
Modeling of Call- By - Need and Stream Primitives
using CCS

UUCS - 82 - 015
August 1982

by

S.Purushothaman

P .A.Subrahmanyam

Department of Computer Science
University of Utah

Salt Lake City, Utah 84112

Abstract

The semantics of an applicative language are presented using the algebraic primitives introduced in
CCS. In particular, the language constructs modeled allow for nondeterrninism, stream processing
and demand driyen (call by need) evaluation. .

Sponsored by Defense Advanced Research Projects Agency, US Department of Defense, Contract No.
MDA903 - 81 - C - 0414.

· I

Table of Contents
,. Introduction
2. What is CCS?

2.'. Dynamic Behavior
3. An applicative language

3.'. Syntax
3.' ., . Semantics

3.2. Stream processing functions
4. Conclusion

, ,
2
5
5
7
9
12

Figure 3-1:
Figure 3-2:
Figure 3-3:

II

List of Figures
Definition of the data structure CELL
A function definition
Mechanism for fUnction call

7
9
10

1

1. Introduction
The study of semantics of programming languages offers an opportunity to abstract away from the

details of their implementation and work in a mathematical framework. The basic problems
involved in the description of an imperative language have been fairly well identified and solutions
have been proposed with a reasonable degree of success. The problems involved in concurrent
processing and non - determinacy have been identified but modeling such flavors of programming
constructs have had less success in the traditional settings of de notational (continuation) semantics.
Details like several possible continuations, and the possibility of future actions of concurrent
processes depending on value communication between them, give rise to some of the tougher
problems in giving semantics for concurrent and non - deterministic programs. Most of the problems
are explicated/referred to in [1]; however, even with the powerful semantic domain of multidomains,
the problems of low level synchronization and value passing cannot seemingly be modeled elegantly.
In contrast we believe that the domain of processeslbehavior expressions proposed in [6] offers a
better semantic domain for expressing such low level details.

One of the major advantages of an applicative language is the use of referential transparency in
the development or verification of programs. In introducing non - determinism in an applicative
language, we lose referential transparency. In addition to modeling low -level details of call- by
need, our motivation is to develop a formalism in which non - deterministic programs are
referentially transparent (at least to a certain degree, [2] refers to them as referentially translucent).
In contrast to [2], where the authors are guided by considerations of source - to - source
transformations, our aim is to express low -level details of implementation and address the question
of referential transparency in the same framework.

In this paper we attempt to give semantics for the core of an applicative language using ees - - a
calculus for communicating systems introduced by Milner [6]; we also show the ease with which
call- by - need can be explained in this context. The material is organized as follows: in section 2 we
explain the idea of behavior expressions and in section 3 we' give semantics for an applicative
language. The dE;!velopment in section 3 first considers a language that allows only nondeterministic
primitives; this is subsequently extended to include stream oriented primitives.

As an example of an important practical application, we remark that the basic scheme presented is
of relevance in an algebraic framework for supporting VLSI design. In essence, the abstract high
level specification of a chip can be viewed as a black box that accepts (appropriately structured)
streams of data at its input ports and provides the desired output streams at its output ports. The
functionality provided by the labeled ports of the chip may be suitably expressed by using extended
algebraic data types that use parameterized behavior expressions. The evaluation strategies
presented here can then be used to model an internal (lower level) implementation of the chip that is
intrinsically asynchronous in nature. The ability to do this then allows a rich set of implementation
possibilities to be considered.

2. What is CCS?
In this section we outline an intuitive view of ees (for the algebraic details of ees, the reader is

referred to [6]). ees has two facets that essentially reflect the static and the dynamic nature of
processes. The static part of ees reflects the fact that the mathematical object "process" can be
looked upon as an agent associated with a set of labels/ports via which it can communicate 'with the
external world. An agent can be viewed as a black box, with the labels (ports) providing the sole
means of performing experiments on the agent. In characterizing an agent, the the sort set of the

2

agent is the set of labels/ports. The dynamic behavior is given by behavior expression, which
essentially embodies (1) the possible communications of values between agents or between an agent
and an observer, and (2) the function of the agent. The agents are amenable to composition, the
composed agent now offers experiments on the labels of either of its constituent agents which can
additional1y communicate among themselves. As a convention, internal communication is only
possible between labels which are opposite in nature/co-names of each other. The names and co
names are in bijection vdth each other and this is reflected by defining co - name(ci) = a and co
name(a) = ii. For example, if the labels/ sort set of agent PI is {Q.,~ ,j'} and that of Pz is {o,S,w}, the
sort set of the composed agent would be {a, a- ,~,j',o,w} and internal communication can take place
only between S and ~ .

Denoting the composition operator by the symbol •• I", the arityl of" I" is

I: agent of sort 81 X agent of sort 82 - > agent of sort (SI U S2).

It can be easily shown that the operator ! is associative.

In order to internalize communication, the labels of an agent can be hidden/restricted. Once a
label is restricted, that port is no longer available for external communication/experimentation. The
restriction operator is denoted by the symbol tt \", In the above example (Pl I P2) \S would remove
both ~ and jj from the sort set of the combined agent.

The arity of the operator \ is

, \: agent of sort SI X agent of sort S2 - > agent of sort (SI - 82)
where S2 is the set oflabels which are hidden away.

Another operation on the agents is relabeling (of ports) and is intuitive. Relabeling is denoteO. "'t'.
For example, S[11/l2] refers to relabeling 12 by 11 in the sort set for the agent S.

2.1. Dynamic S'ehavior
The dynamic behavior of an agent is captured by a behavior expression (defined below), while the

static behavior of an agent consists in viev:ing the agent as a black box. The defmitions of these
behavior expressions can be recursive and parameterized, The son set of an agent now becomes the
primitives for value communication in its behavior expression. It is through the elements of this sort
set that a behavior expression communicates with its environment.

The behavior expressions 'can be intuitively defined as follows:
- The process represented by the behavior expression au.B, expects a value at the port a

which is bound to the variable u. The scope of the variable u is the behavior expression
B.

- The process represented by the behavior expression ci e.B outputs a value e at the port ii
and the ensuing behavior is B.

- The process represented by the behavior expression a.B expects a signal at a. The
ensuing behavior is B.

- The process represented by the behavior expression ii.B outputs a signal at the port Q
and the ensuing behavior is B.

- The behavior expression NIL represents a null action; :N1L therefore may be thought of

lThe arity of a function denotes the names of the sets comprising its domains and ranges.

3

as a terminated process.

- The process represented by the behavior expression (if x then Bl else B2) selects either
Bl or B2 depending on the value ofx. -

Akin to CSP [4), value communication takes place between complementary ports on encountering
a matching input/output action pair and synchronization has to take place before the processes can
proceed. When there are a multitude of processes waiting to receive a value from the same output
port, the decision to communicate the value to one of the waiting processes is made arbitrarily.

The operations OD. the behavior expressions are as follows:

- The null action: Denoted by the operator NIL.

- Choice Operation: Denoted by the operator +. Introduces non - determinacy. In B 1 +
B2 where Bl and B2 are behavior expressions, the experiments offered by both Bl and
B2 are the possible experiments, now offered. On acceptance of an experiment, (say)
offered by Bl, the ensuing behavior expression is Bl', where Bl' is the mutated behavior
of Bl. Obviously the experiments offered by B2 now disappear.

- Composition of agents: Denoted by the operator I. Composes two agents to form another
agent, as characterized earlier.

- Restriction: Denoted by \0., where ex and Ci. are the labels to be restricted.

- Relabeling: oJl3 denotes relabeling of a label 13 by 0..

In order to motivate the use of CCS we will describe a register using CCS.

The behavior expression for a register [6) can be given as

LOC < = Q.u.REG(u)
REG(u)<= Q.w.REG(w) + J'ju.REG(u)

The intuitive meaning is that the register can be initialized to a value u by an ex experiment. Once
the register has been initialized there are two possible experiments on the register, 0. and /j. ex is the
input port at w¥ch a value w is accepted and the register contents transformed to w, whereas J'j is
the output port which is ready to output the value u., following which the register continues with
unchanged behavior. The + operator explicates the non - determinacy possible between storing a
value and accessing the value from the register.

Let us stretch this example a bit further and consider the composition of the register and an agent
performing some experiments on it. Let the program (closed behavior expressions, explained later)
be

".
Expr <= Ci.6.Ci5.l3w.O"w.NIL

The expression Expr does a series of experiments OD the register. It outputs values 6 and 5 at its
Q port and then demands a value at port 13. The value received is output to the environment at the 0"
port.

Consider now the system composition:

Ex = (Expr I LOC) \0. \13

The sort set of Ex is {o}. For an external observer the compound agent offers a value at 0" and
then dies.

4

The behavior of the compound agent can be expanded to

(Expr I LOC) \0: \13
= { (Q 6. Q 5. ['w.o w.1\%) I LOC} \0: \13

= { (Q 6. Q 5. ['w.o w.NIL) I (o:u.REG{u))} \0: \13

= ,.. { (Q 5. ['w.o w.NIL) I REG(6) }\o: \13

what has happened is that the value 6 has been communicated from Expr to the
register. The communication is internal and is represented by the .. action. Thus,
the derived behavior expression denotes that an internal communication has taken
place, but conveys no more information.

Further expansion of the behavior expression is as follows:

= ,..,. {(13w.ow.NIL) I REG(5)} \0: \13

= ,..i{(['W.ow.NIL) I (o:w.REG{w) + ~5.REG(5))}\a\13

The mutated form ofExpr now requests for input and the register is ready to
output the value on request.

= ,..,..i.{ 05.NIL) I (o:w.REG(w) + ~ 5.REG(5))} \0: \13

At this stage the compound system cannot move by itself and the only possible experiment is 0 by
the observer.

In developing an algebra, congruent terms in the algebra have to be identified. In our algebra the
notion of observ!ition congruence is used. Two terms/programs in our algebra are observationally
equivalent if for all e}..'Periments on the two programs, the ensuing programs remain equivalent.
This notion leads to referential translucency referred to earlier. We do not pursue this here. For
further details of observational equivalence the reader is referred to [6].

Prior to introducing the Expansion Theorem which we used in the example above, we list some
useful definitions.

l. The CCS programslbehavior expressions can be looked upon as a guarded command
language, where the input and output actions correspond to guards and the expressions
following them correspond to the commands.

2. Behavior expressions which do not contain free variables in them are said to be closed
form expressions. We will be dealing mainly 'with closed form expressions.

3. Taking into consideration the fact that a behavior expression is a set of non
deterministic expressions with guards, a behavior expression can be represented as

~gi·Ei

4. The function "names" takes an expression as argument and gives the set of labels / port
identifiers in the expression.

5. The values that can be passed are restricted to the primitive data types. This stems
from the type equation proposed for processes in [5] called resumptions, which are
analogous to continuations in the standard semantics. Later we will see that this
restriction hampers attempts to give semantics for demand - driven execution.

6. In any behavior expression/program, the variable used to receive values in aI?-, input

5

action binds all of the occurrences of the variable in the expression following it. For
instance in g.E, the scope of the variables occurring in g is the expression E.

The Expansion theorem provides a framework for deriving the actions of a composite system from
the actions of its primitive elements.

Expansion Theorem

Let B = (Bl 1 B2 I 1 Bn) \A. Then

B = I.{g. (B1 1 B2 1 .. 1 Bi ... 1 Bn) \A}
-

- - where g.B'j is a summand ofBj
-:- - and name (g) does not belong to A

+

1 .{,.. (Bl I ... 1 Bi{elx} I .. · IBj I ... 1 Bn) \A }

- - where ax.B; is a summand of Bj
- - and Q e.Bj is a summand of Bj
- - when "i" is not equal to "j".

provided that in the first term no free variable in Bk is bound by the guard g.

The two parts of the expansion theorem take care of communication of values with the
environment(experimentation) and the internal communication of values between two processes in
the composed system. The guard of the first summand explains thefaGt that the whole system
expects an input from its environment, whereas the guard 'j in the second summand takes care of the
internal value communication.

3. An applicative language
The applicative language that we consider has the usual features of functional abstraction,

function application, if-then - else, primitive functions and · stream processing functions_ The
additional feature that we have added is a choice operator. The basic idea is to reflect call- by - need
and lazy evaluation in the semantics. We first consider a language v,rithout stream processing
functions . In section 3.2 we add streams to our language but restric~ them to have elements from the
flat domain of integers and boolean.

3.1. Syntax
The syntax of our example language in B:NF is

<Expr> :: = <Primitive Values>

if <Expr> then <Expr> else <Expr>

<Expr> 0 <Expr>

g«Expr>l, ... , <Expr>n)
- - where g is an n - ary strict function
- - on the primitive data types.

1 F«Expr>l, ... , <Expr>n)
- - where F is a functional abstraction
- - defined in the program

<Prog>

<Ded>

.. -

6

• {<Decl> ,} <Expr>

<FunctionId> = Axl ... XD • <Expr>

<FunctionId> :: = Identifiers

<PrimitiveValues> :: = Integers I Boolean

We will make the follo·wi.ng assumptions about the language.

1. We will, for the moment, consider only functional abstractions without any free
variables in them as we do not wish to concern ourselves with details of binding.

2. The primitive functions are strict.

3. To achieve demand-driven evaluation, if-then-else is to evaluate only the
conditional and return the arm of if-then - else chosen unevaluated.

4. Function applications are evaluated by call- by-need.

The following conventions will be made use of in providing the semantics.

1. Expression results are passed to their context via the label p and received by its
complementary label.

2. The map from syntax to semantics is given by the function [...], i.e.,

[syntactic object] = semantics of the syntactic object.

3. We will use structural induction in giving the semantics.

4. An auxiliary function resu.lt is used to pass the result of evaluation of an expression to
its context and is defined as

Bl result B2 = (Bl I B2) \p ..
Bl commurucates the result at port p and the agent receives the same at the port p.
The connection between these two ports is hidden from external observation.

5. Primitive values themselves are expressed as behavior expressions. For example

[1] :.: P 1.NIL

6. For every variable x used in the functional abstraction, a data structure called "CELL"
is allocated. The behavior expression for the CELL is defined as follows (refer figure
3-1).

CELLx < = Wx.:y x· Px.Y.jj xY .NEW x (y)

NEWx(Y) < = wx. jj~. NEWx(Y).

Intuitively, the first reference to the parameter x is serviced by the agent CELLx, while
all subsequent references to the parameter x are serviced by the agent l\"'EWx(,y), which
retains its value y across references. The conventions used in the evaluation of an
actual parameter (and thus in the behavior expression CELL) are 2.S follows:

- The' demand for the value of an actual parameter is received at the port lUx. The
request for the value is serviced by commurucating the value through the label
jj X·

- The first reference of the variable x, forces the agent CELLx to demand the value
from the agent for the actual parameter at the port "Yx. The agent for the actual
parameter returns the value at the port p x, which is received by the agent CELLx
at the corresponding port Px. -

3.1.1. Semantics

7

CELL x

fJx·· ;

""x, :y x, Px and fj x are the labels fot CE~

Figure 3 - 1: Definiti~D. of the data· structure CELL

We now detail the semantics for our language. We will as a convention give the formal semantics
for each of the syntactic classes and follow it with an explanatory note.

Primitive Values

[n] = Pn. NIL

- The agent passes the value n to the context and degrades to NlL.

- Primitive values are created every time they are used.

Variable

rid] = Wid. ~idY. py. :NIL

- As we are working with an applicative language, variables appear only 'within a
functional abstraction.

- Variable "id" is associated with a unique agent CELLid as defined earlier.

- The signal Wid is used to demand the value from the agent CELLid and the value is
subsequently received at the label ~id. Once the value from CELLid is available, it is
passed on to the surrounding context (through the label p in accordance with our
previously stated convention).

if - then - else

[ifExpr then Expr1 else Expr2] = [Expr] result px. if x then [Exprl] else [Expr2]

- The condition is evaluated and depending on the value of the conditional the arm of
if - then - else is chosen.

- This is an approximation to demand - driven evaluation, as what we would like to do is
return the result unevaluated. Presently we are precluded from doing so, as the values
that can be communicated have been restricted to be only primitive values. To achieve
demand - driven evaluation a behavior expression has to be returned.

- Note the difference between if-then - else and the clause if-then - else. The former is a
construct in our example language whereas the latter is a construct in CCS.

Primitive Functions

[g(exprl. ... ,exPn)] =
{ [exprl]{p lip] I .. · I [exprn]{p nip} I
PlXl ... PlXl· P (g(Xl, .. Xn)) } \Pl ... Pn

, r

8

- The arguments are evaluated and passed on to the agent computing the function g. Note
that g denotes a primitive function in the language, and therefore can be immediately
evaluated..

Choice Operator

[Expr1 0 Expr2 J = 7.[Expr1J + 7. [Expr2J

- 0 is the choice operator in the language.

- We are explicitly making use of the + operator (in eeS) to reflect non - determinacy.
Appending a 'j guard to the two summands, implies that the choice is made internally
and that the choice is not observable. This is called "erratic non - determinism" by Broy
in [lJ.

Functional abstraction

[F = Axl ... Xn . Expr J = W
where

W = (CELLx1 I '" I CELLx I
([ExprJ result py. P FY."Nrr..)) \Wl"'Wn ~l'''~n

- The variables in the body of the function(i.e. Expr) access values from the data
structure CELL. A copy of the agent CELL is bound to each variable in a invocation of
the function.

- The binding is achieved by restricting the labels W (used for demanding the value of the
actual argument) and ~ (used to communicate the actual value).

- The labels used in CELL to demand the value of the actual argument (from the agent
denoting the actual parameter) viz., Yx and Px (for the variable x), which are restricted.
after binding a function call to a copy of the function.

- The function body returns the result of a function application through the label P F. This
label is bound with its co - name and restricted when binding a function call to a copy of
the function.

The mechanism for functional abstraction/function deflnition is detailed in figure 3 - 2.

Function appli~ation

[FCExprl,'" Exprn) J =

("YX1·[E>"'l'r lJ {Px/p} I ... I "Yxn·[ExprnJ {Px/p}

W result py. P FY· NIL) \Pxl"'1lxn "YXl ... "Yxn PF

where W is the behavior expression for the functional abstraction of F defIDed earlier.

The reader is urged to read the following explanation with reference to the figure 3 - 3

- This behavior expression contains the following agents:

- An agent for each of the actual parameters to the function call; these are clothed
by the guard "Yx. This guard has to be peeled off before the denotation for the
actual parameter can be evaluated.

- An agent W modeling the function.

- As mentioned earlier the variables in the function body access the value of the actual
parameter through the agent CELL.

- The CELLs are encapsulated in the agent W.

- As a CELL exists for each of the formal variables, the onus of demanding the value of the
actual parameter is taken care off by the corresponding CELL.

- The labels Px and "Yx used by a CELL and its corresponding agent for the actual
arguments are bound in this behavior expression and restricted.

9

Expr

labels Wxp f3xi and p are restricted

Figure 3 - 2: A function defInition

3.2. Stream processing functions

CELLx n

The ability to .handle infinite objects are a necessity in any applicative language. In this paper we .
will add stream processing functions like append, fIrst, rest etc. to our basic constructs but restrict
the streams to have only primitive objects. Thus we add the following functions with their associated
arities.

1. app : element X stream - > stream

2. first: stream - > element

3. rest: stream - > stream

4. nil : 0 - > stream .

5. isnil : stream - > Bool

The function "nil" returns the distinguished element nil in the domain of streams. Associated
with null stream we have a test for null streams as well. Typically the append function is
implemented as a lazy function.

The modeling of append demands that the values returned by append (or any lazy function) be
"delayed" (3) and that the strict functions "force" their arguments. By the same argument, the
function "rest" has to return unevaluated streams. Modeling of lazy functions demand that the
streams be modeled as behavior expressions in the semantic domain, thus there is a need to add
behavi.or expressions to the values that can be communicated. Hence fOT the present, we add
behavior expressions to the the values that can be passed around, 'without questioning trye basis of
CCS.

10

I Exprl
--- - -_. - --

Expr2 -t:.xprn I PXI IX2 ~x2 Ixn IXI

- -
Ixl PX1 1x2 PX2 ~ PXn

Functional a bst raction

labels "'lxi' Px; and PF are hidden

Figure 3 - 3: Mechanism for function call

The upgrading of the allowed syntax is as follows _

<Expr> :: = ... l stream

lapp (<primitive element> , stream)

I first (stream)

I rest (stream)

I nil

I isml (stream)

I···

l{
n

p

In packaging up a stream for delayed evaluation, the ports used are i),K,V to ask for first, rest and
the question isml. In the treatment of streams that follow, we have consciously avoided answering
the question of "first(nil)" as we still not aware of what role the element~plays in CCS.

The semantics are as following:

append

lapp (el,st)) = W

Where W < = o. (Bl + B2 + Bs)

where

Bl < = TJ • [el] result pe. P Ae. MDT (e)

B2 <= K. P A([st]).W

Bs < = '\! • P A ff. W

MUT (e) < = 8 . (TJ • P Ae . MUT (e) +

K. P A([st]) . MUT (e) +

'\! • P Aff . MUT (e))

11

where ff is the false value and [st] is the rest of the stream, whlch is passed as a behavior
expression.

- The first element is not evaluated until the function "first" has been applied I the head of
the stream has been demanded at TJ (in Bl).

- Once the function "flrst" has been applied, the head of the stream is available at the port
P A, as can be seen in the behavior expression MDT. .

- As any stream is formed out of appending the primitive elements to a stream, the value
returned for the question of "isnil" is always false.

- The signal S acts as the "delay" and the signal 0" acts as the "force" when some strict
function is applied.. The force/delay technique has been borrowed from [3). A lazy
function (n in the force/delay technique passes back the result unevaluated, as say, in
returning an function application g(x), f returns J...O.(g(x)), wru.ch is forced by a strict
function by applying 0 to closure J...O.(g(x)).

first

[flrst (st)] = ([st) I 0" .. ~ . PAe. P e.NIL) \PA

- NIL is not.~he element nil, rather it is the null action among the behavior expressiollS.

- The function "'first" forces the evaluation of the head of the stream in case it has not been
evaluated, otherwise it just acts as a signal.

rest

[rest (st)] = ([st] 10" . K . PAS. ps. NIL)\PA

- The value returned is a behavior expression and will have to be forced again to get the
head of the stream. .

nil
[nil] = Q
where Q <= S.(PAnil. Q + v tt .Q)

- nil is also being guarded by the delay, mainly to maintain collSistency with the append
function .. '

- Note also that on a query oft<isnil" , this element will return the value true.

isnil

[isnil (st)) = ([st] I 0" . PAe.
. pe. NIL)\PA

- isnilCapp(nil,nil)) would yield a false value, as the basic assumption is that once the
function "app" has been applied it is no more a null list. .'

- The test for nullity does not demand the evaluation of the first element.

12

In adding the stream processing functions to the language, we have demonstrated the flexibility of
using ees. One basic restriction of ees that we have violated is passing behavior expressions as
values. We as of now, do not know what the repercussions of this violation are. The answer to this
question is to be answered in the future. \Vhile we are at it, it should now be possible to adapt this to
the if - then - else statement making it completely demand driven. We do so as follows

[ifExpr then Exprl else Expr2] =

([Expr] {PI/P} I(PIX. if X then p([Exprl])

else p([Expr2]))) \PI

The notion of passing around behavior expression is similar to the extensions proposed in [7],
where labels are passed around as values to exploit ecs for evaluation strategies.

4. Conclusion
We have taken an applicative language with an indeterminate operator and have shown that it is

possible to give semantics for the low -level details involved in evaluation strategies of applicative
languages. In having committed the violation of extending ees we have posed a new problem of
how exactly ecs can be extended and exploited. The generalization of the language to handle error
conditions li.ke~and structured streams are possible extensions to this work. It remains to be seen
how the congruence relations over ees can be exploited to talk about properties of programs, like
detection of deadlocks etc. in the context of applicative languages.

'0

13

References

[1) Manfred Broy, A Fixed Point Approach to AppZicatiue Multiprogramming, Lectures at the
International Summer School on Theoretical Foundations of Programming Methodology,
(Aug 1981). .

[2] Thomas Myers,A.Toni Cohen, Towards an Algebra of Nondeterministic Programs,
Proceedings of Symposium on LISP and Functional Programming, ACM, (Aug 1982).

[3) Peter Henderson, Functional Programming-Aplications and Implementations,
(Prentice - Hall, 1980). .

[4] C.A.R.Hoare, Communicating Sequential Processes, CACM 21,8 (Aug 1978), 666 - 677.

(5) G.Milne,R.Milner, Concurrent Processes and their Syntax, J. ACM 2£,2 (April 1979),
302 -321.

[6] Robin Milner, LNCS, Volume 92: Calculus of Communicating Systems, (Springer Verlag,
1980).

[7) Ronan Sleep,J.R.Kennaway, Applicative objects as Processes, Proceedings of Symposium on
LISP and Functional Programming, ACM, (Aug 1982).

