random-walk based heuristic algo-

rithm. We observed many concurrent programs and concluded some common structures

of them. Based on the existence of these structures, we can make dynamic verification

tools focusing on specific regions and bypassing regions of less interest. We propose a

random sampling of executions in the regions of less interest.
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CHAPTER 1

INTRODUCTION

Almost all science and engineering research in the world is conducted with the aid

of concurrent programs. Therefore, concurrent software reliability is increasingly im-

portant. Undetected bugs in software may cause data loss or even serious safety issues.

The examples of the disaster caused by software bugs are Therac-25 tragedy [18], the

dysfunction of the Mars Pathfinder [15], and the 2003 North American Blackout [10].

Ideally, software developers should have some efficient and systematic tools to help the

verification of their software.

1.1 Specific Focus
In this thesis, we are interested in verifying threaded MPI hybrid programs, which

are a combination of MPI programs and threaded programs. MPI programs are widely

used at scale on large cluster machines. However, purely message passing programs cre-

ate many redundant memory copies of messages. On the other hand, threaded programs

use shared memory as their communication channel that optimizes the memory copies.

However, threaded programs are difficult to scale. The combination of these two types

of concurrent programs can achieve the benefits of these individual pure approaches.

Threaded MPI programs can utilize hardware, eliminate redundant memory copies, and

provide high throughput. They can effectively utilize hybrid concurrent hardware such

as multicore processors used as super computing nodes. Recent supercomputers such

as Tianhe-1A [12] and CRAY-XT5 [11] are comprised of thousands of multicore pro-

cessors connected by efficient message passing networks. MPI programs distribute jobs

on such supercomputers, and for each job on a multicore processor, the thread library

parallelizes the job into concurrent tasks. Therefore, threaded MPI hybrid programs are

a very good fit for utilizing supercomputers. In this thesis, for convenience, we use the

term hybrid programs to refer to threaded MPI hybrid programs.

Verifying hybrid programs is important because of the growing usage. The whole

computation could be distributed on many processors and take a long time to generate
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results. Errors can waste days of supercomputing time.

We can catalog errors in concurrent programs into two categories: schedule inde-

pendent and schedule dependent. Schedule independent errors are usually caused by the

improper usage of concurrent such as incorrect arguments, buffer usage errors, and type

matching errors. Schedule dependent errors are caused by certain interleavings of API

calls. The buggy interleavings of calls are usually unexpected, and hard to reproduce.

Deadlock is one such error.

Detecting and reproducing schedule dependent errors in concurrent programs is

difficult. The traditional “printf” strategy is no longer suitable for debugging because

in most cases, the bugs will only appear in a few schedules that rarely happen. In this

thesis, we focus on detecting schedule dependent errors in hybrid programs.

1.2 Dynamic Verification on MPI Programs
Several formal verification approaches for concurrent programs have been proposed.

One of these is dynamic verification. Dynamic verification methods have proven ef-

fective for detecting schedule dependent bugs in real-world concurrent programs [21].

These tools explore different concurrent schedules by repeatedly executing the real

applications and enforcing various relevant schedules. Dynamic verification tools such

as CHESS [23], Inspect [32], and JPF [8] have been proposed for testing concurrent

programs. In this thesis, we will use our MPI program dynamic verification tool, ISP,

to test hybrid programs.

Figure 1.1 shows a simple MPI program without the computational code typically

used between message passing statements. The function recv denotes the receiving

operation. The function send denotes the sending operation. The function barrier

denotes the barrier operation, which synchronizes all processes.

1: if id == 0 {
2: recv(*)
3: recv(*)
4: recv(*)
5: barrier()
6: else if 1 ≤ id ≤ 3 {
7: send(0)
8: barrier()
9: }

Figure 1.1. Example Program
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Figure 1.2. The State Space of the Example Program

Figure 1.2 shows the exploration tree of schedules of this program. The label ri

denotes recv(i) and si denotes send(i). The state, (v0, v1, v2, v3), denotes the next

operation of each process.

Figure 1.2 shows the six possible schedules in this MPI program. Each path from

the root node to one of the leaf nodes denotes one possible schedule. Ideally, a dy-

namic verification tool must attempt to traverse the entire tree and check every possible

schedule.

1.2.1 ISP

In this section, we will briefly introduce our dynamic formal MPI program verifier,

ISP [29]. An ideal concurrent program verification tool should meet several goals:

1. Guarantee coverage.

2. Eliminate redundant tests.

3. Cover the input space.

4. Provide a intuitive user interface within popular frameworks.

ISP [29] is a successful MPI program formal verifier which meets these goals with the

exception of the third. ISP employs a special verification scheduler with partial order

reduction to reach the first two goals. ISP meets the last goal by integration within the

Eclipse framework [2]. To meet the third goal, typically we need a symbolic analysis

process.
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ISP contains two main components: profiler and scheduler. The scheduler of ISP

intercepts MPI calls and permutes the order among them to enforce interleavings. The

profiler redefines the MPI functions and uses MPI’s profiling mechanism (PMPI) [20]

instead. For each redefined function, it sends a TCP socket message to the scheduler

through which the scheduler can keep track of MPI calls. The scheduler collects MPI

operations by receiving sockets message from the processes. This process continues

until each process encounters a fence operation [30]. At each fence point, the scheduler

carries out the POE algorithm [29] to explore the state space.

1.2.1.1 Stateless Exploration and Deterministic Replay

ISP employs stateless Depth First Search [7] possible for terminative programs.

However, this DFS exploration is based on an important assumption: the tested pro-

gram must be deterministically replayable. Specifically, nondeterministic behaviors

other than in the message passing code are not allowed.

1.2.1.2 Fence Point

Before we introducing fence points, we need to explain what a fence operation is.

A fence operation is defined as an MPI operation that cannot complete after any other

MPI operation that follows it [30]. Examples are MPI Wait, MPI Barrier, etc. Once

all processes reach their fence, ISP will fully know the senders, which may match a

wildcard receive. The state that all processes reach their fence is called a fence point.

In Figure 1.2, every state is a fence point.

1.2.1.3 Ample Set

When every process reaches its fence point, the ISP scheduler will form a set of

send-receive matches for the POE algorithm to explore the state space. The set of send-

receive matches is the ample set [29] at this fence point. The ample set denotes the mini-

mal and sufficient choices for paths to explore the state space. For example, considering

the root state in Figure 1.2, the ample set of this state is {(p1, p0), (p2, p0), (p3, p0)}. The

pair (pi, pj) denotes a match that the sender is process i and the receiver is process j.

Ample sets define required explorations at each state.
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1.3 Thesis Statement
We have two goals for this thesis:

• Deterministically replay MPI hybrid programs.

• Reduce the number of schedules examined while preserving high coverage.

Deterministic replay of MPI hybrid programs can be achieved by developing a record/replay

mechanism for thread programs and a scheduler for the message passing aspects. Fur-

thermore, using heuristics we can cut down the number of schedules examined while

achieving significant coverage. These approaches for the two goals are presented in two

isolated parts in this thesis.

1.3.1 Deterministic Replay of Hybrid Programs

We investigate the challenges of deterministically replay hybrid programs and iden-

tify the problem of hybrid schedule nondeterminism. We propose a schedule deter-

minizing solution for dynamic verification tools testing hybrid programs. For mixed

thread level and process level schedules in hybrid programs, our solution is determiniz-

ing thread level schedules while dynamic verification tools are exploring process level

schedules. Our approach hides the nondeterminism of thread level schedule for dynamic

verification tools as what they expect to be.

1.3.2 Focus Plus Randomize Sampling Heuristic Search Space Reduction

Schedules of hybrid programs are mixed by thread level and process level schedules.

A hundred-line hybrid program can generate a large number of schedules. However, to

the best of our knowledge, even process level schedules of pure MPI programs cannot be

gracefully traversed by any current dynamic verification tool. Therefore, we stay in pure

MPI programs to deal with the schedule search space explosion problem. We observed

several MPI programs and concluded some common program structures: loops, tested

blocks, and symmetric code blocks. We present a focused plus randomized algorithm

to reduce the schedule search space based on these structures in MPI programs.

1.3.3 Implementations and Evaluations of Our Solutions

In order to evaluate our ideas, we implement our solutions in our dynamic formal

MPI program verification tool, ISP. We generate two experimental versions of ISPs.
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Each of them realizes the solution of one part of our thesis. Our results show the

effectiveness of our ideas.

1.4 Related Work
In this section, we briefly survey some successful dynamic verification tools for

threaded programs. To our knowledge, ISP is the first and only dynamic verification

tool for MPI programs.

1.4.1 Java PathFinder

The original Java PathFinder (JPF) described in [8] is a translator from a java

program to Promela, a modeling language of the SPIN model checker [9][16]. In

fact, Java PathFinder works like a Swiss army knife of java program verification. For

example, in [24], the authors use JPF to exhaustively search for the possible paths in

tested java programs. It dynamically enumerates all the path conditions of these paths

and formulates these path conditions as formulas for SMT solvers. Consequently, they

can verify the reliability of the java programs. The original Java PathFinder itself is not

a “real” model checker or verifier. However, there are many extensions [14], such as a

symbolic execution extension for the Java Path Finder, that make it feasible to perform

different verification tasks. Our verification tools should find it easy to add external

components to deal with novel programming styles or APIs.

1.4.2 CHESS

CHESS is a multithreaded program verification tool. It can test and debug on

user-mode Win32 programs, .NET programs, and Singularity [17] applications. CHESS

uses a dynamic verification method to verify the programs. Given a program, CHESS

will repeatedly execute it and explore different schedules in each round. To capture

and control the thread schedules, CHESS requires a wrapper layer between the tested

program and the concurrency API. The main technique CHESS employs to reduce

search space is controlling the number of preemptions in thread schedules. The thread

schedules containing fewer preemptions will be assigned higher priority to explore and

test. The intuition behind this strategy is that many bugs are exposed under a few

preemptions occurring in the multithreaded programs.
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1.5 Contributions
In this thesis, we propose a hybrid program verification helper for ISP and imple-

ment it to successfully verify MPI/Pthread programs. We also propose a focus plus

random sampling heuristic to improve ISP’s performance. While we demonstrate the

efficiency of the focus plus random sampling (FPRS) testing on pure MPI programs, it

can be also used on hybrid MPI programs without any alterations. We acknowledge the

help of Grzegorz Szubzda in identifying the hybrid program verification issues in the

context of Eddy Murphi.



CHAPTER 2

DYNAMIC VERIFICATION ON HYBRID

PROGRAMS

In this chapter, we introduce a hybrid program dynamic verifier. We will demon-

strate our idea on a nontrivial case study. The case study we choose is an MPI/Pthread

hybrid program called Eddy Murphi [1] [19]. When we attempted to verify Eddy

Murphi using the nonhybrid version of ISP, to our surprise, we found that ISP, which had

previously verified a number of large applications, crashed. In the following section,

we present the underlying reasons and our general solution applicable to a reasonably

large class of hybrid MPI/thread programs.

2.1 Overview of the Nondeterministic Replay Problem

2.1.1 A Case Study on Eddy Murphi

Eddy Murphi [19] [1] is a parallel and distributed model checker. It essentially im-

plements a BFS approach algorithm to explore the state space. Eddy Murphi distributes

states to nodes and defines the home node of each state through a simple hash function

over the state vector. Each node supports an MPI process to explore the state space

comprised of a worker thread and a communicator thread. Each state has an owner

id which is the home node of that state. The worker and the communicator of a node

share FIFO queues (Q in Figure 2.1) of states. The worker dequeues a state from the

FIFO queue Q and checks the ownership of all its successor states. For a successor

state homed locally, the worker will enqueue it into the Q. Otherwise the worker inserts

the state into an outbound communication queue (CommQueue in Figure 2.1). The

communicator thread (CT in Figure 2.1) is responsible for sending out states. It scans

through all queues in CommQueue and sees if the number of states in a certain queue

is over a defined bound. The communicator thread also receives states by issuing MPI

wildcard receive calls.

The pseudo codes in Figure 2.2 show how workers and communicators access

shared structures. Note that the global variables, the shared structures, Q and Com-
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Figure 2.1. The Architecture of EddyMurphi

mQueue are protected by Pthread locks. In Figure 2.1, these structures are marked by

dash-line frames.

2.1.2 Nondeterministic Replay Problem

We mentioned that ISP crashed while testing Eddy Murphi. The error message

given by ISP shows that it failed to collect the same ample set for the same state in

different rounds of execution. In other words, there were some MPI wildcard receive

calls matched with different sets of senders.

In Eddy Murphi, the MPI wildcard receive and send calls are all issued the commu-

nicator thread. For issuing the MPI send calls, the communicator thread of a process

visits the shared structure CommQueue periodically. If the number of the pending states

in a certain queue is greater than a defined bound, the communicator sends these states

out. For issuing the MPI receive calls, the communicator thread probes the incoming

messages first and receives if there is any sender. The key is that the communicator

thread sending the states depends on the loading of CommQueue. The loading of the

queues in CommQueue depends on how many states the worker thread enqueued (the

loading of Q). Therefore, we conclude that the race between the communicator thread

and the worker thread decides what MPI calls are issued and their order. This underlies

our inability to deterministically replay Eddy Murphi.

To make ISP capable of verifying hybrid programs like Eddy Murphi we must

achieve these goals:

• ISP must explore the space of nondeterministic receives of the communicator
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Worker Thread
1. ParBFS () { // worker thread
2. pthread_create(CommThread);
3. /* some initializing works */
4. while (!ParTerminate()) { /* main loop */
5. s = Dequeue(Q);
6. foreach (s_next) in next(s) {
7. if (!CheckState(s_next)) {
8. /* test if terminal */ }}
9. } /* end of main loop */
10. pthread_join(); }
11. CheckState (state s) {
12. owner_rank = owner(s);
13. if (owner_rank == my_rank) { /* my own state */
14. Enqueue(Q, s); }
15. else {
16. Enqueue_line(CommQueue[owner_rank]); }}

Communicator thread
1. CommThread () { // communication thread
2. while (true) {
3. ProcMess(); /* processes the incoming messages */
4. /* handles termination */
5. DoSends();
6. /* handles termination probing */ }}
7. ProcMess() {
8. /* may receive the terminating message */
9. S = MPI_Recv(ANY_SOURCE, state);
10. foreach state s in S
11. Enqueue(Q, s); }
12. DoSends () {
13. foreach node n different from my_rank {
14. while (lines_ready(CommQueue[n])) {
15. S = Dequeue_line(CommQueue[n]);
16. MPI_Isend(S, n, state); }}}

Figure 2.2. Worker and Communication Threads

threads (see Figure 2.1 where we show “CT with Wildcard Recv”).

• ISP must not be “confused” by the Pthread schedules that may vary from replay to

replay with respect to lock access (see Figure 2.1 where we show “mutex lock”).

We can conclude we need to deterministically replay the race between threads in the

process to solve this problem. To clarify, we record and replay the race condition. Since

ISP is a stateless dynamic verifier, our record-replay mechanism is also stateless so that

it only needs the record of the last round to control the race in the current execution.
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2.2 Determinizing Solution

2.2.1 DR Event

A “DR event” denotes a decision made by ISP. ISP scheduler will collect MPI

calls from all processes and wait for all processes to reach their fence points. Once

ISP realizes that all processes have reached fences, it chooses a source from the set of

potential matching senders to match a wildcard receive and rewrites the wildcard receive

into a specific receive, thus determinizing the MPI schedule from that point. For our

race replay daemon, we call this decision, meaning the matching of one eligible reader

with a nondeterministic receive, a DR event. The DR event plays an important rule for

our deterministic replay mechanism that will be explained in the following sections.

2.2.2 ISP with Record/Replay Daemon

Here we provide an overview to show how ISP works with the external Race Replay

Daemon. We call it an “external” race replay daemon because our additions to ISP

do not fundamentally change the algorithm of ISP for checking the MPI programs.

Installing the daemon into ISP did not require significant modifications of the ISP

source code. For ISP to cooperate with the daemon, it has to:

• Start up the daemon before the testing processes are created.

• Set a flag when there is a DR event.

• Restart the daemon before it restarts itself.

• Terminate the daemon before it terminates itself.

We believe that such a nonintrusive extension can make ISP a powerful MPI program

verifier.

2.2.2.1 Our Solution Overview

We build Pthread call instrumentation facilities to record the order of accessing

shared data structure and signaling conditional variables by creating our own versions

of pthread create, pthread mutex lock, pthread mutex unlock, pthread cond wait, and

pthread cond signal. (We will introduce them in section 2.2.3.) These instrumentations

can be easily automated. Our version of these functions will notify the race replay

daemon and cooperate with the daemon to issue the original pthread calls at the “right”
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timing. ISP collects MPI calls from all processes and waits for the processes to reach

their fence points. Then ISP will raise a DR event. Our daemon sequentially probes the

notifications (can also be seen as events) from threads and DR events. Then it records

all these events into a log file. This is the record mode of the daemon.

With a log file of events for a round of execution, the daemon can also enforce the

order of events according to the log. This is the replay mode of the daemon. For the

deterministic replay of Pthread calls: (i) the daemon sends ACKs to threads calling

Pthread routines in an order that matches the recorded order, or (ii) the daemon NACKs

threads arrives in a different order.

DR events play an important role in our record/replay mechanism. It is critical for

the daemon to switch from the replay mode to the record mode. In the initial run, since

we do not have a log file, the daemon starts in record mode. During subsequent runs, the

daemon starts in the replay mode and enforces the order of all events according to the

log file generated by a previous execution. Note that the daemon still keeps recording

the events even in replay mode. When it comes to replay a DR event, the daemon first

sees if ISP has replayed the previous decision or not:

• If ISP chooses the same source as previously run for the wildcard receive, the

daemon stays in the replay mode.

• When ISP pursues a new match at a fence point, the daemon switches to record

mode. From this point to the end of this execution, the daemon stays in record

mode and continues to generate a log file for the next run.

After ISP chooses a new match at a certain fence point, the previous run’s log file will

not be used subsequently. Therefore, the previous log file will be discarded. Such

a record/replay mechanism is easily implemented by keeping only two log files: the

previous one and the current one.

Figure 2.3 illustrates how we augment ISP with a daemon that helps record a previ-

ous Pthread schedule (recorded during first play to an MPI nondeterministic point) and

enforce the recorded schedule (during a subsequent play to that MPI nondeterministic

point). In Figure 2.3, each MPI process may create multiple threads. These threads

notify the daemon when Pthread calls issued. The daemon controls the schedule of

these Pthread calls by sending ACKs or NACKs. We will explain the protocol in later

sections.
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Figure 2.3. ISP-Daemon System

Note that every process in Figure 2.3 has only one thread called MPI. We make an

assumption that the MPI threading level is MPI THREAD FUNNELED. That means

there is only one thread in a process can issue MPI calls. A summary of assumptions

we make is as follows:

• All read/writes are protected by mutual exclusion locks.

• The MPI threading level is MPI THREAD FUNNELED.

• Processes communicate only through MPI calls.

• Other API calls (besides MPI and Pthreads) are not allowed.

• The inputs provided by our test harness are deterministic.

While Eddy Murphi satisfies all these requirements, not all MPI-Pthread hybrid pro-

grams do. However, we believe that articulating such assumptions is a valuable contri-

bution in that others may be tempted to relax (or strengthen) them to build better tools

in an area where none exist.

2.2.3 The Instrumented Pthread Functions

In this section, we present how our version of Pthread functions works. We rewrite

our version of functions: create, mutex lock, mutex unlock, cond wait, and cond signal.

Before introducing them, we define a function SendnRecv which performs a socket send
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followed by a socket receive. This function takes a message as the input and returns with

the corresponding ACK or NACK.

2.2.3.1 pthread create

Our version of pthread create sends a CREATE message to the daemon. This

message notifies the daemon that a new thread is going to be created. The daemon

will always return ACK. Figure 2.4 shows the pseudo code of our pthread create. It

calls SendnRecv to send the notification to the daemon. Then it calls the original

pthread create. The arguments args is given by the programmers for the original

pthread creation used.

We also instrument the MPI Init call that it will send a BUILD message to the

daemon. This message is similar to the CREATE. It notifies the daemon that there

will be a set of threads with the same process it created.

2.2.3.2 pthread mutex lock

Figure 2.5 shows our design of the new pthread mutex lock function. This function

will first send the TRY LOCK message to the daemon. This message informs the

daemon which thread is waiting to enter a critical section. This information also helps

the daemon to detect deadlock.

After the TRY LOCK, the function will try to acquire the mutex lock by calling the

original pthread mutex lock. Once it enters the critical section successfully (returns

from the original pthread mutex lock), it will send another message, ENTER CS, as

a notification to the daemon. In the record mode, an ACK will always be replied.

In the replay mode, the first ENTER CS could receive either ACK or NACK. If the

NACK is received, it means that “it is not my turn to enter the critical section.” Then

our pthread mutex lock will give up the lock and send a TRY AGAIN message to the

daemon. The thread calling our locking mutex function will be blocked by waiting for

the reply of this message. Since we use the function SendnRecv to pass the message,

1: Our pthread create(args) {
2: SendnRecv(CREATE)
3: return pthread create(args)
4: }

Figure 2.4. Our pthread create
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1: Our pthread mutex lock(args) {
2: SendnRecv(TRY LOCK)
3: returnv = pthread mutex lock(args)
4: rcode = SendnRecv(ENTER CS)
5: if rcode = NACK {
6: pthread mutex unlock(args)
7: SendnRecv(TRY AGAIN)
8: returnv = pthread mutex lock(args)
9: SendnRecv(ENTER CS)

10: }
11: return returnv
12: }

Figure 2.5. Our pthread mutex lock

the thread will sends a message to the daemon and wait for the response. The daemon

can block the thread by postponing the ACK or NACK.

The design of our “second-try” pthread mutex lock is nontrivial. We need to keep

in mind that the thread should not care about the mode (record or replay) of the “ISP-

daemon” system. We should not design two versions for these instrumented pthread

calls. Therefore, the daemon needs to control the two different behaviors of these

pthread calls by replying ACK or NACK. Meanwhile, we need to think about when

the thread needs to send the message to the daemon. One option is sending the message

before calling the original pthread mutex lock for entering the critical section. This

option makes it very easy to replay thread schedules. We can just send ACK to unblock

the threads with the recorded schedule. However, for recording the schedule, it becomes

very hard to know the “real” order of accessing critical sections. Considering the case

shown in Figure 2.6, we can see that the thread b could preempt the thread a after a calls

the SendnRecv and enters the critical section. In this case, since the daemon receives the

message from a first, it will think a is entering the critical section before b. However,

it is not true. To solve this situation, we choose to send a message to the daemon

after entering the critical section. The difficulty in this approach is to replay the thread

schedule. A thread could acquire the mutex lock in the wrong order while replaying.

To solve this case, the daemon will check the validity of it on the first ENTER CS.

1: SendnRecv(ENTER CS)
2: pthread mutex lock

Figure 2.6. Sending Message Before Entering Critical Section
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1: Our pthread mutex unlock(args) {
2: SendnRecv(RELEASE)
3: return pthread mutex unlock(args)
4: }

Figure 2.7. Our pthread mutex unlock

Once the daemon realizes that there is a thread acquiring the mutex lock out of order,

it will send NACK to it. The thread will give up the lock after receiving a NACK and

wait after sending TRY AGAIN. The daemon will send ACK to the threads to grant the

access to the critical section according to the log. Once the thread returns from the

THREA TRY AGAIN INFORM, it is safe to enter the critical section.

2.2.3.3 pthread mutex unlock

Figure 2.7 shows the code of our pthread mutex unlock. In our pthread mutex unlock,

we send the notification to the daemon before we call the original unlock function.

The reason why we do not send the message after calling the unlock function is that

the daemon needs to record the “real order” of the accessing of the critical section.

Considering the case shown in Figure 2.8, thread x releases the lock before sending

notification. Suppose we are in the record mode and thread x is going to unlock the

mutex lock m while thread y is going to lock m. If thread x releasing the lock m on

line 1 and preempted by thread y before executing line 2, then thread y will acquire

the lock m successfully and send the message to the daemon before thread x sends its

message. Since the daemon will record the message with the order of their coming

(will be explain in detail later), there will be a unreasonable sequence of schedule in the

record: ENTER CS → RELEASE. Such unreasonable sequences will cause problems

while replaying the schedules. Instead of paying extra effort to fix this error in the log

file, sending the message first in our pthread mutex unlock can easily solve the problem.

2.2.3.4 pthread cond wait

In our conditional wait or signal functions, we do not call the original waiting or

signaling function. The original pthread cond wait releases an assigned mutex lock

and then waits for another thread to signal an assigned conditional variable. However,

it is hard to control the wait-signal relationship without modifying the underlying MPI

implementation. Considering our pthread cond wait shown in Figure 2.9, line 2 and 3
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Thread X:
1. pthread_mutex_unlock(&m);
2. SendnRecv(RELEASE);
Thread Y:
3. pthread_mutex_lock(&m);
4. SendnRecv(ENTER_CS);

Figure 2.8. Sending the Message After Calling the Unlock Function

1: Our pthread cond wait(lock, cond) {
2: SendnRecv(WAIT)
3: pthread mutex unlock(lock)
4: SendnRecv(WAKEN)
5: return Our pthread mutex lock(lock)
6: }

Figure 2.9. Our pthread cond wait

are used to release a mutex lock. We send the WAIT to the daemon instead of RELEASE.

The message WAIT not only informs the daemon the lock released but also gives extra

information to help the daemon maintain the wait-signal relationship. The daemon

will track the waiting order and enforce the waken order. Line 4 sends the WAKEN

message to the daemon. The daemon will send back the ACK on the time for this

thread to wake up. Finally, after returning from line 4, the thread calls our version

of pthread mutex lock to try to acquire the mutex lock back. An important issue in

our pthread cond wait is that we need to make two actions, lock releasing and signal

waiting, into one atomic action. We use our daemon to combine them. We will explain

this in a later section.

2.2.3.5 pthread cond signal

The design of our pthread cond signal is similar to our unlock function for the mu-

tex lock. Consider Figure 2.10, we send a SIGNAL to the daemon, the daemon will find

a waiting thread to wake up in deterministic order. For the original pthread cond signal

in line 3, it actually wakes nobody up! This is because that there is nobody calling the

original conditional wait. It is just for returning value.
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1: Our pthread cond signal(args) {
2: SendnRecv(SIGNAL)
3: return pthread cond signal
4: }

Figure 2.10. Our pthread cond signal

2.2.4 ISP-Daemon Communication Protocol

ISP and the daemon associate with each other by producing and consuming the

DR events. We define a shared variable DR Event Flag to record the state of the DR

event. ISP and the daemon access this shared variable in a “producer and consumer”

approach. ISP raises a DR event by calling the function SetDREvent. Figure 2.11

shows the function SetDREvent. The shared variable DR Event Flag is protected by a

mutex lock EVENT LOCK. ISP can set DR Event Flag to its desired value under the

situation that the current value of DR Event Flag is NO Event. NO Event implies the

previous generated event had been consumed by the daemon.

Our daemon will probe the DR Event in the record mode and wait for it in the replay

mode. As the probing function shown in Figure 2.12, the daemon copies the value of

DR Event Flag, sets it to “no event”, and returns the previous DR Event Flag. It is

possible that the returned value is “no event.” It means that ISP did not produce a DR

event.

On the other hand, in the replay mode, when it is time to replay a DR event according

to the log file, the daemon must wait and consume a DR event before continuing the

replaying procedure. In the waiting function shown in Figure 2.13, the daemon will not

leave the while loop until the value of DR Event Flag is not NO Event. However, the

value of DR Event Flag is not important. That the DR event denotes the exploration

decisions made by ISP. In most of the cases, the DR event at a specific point in the trace

1: SetDREvent(event) {
2: bool success = false
3: while !success {
4: pthread mutex lock(& EVENT LOCK)
5: if DR Event Flag == NO EVENT {
6: DR Event Flag = event
7: success = true
8: }
9: pthread mutex unlock(& EVENT LOCK)

10: }
11: }

Figure 2.11. Set a DR Event
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1: ProbeDREvent {
2: pthread mutex lock
3: int current flag = DR Event Flag
4: DR Event Flag = NO EVENT
5: pthread mutex unlock
6: return current flag
7: }

Figure 2.12. Probe the DR Event

1: WaitDREvent {
2: int get event = NO EVENT
3: while get event == NO EVENT {
4: pthread mutex lock(& EVENT LOCK)
5: if DR Event Flag != NO EVENT {
6: get event = DR Event Flag
7: DR Event Flag = NO EVENT
8: }
9: pthread mutex unlock(& EVENT LOCK)

10: }
11: return get event
12: }

Figure 2.13. Wait for a DR Event

of the current round should be the same as in the previous round, which means ISP

replays the previous choice at this point. Once the value of the DR event is different

from the previous value at a certain point in the schedule, it means that ISP chooses

a different match on a nondeterministic point. At this point, the daemon will switch

from the replay mode to the record mode. Then we discard the previous round log file.

Therefore, we just enforce the in order occurring of DR events but do not expect the

deterministic values.

2.2.5 Daemon-Threads Communication Protocol

Our race replay daemon is implemented as a thread (Pthread) created by ISP. The

daemon keeps doing similar tasks while helping ISP deterministically replay the thread

schedules. While in record mode, the daemon keeps probing the DR events and the

messages from the threads. The order in which these events and messages are success-

fully probed is the order they are recorded in the log file. On the other hand, while in

replay mode, the daemon will “grant” the events or the messages in order. Remember

that threads send messages in our version of Pthread functions. They will not continue

in those functions until the daemon sends ACK or NACK to them. For our race replay

daemon, sending an ACK to a thread is just like “authorizing” the thread to continue
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the corresponding action. The same things happened on ISP. ISP will be blocked by

SetDREvent if the current value of DR Event Flag is not “no event.” This means that

the previous DR event had not been granted by the daemon. Therefore, ISP needs to

wait for the daemon to consume the previous event before raising the new DR event.

Figure 2.14 shows the pseudo code of our race replay daemon’s main function. For

every round of ISP verification (executing the tested program), the daemon will execute

its main function once. The daemon will only start from the record mode in the first

round. In the consequent rounds, it will start from the replay mode. This is shown in

line 2.

Before explaining the main routine of the daemon, we need to briefly introduce

the function, ProbeMessage. The function ProbeMessage in line 16 and 21 is used

to receive the incoming socket messages from all the threads. This function also has

different behaviors in the replay and the record modes. For the usage in the record

mode, it will issue the nonblocking receive calls for all the threads. For the different

1: Daemon Main Body {
2: mode = is first round ? RECORD : REPLAY
3: while true {
4: if mode == REPLAY { . enter the replay mode
5: replay event = PopLogFile() . pop a record tuple from the log file
6: if replay event == DR Event {
7: dr event = WaitDREvent() . waiting for an DR event
8: WriteLog(dr event)
9: if dr event == EXPLORE {

10: ACKAllPendingEvents()
11: mode = RECORD
12: }
13: } else . a pthread action from a certain thread
14: if !AckInPendingList(replay event) { . see if the event is pended
15: repeat
16: ProbeMessage(REPLAY, replay event)
17: until ProbeMessage success
18: }
19: }
20: else if Mode == RECORD { . enter the record mode
21: ProbeMessage(RECORD, NULL)
22: dr event = ProbeDREvent()
23: WriteLog(dr event)
24: if dr event == TERMINATE or RESTART {
25: EndOrRestart() . routines for the daemon restart or terminate
26: break
27: }
28: }
29: }
30: }

Figure 2.14. The Main Loop Body of Our Race Replay Daemon
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types of incoming message, ProbeMessage will handle them with different actions. We

will describe these actions later in detail. ProbeMessage requires a desired event (event

in line 16) in replay mode. It still issues the nonblocking receive calls for all the threads.

However, it will keep receiving the messages until the desired event (a specific message

coming from a specific thread) happens. When those incoming messages do not match

the desired event, the daemon will put them into a random access queue. Those pending

messages denote that there are some threads blocked by our version of pthread calls and

wait for the right timing to be unblocked.

Now we can look into the code in the daemon’s main routine. In the record mode

(line 20 to 28 in Figure 2.14), the daemon checks if there are any incoming messages

from the threads by calling ProbeMessage. After that, it checks if there are any DR

events raised by calling ProbeDREvent. In line 23, the daemon writes the returned

value of ProbeDREvent into the log file. We do not record dr event when its value is

“no event.” However, the function WriteLog in line 23 implicitly excludes this case. If

the value of dr event is “terminate” or “restart,” the daemon performs some clean up

tasks and leaves the main routine.

For the replay mode code in the daemon’s main routine (line 4 to 19 in Figure 2.14),

the daemon pops a tuple from the log file in each iteration. If the current event (replay evet

returned by PopLogFile in line 5) is a DR event, the daemon waits for ISP to set an

event. Note that we still record that the event occurred even if in replay mode. This is

because for the next round of the verification, ISP may still replay a section of the same

schedule with the previous round. Therefore, we still need to record every message and

event during the replay mode for the next round. The section from line 9 to line 12

handles the case that the daemon acquires an event whose value is “explore.” This case

means that ISP chose to explore a different schedule from this point. Therefore, from

this point to the end of this round execution, the daemon will stay in record mode (line

11). Before entering record mode, the daemon has to ACK all the pending messages.

The function ACKAllPendingEvents in line 10 sends ACK to all the pending messages

in the order of their coming. Meanwhile, it will record all of them into the log file.

For the case that the current event replay event in line 5 is not a DR event, it means

that there should be a certain thread calling a certain pthread function. We do not show

the detail data structure of the type of replay event. But it is a tuple that stores the

information to indicate that it is a DR event for now along with the thread id of the

calling function name. For a pthread function call event, the daemon will check if it had
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been stored in the pending message list by calling the function AckInPendingList. If the

daemon did not find the destination event in the pending list, it will call ProbeMessage

to collect messages from the threads and ACK the desired one.

Figure 2.15 is the pseudo code for the function ProbeMessage. The for statement

in line 3 issues a nonblocking receive call (in line 4) for a thread in each iteration. The

function valid in line 5 tests if the nonblocking receive call acquired a valid message

or not. The block from line 6 to line 19 decides whether the daemon should grant

(send ACK) this incoming message or not. When the daemon is in record mode, it

always grants the incoming message. For the TRY LOCK and FINALIZE message,

the daemon grants them anyway. This is because the TRY LOCK message is just for

the daemon to realize “who is waiting for which mutex lock.” This is for the purpose

of deadlock detection. For FINALIZE message, it is a note for the daemon that “a

1: ProbeMessage(mode, replay event) {
2: success = false
3: for every thread t { . try to receive message from every thread
4: recv event = non blocking recv(t)
5: if valid(recv event) { . if we readlly acquired a incoming message
6: if mode == RECORD ∨ recv event == TRY LOCK ∨ FINALIZE {
7: grant = true
8: } else . in record mode
9: if relay event.tid == t ∧ (replay event.event == recv event ∨ (replay event.event

== ENTER CS ∧ recv event == TRY AGAIN)) {
10: grant = true
11: if replay event.event == recv event {
12: success = true
13: } else
14: success = false
15: }
16: } else
17: grant = false
18: }
19: }
20: if grant {
21: SendACK(mode, t, recv event)
22: } else
23: if recv event == ENTER CS {
24: SendNACK(t)
25: } else
26: PushPendingList(recv event)
27: }
28: }
29: }
30: }
31: return success
32: }

Figure 2.15. The Pseudo Code of ProbeMessage
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thread is going down.” It is always safe to grant this message. In the replay mode, the

daemon can only grant the incoming message which matches the current desired event.

Therefore, the daemon will not grant the incoming message from the thread which does

not match the thread id of the desired event. Furthermore, the type of the event also

needs to be the same. An exception is that the incoming message is TRY AGAIN and

the desired message is ENTER CS. In this special case, the daemon should grant this

message. However, we should not claim the replay is successful in this case because

the daemon is waiting for the following ENTER CS after this TRY AGAIN message.

Consider Figure 2.5, the desired ENTER CS from the thread will be issued in line 9. The

section from line 10 to line 14 in Figure 2.15 notifies the daemon’s main routine that

the replay is incomplete. For those undesired messages, the daemon will put them into

a pending list except the ENTER CS message. For the undesired ENTER CS message,

the daemon will send NACK instead to make the thread give up the newly acquiring

mutex lock.

We use the function SendACK in Figure 2.15 to send back the ACK to the threads.

There are some complex designs in this function. Figure 2.16 shows the pseudo code

of the function SendACK. To send ACK for the CREATE event (from line 2 to 5), we

need to write the event into the log, send ACK, and then wait for the connection from

the newly created thread (done by the function WaitForBUILD in line 5). To send ACK

for the ENTER CS and the RELEASE event (from line 6 to 12), we need to write the

event into the log, send ACK and update the deadlock detection table. For ENTER CS,

we also need to check if the deadlock occurred (by calling DetectDeadlock in line

11). We will introduce the deadlock detection built into our daemon later. Handling

the TRY LOCK case (from line 40 to 43) is similar to the ENTER CS case. The only

difference between them is that we do not record the TRY LOCK event. We do not care

about how many times a thread is trying to acquire a mutex lock (once or twice). We

only record that “the daemon granted an access of mutex lock and sent back an ACK.”

Before introducing the WAIT case, we look back to our version of pthread cond wait

shown in Figure 2.9. The thread calling the original pthread cond wait function gives

up a mutex lock and waits for a signal. The two actions, “give up” and “wait,” should be

atomic. In other words, the instructions from line 2 to line 4 in Figure 2.9 should work

like an atomic instruction. Our solution is to make the daemon “see these instructions

as atomic.”
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1: SendACK(mode, t, recv event) {
2: if recv event == CREATE {
3: WriteLog(t, recv event)
4: send(t, ACK)
5: WaitForBUILD()
6: else if recv event == ENTER CS ∨ recv event == RELEASE {
7: WriteLog(t, recv event)
8: send(t, ACK)
9: UpdateDeadlockDetector()

10: if recv event == ENTER CS {
11: DetectDeadlock()
12: }
13: else if recv event == WAIT {
14: WriteLog(t, recv event)
15: send(t, ACK)
16: waken event = blocking recv(t) . receive the consequent WAKEN message
17: UpdateDeadlockDetector()
18: DetectDeadlock()
19: PushCondWait(t, waken event)
20: if mode == REPLAY {
21: PushPendingList(waken event)
22: }
23: else if recv event == WAKEN {
24: WriteLog(t, recv event)
25: send(t, ACK)
26: RemoveCondWait(t, recv event)
27: UpdateDeadlockDetector()
28: else if recv event == SIGNAL {
29: WriteLog(t, recv event)
30: send(t, ACK)
31: if mode == RECORD {
32: waken event = PopCondWait()
33: if valid(waken event) {
34: WriteLog(t, waken event)
35: send(waken event.tid, ACK)
36: }
37: }
38: else if recv event == TRY LOCK {
39: send(t, ACK)
40: UpdateDeadlockDetector()
41: DetectDeadlock()
42: else if recv event == FINALIZE ∨ recv event == TRY AGAIN {
43: send(t, ACK)
44: }
45: }

Figure 2.16. The Pseudo Code of SendACK
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Consider the code in Figure 2.16 from line 13 to 22, once the daemon is going to send

ACK for the WAIT message to a thread, it must do nothing but wait for the consequent

WAKEN message from that thread. After receiving the WAKEN message, the daemon

pushes it into a random accessing queue by calling the function PushCondWait in line

19. If the daemon is in the replay mode, it also pushes the WAKEN message into the

pending list. Now we see how the daemon sends ACK for the SIGNAL message. After

writing the log file and sending ACK, the daemon finds the oldest WAIT message which

matches the signaled conditional variable and sends ACK to the corresponding thread

(from line 31 to 37). For the case of the daemon in replay mode, the daemon does

nothing after acking the SIGNAL message. The log file should contain a record from

which thread will be wakened by this signal. The daemon just enters the next iteration

in its main routine and replays the next event.

2.2.6 Parallelizing the Race Replay Daemon

Now we have presented our design of our race replay daemon with the correspond-

ing instrumented Pthread functions. One drawback of this design is the performance

hazard. This is because we serialize all the events from the threads with the DR events

from ISP. The daemon works like a “central scheduler” of all the threads. In fact, we

need not serialize all the events. We must keep the order between the Pthread events

and the DR events. However, we need not keep the order of the Pthread events from

the different processes. In all the pseudo codes shown earlier, we hide the concept of

processes in them. We only show how to deal with the message between the daemon

and threads. But the hybrid programs usually consist of multiple processes and each

process consists of multiple threads. Threads of different processes do not virtually

share memory.

To explain how we parallelize the race replay daemon, here we use a pair, (x, y), to

be an id of a thread. x denotes the process id and y denotes the thread id in the process

x. We use pe(xi,yj)k to denote a Pthread event of the thread (xi, yj) in a log file. We use

drk to denote a DR event in a log file. k denotes their index. We use a → b to denote

that the event a is recorded before b in a log file and a ⇒ b to denote that the event a

is replayed before b based on this log file. The DR events is “universal” for all threads.

Given a log file for a certain round of verification, the replay must hold the following

rules:
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• ∀pe(xi,yj)m, pe(xi,yj)n ∈ L ∧ pe(xi,yj)m → pe(xi,yj)n : pe(xi,yj)m ⇒ pe(xi,yj)n.

• ∀drm, drn ∈ L ∧ drm → drn : drm ⇒ drn.

• ∀pe(xi,yj)m, drk ∈ L ∧ pe(xi,yj)m → drk : pe(xi,yj)m ⇒ drk. ∀drk → pe(xi,yj)m :

drk ⇒ pe(xi,yj)m.

Rule 1 defines that for any two pthread events in a log file L from the same thread,

(xi, yj), they must be replayed by their recorded order. Rule 2 defines that for any two

DR events in a log file, they must be replayed by their recorded order. Rule 3 defines

that for any pair of a pthread event and a DR event, they must be replayed by their

recorded order. These three rules imply:

• ∀pe(xi,yj)m, pe(x′
i,y

′
j)n
, drk ∈ L ∧ xi! = x′i ∧ pe(xi,yj)m → drk → pe(x′

i,y
′
j)n

:

pe(xi,yj)m ⇒ pe(x′
i,y

′
j)n

.

It means that for any two thread events from different processes, they must be replayed

by their recorded order if there is any DR event between them. Therefore, for any two

thread events from different processes, they can be replayed in an arbitrary order if there

is no DR event between them.

It turns out with that we record the Pthread events from different processes sepa-

rately into different log files. For the DR events, they need to be written into all the log

files. While replaying the tested program, every process will be restricted to its thread

schedule according to its log file. In addition, replays of these processes need to be

“synchronized” on DR events. In this way, we parallelize our race replay daemon.

Figure 2.17 illustrates how we parallelize the daemon. Suppose (pi, tj) denotes a

thread call from the jth thread of the process i. Suppose ISPDecision denotes a DR

event. The upper rectangle denotes the original log file. The daemon serializes all

events. The three bottom rectangles denote the three distributed log files for three pro-

cesses. These log file can be recorded/replayed in parallel but need to be synchronized

on DR events.

2.2.7 An Example

We show an example in this section to illustrate how the daemon determinizes the

behaviors of an MPI-Pthread hybrid program. This example program contains a three-

node system. Nodes exchange data via MPI. Figure 2.18 shows the code for node 0.
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Figure 2.17. ISP-Daemon System

It keeps receiving messages from the other two nodes until the terminal messages are

received from each of them (line 3 and 4). Figure 2.19 shows the code for node 1 and

node 2. The code is mixed by MPI and Pthread library. Each of these two nodes contains

two threads: a producer and a consumer. These two threads share a queue (not shown

in our example code) and operate it by three functions: Produce, ConsumeAll, and

Terminate. Function Produce is used by the producer putting an object to the queue.

Function Terminate is used by the producer putting a terminal message to the queue.

Function ConsumeAll is used by the consumer extracting all objects and messages from

the queue. The producer (line 1 to 8 in Figure 2.19) tries to acquire the lock twice and

puts one object each time entering critical section. After putting the second object, the

producer puts a terminal signal into the shared queue. The consumer (line 9 to 17 in

Figure 2.19) keeps extracting objects from the shared queue. Once acquiring something

from the queue, it sends all contents from the queue to node 0 by MPI Send. After

that, the consumer will check if the terminal message has been acquired. If it has, the

consumer stops testing the queue.

We will observe nondeterministic MPI behaviors while using ISP to test this pro-

gram. In the first round of executing this program, suppose the producer of node 1

puts two objects with the terminal signal into the shared queue before the consumer

acquiring anything. In other words, the order of entering the critical section is producer,

producer, then consumer. To simplify our discussion, we assume the producer and the
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1. while (1) {
2. MPI_Recv(buff, *);
3. if (IsDone(buff)) {
4. break; }
5. else {
6. DoSomething(buff); }}

Figure 2.18. The Code of Node 0

consumer of node 2 follow this same order. The log of node 1 (node 2) is shown in

Figure 2.21. Changing “node 1” to “node 2” in Figure 2.21 will be the log of node 2.

Figure 2.20 shows the log of node 0. Since node 1 and node 2 issue only one MPI Send

each, node 0 issues two MPI Recv calls.

In the first replay of this program, we assume that the producer and the consumer of

node 1 change their order of entering the critical section. For example, the consumer of

node 1 enters the critical section once between the two accesses of the producer. That is,

the order of entering the critical section is producer, consumer, producer, then consumer.

Figure 2.22 shows the log of replaying node 1. To simplify our discussion, we assume

that the producer and the consumer of node 2 luckily follow the same order with the

previous round. In this case, node 0 needs to issue three MPI Recv calls to match all

MPI Send calls (two from node 1 and one from node 2). However, ISP expects node 0

to issue only two MPI Recv calls as what it did in the previous round.

1. producer () {
2. pthread_mutex_lock(&lock);
3. Produce();
4. pthread_mutex_unlock(&lock);
5. pthread_mutex_lock(&lock);
6. Produce();
7. Terminate();
8. pthread_mutex_unlokc(&lock); }

9. consumer () {
10. while (1) {
11. pthread_mutex_lock(&lock);
12. products = ConsumeAll();
13. if (!Empty(products) {
14. MPI_Send(products, 0); }
15. pthread_mutex_unlock(&lock);
16. if (IsTerminated(products)) {
17. break; }}}

Figure 2.19. The Code of Node 1 and 2



29

1. DR - (node 0, MPI_Recv)
2. DR - (node 0, MPI_Recv)

Figure 2.20. The Original Log of Node 0

1. ENTER_CS - (node1, producer)
2. RELEASE - (node1, producer)
3. ENTER_CS - (node1, producer)
4. RELEASE - (node1, producer)
5. ENTER_CS - (node1, consumer)
6. DR - (node1, MPI_Send)
7. RELEASE - (node1, consumer)

Figure 2.21. The Original Log of Node 1 (Node 2)

1. ENTER_CS - (node1, producer)
2. RELEASE - (node1, producer)
3. ENTER_CS - (node1, consumer)
4. DR - (node1, MPI_Send)
5. RELEASE - (node1, consumer)
6. ENTER_CS - (node1, producer)
7. RELEASE - (node1, producer)
8. ENTER_CS - (node1, consumer)
9. DR - (node1, MPI_Send)
10. RELEASE - (node1, consumer)

Figure 2.22. The Log of Replaying Node 1

Our race replay daemon helps ISP to observe the deterministic MPI behaviors.

Obviously, the reason the nondeterministic MPI behavior happened is race condition

between threads. If using ISP with our daemon, in the first replay, when the consumer

thread of node 1 acquires the lock (in line 3 in Figure 2.22), the daemon will send a

NACK to the consumer thread. Then the consumer thread will give up the lock and

wait. Our daemon enforces the consumer to yield the lock to the producer according to

the log of the previous round (Figure 2.21). After the second time the producer leaves

the critical section (line 4 in Figure 2.21), the daemon is aware that it is the consumer’s

turn to access the critical section. Meanwhile, the daemon knows that the consumer is

blocked. Therefore, the daemon sends an ACK to the consumer. Under the control of

our daemon, when the consumer calls ConsumeAll in the replay round, it will acquire

two objects with a terminal signal. Then the consumer will call MPI Send only one

time to send all objects to node 0. Consequently, the MPI behavior of this program is

determinized by our daemon.



30

2.2.8 Deadlock Detection

Since our daemon keeps track of the Pthread calls from all the threads, it can also

detect deadlock by constructing a “wait for” graph [26]. We can map the whole threads

system into a graph G = (V,E) which V is a set collecting all the threads in the tested

program. The TRY LOCK event reveals which mutex lock the thread is waiting for.

Supposing the thread i is waiting for a mutex lock m which is owned by the thread j,

there is a directed edge e ∈ E from vi to vj . A thread that received an ACK for the

WAKEN event is also waiting for a certain mutex lock. Of course, we also need to keep

track of the ENTER CS and RELEASE events to know which thread is occupying which

mutex lock. Finally, we can maintain a wait for graph on the fly and detect the deadlock

by checking the cycle in the graph.

2.2.9 Informal Correctness Sketch of Our Scheduler

Our hybrid scheduler was tested and validated by designed test cases and experi-

ments. It merits more rigorous testing/analysis. In future work, we will test around its

Pthread record/replay mechanisms ensuring their correct operation for all record/replay

sessions of up to a certain length. Then we will analyze how it interacts with a whole

hybrid program. This project is important to have a reliable hybrid checking scheduler,

and is estimated to take a year for a typical student, if carried out.

2.3 Related Work

2.3.1 Output Deterministic Replay

The idea of our “record-replay” mechanism is inspired by ODR, output determin-

istic replay [3]. ODR gathers a schedule trace, input trace, and read trace from the

original execution and translates the program into logical formula. It then finds an

execution with the same “output” as the original run. The “output” could be console

outputs, program assertions, or even the value of a set of variables at a certain point

in the program. In ODR, an inference method called SI-DRI records the lock-order as

the schedule trace. This inspired us to design the exterior helper daemon for ISP to

deterministic replay the threaded MPI programs.

2.4 Experimental Results
We have tested our “record/replay” mechanism with Eddy Murphi serving as the

tested program for ISP to examine. Eddy Murphi itself needs an input protocol to
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examine (it is a model checker after all) and we chose the n peterson model (Peterson’s

mutual exclusion) as its test input. In effect, we are model checking a model checker –

thus we have to scale down problem sizes at each level of model checking to limit state

explosion.

In all our tests, ISP with our race deterministic replay daemon explored interleavings

successfully. On the other hand, the original version of ISP can only explore interleav-

ings in few small cases and unpredictably crashes when the Pthread schedules change.

This demonstrates that we can make a reasonable set of assumptions and successfully

determinize one API’s behavior while probing the space of nondeterminism of another

API.

In our experiments, we set different depth bounds on BFS to control the scale of

exploration. We also added nondeterministic sleep durations before pthread mutex lock

calls to jiggle the timing of Pthread calls. We showed that this can crash the unmodified

(previous) ISP more readily while our new scheme can handle this extra nondeter-

minization quite robustly and enforce schedules reliably using “record/replay.”

Table 2.1 presents our results. The original isp means the old version of ISP which

cannot handle the nondeterministic replay problem. The isp-daemon means the new

version of ISP which can enforce the Pthread call permutations. The column ISP version

& configuration denotes the version of ISP we used, the number of processes, and the

depth bound. For instance, “original isp / p3 / d5” means the result of running Eddy

Murphi on the old version ISP with three processes created and with a 5-level depth

bound BFS. The column interleaving explored denotes the number of interleavings

Table 2.1. Experiment on n peterson Model
ISP version & configuration interleaving explored min./max./ave. DR events

original isp / p3 / d3 11 112 / 112 / 112
original isp / p3 / d5 fail on 2ed 133 / 133 / 133
original isp / p4 / d3 fail on 4th 145 / 149 / 146
isp-daemon / p3 / d3 11 112 / 112 / 112
isp-daemon / p3 / d5 61 133 / 133 / 133
isp-daemon / p3 / d10 over 1500 179 / 179 / 179
isp-daemon / p3 / d20 over 1600 723 / 765 / 727
isp-daemon / p4 / d3 6 141 / 145 / 143
isp-daemon / p4 / d5 over 1097 174 / 174 / 174
isp-daemon / p4 / d10 over 2000 300 / 304 / 303
isp-daemon / p4 / d20 over 2400 898 / 898 / 898
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explored by ISP while verifying Eddy Murphi. The column min./max./ave. DR events

denotes the minimum, maximum, and average number of DR events we encountered in

one execution. The old version ISP can explore interleavings without encountering an

error when the depth bound is small. However, increasing the depth bound caused the

old version ISP to crash in the face of nondeterminism.

Based on these experiments, we are in a position to recommend our “record/replay”

approach to the nondeterministic replay problem. We also can state the following

claims:

• To the extent ISP explored the schedules of Eddy Murphi, it confirmed that there

are no deadlocks or resource leaks in the MPI code-base of this tool. Before

we devised our current record/replay scheme, we could not be as sure about this

situation.

• We have not examined the schedule space of Pthread calls within Eddy Murphi

sufficiently. However, the threading code of Eddy Murphi is quite simple. If

these structures are implemented correctly, then we can bank on the fact that the

order of enqueuing and dequeuing into the queue does not affect the correctness

of Eddy Murphi.



CHAPTER 3

SEARCH SPACE REDUCTION

In this chapter, we focus on search space reduction. Instead of discussing in hybrid

program scenarios, we focus our discussions in pure MPI programs. We believe that

our approach can be easily migrated from pure MPI programs to hybrid programs.

3.1 Introduction
A common problem for all dynamic verification tools is dealing with a huge seach

space. For example, given a 5-instruction MPI program executed by 5 processes,

we get 25!/(5!)5 different interleavings among those instructions. This number of

interleavings is over 10 billion. This is why conventional testing tools suffer from

extremely poor coverage in that they get lost in this vast exponential space. Dynamic

partial order reduction [6] methods reduce this space dramatically without losing any

relevant behaviors. A DPOR algorithm for MPI was developed for the first time in [29]

and subsequently improved in many ways [28][30]. Our dynamic verification tools,

ISP, have been employed dynamic partial order reduction (DPOR) to reduce the search

space. Even though DPOR for MPI is effective to eliminate the redundant interleavings

of instructions, the performance of ISP is still not acceptable even verifying some simple

hundred-line programs.

A good idea for the search space reduction is finding the symmetric executions in the

tested programs. Consider the message passing code shown in Figure 3.1. The process

0 (the process with the rank equal to 0) issues 10 wildcard receive calls. Each process

from the process 1 to 10 issues a specific send instruction to the process 0. Without

any searching optimization, a dynamic verification tool will explore 10! different inter-

leavings for this code. However, with the symmetry reduction, a dynamic verification

tool will explore only one interleaving for this code. This is because the process 1 to

process 10 are all identical in this code. They are semantically identical and also have

the same behavior in run-time. Therefore, the order of scheduling these processes does

not change the verification result.
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1. if (rank == 0) {
2. for (i = 1 to 10)
3. Recv(*);
4. } else if (1 <= rank <= 10) {
5. Send(0);
6. }

Figure 3.1. Illustration of a Perfect Symmetric Scenario

However, the symmetric code shown in Figure 3.1 is perfectly symmetric. Identi-

fying the perfect symmetric property is hard. It is very difficult to check whether two

processes have identical behavior run-time. For example, a process may decode the

received buffer and decide the next sending target or the next receiving source. In this

case, even though two processes execute the semantically equivalent code, their run

time behaviors can still be different. The perfect symmetric execution rarely exists in

practical concurrent programs. It is very possible to find a group of processes whose

behaviors are almost identical. Their run-time behaviors are almost the same but have

some slight differences. In this case, applying symmetry reduction make it possible to

reduce the search space. However, it is also a challenge to create a robotic routine to

check the “almost symmetric executions.”

Several heuristic methods have been developed in some dynamic concurrent pro-

gram verifier such as the preemption bound of CHESS [22] and the bounded mixing in

ISP. The advantages of applying the heuristic methods are:

• The heuristic methods can dramatically reduce the search space.

• Most of the heuristic methods require nonsophisticated analysis or even no anal-

ysis required prior to the verification process.

• Most of the heuristic algorithms are easy to implement in the tools.

On the other hand, using the heuristic methods also bring us some drawbacks:

• The heuristic algorithms often sacrifice the reliability while eliminating the search

space.

• Many heuristic methods require users to give some heuristic information as the

input.

We believe that it is worthy for us to engage in developing the better heuristic al-
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gorithms. Based on the advantages and the disadvantages from the above, we conclude

that a better heuristic method means that

1. The method sacrifices less reliability but reduces more redundant search space.

2. The heuristic information should be easily generated (either by a user or by an

automatic process).

The heuristic information often decides how the heuristic method performs. For exam-

ple, suppose that we would like to set a depth bound while traversing the exploration

tree. How much should we set for the bound? We could decide the bound by an analysis

process, by learning from the previous experience, or even just picking randomly. If

we give a small bound for our exploration, we can eliminate huge amounts of search

space. However, we may also lose the buggy traces in the exploration tree. On the other

hand, by giving a large bound, we may preserve the buggy traces but preserve many

bug-free traces also. Therefore, picking an optimal input for the heuristic methods is

important. Many heuristic methods require the users to choose a good heuristic input

for the algorithm. But it is not always a trivial task to choose optimal input information.

Sometimes the users may need to understand the underlying verification process in

order to give an optimal input. For example, to set the traversing bound, the users need

to understand the exploration tree of a concurrent program. They need to understand

how deep the tree of the tested program would be and decide the search bound. They

even need to know how the tool traverses the tree. Therefore, we are in a position to say

that a good heuristic method must easily specify the optimal input.

In this section, we introduce a new focus plus random sampling heuristic algorithm

(FPRS) and implement it in ISP. The key idea of our algorithm is that we focus on ex-

ploring some specific regions and do random-walk on the rest. Before the presentation

of our algorithm, we show three motivating scenarios in the message passing programs.

3.1.1 Three Motivating Scenarios of Search Space Reduction

In this section, we show three scenarios of dynamic verifying concurrent programs.

If we use ISP to verify programs containing these scenarios, we may encounter the

schedule explosion problem. We will discuss how the state space explosion problem

happens and how to ideally solve these problems.
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1. for (i = 1 to K) {
2. A_Routine_Calls_MPI();
3. Another_Routine_Calls_MPI();
4. // Barrier();
5. }

Figure 3.2. Scenario 1 - Loop

3.1.1.1 Scenario 1 - Loop

Considering the case shown in Figure 3.2, the program issues many MPI send or

receive calls in a loop. (There are many MPI calls in the function A Routine Calls MPI

and the function Another Routine Calls MPI.) The number of potential schedules will

grow exponentially by the loop bound K. A heuristic approach to verify this program

is sampling some iterations among this loop. It is based on the fact that this program

repeatedly does similar tasks. Therefore, verifying some iterations to capture the rep-

resentative behaviors is sufficient. There may or may not be a Barrier instruction (in

line 4) issued at the end of the loop body. If there is a Barrier in this loop, one iteration

could be representative. Therefore, ideally, we can set a depth bound or a sampling

bound for the loop statements while verifying MPI programs.

3.1.1.2 Scenario 2 - Calling Subroutines

A good software engineering strategy is to define layers and develop subroutines

in each layer. High level routines call low level subroutines as services. Therefore,

low level subroutines should be carefully constructed and verified to guarantee relia-

bility. The program shown in Figure 3.3 calls three functions. The function Bug Free

Subroutine denotes a verified subroutine. The function Unverified Subroutine is newly

developed and has not been verified. In this case, ISP will explore the interleavings in

Bug Free Subroutine and mix with the schedules in Unverified Subroutine. However, in

most of the cases, it is needless to test Bug Free Subroutine again. Ideally, we would

like to skip the verified subroutines and focus on the regions we have not tested yet. We

need compositional testing.

1. Bug_Free_Subroutine();
2. Unverified_Subroutine();
3. Bug_Free_Subroutine();

Figure 3.3. Scenario 2 - Calling Subroutines
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1. if (rank == 0) {
2. for (i = 1 to 10) {
3. Recv(*, &status);
4. swtich (status.MPI_TAG) {
5. case 1: .... ;
6. case 2: .... ;
7. default: .... ; }}
8. } else if (1 <= rank <= 10) {
9. Send(0);
10. Recv(0, &status);
11. switch (status.MPI_TAG) {
12. case 1: .... ;
13. case 2: .... ;
14. default: .... ; }}

Figure 3.4. Scenario 3 - Nonperfect Symmetric Execution

3.1.1.3 Scenario 3 - Nonperfect Symmetric Execution

The third scenario we observed is symmetric property which we introduced in sec-

tion 3.1. The programs with the symmetric property usually use the master-slaves struc-

ture. The master and the slaves in such programs may decode the incoming message

and perform the corresponding actions. In this case, it is very hard for us to decide

whether the symmetric property still holds in run time. However, we still can apply

the symmetry reduction if strong symmetric property exists. For example, if decoding

the incoming message is just for probing the task completed or not, applying symmetry

reduction can still reduce the search space, but make it highly possible to preserve the

bugs.

3.1.2 Focus Plus Random Sampling Heuristic Algorithm

We studied three scenarios in section 3.1.1 and observed the ideal solutions. To

solve these cases, we need to set depth bound, analyze the symmetric property, and do

compositional testing. We can simplify them by answering two questions:

• Which process should be involved in the verification process?

• When (at which position in the program) will these interesting processes be in-

volved in the verification process?

Finding the answers to these two questions automatically may not be a trivial task.

It requires extra sophisticated static or dynamic analysis programs. However, people

who use ISP to test their programs should understand the tested programs well. We
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believe that the who and when questions (the heuristic input of our algorithm) can be

easily answered by the program developers.

3.2 Algorithm
In this section, we present our FPRS algorithm. We need two inputs for this algo-

rithm. The first one is a deterministic concurrent program. The second parameter is a set

of program counter pairs. Suppose we have a program P creates n processes as our first

parameter, the second parameter PC is a set of pairs which enclose a set of regions in

the program P . We denote the PC as PC = {(pcsy, pcty) | 1 <= y <= n}. Each pair

in PC marks a specific region in the program P . For a pair (pcsy, pcty), the pcsy denotes

the starting point of a specific region and the pcty denotes the terminating point. Every

two enclosed regions should not overlap each other. Specifically, two processes that

execute the same program can have the same enclosed regions. However, the enclosed

regions in the same process should not overlap each other.

While executing the input program P , we define two states of all processes: explore

and nonexplore. A process pi of the program P is in the explore state at a certain point

if: Given the history of the program counter H = {h1, h2, ..., hk} is before the current

point,

• ∃hx ∈ H ∧ (pcsx, pctx) ∈ PC : hx == pcsx

• @h′x ∈ H ∧ (pcsx, pctx) ∈ PC ∧ x′ > x s.t. h′x == pcts

A process pi is in the nonexplore state it is not in the explore state. At every nondeter-

ministic decision point in the schedule, like a fence point of ISP, we define two sets of

processes,E andNE. E = {pi | pi in the explore state} andNE = P−E. We denote

the ample set at this nondeterministic point as A. The sender-receiver pair candidates

in A are labeled as cj = (sj, rj). Therefore, A = {cj | sj ∈ P ∧ rj ∈ P ∧ sj 6= rj}.

With the setting described above, we can now present the algorithm. Our algorithm

redefines the ample set of each nondeterministic point. Given an ample set A, our

algorithm return a new ample set NA. We define two sets, EM and NEM , which was

initially empty. For each sender-receiver pair ci = (si, ei) ∈ A, we append ci to EM if

si ∈ E ∨ ei ∈ E. Otherwise, we append ci to NEM . Finally, we get:

NA = EM ∪ random(NEM)



39

The function random() chooses an element randomly from the input set. One prob-

lem derived from using the random number is the nondeterministic replayability. To

deterministically generate the same new ample set NA on the same nondeterministic

point, we can record the seed of the random number generator at the beginning of the

verification. Then we can apply the same seed on each subsequent round to determin-

istically generate NA. In fact, the algorithm still works with other selection functions.

For example, we can apply a function to choose the sender-receiver pair with smallest

sender process id (or rank). However, the random selection gives us some extra benefits.

The main advantage of the random selection is the existence of nonbiased choices on a

given number of chances to pick up interleaving [31]. We can expect to detect the bug

more quickly with it.

Figure 3.5 illustrates how our FPRS algorithm works. The left most rectangle

denotes the original ample set of a certain fence point. (x, y) denotes a sender-receiver

match which x is the sender and y is the receiver. In this example, we assume that

process 1, 2, and 3 are in their specific exploration regions. Therefore, we divide the

original ample set into two groups (the two rectangles in the middle). One group (EM )

the matches that the sender or the receiver is in its exploration regions. One group

(NEM ) for the rest. Then the final ample set (the right rectangle) unions EM and one

of the elements in NEM .

3.2.1 Interface for the Search Space Reduction

We have implemented this algorithm in ISP. We provide a simple interface to specify

whose and where the exploration regions are. The who means “which process” in an

MPI program. The where means “which region” in an MPI program. We provide two

Figure 3.5. Illustration of reducing ample set
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functions for the programmers to specify these two key points: StartExp and EndExp.

The MPI program developers need to insert these two functions into their programs in

order to mark the specific regions in their code. For those uninteresting regions, ISP will

randomly choose one sender-receiver match for each ample set in them and quickly go

through those sections.

Here we review the three scenarios shown in section 3.1.1 and demonstrate how to

focus the verification process.

3.2.1.1 Loop Sampling

Considering Figure 3.6, the StartExp in line 1 and the EndExp in line 3 sample

the loop with the bound b. ISP will only explore the potential schedules in the first b

iterations. After the b iteration to the end of the loop, ISP will randomly choose a match

on each fence point. The benefit of applying our FPRS heuristic method is that we set

a sampling bound for a loop without changing the original loop bound.

3.2.1.2 Compositional Testing

Considering Figure 3.7, the StartExp in line 1 and the EndExp in line 3 restricts ISP

to explore the schedules only in the function Unverified Function1. It makes ISP able

to test only a specific function or subroutine in the whole program. In this way, we

can test the underlying subroutines of a MPI program first and then avoid scheduling in

these subroutines while testing on higher layer functions.

3.2.1.3 Symmetry Reduction

In Figure 3.8, we restrict the process (who) involved in the schedules exploration.

ISP will only explore send-receive matches whose sender is the process 1. In this way,

we introduce the symmetric technique to ISP. More precisely, the original ample set

of the first wildcard receive is {(1, 0), (2, 0), ..., (10, 0)}. Since we only care about the

1. StartExp();
2. for (i = 1 to K) {
3. if (i == b) EndExp();
4. A_Routine_Calls_MPI();
5. Another_Routine_Calls_MPI();
6. // Barrier();
7. }

Figure 3.6. Solution for Scenario 1: Loop Sampling
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process 1, at this point, we will try scheduling the send from the process one at this point

and not scheduling it. Redefining the ample set by our algorithm, the new ample set will

be {(1, 0), random((2, 0), ..., (10, 0))}. Therefore, the search space of the schedules is

just like the program creating only two processes.

3.3 Related Work

3.3.1 Bounded Mixing

Bounded mixing is a heuristic method which has been implemented in ISP for the

state space reduction. The ISP users set a bound b as a heuristic input information.

Given an ample set, ISP will explore only those sender-receiver matches chosen in the

consequent b ample sets. Consequently, bounded mixing is good to find out the buggy

interleavings which happen in a bounded window. However, compared to FPRS, it is

program structure unaware. Also, generating an optimal input for bounded mixing is

nontrivial. A small window (the bound) may miss the bug. On the other hand, a big

window may preserve many bug-free schedules.

3.3.2 Preemption Bound and Preemption Sealing

The preemption bound idea [22] is to restrict the number of preemptions while the

multithreaded programs verification tools exploring schedules. This idea is based on

two observations: (i) most of the bugs require at least one preemption to reproduce

them, (ii) most of the bugs can be reproduced within a finite bound of preemptions. Un-

der these facts, setting the preemption bound can reduce the schedule searching space.

Reference [22] shows that CHESS with preemption bound scheduler can efficiently

verify several benchmark programs without losing accuracy.

Preemption Sealing is an application of preemption bound idea [27]. Preemption

sealing scheduler will disable the preemption in some particular scopes of program

execution. Disabling preemptions will not introduce any additional behaviors or safety

violations (i.e., deadlock and race condition) in programs. Therefore, the preemption

1. Bug_Free_Subroutine();
2. StartExp();
3. Unverified_Subroutine();
4. EndExp();
5. Bug_Free_Subroutine();

Figure 3.7. Solution for Scenario 2: Compositional Testing
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sealing scheduler works as skipping the exploration on these scopes. Then we can

compositionally test the programs or even detect multiple bugs.

The main difference between preemption sealing and our algorithm is that the pre-

emption sealing (or preemption bound) idea can only apply to multithreaded programs.

Multiprocess programs are hard to control by restricting the preemptions. Our algorithm

is suitable for both multithreaded and multiprocess concurrent programs.

3.4 Experimental Results
In this section, we present some experimental results for our search space reduction

algorithm. We use both industrial size programs and our designed benchmarks. We

seed bugs in some of our benchmarks and keep the rest unchanged. We compare

the verification results between the original ISP and the ISP with our FPRS heuristic.

For those bug seeded benchmarks, we want to see how fast the bug can be caught.

We set the time bound for this type of benchmark as 4 hours. For those unchanged

benchmarks, we want to see how fast the ISP returns the verification result. We do not

prove the unchanged benchmarks are buggy or bug-free. However, it is important for

a verification tool to answer this yes or no question within an acceptable time. We set

the time bound for the unchanged benchmarks as 60 hours. We expect ISP (original

or FPRS) to reply: “this program is buggy” or “this program is bug-free,” instead of “I

don’t know the answer right now.”

Before introducing the benchmarks and showing the experiment results, we define

the depth of a bug in an MPI program to label how hard the bug we seeded is to detect.

3.4.1 Bug Depth

In [4], the depth of a bug in the multithreaded concurrent programs. The depth of a

bug directly relates to the number of order constraints to meet this bug. In multithreaded

1. if (rank == 0) {
2. for (i = 1 to 10)
3. Recv(*);
4. } else if (1 <= rank <= 10) {
5. if (rank == 1) StartExp();
6. Send(0);
7. if (rank == 1) EndExp();
8. }

Figure 3.8. Solution for Scenario 3: Symmetry Reduction
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concurrent programs, we can see the number of preemptions as the number of order

constraints. The philosophy behind this definition is that the higher the depth of a bug,

the fewer schedules contain this bug and the harder for dynamic verification tools to

detect it.

We define the depth of a bug in an MPI program with the same philosophy. The

definition of the depth is

number of the buggy schedules

total number of the schedules

Considering the example shown in Figure 3.9, the process 0 issues wildcard receives

for other processes. An assertion will be raised if the first wildcard receive matches

the send from the process k. We suppose that the raising of an assertion denotes the

happening of a bug. Let n be the number of the processes in this example program, the

total number of schedules is (n − 1)!. The number of buggy schedules (the schedules

raise the assertion) is 1 ∗ (n− 2)!. Therefore, the depth of this bug is

(n− 2)!

(n− 1)!
=

1

n− 1

Our definition of the bug depth shows the chance of dynamic verification tools hitting

the bug in MPI programs. The smaller the bug depth, the harder it is for the tools to find

the bug.

3.4.2 Buggy Benchmarks

3.4.2.1 mpiBlast

The mpiBlast is the parallel implementation of NCBI BLAST. It uses MPI to dis-

tribute the genome databases queries and modifications. It has been widely used in the

research of biology relative fields. We planted a bug into mpiBlast. The depth of this

bug is 3/13. To apply our FPRS heuristic to detect the bug, we set a depth bound to the

1. if (rank == 0) {
2. for (i = 0 ; i < (nprocs - 1) ; i++) {
3. Recv(*, &status);
4. assert (!(i == 0 && status.MPI_SOURCE == k)); }}
5. else {
6. Send(0);
7. }

Figure 3.9. The Depth of a Bug
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primary loop body of it. We start up mpiBlast with 4 processes. Intuitively, we set the

depth bound to 5 which is greater than the number of the processes.

3.4.2.2 π computation

This benchmark uses MPI to implement a well known Monte Carlos method for

computing π. This program adopts the master-slaves structure. One of the processes

in this MPI program responds to distribute the computation tasks. Each of the slaves

handles the assigned computation task, sends back the result to the master, and handles a

new task if there are any pending in the master’s queue. We can see the slaves processes

are symmetric and apply our FPRS heuristic. We start up this π computation with four

processes, one master and three slaves. We did the experiments on π computation

benchmark twice and seeded two different bugs in the two experiments. The depth of

the first bug we seeded is 1/56. The depth of the second bug we seeded is 3/56.

3.4.2.3 matrix multiply

This buggy program (shown in Figure 3.10) does not simply do the matrix multiply,

it calls the multiply computation a verified subroutine. The function MM is a subroutine

which does the matrix multiply. We assume that it has been verified as a bug-free

subroutine. In fact, as another experiment result shows later, it costs a lots of time to

verify the function MM. In our program shown in Figure 3.10, we call MM twice and

call another unverified routine UnverifiedRoutine between them. We apply our FPRS

heuristic as the compositional testing. Since we are only concerned about verification on

UnverifiedRoutine, we restricted the exploration region to this function. Again, we start

up this program with 4 processes. The depth of the bug we seed in UnverifiedRoutine

is just 1/6.

1. MatrixMultiply () {
2. MM();
3. Barrier();
4. UnverifiedRoutine();
5. Barrier();
6. MM();
7. }

Figure 3.10. Our Matrix Multiply Benchmark
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3.4.3 Unchanged Benchmarks

3.4.3.1 matrix multiply

This version of matrix multiply is the function MM in Figure 3.10. (In previous

buggy matrix multiply benchmark, we assume that MM is bug-free. ) This benchmark

uses a typical master-slaves structure to multiply two matrices. We observed that the

slaves processes are symmetric. Therefore, we restrict the exploration region to one of

the slaves.

3.4.3.2 diffusion2d

This is one of the benchmarks in Functional Equivalence Verification Suite [13]. We

add an MPI Barrier at the end of a loop in diffusion2d benchmark to fix the functional

equivalence problem (to be equivalent to the sequential version). Beside that, we do

modify this benchmark. Since all processes are synchronized by MPI Barrier each

iteration, we can restrict the depth bound of the loop to be one.

3.4.4 Results

We show our experiment results for buggy benchmarks in Table 3.1. We show

our experiment results for unchanged benchmarks in Table 3.2. Each column in these

tables shows the results of certain version of ISP (the original or FPRS) testing different

benchmarks. Each row in these tables shows the results of certain benchmarks tested

under different versions of ISP. The benchmark π computation 1 is the pi computation

benchmark which seeded the 1/56 depth bug. The benchmark π computation 2 is

seeded the 3/56 depth bug. The notation yes/n denotes that ISP detects a bug by nth

replays. The notation no/n denotes that ISP detects no bug and reports bug-free after n

replays. The notation timeout/n+ denotes that ISP does not reply yes or no before our

defined time limit. It replays n times within time bound.

Table 3.1. Experiment Results of Buggy Benchmarks
benchmark original isp FPRS

mpiBlast timeout / 14747+ yes / 81
π computation 1 yes / 145 yes / 6
π computation 2 yes / 181 no / 27
matrix multiply timeout / 4824+ yes / 6
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Table 3.2. Experiment Results of Unchanged Benchmarks
benchmark original isp FPRS

matrix multiply timeout / 83833+ no / 1849
diffusion timeout / 114659+ no / 1680

3.4.5 Discussion

Our FPRS algorithm provides a heuristic search space reduction. The nature of the

heuristic reduction is the risk of losing reliability. Specifically, we are under the risk

of losing bugs. For example, in Table 3.1, ISP with FPRS reduction cannot determin-

istically detect the second version bug we seeded in the π computation benchmark.

The reason why we lost bugs is that our algorithm makes ISP focusing the search

on some specific regions. For those noninteresting regions, ISP will quickly bypass

them. Therefore, if the MPI calls in the noninteresting regions involved in the buggy

schedules, we may lose these bugs.

Random-walk is our compensation of the potential bugs losing. Randomization

was empirically shown to improve the discovery in dynamic model checking [25]. We

tested the second version bug in the π computation by FPRS ISP again and found

the bug in 10 rounds of execution. This idea is very similar to our hybrid programs

deterministic replay solution. We completely search the MPI interleaving by fixing one

thread schedule. If we want to explore the both thread level and process level schedules,

we can randomly permute the thread level schedules and verify the MPI schedules under

this permutation. This approach prevents the mixed thread and process schedules from

exponentially expanding. In the case of search reduction, for the noninteresting regions,

we fix the interleavings. But the random-walk preserves the chance to find bugs in those

noninteresting regions and exponentially reduces the search space.

Sampling the noninteresting by random-walk is a nonbios approach. In our experi-

ment results, we can observe that the depth of the bug does not imply the performance

of both versions ISP. This is because that ISP exploys the DFS approach traversal

to exhaustively traverse the interleaving three. The DFS approach traversal is a bios

search of tree structures. That is, the schedules we explore in a sequence of rounds

are close to each other. Bugs could also be bios existed in the interleaving three.

That is, the buggy schedules could be close in the interleaving tree. Consequently, the

bug depth may not match the performance of ISP. However, our random-walk method
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performs a nonbios search. It gives us a higher chance to capture the lost bugs in a few

reverifications of ISP.



CHAPTER 4

CONCLUSION AND FUTURE WORK

Hybrid message passing programs are being used in cluster machines and multicore

processors. Consequently, we need to pay more respect to the reliability and robustness

of hybrid message passing programs. We need to improve the scalability and coverage

of our dynamic verification tools. In this thesis, we contribute the following ideas to

solve the challenges and show they are successful by experiments:

• Determinize the thread level schedules while exploring process level schedules

by an external race replaying helper for ISP. We suggest this approach for future

hybrid program verification.

• Dramatically reduce the search space of schedules by focusing exploration. Our

FPRS heuristic can reduce the search space while highly preserving the bugs.

One limitation of our current hybrid scheduler is that we do not explore thread

schedules; doing so will easily result in a cross-product effect between MPI schedules

and thread schedules. There are two promising heuristics that can help avoid computing

the product: (i) incorporate preemption bounded searching as in [5], or (ii) employ

random walk in conjunction with schedule enforcement. These will be further studied

in our research.

Another future work of our hybrid scheduler will examine how to make ISP ca-

pable of dynamically verifying more types of hybrid programs such as MPI-OpenMP,

MPI-CUDA, etc. Dealing with mixed MPI/OpenMP opens up a number of challenges.

Since OpenMP implementations differ significantly from each other, it would be ex-

tremely helpful (from the dynamic verification perspective) if OpenMP implementors

were to expose some scheduling related entry-points into the OpenMP runtime so that

hybrid dynamic verifiers can resort to a single standardized solution in determinizing

the OpenMP behavior while exploring the MPI behavior.

Our immediate future work for the FPRS heuristic is automatic generation of heuris-

tic input. For now, users need to manually identify the focusing regions. We believe that
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it is trivial for the developers who construct the tested programs. However, it could be

nontrivial for those users who are not familiar with the programs they tested. Therefore,

our automatic heuristic input generator should achieve the following goals:

• Dynamically detect the scale of loops and decide their sampling bounds.

• Identify the subroutines in the tested programs.

• Detect the semantic symmetric execution.

With our input generator, users still need to give heuristic input such as the name of

verified subroutines. However, we should minimize the information required from

users.
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