
H i g h - L e v e l A s y n c h r o n o u s S y s t e m D e s i g n u s i n g t h e A C K F r a m e w o r k

Hans Jacobson Enk Brunvand Ganesh Gopalaknshnan Prabhakar Kudva
Department of Computer Science

University of Utah
{hans,elb,ganesh} @cs.utah.edu

Abstract

Designing asynchronous circuits is becoming easier as
a number o f design styles are making the transition from
research projects to real, usable tools. However, design­
ing asynchronous “system s” is still a difficult problem. We
define asynchronous systems to be medium to large d igi­
tal systems whose descriptions include both datapath and
control, that may involve non-trivial interface requirements,
and whose control is too large to be synthesized in one
large controller. ACK is a fram ework fo r designing high-
perform ance asynchronous systems o f this type. In A C K we
advocate an approach that begins with procedural level de­
scriptions o f control and datapath and results in a hybrid
system that mixes a variety o f hardware implementation
styles including burst-mode AFSMs, macromodule circuits,
and program mable control. We present our views on what
makes asynchronous high level system design different from
lower level circuit design, motivate our A C K approach, and
demonstrate using an example system design.

1 Introduction

Asynchronous design in the small is a difficult, but well
researched problem area. There are many choices, each
with their own advantages and drawbacks to specifying
and synthesizing small, highly concurrent asynchronous
control modules at a very detailed signal transition level
[34, 44, 14, 7]. Asynchronous design in the extremely large
where complete (synchronous) computer systems are inter­
connected by asynchronous networks is also a well-studied
and understood problem [2, 17, 3, 18]. We feel there is a
middle ground of system design characterized by systems
that are too large to be tractable with direct hard-wired con­
troller synthesis, and too small or special-purpose to be effi­
cient with a general microprocessor solution. This middle-
ground is where “high-level” synthesis is important, and
where there is a major gap and opportunity for further re­
search. System descriptions at this level include data paths
and control components at a procedural level, and typically

IBM T.J.Watson Research Center
Yorktown Heights, NY 10598

kudva@watson.ibm.com

require extensive partitioning and refinement of both before
lower level tools can be exploited.

Although asynchronous system design and synthesis has
been shown to be possible using existing tools [22, 33, 8],
it can be a very labor intensive process. The problem is
that most existing asynchronous circuit tools target specific
pieces of the design process, but not necessarily at the right
level of abstraction, or with an overall approach that fits
the system design view. System specifications that include
complex control and significant datapaths require a different
style of tool support than smaller specifications that might,
for example, involve a single fine-grain controller. The dis­
tinctive features of a system design tool can be described
using the following categories.

1.1 System Description

As its most fundamental requirement, a system design
language must be able to easily describe features at the pro­
cedural level that designers think about when they describe
systems. For the purpose of improving the designer’s under­
standing of the both the design specification and the frame­
work used to validate, optimize, and synthesize the design,
we believe it is important to use the same language at the
front-end, before synthesis, as well as at the back-end, after
synthesis (e.g., as a structural netlist). Using a single stan­
dard language throughout the design process simplifies the
designer’s job in many ways, most directly by letting the de­
signer view and understand the result of the various stages
of the design. Standard HDLs such as Verilog and VHDL
are widely used for synchronous system design and as a re­
sult their syntax and semantics are already well understood
by designers. On the one hand this makes them a natural
choice for a specification language. On the other hand, al­
though they include support for a wide range of both high
and low level constructs, one challenge with using standard
“synchronous” HDLs is understanding their affinity for ex­
pressing concepts used by designers of asynchronous cir­
cuits.

An asynchronous design puts several additional demands
on a specification language. Because of the nature of asyn­

mailto:kudva@watson.ibm.com

chronous control flow, it should support concurrency, se­
quencing, and choice in a natural way. Asynchronous con­
structs such as channels and signal events should also be
expressed easily. Support for specification of interface tim­
ing is also important in order to interface to the environ­
ment correctly. Together with min-max timing bounds on
operations internal to a module such timing annotations
can aid the designer in driving the optimizations in a de­
sired direction. Another challenge is that the simulation se­
mantics of Verilog and VHDL, while seemingly indepen­
dent of synchronous or asynchronous circuit operation, in
fact have several subtle complications when a truly asyn­
chronous system is simulated due to the event driven model
used by most simulators. There are workarounds for each of
these problems that might have been avoided by designing a
language that directly supports asynchronous concepts, but
we believe that the benefits of using a standard HDL out­
weigh the costs of the workarounds.

1.2 Design Exploration
Support for iterative design exploration is an important

feature in a system design tool. Whereas a circuit design
tool is often used once the desired controller is already fully
specified, a higher-level system design is usually evolved
from a much less refined specification. The system de­
signer may want to explore a variety of organizations at a
high level before refining individual components to a spe­
cific implementation. While there is no clear consensus on
how such design exploration is best performed, there are a
few basic requirements which play an important role in iter­
ative exploration of design alternatives. For example, there
should be provisions for feedback to the designer regarding
any optimizations that the tool performs. The more the tool
modifies the system description, the more important it be­
comes for the effect of the optimizations to be understood
by the designer. Without an understanding of the effect of
the optimizations it becomes difficult to drive the design in
a specific, desired direction.

Another aspect which is important in design exploration
is estimation of system performance, where performance
may be measured in speed, size, power, or some other
metric. When the synthesized circuits are a fairly close
match to the specification, such as in a macromodular
or programmable controller implementation, such estima­
tion is relatively straightforward. When using AFSMs for
control, however, high-level estimation at the specification
level is much more difficult. The area and performance of
AFSM controllers is highly dependent on how their out­
put functions can be covered by minimized logic equations.
Even very subtle differences in state assignment and sig­
nal reshufflings can result in significant changes of the final
controller logic. Because of this it may be necessary to take
the AFSM-based controller much closer to the actual im­
plementation to get a good estimate of performance. In this

case fast synthesis of the controller is essential to an itera­
tive exploration approach.

1.3 Implementation Style

System synthesis can involve much larger and more
complex datapath and control circuits than lower level syn­
thesis where the partitioning has already been done. Typi­
cally, a high level specification is split into control and data­
path sections fairly early in the process. This is mainly done
because control and datapath are best synthesized using dif­
ferent algorithms and techniques. Because there is no one
best way to implement circuits of either type, a system tool
should support a variety of choices.

Datapath implementation styles range from static logic
datapaths with matching bundled delays to precharged com­
plex gates with completion sensing. While complex gates
and completion sensing techniques can sometimes reduce
the delay of a computation in the average case they currently
require significant manual effort to implement. Commer­
cially available automated datapath synthesis systems are
well suited to generating static standard cell datapaths with
bundled delay. Techniques such as delay borrowing (ex­
plained later in this paper) and speculative completion [36]
can be used to reduce the average case penalty of using
bundled delay datapaths. The modularity of asynchronous
circuits allows custom designed datapaths to easily replace
standard gate datapath components where necessary.

Asynchronous control styles range from hardwired con­
trollers such as asynchronous finite state machines (AFSM)
and macromodules or handshake circuits, to micropro-
grammable control such as microengines [26]. Each of
these control styles has advantages and disadvantages and
as previous research has shown [25,26] no one control style
is best suited for all situations. It is therefore important
to support different control styles that can be freely mixed
within the same design while keeping the implementation
details as transparent as possible to the design specification.

1.4 Concurrency Management

Concurrency in a system design occurs at many levels
of the system, not just the lowest circuit level. As a re­
sult there are some additional issues when it comes to effi­
ciently implementing the different levels of concurrency. At
the highest level where the interaction between modules is
not necessarily performance critical, macromodule control
is very well suited due to its straightforward implementa­
tion and close correspondence with the original specifica­
tion. Within a module there are typically several tasks op­
erating concurrently. Such tasks often contain frequent and
iterative interactions between control and datapath and thus
have a more significant influence on overall system perfor­
mance. Each task might therefore be better implemented
using the AFSM style of control to tailor the controller more

2

closely to the specified behavior. Within each such task
a thread type of concurrency is often featured where each
thread carries out a fairly autonomous sequence of depen­
dent computations. While such fork-join concurrency could
be implemented by AFSMs which allow I/O signal concur­
rency there is an overhead attached to having control signals
go back and forth between a controller and the datapath el­
ements it controls. First, the complexity of the AFSM goes
up as more handshake signals are needed, and second, long
handshake wires introduce a delay overhead. In such situa­
tions a chained control style may improve performance.

In a chained control style each thread is represented by
a chain of computations where control cascades through
macromodules which are local to each datapath element in
the chain. Once the end of the chain is reached the control
is sent back to the AFSM which collects completion signals
from the threads. By exploiting the locality of the control
and the low forward latency of specialized chaining macro­
modules, control overhead in such chains can be drastically
reduced compared to letting a single AFSM handle all hand­
shaking.

1.5 The ACK Approach

ACK is our high-level system design tool that describes
the design specification at a procedural level and automat­
ically compiles the specification into an interconnection
of control and datapath circuits. For design specifications
ACK makes use of the standard Verilog high level descrip­
tion language. We have written some additional Verilog
code in the form of a “package” to help model asynchronous
constructs such as channels that can be included if desired.
Using standard synthesizable Verilog makes it possible for
ACK to leverage standard simulation tools for design vali­
dation throughout the design process. Verilog also enables
ACK to leverage standard synchronous tools for datapath
synthesis and timing analysis.

High-level design optimizations performed by ACK are
back-annotated to the original design specification to pro­
vide comprehensible feedback to the designer to make it
easier to drive the design in a desired direction. For control,
ACK successfully blends several methodologies into new
control structures suited for high-level design. For hard­
wired control, ACK supports control structures consisting
of mixed AFSM and macromodule control which allows
implementation of computation chains (fork-join threads)
with very low control overhead. For programmable con­
trol, ACK supports control structures in the form of highly
efficient asynchronous microengines [26]. In ACK these
control styles can be freely intermixed in any fashion that
best fits the system currently being designed. The synthe­
sized controller circuits can be tech-mapped to a standard
cell library, or synthesized in terms of custom complex-gate
CMOS circuits for higher performance [31].

In this paper we put forth our ideas on designing asyn­
chronous systems rather than designing asynchronous cir­
cuits. We describe the ACK framework as an example of
our evolving approach and as a system design framework.
We put this in context with a simple system design example
and use this to motivate further research in the area.

2 Related Work

In the asynchronous community there has been great in­
terest in developing the circuit-level and logic-level tools
that allow asynchronous and self-timed circuits to be built
in correct and efficient ways [44, 19, 34, 43, 16]. They are
reaching a level where they can be used effectively to design
fine-grained asynchronous circuits. However, they are not
well suited to larger system level design where the require­
ment to describe the system at the level of every individual
signal quickly becomes overwhelming.

System level design tools in the asynchronous world
are mostly descended from the Macromodules project at
Washington University in the 1970’s [15]. This project
was the first, and is still one of the most successful
asynchronous system design projects. A more modern
VLSI version of macromodule design was described by
Sutherland [41] as micropipelines. Several system de­
sign tools followed this general approach including Brun-
vand’s Occam compiler [11, 10], the Tangram system from
Philips [9], Akella’s Shilpa system [1], and the Balsa system
from University of Manchester [5]. Although these tools
compile to very different sets of macromodules, they have
in common a language-directed approach to system synthe­
sis. Individual language constructs are translated based on
their syntax to a set of macromodule circuits that imple­
ment that statement. The macromodules, although differ­
ent for the various tools, share the feature that they can be
highly optimized both in circuit and layout terms. While
this can be a very intuitive and simple approach to system
synthesis, relying on macromodules exclusively can have a
performance impact on the resulting system.

Another approach based more on program transforma­
tion than on syntax directed translation is Martin and Burns’
CHP system from Caltech [12, 32]. Their approach applies
a series of decompositions to the program before mapping
into a simple set of composable circuits. This results in
more flexibility at the circuit level, but requires correspond­
ingly higher levels of signal detail at the specification level.

A somewhat more ad hoc approach is taken by the
Amulet group at Manchester who have been building, with­
out direct system design tool support, a series of large mi­
croprocessor systems based on the ARM processor [20,
22, 21]. They use essentially a macromodular approach
but design the controller circuits by hand rather than from
program descriptions. For their latest microprocessor de­
sign [21] a hand-designed approach is being used that in­

3

volves a combination of macromodules, and even finer
grained generalized C-element circuits (even more labor in­
tensive!). High-level design using Balsa for non-critical-
path parts of the system, the DMA controller in particular,
is also being used [5, 4].

3 A Tour of ACK
ACK is our framework for asynchronous system level

design. Following the ideas about system design from Sec­
tion 1, the basic flow through the tool is shown in Figure 1.
As shown in the figure, ACK is a high level synthesis tool
that describes the desired system at a procedural level (in­
cluding datapath specification), and automatically compiles
that specification into interconnected control and datapath
circuits. Apart from creating an automated path from high-
level specification all the way down to layout, our recent
work on ACK has concentrated on providing a designer
friendly environment through the use of a standard HDL
and standard validation tools as well as flexible and effi­
cient control by offering a variety of hardwired and pro­
grammable control structures. The main features of ACK
are listed below.

• Support for standard Verilog HDL specification

• Support for standard validation tools

Back-annotated high level design optimizations

Flexible control structures supporting both hardwired
and programmable control

Design partitioning and fast AFSM control synthesis

Standard or complex gate technology mapping with
timing optimizations

The rest of this section describes the current features and
future additions planned for the ACK framework in more
detail.

3.1 ACK Design Flow Overview

System Specification: As illustrated in Figure 1, stan­
dard Verilog underlies most of the ACK design process. The
designer starts the design cycle by entering the design spec­
ification in a synthesizable subset of standard Verilog. De­
signers wishing to use channel-based communication can
also use our Verilog channel package. Once entered, the ini­
tial design specification can be validated using the Verilog-
XL simulator from Cadence and available formal model
checkers. High level optimizations to extract parallelism
and subexpression sharing are then applied to the specifi­
cation and the changes are back annotated to the original
Verilog code. The designer can now manually apply further
optimizations to the design specification if desired.

High Level Synthesis: After the initial validation and
optimization stage, the design is split and refined into sep­
arate datapath and controller parts. At this stage datapath
components for computation and storage are allocated and
expressed in behavioral Verilog. The control of the design is
refined into AFSMs, macromodule, and microengine parts
according to pragma hints from the designer. As with the
datapath, control at this stage is also modeled in behav­
ioral Verilog but at the individual signal handshake level.
If required, partitioning of the AFSM controllers also takes
place at this stage. After high level synthesis, the design is
represented as structural Verilog code but with the actual in­
stances still described in behavioral Verilog. The design at
this stage can again be validated using the same testbenches
as the original specification, and further manual tweaking
of the design can be performed.

Datapath and Control Synthesis: The next step in the
design process is to synthesize the behavioral instances of
the structural Verilog code into actual gates. Synopsys
Design-Compiler is used to synthesize the datapath portions
of the design into standard gates. If desired, parts of the dat­
apath can be substituted for complex gate structures manu­
ally derived with Cadence Layout-Synthesis. The behav­
ioral controllers are synthesized and tech-mapped into stan­
dard or complex gate structures using tools of our own and
from other universities.

Gate-Level Interconnect: The design is now repre­
sented by structural Verilog gate netlists. These netlists can
again be validated using the original testbenches. At this
stage timing analysis to derive bundled data delays and en­
sure compliance with fundamental mode constraints is per­
formed using Synopsys Design-Analyzer.

Transistor Layout: The next stage in the synthesis pro­
cess is to generate an actual layout for the design. This
has so far been done using the commercial tool Epoch from
Cascade, however we are currently in the process of switch­
ing to Cadence. Once a layout has been produced, final tim­
ing analyses and design validations can be performed us­
ing a post-layout extracted Verilog switch level model with
Verilog-XL, or through a SPICE deck with HSPICE.

3.2 Procedural Level Description
As described in Section 1, a system level design tool

should support system descriptions at a relatively high level
through a standard language that supports asynchronous
constructs. ACK currently uses standard Verilog to model
the design at the system level because it already supports
many of the features required to efficiently describe asyn­
chronous system and circuit operation. Concurrency in Ver-
ilog can be described at a coarse grained as well as a fine
grained level through the use of modules, tasks, and fork-
join statements. Fork-join statements are especially impor­
tant as they are used to describe characteristic asynchronous
behavior involving concurrency, sequencing, and choice in

4

System High-level Datapath & Control Gate-level Transistor Fabrication
Specification Synthesis Synthesis Interconnect Layout

System Structural Mixed Structural Gate-level Timing
Verification Simulation Simulation Sim./Emul. Verification Testing

Figure 1. ACK tool flow

a succinct manner. Fork-join threads can be used to de­
scribe concurrent actions on individual signals (e.g., a sig­
nal burst in a burst-mode AFSM) as well as higher level ex­
pressions of concurrency. Verilog also supports the notion
of events on signals which greatly simplifies description of
asynchronous handshake protocols.

Standard Verilog does not, however, include the high-
level concept of an asynchronous communication channel.
While the behavior of channels can, of course, be described
by the designer using explicit data and control signals, this
is a common enough construct in asynchronous design that
we have developed a standard channel package in Verilog.
We are currently also looking into ways of supporting user
defined datatypes in Verilog that are more complex than the
array of bits currently supported.

Because high-level specifications are often quite general
in nature, hints from the designer about which optimiza­
tions or control structures should be used can help the tool
produce better circuits. As these hints have no effect on
the high level behavioral simulation of the design, ACK
supports such designer hints through the use of pragmas.
Through these pragmas the designer can specify what type
of control structure to use (AFSM, macromodule, or micro­
engine), if chaining should be applied, and what parts of
the code should be optimized for sequential or parallel exe­
cution. Interface timing is also currently specified through
pragmas. The importance in using pragmas for hints to the
synthesis tools is that different target implementation and
circuit structures can be evaluated without having to alter a
single statement of the behavioral specification.

3.3 Validation

Being able to simulate and verify a design from first
specification to final layout is an essential part of any syn­
thesis framework to ensure the correctness of the design.
Targeting a single language for the description of the design
through all phases of the synthesis process greatly simplifies
validation. Using standard languages also has the benefit
of mature validation tools being available. Since ACK tar­
gets standard Verilog as design specification language and
also uses it to represent the intermediate structural forms
of the design, testbenches can be reused at all levels of the
synthesis process to ensure that the translations and opti­
mizations of compiler and layout tools preserve important
properties of the design. ACK leverages the Verilog-XL
simulator from Cadence to gain confidence in the functional
correctness of the design at the behavioral level. At the post­
synthesis structural levels of the design, properties specific
to asynchronous circuits, such as the implementation meet­
ing bundled data and fundamental mode timing constraints,
must be ensured. Back annotated switch-level timing sim­
ulation using Verilog-XL is well suited for these types of
timing checks at the circuit level.

3.4 High-level Synthesis

While very small designs may be best optimized by
the designer, opportunities for optimization quickly become
hard to discover as the size of the design grows. As the spec­
ification grows in complexity the designer may have to ex­
press the design in an easily understandable fashion rather
than what yields the best performance. Designs are there­
fore typically described with simplistic sequential compu­

5

tations to more easily gain confidence in their correctness.
Manually translating these specifications to more efficient
structures is an error prone and time consuming process.
Automated optimizations play an important role in this pro­
cess. Although these automated optimizations are impor­
tant, the designer may still want to understand the changes
that are made to the design. The designer may also want to
perform additional optimizations by hand that may be diffi­
cult for a compiler to detect. In these situations feedback to
the designer on what optimizations have been performed is
essential.

ACK supports this feedback by back-annotating the re­
sult of all optimizations to the original specification. The
designer can thus see directly the changes that have been
made to the design and use this information to select com­
piler options to steer the optimization closer to what is de­
sired. The ability to freeze parts of the specification so
that no further optimizations are carried out on that sec­
tion of code allows the designer to concentrate further op­
timizations without interfering with already finalized parts
of the design. The ACK compiler supports many differ­
ent optimization switches allowing the designer to closely
guide the optimization procedure if so desired. ACK cur­
rently supports standard compiler optimizations such as
loop-unrolling, sharing of common sub-expressions, and
dead-code elimination, and is being extended with meth­
ods to automatically extract thread parallelism and detect
chaining opportunities. Optimizations are further guided by
pragmas in the specification language.

The current ACK optimizations are general in nature and
can be used with advantage in both hardwired and pro­
grammable control. We recognize the need for optimiza­
tions targeting a specific control structure, e.g., AFSMs ver­
sus microengines, and are working on identifying what ef­
fect more specialized optimizations have on control over­
head.

3.5 Control Synthesis

For a system level design framework it is important to
provide flexible control that can be used efficiently in many
different situations as one single control style seldom pro­
vides the best solution when large system designs are con­
sidered. ACK successfully blends several hardwired as well
as programmable methodologies into new control structures
suited for high-level design.

Hardwired control
ACK is biased towards using macromodules as the top-level
control in the design hierarchy. This makes for a nicely
transparent translation from specification program to cir­
cuit, and provides sufficient performance for most top level
control and communication activities. The use of macro­
modules can be overridden by pragma hints from the de­
signer where performance is critical. In the individual mod­

ules of the design hierarchy where performance is usually
more important the control is implemented as burst-mode
AFSMs to tailor the controller more closely to the specified
behavior. Although small controllers of this type are very
fast, their complexity grows quickly as the controller size
increases. ACK provides a partition methodology [30] for
AFSMs that divides large controllers into smaller interact­
ing subcontrollers that can be implemented more efficiently.

To model short sequences of frequently used sequential
computations even more efficiently than AFSMs, these se­
quential actions can be realized as chains [24]. The control
for each computation chain is built out of highly special­
ized macromodule controllers that are specifically designed
to provide a low forward latency. A request signal can thus
cascade through a chain of such macromodules with very
low control overhead. The macromodule control within a
chain supports fork and join structures and also conditional
execution to handle simple choices. More elaborate choice
structures still reside in the AFSMs where they are more
efficiently implemented. Our experiments show that chain­
ing can deliver a performance increase of well over 20% for
control dominated designs as compared to an AFSM-only
solution.

In order to use a tool like ACK effectively to explore a
design space that includes AFSM controllers, the synthesis
step for these controllers (including handshake reshuffling,
state assignment, logic minimization, etc.) must be as fast
as possible to give the tool an interactive feel. In ACK we
leverage existing tools wherever possible for this phase of
the synthesis. The AFSM state assignment, for example,
can be accomplished using a variety of burst-mode synthe­
sis engines like Yun’s 3D [44] or Nowick’s Minimalist [19]
system. With timing information provided by the designer
and derived from the high-level synthesis, timed approaches
like ATACS [34] can also be used. While macromodule syn­
thesis is performed quickly, the complex logic minimiza­
tion step of existing AFSM synthesis algorithms has been
too slow to enable the interactive and iterative design explo­
ration necessary to find good implementations of large con­
trollers. We have therefore developed a new methodology
for exact logic minimization of burst-mode AFSMs [27].
Using our new tool, even the largest burst-mode bench­
marks available to date [35,44] can be minimized exactly in
less than one second, as compared to thousands of seconds
for existing minimizers.

Programmable control

In addition to efficient hardwired control, it is important
to provide the flexibility of programmable control at dif­
ferent levels of the system design. Many system designs
are targeted to specific applications that, although special­
ized, require some flexibility in their run-time control. To
be useful in this context, the programmable control must
offer high performance and low overhead. Existing asyn­

6

chronous general purpose microprocessors [22, 33, 39], and
even asynchronous microcontrollers [23, 38] can be too
coarse-grained with too much overhead for the task. Micro­
processor cores also do not provide the flexibility in their
control structure required to integrate them efficiently as a
piece of a mixed-control style system design that also in­
cludes AFSM and macromodule sections.

We have investigated asynchronous microengines for
ACK which offer both high performance and fine-grained
programmability for domain-specific applications [26]. Our
microengine architecture uses customized VLIW microin­
structions that offer very fine-grained control over the dat­
apath programmability resulting in compact microcode and
high performance. The microengine allows implementa­
tions of domain specific applications that can directly com­
pete with hardwired control in terms of performance (and
area if ROM is used). By using standard macromodules for
the local control of datapath units, the datapath is kept com­
pletely modular, and control is easily programmable and
implementable in a standardized fashion. A major part of
the microengine’s high performance comes from its abil­
ity to dynamically schedule computation units in parallel
and serial clusters, or chains, to best suit the current sit­
uation. Forming such serial clusters dynamically is very
hard to do efficiently in synchronous microengines because
the propagation delays of all computations must add up to
an integral multiple of the clock period. In addition to of­
fering high performance programmable control, the micro­
engine architecture supports standard two and four phase
handshake protocols with bundled data assumptions and is
thus very easily integrated with other asynchronous compo­
nents at any level in the design hierarchy.

3.6 Datapath Synthesis
At the moment ACK uses standard off-the-shelf

synchronous-style datapath synthesis using Synopsys
Design-Compiler combined with bundling delays. In order
to make this as efficient as possible, considerable timing
analysis is performed to overlap the datapath bundling de­
lays with control delays whenever possible using what we
call delay borrowing. Through delay borrowing the con­
trol overhead can in many cases be significantly reduced.
Given the new ability of ACK to efficiently exploit thread
level concurrency through chaining however, the option of
more aggressive completion detecting or completion sens­
ing data paths [36, 13] is an intriguing option that we intend
to explore further.

Generalized C-element implementations with timing
have been used effectively in data path portions of other
high-performance asynchronous circuits [45,40]. The same
technology mapping options that we are exploiting for fast
gC-based control circuits can be used for datapath synthe­
sis. Allowing the specification of input timing and output
constraint timing, as we do with control tech-mapping, fits

well with datapath synthesis where some data may arrive
before other data and some outputs must be generated ear­
lier than others.

3.7 Circuit Implementation

Once the circuits have been synthesized, they must be
realized into specific implementations. ACK performs a va­
riety of low-level circuit optimizations at this point to get
more performance out of a given high-level organization.
Our implementation phase allows the controllers to be re­
alized as custom complex CMOS gates [31, 46], and we
are currently developing specific technology mapping tech­
niques to optimize the performance of these gates at the
transistor level. These optimizations will also become im­
portant in datapath synthesis.

One of the main advantages of the tech-mapping tool
being developed by our research group is that it allows
specification of input time separation and maximum tim­
ing bounds on output generation. These timings are derived
automatically during the high-level and datapath synthe­
sis steps of ACK. Input timing allows average case perfor­
mance tech-mapping to be explored much more accurately
than existing methods that are based only on probabilities
[6 , 28]. Output timing constraints allow setting a maxi­
mum bound on the time the controller is allowed to take
to produce an output in response to an input. These output
constraints are very useful in favoring a less frequently, but
timing critical, operation over the average case. Such out­
put constraints are essential for system level design where
rigid timing bounds are often put on module interfaces, es­
pecially when interfacing to synchronous designs.

The circuits, once cast into realizable form, are assem­
bled for fabrication using commercial place and route soft­
ware. Until recently we used the Epoch tool from Cascade,
but are in the process of switching to Cadence as the back­
end physical assembly engine.

4 Design Example: An Error Decoder for the
CD-Player

To give a demonstration of a design implemented with
ACK and the performance achievable using our proposed
control structures, this section presents an error decoder for
the CD-player [29] as a design example. This example is
implemented both as a microengine and as hardwired con­
trol as generated by ACK. Although this is a fairly small
example by system-description standards, it should be large
enough to show some of the system design features in ACK
and the potential for a system-level approach to synthesis,
while being small enough to present enough detail to be in­
teresting.

The error decoder circuit implements error-detection on
the audio information recorded on Compact Discs using a
syndrome computation algorithm. Figure 2 illustrates the

7

‘include ”channel.pkg”
m odule CD_Player_Error_Decoder (reset, start, tw, cw, sw, ew, lw);

input
input
input
output
output
output

reset, start;
tw;
[7:0] cw;
sw;
[7:0] ew;
[5:0] lw;

reg [31:0] syn;
reg [7:0] e, s;
reg [5:0] n;
reg t, stat;

channel #(1) T(tw);
channel #(8) C(cw);

channel #(1) S(sw);
channel #(8) E(ew);
channel #(6) L(lw);
function [31:0] Horner;

inpu t [7:0] s;
inpu t [31:0] syn;
begin

Horner[7:0] = GFadd(s, syn[7:0]);
Horner[15:8] = GFadd(s, Alpha(syn[15:8]));
Horner[23:16] = GFadd(s, Alpha(Alpha(syn[23:16])));
Horner[31:24] = GFadd(s, Alpha(Alpha(Alpha(syn[31:24]))));

end
endfunction

function [7:0] GFadd;
inpu t [7:0] s, syn;
begin GFadd = s A syn; end

endfunction
function [7:0] Alpha;

inpu t [7:0] syn;
begin

Alpha[7:5] = syn[6:4]; Alpha[1:0] = {syn[0],syn[7]};
Alpha[4:2] = syn[3:1] a {syn[7],syn[7],syn[7]};

end
endfunction
function [31:0] Shuffle;

inpu t [31:0] syn;
begin

Shuffle[7:0] = syn[15:8]; Shuffle[15:8] = syn[31:24];
Shuffle[23:16] = syn[7:0]; Shuffle[31:24] = syn[23:16];

end
endfunction

always @(reset) begin
if (reset == 0) begin T.reset; C.reset; S.reset; E.reset; L.reset; end
else begin

@ start;
forever begin

fork
begin T.recv(t); if (t == 0) n = 27; else n = 32; end
begin syn = 0; end

join
while (n[5] != 1) begin

fork
begin n = n - 1; end
begin C.recv(s); syn = Horner(s,syn); end

join
end
fork

begin if (t == 0) n = 27; else n = 32; end
begin e = syn[7:0]; end

join
syn = Shuffle(syn);
syn = Shuffle(syn);
//pragma: PARTITION
while (~((n[5] == 1) II (syn[7:0] == syn[15:8]))) begin

fork
begin n = n - 1; end
begin syn = Horner(0,syn); end

join
end
stat = n[5];
syn = Shuffle(syn);
stat = (stat II (syn[7:0] == syn[15:8]));
syn = Shuffle(syn);
stat = (stat II (syn[7:0] == syn[15:8]));
fork S.send(stat); E.send(e); L.send(n); join

end
end

end
endmodule

Figure 2. Error d e c o d e r for th e CD-player -
spec ifica tion in s tan d a rd Verilog.

behavioral Verilog language specification of the error de­
coder design. Figures 3 and 4 show the structure of the
hardwired and microengine implementations as derived by
ACK. The error decoder processes a sequence of either 32
or 27 input words indicated by the value on the t channel.
The words are read in, processed, and checked for errors
in two sequential loops. The status of the decoding is then
reported to the environment via the s, e, and I channels.
Further details of the error decoder can be found in [29].

The control structure of the hardwired implementation is
based on burst-mode finite state machine synthesis. Since
the control is too large to synthesize as a single controller
with currently available synthesis tools, it must be parti­
tioned (while our new logic minimizer [27] can easily han­
dle such large controllers, currently available state assign­
ment tools cannot). The designer specified partition state­
ment is illustrated as a pragma in the Verilog code in Fig­
ure 2. The ACK framework then automatically partitions
and refines the control logic into two sequentially executing
burst-mode sub-controllers. To allow thread level concur­
rency using only burst-mode AFSM controllers, the fork-
join statements must be split into separate controllers. The
execution of these thread controllers is initiated by a hand­
shake from the main controller partitions. Note the inability
of an AFSM-only implementation to exploit efficient chain­
ing for the fork-join threads. The datapath is implemented
using standard gates with bundled control delays.

As an alternative to the hardwired implementation,
the design is also implemented in the form of our pro­
grammable asynchronous microengine architecture [26].
In the microengine implementation, a microcode memory
holds the VLIW micro instructions that control the execu­
tion of the datapath. The instruction bits directly control
the operation mode of the RAS (Request, Acknowledge,
and Sequencing) macromodule control blocks, as well as
mux and operation mode settings of the datapath units. The
threads of the fork-join statements in Figure 2 are imple­
mented in the microengine as efficient computation chains.
This exploitation of VLIW instructions and chaining allows
rolling many actions into a single instruction and helps to
significantly reduce control related overhead. The possible
sequential chains are easily identified in Figure 4 by the hor­
izontal arrows connecting the corresponding RAS blocks.
The exact same datapath as for the hardwired implementa­
tion is also used for the microengine.

4.1 Result Comparison

The error decoder for the CD-player has been designed
using ACK for a 3V, 0.6p CMOS technology, and uses a
single-rail bundled datapath and a four-phase handshake
protocol. The direct comparison is with the same system
designed using the Philips Tangram tool [29]. The Tangram
circuit was, however, designed for a 5V, 1.2p CMOS tech­
nology using a double-rail datapath, but did also use a four-

8

Figure 3. Error d e c o d e r for th e CD-player -
hardw ired AFSM s tru c tu re .

phase signaling protocol. The original Tangram circuit was
reported to use a core area of 2 .0mm2, and have an approx­
imate worst-case execution time of 20 s per decoding se­
quence, where a decoding sequence decodes 32 8-bit words
from the Compact Disc. According to van Berkel [8] when
a similar, but more complex design for an error corrector
for the DCC-player was scaled, a factor of 1.5 in perfor­
mance improvement and a 40% smaller area was attributed
to single-rail over double-rail. With feature size scaling un­
der a constant field assumption [42], except for voltage, a
single-rail Tangram implementation of the error decoder for
the CD-player in the same 3V 0.6 micron technology that
we targeted for the ACK-designed circuit could therefore
be expected to have a decoding sequence time of about 5 ps
and an area of 0.3 mm2.

Table 1 shows the performance of the scaled Tangram
single-rail implementation of the error decoder for the CD-
player along with the performance of the same error decoder
as generated by ACK. The ACK circuit’s performance num­
bers were obtained through post-layout SPICE simulation
using worst case transistor models and temperature for two
different implementations: one with hardwired AFSM con­
trol and no chaining, and one with programmable micro­
engine control and thread-level chaining used to improve
performance. Both ACK-generated circuits used the same
datapath. As can be seen in the table, the ACK circuit with
hardwired control had a worst case decoding sequence time
of 1.58 ps with an area of 0.25 mm2. The ACK circuit with
microengine control had a decoding sequence time of 1.46
ps and an area of 0.20 mm2 when a ROM-based memory
was used, and an area of 0.46 mm2 when RAM was used.
The speedup figure shown in the table is for speedup of the
microengine version of the circuit compared to the hard­
wired version.

Although the Philips design was targeted for low-power,

Figure 4. Error d e c o d e r for th e CD-player -
p rogram m able m icroeng ine s tru c tu re .

both the Phillips and ACK circuits used the same degree of
parallelism in the specification. The 3X performance advan­
tage of the ACK circuit probably cannot be explained solely
because of the low-power emphasis of the Tangram circuit.
We believe that a significant portion of the performance dif­
ference can be attributed to the efficient implementations
of partitioned burst-mode controllers and chained computa­
tions that ACK allows. As illustrated by the performance
numbers of the microengine implementation, our approach
to programmable control can also compete directly with
hardwired control with respect to performance. A large part
of the microengine’s power comes from its ability to chain
computations with very little control overhead. To achieve
good performance it is therefore desirable to have designs
which allow long chains to be formed.

Two other ACK-generated circuits are represented in Ta­
ble 1: an implementation of Beerel and Yun’s differen­
tial equation solver [45], and a barcode reader circuit [37].
These examples represent different levels of opportunity to
exploit thread-level chaining. When chaining is a possibil­
ity, as in the error decoder for the CD-player and differen­
tial equation solver, the chained microengine version has a
performance edge. When the opportunities for chaining are
not as pronounced, as in the barcode reader, the hardwired
control is faster. Our initial gate-level simulations indicate
that ACKs hardwired approach could gain about 10-20% in
performance if chained control is used1. As illustrated in
the Table, hardwired and programmable control have their
strengths and weaknesses, both in terms of area and perfor­
mance, and it is important for a high-level synthesis frame­
work to support both.

It should be noted that both types of design (hardwired

1Due to recent infrastructure changes (the Epoch layout tool is no
longer available to us) we have not yet been able to layout a hardwired
version of the error decoder for the CD-player that exploits chaining.

9

Design
Hardwired Microengine

Tim ers) Area(mm2) Time(ps) Arom/ram(mm2) Speedup
Scaled Tangram
CD -player error decoder 5 0.3
AC K CD-player error decoder 1.58 0.25 1.46 0.20/0.46 +8.0%
AC K Diff-eqn solver 1.75 0.26 1.69 0.28/0.47 +3.5%
AC K Barcode reader 3.30 0.10 3.61 0.10/0.25 —9.5%

Table 1. D esign co m p ariso n s of hardw ired vs. m icroeng ine im plem entations.

and microengine) were implemented in ACK without using
any explicit timing based optimizations. Better results are
to be expected for both types of designs when timing opti­
mizations are applied to hide control overhead. The ACK
designs were synthesized to a gate-level representation with
bundled data delays obtained via process corners gate-level
timing analysis using Synopsys Design-Analyzer tool. This
timing analysis is, in our experience, very accurate allowing
the use of relatively small safety margins. The gate-level
circuits were placed and routed using the Cascade Epoch
tool, which was also used to generate post-layout area num­
bers and SPICE models.

5 Conclusions
We have described our views on how high-level sys­

tem design should be approached, and presented ACK as
our current research vehicle to explore these ideas. We
feel that system design has a different set of challenges
than small controller design and requires a different set of
tools. Specifically, the ability to chain computations by us­
ing highly optimized macromodules, together with special­
ized AFSM control, and the possibility of high-level pro­
grammable control seems to be well suited to the demands
of system design. Combined with the standard procedural-
level Verilog HDL as input language this approach is a pow­
erful method for designing systems that are too large to be
expressed in signal transition graphs, but too small or spe­
cialized to benefit from general microprocessor implemen­
tation. Our initial results are quite encouraging and we plan
to continue to expand the abilities of the ACK tool to be­
come even more useful at the system level.

Acknowledgements. Our thanks go to Al Davis for help­
ful discussions, and to Junglin Yang, Eric Kuehne, Johan
Nyblom, Samuel Larsen, Robert Thacker, and Eric Peskin
for helping with the development of the ACK framework.

References
[1] V. Akella and G. Gopalakrishnan. Shilpa: A high-level syn­

thesis system for self-timed circuits. In ICCAD, pages 587­
594, Nov. 1992.

[2] T. Anderson, D. Culler, and D. Patterson. A case for net­
works of workstations: NOW. IEEE Micro, February 1995.

[3] W. Athas and C. Seitz. Multicomputers: Message passing
concurrent computers. IEEE Computer, 21(8), August 1988.

[4] A. Bardsley. Balsa, a case study of a DMA controller. In
M. Josephs and A. Yakovlev, editors, ACiD Working Group
Workshop, January 1999.

[5] A. Bardsley and D. Edwards. Compiling the language Balsa
to delay-insensitive hardware. In C. D. Kloos and E. Cerny,
editors, CHDL-97, pages 89-91, Apr. 1997.

[6] P. A. Beerel, W.-C. Chou, and K. Y. Yun. A heuristic cover­
ing technique for optimizing average-case delay in the tech­
nology mapping of asynchronous burst-mode circuits. In
EURO-DAC, Sept. 1996.

[7] P. A. Beerel, C. J. Myers, and T. H.-Y. Meng. Cover­
ing conditions and algorithms for the synthesis of speed-
independent circuits. IEEE Trans. on CAD, Mar. 1998.

[8] K. v. Berkel, R. Burgess, J. Kessels, A. Peeters, M. Ron-
cken, F. Schalij, and R. van de Wiel. A single-rail re­
implementation of a DCC error detector using a generic
standard-cell library. In Asynchronous Design Methodolo­
gies, pages 72-79. IEEE Computer Society Press, May
1995.

[9] K. v. Berkel, J. Kessels, M. Roncken, R. Saeijs, and
F. Schalij. The VLSI-programming language Tangram and
its translation into handshake circuits. In EDAC, pages 384­
389, 1991.

[10] E. Brunvand. Translating Concurrent Communicating Pro­
grams into Asynchronous Circuits. PhD thesis, Carnegie
Mellon University, 1991.

[11] E. Brunvand and R. F. Sproull. Translating concurrent pro­
grams into delay-insensitive circuits. In ICCAD , pages 262­
265. IEEE Computer Society Press, Nov. 1989.

[12] S. M. Burns and A. J. Martin. Synthesis of self-timed cir­
cuits by program transformation. In G. J. Milne, editor, The
Fusion o f Hardware Design and Verification, pages 99-116.
Elsevier Science Publishers, 1988.

[13] W. Chou, P. A. Beerel, R. Ginosar, R. Kol, C. J. Myers,
S. Rotem, K. Stevens, and K. Y. Yun. Average-case opti­
mized technology mapping of one-hot domino circuits. In
ASYNC98, pages 80-91, 1998.

[14] T.-A. Chu. Synthesis o f Self-Timed VLSI Circuits from
Graph-Theoretic Specifications. PhD thesis, MIT Labora­
tory for Computer Science, June 1987.

[15] W. A. Clark. Macromodular computer systems. In Spring
Joint Computer Conference. AFIPS, April 1967.

[16] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev. Petrify: a tool for manipulating concurrent
specifications and synthesis of asynchronous controllers. In
X I Conference on Design o f Integrated Circuits and Systems,
Barcelona, Nov. 1996.

10

[17] W. J. Dally and P. Song. Design of a self-timed VLSI mul­
ticomputer communication controller. In ICCD, pages 230­
234, 1987.

[18] R. Felderman, A. DeSchon, D. Cohen, and G. Finn. Atomic:
A high speed local communication architecture. Journal o f
High Speed Networks, 3(1), 1994.

[19] R. M. Fuhrer, S. M. Nowick, M. Theobald, N. K. Jha, B. Lin,
and L. Plana. Minimalist, an environment for the synthesis,
verification and testability of burst-mode asynchronous ma­
chines. Technical Report CUCS-020-99, Columbia Univer­
sity, Computer Science Dept., July 1999.

[20] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V.
Woods. AMULET1: A micropipelined ARM. In COMP-
CON, pages 476-485, Mar. 1994.

[21] S. B. Furber, J. D. Garside, and D. A. Gilbert. AMULET3:
A high-performance self-timed ARM microprocessor. In
ICCD, Oct. 1998.

[22] S. B. Furber, J. D. Garside, P. Riocreux, S. Temple, P. Day,
J. Liu, and N. C. Paver. AMULET2e: An asynchronous
embedded controller. Proceedings o f the IEEE, 87(2):243-
256, Feb. 1999.

[23] H. v. Gageldonk, D. Baumann, K. van Berkel, D. Gloor,
A. Peeters, and G. Stegmann. An asynchronous low-power
80c51 microcontroller. In ASYNC98, pages 96-107, 1998.

[24] D. Gajski. Principles o f Digital Design. Prentice Hall, 1997.
[25] G. Gopalakrishnan, P. Kudva, and E. Brunvand. Peep­

hole optimization of asynchronous macromodule networks.
IEEE Trans. on VLSI, 7(1):30-37, Mar. 1999.

[26] H. Jacobson and G. Gopalakrishnan. Application-specific
programmable control for high-performance asynchronous
circuits. Proceedings o f the IEEE, 87(2):319-331, Feb.
1999.

[27] H. Jacobson, C. Myers, and G. Gopalakrishnan. Fast and ex­
act logic minimization for extended burst-mode controllers.
Technical Report UUCS-99-012, Department of Computer
Science, University of Utah, U.S.A., 1999.

[28] K. W. James and K. Y. Yun. Average-case optimized
transistor-level technology mapping of extended burst-mode
circuits. In ASYNC98, pages 70-79, 1998.

[29] J. Kessels, K. van Berkel, R. Burgess, M. Roncken, and
F. Schalij. An error decoder for the compact disc player as
an example of VLSI programming. Technical report, Philips
Research Laboratories, Eindhoven, The Netherlands, 1992.

[30] P. Kudva, G. Gopalakrishnan, and H. Jacobson. A technique
for synthesizing distributed burst-mode circuits. In Proc.
ACM/IEEE Design Automation Conference, 1996.

[31] P. Kudva, G. Gopalakrishnan, H. Jacobson, and S. M. Now­
ick. Synthesis of hazard-free customized CMOS complex-
gate networks under multiple-input changes. In Proc.
ACM/IEEE Design Automation Conference, 1996.

[32] A. J. Martin. Programming in VLSI: From communicating
processes to delay-insensitive circuits. In C. A. R. Hoare, ed­
itor, Developments in Concurrency and Communication, UT
Year of Programming Series, pages 1-64. Addison-Wesley,
1990.

[33] A. J. Martin, A. Lines, R. Manohar, M. Nystroem, P. Pen-
zes, R. Southworth, and U. Cummings. The design of an
asynchronous MIPS R3000 microprocessor. In Advanced
Research in VLSI, pages 164-181, Sept. 1997.

[34] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng. Auto­
matic synthesis and verification of gate-level timed circuits.
Technical Report CSL-TR-94-652, Stanford University, Jan.
1995.

[35] S. M. Nowick, M. E. Dean, D. L. Dill, and M. Horowitz. The
design of a high-performance cache controller: a case study
in asynchronous synthesis. Integration, the VLSI journal,
15(3):241-262, Oct. 1993.

[36] S. M. Nowick, K. Y. Yun, and P. A. Beerel. Speculative com­
pletion for the design of high-performance asynchronous dy­
namic adders. In ASYNC97, pages 210-223. IEEE Com­
puter Society Press, Apr. 1997.

[37] P. R. Panda and N. Dutt. 1995 high level synthesis design
repository. Technical Report 95-04, University of California,
Irvine, U.S.A., 1995.

[38] M. Renaudin, P. Vivet, and F. Robin. ASPRO-216: A
standard-cell QDI 16-bit RISC asynchronous microproces­
sor. In ASYNC98, pages 22-31, 1998.

[39] W. F. Richardson and E. Brunvand. Architectural consider­
ations for a self-timed decoupled processor. IEE Proceed­
ings, Computers and Digital Techniques, 143(5):251-257,
Sept. 1996.

[40] S. Rotem, K. Stevens, R. Ginosar, P. Beerel, C. Myers,
K. Yun, R. Kol, C. Dike, M. Roncken, and B. Agapiev.
RAPPID: An asynchronous instruction length decoder. In
ASYNC99, pages 60-70, Apr. 1999.

[41] I. E. Sutherland. Micropipelines. Communications o f the
ACM, 32(6):720-738, June 1989.

[42] N. H. Weste and K. Eshraghian. Principles o f CMOS VLSI
Design. Addison Wesley, 1992.

[43] C. Ykman-Couvreur, B. Lin, and H. de Man. Assassin: A
synthesis system for asynchronous control circuits. Techni­
cal report, IMEC, Sept. 1994. User and Tutorial manual.

[44] K. Y. Yun. Synthesis o f Asynchronous Controllers fo r Het­
erogeneous Systems. PhD thesis, Stanford University, Aug.
1994.

[45] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. E. Dooply,
and J. Arceo. The design and verification of a high-
performance low-control-overhead asynchronous differen­
tial equation solver. IEEE Trans. on VLSI, 6(4):643-655,
Dec. 1998.

[46] K. Y. Yun and D. L. Dill. Automatic synthesis of extended
burst-mode circuits: Part I (specification and hazard-free im­
plementation). IEEE Trans. on CAD, 18(2): 101-117, Feb.
1999.

11

