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ABSTRACT

Traffic congestion occurs because the available capacity cannot serve the desired
demand on a portion of the roadway at a particular time. Major sources of congestion
include recurring bottlenecks, incidents, work zones, inclement weather, poor signal
timing, and day-to-day fluctuations in normal traffic demand.

This dissertation addresses a series of critical and challenging issues in evaluating
the benefits of Advanced Traveler Information Strategies under different uncertainty
sources. In particular, three major modeling approaches are integrated in this dissertation,
namely: mathematical programming, dynamic simulation and analytical approximation.
The proposed models aim to 1) represent static-state network user equilibrium conditions,
knowledge quality and accessibility of traveler information systems under both stochastic
capacity and stochastic demand distributions; 2) characterize day-to-day learning
behavior with different information groups under stochastic capacity and 3) quantify
travel time variability from stochastic capacity distribution functions on critical
bottlenecks.

First, a nonlinear optimization-based conceptual framework is proposed for
incorporating stochastic capacity, stochastic demand, travel time performance functions
and varying degrees of traveler knowledge in an advanced traveler information provision

environment. This method categorizes commuters into two classes: (1) those with access



to perfect traffic information every day, and (2) those with knowledge of the expected
traffic conditions across different days. Using a gap function framework, two
mathematical programming models are further formulated to describe the route choice
behavior of the perfect information and expected travel time user classes under stochastic
day-dependent travel time.

This dissertation also presents adaptive day-to-day traveler learning and route
choice behavioral models under the travel time variability. To account for different levels
of information availability and cognitive limitations of individual travelers, a set of
“bounded rationality” rules are adapted to describe route choice rules for a traffic system
with inherent process noise and different information provision strategies. In addition,
this dissertation investigates a fundamental problem of quantifying travel time variability
from its root sources: stochastic capacity and demand variations that follow commonly
used log-normal distributions. The proposed models provide theoretically rigorous and
practically usefully tools to understand the causes of travel time unreliability and evaluate

the system-wide benefit of reducing demand and capacity variability.
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CHAPTER 1

INTRODUCTION

1.1 Background

Traffic congestion problems lead to a wide range of adverse consequences such as
traffic delays, travel time unpredictability, and increased noise pollution as well as
deterioration of air quality. Broadly speaking, traffic congestion occurs because the
available capacity cannot serve the desired demand on a portion of roadway at a
particular time. As shown in Figure 1.1, Major sources of congestion include physical
bottlenecks, incidents, work zones, bad weather, poor signal timing, special events and
day-to-day fluctuations in normal traffic (Cambridge Systematics, 2005).

Considerable research efforts have been devoted to understanding and quantifying
the effectiveness of different traffic mitigation strategies in addressing various sources of
delay. For instance, recurring congestion due to physical bottlenecks can be mitigated
through road capacity enhancement. Real-time traffic information dissemination can
reduce negative impacts of disruptions of nonrecurring congestion due to traffic incidents
and special events. The success of advanced traveler information systems depends on
careful planning and an integrated system-level perspective, which calls for advanced

transportation analysis tools to estimate how effective information provision and tolling
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Figure 1.1- [llustrates the percentage of each congestion source in the nation.
Adapted from data in Cambridge Systematics (2005), Traffic Congestion and Reliability:
Trends and Advanced Strategies for Congestion Mitigation, Federal Highway
Administration.
http://www.ops.thwa.dot.gov/congestion_report/index.htm
(Accessed on March 12, 2010)



strategies can encourage route/departure time/mode switching to more effectively utilize
network-wide capacity. This requires adopting and integrating various models that have
evolved over the past decade, such as stochastic capacity analysis and dynamic traveler
behavior modeling, within the classical user equilibrium analysis framework.

Traffic congestion mitigation strategies may include, but are not limited to, road
capacity enhancement, and technological solutions, such as traffic signal optimization,
incident management on freeways and arterials, Advanced Traveler Information Systems
(ATIS), and pricing, etc. As one of the critical parts of implementing Intelligent
Transportation Systems (ITS) infrastructures, ATIS is intended to inform travelers of
unusual traffic congestion to allow users to make better route/departure time and mode
decisions under uncertain conditions. Quantifying the effectiveness of those ATIS
strategies is a theoretically challenging and practically important question, because the
actual assessment of the system benefits can facilitate public transportation agencies to
effectively design, deploy and use the traveler information systems within funding
constraints. Given the emerging availability of private-sector traffic data and services,
transportation system planners and managers are extremely interested in how different
sources of traffic information with different degrees of data quality, coverage, and
accessibility influence travelers’ decisions and in terms of decreased congestion or

improved travel time reliability provides benefits to transportation system users.

1.2 Sources of Travel Time Uncertainty Distributions

To systematically evaluate the benefits of traveler information provision strategies

in a realistic stochastic environment, a reliable modeling tool needs to consider various



sources of travel time uncertainties. Generally, inherent travel time uncertainty stems
from the following sources:

(1) The first source of uncertainty has a bearing on system demand input,
primarily caused by day-to-day variations, seasonal variations and special events.

(2) The second uncertainty is due to system throughput variation, which results
from stochastic capacity or incidents, work zones, and weather conditions. Under
stochastic capacity and new ATIS strategies, a more dynamic learning model is needed to
balance the two different sources - available information and personal experience.

For example, an empirically-observed distribution of stochastic capacity (Jie, et al.
2010) is illustrated in Figure 1.2. It shows that the 50th percentile capacity on I-880 is
1,976 passenger cars per hour per lane, while the 85th percentile capacity is 1,778
passenger cars per hour per lane. Thus, 15 percent of the time, the [-880 bottleneck
breaks down after only 1,778 passenger cars per hour per.

(3)The third uncertainty is further compounded by the absence of precise traffic
information due to inadequate sensor coverage or limited traveler knowledge and
experience, which can further compound the issue of travel time uncertainty.

(4) The fourth uncertainty is traveler perception errors, which is typically
modeled in a stochastic traffic assignment framework to capture unbiased random noises
(with a mean of zero) associated with drivers’ socio-economic characteristics, personal

observations, as well as the quality of traveler information.
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1.3 Challenges and Motivations

1.3.1 Modeling challenges in static-state programming approach

To evaluate traffic mobility impacts under user equilibrium conditions, a static
traffic assignment approach is typically used for estimating link flows and travel times
(Sheffi, 1985). Conventional static traffic assignment approaches generally assume users
have perfect knowledge of network conditions, and that link capacities are fixed or
deterministic. However, this perfect information assumption does not allow modelers to
realistically evaluate the longer-term benefits of real-time traveler information provision

strategies.



Capturing stochastic capacity at the critical points of networks (such as
bottlenecks) which suffer from queue and congestion more frequently, e.g., freeway
bottlenecks and signalized intersections, enables reasonable and realistic modeling of
travel time variability and the concept of sustainable flow rates. Without taking into
account this feature, it is impossible to fully consider the variability in the transportation
system due to one of its critical sources, stochastic capacity. Moreover, travel times
would be stochastic on different days, which further motivate the development of day-to-
day learning and route updating models to be discussed in this dissertation.

In order to incorporate stochastic capacity in a user equilibrium framework and
study the impact of information on drivers who tend to maximize their expected utility,
de Palma, et al. (2005) used a graphical method to compare two extreme information user
classes which govern day to day traffic conditions. This early investigation provides great
theoretical insights in analyzing the travelers' behavior under stochastic capacity.
However a more rigorous mathematical programming model and efficient solution
algorithms are critically needed to describe the steady-state user equilibrium conditions
on a general traffic network.

Although a variety of network analysis tools are currently available to assess
different traffic operations and control strategies, two challenging theoretical research
questions remain for characterizing steady-state conditions under stochastic capacity:

1. How to develop mathematical models that describe realistic user behavior
under stochastic capacity?

2. How to develop efficient and operational algorithms to find multiday user

equilibrium solutions under stochastic capacity on a large-scale network?



1.3.2 Modeling challenges in dynamic traffic assignment approach

To describe the dynamic traveler behavior over multiple days, a day-to-day
learning model is required to describe the nonequilibrium state of traffic patterns.
Dynamic Traffic Assignment (DTA) methodologies uniquely address these modeling
needs, and a variety of models have been developed to represent the time-dependent route
choice behavior (Mahmassani, 2001; Ben-Akiva, 2001). Most day-to-day learning
models focus on long-term planning applications with stable road capacity. For instance,
in the day-to-day learning frameworks proposed by Hu and Mahmassani (1997), Jha et al.
(1998), and Chen and Mahmassani (2004), day-to-day traffic evolution and stochasticity
are mainly due to route and departure time choices. Additionally, these models mainly
study the learning behavior based on historical personal traveling experiences and real-
time snapshot information. In reality, travelers are more likely to utilize various
information sources, before their trips and en-route, to find the most reliable routes.

Three major limitations exist in past studies in terms of traveler’s learning
behavior. First, most of these models only consider the day-to-day travel choice dynamic
represented under deterministic capacity, rather than considering stochastic and
sustainable service rate (SSR). As a result, most research on DTA models has been based
only on within-day dynamics, where all parameters associated with the system (such as
supply and demand) are time-dependent but still under a deterministic framework.
Additionally, under stochastic capacity, travel time experience on a single day can be
dramatically affected by the underlying capacity, which in turn influences drivers' travel
choices. Second, drivers only utilize the experienced travel times on the latest days to

reach convergence, e.g., myopic adjustment model (Hatcher and Mahmassani, 1992).



Third, users are assumed to have complete network knowledge and perfect information
regarding the time dependent system conditions and are able to make optimal route
choices to minimize their travel times. However, these models ignore the multiple user
classes (MUC) with different information availability.

In this context, the primary challenging research questions considered are:

3. How to update variability of travel time estimates due to stochastic capacity for
different information groups?

4. How to model predictive information and day-to-day evolution which result

from user decision and network dynamics?

1.3.3 Modeling challenges in analytical approximation approach

Substantial development attention has been given to both the traffic network
modeling and traffic flow theory fields in an effort to quickly estimate and predict travel
time variability from its underlying uncertainty sources, because traffic systems can be
viewed as stochastic processes with nondeterministic demand and capacity inputs.
Focusing on analytical travel time performance functions, e.g., widely used U.S. Bureau
of Public Roads (BPR) functions, a number of studies have developed various numerical
approximation methods to characterize travel time variability distributions as a result of
stochastic capacity and stochastic demand. A well recognized limitation of the BPR
function and other static travel time functions is that it cannot effectively describe the
dynamic buildup and dissipation of traffic system congestion. Consequently, the travel
time variability estimation methods from the above studies are more suitable for

analyzing long-term steady-state traffic equilibrium results; dynamic traffic-oriented



models are still critically needed for quickly estimating path travel time variability
distributions, especially under heavy congestion conditions.

Given a set of observed or simulated traffic conditions, e.g., traffic flow and
queue profiles on a link or a corridor, this dissertation provides efficient analytical
approximation methods to specify the Probability Density Function (PDF) of travel time
distributions as a result of stochastic capacity and demand distributions. This study aims
to address the following two research questions:

5. For planning-level applications, how can a quick characterization of travel time
reliability statistics be used without resorting to the comprehensive but computationally
challenging day-to-day simulation or numerical approximation approaches?

6. For real-time traffic prediction applications, how can an analytical relationship
be derived and constructed between the capacity change and the waiting time change on a

bottleneck?

1.4 Research Objectives

To meet the six research questions described previously, this research introduces
and extends the following research methodologies.

To address research questions (1-2), this research will first focus on modeling and

solving the steady-state user equilibrium problem with stochastic capacity, to find a
single path flow pattern that satisfies the generalization of Wardrop’s first principle:
travelers with the same OD and departure time experience the same and minimum
expected travel time along any used paths on different days, with no unused path offering

a lower expected travel time. A new model will be developed to explicitly address the
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stochastic nature of network capacity and represents travelers’ imperfect route choice in
response to capacity fluctuation in a day-to-day learning framework. The resulting
problem is an expected utility-based dynamic user equilibrium problem that is formulated
using a gap function approach, based on the gap function-based terminology given by
Smith (1993) and a recent paper by Lu et al. (2009).

To address research question (3), the traveler decision will be simulated in a day-

to-day learning behavioral framework. This task will adapt the empirically calibrated
choice model by Noland et al. (1998) to explicitly account for travel times, early and late
schedule delays, and travel time reliability. The utility function will therefore take into
account the essential traffic attributes, such as alternative travel time and travel time
reliability. The underlying travel behavior model in the enhanced traffic simulator should
be able to (1) combine multiple data sources to make travelers’ own “predictions”; (2)
dynamically adjust travelers’ confidence levels on different information sources, based
on experienced travel times.

To address research question (4), this research will formalize a new theoretical

traffic estimation-prediction framework that considers a variety of information sources
and can quantify the impact of information accuracy. Essentially, the travel behavior
model will consider three major information sources: historical/experienced, pretrip, and
en-route information. This research aims to seamlessly incorporate stochastic capacity
models at freeway bottlenecks and signalized intersections, and develop adaptive day-to-
day traveler learning and route choice behavioral models under the travel time variability

introduced by random capacity variations. The model will adaptively recognize and
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capture the systematic day-to-day traffic evolution, and also maintain robustness under
disruptions as a result of unexpected incidents and random weather conditions.

To address research questions (5-6), this study will utilize several key statistical

properties of the log-normal distribution, which is a state-of-practice distribution used in
many empirical studies for describing travel time variability. By assuming log-normal
distributions for stochastic demand and capacity, and in the context of the BPR function
as travel time performance functions, this study proves that the resulting travel time
follows a log-normal distribution, so the travel time variability can be analytically
derived from the variation parameters in demand and capacity. Furthermore, this
research considers a more realistic point queue model. Under an assumption of log-
normal distributions for stochastic capacity variations, the corresponding total waiting
time will be characterized through log-normal distributions. This dissertation then plans
to use simplified peak-hour demand profiles to derive time-of-day travel time variability
functions at a traffic bottleneck.

Additionally, this dissertation provides theoretical investigation results for the
following emerging practical questions from ATIS planning and deployment applications.

(1) Given low-resolution traffic information freely available from radio stations
and freeway Variable Message Signs (VMS), can additional high-quality traffic
information provision services, such as Internet-connected GPS navigation devices,
improve the system-wide average travel time or travel time reliability?

(2) Typically, travelers do not have full knowledge of historical traffic patterns for
each link in a transportation network, and they acquire and update their own network

knowledge based on their past experienced travel time. Recently, many websites, such as
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Google Maps, have begun to provide free color-coded maps for displaying historical
regional travel time patterns. This source provides additional opportunities for commuters
to learn the traffic conditions and enhance their network knowledge beyond their own
experienced routes. Can the improved network knowledge quality improve the overall
system performance?

(3) In addition to many real-time ATIS strategies that focus on informed route
switching, many traffic management strategies, such as telecommuting and flexible
working hours, aim to reduce and smooth the overall day-to-day travel demand variations.
Transportation agencies need to quantify the benefit and then prioritize various potential
congestion mitigation solutions: With limited funding constraints, should the
transportation agencies increase ATIS market penetration rates, improve real-time data

quality, or reduce day-to-day traffic demand variations?

1.5 Overview of Approach and Organization of the Dissertation

This dissertation has seven chapters. The comprehensive evaluation framework in
Figure 1.3 indicates the structure of this dissertation. Aiming to provide a comprehensive
review on various traffic bottlenecks and congestion modeling elements, Chapter 2
discusses several topics pertaining to ATIS, stochastic capacity modeling, optimization
approach for equilibrium analysis, analytical approach for a single bottleneck analysis
and simulation-based approach for dynamic traffic travel time analysis. Focusing on
steady-state static user equilibrium analysis, Chapter 3 considers stochastic capacity and
travel time performance functions in an advanced traveler information provision

environment. Chapter 4 further considers the steady-state evaluation of traveler
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Figure 1.3- Four main areas of interest.

information provision strategies with stochastic traffic demand, stochastic road capacity,
and different degrees of traffic information provision quality. Chapter 5 presents a
simulation-based method to seamlessly incorporate stochastic capacity models at freeway
bottlenecks and signalized intersections, and develops adaptive day-to-day traveler
learning and route choice behavioral models under the travel time variability introduced
by random capacity variations. With a focus on a single bottleneck with stochastic
demand/supply distributions, a volume-to-capacity ratio-based travel time function and a
point queue model are used in Chapter 6 to demonstrate how day-to-day travel time
variability can be explained from the underlying stochastic demand and capacity

distributions. Concluding remarks and future research extensions are given in Chapter 7.



CHAPTER 2

LITERATURE REVIEW

2.1 Overview

This chapter reviews topics relevant to modeling stochastic capacity and three
categories of analysis approaches associated with travel time uncertainty, network
equilibrium and single bottleneck issue. After a short introduction to the role of ATIS and
the sources of network evolution uncertainty, section 2.3 highlights three approaches for
modeling stochastic capacity, namely headway-based stochastic capacity models,
stochastic queue discharge rate model and probability-based stochastic capacity models.
Section 2.4 reviews the literature pertaining to optimization model for static network
equilibrium analysis. Section 2.5 overviews major analytical approaches for single
bottleneck analysis. Finally, the literature on simulation-based approach for network-

wide dynamic traffic evolution analysis is reviewed in section 2.6.

2.2 Role of Traveler Information Systems and Travel

Time Uncertainty Sources

Advanced Traveler Information Systems (ATIS) is intended to inform travelers of

unusual traffic congestion, and further allow users to make better route/departure time
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and mode decisions under uncertain conditions. How to quantify the effectiveness of
those ATIS strategies is a theoretically challenging and practically important question, as
the actual assessment of the system benefits can facilitate public transportation agencies
to effectively design, deploy and use the traveler information systems within funding
constraints. Given the emerging availability of private-sector traffic data and services,
transportation system planners and managers are extremely interested in how different
sources of traffic information with different degrees of data quality, coverage, and
accessibility influence travelers’ decisions and provide benefits to transportation system
users, e.g., in terms of decreased congestion or improved travel time reliability.

Generally, inherent travel time uncertainty stems from the following sources:

(1) The first source of uncertainty has a bearing on system demand input and is
primarily caused by day-to-day variations, seasonal variations and special events.
Another level of traveler decision uncertainty is related to random departure times and
route choice, which can lead to uncertain demand input for a certain set of links (Noland
and Polak, 2002).

(2) The second uncertainty is due to system throughput variation, which results
from stochastic capacity (Brilon et al., 2005, Chen et al., 2002), incidents, work zones, or
weather conditions (Srinivasan and Guo, 2004). Under stochastic capacity and new ATIS
strategies, a more dynamic learning model is needed to balance the two different sources-
available information and personal experience. Past studies focusing on sources of day-
to-day variation and capacity reliability for a road network do not fully consider
uncertainty related to alternative route, which should have different features compared

with the current selected route.
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(3) The third uncertainty is further compounded by the absence of precise traffic
information due to inadequate sensor coverage or limited traveler knowledge and
experience, which can further compound the issue of travel time uncertainty. In fact,
there are only a small fraction of travelers who currently have full access to or are willing
to always retrieve pretrip or en-route traveler information through web-based traveler
information sites, car radio, dynamic message signs or Internet-connected navigation
devices. When making route choices, the majority of travelers still rely on their personal
knowledge and driving experiences that have been gained over a long time period of time,
which can be described as the expected travel time (caused by stochastic demand and
capacity). When there is a significant variation in capacity, the resulting network
conditions could deviate considerably from the average traffic pattern. In this case, the
expected value-based travel knowledge should be treated as a biased estimate to the
current traffic state.

(4) The fourth uncertainty is traveler perception errors, which is typically
modeled in a stochastic traffic assignment framework to capture unbiased random noises
(with a mean of zero) associated with drivers’ socio-economic characteristics, personal
observations, as well as the quality of traveler information.

To systematically evaluate the benefits of traveler information provision strategies
in a realistic stochastic environment, various sources of travel time uncertainties have to
be considered. In studies by Mahmassani (1984) and Chen et al. (2002), uncertainties in
transportation network analysis are summarized as: variations in link capacities and travel
demands, the imperfect parameter estimation for link travel time functions and route

choice behaviors. In a study by Nakayama (2007), stochastic demand is characterized
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through a negative-binomial distribution, as the number of trips can be viewed as the
collective result of individual trip-making decisions. Weijermars (2007) used traffic
volume data to identify and estimate the magnitude of systematic and random variations
in traffic flow patterns. Many researchers have studied how to reformulate the traditional
static traffic assignment problem under stochastic capacity and demand conditions, and
different numerical approximation methods have been proposed to describe the travel
time variability due to different underlying random sources, for a single-day traffic
equilibrium solution. Zhou and Chen (2008) presented analytical models to drive travel
time distributions based on log-normally distributed stochastic demand distributions. Lam
et al. (2009) and Sumalee et al. (2009) further highlighted the correlation between link
travel time distributions due to variations in origin-destination demand, as an OD flow
change can impact flow and travel time on those links along its passing paths
simultaneously. Recently, a number of mathematical models are presented to describe
equilibrium conditions under reliability-related utility functions and stochastic demand
and capacity, e.g., a variational inequality model by Lam et al. (2009), a fixed point

model by Sumalee et al. (2009).

2.3 Modeling Stochastic Capacity

2.3.1 Headway-based stochastic capacity models

Consistent with the current practice, the flow rates just preceding the breakdown
condition are used to analyze the stochastic capacity for the freeway bottlenecks. Based

on the sensor data aggregated at 15-minute intervals, Jia et al. (2010) found that
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prebreakdown headways followed a shifted log-normal distribution with the following

probability density function:

1 _[In(x—c)—pT’

(fX:(x;'u’O-):(x_c)—o-\/ﬁe 207 , x>0 (21)

where

x is the average prebreakdown headway (in seconds) for 15-minute interval,
¢ is the minimum prebreakdown headway (in seconds),

u is the mean of the variable's natural logarithm, and

o is the standard deviation of the variable's natural logarithm.

Based on the traffic measurement data from PeMS (2009) and TransGuide (2009)
systems, the corresponding parameters for Equation 2.1 are calibrated as: ¢=1.5 seconds,
1=-0.97, and 6=0.68.

Turning to signalized intersections, traffic engineers have long known that
saturation flow rates fluctuate over time and that this fluctuation can be observed even
from cycle to cycle at the same intersection. Similar to the calibration procedure for the
prebreakdown headway distribution on freeway bottlenecks, a stochastic model was
developed for predicting saturation headways at signalized intersections. The model was
based on a saturation headway database developed by the Florida Department of
Transportation (Bonneson et al. 2005). Extensive investigation of candidate distributions

revealed that the shifted Log-Normal probability distribution model again provides an
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acceptable fit to the empirical data. The corresponding fitted probability density function

is:

[In(x-1.9)+1.147

fo=(wp0) = — ST 10 @2)

(x-19)x02427

2.3.2 Stochastic queue discharge rate model

Similar to the conventional definition of capacity in the HCM, the queue
discharge flow rate is also typically characterized in a deterministic manner. However,
the empirical study by Lorenz and Elefteriadou (2000) has clearly demonstrated that the
queue discharge flow rate at freeway bottlenecks is also stochastic in nature. Dong and
Mahmassani (2009) suggested and calibrated a linear relationship between queue
discharge rates and prebreakdown flow rates. The most recent study, Jia et al. (2010)
concluded that the queue discharge rate series are strongly time-correlated and developed

the following recursive queue discharge model.

Ct=C1_1+7/(,uc—C,_])+§t,tZl (2.3)

where
C, is the queue discharge rate at time interval ¢ (in pc/h/In),
y 1s a linear parameter that models the strength of regression to the mean,

4. 1s the average discharge rate (in pc/h/In) and
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8, ~N(0,07)is the random error.
When =1, C,is the prebreakdown flow rate.

Calibrated with the sensor data from a study site on [-880 in the Bay Area of
California, the fitted parameters for equation 2.3 are: y =0.2, u. =1850 pc/h/In, and 6=100

pc/h/In.

2.3.3 Probability-based stochastic capacity models

The statistical analysis in some existing empirical studies (e.g., Brilon et al., 2005
and 2007) indicated that the probability of freeway breakdown follow a Weibull
distribution (equation 2.4). The stochastic capacity across the time horizon is illustrated

in Figure 2.1.
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Figure 2.1- Distribution of lane capacity converted from headway.
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F(x)=1 —e{ﬁ (2.4)

where

a = shape parameter
b = scale parameter
x = flow rate (veh/h)

F(x) = (cumulative) probability of freeway breakdown at flow rate x

2.4 Optimization Model for Static Network Equilibrium Analysis

To achieve the objective of user equilibrium or system-optimum strategy for
traffic mobility, static traffic assignment approaches were used for estimating link flows
and travel times (Sheffi, 1985). A wide range of studies have been devoted to modeling
the impact to traveler information provision strategies in the last two decades. A majority
of the existing models (e.g., Yang, 1998; Yang and Meng, 2001; Yin and Yang, 2003) are
based on networks with deterministic demand and road capacity, and they typically
consider the perception errors in a stochastic user equilibrium (SUE)-based framework, in
which the information quality issues can be modeled through the “perception error” term
of a discrete choice model. For example, In many SUE-based models along this line, all
travelers are assumed to have unbiased network knowledge/information about the
equilibrium condition, and equipped users have less travel time perception errors
compared to nonequipped users, thanks to external traffic information provision. Chorus
et al. (2006) presented a comprehensive review of both the empirical and the conceptual

literature concerning the use of travel information and effects on travelers’ choices.
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Based on the classical gap function-based framework for user equilibrium by
Smith (1993), Lo and Chen (2000) reformulated the nonlinear complementarity problem
for traffic user equilibrium with fixed demand and fixed capacity to a route flow-based
mathematical program through a convex and smooth gap function. A recent study by Lu
et al. (2009) further extended Lo and Chen’s model to general dynamic traffic networks
with a route swapping rule, which is based on a first-order gradient descent algorithm for
solving convex optimization problems. In this dissertation, the gap-function based
equilibrium model proposed by Lu et al. (2009) will be extended to consider multiple

user information classes under stochastic demand and capacity conditions.

2.5 Analvtical Approach for Single Bottleneck Analysis

Analytical DUE models typically propagate traffic flows and link performance
functions at a single bottleneck to determine path travel costs. To evaluate the impact of
flow switching strategies in the dynamic traffic assignment process, a variety of studies
have been conducted for computing local link marginals due to adding or deleting a
vehicle from a link. Ghali and Smith (1995) used a deterministic point queue model to
describe traffic flows and gave analytical formula to quantify the marginal impact of total
link travel time due to a small change in incoming flow. Peeta and Mahamssani (1995)
proposed the first path-based formulation and simulation-based Dynamic SO model, in
which the path marginal is the sum of the constituent local link marginal. This
dissertation focuses on how to quantify the system-wide impact of a major traffic
improvement strategy (e.g., adding one lane, route switch), rather than the small change

in the traffic flow.
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Focusing on analytical travel time performance functions, e.g., widely used
Bureau of Public Roads (BPR) (1964) functions, a number of studies have developed
various numerical approximation methods to characterize travel time variability
distributions as a result of stochastic capacity and stochastic demand. Lo and Tung (2003)
presented a Mellin transforms-based method to estimate the mean and variance of travel
time distribution for a given stochastic capacity probability distribution function. By
performing a sensitivity analysis on a multivariate normal distribution-based link
representation in a network, Clark and Watling (2005) proposed a computational
procedure to construct the probability density function (PDF) of link travel times under
stochastic demand conditions. Recently, a Fourier transformation approach was
introduced by Ng and Waller (2010) to approximate the probability density function of
travel time from underling stochastic capacity distributions, for a given set of traffic flow
assignment results.

In order to distinguish different system throughput states (e.g., stochastic capacity)
in a user equilibrium framework, de Palma and Picard (2005) used a graphical method to
consider two types of information user classes, including (1) those with perfect
information on good days and bad days (e.g., under normal and reduced capacity); and (2)
those with information on expected travel times on different days. Their pioneering
investigation provides great theoretical insights into analyzing traveler behavior under
stochastic capacity. Along these lines, this research has focused on developing a rigorous
mathematical programming model and efficient solution algorithms for general traffic

networks with continuous stochastic capacity distributions.
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2.6 Simulation-based Approach for Network-wide Analysis

The simulation-based approach produces trip itineraries based on traveler inputs,
e.g., origin, destination, desired arrival/departure times, traveler preferences etc., and
determines link and path travel costs through traffic simulation instead of analytical
evaluation. Depending on the level of representation detail, flow models embedded in
traffic simulators can be classified as macroscopic, mesoscopic or microscopic. In
macroscopic models (e.g., the classical first-order model by Lighthill and Whitham (1955)
and Richards (1956)), traffic flow is described as one-dimensional compressible fluid
using partial differential equations, and the vehicular flow on discretized highway
segments are moved according to a speed-density relationship. Microscopic models, on
the other hand, offer a more detailed representation by considering stimuli and responses
among individual drivers, including both car-following and lane changing behavior.

Focusing on the effect of commuter route choice decisions, Chang, Mahmassani
and Herman (1985) developed an early mesoscopic simulation model to characterize
traffic flow as discrete vehicle groups/particles, and individual vehicle positions are
updated by a macroscopic flow-density relationship. Compared to the fluid-based
representation in macroscopic models, mesoscopic models keep track of individual
vehicles, their origin-destination, and path trajectory data to better simulate travelers’
behavior in a network. Without considering a sophisticated lane-changing mechanism,
mesoscopic models are able to use a longer simulation time interval than microscopic
models, for example, 6 seconds vs. 0.1 seconds. This leads to significant computational
savings, especially when searching for dynamic traffic user equilibrium or day-to-day

learning solutions on large-scale regional networks.
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Through a simulation-based modeling framework, Nakayama (2007) incorporated
stochastic demand and stochastic route choice components in a day-to-day simulation
model to examine network reliability on linear corridors. Obviously, a day-to-day
modeling framework is suitable for studying medium-term transitions and within-day
dynamics in traveler decisions and the resulting traffic flow patterns. On the other hand,
the simulation-based modeling approach requires a sufficiently long period (e.g., many
days of simulation) to stabilize traffic conditions and it does not have well-accepted
converge criteria to describe steady-state conditions (as a traffic user equilibrium model
does).

To better describe adaptive traveler behavior and simulate the resulting travel
flow pattern in an environment where roadway capacity varies within a single day and
over multiple days, a day-to-day learning framework is needed to allow a realistic
consideration and evaluation of different capacity-enhancing and traffic management
scenarios. A wide variety of day-to-day learning models have been proposed to
understand and simulate the medium-term traffic evolution process under various
advanced traveler information provision strategies. An early study by Hu and
Mahmassani (1997) took into account both route and departure time choices as the
sources of day-to-day traffic dynamics. Srinivasan and Guo (2004) examined network
evolution and user response characteristics under varying market penetration levels of
traveler information. Jha et al. (1998) adapted a Bayesian framework to model the
traveler perception updating process. Chen and Mahmassani (2004) further studied
triggering mechanism and termination conditions for the travel time learning process.

However, existing day-to-day learning frameworks assume a constant road capacity, and
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the variability sources considered in those models are limited to route and departure time
choices.

What assignment/simulation tools can be considered as the prime evaluation tool
is an important question, because DTA models consist of a great number of parameters
and inputs that must be calibrated to accurately reflect field conditions. Another question
that should be answered is whether the transportation system analysts and planners can
make the most of the potential of the simulation package that supports Advanced
Traveler Information Systems (ATIS) and Advanced Traffic Management Systems
(ATMS) strategies for road capacity enhancement, such as traffic signal optimization and
incident management on freeways and arterials. As shown below, a variety of network
analysis tools are currently available to assess the impacts of ITS technologies and

different traffic operations and control strategies.

e DYNASMART-P, developed at UT at Austin, UMD, and Northwestern
University by Mahmassani et al.

e DYNAMIT, developed at MIT by Ben-Akiva et al.

e EMME/3, developed by INRO

e IDAS, developed by Cambridge Systematics, Inc.

e Integration, developed by M. Van Aerde& Assoc.

e Paramics, developed by QuadstoneParamics

e SCRITS, initially developed for FHWA by SAIC

e TRANSIMS developed by Los Alamos National Laboratory

e VISSIM, developed by PTV AG
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With its current ability to model buildup and dissipation of traffic congestion on a
large-scale network, DYNASMART-P is considered a good analysis tool for assessing
the capacity impacts of various types of traveler information (historical, pretrip, en-route
information, VMS), ramp metering, and road-pricing strategies. DYNASMART-P has
been used for region-wide transportation operations planning to (1) address operational
issues in the transportation planning process; and (2) develop and evaluate traffic
management and control strategies, particularly in the ITS context. More importantly,
DYNASMART-P provides a unique system-optimization capability, which can be used
to quantify the maximum network-flow rate under different traffic conditions. The
benchmark set by system-optimal assignment will be used to assess the effectiveness of
capacity enhancement strategies and to further provide useful guidance on how to design
management strategies that will optimize the network route flow pattern.

It is also important to recognize the use of a single model in evaluating traffic
network capacity is not sufficient to meet different needs in both operational and
planning applications. For example, dynamic assignment tools require accurate time-
dependent OD demand matrices as fundamental input, and the complex traffic flow and
route choice models should be carefully calibrated to provide reliable assessment results.
DYNASMART-P can offer a rapid analysis framework that can estimate/approximate the

magnitude and probabilistic upper bound of the network capacity at peak hours.



CHAPTER 3

PLANNING-LEVEL METHODOLOGY FOR EVALUATING

ATIS STRATEGIES UNDER STOCHASTIC

CAPACITY CONDITIONS

3.1 Introduction

In this chapter, a nonlinear optimization-based conceptual framework is proposed
for incorporating stochastic capacity, travel time performance functions and varying
degrees of traveler knowledge in an advanced traveler information provision
environment. The proposed method categorizes commuters into two classes: (1) those
with access to perfect traffic information every day, and (2) those with knowledge of the
expected traffic conditions across different days. With a special focus on formulating and
solving the steady-state user equilibrium problem with stochastic capacity, this research
aims to find a network flow pattern that satisfies a generalization of Wardrop’s first
principle: travelers with the same origin-destination pair experience the same and
minimum expected travel time along any used paths on different days, with no unused
path offering a shorter expected travel time. Through the gap function-based

reformulation for user equilibrium, the proposed model explicitly considers the stochastic



29

nature of network capacity over different days and represents travelers’ imperfect
information and general knowledge about the random travel time variations. A
mathematical programming model is formulated to describe the route choice behavior of
the perfect information (PI) and expected travel time (ETT) user classes under stochastic
day-dependent travel time. Driven by an operational algorithm suitable for large-scale
networks, the model was applied to a simple corridor and a medium-scale network to
illustrate the effectiveness of traveler information under stochastic capacity conditions. A
solution method is developed to find the equilibrium path flow distribution, while
stochastic travel times on different days are generated from a sampling-based simulation

framework.

3.2 Conceptual Framework

The conceptual modeling framework is illustrated in Figure 3.1 using a simple
corridor with a single origin-to-destination pair and two paths p=1 for the primary path,
p=2 for the alternative path, where p is the path index. As each path only has one link,
path 1 is denoted as link a=/ with a free-flow travel time of 20 minutes, and path 2 is
denoted as link a=2 with a free-flow travel time of 30 minutes, where a is the link index.
This example considers five different days d = 1, 2, 3, 4 and 5, and the peak hour demand
is 0=8000 vehicles per hour on each day.

Following a similar analysis setting in the study by De Palma and Picard (2005),
the first illustrative example considers day 1 as the “bad” day on path 1, with a reduced
capacity for the primary route, and days 2, 3, 4, and 5 as good days with the full capacity

available. As detailed in Table 3.1, the primary path has the following capacity values:
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Free-flow travel time = 20 min
Capacity = 4500 (veh/h) on good days
or 3000 (veh/h) on bad days

\

Primary path: 1

Alternative path: 2

Free-flow travel time = 30 min
Capacity = 3000 (veh/h) on all days

Figure 3.1-Simple network used as an illustrative example of the framework.

e  On the bad day (d=1) it is 3,000 vehicles per hour (vph) per link.
e  On the good day (d=2, 3, 4, 5) it is 4,500 vph per link.

The alternative path is assumed to have a fixed capacity ofc, ,= 3,000 on days
d=1,2,3,4and 5, wherec, , is defined as the capacity of link a on day d.

To setup a mathematical programming model for steady-state traffic equilibrium,

the nonnegative flow variables f, ,is considered as the traffic flow using path p on dayd .

Obviously, the path flow distribution should ensure the total demand constraint on each

day:

fat+foa=0Q Vd (3.1)

Let 7, ,be defined as the travel time on path p on day« , which can be calculated from

the BPR function such as



Table 3.1-Day-dependent path demand, capacity and travel time values.
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Dayl | Day2 | Day3 | Day4 | Day5 | Avg.
Daily Capacity on
Path/Link 1 (veb/h) | poi 1 | 3000% | 4500 | 4500 | 4500 | 4500 | 4200
Day- C a=l.d
Dceg ;:gi;t Daily Capacity on
Path/Link 2 (veb/h) | paiho | 3000 | 3000 | 3000 | 3000 | 3000 | 3000
Ca:Z,d
Path1 | 4636 | 6172 | 6172 | 6172 | 6172 | 5865
Flow (Veh/hour/link)
PI-Based Path2 | 3364 1828 | 1828 | 1828 1828 | 2135
User
Equilibrium . . Path1 | 37.1 306 | 30.6 | 30.6 30.6 | 31.9
Travel Time (min)
Path2 | 37.1 306 | 30.6 | 30.6 30.6 | 31.9
_ Path1 | 5503 | 5503 | 5503 | 5503 | 5503 | 5503
Flow (Veh/hour/link)
ETT-Based Path2 | 2497 2497 | 2497 | 2497 | 2497 | 2497
User
Equilibrium . . Path1 | 54.0 267 | 267 | 267 267 | 322
Travel Time (min)
Path2 | 322 322 | 322 32.2 322 | 322
*reduced capacity
B
T  =FFTT x|1 Jud 3.2
pd = X T+ ax (3.2)

ca,d

where FFFTT, is the free-flow travel time of link a. Coefficients o and f are set to

commonly used default values 0.15 and 4, respectively. Now the two different degrees of

traveler knowledge can be examined.

3.2.1. Perfect information (PI) based user equilibrium

Every day, perfect travel time estimates (i.e. zero prediction error) for all links are

available to travelers to make route decisions, and travelers can switch routes every day.

This perfect and complete information assumption for each day is consistent with




32

deterministic static traffic assignment, which usually considers a typical weekday. It
should be cautioned that this assumption might not be realistic from a dynamic traffic
assignment perspective, as both pretrip and en-route traveler information available to
commuters are essentially forecasted estimates of traffic conditions unfolding in the
future, with always some degree of prediction errors. According to Wardrop’s first
principle of user equilibrium, for a specific origin-destination pair, travelers with perfect
information experience the same and minimum travel time along any used paths on each
day d, with no unused path offering a shorter travel time.

To construct the objective function in the optimization model, the following gap
function (for each day d) can be used to characterize the Karush-Kuhn-Tucker optimality

conditions required for reaching the user equilibrium for perfect information users.

gapjl = 1,1:11 x(T, —7y)+ fzpfﬁ x (Tz,d -n,)=0,vd (3.3)

where f1,]:11 and ff " are path flow rate of PI users on paths 1 and 2, respectively, on day

d, where 7, is minimum path travel time on day d

r, =min(7, ,T,, ),Vd (3.4)

For the illustrative simple corridor, Table 3.1 shows the traffic assignment results
when all the travelers in the network have access to perfect information, and a standard
deterministic user equilibrium state is reached every day. See also Figure 3.2 for a

graphical representation of the flows and travel times for PI users.
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Figure 3.2-Equilibrium solutions with 100% PI users.

Point E: reduced-capacity days, equilibrated travel times = 37.1 min, 4636 vehicles on
link 1 and 3364 vehicles on link 2;
Point F: full-capacity days, equilibrated travel times = 30.6 min with 6172 vehicles on
link 1 and 1828 vehicles on link 2.
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3.2.2 Expected travel time (ETT) knowledge-based user equilibrium

As there are different realized capacity values on different days, the travel times
on different links can be viewed as a set of random variables. In reality, most travelers are
not equipped with advanced traveler information systems, so they rely on their expected
travel times (based on their knowledge and experience) over different days to make route
choices. The expected travel time can be considered as the long-run average, or more
precisely, the probability-weighted sum of the possible travel time values from different
days. Under a user equilibrium condition with ETT users, the expected travel times on
used routes in the network are assumed to be the same, and accordingly, an ETT user

selects the same route every day, regardless of the actual traffic conditions.
The expected travel time for link a with random capacity E; over different days

can be represented as

_ . Zy;,d(f;z,dﬂca,d)
Tu(f,5c,) = d

(3.5)

where travel time on each day d for link aT, ,(f, ,,c,,) s a function of the prevailing

flow and capacity on that particular day. For link a=1 in the illustrative example,

To(f,,c)=02xTo(f,,c®)+08xTu(f,,c)
B B
= 0.2x FFTT, x[1+ax[f“} J+0.8><FFTTH x[1+ax[fa} J (3.6)

R F
C C

a

B B
— FFTT, X[l+0.2xax[£} +0.8xax{£} J

a

R F
c, c

a
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where ¢ and ¢/ corresponds to the reduced and full capacity on link a.

Note that T, is different from the expected value (EV) solution T, (f, ,Z) typically used
in the context of stochastic optimization, which can be calculated using the expected

value of capacity on link a, Z

0.2xcX +0.8xc"

9

a

. ) s
T(f, ,c,)=FFIT, x 1+a>{£} =FFTT, x 1+a>{ Jo } (3.7

In this study, we generalize Wardrop’s first principle to describe the equilibrium
conditions for travelers relying on their expected travel time to make route decisions:
travelers with the same origin-destination pair experience the same and minimum
expected travel time along any used paths on different days, with no unused path offering
a shorter expected travel time. Obviously, when there is a single capacity value, then the
above conditions are consistent with the standard user equilibrium with deterministic
capacity, as the expected travel time devolves to the travel time on the single day.

The corresponding KKT condition can be re-written as

gap™™ = {57 x (T - 72)+ £ x (T, - 7) =0 (3.8)

where 7 is the least expected travel time between the given OD pair over a multiday

horizon satisfies
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z=min(T ,T,) (3.9)

An ETT knowledge-user uses the same route on different days, which leads to a

day-invariant ETT flow pattern:

ETT ETT ETT ETT ETT ETT
S = fa,d:l = fa,dzz = fa,d:} = fa,d:4 = fa,d:S Va (3.10)

When gap®’” = 0, it can be shown that if 7?7 >0, then 7, = 7. That is, the
selected routes by expected travel time information users between an OD pair have equal
and minimum costs. On the other hand, if /""" =0, thenT > 7, which indicates that all

unused routes by ETT users have greater or equal costs (compared to the used path costs).
These two conditions further imply that no individual trip maker with expected travel
time information can reduce his/her expected path costs by switching routes on any given
day, under a user equilibrium condition.

If it is assumed that all users rely on ETT information in the simple corridor, then
the ETT-based user equilibrium assigns about 5503 vehicles on path 1, and about 2497
vehicles on path 2, leading to different travel time on 5 different days shown in Table 3.1.
The relative travel time savings were examined under different market penetration rates
of perfect information users shown in Figure 3.3. As both paths carry positive flows, their

average travel times over the 5-day horizon are the same at 32.2 min.
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Expected TTF on Path 1,
0.2XTTFR4+0.8XTTF™

\

5503/2497
Flow (veh/hr)

Figure 3.3-Solutions with 100% ETT information users.

The expected travel time function (TTF) is generated by assigning a 20% weight to TTF
with reduced-capacity (RC) days and an 80% weight to TTF with full-capacity (FC). The
ETT-based user equilibrium corresponds to the intersection (in orange) of expected TTF
on path 2 and path 1. 5503 vehicles are using link 1 and 2497 vehicles are using link 2

each day.

Point A: travel time = 54.0 min on link 1, reduced-capacity days,
Point B: travel time = 26.7 min on link 1, full-capacity days.
Point G: travel time = 32.2 min on link 2 every day, and the expected travel time on link

1 is the same 32.2 min.
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3.2.3. Quantification of the value of information

In Figure 3.4, the relative travel time savings were examined under different
market penetration rates of perfect information users when there are both PI and ETT

users. Denote the amount of PI users as /', and denote the flow volume at points A, B,
C,Dand Easf*, f%, 7, F?, f*. Obviously, f* = f? . If (" islessthan f* — f*,

then those PI travelers enjoy a travel time saving from point C to point D with
T = f"e) T, Q-+ 7 e,)-

The travel time saving (7. -7, ) diminishes as the flow of PI users increases,
where Tc and Tp correspond to the travel time at points C and D. When £ further
increases and reaches the value f* — f*, both paths have the same equilibrated travel
time of 37.1 min. If f" exceeds f* — f*, none of the PI users is able to reduce his/her

travel time by switching routes and the equilibrium point remains the same as the
equilibrium point (E) for 100% PI users with reduced capacity shown in Figure 3.5.

As the proposed model approximates a long-term stochastic steady state under
stochastic capacity, Figure 3.5 further shows a possible sequence of the corresponding
travel times on 2 different routes over a 20-day horizon. Note that, even though there still
exists a 5-day cycle with 4 good days and 1 bad day with reduced capacity, the impaired
capacity conditions occur on day 1, day 7, day 11 and day 19 in this example. This
irregularity, which is permitted by the model, shows the unpredictability of stochastic
travel times, so the ETT knowledge users simply consider the average travel time on path
1 (with a 20% chance or risk of severe traffic congestion) in their long-term route choice

decisions.
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Travel Time

4636/3364 |
5060/2940 D53:33.o

5284/2716
5503/2497

Flow (veh/hr)

Figure 3.4-Solutions on a reduced-capacity day.

5% PI users (400 vehicles) and 95% ETT users (7600 vehicles),

Point Cs: 5284 ETT vehicles on link 1, travel time = 48.9 min.

Point Ds: 2716 vehicles (2316 ETT users + 400 PI users) on link 2, travel time = 33.0
min.

PI users travel time saving = 44.0-33.0=11.0 min, where 44.0 min is the average travel
time for ETT users = (5284*48.9+2316%*33.0)/7,600.

10% PI users (800 vehicles) and 90% ETT users (7200 vehicles)

Point Cjp: 5060 ETT vehicles on link 1, travel time = 44.3 min

Point Dj¢: 2940 vehicles (2140 ETT users + 800 PI users) on link 2, travel time = 34.1
min,

PI users travel time saving = 41.3 —34.1=7.1 min, where 43.1 min is average travel time
for ETT users

20% PI users (1600 vehicles) and 80% ETT users (6400 vehicles)

Point Ey: 64 PI, 4572 ETT, and 4636 vehicles in total on link 1, travel time = 37.1 min
1536 PI, 1828 ETT, and 3364 vehicles in total on link 2, travel time = 37.1 min

PI users travel time saving = 0 min
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Figure 3.5-Day-dependent travel times on different routes.

It should also be noted that the behavioral model used here is structurally different
from the commonly used day-to-day learning model in a DTA framework, even though
the underlying traffic states are represented within the same multiday structure. In a day-
to-day dynamic learning model, the perceived travel time on day d +1 is updated using
experienced travel times from previous days d, d -1, d -2 and so on, and the path can also
be changed on a daily basis. In comparison, the ETT knowledge users consider average

traffic conditions over all the days as a whole, and always stick to the same route.

3.3 General Mathematical Problem Formulation

This section extends the above conceptual framework to a general network with

multiple origin-destination pairs and with road pricing strategies.
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3.3.1 Formulation

The sets and subscripts, parameters and decision variables in the proposed flow

assignment model are introduced as follows:

Indices:
i = index of origins, i =1, ..., I, where / is the number of origins
J = index of destinations, j = 1, ..., J, where J is the number of destinations

a =

d

index of paths, p=1, ..., P, where P is the number of paths between an OD pair i

andj
index of links, a=1, ..., A, where 4 is the number of links in networks
index of days, d=1, ..., D, where D is the number of days over analysis horizon

Input Parameters:

ca,d

a,d

ij

p.a

VOT

capacity of link a on day d
= toll value charged on link a on day d
= OD demand volume between an OD pair i and j

path-link incidence coefficient, &, ,=1, if path p passes through link 4, and 0
otherwise

market penetration rate of the perfect information (PI) users as a function of

the total OD demand

value of time in dollars per minute

Decision variables:



Pli,j
Jod” =

ETT.i,j
S =

The
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flow of PI users on path p for OD pair (7, j)on day d

flow of ETT users on path p for OD pair (i, j) (flow rates are the same

across different days)

total flow on link @ on day d
travel time on link a on day d

generalized disutility on link a on day d, which is a function of capacity c,,

and link flowv,,

generalized disutility of path p between OD pair (i, j) on day d

expected disutility of path p between OD pair (i, j) over the multiday

horizon

day-dependent least path disutility between OD pair (i, j) on day d

least expected disutility between OD pair (i, j) over the multiday horizon

proposed model incorporates the two user classes into a static traffic

assignment framework under stochastic capacity that varies on a daily basis during the

peak hour. The objective function aims to minimize the total gap for users with perfect

traffic information and users with imperfect information based on expected travel times.

Obijective function:

minGap =3 355 11 K(U s )| @10
d

i j op=

PI flow constraints:
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yxq" =Y Y Vi j.d (3.12)
»
ETT flow constraints
A=p)yxqg™ =D [ Vi, (3.13)
»

Path - link flow balance constraints

Vi = D228, )+ XXX (ST 6,,)  Vad (3.14)

ijor

Path- link cost connection

S
U =T v ,C + ad va:d
a,d a.d ( a,d a»d) VoT (3.15)

U;]d = Z(Ua,d '517,11) Vi’j7d’p (3 16)

Average disutility definitional constraint:

—i,j 1 o
U, =—=>U"  Yijp
D

(3.17)

Least disutility definitional constraints:
m UV, Vi, j,p.d (3.18)
7 <U, Vi j,p (3.19)

Constraints (3.12) and (3.13) show the relationship between OD demand and path
flows for each information class. Equation (3.14) aggregates path flows from two
different user classes to link flows. Equations (3.15-3.16) calculate the path disutility for
each path on day d, where the dollar value of road toll is incorporated as equivalent travel

time through value of time (VOT). Equation (3.17) defines the average disutility for each
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path across different days, which will be used in the gap function for ETT users in
objective function (3.11).

For comparison purposes, the system optimal benchmark can also be defined as:

minz =3 3[v,, % T, (V¢ ] (3.20)
d a

where the flow to be optimized /., can be day-varying.

Because the path utility function is convex and monotonic with respect to path
flow and the expected travel time function is a convex combination of day-dependent
travel times, the resulting gap function can be shown to be smooth, convex and bounded.
Interested readers are referred to the paper by Lo and Chen (2000) for the detailed proof
on a similar reformulation. These nice features allow a wide range of efficient nonlinear
programming solution algorithms, such as gradient projection algorithms, to be applied to

solve the proposed model.

3.3.2 Spreadsheet tool for calculating multiday user equilibrium

Considering the above simple corridor with two routes, a spreadsheet application
is developed with the following input elements: (1) deterministic, fixed demand, (2) day-
dependent capacity generated from a stochastic capacity distribution, and (3) static travel
time functions. The proposed nonlinear model is formulated using the embedded
optimization solver in Excel to bring the total gap function toward zero, while the traffic
flow of PI and ETT users on different routes are considered as variables to be optimized

(i.e., cells to be changed). A wide range of travel time statistics can be derived from the
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traffic assignment results, such as the mean and variance of day-dependent travel times.
Figure 3.6 demonstrates how the spreadsheet model is operated according to the
following steps:
1. Input data preparation. Prepare the following input data:
a. total demand;
b. PI market penetration vy;
c. random capacity on different days; and

d. BPR step function parameters

e Random
C1,d=1 | | Co,d=1
Total Demand | (@) Market Clo2 || Cog . mﬁﬂﬂgn Parameters
i Cige3 || Coge ' e
q Penetration Rate y 1,d=3 | | C2,d=3 . Betaz4
Cid=4 | Cod=4 o  Free-Flow Travel Times for Link 1 & 2
o #ofLanes
| .
Yy
0 Variables: Variables: Link Travel eMinimumOD GAP™
1 @ PI Flow © ETT Flow " Total Flow ") Time T e @
2 T T
3 f '1’d=1 fplz’dﬂ T i Trgt  Toget Tlg=1 0
Day i | W o | Fage PR PR T > Tigz Tag2 gy T4 » O
Py Pl e TR ST Tigss  Toges =3 0
0

% o | oo PR PR T Tiga  Toge e

Link1, Link2 Link1, Link2 Link, Link2 T T, 7z=mn(,

Objective Function for PI: gap;’ = fi x (T, —1,)+ f,; x (T,

;)=
Objective Function for ETT: gap™" = f*" x (T - 7[)+ ETT ( )=

)
0,vd
0

Figure 3.6-Spreadsheet-based calculation model.
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2. Volume calculation: Corresponding to equation (3.1), the hourly traffic volume
is distributed to different paths in block E1 and E2, which also contain variables to be
optimized. The total hourly traffic volume is calculated paths in block E3.

3. Link travel time calculation: The day-dependent link travel times and the
expected travel times are calculated using equations. (3.2) and (3.5) in block F, based on
the link flow from block E1 and E2.

4. Minimum travel time determination: Find the minimum travel time g on each
day and & for the average travel time in block G.

5. Defining the objective function: Define the objective function related to the gap
functions in block H, corresponding to equations. (3.3) or (3.9) for PI and ETT users,
respectively.

6. Solving the optimization model: Solve the optimization model and derive travel

time statistics according to travel time data in block F.

3.4 Solution Algorithm

The solution algorithm executing the above steps is depicted in Figure 3.7. In
order to iteratively reduce the overall gap in the proposed optimization problem for a
general network with multiple origins and destinations, we extend a descent search
solution framework developed by Lu et al. (2009), which also used a path-based gap
function to describe the dynamic traffic equilibrium pattern. Figure 3.7 presents the
iterative procedure for solving the multiclass static traveler assignment problem under

stochastic capacity conditions.
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1. Generate stochastic capacity Cqy
for all links on day d=1,2,...,D

2. Assign all vehicles of each
OD pair to the shortest path

3. Perform multiday traffic

" simulation runs
d=1 d=2 d=D
C C, Cp
Link travel time T; T, T, Avg link tr;vel time
across different days T
4. Find descent
Least Travel Time v d1r.ect10n
Path on day 1 LTP LTP Least expected travel time
LTP, ’ ’ path
— |
) 5. Path
Assignment| | Assignment Assignment Assignment Assignment
for PI users | |for Pl users| - |for PI users for ETT
on day 1 on day 2 on day D users
i 6. Link fl
Link flow | | Link flow Link flow e T
pattern on pattern on pattern on aggregation
day 1 day 2 day D
7. Check convergence

Using gap functions

Figure 3.7-Solution algorithm for static traffic assignment with both PI and ETT users.
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The proposed procedure adds day-dependent simulation, path finding and
assignment dimensions to the existing static traffic assignment algorithm that typically
assumes deterministic road capacity conditions. In this study, we implement the proposed
algorithm within a mesoscopic traffic assignment framework, which represents flow as
vehicles with origin, destination and path attributes. Recall that, in conventional
assignment programs, a vehicle is associated with a single path. In the proposed multiday
traffic assignment algorithm, an ETT vehicle still follows a single path across different
days, but a PI vehicle can use and store different (day-dependent) paths on different days.

The main steps of the solution procedure are described as follows:

Step 1: Day-dependent capacity generation.

Generate road capacity vector Cy =[cgvd:| , for all link a=1, 2, ..., 4, on day d=1,

2, ..., D, according to given stochastic capacity distributions.

Step 2: Initialization.

Let iteration number n=0. Generate Pl and ETT vehicles according to given
market penetration rate y. For each OD pair, compute the shortest path (in distance) and
assign both PI and ETT vehicles to the corresponding shortest path.

Step 3: Multiday traffic simulation with stochastic capacity.

On each day d =1, 2, ....D, for given link flow patterns, generate day-dependent

link travel times according to stochastic capacity vector C;. The simulation results
generate link travel time T, , for link a=1, 2, ..., 4, on day d=1, 2, ..., D.

Step 4: Find descent directions for traffic assignment.

Find the Least Travel time Path (LTP) using day-dependent link travel time 7, ,

on each day d, for link a=1, 2, ..., 4.



49

Find the Least Expected Travel time Path (LETP) using average link travel time

_ 2T

1, = dD , for link a=1, 2, ..., A.

Step S: Path assignment for PI and ETT vehicles.

For each day d, a certain percentage of PI vehicles are assigned to the least travel
time path.

By adapting the path-swapping method proposed by Lu et al. (2009), this study
uses the following probabilistic ratio for a vehicle on path p to switch to the least travel

time path at iteration »:

Ljo_ i
1 xU”’d T,

— (3.21)
n+1 U,

The first term 1/(n+1) is equivalent to the fixed step size in the Method of

Successive Average (MSA). The second term ensures that the path swapping probability

is proportional to the relative difference between the experienced path travel time U;i,

and the minimum path travel time 7z’ . An intuitive interpretation for this heuristic

swapping rule is that travelers on longer paths (i.e., farther from the equilibrium solution)
are more likely to switch to the least travel time path than those on paths with travel cost
closer to the least travel time path.

Similarly, a certain percentage of ETT vehicles are swapped to the least expected

travel time path, the route swapping probability at iteration #n can be determined by
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—i,j —ij
L U"_f}.” (3.22)

n+1 U,

As shown in Lu et al. (2009), search directions specified by equations (3.21-3.22)

can be proven to be in the descent directions of the gap function in equation (3.11) for

fPl,i,j ETT.,i,j
pd >Jp

, respectively, at iteration 7.

Step 6: Link flow aggregation.

For each day d, calculate the aggregated link volume v, , using PI flow volume
on day d and ETT flow (across every day), using equation (3.14).

Step 7: Convergence checking.

Calculate the gap function as shown in equation (3.11), if Gap<d convergence is

achieved, where Jis a prespecified parameter. If convergence is attained, stop. Otherwise,

go to Step 3.

3.5 Experimental Results

The first set of experiments uses the simple corridor with two routes in the
illustrative example, shown in Table 3.1. In this set of experiments, it is further assumed
that links 1 and 2 have 3 and 2 lanes, respectively, and on this basis 100 days of random
lane capacity are generated. The headway data used in this analysis were obtained from a
recent research effort by Jia et al. (2010). In their study, the prebreakdown time headways
are found to follow a shifted log-normal distribution with the following probability

density function:
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1 _(nx—p)?

fX:(X;ﬂ,U)Z(x_C)—Ume 202, x>0 (3.23)

x is the average prebreakdown headway (in second) for 15-minute interval,
¢ is the minimum prebreakdown headway (in second),

4 1s the mean of the variable's natural logarithm, and

o is the standard deviation of the variable's natural logarithm.

Their calibration results based on data from several bottleneck locations in the

Bay Area, California show that ¢=1.5 seconds, u=-0.97, and ¢=0.68. To convert 15-

minute breakdown flow rates to hourly capacity, we take an average value of 4 samples

from the above random distribution. The histogram in Figure 3.8 shows the probabilistic

distribution of 100 lane capacity samples on link 1. The stochastic distribution of hourly

capacity has a sample mean of 1837 vehicles/hour/lane and a coefficient of variation of

0.064.

In Figure 3.8, most of samples range from 1700 to 2100 vehicles/hour/lane, which

reveals the inherent randomness of road capacity. The hourly lane capacity is multiplied

by the number of lanes to generate link capacity, and the resulting average total capacity

of both links is 9,298 vehicles per hour.
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3.5.1 Measure of effectiveness (MOE)

Mean travel time for users using ETT knowledge over different days can be

represented as

?ETT _ i o ZEETT
a4 (3.24)
and the average travel time for ETT users on day d is
Z Z(prTT % Tpl::;T,i,j )
T =L (3.25)

gx(1-y)

where 7, pEjT "/ is the travel time experienced by ETT users on day d along path p for OD

pair (i,j).
Travel time standard deviation is used to represent day-to-day travel time

variability:

;(TdETT _ TETT) 2

STDETT — 1
(a|=1) (3.26)

—pl — — —
Similarly, T, 7. and STD®™ can be calculated for PI users and T , T'w, STD

for different classes of users.
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Relative travel time improvement is defined as an indicator of the value of

information:

—EIT  —PI
T T

—ETT
T

(3.27)

This measure compares the relative difference of mean travel time savings

between PI and ETT users across all days.

3.5.2 Sensitivity analysis

The following experiments describe the results of a sensitivity analysis for three
major inputs: the total demand ¢, the market penetration rate of PI users, and the toll
values imposed on the primary route. In the baseline configuration, ¢ =8,000 vehicle/

hour, y =0.05 and there is no tolling on the primary routes.

3.5.2.1 MOE at varying demand levels

Figure 3.9 shows the different MOEs, when the total demand level q is varied
between 1,000 and 10,000 vehicles per hour. Figure 3.9a shows that the average travel
time dramatically increases after the total demand is raised above 4,000 vehicles per hour,
which is close to the capacity of the primary route. Interestingly, Figure 3.9b shows that

PI users experience significantly lower travel time variability compared to ETT users.
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Figure 3.9-Effectiveness of information provision at varying demand levels.

3.5.2.2 MOE's at different market penetration rates

Figure 3.10 shows the sensitivity analysis results of travel time under different PI
users market penetration rates. In many previous studies, the proposed models' aim was
to evaluate the effect of varying market penetration rates and identify the saturation level
of market penetration of ATIS services. In this research the objective is to understand the

relationship between market penetration rate and the value of information.
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Figure 3.10-Effectiveness of information provision with different market penetration
rate.
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When the market penetration rate is below 30%, all PI users are able to switch
from a congested route (typically route 1) to a less congested route (typically route 2), so
that travel information provision strategies yield meaningful savings in terms of mean
travel time and travel time variability (Figure 3.10a, Figure 3.10b). However, when the
market penetration rate exceeds a certain threshold (30% in our example), a large number
of PI users can take the detour, so the previously less congested route becomes crowded.
Under the assumption of user equilibrium with perfect information, both routes at this
point should have the same travel time so that no PI user can reduce his/her travel time by
switching routes. This implies no additional benefit is available by using traveler
information strategies.

Although the finding on the diminishing value of information as a function of
market penetration rate is similar to a number of previous studies (for example, Yang et
al., 1993; Yang, 1999), those findings are based on two fundamentally different settings.
Thus, for travelers not equipped with ATIS, previous studies have considered different
levels of perception errors under deterministic capacity for a single day, while this
proposed approach assumes no perception error on the expected travel time of multiple

days with stochastic capacity.

3.5.2.3 MOE’s at different tolling rates
Figure 3.11 shows the results with 5% PI users, with a static toll being imposed
on route 1 to encourage route switching to route 2. The value of time is set to $15 per

hour, so each dollar is equivalent to 4 minutes of travel time.
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Figure 3.11- Effectiveness of information provision with varying toll.
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Figure 3.11a shows strong bowl-shaped curves, indicating an optimal toll value of
$2 in order to reduce the average (experienced) travel time to about 25.5-min for all users.
This shows that the ideal system-optimal state can be approached using tolled user
equilibrium patterns.

Figure 3.11b demonstrates another benefit of the toll strategy as it can
dramatically reduce the travel time variability for all users. If the generalized travel time
is considered (including both pure travel time and equivalent travel time associated with
tolls), the mean generalized travel time in Figure 3.11c of all the solution strategies grows
gradually with increasing toll values.

Road pricing is an effective instrument for mitigating congestion. Ideally, road
pricing rate is calculated based on 1) marginal social cost due to congestion (usually not
perceived by the users) and 2) the private cost (perceived by the users). But applying this
theory is very difficult due to the unclear relationship between the demand function and
the cost function.

One key assumption in this model is that a for-pay service can advise users about
the best route (with lower travel time) as shown in Figure 3.12a, in spite of the fact that
both routes have the same disutility (travel time/VOT + toll) in Figure 3.12b. Comparison
of the path travel time standard deviation without tolls on route 2 and with the varying
toll level on route 1 is shown in Figure 3.12c. Without tolls, path travel time distributions
show large standard deviations. With the toll, the path travel time distributions reveal
much smaller variations depending on the toll level. Because the flow on route 1 is
reduced (due to the imposed toll), travel time reliability has been decreased accordingly

by charging a toll on route 1.
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Figure 3.12- Effectiveness of information provision for different routes with varying toll.
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As shown in Figure 3.12d, the proposed model has the potential to hold the traffic
flow within a given capacity or desirable level by applying varying tolling levels and
illustrates more clearly the potential of these tolling strategies for congestion mitigation

purposes when it comes to “paying” for reduced travel time.

3.5.2.4 Impact of FFTT difference and demand level on value of information
Figure 3.13 shows how the free-flow travel time (FFTT) difference between the
primary and second routes affects the computed value of travel information at different

demand levels ranging from 5000 to 9000 veh/h.

—+—5000 ——6000 7000 —+—8000 —<9000

2, il
ol L N\
1% / \ \

/NN

Free-flow Travel Time Difference between Rout1 and Route 2 (min)

Relative Travel Time Improvement (%)

Figure 3.13- Value of information as a function of FFTT difference and demand level.
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The plot demonstrates that for a fixed 5% PI market penetration rate and certain
demand level (say 8000 veh/h), if both routes have similar free-flow travel times, then the
value of information is not too significant. When the free-flow travel time difference
increases (that is, the alternative route becomes less attractive compared to the primary
route), the benefit of information provision grows steadily and reaches a maximum value.
Beyond that, the value of information begins to drop, as the free-flow travel time
difference is too large to generate meaningful route switching opportunities under a user
equilibrium condition. By comparing the curves associated with different demand levels,
the peaks of the value of information function shift to the right. Also, higher demand
levels (i.e., a more congested system) yield significantly higher value of travel

information at the same free-flow travel time difference.

3.5.3 Experiments on medium-scale networks

The following numerical experiments are performed on two medium-scale
network data sets, which are publicly available at a website maintained by Bar-Gera
(2001). The proposed algorithm is implemented in C++ on the Windows Vista 64-bit
platform and evaluated on a computer with an Intel Xeon CPU with 4 2.33 GHz
processors and 9 GB memory.

To fully utilize the available parallel computing capability, all the shortest path
calculations and path assignment computations for different origin zones (at steps 4 and 5)
are migrated to different processors. The above parallelization scheme is implemented
through an Open Multi-Processing (OpenMP) shared-memory parallel programming
interface. As shown in Figure 3.7, the parallelization of shortest path calculation can be

also carried out for different days.
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As shown in Figure 3.14 and Table 3.2, the Anaheim, California network contains
about 38 zones, and 0.1 million vehicles, and the Chicago sketch network, an aggregated
representation of the Chicago region, has 387 zones with 1.2 million vehicles.

Under a setting of 10% PI users, 20 assignment iterations and 30 days of random
road capacity, the Anaheim network uses about 30 minutes, and the Chicago sketch
network takes about 8 hours of CPU time and 2.6G memory. There are three major
factors affecting the computational complexity of the proposed algorithm: (1) the number
of OD zones, (2) the number of days in the random capacity representation, and (3) the
number of PI vehicles. Specifically, the first two factors are related to the number of path
finding calculations, as the algorithm must find the least travel time routes using day-
dependent travel time for PI vehicles originating from each origin zone. The other two
factors, namely the number of days and the number of PI vehicles, jointly determine the
complexity of path swapping operations, as each PI vehicle must carry and update
individual paths on different days in the proposed path-based and mesoscopic
representation. In addition, as steps 4 and 5 are the most computationally intensive in the
proposed algorithm, additional CPU cores can also accordingly speed up the overall
computational process through parallel computing.

To measure the convergence of the proposed algorithm, we use the following

average optimality gap as the solution quality indicator:

gGep=— PR 0 (U )+ 1O 7)) (3.28)
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Figure 3.14-Chicago sketch network (a) and Anaheim, California network (b).
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Table 3.2- Test network characteristics and computational performance.
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Anaheim, California Chllﬁli%:vfll-(]f tch
# of nodes 416 933
# of links 914 2950
# of OD zones 38 387
Total OD Volume 104K 1,261K
Computational time 34 min 8 h 16 min
Average optimization Gap(min) 0.289 0.344

With 30 day samples, 20 iterations and 10% PI vehicles.
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Figure 3.15 compares the convergence of two algorithms in the Chicago sketch
network: (i) the proposed route-swapping algorithm that uses the swapping ratio in
equation (3.22), (ii) the algorithm uses the conventional MSA method with a fixed step
size of 1/(n+1), where n is the iteration counter. Both algorithms can steadily reduce the
optimality gap toward zero, and the average gap measures reach within 0.5 minutes per
vehicles within the first 10 iterations. In comparison, the proposed route swapping rule is
able to more quickly decrease the optimality gap within first 5-7 iterations. Shown in
Table 3.2, the two test networks have quite small optimality gaps at iteration 20, namely
0.289 and 0.344 minutes. To reduce the overall computational efforts, one might consider

using fewer iterations as long as the solution quality reaches an acceptable level.

==MSA

160 | ~@-Route Swapping

Avg Gap (min)

1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteation Number

Figure 3.15- Convergence patterns on Chicago sketch network.
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The original data sets use the BPR function to describe travel time performance,
and a single valued mean capacity is specified for each link. To generate random road
capacity samples, we use the prebreakdown headway distribution in equation (3.23) to
generate multiple samples of 15-minute prebreakdown capacity first. To approximate the
peak-hour capacity values used in the BPR function, we evaluate the impact of two
alternative schemes:

(1) Possible multiple congestion periods within a peak hour, so we use the average
of 4 prebreakdown capacity values as the peak hour capacity, leading to a Coefficient of
Variation (CV) = 6.4%.

(i1) Single congestion period, where a single value of 15-minute prebreakdown
capacity becomes the dominating factor for the whole peak hour, leading to CV = 12.8%.

As shown in Table 3.3, the single valued prebreakdown capacity implies larger
variations compared to the average (aggregated) prebreakdown capacity, so it slightly
increases the average travel time for PI and ETT travelers on both networks. However,
according to the above experimental results, the travel time savings obtainable for PI
users seem to be not too significant even under the large link travel time variations.
Similarly, for the hypothetical network in Figure 3.2, the capacity variations also only
lead to less than 1-minute travel time savings due to traveler information provision,
shown in Figure 3.10 (a).

To fully understand the benefit of traffic information provision, an analyst needs
to better characterize travel time dynamics/variability, which is caused by a wide range of
recurring and nonrecurring delay sources, such as incidents, work zones, and random

fluctuations in road capacity.
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Table 3.3- Value of traveler information under different peak-hour capacity
approximation schemes.

Anaheim network Chicago Sketch Network
Peak-hour
Capacity
Approximation | ETT | PI Average ETT |PI Average
Relative Relative
Scheme Travel | Travel . Travel | Travel .
Time Time Travel Time Time | Time Travel time
Saving (%) Saving (%)
Average
Prebreakdown o
. 12.903 | 12.864 0.302% 17.348 | 17.242 0.611%
Capacity with
CV=0.064
Single-valued
crcbrealddown | 13233 | 13.157 | 0.574% | 17.794 | 17.469 | 1827%
apacity with
Cv=0.128

Although the proposed framework allows and is naturally suited to consider any
given random capacity distributions with a multiday or sample-based representation
scheme, the calibrated capacity distribution used in our study in fact only focuses on
“normal” random capacity perturbations, while the “outliers” in the capacity distribution
due to nonrecurring events such as incidents, work zone, severe weather, are not
explicitly modeled in the given capacity distribution and should also be integrated in the
future research to fully account for the benefits of traveler information provision

strategies under random capacity breakdowns and “unplanned” events.

3.6 Summary

In this chapter, a novel nonlinear optimization-based analysis method is proposed
along with related modeling components pertaining to stochastic capacity, travel time

performance functions and different degrees of traveler knowledge in an ATIS
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environment. Within a multiday analysis framework, this proposed method categorizes
commuters into two classes: (1) travelers with access to perfect traffic information every
day, and (2) travelers with some degree of knowledge of average traffic conditions across
different days. Within a gap function framework (for describing the user equilibrium
under different information availability), a mathematical programming model is
formulated to describe the route choice behavior of the perfect information (PI) and
expected travel time (ETT) user classes under stochastic day-dependent travel time. The
model was applied to a simple corridor and two medium-scale networks to illustrate the

effectiveness of traveler information under stochastic capacity.



CHAPTER 4

MULTIDAY STATIC TRAFFIC EQUILIBRIUM ANALYSIS

UNDER STOCHASTIC DEMAND AND

CAPACITY CONDITIONS

4.1 Introduction

In addition to systematic variations due to seasonal and weekly patterns, the
stochasticity in traffic demand can be caused by special events, severe weather conditions
and random variations. In reality, in response to variations of stochastic and day-variant
travel time, a majority of commuters only have knowledge about the average traffic
conditions across different days, and accordingly make their habitual route choice
decisions to minimize the expected path travel time. Travelers who are equipped with
advanced traveler information can select different routes on different days, depending on
prevailing traffic conditions. In comparison, although end-to-end travel time variability
measures might be approximated through numerical perturbation or statistical inference
methods around the single steady-state solution, the single-day equilibrium representation
has two limitations: First, it is unable to capture the day-variant route choice behavior by
equipped travelers in an environment with stochastic capacity and demand. Second, its

underlying Logit model typically assumes the perception error has a mean of zero and the
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perceived travel time is an unbiased estimate of the actual travel time. However, for any
given day, the information, (i.e. average travel time perception) used by unequipped
travelers becomes biased travel time estimates toward prevailing traffic conditions on a
particular day. A “day” in this multiday model can be viewed as a random sample or
realization from a stochastic programming perspective.

This chapter aims to systematically evaluate benefits of traveler information
provision strategies in a realistic environment with stochastic traffic demand, stochastic
road capacity, and different degrees of traveler knowledge and traffic information
provision quality. Based on a stochastic user equilibrium modeling framework, the
proposed model uses a multiday representation scheme to describe stochastic samples of
uncertain demand and capacity supply, as well as day-dependent travel time. Two classes
of travelers are considered: travelers who have knowledge on average traffic conditions
and select single paths over different days, and travelers who can make day-varying route
choice decisions based on prevailing traffic information available every day. A gap-
function based optimization model is further developed to find equilibrium solutions, and
a number of representative examples are used to illustrate how the proposed method can
systematically evaluate the travel time reliability-related benefit of traffic information
quality improvement and demand smoothing strategies.

The remainder of this chapter is organized as follows. The second section
provides a conceptual framework and then discusses the related modeling components.
The third section presents a gap function-based mathematical programming formulation.
A graphical method and illustrative examples are used in the fourth section to describe

equilibrium solutions for different representative cases with stochastic demand and
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stochastic capacity. The solution algorithm for a general large-scale network is presented

in the last section, followed by numerical experimental results.

4.2 Problem Statement and Illustrative Example

The sets and subscripts, parameters and decision variables in the proposed

stochastic flow assignment model are introduced as follows:

Indices:

i = index of origins, i =1, ..., I, where / is the number of origins

J = index of destinations, j = 1, ..., J, where J is the number of destinations
index of paths, p=1, ..., P, where P is the number of paths between an OD

o pair i and j

a = index of links, a=1, ..., A, where A4 is the number of links in networks
index of days, d=1, ..., D, where D is the number of days over analysis

‘T horizon

Input Parameters:
Cod = realized capacity value of link a on day d from a stochastic distribution

OD demand volume between an OD pair i and j on day d from a
i.j

4, =

stochastic distribution.

path-link incidence coefficient, 6, , =1, if path p passes through link a,
0,4 =

and 0 otherwise

market penetration rate of the travel information (TI) users as a function of
7/ =

the total OD demand



TI ETT

PP
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a positive unit scaling parameter between travel time units and utility units
for TI and ETT users, respectively, related to the quality of

information/knowledge

Decision variables:

fT[,i,j
p.d
EN

yp,d

ETT i,
fp,d "

ETT.i,j

Y

i,J
T,

flow of TI users on path p for OD pair ij on day d
flow ratio of TI users on path p for OD pair ij on day d

flow of ETT users on path p for OD pair ijon day d

flow ratio of ETT users on path p for OD pair ij (flow rates are the same

across different days)

total flow on link a on day d
travel time on link @ on day d

travel time of path p between OD pair ij on day d

expected travel time of path p between OD pair ij over the multiday
horizon

day-dependent reference path disutility between OD pair i and j on day
d

least reference expected disutility between OD pair i and j over the

multiday horizon
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To illustrate the mathematic formulation to be introduced later, let us start with a
simple network with two nodes, two links, and one OD pair, as shown in Figure 4.1. As
each path only has one route, we denote primary path p=1 as link a=1 with a free-flow
travel time of 20 minutes, and denote alternative path p=2 as link a=2 with a free-flow
travel time of 30 minutes. This example considers 25 different days d =1, 2, ... ,D, where
the number of days D=25.

The alternative path is assumed to have a fixed capacity of ¢, ,=3000 vehicles per

hour per lane for all days. The primary path has an 80% probability to have a full 4500
veh/h capacity and has a 80% chance to have a reduced 3000 veh/h capacity. Our
example considers a high demand level as 9600 veh/h with a 20% probability, and a low
demand level as 7600 veh/h with a 80% probability. The distributions of stochastic
demand and capacity are assumed to be independent. Shown in the bottom part of Figure
4.2, days 1, 6, 11, 16 are 21 have a reduced capacity on link 1, and days from 21 to 25
have a high demand level. The day-by-day travel time pattern changes when changing the
market penetration rate from 0% to 5%, and the latter case demonstrates reduced travel
time variability on different demand/supply combinations.

Obviously, the sum of path flows on this corridor equals to the total OD demand,

frat foa=4q, Vd (4.1)

Without loss of generality, this study uses the widely used Bureau of Public Road

(BPR) function as the link performance function.



77

Free-flow Travel Time = 20 min
Link Capacity = 4500 (veh/h) on days with full capacity
or 3000 (veh/h) on days with reduced capacity

v
. Primary path: link 1
Stochastic Demand:

High demand days: 9600 veh/h
Low demand days: 7600 veh/h a

Alterns;tive path: link 2

Free-flow Travel Time = 30 min
Link Capacity = 3000 (veh/h) on all days

Figure 4.1- Simple network used as an illustrative example.
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Figure 4.2- Time-dependent capacity, demand and travel time patterns under different
vehicle information market penetration rates.
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f /4
T,,=FFIT, x| 1+« { il } (4.2)

Ca,d

where FFTT, are the travel time and free-flow travel time of link a. In the following

examples, the common values of parameters o =0.15 and =4 were used.
This study considers two different information user classes with different degrees

of traveler information accessibility.

4.2.1 Traveler information (TI) users

Every day, link travel time estimates with a certain level of prediction errors are
available for TI traveler to make route decisions, and a TI traveler can select a route on
each day to minimize their perceived path disutility. Within a discrete choice modeling

framework, the utility for a TI user to travel over a given path p equals the negative path

travel time 7, , on day d

T
url,=vl +e,, = —p”—;’ +e,, p=12vd (4.3)

where p is a positive unit scaling parameter between travel time units and utility units,
and ¢,, is a random error term, independent and identically distributed (iid) for all
routes. The perception error term ¢, , is assumed to follow a Gumbel distribution,

which leads to a commonly used multinomial logit model. Scaling parameter p reflects
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the level of information quality, a very small p indicates a low-error and high-quality
information source. If p converges to zero, then perfect information is available to TI

users.

4.2.2 Expected travel time (ETT) knowledge users

In response to random day-to-day travel time variations, unequipped travelers rely
on their expected travel times (based on their network knowledge and past experience)
over different days to make route choices. The expected travel time can be considered as
the probability-weighted sum of the possible travel time values in the analysis time
horizon. Under a steady-state multiday user equilibrium condition, the expected travel
times on used routes in the network are assumed to be the same, and an ETT user always

chooses the same route every day according to the following utility function.

T
UfTT — VpETT +g = __r + gp p= 1,2 (44)

p ETT
Yo,

where E - %ZT

p.d
d

For link a, the expected travel time is

B B
T, =%FFTTH><Z 1+a>{ﬁ] = FFTT, x 1+%Z ax(@] (4.5)
d

ca,d d
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As the BPR function is a convex function, one can easy prove that, through
Jansen’s inequality and by considering the flow-to-capacity ratio as a random variable,
the average travel time obtained from equation (4.5) is greater than the value calculated

based on the average flow-to-capacity ratio.

1 fus\
T, =FFTT, x| 1+—Y | ax| =<
D% Cod

(4.6)
Joa

ca,d

’ s
>T (E( )):FFTTax1+a>{E(a—’d)} ’

ca,d

where E(ﬁ) is the mean ratio of flow and capacity on link a over different days,
ca,d

respectively. This indicates that, using the mean volume-to-capacity ratio, in a single-day
equilibrium representation, to calculate the expected travel time under stochastic demand

and capacity distributions could underestimate the actual expected congestion level.

4.3 General Mathematical Problem Formulation

We first list all the constraints in the proposed optimization model that aims to

. . 11.,i,j ETT.i,j .
incorporates two user classes (in terms of day-dependent flow f,;*’and f /") into a

stochastic traffic assignment framework under day-dependent capacity c,, and day-

dependent demand ¢/ during the peak hour. Specifically, constraints (4.7) and (4.8)

show the relationship between OD demand and path flows for each information class.

Equation (4.9) aggregates path flows from two different user classes to link flows.
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Equations (4.10-4.11) calculate the path disutility for each path on day d. Equation (4.12)

defines the average disutility for each path across different days.

T1I flow constraints:

yxa; =2 10" Vij.d
P

(4.7
ETT flow constraints
A=p)yxqy = fE0 Vi, jd
r (4.8)
Path - link flow balance constraints
Vg =, [(fprj’d’i“" + p’deT’i"")x 51,,0} Va,d (4.9)
i’j’p
Path- link cost connection
T,,=BPR(v,,.c,,) Va,d (4.10)
Ty =>(T,-5,.) Vij.p.d 4.11)
Average disutility definitional constraint:
)} 1 ii ..
T, =—>T Vijp (4.12)
DT "
Definitional constraints:
0<y,i’ <LO<y,"™ <L £ > 0.1, >0.¥i, j.p.d (4.13)

To construct an optimization model of a stochastic traffic assignment program, we
define the following gap function for TI users, in a general network.

Objective function:
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min Gap = )’ [y;{;’f x(p” In y ' T, — 7z )]

dii.j.p
L (4.14)
+D % z |:y§TT,i,j % (pETT lnyfTT,i,j +T}l),/ _ 7Z_i,j ):|
i),
Since y;fj’j and yf"”"j are always positive for feasible paths in a logit model, the

optimal solution of the proposed mathematical program reduces the gap to zero, leads to

equations (4.15 - 4.16),

p™In yi{j’j +T]';’;’;i -7/ =0Vi, j,p,d (4.15)

P In yET +§—ﬁVi,j,p (4.16)

In this study, we extend the gap-function reformulation method developed by
Zhou et al. (2007) (for modeling stochastic time-dependent user equilibrium conditions)
to describe the day-dependent statistic user equilibrium conditions. Essentially, we want
to show equation (4.15) is equivalent to the logit route choice model used in a stochastic

path assignment function as

T,
Exp(——")
T1i,j P ..
yp’d” :—W,Vl,],p,d (4.17)
2 B0
P P

In addition, equation (16) is equivalent to equation (18).



&3

vy
Exp(——2)

o ETT
ygTT’[’j :—pfavhjapad (418)

Z Exp(- -
P

P
pETT)

Obviously, equation (15) can be re-expressed as

(Al 77 iy
YT = pp| 24" | pp| 2L |« Ep| 2L (4.19)
” 11 P

Since )" y7'i/ =1, we can derive that
P

) 1
Exp ? = —. (4.20)

T/

,d

2| B
P

Substituting equation (4.20) into equation (4.19) leads to equation (4.17).

Similarly, we can prove the equation (4.16) and equation (4.18) are equivalent.

TIi,j

In the objective function equation (4.14), we can view p"'Iny,';/+T,/ and

P n yE™ 478/ as generalized path disutility, and then view z}’ and 7"/ as reference

path disutility. The overall objective function aims to minimize the total gap (as squared
deviations between generalized path utility and reference utility) to zero, in order to

ensure the stochastic user equilibrium conditions for users with traveler traffic
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information and users with imperfect network knowledge based on expected travel times.
Note that, we also add a constant weight of D (i.e., the number of days) for the subgap
function for ETT users, in order to appropriately scale two subgap functions with day-
invariant and day-dependent dimensions. With the proposed objective function, we can
quantify the optimality gap of a feasible solution and further determine if the solution
reaches the convergence within limited iterations. In addition, we can use an efficient
convex programming technique to solve a restricted subproblem.

A survey by Ban et al. (2009) shows the majority of surveyed commuters trust the
estimates if the perceived accuracy is within 5 minutes. In this study, p*”"=5 minutes as
the default perception error scale for ETT users, and p”" =3 minute as the information
accuracy scale for TI users. By setting TI market penetration rate y=5%, we can obtain
the solution shown in Table 4.1.

These 25 days can be categorized into four different states, where RC and FC
represent reduced and full capacity, and HD and LD represent high demand and low

demand, respectively.

Table 4.1- Sample solution for 5% TI users and 95% ETT users.

Demand/supol ETT flow split | TI flow split Combined Travel time | Travel time
combina ti(r))rll)sy ETT 11 flow split on onlink 1 on link 2
Y p=1 V=14 link 1 (min) (min)
A: RC+HD 65.7% 0.008% 62.4% 67.6 423
B: RC+LD 65.7% 12.1% 63.0% 46.7 394
C: FC+HD 65.7% 79.3% 66.3% 32.0 36.0
D: FC+LD 65.7% 91.9% 67.0% 24.9 32.2
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Under a multiday steady-state equilibrium condition, ETT users keep the same
route selection ratio even under different demand levels. On every day, TI path flow
ratios are changing, and a less congested path received high TI path selection probability.

The multiday assignment results can be further visualized in Figure 4.3. The horizontal

axis is the flow ratio on link 1 (i.e., variable y, = ¢4, and the link travel time function
d
can be rewritten as
A
=
£
g A: RC+HD
E
[
S
e B: RC+LD
}
H
C:FC+LD
A ETT
r T3 B
D: FC+LD
._/C-:/D
t t t >
0.60 0.65 0.70

Flow Ratio on Link 1

Figure 4.3- Travel flow split solution on four different types of days.
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B
T,,=FFTT, x 1+a>{q—dj (o) | (4.21)

Ca,d

There are four curves on path 1 to represent four different states A, B, C and D,
and curve E represents travel time function on path 2 as a function of y,-;. The solutions
on four different stages are shown as four vertical lines marked with A, B, D and D, with
different route/link split ratios. Their upper and lower end points on the lines of travel
time functions on paths 1 and 2 correspond to the actual travel time on different links. For
vertical line A, two horizontal arrows point to the average travel time experienced by TI
and ETT users, which are determined by the path flow splits of those two different
information user classes. Obviously, with the access to the traveler information every day,
TI users are more likely select the least travel time route and obtain better average travel
time. On the other hand, there are always a small percentage of TI users still selecting

congested route(s) due to perception errors.

4.4 Solution Algorithm

In order to iteratively reduce the overall gap in the proposed optimization problem
for a general network with multiple origins and destinations, we extend a descent search
solution framework developed by Lu et al. (2009), which also used a path-based gap
function to describe the dynamic traffic equilibrium pattern. The proposed procedure
adds day-dependent simulation, path finding and assignment dimensions to the existing
static traffic assignment algorithm that typically assumes deterministic road capacity

conditions. In this study, we implement the proposed algorithm within a mesoscopic
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traffic assignment framework, which represents flow as vehicles with origin, destination
and path attributes. The solution procedure is described as follows:

Step 1: Initialization.

Generate demand vector ¢, = [q;’j ]and road capacity vector Cy =[caﬂ d] on day
d=1, 2, ...,.D , according to given stochastic demand and capacity distributions. Let
iteration number n=0. Generate TI and ETT vehicles according to the maximum number

of vehicles per OD pair 0"/ = max, {q;f } and given market penetration rate y. To

simulate stochastic demand effect, on each day d, a vehicle has a probability of ¢/ / O™/
to make a trip. For each OD pair, compute the shortest path (in distance) and assign both
TI and ETT vehicles to the corresponding shortest path.

Step 2: Multiday traffic simulation with stochastic capacity.

On each day d =1, 2, ...,D, for given link flow patterns, generate day-dependent

link travel times according to stochastic capacity vector C;. The simulation results

generate link travel time 7, , for link a=1, 2, ...,4, onday d=1, 2, ..., D.
Step 3: Find descent directions for stochastic traffic assignment
Find the Least Travel time Path (LTP) using day-dependent link travel time 7,

on each day d, for link a=1, 2, ..., 4.

Find the Least Expected Travel Time Path (LETP) using average link travel time

_ 2T

T = dD , for link a=1, 2, ..., A.

Step 4: Path assignment for PI and ETT vehicles
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For each day d, a certain percentage of TI vehicles are assigned to the least travel
time path. By adapting the path-swapping method proposed by Lu et al. (2009), this study
uses the following probabilistic ratio for a vehicle on path p to switch to the least travel

time path at iteration n:

Ljo_ i
1 xU”’d T,

i
n+1 U,

(4.22)

The first term 1/(n+1) is equivalent to the fixed step size in the Method of

Successive Average (MSA). The second term ensures that, the path swapping probability
is proportional to the relative difference between the experienced path disutility U ;’d and
the minimum path disutility 7’ , where U/, = p™ Iny'1/+T, 7, and z;’ = min , U, .

Similarly, a certain percentage of ETT vehicles are swapped to the least expected travel

time path, the route swapping probability at iteration n can be determined by

T T
1 Up — T
X

n+1 ﬁ;j

(4.23)

where Uy = p InyZ™47 4T and 7y =min, Uy
Step S: Link flow aggregation

For each day d, calculate the aggregated link volume v, , using TI flow volume

on day d and ETT flow (across every day), using equation (4.9).
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Step 6: Convergence checking
Calculate the gap function as shown in equation (4.14), if Gap < 6 convergence is
achieved, where Jis a prespecified parameter. If convergence is attained, stop. Otherwise,

go to Step 2.

4.5 Numerical Experiments

In the first set of experiments using the two-route corridor and 25-day
representation, we are interested in the following emerging questions:

1) Given low-resolution traffic information freely available from radio stations
and freeway Variable Message Signs (VMS), can additional high-quality traffic
information provision services, such as Internet-connected GPS navigation devices,
improve the system-wide average travel time or travel time reliability?

2) Typically, travelers do not have full knowledge of historical traffic patterns for
each link in a transportation network, and they acquire and update their own network
knowledge based on their past experienced travel time on travelled routes. Recently,
many websites, such as Google Maps, start to provide free color-coded maps for
displaying historical regional travel time patterns. This source provides additional
opportunities for commuters to better learn the traffic conditions and enhance their
network knowledge beyond their daily commuting routes. Can the improved network
knowledge quality necessarily improve the overall system performance? (A more
comprehensive discussion on network knowledge can be found in the dissertation by

Ramming, 2002).
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3) In addition to many real-time ATIS strategies that target on informed route
switching, many traffic management strategies, such as telecommuting, flexible working
hours, aim to reduce and smooth the overall day-to-day travel demand variations.
Transportation agencies need to quantify the benefit and then prioritize various potential
congestion mitigation solutions: increasing ATIS market penetration rates, improving
real-time data quality, or reducing day-to-day traffic demand variations?

Table 4.2 shows experimental results for the above three different strategies from
the base case with a market penetration rate of 5%, p"" =5 min and p"” = 3 min. It is

interesting to observe that all scenarios do not significantly reduce the average traffic

congestion, but they can improve the travel time reliability to different degrees.

Table 4.2- Representative traveler information provision and traffic management

strategies.
Mean travel time (min) STD
(Min)
Base case 31.06 11.81
Improve market 30.93 10.6
Improve traveler penetration rate to
information 7.5%
accessibility Improve market 30.83 9.6
penetration rate to 10%
Improve network Reduce o™ to 4 min 31.20 12.34
knowledge quality Reduce o to 2 min 31.03 11.71
Improve Reduce p" to 2 min 31.03 11.71
inf ”
;nu;)l?tr;a ton Reduce p" to 1 min 30.83 10.72
Pr(7800) =0.8 30.75 8.53
Demand Pr(8800) =0.8
Smoothing Constant Demand: 30.65 6.01
8000 veh/h
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Demand smoothing strategies produce the most effective variability reductions,
followed by traveler information accessibility enhancement strategies. Improved
knowledge quality strategies (e.g., p° =4 min) might not improve system-wide
performance, as the better information allows more ETT users to use the congested route
1 due to reduced perception errors in the average travel time.

In the second set of experiments, we use a realistic demand pattern on the two-
route corridor with a 100-day representation. The I80-E corridor is one of the major
freeways through Bay Area, California, and has been chosen for the numerical example.
Using measured traffic flow data from 03/02/2009 to 07/21/2009 between 8 AM and 9AM
(AM peak hours over 100 nonholiday weekdays).

Figure 4.4 displays the probabilistic distribution of 100 lane flow rate samples at

Sycamore Ave.
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Figure 4.4- Histogram of 100 stochastic demand flow rate samples.
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The stochastic distribution has a sample average of 1600 vehicles/hour/lane and
standard deviation 214 vehicles/hour/lane, which reveals the inherent randomness in
traffic flow. The stochastic capacity data used in the following analysis were obtained
from a recent research effort by Jia et al. (2010).

As shown in Figure 4.5(a), with a very small market penetration (y <10%), the
mean travel time is improved due to the introduction of traveler information services. As
the market penetration rate gradually increases, the mean travel time jumps considerably.
This result suggests that that average travel time saving is obtainable by maintaining the
market penetration at a low level. Shown in Figure 4.5 (b), the system-wide travel time
variability is consistently reduced as more users access traveler information, but TI users
do not necessarily have a lower travel time variability compared to ETT users, as the

assumed objection function of TI users aim to reduce day-dependent travel time.

4.6 Summary

Conventional network analysis models typically focus on finding a single-day
steady-state equilibrium solution by assuming fixed demand and constant capacity. To
systematically quantify the system-wide mobility and reliability impact of traveler
information provision strategies, this chapter presents a multiday multiclass (in terms of
information use) equilibrium model with stochastic capacity and stochastic demand. This
study offers a powerful modeling approach to evaluate how travelers with different
information accessibility adjust their route choice patterns when various sources of travel
time uncertainty, e.g., stochastic demand fluctuations and different levels of information

quality, are altered.
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Our future research will focus on the calibration of stochastic capacity and
demand distributions under both recurring and nonrecurring congestion conditions. The
proposed model can be also enhanced to consider more realistic route choice utility
functions involving both expected travel time and travel time reliability. In this case, new
path finding algorithm using multiday samples should be also developed to account for
the potential link travel time correlations due to stochastic variations in origin-to-

destination demand patterns.



CHAPTER 5

DAY-TO-DAY TRAVELER LEARNING FRAMEWORK

5.1 Introduction

Over the last three decades, the majority of the research interest in the field of
DTA were concentrated on how to improve the realism of traveler behavior
representation and demand modeling. Examples of DTA modeling innovations include
incorporating within-day and day-to-day varying demand patterns, modeling departure
time and mode choice, as well as simulating different levels of information availability.

A key foundation for development of strategies aimed at improving the efficiency
and reliability of urban transportation network is identifying the location and impact of
system bottlenecks. Although free flow capacity and queue discharge rates at system
bottlenecks have been traditionally modeled as fixed values, they are in fact random
processed. Therefore, assessing the operational impact of network bottlenecks requires
reliable and realistic tools that account for stochasticity in prebreakdown flow rates and
queue discharge rates.

Focusing on methodological and analytic enhancements to existing dynamic
traffic assignment models, this chapter presents a method to seamlessly incorporate

stochastic capacity models at freeway bottlenecks and signalized intersections, and
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develops adaptive day-to-day traveler learning and route choice behavioral models under
the travel time variability introduced by random capacity variations.

To account for different levels of information availability and cognitive
limitations of individual travelers, a set of “bounded rationality” rules are adapted to
describe route choice rules for a traffic system with inherent process noise and different
information provision strategies. Based on a mesoscopic dynamic traffic simulator,
namely DYNASMART-P (Mahmassani, 2001), this research enhances a number of key
modeling components to meet the above challenges. The enhancements include a new set
of day-to-day learning and route choice rules under the resulting stochastic travel time
variations.

This chapter is organized as follows. The second section and the third section first
introduce the conceptual route choice mechanism designed to respond to the stochastic
travel time variations. This is followed by a detailed simulation implementation
procedure in the fourth section. This chapter concludes with a case study for the real-

world network in the fifth section and overall summaries in the last section.

5.2 Overall Modeling Framework

As illustrated in Figure 5-1, a simulation-based evaluation framework is used in
this study to estimate the system performance for a multiday planning horizon under

stochastic road capacity.
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A simulation-based evaluation framework is used to estimate the system
performance for a multiday planning horizon under stochastic road capacity. The existing
version of DYNASMART-P can be deployed in three distinct modes. These modes differ
mainly in the assignment component applied. The first mode represents a one-step
simulation-assignment procedure in which vehicles are assigned to the current-best-path,
random path or any number of predetermined paths (e.g., historical paths). The second
mode represents an iterative user equilibrium (UE) procedure. The third mode is a day-to-
day system evolution modeling framework that interfaces the within-day simulation
assignment with day-to-day behavior adjustment rules. Because this day-to-day system
evolution-modeling framework was not fully developed at the outset of this project,
DYNASMART-P was enhanced to model realistic traveler response mechanisms from
multiple information classes.

In a day-to-day learning framework, users with pretrip and en-route information
always start from a habitual path. If pretrip/en-route information becomes available, they
will rely solely on the pretrip or en-route information to make route switching decisions.
If a driver does not acquire any traveler information, he or she will rely on the historical

experiences and starts the trip following the habitual (historical) path.

5.3 Day-To-Day Traveler Learning and Route Choice Model

As has been stated previously, conventional traffic assignment methods assume
static, deterministic road capacity. Therefore, the travel time of a path only depends on
the flow pattern on that path. In other words, for a fixed network-wide path flow pattern,

the corresponding path travel times do not change. However, real-world road capacities
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vary with time over a certain range, and a driver’s travelling experience on a single day
can be dramatically affected by the underlying realized capacity values on that particular
day. In other words, travelers will experience different travel times on the same path over
different days even for the same path flow pattern because of the inherent travel time
variability introduced by stochastic capacity. As a result, conventional "within-day" or
iterative route choice methods for reaching user equilibrium, such as the method of
successive averaging (MSA), may not enable drivers to recognize and appropriately
respond to the travel time variability/unreliability resulting from capacity fluctuation. A
theoretically rigorous and practically useful traveler route choice model is crucially
needed in order to adaptively capture the stochastic day-to-day travel time evolution
process and also to maintain robustness under disruptions due to stochastic capacity
reductions. To this end, a new route choice mechanism is proposed to simulate the
drivers' route choice behavior under stochastic traffic process noise. By comparison,
conversional stochastic assignment models focus on traveler perception errors under a
deterministic traffic environment. The proposed mechanism includes two key
components: a route choice learning module and a route choice decision module. In
addition, different user classes, which receive and perceive different types of traffic

information at different decision points along trips, are further investigated in this study.

5.3.1 Conceptual framework

The day-to-day learning framework proposed by Hu and Mahmassani (1997) and
Jha et al. (1998) provides a promising path for seamlessly integrating stochastic capacity

models in the DTA simulator for large-scale networks. Generally speaking, the learning
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behavior in such a day-to-day learning framework is determined by each vehicle’s
historical traveling experiences, the traveler information obtained before and during the
trip, as well as newly experienced travel times on the current day.

Conceptually, our proposed model includes three components:

Traffic flow assignment model:

fi =A% T w?) (5.1)

Stochastic traffic system simulation process:

t4 = S(f) + wd (5.2)

Travel time perception model:T¢ = t¢ + £¢ (5.3)

where

4 = assigned route flow pattern on day d, determined by traffic assignment
model/function A("),

t%= true travel time on day d, determined by dynamic assignment/simulation
function S(-),

w?= the system noise introduced by the stochastic capacity,

T4= the observed travel time by a traveler,
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€% = the traveler perception error associated with perceived travel time in the
network, introduced by the sampling error associated with personal experience and
quality of information.

It should be remarked that most existing day-to-day learning models are

implemented with stable road capacity, which assume no system noise, i.e., w% =

, SO
the travel time t¢ is a deterministic vector for a given set of route flows, f¢ in equation
(5.2). Accordingly, the focus in the previous research has been on how to reach the
deterministic steady-state conditions, and how to construct realistic learning/updating
models for the travel time perception error term £¢ related to equation (5.3).

In this study, we enhance a dynamic traffic flow simulator, namely
DYNASMART-P, to describe a traffic simulation process with day-to-day varying

@ in equation (5.2). Corresponding to the traffic flow assignment model,

system noise, w
Equation (5.4), a day-to-day learning module is presented to describe adaptive traveler
behavior across multiple days in a stochastic traffic evolution environment. The essential
idea for the learning module is to enable certain users to use their historical traveling

experiences to construct their estimates and make decisions under uncertain system travel
times (introduced by the system noise w%). To simplify the route choice rules, we assume
&’ =0in our following discussion. As a result, the proposed model does not involve the
use of a Probit or Logit model to assign traffic flows and does not require a travel

perception error updating process.
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5.3.2 Route choice utility function and simplified route switching rule

Jia, Zhou, Li, Rouphail and Williams (2010) adapted a behaviorally sound route
choice utility function, proposed and calibrated by Brownstone and Small (2004) and

Lam and Small (2001), to consider the stochastic nature of traffic systems.

GT=T+@><TSD+@=T+,B><TSD+ TOLL
yot Vot Vot

(5.4)

where

GT= the generalized travel time,

T = the expected travel time for traveler,

TSD = perceived travel time variability.

p = reliability ratio (computed as the ratio of Value of Reliability (VOR) and Value of
Time (VOT)).

Toll = road toll charge, and it is assumed to be zero in the following discussions as no
toll-related strategies will be evaluated in this paper.

It has been well recognized that travel time variability and reliability are
important measures of service quality for travelers. In the above utility function, equation
(5.4), the travel time standard deviation (7SD) is used to measure system travel time
variability associated with the underlying stochastic traffic process. This contrasts with
the perception error variance in a deterministic assignment model. For a single traveler v,
the route choice decision is made by comparing the generalized travel time of habitual

path, GT}, and that of alternate path, GT,%.
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GT'>GT* (5.5)

where
v = traveler index,
h=index for habitual path, and
a=index for potential alternative path.

According to Equation (5.4), if the generalized travel time of the habitual path,
GT], is greater than that of alternate path, GT,*, as shown in Equation 8, a vehicle should
switch his route from the habitual path to the alternative path. The resulting decision rule

could be derived as:

T -1 > B(TSD; —TSD ) (5.6)

In this study, T is equal to T2 %471

as calculated in equation (5.7). In order to
take a traveler’s multiday travel time experience into account. T is calculated using the

estimated travel time on the shortest path. It should be noted that the calculation of

Tivaries for different user classes, which will be discussed in section 5.3.3.

T(Pj‘K)+ T(]’vd‘K+‘)+...+T(13V"‘1)

= (5.7)

Fd-K,d-1 _
Tv =

where d = day index

K = number of days in the learning memory window
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T4~K471= traveling experience (i.c., average travel time) for traveler v from day d-K to

day d-1, on a particular path,
T(PE™1) = travel time on pathP2™1, and P41 is the path traveled by vehicle v on day d-
1.

The right side of equation (5.6) can be viewed as the minimum acceptable
absolute tolerance needed for a route switch decision. This value arises from three
components: the reliability ratio 8, the standard deviation of travel time on the habitual
path TSD!? and the standard deviation of travel time on the alternative path TSDZ. The
calibration study from Noland et al. (1998) indicated a reliability ratio value of § = 1.27
based on survey data from more than 700 commuters in the Los Angeles region. The
setting of parameter K depends on the signal-to-noise ratio in the traffic system.
Specifically, the more stable the travel time process, the smaller K can be and still yield a
reliable mean travel time estimate. In general, K must be large enough to filter out the
process noise from the stochastic traffic system.

The travel time variability measure, TSDX, for the habitual path can be calculated
from multiday travel times experienced by the traveler. The remaining challenge is how
to estimate the standard deviation of travel time on the alternative path, TSDJ, where the
traveler has little or no experience on this path. When there is no external pretrip or en-
route information available, TSDJ needs to be calculated from the traveler’s prior
experience. To our knowledge, there is no widely accepted method to calibrate the
standard deviation of perceived travel times on alternative paths for travelers without
access to advanced traveler information systems and relying on prior knowledge only. In

this research, we assume TSDZ is significantly larger than TSD? due to the lack of
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precise information and the high level of uncertainty associated with the perceived
alternative travel time. The calibration of the minimum acceptable absolute tolerance was
beyond the scope of this study. Therefore, this research uses a simplified, single term
model, S (TSD,‘,‘ - TSD,’,‘), to represent the minimum acceptable absolute tolerance
needed for a route switch decision. This simple model is intuitively sound, and using it
eliminates the need for extensive calibration efforts.

In this study, a bounded rationality model, which states that a driver’s decision
depends on their desired satisfaction level, is adapted to make the route choice
comparison. The bounded rationality concept is employed because there has been
growing attention (starting from the early work by Mahmassani and Herman (1990) to
bounded rationality since Herbert Simon (1995) pointed out that perfectly rational
decisions are often not feasible given the limits of human cognition.

Based on the minimum acceptable absolute tolerance and the relative acceptable
tolerance, a set of bounded rationality rules, shown in Equation (5.11), are used to
describe users' route switching behavior. As opposed to the optimization theory in which
users select the best option from all possible decisions, in the bounded rationality

approach, users perform limited searches, accepting the first satisfactory decision.

5 =

- md-K.d-1 _ mqa h
{1 if T T >MAX[0:,2,><TV]} 5:9)

0 otherwise

where

0 =1, switch to an alternative path; 0, remain on the habitual/ current path,
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a = Minimum acceptable absolute tolerance needed for a switch and a = B(TSDZ —
TSDy),

A = Relative acceptable tolerance (i.e., relative improvement threshold).

5.4 Conceptual Simulation Framework and System Implementation

The system evolution-modeling simulation framework for the enhanced version
of DYNASMART-P is illustrated in Figure 5.2. In the proposed modeling framework,
static demand (i.e., the same number of vehicles with fixed departure times) is simulated
over different days.

In the above conceptual simulation framework, three critical inputs (illustrated in
the input boxes in Figure 5.2) should be prespecified by users, which are listed as follows:

e Time-dependent traffic demand,

e Bottleneck locations,

e Percentage of unequipped, pretrip and en-route users,
e Parameters of the bounded rationality rule.

The following day-to-day learning procedure is developed in this study to
realistically model the incremental adaptation of traveler route selection behavior to the
implementation of targeted strategies for improving sustainable flow rates within the

network.
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Given the stochastic nature of the improved traffic models, changes in preferred
paths are made based on running averages with a fixed look-back period and a minimum
travel time improvement threshold. The number of travelers that are willing to change
planned routes is limited to ensure a stable route switching response. The route choice
model enables driver classes with access to pretrip or en-route information to select
alternate routes in response to random queues on their preferred routes. Minimum travel
time improvement thresholds are also used for the dynamic route choice model.
Notations
d = day index
K = number of days in the learning memory window
i = origin index
J = destination index
v = traveler index

7 = departure time interval
pim = least travel time path for OD pair (i, j,7) on day d

d
i,j,r

725,, = least travel time for path p

p! = path traveled by vehicle v on day d

T, = average travel time for traveler v traveling on the path p! from day d-K to day d

a = absolute improvement threshold bound for bounded rationality rule
f = relative improvement threshold for bounded rationality rule
The day-to-day learning simulation algorithm is detailed as follows.

Initialization Set the iteration counter of outermost loop d=0.
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0. Generate information user class for each vehicle according to prespecified
market penetration rates.

1. Identify traffic bottleneck locations in the network according to the network
topology and number of lanes, and then output freeway merge/diverge/weaving
bottleneck locations to input data block A.

Day-to-day Traffic Simulation

2. Generate random capacity input for each freeway bottleneck every 15 minutes,
according to calibrated stochastic headway models for merge, diverge and weaving links.

3. Generate random capacity input for each arterial link at the beginning of each
signal cycle, according to a calibrated stochastic headway model for arterial streets.

4. According to network-wide prevailing travel time, generate pretrip and en-route

shortest paths for each origin-destination pair.

5. Load vehicles into the network with their habitual paths p?.

6. For each vehicle equipped with ATIS information (pretrip or en-route),
compare the prevailing travel time between the habitual path and the suggested path from
ATIS strategy, fetch bounded rationality rule parameters for different information classes
from input data blocks B and C, and change the vehicle’s path to suggested path from the
pretrip or en-route information provision services if the relative and incremental
improvement thresholds are satisfied.

7. Given updated flow pattern from the route switching module, perform a
dynamic network assignment under stochastic capacity for the entire planning horizon.

Post-trip Traveler Learning and Route Switching Decision

8. Obtain the percentage of travelers willing to learn from data input block D.
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9. For each vehicle v willing to switch, obtain its current path on day d. calculate

. —d-K.d
the mean travel time 7, from day d — K to current day d.

10. Based on the time-dependent network-wide travel time database, generate the

least travel time path pi ;- as a post-trip alternative route for OD pair (i) and departure

time 7, and calculate the corresponding travel time mf'j,f.

11. Update habitual paths according to the bounded rationality rules and the

parameters are specified in data input block E.

If (78, +a)<Tv" Or 7t <TV " x(1-f)

1,7
then switch route to the shortest travel time path; that is, set pS=p; ;- Otherwise, remain

on the current habitual route on day d.
12. Stability checking: if the current flow pattern is stable or the network-wide

traveler switching rate is close to steady-state conditions, then stop. Otherwise, continue.

5.5 Case Study

The proposed simulation frameworks are applied to a real-world subarea network
within the Portland, Oregon metropolitan area in order to demonstrate the model
applicability and usefulness. The subarea network selected for this purposes is illustrated
in Figure 5.3. It is relatively large in size and therefore represents a good opportunity to
test scaling issues associated with the method applications. The network (Figure 5.3)
includes 858 nodes, 2000 links, and 208 origin-destination zones. Among the 858 nodes,
169 of them are modeled as signalized intersections with actuated control and the

remaining are modeled at uncontrolled nodes with capacity constraints.
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Figure 5.3- Portland network study area.
Source:SHRP2 CO05 Final Report (2010)

In this case study, the percentage of vehicles assigned to each of three available
user classes was as follows: 98% of drivers were assumed to have no access to real-time
information about network conditions (referred to as the “unequipped” user class); 1%
were assumed to access pretrip information only (referred to as the “pretrip” user class);
and 1% were assumed to have access to continuous en-route information (referred to as
the "en-route" user class). Among the unequipped users, the percentage of drivers who
are willing to make a route change in any given day was set to 15%. The number of days
in the learning window was set to K = 5. Therefore the mean travel time was calculated

from the experience of day d-5 to day d-1. This mean travel time represents each driver's
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historical traveling experience. The calibrated parameters of the stochastic models
described in section 3 were applied to generate stochastic capacity and queue discharge
flow rates for freeway bottlenecks (i.e., on-ramp and lane drop segments) and saturation
flow rates for signalized arterials. For simplicity, the minimum acceptable absolute
tolerances used in bounded rationality rule are 5 minutes for unequipped users and 2
minutes for pretrip/en-route users. The default value of the relative switching threshold is
set to 20% in this study.

In the case study by Jia, Zhou, Li, Rouphail and Williams (2011), the simulation
run is performed over 100 days of simulated time in order to effectively generate realistic
results. Figure 5.4 shows the network-wide average travel time and route switching rate

of total vehicles segmented in three time regimes.
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Figure 5.4- Network-wide simulation results.
Source: SHRP2 CO05 Final Report (2010)
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In this study, for example, during the baseline stabilization period (Regime I in
Figure 5.4) 50 days are simulated to achieve a stable baseline scenario. The average
travel time diminishes significantly during the first 40 days and stabilizes afterwards.

After the baseline stabilization period was completed, the operational and/or
construction strategies to be evaluated were introduced into the network, and we carried
out the simulation process for an additional 30 days to allow driver adjustments and
achieve stable conditions under the new scenario. This is referred to as the strategy
stabilization period and is illustrated as Regime II. Following immediately upon this 30-
day period was a simulation of an additional 20 days (Regime III in Figure 5.4) that
formed the basis for the summary results output associated with the particular strategy
being investigated. In regime III, although the average travel time or switching rate is
relatively stable, there are still obvious day-to-day fluctuations, because the travel time
experience on a single day can be dramatically affected by the underlying stochastic
capacity features. Therefore, evaluation of network performance only based on the last
simulation day (last iteration) is not recommended and new reliability-oriented system
performance measures should be applied to take multiple days into account. In this study,
for example, the simulation results from the last 20 days were used to report the network

performance.

3.6 Summary

In this study, methodological and analytic enhancements to existing dynamic
traffic simulation models have been proposed for the purpose of increasing the realism

and sensitivity of the models in simulating real-world network and the effects of strategy
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applications. The particular focus is on how to seamlessly integrate stochastic capacity
models and compatible route choice models within a stochastic capacity environment.
These enhancements have been prototyped and tested through a mesoscopic DTA
simulator, DYNASMART-P, and could be easily incorporated into other dynamic traffic
simulation/analysis models as well. The study described in this paper provides the
following contributions to the existing DTA models:

e An innovative simulation platform incorporating stochastic road capacity for both
freeway and arterial links, which enables reasonable and realistic modeling of
travel time.

e A new set of day-to-day learning and route choice models which enables a
realistic representation of drivers’ route selection process and -effectively
stabilizes overall network flow under stochastic capacity conditions.

e Practical modeling guidelines which are effective for the enhanced DTA model to
simulate various capacity-enhancing design, operational, and technological

strategies.



CHAPTER 6

ANALYTICAL MODELS ON DERIVING TRAVEL TIME

VARIABILITY DISTRIBUTIONS FROM STOCHASTIC

CAPACITY DISTRIBUTIONS

6.1 Introduction

Travel time reliability has been widely recognized as an important element of a
traveler’s route choice and departure time scheduling decision. In recent years, operating
agencies have begun to shift more focus toward monitoring and improving the reliability
of transportation systems, in addition to ensuring the mobility performance measures.
With a growing trend of incorporating trip time variability into traveler information
provision systems, many ongoing Intelligent Transportation Systems (ITS) development
efforts are devoted to establishing probe-based data collection systems.

As an essential attribute in travelers’ route and departure time decision, travel
time reliability serves as an important quality-of-service measure for dynamic
transportation systems. Dong and Mahmassani (2009) recently developed a statistical
approach to calibrate the travel time reliability measure as a function of flow rates, and
the resulting regression models were used to predict trip reliability costs and user benefits

for a given set of flow rates obtained from dynamic traffic assignment/simulation results.
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Another approach for systematically estimating travel time variability in a traffic
network is to perform a day-to-day dynamic traffic assignment module, where the travel
time patterns evolve depending on a number of variability sources, e.g., stochastic
capacity, stochastic demand and random route choice behavior. Although this approach
provides a fully dynamic and stochastic modeling environment for studying various
uncertainty sources and assessing the benefits of traffic management strategies, it still
requires considerable data collection, calibration and computational efforts to perform
realistic day-to-day assignment results.

This chapter investigates a fundamental problem of quantifying travel time
variability from its root sources: stochastic capacity and demand variations that follow
commonly used log-normal distributions. A volume-to-capacity ratio-based travel time
function and a point queue model are used to demonstrate how day-to-day travel time
variability can be explained from the underlying stochastic demand and capacity
distributions.

This chapter also uses simplified peak-hour demand profiles to estimate time-of-
day or time-dependent travel time variability functions at traffic bottlenecks. The
proposed models provide theoretically rigorous and practically usefully tools to
understand the causes of travel time unreliability and evaluate the system-wide benefit of
reducing demand and capacity variability.

Given a set of observed or simulated traffic conditions, e.g., traffic flow and
queue profiles on a link or a corridor, this study aims to provide efficient analytical
approximation methods to specify the PDF of travel time distributions as a result of

stochastic capacity and demand distributions. Focusing on planning-level applications,
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the goal of our proposed research is to enable a quick characterization of travel time
reliability statistics without resorting to the comprehensive but computationally
challenging day-to-day simulation or numerical approximation approaches. We also
envision that an efficient travel time variability estimation module can be extremely
useful in a real-time traffic information provision system where travel time reliability
information needs to be rapidly predicted based on a set of predicted traffic conditions
(e.g., for the next 30 minutes). In this case, travel time reliability statistics calibrated from
the archived travel time database are insufficient or difficult to predict future system
performance variations, which are highly dependent on the dynamic states of prevailing
and future traffic conditions, rather than the steady-state historical pattern.

In addition, we are interested in estimating the time-dependent travel time
variability for a traffic bottleneck. Congestion caused by bottlenecks contributes about 40%
of the nationwide urban congestion. As a bottleneck is activated when the provided
capacity is insufficient for and restricts the incoming traffic flow, it is critical to achieve a
better understanding on how the travel time variability at bottlenecks are contributed by
variations of its incoming flow and queue discharge flow. To this end, we will derive and
construct analytical relationship between the capacity change and the waiting time
change on a bottleneck, by extending theoretical results from the link cost marginal
analysis for traffic queuing systems.

This chapter is organized as the following sequence.

(1) Several key statistical properties of log-normal distribution are reviewed,
which is a state-of-practice distribution used in many empirical studies for describing

travel time variability.
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(2) By assuming log-normal distributions for stochastic demand and capacity, and
in the context of the BPR function as travel time performance functions, this chapter
aims to prove that the resulting travel time follows a log-normal distribution, so the travel
time variability can be analytically derived from the variation parameters in demand and
capacity.

(3) Furthermore, a more realistic point queue model is considered, and under an
assumption of log-normal distributions for stochastic capacity variations, the
corresponding total waiting time can be characterized through log-normal distributions.

(4) This chapter then uses simplified peak-hour demand profiles to derive time-of-
day travel time variability functions at a traffic bottleneck.

(5) A simple case study with real-world data from the 1880 corridor in the Bay

Area, CA is conducted to demonstrate and verify the proposed analytical methods.

6.2 Review of Statistical Properties of Log-Normal Distribution

There are a wide range of probability distributions available, such as Weibull and
normal distributions, to describe travel time variability and its sources of randomness.
The reason for selecting the log-normal distribution in the proposed analytical framework
is based on (1) its goodness-of-fit on empirical data, and (2) its attractive mathematical
properties for multiplicative functions of log-normally distributed random variables,
which are particularly useful for conceptualization, formalization, and abstraction in
travel time variability study.

In general, the Gaussian (normal) distribution has been widely used to

characterize symmetrical random variations. For many skewed variations, for example,
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mean values are low but variances are large, the log-normal distribution can achieve a
desirable fit. More importantly, what we should recognize the major difference between

normal and log-normal distributions is their additive vs. multiplicative effects. Specially,

if X; ~N(u j,of) ,then Y = ZX ; is also normally distributed.
j

For functions of log-normally distributed random variables, there are the

following properties (Aitchison and Brown, 1957).
1

Property 1: If X ~ LN(u,0"), then variable Y X is also log-normally
distributed, Y ~ LN(—u,07).

Property 2: If X, ~LN (,uj,ajz.) are n independent log-normally distributed

variables, then product Y =H’;:l X, is also log-normally distributed as

Y~LNQ w0 0)).

Property 3: If X ~LN(x,0°) and a # 0, then ¥ = X is also log-normally
distributed as Y ~ LN(au,a’c’).

Property 4: If X ~ LN(1,07), then ¥ = aX is also log-normally distributed as ,
Y ~LN(Ina+ u,0%)

Property 5: If X ~LN(u,0°), then X +c¢ becomes a shifted log-normal
distribution with E[X + ¢] = E[X] + cand Var[X + ¢] = Var[X].

1
+=o?

E[X]=¢"2",

Var[X]= (e —1)e**
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1 s
SD[X]=VarlX]=¢" 2" (e -1
Property 6: Sum of lognormal

Consider Y =Z’;:1X ; » where X, ~LN(yj,0'f) are independent log-normally

distributed variables There is no closed-form expression available to describe the

stochastic distribution of Y, but random variable Y can be numerically approximated by

another log-normal distribution Z at the right tail.

6.3 Deriving Travel Time Variability Distribution Based

on BPR Function

Consider the following BPR function on a single link or corridor,

ad v
T=FFTT><(1+0{><[E} JzFFTT+FFTT><ax[E} 6.1)

where T= travel time

FFTT = Free-flow travel time,
V = link volume,

C = link capacity

Coefficients ¢ and f can be set to commonly used default values 0.15 and 4,

respectively.

Proposition 1: If incoming demand and capacity are assumed to be log-normal

variables, thatis, V ~ LN(u,,o,)and C ~ LN(u.,0}), then
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T ~ LN (In(FFTT x &) + B x (pt, — 1), B> x (0} + 02)) + FFTT (6.2)

Proof:

According to property 1, since the link capacity ¢ is a log-normal variable,

1
i LN (-u.,00)-

According to property 2, since the demand V' and % are log-normal variables,

14 1
E:VXENLN(M—#C,U;%JFU@

s
According to property 3, (%j ~ LN (ﬂ x (1, — p1), 2 x (o2 + aé)).
According to property 4,
s
FFTT x a % (%} ~ LN (In(FFTT x &) + B x (1, — ), B> x (07 + 52))-

According to properties 5 and 6,

T ~ LN (In(FFTT x &) + B x (1, = ), B> x (0} + 02) )+ FFTT

and E(T) = exp(In(FFTT x &)+ B x (1, — i) +%x B’ x (o) +0l)-

The coefficient of variations =SD(T)/E(T) = \/exp [(ﬂz x (o) + 0} ))] —1 , where

SD(T) can be derived from Property 5.
End of proof.
In summary, if both road demand and capacity are log-normally distributed, then

the resulting travel time is a shifted log-normal variable with analytical form for the
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expected value and variance. Using those properties, one can quantify how reducing

variations in the source of randomness affects the overall travel time variability.

6.4 Deriving Travel Time Variability Distribution

Based on Point Queue Model

In this section, we consider a bottleneck with a study time horizon from 0 to time
H. The stochastic capacity, more precisely, queue discharge rate Q for a point queue
model at the bottleneck can be described as a shifted log-normal function

O ~ LN(Q™, u,,0,), where shift = the maximum queue discharge rate 0™ That is, O
= 0™ AQ, where AQ is the deviation of queue discharge rates and AQ ~ LN (p,,0,).

Note that we assume a constant queue discharge rate for each congestion period in this
study, where the actual queue discharge rates can slowly evolve as a time-varying
parameter within the same congestion peak period. As the theoretical development in
this chapter involves both static V/C-based BPR function and point queue model, it is
important to highlight two key differences between these two models. First, the point
queue model assumes zero delay unless V > C, while a BPR-type function still produces
delays when V<C.

In addition, a traffic queuing model needs to clearly distinguish prebreakdown
flow rates (that triggers the change of traffic states from uncongested to congestion) and
queue discharge flows (after a breakdown occurs), and these two types of flow rates are
time-dependent. A travel time performance function like BPR functions, on the other

hand, simply uses hourly capacity to characterize the overall congestion level.
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For simplicity, we first assume constant demand in this example. Using a known
(time-dependent) demand pattern, and the maximum queue discharge rate O™, we can
use the point queue model to calculate the queue profile, characterized in the input-output
queuing diagram shown as Figure 6.1, where curves 4 and D represent vehicle upstream
arrival pattern and downstream departure pattern, respectively. All the curves are
expressed in terms of cumulative numbers of vehicles, where the slop of a departure
curve indicates the queue discharge rates of vehicles at the bottleneck.

In the point-queue model, the horizontal distance between curves 4 and D shows
the waiting time of a vehicle, and the total waiting time is denoted as W. The vertical
distance between curves 4 and D shows the number of vehicles accumulated in the queue
starting from time s to dissipating at time e. The area between two curves, 4 and D in
Figure 6.1, represents the total queuing delays of all vehicles. The following discussion
aims to construct a probability distribution function of the total waiting time W.

To evaluate the impact of flow switching strategies in the dynamic traffic
assignment process, a variety of studies have been conducted for computing local link
marginals due to adding or deleting a vehicle from a link. Ghali and Smith (1995) used a
deterministic point queue model to describe traffic flows and gave analytical formula to
quantify the marginal impact of total link travel time due to a small change in incoming
flow. In particular, the marginal improvement with respect to adding or deleting a

vehicle is approximately proportional to the time interval from a vehicle entering time ¢ to

the end of congestion e, that is, the system-wide marginal travel time change is m = (e—t).
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Cumulative
flow count

Time

Figure 6.1- Local link marginal delay evaluation method for vehicle entering at time ¢.
(based on figure by Ghali and Smith (1955))
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In Figure 6.2, we can derive the impact to the total waiting time due to one unit of
departure flow change at time ¢ .If we consider the queue discharge rate is changed by
one unit for the congested period from time s to e simultaneously, then the total system-

wide waiting time change AW is
IAQ(e—x)dszAQx(e—s) =A0x M, (6.3)
where AQ is the capacity change rate and M is the queue duration.

A Marginal delay due to one unit of departure
flow increase at time t; equals the hashed
area, which is equal to the gray area

S t Time e

Figure 6.2- Local marginal delay evaluation method for one unit of departure flow
change at time t.
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Shown in Figure 6.3, we can have the following geometric interpretation for the

key formula used in this study
AW =%><(AQ)><M2 (6.4)

where AQ is the capacity change rate and M is the queue duration.
Note that the total system-wide waiting time is the area between the cumulative

curves 4 and D.

Total delay change due to one unit of
NA queue discharge rate increase
between s and e equals the hashed
area, which can be approximated by
the gray area

- >
/ Queue Duration M
‘ >

S Time €

Figure 6.3- Total delay change for one unit of discharge rate change for the entire
congestion duration.
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The change of total waiting time (a change in queue discharging rate) can be

approximated by
%x[D'(e)—D(e)]x(e—s) ~ %x(AQ)x(e—s)x(e—s) :%X(AQ)XM2 (6.5)

where D'(e) — D(e) is the height of the “change” hashed triangular, which can be roughly
approximated by (AQ)x (e—y5s).

M = e — s corresponds to the width of the “change” triangular.

Proposition 2: If the variations of queue discharge rate Q is assumed to be a log-

normal variable, thatis, AQ ~ LN(u,,0,), then the total waiting time variability can be

described by
AW~LN(ln(%M2)+yQ,O'§J (6.6)

Proof:
According to property 4, since AQ is a log-normal variable,

AW = %x (AQ)x M* also follows a log-normal distribution

1
AW ~ LN[ln(5M2)+yQ,o-éj.

End of Proof.
A useful implication from proposition 2 is that the entire congestion duration of a

queue is the leading factor that determines delay variability, and a longer queue duration
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leads to higher variability. In other words, travel time reliability is more sensitive to
queue duration than mean queue length. As illustrated in Figure 6.4(a), two congestion
periods have the same duration length (M= M,) but different total waiting times (W ,<W>),
the derived analytical formula in equation (6.6) indicate that their waiting time variability
has the same magnitude if the queue discharge rates follow the same distribution. On the
other hand, even the first congestion period in Figure 6.4 (b) has a smaller waiting time
than the second congestion period (W,<W;), and the travel time unreliability associated
with the first period is higher because M>M,.

Recently, many research efforts (i.e., Bates et al., 2003) are devoted to using
empirical data to calibrate the relationships between Coefficient of Variation (CV) and
Congestion Index (CI) as equation (6.7). As shown in our analytical derivation,
congestion duration M should have a stronger correlation with the coefficient of variation,

compared to the average travel time.

cv =yCI’ (6.7)

where CV=Standard deviation /mean of travel time
CI = Mean travel time / Free-flow travel time.
v = Constant or scale factor

0 = elasticity coefficient for congestion index
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(a) Time

Time

(b)

Figure 6.4- Waiting time variability in different queue duration cases.
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Considering both stochastic incoming flow and queue discharge rates, a nature
extension is to incorporate stochastic demand into the above framework using the

following generalized flow change formula.
AW:%X(AQ+AR)><M2 (6.8)

where AR 1is the change of incoming demand/flow.
Although there are approximation models available for representing the sum of
two log-normal variables as a single log-normal variable, according to property 6, the

random distribution AQ + AR does not have a closed-form formula for the resulting u

and o.

6.5 Deriving Time-Dependent Delay Variability Distribution

The above analysis calculates the waiting time variability for the entire congestion
period over a long analysis horizon, and it is also desirable to quantify the time-
dependent delay variability for any given timestamp within the congestion period, in
order to estimate and further control the travel time variability under a dynamic and
stochastic environment in a finer time resolution.

In the following discussion, we consider a point queue system with a time-

dependent demand profile as shown in Figure 6.5.
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Figure 6.5- Time-dependent queuing evolution diagram.

From time 0 to time e, each realization of stochastic queue discharge rates

remains as constant Q. From time 0 to time p, the arrival rate 4 is higher than outgoing

flow rate Q, leading to an increasing queue length profile up to L™,

In this first congestion building up period, the queue length at time 7 is

L(t)=(A-Q)xt

(6.8)

The time-dependent waiting time for vehicles arriving at the stop bar of the queue

system is the prevailing queue length L(¢) divided by the (constant) queue discharge rate

0:
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W(t):ﬂz—u_Q)
0

A A
xt=(=-1)xt="—xt—t (6.9)
0 (Q ) 0

Proposition 3: If incoming flow rate A and queue discharge rates Q are assumed
to be log-normal variables, then delay W(¢) at time t is a shifted lognormal distributed

variable.

Proof: If both 1 and Q are log-normally distributed, then their ratio is also a log-

normal variable, according to Properties 1 and 2, A LN (g, — g, o+ o-g) .
0

By further considering the multiplier of time index ¢,

W(t)~LN(Int + u, —,UQ,O'; +Jé)—t.

End of Proof.

Based on the above proposition, the time-varying or time-of-day delay variability
W(¢) is still determined by the underlying demand and capacity randomness, and one can
analytically estimate the mean and variance of W(¢) for given stochastic demand and flow
distributions. Furthermore, as the parameter u for random variable W(f) increases as
congestion time ¢ advances (that is, through function of Ln(t)), the time-dependent delay
variability rises when traffic congestion gets worse.

In this congestion dissipation period from time p to time e, the arrival rate A’ is
lower than queue discharge flow rate Q, so the queue length is gradually reduced from

L™ to 0. The corresponding queue length at time ¢’ is

L(t")y=L"" +(A'-Q)x(t'- p) (6.10)



133

and the delay at time #' is

U L(t') LM‘U‘ /”"_Q ' ﬂ’_Q ﬂ"_Q U
W; t = = X (f'— = x (t'—
© 0 0 ’ 0 “=p Q P 0 “=p (6.11)
A A

=—p+—x(t'-p)—-p-(t"-
QP+Q( p)—-p—(t'-p)

There are three elements in equation (6.11), it is easy to show that random

1

variables é p and %x (t'- p) are log-normally distributed, but W (¢') does not have a

closed-form expression as the sum of log-normal variables. As A p and %x(t '—p)

share the same random variable Q in the denominator, these two variables is more likely
to be statistically correlated. As a result, the numerical approximation formulas suitable

for Property 6 are not applicable here due to the violation of independence assumption.

6.6 Calibrating Probability Distributions

Recent empirical research (Brilon et al., 2005; Jia et al., 2010) indicates that
highway capacity can be characterized as a random variable. In this section, we use a data
set for a bottleneck at the 1880 freeway corridor, San Francisco Bay Area to calibrate
statistical distributions of capacity (long-term capacity C in the static traffic assignment
model and queue charge rate Q in the point-queue model) and incoming demand flow
rates. To calibrate queue discharge rates, the volume, speed and occupancy data are
extracted from the PeMS database covering from 01/01/2007 to 09/30/2008. To verify

the travel time variability prediction results, the flow volume and travel time index
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measures are collected and processed from 03/01/2009 to 07/30/2009 between 8AM and
9AM (morning peak hour).

The 15-minute queue discharge rate after the breakdown (Figure 6.6) is provided
by Jia et al. (2010). We can obtain a shifted log-normal distribution with the following
probability density function (Figure 6.7). Figure 6.8 shows the log-normal probability
density function for demand flow rate distributions. The detailed definitions of

prebreakdown flow rates and queue discharge rates are provided in the paper by Jia et al.

(2010).

1 _[In@-y)—u]?
fX=(r;,u,0")=me 202 , x>0 (612)
where

x = random variable

y = the shift parameter

u« = the mean of the variable's natural logarithm, and

o = the standard deviation of the variable's natural logarithm.

In the last row of Table 6.1, the measure of travel time index (TTI) is defined as a
ratio of travel time /FFTT, as FFTT 