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Abstract

Designing asynchronous circuits is becoming easier as 
a number o f  design styles are making the transition from  
research projects to real, usable tools. However, design­
ing asynchronous “system s” is still a difficult problem. We 
define asynchronous systems to be medium to large d igi­
tal systems whose descriptions include both datapath and 
control, that may involve non-trivial interface requirements, 
and whose control is too large to be synthesized in one 
large controller. ACK is a fram ework fo r  designing high- 
perform ance asynchronous systems o f  this type. In A C K  we 
advocate an approach that begins with procedural level de­
scriptions o f  control and datapath and results in a hybrid  
system that mixes a variety o f  hardware implementation 
styles including burst-mode AFSMs, macromodule circuits, 
and program mable control. We present our views on what 
makes asynchronous high level system design different from  
lower level circuit design, motivate our A C K  approach, and 
demonstrate using an example system design.

1 Introduction

Asynchronous design in the small is a difficult, but well 
researched problem area. There are many choices, each 
with their own advantages and drawbacks to specifying 
and synthesizing small, highly concurrent asynchronous 
control modules at a very detailed signal transition level 
[34, 44, 14, 7]. Asynchronous design in the extremely large 
where complete (synchronous) computer systems are inter­
connected by asynchronous networks is also a well-studied 
and understood problem [2, 17, 3, 18]. We feel there is a 
middle ground of system design characterized by systems 
that are too large to be tractable with direct hard-wired con­
troller synthesis, and too small or special-purpose to be effi­
cient with a general microprocessor solution. This middle- 
ground is where “high-level” synthesis is important, and 
where there is a major gap and opportunity for further re­
search. System descriptions at this level include data paths 
and control components at a procedural level, and typically
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require extensive partitioning and refinement of both before 
lower level tools can be exploited.

Although asynchronous system design and synthesis has 
been shown to be possible using existing tools [22, 33, 8], 
it can be a very labor intensive process. The problem is 
that most existing asynchronous circuit tools target specific 
pieces of the design process, but not necessarily at the right 
level of abstraction, or with an overall approach that fits 
the system design view. System specifications that include 
complex control and significant datapaths require a different 
style of tool support than smaller specifications that might, 
for example, involve a single fine-grain controller. The dis­
tinctive features of a system  design tool can be described 
using the following categories.

1.1 System Description

As its most fundamental requirement, a system design 
language must be able to easily describe features at the pro­
cedural level that designers think about when they describe 
systems. For the purpose of improving the designer’s under­
standing of the both the design specification and the frame­
work used to validate, optimize, and synthesize the design, 
we believe it is important to use the same language at the 
front-end, before synthesis, as well as at the back-end, after 
synthesis (e.g., as a structural netlist). Using a single stan­
dard language throughout the design process simplifies the 
designer’s job in many ways, most directly by letting the de­
signer view and understand the result of the various stages 
of the design. Standard HDLs such as Verilog and VHDL 
are widely used for synchronous system design and as a re­
sult their syntax and semantics are already well understood 
by designers. On the one hand this makes them a natural 
choice for a specification language. On the other hand, al­
though they include support for a wide range of both high 
and low level constructs, one challenge with using standard 
“synchronous” HDLs is understanding their affinity for ex­
pressing concepts used by designers of asynchronous cir­
cuits.

An asynchronous design puts several additional demands 
on a specification language. Because of the nature of asyn­
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chronous control flow, it should support concurrency, se­
quencing, and choice in a natural way. Asynchronous con­
structs such as channels and signal events should also be 
expressed easily. Support for specification of interface tim­
ing is also important in order to interface to the environ­
ment correctly. Together with min-max timing bounds on 
operations internal to a module such timing annotations 
can aid the designer in driving the optimizations in a de­
sired direction. Another challenge is that the simulation se­
mantics of Verilog and VHDL, while seemingly indepen­
dent of synchronous or asynchronous circuit operation, in 
fact have several subtle complications when a truly asyn­
chronous system is simulated due to the event driven model 
used by most simulators. There are workarounds for each of 
these problems that might have been avoided by designing a 
language that directly supports asynchronous concepts, but 
we believe that the benefits of using a standard HDL out­
weigh the costs of the workarounds.

1.2 Design Exploration
Support for iterative design exploration is an important 

feature in a system design tool. Whereas a circuit design 
tool is often used once the desired controller is already fully 
specified, a higher-level system design is usually evolved 
from a much less refined specification. The system de­
signer may want to explore a variety of organizations at a 
high level before refining individual components to a spe­
cific implementation. While there is no clear consensus on 
how such design exploration is best performed, there are a 
few basic requirements which play an important role in iter­
ative exploration of design alternatives. For example, there 
should be provisions for feedback to the designer regarding 
any optimizations that the tool performs. The more the tool 
modifies the system description, the more important it be­
comes for the effect of the optimizations to be understood 
by the designer. Without an understanding of the effect of 
the optimizations it becomes difficult to drive the design in 
a specific, desired direction.

Another aspect which is important in design exploration 
is estimation of system performance, where performance 
may be measured in speed, size, power, or some other 
metric. When the synthesized circuits are a fairly close 
match to the specification, such as in a macromodular 
or programmable controller implementation, such estima­
tion is relatively straightforward. When using AFSMs for 
control, however, high-level estimation at the specification 
level is much more difficult. The area and performance of 
AFSM controllers is highly dependent on how their out­
put functions can be covered by minimized logic equations. 
Even very subtle differences in state assignment and sig­
nal reshufflings can result in significant changes of the final 
controller logic. Because of this it may be necessary to take 
the AFSM-based controller much closer to the actual im­
plementation to get a good estimate of performance. In this

case fast synthesis of the controller is essential to an itera­
tive exploration approach.

1.3 Implementation Style

System synthesis can involve much larger and more 
complex datapath and control circuits than lower level syn­
thesis where the partitioning has already been done. Typi­
cally, a high level specification is split into control and data­
path sections fairly early in the process. This is mainly done 
because control and datapath are best synthesized using dif­
ferent algorithms and techniques. Because there is no one 
best way to implement circuits of either type, a system tool 
should support a variety of choices.

Datapath implementation styles range from static logic 
datapaths with matching bundled delays to precharged com­
plex gates with completion sensing. While complex gates 
and completion sensing techniques can sometimes reduce 
the delay of a computation in the average case they currently 
require significant manual effort to implement. Commer­
cially available automated datapath synthesis systems are 
well suited to generating static standard cell datapaths with 
bundled delay. Techniques such as delay borrowing (ex­
plained later in this paper) and speculative completion [36] 
can be used to reduce the average case penalty of using 
bundled delay datapaths. The modularity of asynchronous 
circuits allows custom designed datapaths to easily replace 
standard gate datapath components where necessary.

Asynchronous control styles range from hardwired con­
trollers such as asynchronous finite state machines (AFSM) 
and macromodules or handshake circuits, to micropro- 
grammable control such as microengines [26]. Each of 
these control styles has advantages and disadvantages and 
as previous research has shown [25,26] no one control style 
is best suited for all situations. It is therefore important 
to support different control styles that can be freely mixed 
within the same design while keeping the implementation 
details as transparent as possible to the design specification.

1.4 Concurrency Management

Concurrency in a system design occurs at many levels 
of the system, not just the lowest circuit level. As a re­
sult there are some additional issues when it comes to effi­
ciently implementing the different levels of concurrency. At 
the highest level where the interaction between modules is 
not necessarily performance critical, macromodule control 
is very well suited due to its straightforward implementa­
tion and close correspondence with the original specifica­
tion. Within a module there are typically several tasks op­
erating concurrently. Such tasks often contain frequent and 
iterative interactions between control and datapath and thus 
have a more significant influence on overall system perfor­
mance. Each task might therefore be better implemented 
using the AFSM style of control to tailor the controller more
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closely to the specified behavior. Within each such task 
a thread type of concurrency is often featured where each 
thread carries out a fairly autonomous sequence of depen­
dent computations. While such fork-join concurrency could 
be implemented by AFSMs which allow I/O signal concur­
rency there is an overhead attached to having control signals 
go back and forth between a controller and the datapath el­
ements it controls. First, the complexity of the AFSM goes 
up as more handshake signals are needed, and second, long 
handshake wires introduce a delay overhead. In such situa­
tions a chained control style may improve performance.

In a chained control style each thread is represented by 
a chain of computations where control cascades through 
macromodules which are local to each datapath element in 
the chain. Once the end of the chain is reached the control 
is sent back to the AFSM which collects completion signals 
from the threads. By exploiting the locality of the control 
and the low forward latency of specialized chaining macro­
modules, control overhead in such chains can be drastically 
reduced compared to letting a single AFSM handle all hand­
shaking.

1.5 The ACK Approach

ACK is our high-level system design tool that describes 
the design specification at a procedural level and automat­
ically compiles the specification into an interconnection 
of control and datapath circuits. For design specifications 
ACK makes use of the standard Verilog high level descrip­
tion language. We have written some additional Verilog 
code in the form of a “package” to help model asynchronous 
constructs such as channels that can be included if desired. 
Using standard synthesizable Verilog makes it possible for 
ACK to leverage standard simulation tools for design vali­
dation throughout the design process. Verilog also enables 
ACK to leverage standard synchronous tools for datapath 
synthesis and timing analysis.

High-level design optimizations performed by ACK are 
back-annotated to the original design specification to pro­
vide comprehensible feedback to the designer to make it 
easier to drive the design in a desired direction. For control, 
ACK successfully blends several methodologies into new 
control structures suited for high-level design. For hard­
wired control, ACK supports control structures consisting 
of mixed AFSM and macromodule control which allows 
implementation of computation chains (fork-join threads) 
with very low control overhead. For programmable con­
trol, ACK supports control structures in the form of highly 
efficient asynchronous microengines [26]. In ACK these 
control styles can be freely intermixed in any fashion that 
best fits the system currently being designed. The synthe­
sized controller circuits can be tech-mapped to a standard 
cell library, or synthesized in terms of custom complex-gate 
CMOS circuits for higher performance [31].

In this paper we put forth our ideas on designing asyn­
chronous systems rather than designing asynchronous cir­
cuits. We describe the ACK framework as an example of 
our evolving approach and as a system design framework. 
We put this in context with a simple system design example 
and use this to motivate further research in the area.

2 Related Work

In the asynchronous community there has been great in­
terest in developing the circuit-level and logic-level tools 
that allow asynchronous and self-timed circuits to be built 
in correct and efficient ways [44, 19, 34, 43, 16]. They are 
reaching a level where they can be used effectively to design 
fine-grained asynchronous circuits. However, they are not 
well suited to larger system level design where the require­
ment to describe the system at the level of every individual 
signal quickly becomes overwhelming.

System level design tools in the asynchronous world 
are mostly descended from the Macromodules project at 
Washington University in the 1970’s [15]. This project 
was the first, and is still one of the most successful 
asynchronous system  design projects. A more modern 
VLSI version of macromodule design was described by 
Sutherland [41] as micropipelines. Several system de­
sign tools followed this general approach including Brun- 
vand’s Occam compiler [11, 10], the Tangram system from 
Philips [9], Akella’s Shilpa system [1], and the Balsa system 
from University of Manchester [5]. Although these tools 
compile to very different sets of macromodules, they have 
in common a language-directed approach to system synthe­
sis. Individual language constructs are translated based on 
their syntax to a set of macromodule circuits that imple­
ment that statement. The macromodules, although differ­
ent for the various tools, share the feature that they can be 
highly optimized both in circuit and layout terms. While 
this can be a very intuitive and simple approach to system 
synthesis, relying on macromodules exclusively can have a 
performance impact on the resulting system.

Another approach based more on program transforma­
tion than on syntax directed translation is Martin and Burns’ 
CHP system from Caltech [12, 32]. Their approach applies 
a series of decompositions to the program before mapping 
into a simple set of composable circuits. This results in 
more flexibility at the circuit level, but requires correspond­
ingly higher levels of signal detail at the specification level.

A somewhat more ad hoc approach is taken by the 
Amulet group at Manchester who have been building, with­
out direct system design tool support, a series of large mi­
croprocessor systems based on the ARM processor [20, 
22, 21]. They use essentially a macromodular approach 
but design the controller circuits by hand rather than from 
program descriptions. For their latest microprocessor de­
sign [21] a hand-designed approach is being used that in­
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volves a combination of macromodules, and even finer 
grained generalized C-element circuits (even more labor in­
tensive!). High-level design using Balsa for non-critical- 
path parts of the system, the DMA controller in particular, 
is also being used [5, 4].

3 A Tour of ACK
ACK is our framework for asynchronous system level 

design. Following the ideas about system design from Sec­
tion 1, the basic flow through the tool is shown in Figure 1. 
As shown in the figure, ACK is a high level synthesis tool 
that describes the desired system at a procedural level (in­
cluding datapath specification), and automatically compiles 
that specification into interconnected control and datapath 
circuits. Apart from creating an automated path from high- 
level specification all the way down to layout, our recent 
work on ACK has concentrated on providing a designer 
friendly environment through the use of a standard HDL 
and standard validation tools as well as flexible and effi­
cient control by offering a variety of hardwired and pro­
grammable control structures. The main features of ACK 
are listed below.

• Support for standard Verilog HDL specification

• Support for standard validation tools

Back-annotated high level design optimizations

Flexible control structures supporting both hardwired 
and programmable control

Design partitioning and fast AFSM control synthesis

Standard or complex gate technology mapping with 
timing optimizations

The rest of this section describes the current features and 
future additions planned for the ACK framework in more 
detail.

3.1 ACK Design Flow Overview

System Specification: As illustrated in Figure 1, stan­
dard Verilog underlies most of the ACK design process. The 
designer starts the design cycle by entering the design spec­
ification in a synthesizable subset of standard Verilog. De­
signers wishing to use channel-based communication can 
also use our Verilog channel package. Once entered, the ini­
tial design specification can be validated using the Verilog- 
XL simulator from Cadence and available formal model 
checkers. High level optimizations to extract parallelism 
and subexpression sharing are then applied to the specifi­
cation and the changes are back annotated to the original 
Verilog code. The designer can now manually apply further 
optimizations to the design specification if desired.

High Level Synthesis: After the initial validation and 
optimization stage, the design is split and refined into sep­
arate datapath and controller parts. At this stage datapath 
components for computation and storage are allocated and 
expressed in behavioral Verilog. The control of the design is 
refined into AFSMs, macromodule, and microengine parts 
according to pragma hints from the designer. As with the 
datapath, control at this stage is also modeled in behav­
ioral Verilog but at the individual signal handshake level. 
If required, partitioning of the AFSM controllers also takes 
place at this stage. After high level synthesis, the design is 
represented as structural Verilog code but with the actual in­
stances still described in behavioral Verilog. The design at 
this stage can again be validated using the same testbenches 
as the original specification, and further manual tweaking 
of the design can be performed.

Datapath and Control Synthesis: The next step in the 
design process is to synthesize the behavioral instances of 
the structural Verilog code into actual gates. Synopsys 
Design-Compiler is used to synthesize the datapath portions 
of the design into standard gates. If desired, parts of the dat­
apath can be substituted for complex gate structures manu­
ally derived with Cadence Layout-Synthesis. The behav­
ioral controllers are synthesized and tech-mapped into stan­
dard or complex gate structures using tools of our own and 
from other universities.

Gate-Level Interconnect: The design is now repre­
sented by structural Verilog gate netlists. These netlists can 
again be validated using the original testbenches. At this 
stage timing analysis to derive bundled data delays and en­
sure compliance with fundamental mode constraints is per­
formed using Synopsys Design-Analyzer.

Transistor Layout: The next stage in the synthesis pro­
cess is to generate an actual layout for the design. This 
has so far been done using the commercial tool Epoch from 
Cascade, however we are currently in the process of switch­
ing to Cadence. Once a layout has been produced, final tim­
ing analyses and design validations can be performed us­
ing a post-layout extracted Verilog switch level model with 
Verilog-XL, or through a SPICE deck with HSPICE.

3.2 Procedural Level Description
As described in Section 1, a system level design tool 

should support system descriptions at a relatively high level 
through a standard language that supports asynchronous 
constructs. ACK currently uses standard Verilog to model 
the design at the system level because it already supports 
many of the features required to efficiently describe asyn­
chronous system and circuit operation. Concurrency in Ver- 
ilog can be described at a coarse grained as well as a fine 
grained level through the use of modules, tasks, and fork- 
join statements. Fork-join statements are especially impor­
tant as they are used to describe characteristic asynchronous 
behavior involving concurrency, sequencing, and choice in
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Figure 1. ACK tool flow

a succinct manner. Fork-join threads can be used to de­
scribe concurrent actions on individual signals (e.g., a sig­
nal burst in a burst-mode AFSM) as well as higher level ex­
pressions of concurrency. Verilog also supports the notion 
of events on signals which greatly simplifies description of 
asynchronous handshake protocols.

Standard Verilog does not, however, include the high- 
level concept of an asynchronous communication channel. 
While the behavior of channels can, of course, be described 
by the designer using explicit data and control signals, this 
is a common enough construct in asynchronous design that 
we have developed a standard channel package in Verilog. 
We are currently also looking into ways of supporting user 
defined datatypes in Verilog that are more complex than the 
array of bits currently supported.

Because high-level specifications are often quite general 
in nature, hints from the designer about which optimiza­
tions or control structures should be used can help the tool 
produce better circuits. As these hints have no effect on 
the high level behavioral simulation of the design, ACK 
supports such designer hints through the use of pragmas. 
Through these pragmas the designer can specify what type 
of control structure to use (AFSM, macromodule, or micro­
engine), if chaining should be applied, and what parts of 
the code should be optimized for sequential or parallel exe­
cution. Interface timing is also currently specified through 
pragmas. The importance in using pragmas for hints to the 
synthesis tools is that different target implementation and 
circuit structures can be evaluated without having to alter a 
single statement of the behavioral specification.

3.3 Validation

Being able to simulate and verify a design from first 
specification to final layout is an essential part of any syn­
thesis framework to ensure the correctness of the design. 
Targeting a single language for the description of the design 
through all phases of the synthesis process greatly simplifies 
validation. Using standard languages also has the benefit 
of mature validation tools being available. Since ACK tar­
gets standard Verilog as design specification language and 
also uses it to represent the intermediate structural forms 
of the design, testbenches can be reused at all levels of the 
synthesis process to ensure that the translations and opti­
mizations of compiler and layout tools preserve important 
properties of the design. ACK leverages the Verilog-XL 
simulator from Cadence to gain confidence in the functional 
correctness of the design at the behavioral level. At the post­
synthesis structural levels of the design, properties specific 
to asynchronous circuits, such as the implementation meet­
ing bundled data and fundamental mode timing constraints, 
must be ensured. Back annotated switch-level timing sim­
ulation using Verilog-XL is well suited for these types of 
timing checks at the circuit level.

3.4 High-level Synthesis

While very small designs may be best optimized by 
the designer, opportunities for optimization quickly become 
hard to discover as the size of the design grows. As the spec­
ification grows in complexity the designer may have to ex­
press the design in an easily understandable fashion rather 
than what yields the best performance. Designs are there­
fore typically described with simplistic sequential compu­

5



tations to more easily gain confidence in their correctness. 
Manually translating these specifications to more efficient 
structures is an error prone and time consuming process. 
Automated optimizations play an important role in this pro­
cess. Although these automated optimizations are impor­
tant, the designer may still want to understand the changes 
that are made to the design. The designer may also want to 
perform additional optimizations by hand that may be diffi­
cult for a compiler to detect. In these situations feedback to 
the designer on what optimizations have been performed is 
essential.

ACK supports this feedback by back-annotating the re­
sult of all optimizations to the original specification. The 
designer can thus see directly the changes that have been 
made to the design and use this information to select com­
piler options to steer the optimization closer to what is de­
sired. The ability to freeze parts of the specification so 
that no further optimizations are carried out on that sec­
tion of code allows the designer to concentrate further op­
timizations without interfering with already finalized parts 
of the design. The ACK compiler supports many differ­
ent optimization switches allowing the designer to closely 
guide the optimization procedure if so desired. ACK cur­
rently supports standard compiler optimizations such as 
loop-unrolling, sharing of common sub-expressions, and 
dead-code elimination, and is being extended with meth­
ods to automatically extract thread parallelism and detect 
chaining opportunities. Optimizations are further guided by 
pragmas in the specification language.

The current ACK optimizations are general in nature and 
can be used with advantage in both hardwired and pro­
grammable control. We recognize the need for optimiza­
tions targeting a specific control structure, e.g., AFSMs ver­
sus microengines, and are working on identifying what ef­
fect more specialized optimizations have on control over­
head.

3.5 Control Synthesis

For a system level design framework it is important to 
provide flexible control that can be used efficiently in many 
different situations as one single control style seldom pro­
vides the best solution when large system designs are con­
sidered. ACK successfully blends several hardwired as well 
as programmable methodologies into new control structures 
suited for high-level design.

Hardwired control
ACK is biased towards using macromodules as the top-level 
control in the design hierarchy. This makes for a nicely 
transparent translation from specification program to cir­
cuit, and provides sufficient performance for most top level 
control and communication activities. The use of macro­
modules can be overridden by pragma hints from the de­
signer where performance is critical. In the individual mod­

ules of the design hierarchy where performance is usually 
more important the control is implemented as burst-mode 
AFSMs to tailor the controller more closely to the specified 
behavior. Although small controllers of this type are very 
fast, their complexity grows quickly as the controller size 
increases. ACK provides a partition methodology [30] for 
AFSMs that divides large controllers into smaller interact­
ing subcontrollers that can be implemented more efficiently.

To model short sequences of frequently used sequential 
computations even more efficiently than AFSMs, these se­
quential actions can be realized as chains [24]. The control 
for each computation chain is built out of highly special­
ized macromodule controllers that are specifically designed 
to provide a low forward latency. A request signal can thus 
cascade through a chain of such macromodules with very 
low control overhead. The macromodule control within a 
chain supports fork and join structures and also conditional 
execution to handle simple choices. More elaborate choice 
structures still reside in the AFSMs where they are more 
efficiently implemented. Our experiments show that chain­
ing can deliver a performance increase of well over 20% for 
control dominated designs as compared to an AFSM-only 
solution.

In order to use a tool like ACK effectively to explore a 
design space that includes AFSM controllers, the synthesis 
step for these controllers (including handshake reshuffling, 
state assignment, logic minimization, etc.) must be as fast 
as possible to give the tool an interactive feel. In ACK we 
leverage existing tools wherever possible for this phase of 
the synthesis. The AFSM state assignment, for example, 
can be accomplished using a variety of burst-mode synthe­
sis engines like Yun’s 3D [44] or Nowick’s Minimalist [19] 
system. With timing information provided by the designer 
and derived from the high-level synthesis, timed approaches 
like ATACS [34] can also be used. While macromodule syn­
thesis is performed quickly, the complex logic minimiza­
tion step of existing AFSM synthesis algorithms has been 
too slow to enable the interactive and iterative design explo­
ration necessary to find good implementations of large con­
trollers. We have therefore developed a new methodology 
for exact logic minimization of burst-mode AFSMs [27]. 
Using our new tool, even the largest burst-mode bench­
marks available to date [35,44] can be minimized exactly in 
less than one second, as compared to thousands of seconds 
for existing minimizers.

Programmable control

In addition to efficient hardwired control, it is important 
to provide the flexibility of programmable control at dif­
ferent levels of the system design. Many system designs 
are targeted to specific applications that, although special­
ized, require some flexibility in their run-time control. To 
be useful in this context, the programmable control must 
offer high performance and low overhead. Existing asyn­
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chronous general purpose microprocessors [22, 33, 39], and 
even asynchronous microcontrollers [23, 38] can be too 
coarse-grained with too much overhead for the task. Micro­
processor cores also do not provide the flexibility in their 
control structure required to integrate them efficiently as a 
piece of a mixed-control style system design that also in­
cludes AFSM and macromodule sections.

We have investigated asynchronous microengines for 
ACK which offer both high performance and fine-grained 
programmability for domain-specific applications [26]. Our 
microengine architecture uses customized VLIW microin­
structions that offer very fine-grained control over the dat­
apath programmability resulting in compact microcode and 
high performance. The microengine allows implementa­
tions of domain specific applications that can directly com­
pete with hardwired control in terms of performance (and 
area if ROM is used). By using standard macromodules for 
the local control of datapath units, the datapath is kept com­
pletely modular, and control is easily programmable and 
implementable in a standardized fashion. A major part of 
the microengine’s high performance comes from its abil­
ity to dynamically schedule computation units in parallel 
and serial clusters, or chains, to best suit the current sit­
uation. Forming such serial clusters dynamically is very 
hard to do efficiently in synchronous microengines because 
the propagation delays of all computations must add up to 
an integral multiple of the clock period. In addition to of­
fering high performance programmable control, the micro­
engine architecture supports standard two and four phase 
handshake protocols with bundled data assumptions and is 
thus very easily integrated with other asynchronous compo­
nents at any level in the design hierarchy.

3.6 Datapath Synthesis
At the moment ACK uses standard off-the-shelf 

synchronous-style datapath synthesis using Synopsys 
Design-Compiler combined with bundling delays. In order 
to make this as efficient as possible, considerable timing 
analysis is performed to overlap the datapath bundling de­
lays with control delays whenever possible using what we 
call delay borrowing. Through delay borrowing the con­
trol overhead can in many cases be significantly reduced. 
Given the new ability of ACK to efficiently exploit thread 
level concurrency through chaining however, the option of 
more aggressive completion detecting or completion sens­
ing data paths [36, 13] is an intriguing option that we intend 
to explore further.

Generalized C-element implementations with timing 
have been used effectively in data path portions of other 
high-performance asynchronous circuits [45,40]. The same 
technology mapping options that we are exploiting for fast 
gC-based control circuits can be used for datapath synthe­
sis. Allowing the specification of input timing and output 
constraint timing, as we do with control tech-mapping, fits

well with datapath synthesis where some data may arrive 
before other data and some outputs must be generated ear­
lier than others.

3.7 Circuit Implementation

Once the circuits have been synthesized, they must be 
realized into specific implementations. ACK performs a va­
riety of low-level circuit optimizations at this point to get 
more performance out of a given high-level organization. 
Our implementation phase allows the controllers to be re­
alized as custom complex CMOS gates [31, 46], and we 
are currently developing specific technology mapping tech­
niques to optimize the performance of these gates at the 
transistor level. These optimizations will also become im­
portant in datapath synthesis.

One of the main advantages of the tech-mapping tool 
being developed by our research group is that it allows 
specification of input time separation and maximum tim­
ing bounds on output generation. These timings are derived 
automatically during the high-level and datapath synthe­
sis steps of ACK. Input timing allows average case perfor­
mance tech-mapping to be explored much more accurately 
than existing methods that are based only on probabilities 
[6 , 28]. Output timing constraints allow setting a maxi­
mum bound on the time the controller is allowed to take 
to produce an output in response to an input. These output 
constraints are very useful in favoring a less frequently, but 
timing critical, operation over the average case. Such out­
put constraints are essential for system level design where 
rigid timing bounds are often put on module interfaces, es­
pecially when interfacing to synchronous designs.

The circuits, once cast into realizable form, are assem­
bled for fabrication using commercial place and route soft­
ware. Until recently we used the Epoch tool from Cascade, 
but are in the process of switching to Cadence as the back­
end physical assembly engine.

4 Design Example: An Error Decoder for the 
CD-Player

To give a demonstration of a design implemented with 
ACK and the performance achievable using our proposed 
control structures, this section presents an error decoder for 
the CD-player [29] as a design example. This example is 
implemented both as a microengine and as hardwired con­
trol as generated by ACK. Although this is a fairly small 
example by system-description standards, it should be large 
enough to show some of the system design features in ACK 
and the potential for a system-level approach to synthesis, 
while being small enough to present enough detail to be in­
teresting.

The error decoder circuit implements error-detection on 
the audio information recorded on Compact Discs using a 
syndrome computation algorithm. Figure 2 illustrates the
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‘include ”channel.pkg”
m odule CD_Player_Error_Decoder (reset, start, tw, cw, sw, ew, lw);

input
input
input
output
output
output

reset, start; 
tw;
[7:0] cw; 
sw;
[7:0] ew; 
[5:0] lw;

reg [31:0] syn;
reg  [7:0] e, s;
reg [5:0] n;
reg t, stat;

channel #(1) T(tw); 
channel #(8) C(cw);

channel #(1) S(sw); 
channel #(8) E(ew); 
channel #(6) L(lw);
function [31:0] Horner; 

inpu t [7:0] s; 
inpu t [31:0] syn; 
begin

Horner[7:0] = GFadd(s, syn[7:0]);
Horner[15:8] = GFadd(s, Alpha(syn[15:8]));
Horner[23:16] = GFadd(s, Alpha(Alpha(syn[23:16]))); 
Horner[31:24] = GFadd(s, Alpha(Alpha(Alpha(syn[31:24])))); 

end 
endfunction

function [7:0] GFadd; 
inpu t [7:0] s, syn; 
begin GFadd = s A syn; end 

endfunction
function [7:0] Alpha; 

inpu t [7:0] syn; 
begin

Alpha[7:5] = syn[6:4]; Alpha[1:0] = {syn[0],syn[7]}; 
Alpha[4:2] = syn[3:1] a {syn[7],syn[7],syn[7]}; 

end 
endfunction 
function [31:0] Shuffle; 

inpu t [31:0] syn; 
begin

Shuffle[7:0] = syn[15:8]; Shuffle[15:8] = syn[31:24]; 
Shuffle[23:16] = syn[7:0]; Shuffle[31:24] = syn[23:16]; 

end 
endfunction

always @(reset) begin
if (reset == 0) begin T.reset; C.reset; S.reset; E.reset; L.reset; end 
else begin 

@ start; 
forever begin 

fork
begin T.recv(t); if (t == 0) n = 27; else n = 32; end 
begin syn = 0; end 

join
while (n[5] != 1) begin 

fork
begin n = n - 1; end
begin C.recv(s); syn = Horner(s,syn); end 

join 
end 
fork

begin if (t == 0) n = 27; else n = 32; end 
begin e = syn[7:0]; end 

join
syn = Shuffle(syn); 
syn = Shuffle(syn);
//pragma: PARTITION
while (~((n[5] == 1) II (syn[7:0] == syn[15:8]))) begin 

fork
begin n = n - 1; end 
begin syn = Horner(0,syn); end 

join 
end
stat = n[5]; 
syn = Shuffle(syn); 
stat = (stat II (syn[7:0] == syn[15:8])); 
syn = Shuffle(syn); 
stat = (stat II (syn[7:0] == syn[15:8])); 
fork  S.send(stat); E.send(e); L.send(n); join 

end 
end 

end 
endmodule

Figure 2. Error d e c o d e r  for th e  CD-player - 
spec ifica tion  in s tan d a rd  Verilog.

behavioral Verilog language specification of the error de­
coder design. Figures 3 and 4 show the structure of the 
hardwired and microengine implementations as derived by 
ACK. The error decoder processes a sequence of either 32 
or 27 input words indicated by the value on the t  channel. 
The words are read in, processed, and checked for errors 
in two sequential loops. The status of the decoding is then 
reported to the environment via the s, e, and I channels. 
Further details of the error decoder can be found in [29].

The control structure of the hardwired implementation is 
based on burst-mode finite state machine synthesis. Since 
the control is too large to synthesize as a single controller 
with currently available synthesis tools, it must be parti­
tioned (while our new logic minimizer [27] can easily han­
dle such large controllers, currently available state assign­
ment tools cannot). The designer specified partition state­
ment is illustrated as a pragma in the Verilog code in Fig­
ure 2. The ACK framework then automatically partitions 
and refines the control logic into two sequentially executing 
burst-mode sub-controllers. To allow thread level concur­
rency using only burst-mode AFSM controllers, the fork- 
join statements must be split into separate controllers. The 
execution of these thread controllers is initiated by a hand­
shake from the main controller partitions. Note the inability 
of an AFSM-only implementation to exploit efficient chain­
ing for the fork-join threads. The datapath is implemented 
using standard gates with bundled control delays.

As an alternative to the hardwired implementation, 
the design is also implemented in the form of our pro­
grammable asynchronous microengine architecture [26]. 
In the microengine implementation, a microcode memory 
holds the VLIW micro instructions that control the execu­
tion of the datapath. The instruction bits directly control 
the operation mode of the RAS (Request, Acknowledge, 
and Sequencing) macromodule control blocks, as well as 
mux and operation mode settings of the datapath units. The 
threads of the fork-join statements in Figure 2 are imple­
mented in the microengine as efficient computation chains. 
This exploitation of VLIW instructions and chaining allows 
rolling many actions into a single instruction and helps to 
significantly reduce control related overhead. The possible 
sequential chains are easily identified in Figure 4 by the hor­
izontal arrows connecting the corresponding RAS blocks. 
The exact same datapath as for the hardwired implementa­
tion is also used for the microengine.

4.1 Result Comparison

The error decoder for the CD-player has been designed 
using ACK for a 3V, 0.6p CMOS technology, and uses a 
single-rail bundled datapath and a four-phase handshake 
protocol. The direct comparison is with the same system 
designed using the Philips Tangram tool [29]. The Tangram 
circuit was, however, designed for a 5V, 1.2p CMOS tech­
nology using a double-rail datapath, but did also use a four-
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Figure 3. Error d e c o d e r  for th e  CD-player - 
hardw ired AFSM s tru c tu re .

phase signaling protocol. The original Tangram circuit was 
reported to use a core area of 2 .0mm2, and have an approx­
imate worst-case execution time of 20 s per decoding se­
quence, where a decoding sequence decodes 32 8-bit words 
from the Compact Disc. According to van Berkel [8] when 
a similar, but more complex design for an error corrector 
for the DCC-player was scaled, a factor of 1.5 in perfor­
mance improvement and a 40% smaller area was attributed 
to single-rail over double-rail. With feature size scaling un­
der a constant field assumption [42], except for voltage, a 
single-rail Tangram implementation of the error decoder for 
the CD-player in the same 3V 0.6 micron technology that 
we targeted for the ACK-designed circuit could therefore 
be expected to have a decoding sequence time of about 5 ps 
and an area of 0.3 mm2.

Table 1 shows the performance of the scaled Tangram 
single-rail implementation of the error decoder for the CD- 
player along with the performance of the same error decoder 
as generated by ACK. The ACK circuit’s performance num­
bers were obtained through post-layout SPICE simulation 
using worst case transistor models and temperature for two 
different implementations: one with hardwired AFSM con­
trol and no chaining, and one with programmable micro­
engine control and thread-level chaining used to improve 
performance. Both ACK-generated circuits used the same 
datapath. As can be seen in the table, the ACK circuit with 
hardwired control had a worst case decoding sequence time 
of 1.58 ps with an area of 0.25 mm2. The ACK circuit with 
microengine control had a decoding sequence time of 1.46 
ps and an area of 0.20 mm2 when a ROM-based memory 
was used, and an area of 0.46 mm2 when RAM was used. 
The speedup figure shown in the table is for speedup of the 
microengine version of the circuit compared to the hard­
wired version.

Although the Philips design was targeted for low-power,

Figure 4. Error d e c o d e r  for th e  CD-player - 
p rogram m able  m icroeng ine s tru c tu re .

both the Phillips and ACK circuits used the same degree of 
parallelism in the specification. The 3X performance advan­
tage of the ACK circuit probably cannot be explained solely 
because of the low-power emphasis of the Tangram circuit. 
We believe that a significant portion of the performance dif­
ference can be attributed to the efficient implementations 
of partitioned burst-mode controllers and chained computa­
tions that ACK allows. As illustrated by the performance 
numbers of the microengine implementation, our approach 
to programmable control can also compete directly with 
hardwired control with respect to performance. A large part 
of the microengine’s power comes from its ability to chain 
computations with very little control overhead. To achieve 
good performance it is therefore desirable to have designs 
which allow long chains to be formed.

Two other ACK-generated circuits are represented in Ta­
ble 1: an implementation of Beerel and Yun’s differen­
tial equation solver [45], and a barcode reader circuit [37]. 
These examples represent different levels of opportunity to 
exploit thread-level chaining. When chaining is a possibil­
ity, as in the error decoder for the CD-player and differen­
tial equation solver, the chained microengine version has a 
performance edge. When the opportunities for chaining are 
not as pronounced, as in the barcode reader, the hardwired 
control is faster. Our initial gate-level simulations indicate 
that ACKs hardwired approach could gain about 10-20% in 
performance if chained control is used1. As illustrated in 
the Table, hardwired and programmable control have their 
strengths and weaknesses, both in terms of area and perfor­
mance, and it is important for a high-level synthesis frame­
work to support both.

It should be noted that both types of design (hardwired

1Due to recent infrastructure changes (the Epoch layout tool is no 
longer available to us) we have not yet been able to layout a hardwired 
version of the error decoder for the CD-player that exploits chaining.
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Design
Hardwired Microengine

Tim ers) Area(mm2) Time(ps) Arom/ram(mm2) Speedup
Scaled Tangram 
CD -player error decoder 5 0.3
AC K  CD-player error decoder 1.58 0.25 1.46 0.20/0.46 +8.0%
AC K  Diff-eqn solver 1.75 0.26 1.69 0.28/0.47 +3.5%
AC K  Barcode reader 3.30 0.10 3.61 0.10/0.25 —9.5%

Table 1. D esign co m p ariso n s  of hardw ired vs. m icroeng ine im plem entations.

and microengine) were implemented in ACK without using 
any explicit timing based optimizations. Better results are 
to be expected for both types of designs when timing opti­
mizations are applied to hide control overhead. The ACK 
designs were synthesized to a gate-level representation with 
bundled data delays obtained via process corners gate-level 
timing analysis using Synopsys Design-Analyzer tool. This 
timing analysis is, in our experience, very accurate allowing 
the use of relatively small safety margins. The gate-level 
circuits were placed and routed using the Cascade Epoch 
tool, which was also used to generate post-layout area num­
bers and SPICE models.

5 Conclusions
We have described our views on how high-level sys­

tem design should be approached, and presented ACK as 
our current research vehicle to explore these ideas. We 
feel that system design has a different set of challenges 
than small controller design and requires a different set of 
tools. Specifically, the ability to chain computations by us­
ing highly optimized macromodules, together with special­
ized AFSM control, and the possibility of high-level pro­
grammable control seems to be well suited to the demands 
of system design. Combined with the standard procedural- 
level Verilog HDL as input language this approach is a pow­
erful method for designing systems that are too large to be 
expressed in signal transition graphs, but too small or spe­
cialized to benefit from general microprocessor implemen­
tation. Our initial results are quite encouraging and we plan 
to continue to expand the abilities of the ACK tool to be­
come even more useful at the system level.
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