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ABSTRACT 

 

Traffic congestion occurs because the available capacity cannot serve the desired 

demand on a portion of the roadway at a particular time. Major sources of congestion 

include recurring bottlenecks, incidents, work zones, inclement weather, poor signal 

timing, and day-to-day fluctuations in normal traffic demand. 

This dissertation addresses a series of critical and challenging issues in evaluating 

the benefits of Advanced Traveler Information Strategies under different uncertainty 

sources. In particular, three major modeling approaches are integrated in this dissertation, 

namely: mathematical programming, dynamic simulation and analytical approximation. 

The proposed models aim to 1) represent static-state network user equilibrium conditions, 

knowledge quality and accessibility of traveler information systems under both stochastic 

capacity and stochastic demand distributions; 2) characterize day-to-day learning 

behavior with different information groups under stochastic capacity and 3) quantify 

travel time variability from stochastic capacity distribution functions on critical 

bottlenecks.  

First, a nonlinear optimization-based conceptual framework is proposed for 

incorporating stochastic capacity, stochastic demand, travel time performance functions 

and varying degrees of traveler knowledge in an advanced traveler information provision 

environment. This method categorizes commuters into two classes: (1) those with access 
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to perfect traffic information every day, and (2) those with knowledge of the expected 

traffic conditions across different days. Using a gap function framework, two 

mathematical programming models are further formulated to describe the route choice 

behavior of the perfect information and expected travel time user classes under stochastic 

day-dependent travel time.  

This dissertation also presents adaptive day-to-day traveler learning and route 

choice behavioral models under the travel time variability. To account for different levels 

of information availability and cognitive limitations of individual travelers, a set of 

“bounded rationality” rules are adapted to describe route choice rules for a traffic system 

with inherent process noise and different information provision strategies. In addition, 

this dissertation investigates a fundamental problem of quantifying travel time variability 

from its root sources: stochastic capacity and demand variations that follow commonly 

used log-normal distributions. The proposed models provide theoretically rigorous and 

practically usefully tools to understand the causes of travel time unreliability and evaluate 

the system-wide benefit of reducing demand and capacity variability.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Background 

Traffic congestion problems lead to a wide range of adverse consequences such as 

traffic delays, travel time unpredictability, and increased noise pollution as well as 

deterioration of air quality. Broadly speaking, traffic congestion occurs because the 

available capacity cannot serve the desired demand on a portion of roadway at a 

particular time. As shown in Figure 1.1, Major sources of congestion include physical 

bottlenecks, incidents, work zones, bad weather, poor signal timing, special events and 

day-to-day fluctuations in normal traffic (Cambridge Systematics, 2005).  

Considerable research efforts have been devoted to understanding and quantifying 

the effectiveness of different traffic mitigation strategies in addressing various sources of 

delay. For instance, recurring congestion due to physical bottlenecks can be mitigated 

through road capacity enhancement. Real-time traffic information dissemination can 

reduce negative impacts of disruptions of nonrecurring congestion due to traffic incidents 

and special events. The success of advanced traveler information systems depends on 

careful planning and an integrated system-level perspective, which calls for advanced 

transportation analysis tools to estimate how effective information provision and tolling  
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strategies can encourage route/departure time/mode switching to more effectively utilize 

network-wide capacity. This requires adopting and integrating various models that have 

evolved over the past decade, such as stochastic capacity analysis and dynamic traveler 

behavior modeling, within the classical user equilibrium analysis framework.  

Traffic congestion mitigation strategies may include, but are not limited to, road 

capacity enhancement, and technological solutions, such as traffic signal optimization, 

incident management on freeways and arterials, Advanced Traveler Information Systems 

(ATIS), and pricing, etc. As one of the critical parts of implementing Intelligent 

Transportation Systems (ITS) infrastructures, ATIS is intended to inform travelers of 

unusual traffic congestion to allow users to make better route/departure time and mode 

decisions under uncertain conditions. Quantifying the effectiveness of those ATIS 

strategies is a theoretically challenging and practically important question, because the 

actual assessment of the system benefits can facilitate public transportation agencies to 

effectively design, deploy and use the traveler information systems within funding 

constraints. Given the emerging availability of private-sector traffic data and services, 

transportation system planners and managers are extremely interested in how different 

sources of traffic information with different degrees of data quality, coverage, and 

accessibility influence travelers’ decisions and in terms of decreased congestion or 

improved travel time reliability provides benefits to transportation system users. 

 

1.2 Sources of Travel Time Uncertainty Distributions 

To systematically evaluate the benefits of traveler information provision strategies 

in a realistic stochastic environment, a reliable modeling tool needs to consider various 
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sources of travel time uncertainties. Generally, inherent travel time uncertainty stems 

from the following sources: 

(1) The first source of uncertainty has a bearing on system demand input, 

primarily caused by day-to-day variations, seasonal variations and special events.  

(2) The second uncertainty is due to system throughput variation, which results 

from stochastic capacity or incidents, work zones, and weather conditions. Under 

stochastic capacity and new ATIS strategies, a more dynamic learning model is needed to 

balance the two different sources - available information and personal experience.  

For example, an empirically-observed distribution of stochastic capacity (Jie, et al. 

2010) is illustrated in Figure 1.2.  It shows that the 50th percentile capacity on I-880 is 

1,976 passenger cars per hour per lane, while the 85th percentile capacity is 1,778 

passenger cars per hour per lane. Thus, 15 percent of the time, the I-880 bottleneck 

breaks down after only 1,778 passenger cars per hour per.  

(3)The third uncertainty is further compounded by the absence of precise traffic 

information due to inadequate sensor coverage or limited traveler knowledge and 

experience, which can further compound the issue of travel time uncertainty.  

(4) The fourth uncertainty is traveler perception errors, which is typically 

modeled in a stochastic traffic assignment framework to capture unbiased random noises 

(with a mean of zero) associated with drivers’ socio-economic characteristics, personal 

observations, as well as the quality of traveler information. 
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Capturing stochastic capacity at the critical points of networks (such as 

bottlenecks) which suffer from queue and congestion more frequently, e.g., freeway 

bottlenecks and signalized intersections, enables reasonable and realistic modeling of 

travel time variability and the concept of sustainable flow rates.  Without taking into 

account this feature, it is impossible to fully consider the variability in the transportation 

system due to one of its critical sources, stochastic capacity. Moreover, travel times 

would be stochastic on different days, which further motivate the development of day-to-

day learning and route updating models to be discussed in this dissertation.  

In order to incorporate stochastic capacity in a user equilibrium framework and 

study the impact of information on drivers who tend to maximize their expected utility, 

de Palma, et al. (2005) used a graphical method to compare two extreme information user 

classes which govern day to day traffic conditions. This early investigation provides great 

theoretical insights in analyzing the travelers' behavior under stochastic capacity. 

However a more rigorous mathematical programming model and efficient solution 

algorithms are critically needed to describe the steady-state user equilibrium conditions 

on a general traffic network.  

Although a variety of network analysis tools are currently available to assess 

different traffic operations and control strategies, two challenging theoretical research 

questions remain for characterizing steady-state conditions under stochastic capacity: 

1. How to develop mathematical models that describe realistic user behavior 

under stochastic capacity? 

2. How to develop efficient and operational algorithms to find multiday user 

equilibrium solutions under stochastic capacity on a large-scale network? 
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1.3.2 Modeling challenges in dynamic traffic assignment approach 

To describe the dynamic traveler behavior over multiple days, a day-to-day 

learning model is required to describe the nonequilibrium state of traffic patterns.  

Dynamic Traffic Assignment (DTA) methodologies uniquely address these modeling 

needs, and a variety of models have been developed to represent the time-dependent route 

choice behavior (Mahmassani, 2001; Ben-Akiva, 2001). Most day-to-day learning 

models focus on long-term planning applications with stable road capacity. For instance, 

in the day-to-day learning frameworks proposed by Hu and Mahmassani (1997), Jha et al. 

(1998), and Chen and Mahmassani (2004), day-to-day traffic evolution and stochasticity 

are mainly due to route and departure time choices. Additionally, these models mainly 

study the learning behavior based on historical personal traveling experiences and real-

time snapshot information.  In reality, travelers are more likely to utilize various 

information sources, before their trips and en-route, to find the most reliable routes.  

Three major limitations exist in past studies in terms of traveler’s learning 

behavior. First, most of these models only consider the day-to-day travel choice dynamic 

represented under deterministic capacity, rather than considering stochastic and 

sustainable service rate (SSR). As a result, most research on DTA models has been based 

only on within-day dynamics, where all parameters associated with the system (such as 

supply and demand) are time-dependent but still under a deterministic framework. 

Additionally, under stochastic capacity, travel time experience on a single day can be 

dramatically affected by the underlying capacity, which in turn influences drivers' travel 

choices. Second, drivers only utilize the experienced travel times on the latest days to 

reach convergence, e.g., myopic adjustment model (Hatcher and Mahmassani, 1992).  
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Third, users are assumed to have complete network knowledge and perfect information 

regarding the time dependent system conditions and are able to make optimal route 

choices to minimize their travel times. However, these models ignore the multiple user 

classes (MUC) with different information availability. 

In this context, the primary challenging research questions considered are: 

3. How to update variability of travel time estimates due to stochastic capacity for 

different information groups? 

4. How to model predictive information and day-to-day evolution which result 

from user decision and network dynamics? 

 

1.3.3 Modeling challenges in analytical approximation approach 

Substantial development attention has been given to both the traffic network 

modeling and traffic flow theory fields in an effort to quickly estimate and predict travel 

time variability from its underlying uncertainty sources, because traffic systems can be 

viewed as stochastic processes with nondeterministic demand and capacity inputs.  

Focusing on analytical travel time performance functions, e.g., widely used U.S. Bureau 

of Public Roads (BPR) functions, a number of studies have developed various numerical 

approximation methods to characterize travel time variability distributions as a result of 

stochastic capacity and stochastic demand.  A well recognized limitation of the BPR 

function and other static travel time functions is that it cannot effectively describe the 

dynamic buildup and dissipation of traffic system congestion. Consequently, the travel 

time variability estimation methods from the above studies are more suitable for 

analyzing long-term steady-state traffic equilibrium results; dynamic traffic-oriented 
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models are still critically needed for quickly estimating path travel time variability 

distributions, especially under heavy congestion conditions. 

Given a set of observed or simulated traffic conditions, e.g., traffic flow and 

queue profiles on a link or a corridor, this dissertation provides efficient analytical 

approximation methods to specify the Probability Density Function (PDF) of travel time 

distributions as a result of stochastic capacity and demand distributions. This study aims 

to address the following two research questions:  

5. For planning-level applications, how can a quick characterization of travel time 

reliability statistics be used without resorting to the comprehensive but computationally 

challenging day-to-day simulation or numerical approximation approaches?  

6. For real-time traffic prediction applications, how can an analytical relationship 

be derived and constructed between the capacity change and the waiting time change on a 

bottleneck? 

 

1.4 Research Objectives 

To meet the six research questions described previously, this research introduces 

and extends the following research methodologies. 

To address research questions (1-2), this research will first focus on modeling and 

solving the steady-state user equilibrium problem with stochastic capacity, to find a 

single path flow pattern that satisfies the generalization of Wardrop’s first principle: 

travelers with the same OD and departure time experience the same and minimum 

expected travel time along any used paths on different days, with no unused path offering 

a lower expected travel time. A new model will be developed to explicitly address the 
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stochastic nature of network capacity and represents travelers’ imperfect route choice in 

response to capacity fluctuation in a day-to-day learning framework. The resulting 

problem is an expected utility-based dynamic user equilibrium problem that is formulated 

using a gap function approach, based on the gap function-based terminology given by 

Smith (1993) and a recent paper by Lu et al. (2009).  

To address research question (3), the traveler decision will be simulated in a day-

to-day learning behavioral framework. This task will adapt the empirically calibrated 

choice model by Noland et al. (1998) to explicitly account for travel times, early and late 

schedule delays, and travel time reliability. The utility function will therefore take into 

account the essential traffic attributes, such as alternative travel time and travel time 

reliability. The underlying travel behavior model in the enhanced traffic simulator should 

be able to (1) combine multiple data sources to make travelers’ own “predictions”; (2) 

dynamically adjust travelers’ confidence levels on different information sources, based 

on experienced travel times. 

To address research question (4), this research will formalize a new theoretical 

traffic estimation-prediction framework that considers a variety of information sources 

and can quantify the impact of information accuracy. Essentially, the travel behavior 

model will consider three major information sources: historical/experienced, pretrip, and 

en-route information. This research aims to seamlessly incorporate stochastic capacity 

models at freeway bottlenecks and signalized intersections, and develop adaptive day-to-

day traveler learning and route choice behavioral models under the travel time variability 

introduced by random capacity variations. The model will adaptively recognize and 
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capture the systematic day-to-day traffic evolution, and also maintain robustness under 

disruptions as a result of unexpected incidents and random weather conditions.  

To address research questions (5-6), this study will utilize several key statistical 

properties of the log-normal distribution, which is a state-of-practice distribution used in 

many empirical studies for describing travel time variability. By assuming log-normal 

distributions for stochastic demand and capacity, and in the context of the BPR function 

as travel time performance functions,  this study proves that the resulting travel time 

follows a log-normal distribution, so the travel time variability can be analytically 

derived from the variation parameters in demand and capacity.  Furthermore, this 

research considers a more realistic point queue model. Under an assumption of log-

normal distributions for stochastic capacity variations, the corresponding total waiting 

time will be characterized through log-normal distributions. This dissertation then plans 

to use simplified peak-hour demand profiles to derive time-of-day travel time variability 

functions at a traffic bottleneck.  

Additionally, this dissertation provides theoretical investigation results for the 

following emerging practical questions from ATIS planning and deployment applications.  

(1) Given low-resolution traffic information freely available from radio stations 

and freeway Variable Message Signs (VMS), can additional high-quality traffic 

information provision services, such as Internet-connected GPS navigation devices, 

improve the system-wide average travel time or travel time reliability?  

(2) Typically, travelers do not have full knowledge of historical traffic patterns for 

each link in a transportation network, and they acquire and update their own network 

knowledge based on their past experienced travel time. Recently, many websites, such as 
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Google Maps, have begun to provide free color-coded maps for displaying historical 

regional travel time patterns. This source provides additional opportunities for commuters 

to learn the traffic conditions and enhance their network knowledge beyond their own 

experienced routes. Can the improved network knowledge quality improve the overall 

system performance?  

(3) In addition to many real-time ATIS strategies that focus on informed route 

switching, many traffic management strategies, such as telecommuting and flexible 

working hours, aim to reduce and smooth the overall day-to-day travel demand variations. 

Transportation agencies need to quantify the benefit and then prioritize various potential 

congestion mitigation solutions: With limited funding constraints, should the 

transportation agencies increase ATIS market penetration rates, improve real-time data 

quality, or reduce day-to-day traffic demand variations? 

 

1.5 Overview of Approach and Organization of the Dissertation 

This dissertation has seven chapters. The comprehensive evaluation framework in 

Figure 1.3 indicates the structure of this dissertation. Aiming to provide a comprehensive 

review on various traffic bottlenecks and congestion modeling elements, Chapter 2 

discusses several topics pertaining to ATIS, stochastic capacity modeling, optimization 

approach for equilibrium analysis, analytical approach for a single bottleneck analysis 

and simulation-based approach for dynamic traffic travel time analysis. Focusing on 

steady-state static user equilibrium analysis, Chapter 3 considers stochastic capacity and 

travel time performance functions in an advanced traveler information provision 

environment. Chapter 4 further considers the steady-state evaluation of traveler  
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Figure 1.3- Four main areas of interest. 

 

information provision strategies with stochastic traffic demand, stochastic road capacity, 

and different degrees of traffic information provision quality. Chapter 5 presents a 

simulation-based method to seamlessly incorporate stochastic capacity models at freeway 

bottlenecks and signalized intersections, and develops adaptive day-to-day traveler 

learning and route choice behavioral models under the travel time variability introduced 

by random capacity variations. With a focus on a single bottleneck with stochastic 

demand/supply distributions, a volume-to-capacity ratio-based travel time function and a 

point queue model are used in Chapter 6 to demonstrate how day-to-day travel time 

variability can be explained from the underlying stochastic demand and capacity 

distributions.  Concluding remarks and future research extensions are given in Chapter 7. 

 

  



 
 

 
 

 

 

CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Overview 

This chapter reviews topics relevant to modeling stochastic capacity and three 

categories of analysis approaches associated with travel time uncertainty, network 

equilibrium and single bottleneck issue. After a short introduction to the role of ATIS and 

the sources of network evolution uncertainty, section 2.3 highlights three approaches for 

modeling stochastic capacity, namely headway-based stochastic capacity models, 

stochastic queue discharge rate model and probability-based stochastic capacity models. 

Section 2.4 reviews the literature pertaining to optimization model for static network 

equilibrium analysis. Section 2.5 overviews major analytical approaches for single 

bottleneck analysis. Finally, the literature on simulation-based approach for network-

wide dynamic traffic evolution analysis is reviewed in section 2.6. 

 

2.2 Role of Traveler Information Systems and Travel  

Time Uncertainty Sources 

Advanced Traveler Information Systems (ATIS) is intended to inform travelers of 

unusual traffic congestion, and further allow users to make better route/departure time 
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and mode decisions under uncertain conditions. How to quantify the effectiveness of 

those ATIS strategies is a theoretically challenging and practically important question, as

the actual assessment of the system benefits can facilitate public transportation agencies 

to effectively design, deploy and use the traveler information systems within funding 

constraints. Given the emerging availability of private-sector traffic data and services, 

transportation system planners and managers are extremely interested in how different 

sources of traffic information with different degrees of data quality, coverage, and 

accessibility influence travelers’ decisions and provide benefits to transportation system 

users, e.g., in terms of decreased congestion or improved travel time reliability.  

Generally, inherent travel time uncertainty stems from the following sources: 

(1) The first source of uncertainty has a bearing on system demand input and is 

primarily caused by day-to-day variations, seasonal variations and special events. 

Another level of traveler decision uncertainty is related to random departure times and 

route choice, which can lead to uncertain demand input for a certain set of links (Noland 

and Polak, 2002).  

(2) The second uncertainty is due to system throughput variation, which results 

from stochastic capacity (Brilon et al., 2005, Chen et al., 2002), incidents, work zones, or 

weather conditions (Srinivasan and Guo, 2004). Under stochastic capacity and new ATIS 

strategies, a more dynamic learning model is needed to balance the two different sources- 

available information and personal experience. Past studies focusing on sources of day-

to-day variation and capacity reliability for a road network do not fully consider 

uncertainty related to alternative route, which should have different features compared 

with the current selected route. 
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(3) The third uncertainty is further compounded by the absence of precise traffic 

information due to inadequate sensor coverage or limited traveler knowledge and 

experience, which can further compound the issue of travel time uncertainty. In fact, 

there are only a small fraction of travelers who currently have full access to or are willing 

to always retrieve pretrip or en-route traveler information through web-based traveler 

information sites, car radio, dynamic message signs or Internet-connected navigation 

devices. When making route choices, the majority of travelers still rely on their personal 

knowledge and driving experiences that have been gained over a long time period of time, 

which can be described as the expected travel time (caused by stochastic demand and 

capacity). When there is a significant variation in capacity, the resulting network 

conditions could deviate considerably from the average traffic pattern. In this case, the 

expected value-based travel knowledge should be treated as a biased estimate to the 

current traffic state.  

(4) The fourth uncertainty is traveler perception errors, which is typically 

modeled in a stochastic traffic assignment framework to capture unbiased random noises 

(with a mean of zero) associated with drivers’ socio-economic characteristics, personal 

observations, as well as the quality of traveler information. 

To systematically evaluate the benefits of traveler information provision strategies 

in a realistic stochastic environment, various sources of travel time uncertainties have to 

be considered. In studies by Mahmassani (1984) and Chen et al. (2002), uncertainties in 

transportation network analysis are summarized as: variations in link capacities and travel 

demands, the imperfect parameter estimation for link travel time functions and route 

choice behaviors. In a study by Nakayama (2007), stochastic demand is characterized 
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through a negative-binomial distribution, as the number of trips can be viewed as the 

collective result of individual trip-making decisions. Weijermars (2007) used traffic 

volume data to identify and estimate the magnitude of systematic and random variations 

in traffic flow patterns. Many researchers have studied how to reformulate the traditional 

static traffic assignment problem under stochastic capacity and demand conditions, and 

different numerical approximation methods have been proposed to describe the travel 

time variability due to different underlying random sources, for a single-day traffic 

equilibrium solution. Zhou and Chen (2008) presented analytical models to drive travel 

time distributions based on log-normally distributed stochastic demand distributions. Lam 

et al. (2009) and Sumalee et al. (2009) further highlighted the correlation between link 

travel time distributions due to variations in origin-destination demand, as an OD flow 

change can impact flow and travel time on those links along its passing paths 

simultaneously. Recently, a number of mathematical models are presented to describe 

equilibrium conditions under reliability-related utility functions and stochastic demand 

and capacity, e.g., a variational inequality model by Lam et al. (2009), a fixed point 

model by Sumalee et al. (2009).  

 

2.3 Modeling Stochastic Capacity 

2.3.1 Headway-based stochastic capacity models 

Consistent with the current practice, the flow rates just preceding the breakdown 

condition are used to analyze the stochastic capacity for the freeway bottlenecks. Based 

on the sensor data aggregated at 15-minute intervals, Jia et al. (2010) found that 
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prebreakdown headways followed a shifted log-normal distribution with the following 

probability density function: 
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where 

x is the average prebreakdown headway (in seconds) for 15-minute interval, 

c is the minimum prebreakdown headway (in seconds), 

µ is the mean of the variable's natural logarithm, and 

σ is the standard deviation of the variable's natural logarithm.  

Based on the traffic measurement data from PeMS (2009) and TransGuide (2009) 

systems, the corresponding parameters for Equation 2.1 are calibrated as: c=1.5 seconds, 

µ=-0.97, and σ=0.68.  

Turning to signalized intersections, traffic engineers have long known that 

saturation flow rates fluctuate over time and that this fluctuation can be observed even 

from cycle to cycle at the same intersection. Similar to the calibration procedure for the 

prebreakdown headway distribution on freeway bottlenecks, a stochastic model was 

developed for predicting saturation headways at signalized intersections. The model was 

based on a saturation headway database developed by the Florida Department of 

Transportation (Bonneson et al. 2005). Extensive investigation of candidate distributions 

revealed that the shifted Log-Normal probability distribution model again provides an 
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acceptable fit to the empirical data. The corresponding fitted probability density function 

is: 
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2.3.2 Stochastic queue discharge rate model 

Similar to the conventional definition of capacity in the HCM, the queue 

discharge flow rate is also typically characterized in a deterministic manner. However, 

the empirical study by Lorenz and Elefteriadou (2000) has clearly demonstrated that the 

queue discharge flow rate at freeway bottlenecks is also stochastic in nature. Dong and 

Mahmassani (2009) suggested and calibrated a linear relationship between queue 

discharge rates and prebreakdown flow rates. The most recent study, Jia et al. (2010) 

concluded that the queue discharge rate series are strongly time-correlated and developed 

the following recursive queue discharge model. 

 

 1 1 , 1t t c t tC C C t         (2.3) 

 

where 

tC is the queue discharge rate at time interval t (in pc/h/ln), 

 is a linear parameter that models the strength of regression to the mean,  

c is the average discharge rate (in pc/h/ln) and  
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2(0, )t N  is the random error.  

When t=1, 0C is the prebreakdown flow rate.  

Calibrated with the sensor data from a study site on I-880 in the Bay Area of 

California, the fitted parameters for equation 2.3 are: 0.2= ߛ, µc =1850 pc/h/ln, and σ=100 

pc/h/ln. 

 

2.3.3 Probability-based stochastic capacity models 

The statistical analysis in some existing empirical studies (e.g., Brilon et al., 2005 

and 2007) indicated that the probability of freeway breakdown follow a Weibull 

distribution (equation 2.4).  The stochastic capacity across the time horizon is illustrated 

in Figure 2.1.   

 

 

Figure 2.1- Distribution of lane capacity converted from headway. 
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where 

a = shape parameter 

b = scale parameter 

x = flow rate (veh/h) 

F(x) = (cumulative) probability of freeway breakdown at flow rate x 

 

2.4 Optimization Model for Static Network Equilibrium Analysis 

To achieve the objective of user equilibrium or system-optimum strategy for 

traffic mobility, static traffic assignment approaches were used for estimating link flows 

and travel times (Sheffi, 1985).  A wide range of studies have been devoted to modeling 

the impact to traveler information provision strategies in the last two decades. A majority 

of the existing models (e.g., Yang, 1998; Yang and Meng, 2001; Yin and Yang, 2003) are 

based on networks with deterministic demand and road capacity, and they typically 

consider the perception errors in a stochastic user equilibrium (SUE)-based framework, in 

which the information quality issues can be modeled through the “perception error” term 

of a discrete choice model. For example, In many SUE-based models along this line, all 

travelers are assumed to have unbiased network knowledge/information about the 

equilibrium condition, and equipped users have less travel time perception errors 

compared to nonequipped users, thanks to external traffic information provision.  Chorus 

et al. (2006) presented a comprehensive review of both the empirical and the conceptual 

literature concerning the use of travel information and effects on travelers’ choices. 
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Based on the classical gap function-based framework for user equilibrium by 

Smith (1993), Lo and Chen (2000) reformulated the nonlinear complementarity problem 

for traffic user equilibrium with fixed demand and fixed capacity to a route flow-based 

mathematical program through a convex and smooth gap function. A recent study by Lu 

et al. (2009) further extended Lo and Chen’s model to general dynamic traffic networks 

with a route swapping rule, which is based on a first-order gradient descent algorithm for 

solving convex optimization problems. In this dissertation, the gap-function based 

equilibrium model proposed by Lu et al. (2009) will be extended to consider multiple 

user information classes under stochastic demand and capacity conditions.  

 

2.5 Analytical Approach for Single Bottleneck Analysis 

Analytical DUE models typically propagate traffic flows and link performance 

functions at a single bottleneck to determine path travel costs. To evaluate the impact of 

flow switching strategies in the dynamic traffic assignment process, a variety of studies 

have been conducted for computing local link marginals due to adding or deleting a 

vehicle from a link. Ghali and Smith (1995) used a deterministic point queue model to 

describe traffic flows and gave analytical formula to quantify the marginal impact of total 

link travel time due to a small change in incoming flow. Peeta and Mahamssani (1995) 

proposed the first path-based formulation and simulation-based Dynamic SO model, in 

which the path marginal is the sum of the constituent local link marginal. This 

dissertation focuses on how to quantify the system-wide impact of a major traffic 

improvement strategy (e.g., adding one lane, route switch), rather than the small change 

in the traffic flow. 
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Focusing on analytical travel time performance functions, e.g., widely used 

Bureau of Public Roads (BPR) (1964) functions, a number of studies have developed 

various numerical approximation methods to characterize travel time variability 

distributions as a result of stochastic capacity and stochastic demand. Lo and Tung (2003) 

presented a Mellin transforms-based method to estimate the mean and variance of travel 

time distribution for a given stochastic capacity probability distribution function. By 

performing a sensitivity analysis on a multivariate normal distribution-based link 

representation in a network, Clark and Watling (2005) proposed a computational 

procedure to construct the probability density function (PDF) of link travel times under 

stochastic demand conditions. Recently, a Fourier transformation approach was 

introduced by Ng and Waller (2010) to approximate the probability density function of 

travel time from underling stochastic capacity distributions, for a given set of traffic flow 

assignment results.  

In order to distinguish different system throughput states (e.g., stochastic capacity) 

in a user equilibrium framework, de Palma and Picard (2005) used a graphical method to 

consider two types of information user classes, including (1) those with perfect 

information on good days and bad days (e.g., under normal and reduced capacity); and (2) 

those with information on expected travel times on different days. Their pioneering 

investigation provides great theoretical insights into analyzing traveler behavior under 

stochastic capacity. Along these lines, this research has focused on developing a rigorous 

mathematical programming model and efficient solution algorithms for general traffic 

networks with continuous stochastic capacity distributions.  
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2.6 Simulation-based Approach for Network-wide Analysis 

The simulation-based approach produces trip itineraries based on traveler inputs, 

e.g., origin, destination,  desired arrival/departure times, traveler preferences etc., and 

determines link and path travel costs through traffic simulation instead of analytical 

evaluation. Depending on the level of representation detail, flow models embedded in 

traffic simulators can be classified as macroscopic, mesoscopic or microscopic.  In 

macroscopic models (e.g., the classical first-order model by Lighthill and Whitham (1955) 

and Richards (1956)), traffic flow is described as one-dimensional compressible fluid 

using partial differential equations, and the vehicular flow on discretized highway 

segments are moved according to a speed-density relationship.  Microscopic models, on 

the other hand, offer a more detailed representation by considering stimuli and responses 

among individual drivers, including both car-following and lane changing behavior.  

Focusing on the effect of commuter route choice decisions, Chang, Mahmassani 

and Herman (1985) developed an early mesoscopic simulation model to characterize 

traffic flow as discrete vehicle groups/particles, and individual vehicle positions are 

updated by a macroscopic flow-density relationship.  Compared to the fluid-based 

representation in macroscopic models, mesoscopic models keep track of individual 

vehicles, their origin-destination, and path trajectory data to better simulate travelers’ 

behavior in a network.  Without considering a sophisticated lane-changing mechanism, 

mesoscopic models are able to use a longer simulation time interval than microscopic 

models, for example, 6 seconds vs. 0.1 seconds.  This leads to significant computational 

savings, especially when searching for dynamic traffic user equilibrium or day-to-day 

learning solutions on large-scale regional networks. 



25 
 

 
 

Through a simulation-based modeling framework, Nakayama (2007) incorporated 

stochastic demand and stochastic route choice components in a day-to-day simulation 

model to examine network reliability on linear corridors. Obviously, a day-to-day 

modeling framework is suitable for studying medium-term transitions and within-day 

dynamics in traveler decisions and the resulting traffic flow patterns. On the other hand, 

the simulation-based modeling approach requires a sufficiently long period (e.g., many 

days of simulation) to stabilize traffic conditions and it does not have well-accepted 

converge criteria to describe steady-state conditions (as a traffic user equilibrium model 

does). 

To better describe adaptive traveler behavior and simulate the resulting travel 

flow pattern in an environment where roadway capacity varies within a single day and 

over multiple days, a day-to-day learning framework is needed to allow a realistic 

consideration and evaluation of different capacity-enhancing and traffic management 

scenarios. A wide variety of day-to-day learning models have been proposed to 

understand and simulate the medium-term traffic evolution process under various 

advanced traveler information provision strategies. An early study by Hu and 

Mahmassani (1997) took into account both route and departure time choices as the 

sources of day-to-day traffic dynamics. Srinivasan and Guo (2004) examined network 

evolution and user response characteristics under varying market penetration levels of 

traveler information. Jha et al. (1998) adapted a Bayesian framework to model the 

traveler perception updating process. Chen and Mahmassani (2004) further studied 

triggering mechanism and termination conditions for the travel time learning process. 

However, existing day-to-day learning frameworks assume a constant road capacity, and 
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the variability sources considered in those models are limited to route and departure time 

choices.  

What assignment/simulation tools can be considered as the prime evaluation tool 

is an important question, because DTA models consist of a great number of parameters 

and inputs that must be calibrated to accurately reflect field conditions. Another question 

that should be answered is whether the transportation system analysts and planners can 

make the most of the potential of the simulation package that supports Advanced 

Traveler Information Systems (ATIS) and Advanced Traffic Management Systems 

(ATMS) strategies for road capacity enhancement, such as traffic signal optimization and 

incident management on freeways and arterials. As shown below, a variety of network 

analysis tools are currently available to assess the impacts of ITS technologies and 

different traffic operations and control strategies. 

 DYNASMART-P, developed at UT at Austin, UMD, and Northwestern 

University by Mahmassani et al. 

 DYNAMIT, developed at MIT by Ben-Akiva et al. 

 EMME/3, developed by INRO 

 IDAS, developed by Cambridge Systematics, Inc. 

 Integration, developed by M. Van Aerde& Assoc. 

 Paramics, developed by QuadstoneParamics 

 SCRITS, initially developed for FHWA by SAIC 

 TRANSIMS developed by Los Alamos National Laboratory 

 VISSIM, developed by PTV AG 
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With its current ability to model buildup and dissipation of traffic congestion on a 

large-scale network, DYNASMART-P is considered a good analysis tool for assessing 

the capacity impacts of various types of traveler information (historical, pretrip, en-route 

information, VMS), ramp metering, and road-pricing strategies. DYNASMART-P has 

been used for region-wide transportation operations planning to (1) address operational 

issues in the transportation planning process; and (2) develop and evaluate traffic 

management and control strategies, particularly in the ITS context. More importantly, 

DYNASMART-P provides a unique system-optimization capability, which can be used 

to quantify the maximum network-flow rate under different traffic conditions. The 

benchmark set by system-optimal assignment will be used to assess the effectiveness of 

capacity enhancement strategies and to further provide useful guidance on how to design 

management strategies that will optimize the network route flow pattern.  

It is also important to recognize the use of a single model in evaluating traffic 

network capacity is not sufficient to meet different needs in both operational and 

planning applications. For example, dynamic assignment tools require accurate time-

dependent OD demand matrices as fundamental input, and the complex traffic flow and 

route choice models should be carefully calibrated to provide reliable assessment results. 

DYNASMART-P can offer a rapid analysis framework that can estimate/approximate the 

magnitude and probabilistic upper bound of the network capacity at peak hours.   

 

  



 
 

 
 

 

 

CHAPTER 3 

 

PLANNING-LEVEL METHODOLOGY FOR EVALUATING  

ATIS STRATEGIES UNDER STOCHASTIC  

CAPACITY CONDITIONS 

 

3.1 Introduction 

In this chapter, a nonlinear optimization-based conceptual framework is proposed 

for incorporating stochastic capacity, travel time performance functions and varying 

degrees of traveler knowledge in an advanced traveler information provision 

environment. The proposed method categorizes commuters into two classes: (1) those 

with access to perfect traffic information every day, and (2) those with knowledge of the 

expected traffic conditions across different days. With a special focus on formulating and 

solving the steady-state user equilibrium problem with stochastic capacity, this research 

aims to find a network flow pattern that satisfies a generalization of Wardrop’s first 

principle: travelers with the same origin-destination pair experience the same and 

minimum expected travel time along any used paths on different days, with no unused 

path offering a shorter expected travel time. Through the gap function-based 

reformulation for user equilibrium, the proposed model explicitly considers the stochastic



29 
 

nature of network capacity over different days and represents travelers’ imperfect 

information and general knowledge about the random travel time variations. A

mathematical programming model is formulated to describe the route choice behavior of 

the perfect information (PI) and expected travel time (ETT) user classes under stochastic 

day-dependent travel time. Driven by an operational algorithm suitable for large-scale 

networks, the model was applied to a simple corridor and a medium-scale network to 

illustrate the effectiveness of traveler information under stochastic capacity conditions. A 

solution method is developed to find the equilibrium path flow distribution, while 

stochastic travel times on different days are generated from a sampling-based simulation 

framework. 

 

3.2 Conceptual Framework	

The conceptual modeling framework is illustrated in Figure 3.1 using a simple 

corridor with a single origin-to-destination pair and two paths p=1 for the primary path, 

p=2 for the alternative path, where p is the path index. As each path only has one link, 

path 1 is denoted as link a=1 with a free-flow travel time of 20 minutes, and path 2 is 

denoted as link a=2 with a free-flow travel time of 30 minutes, where a is the link index. 

This example considers five different days d = 1, 2, 3, 4 and 5, and the peak hour demand 

is Q=8000 vehicles per hour on each day.   

Following a similar analysis setting in the study by De Palma and Picard (2005), 

the first illustrative example considers day 1 as the “bad” day on path 1, with a reduced 

capacity for the primary route, and days 2, 3, 4, and 5 as good days with the full capacity 

available. As detailed in Table 3.1, the primary path has the following capacity values: 
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Figure 3.1-Simple network used as an illustrative example of the framework. 

 

 On the bad day (d=1) it is 3,000 vehicles per hour (vph) per link. 

 On the good day (d=2, 3, 4, 5) it is 4,500 vph per link. 

The alternative path is assumed to have a fixed capacity of ,a dc = 3,000 on days 

d=1, 2, 3, 4 and 5, where ,a dc is defined as the capacity of link a on day d. 

To setup a mathematical programming model for steady-state traffic equilibrium, 

the nonnegative flow variables ,p df is considered as the traffic flow using path p on day d . 

Obviously, the path flow distribution should ensure the total demand constraint on each 

day:  

 

1, 2,d df f Q d    (3.1) 

 

Let ,p dT be defined as the travel time on path p on day d , which can be calculated from 

the BPR function such as   
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Table 3.1-Day-dependent path demand, capacity and travel time values. 

  Day 1 Day 2 Day 3 Day 4 Day 5 Avg. 

Day-
Dependent 
Capacity 

Daily Capacity on 
Path/Link 1 (veh/h) 

1,a dc   
Path 1 3000* 4500 4500 4500 4500 4200 

Daily Capacity on 
Path/Link 2 (veh/h) 

2,a dc   
Path 2 3000 3000 3000 3000 3000 3000 

PI-Based 
User 

Equilibrium 

Flow (Veh/hour/link) 
Path 1 4636 6172 6172 6172 6172 5865 

Path 2 3364 1828 1828 1828 1828 2135 

Travel Time (min) 
Path 1 37.1 30.6 30.6 30.6 30.6 31.9 

Path 2 37.1 30.6 30.6 30.6 30.6 31.9 

ETT-Based 
User 

Equilibrium 

Flow (Veh/hour/link) 
Path 1 5503 5503 5503 5503 5503 5503 

Path 2 2497 2497 2497 2497 2497 2497 

Travel Time (min) 
Path 1 54.0 26.7 26.7 26.7 26.7 32.2 

Path 2 32.2 32.2 32.2 32.2 32.2 32.2 

*reduced capacity 
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(3.2) 

 

where aFFTT  is the free-flow travel time of link a. Coefficients α and β are set to 

commonly used default values 0.15 and 4, respectively. Now the two different degrees of 

traveler knowledge can be examined.  

 

3.2.1. Perfect information (PI) based user equilibrium 

Every day, perfect travel time estimates (i.e. zero prediction error) for all links are 

available to travelers to make route decisions, and travelers can switch routes every day. 

This perfect and complete information assumption for each day is consistent with 
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deterministic static traffic assignment, which usually considers a typical weekday. It 

should be cautioned that this assumption might not be realistic from a dynamic traffic 

assignment perspective, as both pretrip and en-route traveler information available to 

commuters are essentially forecasted estimates of traffic conditions unfolding in the 

future, with always some degree of prediction errors. According to Wardrop’s first 

principle of user equilibrium, for a specific origin-destination pair, travelers with perfect 

information experience the same and minimum travel time along any used paths on each 

day d, with no unused path offering a shorter travel time.  

To construct the objective function in the optimization model, the following gap 

function (for each day d) can be used to characterize the Karush-Kuhn-Tucker optimality 

conditions required for reaching the user equilibrium for perfect information users.  

 

1, 1, 2, 2,( ) ( ) 0,PI PI PI
d d d d d d dgap f T f T d          (3.3) 

 

where 1,
PI
df   and 2,

PI
df   are path flow rate of PI users on paths 1 and 2, respectively, on day 

d, where d  is minimum path travel time on day d 

 

1, 2,min( , ),d d dT T d    (3.4) 

 

For the illustrative simple corridor, Table 3.1 shows the traffic assignment results 

when all the travelers in the network have access to perfect information, and a standard 

deterministic user equilibrium state is reached every day. See also Figure 3.2 for a 

graphical representation of the flows and travel times for PI users.  
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Figure 3.2-Equilibrium solutions with 100% PI users. 

Point E: reduced-capacity days, equilibrated travel times = 37.1 min, 4636 vehicles on 
link 1 and 3364 vehicles on link 2; 
Point F: full-capacity days, equilibrated travel times = 30.6 min with 6172 vehicles on 
link 1 and 1828 vehicles on link 2. 
 

 

 



34 
 

 
 

3.2.2 Expected travel time (ETT) knowledge-based user equilibrium 

As there are different realized capacity values on different days, the travel times 

on different links can be viewed as a set of random variables. In reality, most travelers are 

not equipped with advanced traveler information systems, so they rely on their expected 

travel times (based on their knowledge and experience) over different days to make route 

choices. The expected travel time can be considered as the long-run average, or more 

precisely, the probability-weighted sum of the possible travel time values from different 

days. Under a user equilibrium condition with ETT users, the expected travel times on 

used routes in the network are assumed to be the same, and accordingly, an ETT user 

selects the same route every day, regardless of the actual traffic conditions. 

The expected travel time for link a with random capacity  over different days 

can be represented as  

 

 ,   
(3.5) 

 

where travel time on each day d for link a is a function of the prevailing 

flow and capacity on that particular day. For link a=1 in the illustrative example,  
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where  and  corresponds to the reduced and full capacity on link a. 

Note that aT  is different from the expected value (EV) solution  typically used 

in the context of stochastic optimization, which can be calculated using the expected 

value of capacity on link a, . 

 

( , ) 1 1
0.2 0.8

a a
a a a a a R F

a aa

f f
T f c FFTT FFTT

c cc

 

 
                             

 (3.7) 

 

In this study, we generalize Wardrop’s first principle to describe the equilibrium 

conditions for travelers relying on their expected travel time to make route decisions: 

travelers with the same origin-destination pair experience the same and minimum 

expected travel time along any used paths on different days, with no unused path offering 

a shorter expected travel time. Obviously, when there is a single capacity value, then the 

above conditions are consistent with the standard user equilibrium with deterministic 

capacity, as the expected travel time devolves to the travel time on the single day. 

The corresponding KKT condition can be re-written as  

 

1 1 2 2( ) ( ) 0ETT ETT ETTgap f T f T         (3.8) 

 

where   is the least expected travel time between the given OD pair over a multiday 

horizon satisfies 

 

R
ac F

ac

( , )a a aT f c

ac



36 
 

 
 

1 2min( , )T T   (3.9) 

 

An ETT knowledge-user uses the same route on different days, which leads to a 

day-invariant ETT flow pattern:  

 

, 1 , 2 , 3 , 4 , 5
ETT ETT ETT ETT ETT ETT

a a d a d a d a d a df f f f f f a           (3.10) 

 

When ETTgap  = 0, it can be shown that if 0ETT
af  , then aT  . That is, the 

selected routes by expected travel time information users between an OD pair have equal 

and minimum costs. On the other hand, if 0ETT
af  , then aT  , which indicates that all 

unused routes by ETT users have greater or equal costs (compared to the used path costs). 

These two conditions further imply that no individual trip maker with expected travel 

time information can reduce his/her expected path costs by switching routes on any given 

day, under a user equilibrium condition. 

If it is assumed that all users rely on ETT information in the simple corridor, then 

the ETT-based user equilibrium assigns about 5503 vehicles on path 1, and about 2497 

vehicles on path 2, leading to different travel time on 5 different days shown in Table 3.1. 

The relative travel time savings were examined under different market penetration rates 

of perfect information users shown in Figure 3.3. As both paths carry positive flows, their 

average travel times over the 5-day horizon are the same at 32.2 min. 
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Figure 3.3-Solutions with 100% ETT information users. 

The expected travel time function (TTF) is generated by assigning a 20% weight to TTF 
with reduced-capacity (RC) days and an 80% weight to TTF with full-capacity (FC). The 
ETT-based user equilibrium corresponds to the intersection (in orange) of expected TTF 
on path 2 and path 1. 5503 vehicles are using link 1 and 2497 vehicles are using link 2 
each day. 
Point A: travel time = 54.0 min on link 1, reduced-capacity days, 
Point B: travel time = 26.7 min on link 1, full-capacity days. 
Point G: travel time = 32.2 min on link 2 every day, and the expected travel time on link 
1 is the same 32.2 min. 
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3.2.3. Quantification of the value of information 

In Figure 3.4, the relative travel time savings were examined under different 

market penetration rates of perfect information users when there are both PI and ETT 

users. Denote the amount of PI users as PIf , and denote the flow volume at points A, B, 

C, D and E as , , , ,A B C D Ef f f f f . Obviously, A Bf f  . If  PIf  is less than A Ef f , 

then those PI travelers enjoy a travel time saving from point C to point D with  

1 1 2 2( , ) ( , )A PI R A PI
a a a aT f f c T Q f f c       .  

The travel time saving  C DT T diminishes as the flow of PI users increases, 

where TC and TD correspond to the travel time at points C and D. When PIf  further 

increases and reaches the value A Ef f , both paths have the same equilibrated travel 

time of 37.1 min. If  PIf exceeds A Ef f , none of the PI users is able to reduce his/her 

travel time by switching routes and the equilibrium point remains the same as the 

equilibrium point (E) for 100% PI users with reduced  capacity shown in Figure 3.5. 

As the proposed model approximates a long-term stochastic steady state under 

stochastic capacity, Figure 3.5 further shows a possible sequence of the corresponding 

travel times on 2 different routes over a 20-day horizon. Note that, even though there still 

exists a 5-day cycle with 4 good days and 1 bad day with reduced capacity, the impaired 

capacity conditions occur on day 1, day 7, day 11 and day 19 in this example. This 

irregularity, which is permitted by the model, shows the unpredictability of stochastic 

travel times, so the ETT knowledge users simply consider the average travel time on path 

1 (with a 20% chance or risk of severe traffic congestion) in their long-term route choice 

decisions.  
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Figure 3.4-Solutions on a reduced-capacity day. 

5% PI users (400 vehicles) and 95% ETT users (7600 vehicles),  
Point C5: 5284 ETT vehicles on link 1, travel time = 48.9 min. 
Point D5: 2716 vehicles (2316 ETT users + 400 PI users) on link 2, travel time = 33.0 
min. 
PI users travel time saving = 44.0-33.0=11.0 min, where 44.0 min is the average travel 
time for ETT users = (5284*48.9+2316*33.0)/7,600. 
 
10% PI users (800 vehicles) and 90% ETT users (7200 vehicles) 
Point C10: 5060 ETT vehicles on link 1, travel time = 44.3 min 
Point D10: 2940 vehicles (2140 ETT users + 800 PI users) on link 2, travel time = 34.1 
min, 
PI users travel time saving = 41.3 –34.1=7.1 min, where 43.1 min is average travel time 
for ETT users 
 
20% PI users (1600 vehicles) and 80% ETT users (6400 vehicles) 
Point E20: 64 PI, 4572 ETT, and 4636 vehicles in total on link 1, travel time = 37.1 min 
1536 PI, 1828 ETT, and 3364 vehicles in total on link 2, travel time = 37.1 min 
PI users travel time saving = 0 min 
 



40 
 

 
 

 

Figure 3.5-Day-dependent travel times on different routes. 

 

It should also be noted that the behavioral model used here is structurally different 

from the commonly used day-to-day learning model in a DTA framework, even though 

the underlying traffic states are represented within the same multiday structure. In a day-

to-day dynamic learning model, the perceived travel time on day d +1 is updated using 

experienced travel times from previous days d, d -1, d -2 and so on, and the path can also 

be changed on a daily basis. In comparison, the ETT knowledge users consider average 

traffic conditions over all the days as a whole, and always stick to the same route. 

 

3.3 General Mathematical Problem Formulation 

This section extends the above conceptual framework to a general network with 

multiple origin-destination pairs and with road pricing strategies.  
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3.3.1 Formulation 

The sets and subscripts, parameters and decision variables in the proposed flow 

assignment model are introduced as follows: 

Indices: 

 = index of origins, i = 1, …, I, where I is the number of origins 

 = index of destinations, j = 1, …, J, where J is the number of destinations 

= 
index of paths, p=1, …, P, where P is the number of paths between an OD pair i 

and j 

 = index of links, a=1, …, A, where A is the number of links in networks 

= index of days, d=1, …, D, where D is the number of days over analysis horizon 

Input Parameters: 

,a dc  = capacity of link a on day d 

,a ds  = toll value charged on link a on day d 

,i jq  = OD demand volume between an OD pair i and  j 

,p a
 = 

path-link incidence coefficient, ,p a =1, if path p passes through link a, and 0 

otherwise 

  = 
market penetration rate of the perfect information (PI) users as a function of 

the total OD demand 

VOT = value of time in dollars per minute 

Decision variables: 

i

j

p

a

d



42 
 

 
 

, ,
,

PI i j
p df

 = flow of PI users on path p for OD pair (i, j)on day d 

, ,ETT i j
pf

 = 
flow of ETT users on path p for OD pair (i, j) (flow rates are the same 

across different days) 

,a dv
 = total flow on link a on day d 

,a dT
 = travel time on link a on day d 

,a dU
 = 

generalized disutility on link a on day d, which is a function of capacity ,a dc  

and link flow ,a dv  

,
,

i j
p dU

 = generalized disutility of path p between OD pair (i, j) on day d 

,i j
pU  = 

expected disutility of path p between OD pair (i, j) over the multiday 

horizon 

,i j
d  = day-dependent least path disutility between OD pair (i, j) on day d 

,i j  = least expected disutility between OD pair (i, j) over the multiday horizon 

 

The proposed model incorporates the two user classes into a static traffic 

assignment framework under stochastic capacity that varies on a daily basis during the 

peak hour. The objective function aims to minimize the total gap for users with perfect 

traffic information and users with imperfect information based on expected travel times. 

Objective function: 

   , ,, , , , , ,
, ,min

i j i jPI i j i j i j ETT i j
pp d p d d p

d i j p

Gap f U f U           
(3.11)

 

PI flow constraints: 
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, , ,
, , ,i j PI i j

p d
p

q f i j d   
 

(3.12) 

ETT flow constraints 

, , ,(1 ) ,i j ETT i j
p

p

q f i j   
 

(3.13)
 

Path - link flow balance constraints 

   , , , ,
, , , , ,PI i j ETT i j

a d p d p a p p a
i j p i j p

v f f a d      
 

(3.14) 

Path- link cost connection 

,
, , , ,( , ) ,a d

a d a d a d a d

s
U T v c a d

VOT
  

 (3.15) 

 ,
, , , , , ,i j

p d a d p a
a

U U i j d p  
 (3.16) 

Average disutility definitional constraint:  

, ,
,

1
, ,

i j i j
p p d

d

U U i j p
D

 
 (3.17) 

Least disutility definitional constraints:  

, ,
, , , , ,i j i j

d p dU i j p d    (3.18) 

, ,
, ,

i j i j
pU i j p    (3.19) 

 

Constraints (3.12) and (3.13) show the relationship between OD demand and path 

flows for each information class. Equation (3.14) aggregates path flows from two 

different user classes to link flows. Equations (3.15-3.16) calculate the path disutility for 

each path on day d, where the dollar value of road toll is incorporated as equivalent travel 

time through value of time (VOT). Equation (3.17) defines the average disutility for each 
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path across different days, which will be used in the gap function for ETT users in 

objective function (3.11).  

For comparison purposes, the system optimal benchmark can also be defined as: 

 

, , , ,min ( , )a d a d a d a d
d a

z v T v c   
 

(3.20) 

 

where the flow to be optimized ,a df   can be day-varying.  

Because the path utility function is convex and monotonic with respect to path 

flow and the expected travel time function is a convex combination of day-dependent 

travel times, the resulting gap function can be shown to be smooth, convex and bounded. 

Interested readers are referred to the paper by Lo and Chen (2000) for the detailed proof 

on a similar reformulation. These nice features allow a wide range of efficient nonlinear 

programming solution algorithms, such as gradient projection algorithms, to be applied to 

solve the proposed model.  

 

3.3.2 Spreadsheet tool for calculating multiday user equilibrium 

Considering the above simple corridor with two routes, a spreadsheet application 

is developed with the following input elements: (1) deterministic, fixed demand, (2) day-

dependent capacity generated from a stochastic capacity distribution, and (3) static travel 

time functions. The proposed nonlinear model is formulated using the embedded 

optimization solver in Excel to bring the total gap function toward zero, while the traffic 

flow of PI and ETT users on different routes are considered as variables to be optimized 

(i.e., cells to be changed). A wide range of travel time statistics can be derived from the 
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traffic assignment results, such as the mean and variance of day-dependent travel times. 

Figure 3.6 demonstrates how the spreadsheet model is operated according to the 

following steps: 

1. Input data preparation. Prepare the following input data: 

 a. total demand; 

 b. PI market penetration γ;  

 c. random capacity on different days; and 

 d. BPR step function parameters 

 

1T 2T 1 2min( , )T T 

1 1 2 2( ) ( ) 0ETT ETT ETTgap f T f T       
1, 1, 2, 2,( ) ( ) 0,PI PI PI

d d d d d d dgap f T f T d        

 

Figure 3.6-Spreadsheet-based calculation model. 
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2. Volume calculation: Corresponding to equation (3.1), the hourly traffic volume 

is distributed to different paths in block E1 and E2, which also contain variables to be 

optimized. The total hourly traffic volume is calculated paths in block E3. 

3. Link travel time calculation: The day-dependent link travel times and the 

expected travel times are calculated using equations. (3.2) and (3.5) in block F, based on 

the link flow from block E1 and E2. 

4. Minimum travel time determination: Find the minimum travel time πd on each 

day and π for the average travel time in block G. 

5. Defining the objective function: Define the objective function related to the gap 

functions in block H, corresponding to equations. (3.3) or (3.9) for PI and ETT users, 

respectively. 

6. Solving the optimization model: Solve the optimization model and derive travel 

time statistics according to travel time data in block F. 

 

3.4 Solution Algorithm 

The solution algorithm executing the above steps is depicted in Figure 3.7.  In 

order to iteratively reduce the overall gap in the proposed optimization problem for a 

general network with multiple origins and destinations, we extend a descent search 

solution framework developed by Lu et al. (2009), which also used a path-based gap 

function to describe the dynamic traffic equilibrium pattern. Figure 3.7 presents the 

iterative procedure for solving the multiclass static traveler assignment problem under 

stochastic capacity conditions.  
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Figure 3.7-Solution algorithm for static traffic assignment with both PI and ETT users. 
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The proposed procedure adds day-dependent simulation, path finding and 

assignment dimensions to the existing static traffic assignment algorithm that typically 

assumes deterministic road capacity conditions. In this study, we implement the proposed 

algorithm within a mesoscopic traffic assignment framework, which represents flow as 

vehicles with origin, destination and path attributes. Recall that, in conventional 

assignment programs, a vehicle is associated with a single path. In the proposed multiday 

traffic assignment algorithm, an ETT vehicle still follows a single path across different 

days, but a PI vehicle can use and store different (day-dependent) paths on different days.  

The main steps of the solution procedure are described as follows: 

Step 1: Day-dependent capacity generation.  

Generate road capacity vector Cd = ,a dc   , for all link a=1, 2, …, A, on day d=1, 

2, …, D , according to given stochastic capacity distributions.  

Step 2: Initialization.  

Let iteration number n=0. Generate PI and ETT vehicles according to given 

market penetration rate γ.  For each OD pair, compute the shortest path (in distance) and 

assign both PI and ETT vehicles to the corresponding shortest path. 

Step 3: Multiday traffic simulation with stochastic capacity.  

On each day d =1, 2, …,D, for given link flow patterns, generate day-dependent 

link travel times according to stochastic capacity vector Cd.  The simulation results 

generate link travel time ,a dT  for link a=1, 2, …, A, on day d=1, 2, …, D.  

Step 4: Find descent directions for traffic assignment. 

Find the Least Travel time Path (LTP) using day-dependent link travel time ,a dT   

on each day d, for  link a=1, 2, …, A. 



49 
 

 
 

Find the Least Expected Travel time Path (LETP) using average link travel time 

,a d
d

a

T
T

D



, for link a=1, 2, …, A.  

Step 5: Path assignment for PI and ETT vehicles. 

For each day d, a certain percentage of PI vehicles are assigned to the least travel 

time path. 

By adapting the path-swapping method proposed by Lu et al. (2009), this study 

uses the following probabilistic ratio for a vehicle on path p to switch to the least travel 

time path at iteration n: 

 

, ,
,

,
,

1

1

i j i j
p d d

i j
p d

U

n U





 (3.21) 

 

The first term 1/(n+1) is equivalent to the fixed step size in the Method of 

Successive Average (MSA). The second term ensures that the path swapping probability 

is proportional to the relative difference between the experienced path travel time ,
,

i j
p dU

and the minimum path travel time ,i j
d . An intuitive interpretation for this heuristic 

swapping rule is that travelers on longer paths (i.e., farther from the equilibrium solution) 

are more likely to switch to the least travel time path than those on paths with travel cost 

closer to the least travel time path.  

Similarly, a certain percentage of ETT vehicles are swapped to the least expected 

travel time path, the route swapping probability at iteration n can be determined by  
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, ,

,

1

1

i j i j
p

i j
p

U

n U





 (3.22) 

 

As shown in Lu et al. (2009), search directions specified by equations (3.21-3.22) 

can be proven to be in the descent directions of the gap function in equation (3.11) for 

, ,
,

PI i j
p df , , ,ETT i j

pf , respectively, at iteration n. 

Step 6: Link flow aggregation. 

For each day d, calculate the aggregated link volume ,a dv  using PI flow volume 

on day d and ETT flow (across every day), using equation (3.14).  

Step 7: Convergence checking. 

Calculate the gap function as shown in equation (3.11), if Gap< convergence is 

achieved, where  is a prespecified parameter. If convergence is attained, stop. Otherwise, 

go to Step 3. 

 

3.5 Experimental Results 

The first set of experiments uses the simple corridor with two routes in the 

illustrative example, shown in Table 3.1. In this set of experiments, it is further assumed 

that links 1 and 2 have 3 and 2 lanes, respectively, and on this basis 100 days of random 

lane capacity are generated. The headway data used in this analysis were obtained from a 

recent research effort by Jia et al. (2010). In their study, the prebreakdown time headways 

are found to follow a shifted log-normal distribution with the following probability 

density function: 

 



51 
 

 
 

௑݂ ൌ ሺݔ;µ, ሻߪ ൌ
ଵ

ሺ௫ି௖ሻఙ√ଶగ
݁ି

ሺ೗೙ೣషµሻమ

మ഑మ ݔ			, ൐ 0																																																	 (3.23) 

 

where 

x is the average prebreakdown headway (in second) for 15-minute interval, 

c is the minimum prebreakdown headway (in second), 

µ is the mean of the variable's natural logarithm, and 

σ is the standard deviation of the variable's natural logarithm.  

Their calibration results based on data from several bottleneck locations in the 

Bay Area, California show that c=1.5 seconds, µ=-0.97, and σ=0.68.  To convert 15-

minute breakdown flow rates to hourly capacity, we take an average value of 4 samples 

from the above random distribution. The histogram in Figure 3.8 shows the probabilistic 

distribution of 100 lane capacity samples on link 1. The stochastic distribution of hourly 

capacity has a sample mean of 1837 vehicles/hour/lane and a coefficient of variation of 

0.064.  

In Figure 3.8, most of samples range from 1700 to 2100 vehicles/hour/lane, which 

reveals the inherent randomness of road capacity. The hourly lane capacity is multiplied 

by the number of lanes to generate link capacity, and the resulting average total capacity 

of both links is 9,298 vehicles per hour.  

 



52 
 

 
 

 

Figure 3.8-Histogram of 100 stochastic capacity samples. 
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3.5.1 Measure of effectiveness (MOE) 

Mean travel time for users using ETT knowledge over different days can be 

represented as  

 

1ETT ETT
d

d

T T
d

 
  (3.24) 

 

and the average travel time for ETT users on day d is  

 

 , ,
,

,

(1 )

ETT ETT i j
p p d

p i jETT
d

f T

T
q 




 


 (3.25) 

 

where , ,
,

ETT i j
p dT is the travel time experienced by ETT users on day d along path p for OD 

pair (i,j).   

Travel time standard deviation is used to represent day-to-day travel time 

variability: 

 

 (3.26) 

 

Similarly, 
PI

T , 
PI
dT  and ETTSTD  can be calculated for PI users and T  , dT , STD 

for different classes of users.  

  2ETT

ETT

T
STD

( 1)

ETT
d

d

T

d







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Relative travel time improvement is defined as an indicator of the value of 

information: 

 

 (3.27) 

 

This measure compares the relative difference of mean travel time savings 

between PI and ETT users across all days.  

 

3.5.2 Sensitivity analysis	

The following experiments describe the results of a sensitivity analysis for three 

major inputs: the total demand q, the market penetration rate of PI users, and the toll 

values imposed on the primary route. In the baseline configuration, q =8,000 vehicle/ 

hour, γ =0.05 and there is no tolling on the primary routes.  

 

3.5.2.1 MOE at varying demand levels 

Figure 3.9 shows the different MOEs, when the total demand level q is varied 

between 1,000 and 10,000 vehicles per hour. Figure 3.9a shows that the average travel 

time dramatically increases after the total demand is raised above 4,000 vehicles per hour, 

which is close to the capacity of the primary route. Interestingly, Figure 3.9b shows that 

PI users experience significantly lower travel time variability compared to ETT users.  
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When the market penetration rate is below 30%, all PI users are able to switch 

from a congested route (typically route 1) to a less congested route (typically route 2), so 

that travel information provision strategies yield meaningful savings in terms of mean 

travel time and travel time variability (Figure 3.10a, Figure 3.10b). However, when the 

market penetration rate exceeds a certain threshold (30% in our example), a large number 

of PI users can take the detour, so the previously less congested route becomes crowded. 

Under the assumption of user equilibrium with perfect information, both routes at this 

point should have the same travel time so that no PI user can reduce his/her travel time by 

switching routes. This implies no additional benefit is available by using traveler 

information strategies.  

Although the finding on the diminishing value of information as a function of 

market penetration rate is similar to a number of previous studies (for example, Yang et 

al., 1993; Yang, 1999), those findings are based on two fundamentally different settings. 

Thus, for travelers not equipped with ATIS, previous studies have considered different 

levels of perception errors under deterministic capacity for a single day, while this 

proposed approach assumes no perception error on the expected travel time of multiple 

days with stochastic capacity.  

 

3.5.2.3 MOE’s at different tolling rates 

Figure 3.11 shows the results with 5% PI users, with a static toll being imposed 

on route 1 to encourage route switching to route 2. The value of time is set to $15 per 

hour, so each dollar is equivalent to 4 minutes of travel time.  
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Figure 3.11a shows strong bowl-shaped curves, indicating an optimal toll value of 

$2 in order to reduce the average (experienced) travel time to about 25.5-min for all users. 

This shows that the ideal system-optimal state can be approached using tolled user 

equilibrium patterns.  

Figure 3.11b demonstrates another benefit of the toll strategy as it can 

dramatically reduce the travel time variability for all users. If the generalized travel time 

is considered (including both pure travel time and equivalent travel time associated with 

tolls), the mean generalized travel time in Figure 3.11c of all the solution strategies grows 

gradually with increasing toll values.  

Road pricing is an effective instrument for mitigating congestion. Ideally, road 

pricing rate is calculated based on 1) marginal social cost due to congestion (usually not 

perceived by the users) and 2) the private cost (perceived by the users). But applying this 

theory is very difficult due to the unclear relationship between the demand function and 

the cost function. 

One key assumption in this model is that a for-pay service can advise users about 

the best route (with lower travel time) as shown in Figure 3.12a, in spite of the fact that 

both routes have the same disutility (travel time/VOT + toll) in Figure 3.12b. Comparison 

of the path travel time standard deviation without tolls on route 2 and with the varying 

toll level on route 1 is shown in Figure 3.12c. Without tolls, path travel time distributions 

show large standard deviations. With the toll, the path travel time distributions reveal 

much smaller variations depending on the toll level. Because the flow on route 1 is 

reduced (due to the imposed toll), travel time reliability has been decreased accordingly 

by charging a toll on route 1.  
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The plot demonstrates that for a fixed 5% PI market penetration rate and certain 

demand level (say 8000 veh/h), if both routes have similar free-flow travel times, then the 

value of information is not too significant. When the free-flow travel time difference 

increases (that is, the alternative route becomes less attractive compared to the primary 

route), the benefit of information provision grows steadily and reaches a maximum value. 

Beyond that, the value of information begins to drop, as the free-flow travel time 

difference is too large to generate meaningful route switching opportunities under a user 

equilibrium condition. By comparing the curves associated with different demand levels, 

the peaks of the value of information function shift to the right. Also, higher demand 

levels (i.e., a more congested system) yield significantly higher value of travel 

information at the same free-flow travel time difference. 

 

3.5.3 Experiments on medium-scale networks 

The following numerical experiments are performed on two medium-scale 

network data sets, which are publicly available at a website maintained by Bar-Gera 

(2001). The proposed algorithm is implemented in C++ on the Windows Vista 64-bit 

platform and evaluated on a computer with an Intel Xeon CPU with 4 2.33 GHz 

processors and 9 GB memory.  

To fully utilize the available parallel computing capability, all the shortest path 

calculations and path assignment computations for different origin zones (at steps 4 and 5) 

are migrated to different processors. The above parallelization scheme is implemented 

through an Open Multi-Processing (OpenMP) shared-memory parallel programming 

interface. As shown in Figure 3.7, the parallelization of shortest path calculation can be 

also carried out for different days. 
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As shown in Figure 3.14 and Table 3.2, the Anaheim, California network contains 

about 38 zones, and 0.1 million vehicles, and the Chicago sketch network, an aggregated 

representation of the Chicago region, has 387 zones with 1.2 million vehicles.  

Under a setting of 10% PI users, 20 assignment iterations and 30 days of random 

road capacity, the Anaheim network uses about 30 minutes, and the Chicago sketch 

network takes about 8 hours of CPU time and 2.6G memory. There are three major 

factors affecting the computational complexity of the proposed algorithm: (1) the number 

of OD zones, (2) the number of days in the random capacity representation, and (3) the 

number of PI vehicles. Specifically, the first two factors are related to the number of path 

finding calculations, as the algorithm must find the least travel time routes using day-

dependent travel time for PI vehicles originating from each origin zone. The other two 

factors, namely the number of days and the number of PI vehicles, jointly determine the 

complexity of path swapping operations, as each PI vehicle must carry and update 

individual paths on different days in the proposed path-based and mesoscopic 

representation. In addition, as steps 4 and 5 are the most computationally intensive in the 

proposed algorithm, additional CPU cores can also accordingly speed up the overall 

computational process through parallel computing. 

To measure the convergence of the proposed algorithm, we use the following 

average optimality gap as the solution quality indicator:  

 

   , ,, , , , , ,
, ,,

,

1 i j i jPI i j i j i j ETT i j
pp d p d d pi j

d i j p
i j

AvgGap f U f U
D q

           
 . (3.28) 
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The original data sets use the BPR function to describe travel time performance, 

and a single valued mean capacity is specified for each link. To generate random road 

capacity samples, we use the prebreakdown headway distribution in equation (3.23) to 

generate multiple samples of 15-minute prebreakdown capacity first. To approximate the 

peak-hour capacity values used in the BPR function, we evaluate the impact of two 

alternative schemes:  

(i) Possible multiple congestion periods within a peak hour, so we use the average 

of 4 prebreakdown capacity values as the peak hour capacity, leading to a Coefficient of 

Variation (CV) = 6.4%. 

(ii) Single congestion period, where a single value of 15-minute prebreakdown 

capacity becomes the dominating factor for the whole peak hour, leading to CV = 12.8%. 

As shown in Table 3.3, the single valued prebreakdown capacity implies larger 

variations compared to the average (aggregated) prebreakdown capacity, so it slightly 

increases the average travel time for PI and ETT travelers on both networks. However, 

according to the above experimental results, the travel time savings obtainable for PI 

users seem to be not too significant even under the large link travel time variations. 

Similarly, for the hypothetical network in Figure 3.2, the capacity variations also only 

lead to less than 1-minute travel time savings due to traveler information provision, 

shown in Figure 3.10 (a). 

To fully understand the benefit of traffic information provision, an analyst needs 

to better characterize travel time dynamics/variability, which is caused by a wide range of 

recurring and nonrecurring delay sources, such as incidents, work zones, and random 

fluctuations in road capacity.  
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Table 3.3- Value of traveler information under different peak-hour capacity 
approximation schemes. 

 

Peak-hour 
Capacity 
Approximation 
Scheme 

Anaheim network Chicago Sketch Network 

ETT 
Travel 
Time  

PI 
Travel 
Time 

Average 
Relative 
Travel Time 
Saving (%) 

ETT 
Travel 
Time 

PI 
Travel 
Time 

Average 
Relative 
Travel time 
Saving (%) 

Average 
Prebreakdown 
Capacity with  
CV= 0.064 

12.903 12.864 0.302% 17.348 17.242 0.611% 

Single-valued 
Prebreakdown 
Capacity with  
CV= 0. 128 

13.233 13.157 0.574% 17.794 17.469 1.827% 

 

Although the proposed framework allows and is naturally suited to consider any 

given random capacity distributions with a multiday or sample-based representation 

scheme, the calibrated capacity distribution used in our study in fact only focuses on 

“normal” random capacity perturbations, while the “outliers” in the capacity distribution 

due to nonrecurring events such as incidents, work zone, severe weather, are not 

explicitly modeled in the given capacity distribution and should also be integrated in the 

future research to fully account for the benefits of traveler information provision 

strategies under random capacity breakdowns and “unplanned” events. 

 

3.6 Summary 

In this chapter, a novel nonlinear optimization-based analysis method is proposed 

along with related modeling components pertaining to stochastic capacity, travel time 

performance functions and different degrees of traveler knowledge in an ATIS 
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environment. Within a multiday analysis framework, this proposed method categorizes 

commuters into two classes: (1) travelers with access to perfect traffic information every 

day, and (2) travelers with some degree of knowledge of average traffic conditions across 

different days. Within a gap function framework (for describing the user equilibrium 

under different information availability), a mathematical programming model is 

formulated to describe the route choice behavior of the perfect information (PI) and 

expected travel time (ETT) user classes under stochastic day-dependent travel time. The 

model was applied to a simple corridor and two medium-scale networks to illustrate the 

effectiveness of traveler information under stochastic capacity.  

 

 

 
  



 
 

 
 

 

 

 

CHAPTER 4  

 

MULTIDAY STATIC TRAFFIC EQUILIBRIUM ANALYSIS  

UNDER STOCHASTIC DEMAND AND  

CAPACITY CONDITIONS 

 

4.1 Introduction 

In addition to systematic variations due to seasonal and weekly patterns, the 

stochasticity in traffic demand can be caused by special events, severe weather conditions 

and random variations. In reality, in response to variations of stochastic and day-variant 

travel time, a majority of commuters only have knowledge about the average traffic 

conditions across different days, and accordingly make their habitual route choice 

decisions to minimize the expected path travel time. Travelers who are equipped with 

advanced traveler information can select different routes on different days, depending on 

prevailing traffic conditions. In comparison, although end-to-end travel time variability 

measures might be approximated through numerical perturbation or statistical inference 

methods around the single steady-state solution, the single-day equilibrium representation 

has two limitations: First, it is unable to capture the day-variant route choice behavior by 

equipped travelers in an environment with stochastic capacity and demand. Second, its 

underlying Logit model typically assumes the perception error has a mean of zero and the 
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perceived travel time is an unbiased estimate of the actual travel time. However, for any 

given day, the information, (i.e. average travel time perception) used by unequipped 

travelers becomes biased travel time estimates toward prevailing traffic conditions on a 

particular day. A “day” in this multiday model can be viewed as a random sample or 

realization from a stochastic programming perspective. 

This chapter aims to systematically evaluate benefits of traveler information 

provision strategies in a realistic environment with stochastic traffic demand, stochastic 

road capacity, and different degrees of traveler knowledge and traffic information 

provision quality. Based on a stochastic user equilibrium modeling framework, the 

proposed model uses a multiday representation scheme to describe stochastic samples of 

uncertain demand and capacity supply, as well as day-dependent travel time. Two classes 

of travelers are considered: travelers who have knowledge on average traffic conditions 

and select single paths over different days, and travelers who can make day-varying route 

choice decisions based on prevailing traffic information available every day.  A gap-

function based optimization model is further developed to find equilibrium solutions, and 

a number of representative examples are used to illustrate how the proposed method can 

systematically evaluate the travel time reliability-related benefit of traffic information 

quality improvement and demand smoothing strategies.  

The remainder of this chapter is organized as follows. The second section 

provides a conceptual framework and then discusses the related modeling components. 

The third section presents a gap function-based mathematical programming formulation. 

A graphical method and illustrative examples are used in the fourth section to describe 

equilibrium solutions for different representative cases with stochastic demand and 
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stochastic capacity. The solution algorithm for a general large-scale network is presented 

in the last section, followed by numerical experimental results. 

 

4.2 Problem Statement and Illustrative Example 

The sets and subscripts, parameters and decision variables in the proposed 

stochastic flow assignment model are introduced as follows: 

Indices: 

i = index of origins, i = 1, …, I, where I is the number of origins 

j  = index of destinations, j = 1, …, J, where J is the number of destinations 

p  = 
index of paths, p=1, …, P, where P is the number of paths between an OD 

pair i and j 

a  = index of links, a=1, …, A, where A is the number of links in networks 

d  = 
index of days, d=1, …, D, where D is the number of days over analysis 

horizon 

Input Parameters: 

,a dc  = realized capacity value of link a on day d from a stochastic distribution 

,i j
dq  = 

OD demand volume between an OD pair i and  j on day d from a 

stochastic distribution. 

,p a
 = 

path-link incidence coefficient, ,p a =1, if path p passes through link a, 

and 0 otherwise 

  = 
market penetration rate of the travel information (TI) users as a function of 

the total OD demand 
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,TI ETT   = 

a positive unit scaling parameter between travel time units and utility units 

for TI and ETT users, respectively, related to the quality of 

information/knowledge  

Decision variables: 

, ,
,

TI i j
p df

 = flow of TI users on path p for OD pair ij on day d 

, ,
,

TI i j
p dy

 = flow ratio of TI users on path p for OD pair ij on day d 

, ,
,

ETT i j
p df  = flow of ETT users on path p for OD pair ijon day d 

, ,ETT i j
py

 = 
flow ratio of ETT users on path p for OD pair ij (flow rates are the same 

across different days) 

,a dv
 = total flow on link a on day d 

,a dT
 = travel time on link a on day d 

,
,

i j
p dT  = travel time of path p between OD pair ij on day d 

,i j
pT  = 

expected travel time of path p between OD pair ij over the multiday 

horizon 

,i j
d  = 

day-dependent reference path disutility between OD pair i and  j on day 

d 

,i j  = 
least reference expected disutility between OD pair i and  j over the 

multiday horizon 
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To illustrate the mathematic formulation to be introduced later, let us start with a 

simple network with two nodes, two links, and one OD pair, as shown in Figure 4.1.  As 

each path only has one route, we denote primary path p=1 as link a=1 with a free-flow 

travel time of 20 minutes, and denote alternative path p=2 as link a=2 with a free-flow 

travel time of 30 minutes. This example considers 25 different days d = 1, 2, … ,D, where 

the number of days D=25.  

The alternative path is assumed to have a fixed capacity of ,a dc =3000 vehicles per 

hour per lane for all days. The primary path has an 80% probability to have a full 4500 

veh/h capacity and has a 80% chance to have a reduced 3000 veh/h capacity. Our 

example considers a high demand level as 9600 veh/h with a 20% probability, and a low 

demand level as 7600 veh/h with a 80% probability. The distributions of stochastic 

demand and capacity are assumed to be independent. Shown in the bottom part of Figure 

4.2, days 1, 6, 11, 16 are 21 have a reduced capacity on link 1, and days from 21 to 25 

have a high demand level. The day-by-day travel time pattern changes when changing the 

market penetration rate from 0% to 5%, and the latter case demonstrates reduced travel 

time variability on different demand/supply combinations. 

Obviously, the sum of path flows on this corridor equals to the total OD demand,  

 

1, 2,d d df f q d    
(4.1) 

 

Without loss of generality, this study uses the widely used Bureau of Public Road 

(BPR) function as the link performance function. 
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Figure 4.1- Simple network used as an illustrative example. 

 

 

Figure 4.2- Time-dependent capacity, demand and travel time patterns under different 
vehicle information market penetration rates. 
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,
,

,

1 a d
a d a

a d

f
T FFTT

c




  
      
      

(4.2) 

 

where aFFTT are the travel time and free-flow travel time of link a. In the following 

examples, the common values of parameters α =0.15 and β =4 were used.  

This study considers two different information user classes with different degrees 

of traveler information accessibility. 

 

4.2.1 Traveler information (TI) users 

Every day, link travel time estimates with a certain level of prediction errors are 

available for TI traveler to make route decisions, and a TI traveler can select a route on 

each day to minimize their perceived path disutility. Within a discrete choice modeling 

framework, the utility for a TI user to travel over a given path p equals the negative path 

travel time ,p dT  on day d 

 

,
, , , , 1, 2,p dTI TI

p d p d p d p dTI

T
U V p d 


      

 
 (4.3) 

 

where   is a positive unit scaling parameter between travel time units and utility units, 

and ,p d  is a random error term, independent and identically distributed (iid) for all 

routes. The perception error term ,p d  is assumed to follow a Gumbel distribution, 

which leads to a commonly used multinomial logit model. Scaling parameter   reflects 
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the level of information quality, a very small  indicates a low-error and high-quality 

information source. If   converges to zero, then perfect information is available to TI 

users.  

 

4.2.2 Expected travel time (ETT) knowledge users 

In response to random day-to-day travel time variations, unequipped travelers rely 

on their expected travel times (based on their network knowledge and past experience) 

over different days to make route choices. The expected travel time can be considered as 

the probability-weighted sum of the possible travel time values in the analysis time 

horizon. Under a steady-state multiday user equilibrium condition, the expected travel 

times on used routes in the network are assumed to be the same, and an ETT user always 

chooses the same route every day according to the following utility function. 

 

1,2.pETT ETT
p p p pETT

T
U V p 


     

  
(4.4) 

 

where ,

1
p p d

d

T T
D

   

For link a, the expected travel time is  

, ,

, ,

1 1
1 1a d a d

a a a
d da d a d

f f
T FFTT FFTT

D c D c

 

 
                                   

 
 

(4.5) 
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As the BPR function is a convex function, one can easy prove that, through 

Jansen’s inequality and by considering the flow-to-capacity ratio as a random variable, 

the average travel time obtained from equation (4.5) is greater than the value calculated 

based on the average flow-to-capacity ratio.  

 

,

,

, ,

, ,

1
1

( ( )) 1 ( )

a d
a a

d a d

a d a d
a a

a d a d

f
T FFTT

D c

f f
T E FFTT E

c c









                
  
       
    



,  

(4.6) 

 

where ,

,

( )a d

a d

f
E

c
 is the mean ratio of flow and capacity on link a over different days, 

respectively.  This indicates that, using the mean volume-to-capacity ratio, in a single-day 

equilibrium representation, to calculate the expected travel time under stochastic demand 

and capacity distributions could underestimate the actual expected congestion level.  

 

4.3 General Mathematical Problem Formulation 

We first list all the constraints in the proposed optimization model that aims to 

incorporates two user classes (in terms of day-dependent flow , ,
,

TI i j
p df and , ,

,
ETT i j

p df )  into a 

stochastic traffic assignment framework under day-dependent capacity ,a dc and day-

dependent demand ,i j
dq  during the peak hour. Specifically, constraints (4.7) and (4.8) 

show the relationship between OD demand and path flows for each information class. 

Equation (4.9) aggregates path flows from two different user classes to link flows. 
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Equations (4.10-4.11) calculate the path disutility for each path on day d.  Equation (4.12) 

defines the average disutility for each path across different days.  

 

TI flow constraints: 

, , ,
, , ,i j TI i j

d p d
p

q f i j d   
 (4.7) 

ETT flow constraints 

, , ,
,(1 ) , ,i j ETT i j

d p d
p

q f i j d   
  (4.8) 

Path - link flow balance constraints 

 , , , ,
, , , ,

, ,

,TI i j ETT i j
a d p d p d p a

i j p

v f f a d     
 

(4.9) 

Path- link cost connection 

, , ,( , ) ,a d a d a dT BPR v c a d 
 

(4.10) 

 ,
, , , , , ,i j

p d a d p a
a

T T i j p d  
 

(4.11) 

Average disutility definitional constraint:  

, ,
,

1
, ,

i j i j
p p d

d

T T i j p
D

 
 

(4.12) 

Definitional constraints: 

, , , , , , , ,
, , ,0 1,0 1, 0, 0, , , ,TI i j ETT i j ETT i j TI i j

p d p p d p dy y f f i j p d      
 

(4.13) 

To construct an optimization model of a stochastic traffic assignment program, we 

define the following gap function for TI users, in a general network.   

Objective function: 
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 

 

    

      




 

(4.14) 

 

Since , ,
,

TI i j
p dy and , ,ETT i j

py  are always positive for feasible paths in a logit model, the 

optimal solution of the proposed mathematical program reduces the gap to zero, leads to 

equations (4.15 - 4.16), 

 

, , , ,
, ,ln +T 0 , , ,TI i j i j i jTI

p d p d dy i j p d   
 

(4.15)
 

, , , ,ln +T , ,ETT ETT i j i j i j
p py i j p    

(4.16) 

 

In this study, we extend the gap-function reformulation method developed by 

Zhou et al. (2007) (for modeling stochastic time-dependent user equilibrium conditions) 

to describe the day-dependent statistic user equilibrium conditions. Essentially, we want 

to show equation (4.15) is equivalent to the logit route choice model used in a stochastic 

path assignment function as  

 

,
,

, ,
, ,

,

T
( )

, , , ,
T

( )

i j
p d

TI
TI i j
p d i j

p d

TI
p

Exp

y i j p d

Exp







 


 

(4.17) 

 

In addition, equation (16) is equivalent to equation (18).  
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 (4.18) 

 

Obviously, equation (15) can be re-expressed as 

 

, , , ,
, ,, ,

,

- -i j i j i j i j
p d d p dTI i j d

p d TI TI TI

T T
y Exp Exp Exp

 

  

     
       

           

(4.19) 

 

Since , ,
, 1TI i j

p d
p

y  , we can derive that  

 

,

,
,

1

-

i j
d
TI i j

p d

TI
p

Exp
T

Exp







 
  
        

  
  


.  (4.20) 

 

Substituting equation (4.20) into equation (4.19) leads to equation (4.17). 

Similarly, we can prove the equation (4.16) and equation (4.18) are equivalent.   

In the objective function equation (4.14), we can view , , ,
, ,ln +TTI i j i jTI

p d p dy  and 

, , ,ln +TETT ETT i j i j
p py  as generalized path disutility, and then view ,i j

d  and ,i j as reference 

path disutility. The overall objective function aims to minimize the total gap (as squared 

deviations between generalized path utility and reference utility) to zero, in order to 

ensure the stochastic user equilibrium conditions for users with traveler traffic 
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information and users with imperfect network knowledge based on expected travel times. 

Note that, we also add a constant weight of D (i.e., the number of days) for the subgap 

function for ETT users, in order to appropriately scale two subgap functions with day-

invariant and day-dependent dimensions. With the proposed objective function, we can 

quantify the optimality gap of a feasible solution and further determine if the solution 

reaches the convergence within limited iterations. In addition, we can use an efficient 

convex programming technique to solve a restricted subproblem.  

A survey by Ban et al. (2009) shows the majority of surveyed commuters trust the 

estimates if the perceived accuracy is within 5 minutes.  In this study, ETT =5 minutes as 

the default perception error scale for ETT users, and TI =3 minute as the information 

accuracy scale for TI users. By setting TI market penetration rate γ=5%, we can obtain 

the solution shown in Table 4.1.   

These 25 days can be categorized into four different states, where RC and FC 

represent reduced and full capacity, and HD and LD represent high demand and low 

demand, respectively.  

 

Table 4.1- Sample solution for 5% TI users and 95% ETT users. 

 

Demand/supply 
combinations 

ETT flow split 

1
ETT
py   

TI flow split 

1,
TI
p dy   

Combined 
flow split on 

link 1 

Travel time 
on link 1 

(min) 

Travel time 
on link 2 

(min) 

A: RC+HD 65.7% 0.008% 62.4% 67.6 42.3 

B: RC+LD 65.7% 12.1% 63.0% 46.7 39.4 

C: FC+HD 65.7% 79.3% 66.3% 32.0 36.0 

D: FC+LD 65.7% 91.9% 67.0% 24.9 32.2 
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Under a multiday steady-state equilibrium condition, ETT users keep the same 

route selection ratio even under different demand levels. On every day, TI path flow 

ratios are changing, and a less congested path received high TI path selection probability. 

The multiday assignment results can be further visualized in Figure 4.3. The horizontal 

axis is the flow ratio on link 1 (i.e., variable ,a d
a

d

f
y

q
 ), and the link travel time function 

can be rewritten as  

 

T
ra

ve
l T

im
e 

(m
in

)

 

Figure 4.3- Travel flow split solution on four different types of days. 
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. (4.21) 

 

There are four curves on path 1 to represent four different states A, B, C and D,  

and curve E represents travel time function on path 2 as a function of ya=1. The solutions 

on four different stages are shown as four vertical lines marked with A, B, D and D, with 

different route/link split ratios. Their upper and lower end points on the lines of travel 

time functions on paths 1 and 2 correspond to the actual travel time on different links. For 

vertical line A, two horizontal arrows point to the average travel time experienced by TI 

and ETT users, which are determined by the path flow splits of those two different 

information user classes. Obviously, with the access to the traveler information every day, 

TI users are more likely select the least travel time route and obtain better average travel 

time. On the other hand, there are always a small percentage of TI users still selecting 

congested route(s) due to perception errors. 

 

4.4 Solution Algorithm 

In order to iteratively reduce the overall gap in the proposed optimization problem 

for a general network with multiple origins and destinations, we extend a descent search 

solution framework developed by Lu et al. (2009), which also used a path-based gap 

function to describe the dynamic traffic equilibrium pattern. The proposed procedure 

adds day-dependent simulation, path finding and assignment dimensions to the existing 

static traffic assignment algorithm that typically assumes deterministic road capacity 

conditions. In this study, we implement the proposed algorithm within a mesoscopic 
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traffic assignment framework, which represents flow as vehicles with origin, destination 

and path attributes. The solution procedure is described as follows: 

Step 1: Initialization.  

Generate demand vector ,i j
d dq q    and road capacity vector Cd = ,a dc    on day 

d=1, 2, …,D , according to given stochastic demand and capacity distributions. Let 

iteration number n=0. Generate TI and ETT vehicles according to the maximum number 

of vehicles per OD pair  , ,maxi j i j
d dQ q   and given market penetration rate γ.  To 

simulate stochastic demand effect, on each day d, a vehicle has a probability of , ,/i j i j
dq Q

to make a trip. For each OD pair, compute the shortest path (in distance) and assign both 

TI and ETT vehicles to the corresponding shortest path. 

Step 2: Multiday traffic simulation with stochastic capacity.  

On each day d =1, 2, …,D, for given link flow patterns, generate day-dependent 

link travel times according to stochastic capacity vector Cd.  The simulation results 

generate link travel time ,a dT  for link a=1, 2, …,A, on day d=1, 2, …, D.  

Step 3: Find descent directions for stochastic traffic assignment 

Find the Least Travel time Path (LTP) using day-dependent link travel time ,a dT   

on each day d, for  link a=1, 2, …, A. 

Find the Least Expected Travel Time Path (LETP) using average link travel time 

,a d
d

a

T
T

D



, for link a=1, 2, …, A.  

Step 4: Path assignment for PI and ETT vehicles 



88 
 

 
 

For each day d, a certain percentage of TI vehicles are assigned to the least travel 

time path. By adapting the path-swapping method proposed by Lu et al. (2009), this study 

uses the following probabilistic ratio for a vehicle on path p to switch to the least travel 

time path at iteration n: 

 

, ,
,

,
,

1

1

i j i j
p d d

i j
p d

U

n U





 

 (4.22) 

 

The first term 1/(n+1) is equivalent to the fixed step size in the Method of 

Successive Average (MSA). The second term ensures that, the path swapping probability 

is proportional to the relative difference between the experienced path disutility ,
,

i j
p dU  and 

the minimum path disutility ,i j
d , where , , , ,

, , ,ln +Ti j TI TI i j i j
p d p d p dU y

 
and , ,

,mini j i j
d p p dU 

. 

Similarly, a certain percentage of ETT vehicles are swapped to the least expected travel 

time path, the route swapping probability at iteration n can be determined by 

, ,

,

1

1

i j i j
p

i j
p

U

n U





 (4.23) 

 

where 
, , , ,ln +T

i j ETT ETT i j i j
p p pU y  and 

, ,
,min

i j i j
d p dp U 

.
 

Step 5: Link flow aggregation 

For each day d, calculate the aggregated link volume ,a dv  using TI flow volume 

on day d and ETT flow (across every day), using equation (4.9).  
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Step 6: Convergence checking  

Calculate the gap function as shown in equation (4.14), if Gap <  convergence is 

achieved, where  is a prespecified parameter. If convergence is attained, stop. Otherwise, 

go to Step 2. 

 

4.5 Numerical Experiments 

In the first set of experiments using the two-route corridor and 25-day 

representation, we are interested in the following emerging questions:  

1) Given low-resolution traffic information freely available from radio stations 

and freeway Variable Message Signs (VMS), can additional high-quality traffic 

information provision services, such as Internet-connected GPS navigation devices, 

improve the system-wide average travel time or travel time reliability?  

2) Typically, travelers do not have full knowledge of historical traffic patterns for 

each link in a transportation network, and they acquire and update their own network 

knowledge based on their past experienced travel time on travelled routes. Recently, 

many websites, such as Google Maps, start to provide free color-coded maps for 

displaying historical regional travel time patterns. This source provides additional 

opportunities for commuters to better learn the traffic conditions and enhance their 

network knowledge beyond their daily commuting routes. Can the improved network 

knowledge quality necessarily improve the overall system performance? (A more 

comprehensive discussion on network knowledge can be found in the dissertation by 

Ramming, 2002). 
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3) In addition to many real-time ATIS strategies that target on informed route 

switching, many traffic management strategies, such as telecommuting, flexible working 

hours, aim to reduce and smooth the overall day-to-day travel demand variations. 

Transportation agencies need to quantify the benefit and then prioritize various potential 

congestion mitigation solutions: increasing ATIS market penetration rates, improving 

real-time data quality, or reducing day-to-day traffic demand variations? 

Table 4.2 shows experimental results for the above three different strategies from 

the base case with a market penetration rate of 5%, ETT =5 min and TI  = 3 min. It is 

interesting to observe that all scenarios do not significantly reduce the average traffic 

congestion, but they can improve the travel time reliability to different degrees.  

 

Table 4.2- Representative traveler information provision and traffic management 
strategies. 

 Mean travel time (min) STD 
(Min)

Base case 31.06 11.81 

Improve traveler 
information 
accessibility 

Improve  market 
penetration rate to 

7.5% 

30.93 10.6 

Improve market 
penetration rate to 10%

30.83 9.6 

Improve network 
knowledge quality 

Reduce ETT  to 4 min 31.20 12.34 

Reduce ETT to 2 min 31.03 11.71 

Improve 
information 
quality 

Reduce TI  to 2 min 31.03 11.71 

Reduce TI to 1 min 30.83 10.72 

Demand 
Smoothing 

Pr(7800) =0.8 
Pr(8800) =0.8 

30.75 8.53 

Constant Demand: 
8000 veh/h 

30.65 6.01 
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Demand smoothing strategies produce the most effective variability reductions, 

followed by traveler information accessibility enhancement strategies. Improved 

knowledge quality strategies (e.g., ETT =4 min) might not improve system-wide 

performance, as the better information  allows more ETT users to use the congested route 

1 due to reduced perception errors in the average travel time.   

In the second set of experiments, we use a realistic demand pattern on the two-

route corridor with a 100-day representation.  The I80-E corridor is one of the major 

freeways through Bay Area, California, and has been chosen for the numerical example. 

Using measured traffic flow data from 03/02/2009 to 07/21/2009 between 8AM and 9AM 

(AM peak hours over 100 nonholiday weekdays).  

Figure 4.4 displays the probabilistic distribution of 100 lane flow rate samples at 

Sycamore Ave.  

 

 

Figure 4.4- Histogram of 100 stochastic demand flow rate samples. 
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The stochastic distribution has a sample average of 1600 vehicles/hour/lane and 

standard deviation 214 vehicles/hour/lane, which reveals the inherent randomness in 

traffic flow. The stochastic capacity data used in the following analysis were obtained 

from a recent research effort by Jia et al. (2010). 

As shown in Figure 4.5(a), with a very small market penetration (γ ≤10%), the 

mean travel time is improved due to the introduction of traveler information services. As 

the market penetration rate gradually increases, the mean travel time jumps considerably. 

This result suggests that that average travel time saving is obtainable by maintaining the 

market penetration at a low level. Shown in Figure 4.5 (b), the system-wide travel time 

variability is consistently reduced as more users access traveler information, but TI users 

do not necessarily have a lower travel time variability compared to ETT users, as the 

assumed objection function of TI users aim to reduce day-dependent travel time.  

 

4.6 Summary 

Conventional network analysis models typically focus on finding a single-day 

steady-state equilibrium solution by assuming fixed demand and constant capacity. To 

systematically quantify the system-wide mobility and reliability impact of traveler 

information provision strategies, this chapter presents a multiday multiclass (in terms of 

information use) equilibrium model with stochastic capacity and stochastic demand. This 

study offers a powerful modeling approach to evaluate how travelers with different 

information accessibility adjust their route choice patterns when various sources of travel 

time uncertainty, e.g., stochastic demand fluctuations and different levels of information 

quality, are altered.  
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Our future research will focus on the calibration of stochastic capacity and 

demand distributions under both recurring and nonrecurring congestion conditions. The 

proposed model can be also enhanced to consider more realistic route choice utility 

functions involving both expected travel time and travel time reliability. In this case, new 

path finding algorithm using multiday samples should be also developed to account for 

the potential link travel time correlations due to stochastic variations in origin-to-

destination demand patterns. 

 

  



 
 

 
 

 

 

CHAPTER 5 

 

DAY-TO-DAY TRAVELER LEARNING FRAMEWORK 

 

5.1 Introduction 

Over the last three decades, the majority of the research interest in the field of 

DTA were concentrated on how to improve the realism of traveler behavior 

representation and demand modeling. Examples of DTA modeling innovations include 

incorporating within-day and day-to-day varying demand patterns, modeling departure 

time and mode choice, as well as simulating different levels of information availability. 

A key foundation for development of strategies aimed at improving the efficiency 

and reliability of urban transportation network is identifying the location and impact of 

system bottlenecks. Although free flow capacity and queue discharge rates at system 

bottlenecks have been traditionally modeled as fixed values, they are in fact random 

processed. Therefore, assessing the operational impact of network bottlenecks requires 

reliable and realistic tools that account for stochasticity in prebreakdown flow rates and 

queue discharge rates.   

Focusing on methodological and analytic enhancements to existing dynamic 

traffic assignment models, this chapter presents a method to seamlessly incorporate 

stochastic capacity models at freeway bottlenecks and signalized intersections, and 
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develops adaptive day-to-day traveler learning and route choice behavioral models under 

the travel time variability introduced by random capacity variations.  

To account for different levels of information availability and cognitive 

limitations of individual travelers, a set of “bounded rationality” rules are adapted to 

describe route choice rules for a traffic system with inherent process noise and different 

information provision strategies. Based on a mesoscopic dynamic traffic simulator, 

namely DYNASMART-P (Mahmassani, 2001), this research enhances a number of key 

modeling components to meet the above challenges. The enhancements include a new set 

of day-to-day learning and route choice rules under the resulting stochastic travel time 

variations. 

This chapter is organized as follows. The second section and the third section first 

introduce the conceptual route choice mechanism designed to respond to the stochastic 

travel time variations. This is followed by a detailed simulation implementation 

procedure in the fourth section. This chapter concludes with a case study for the real-

world network in the fifth section and overall summaries in the last section. 

 

5.2 Overall Modeling Framework 

As illustrated in Figure 5-1, a simulation-based evaluation framework is used in 

this study to estimate the system performance for a multiday planning horizon under 

stochastic road capacity.  
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Figure 5.1- Capacity-Enhancing Strategy Evaluation Framework. 

Source: SHRP2 C05 Report (2010) 
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A simulation-based evaluation framework is used to estimate the system 

performance for a multiday planning horizon under stochastic road capacity. The existing 

version of DYNASMART-P can be deployed in three distinct modes. These modes differ 

mainly in the assignment component applied. The first mode represents a one-step 

simulation-assignment procedure in which vehicles are assigned to the current-best-path, 

random path or any number of predetermined paths (e.g., historical paths). The second 

mode represents an iterative user equilibrium (UE) procedure. The third mode is a day-to-

day system evolution modeling framework that interfaces the within-day simulation 

assignment with day-to-day behavior adjustment rules. Because this day-to-day system 

evolution-modeling framework was not fully developed at the outset of this project, 

DYNASMART-P was enhanced to model realistic traveler response mechanisms from 

multiple information classes. 

In a day-to-day learning framework, users with pretrip and en-route information 

always start from a habitual path. If pretrip/en-route information becomes available, they 

will rely solely on the pretrip or en-route information to make route switching decisions. 

If a driver does not acquire any traveler information, he or she will rely on the historical 

experiences and starts the trip following the habitual (historical) path.  

 

5.3 Day-To-Day Traveler Learning and Route Choice Model 

As has been stated previously, conventional traffic assignment methods assume 

static, deterministic road capacity. Therefore, the travel time of a path only depends on 

the flow pattern on that path. In other words, for a fixed network-wide path flow pattern, 

the corresponding path travel times do not change. However, real-world road capacities 
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vary with time over a certain range, and a driver’s travelling experience on a single day 

can be dramatically affected by the underlying realized capacity values on that particular 

day. In other words, travelers will experience different travel times on the same path over 

different days even for the same path flow pattern because of the inherent travel time 

variability introduced by stochastic capacity. As a result, conventional "within-day" or 

iterative route choice methods for reaching user equilibrium, such as the method of 

successive averaging (MSA), may not enable drivers to recognize and appropriately 

respond to the travel time variability/unreliability resulting from capacity fluctuation. A 

theoretically rigorous and practically useful traveler route choice model is crucially 

needed in order to adaptively capture the stochastic day-to-day travel time evolution 

process and also to maintain robustness under disruptions due to stochastic capacity 

reductions.  To this end, a new route choice mechanism is proposed to simulate the 

drivers' route choice behavior under stochastic traffic process noise. By comparison, 

conversional stochastic assignment models focus on traveler perception errors under a 

deterministic traffic environment. The proposed mechanism includes two key 

components: a route choice learning module and a route choice decision module. In 

addition, different user classes, which receive and perceive different types of traffic 

information at different decision points along trips, are further investigated in this study. 

 

5.3.1 Conceptual framework 

The day-to-day learning framework proposed by Hu and Mahmassani (1997) and 

Jha et al. (1998) provides a promising path for seamlessly integrating stochastic capacity 

models in the DTA simulator for large-scale networks. Generally speaking, the learning 
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behavior in such a day-to-day learning framework is determined by each vehicle’s 

historical traveling experiences, the traveler information obtained before and during the 

trip, as well as newly experienced travel times on the current day.  

Conceptually, our proposed model includes three components: 

Traffic flow assignment model: 

 

݂ௗାଵ ൌ ,ሺ݂ௗܣ ܶௗ,   (5.1)																																ௗሻݓ

 

Stochastic traffic system simulation process:  

 

ௗݐ ൌ ܵሺ݂ௗሻ ൅  ௗ (5.2)ݓ

 

Travel time perception model:ܶௗ ൌ ௗݐ ൅  ௗ (5.3)ߝ

 

where 

݂ௗ  = assigned route flow pattern on day d, determined by traffic assignment 

model/function A(·), 

 ௗ= true travel time on day d, determined by dynamic assignment/simulationݐ

function S(·), 

 ,ௗ= the system noise introduced by the stochastic capacityݓ

ܶௗ= the observed travel time by a traveler, 
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ௗߝ  = the traveler perception error associated with perceived travel time in the 

network, introduced by the sampling error associated with personal experience and 

quality of information.   

It should be remarked that most existing day-to-day learning models are 

implemented with stable road capacity, which assume no system noise, i.e.,	ݓௗ ൌ 0, so 

the travel time ݐௗ	is a deterministic vector for a given set of route flows, ݂ௗ in equation 

(5.2). Accordingly, the focus in the previous research has been on how to reach the 

deterministic steady-state conditions, and how to construct realistic learning/updating 

models for the travel time perception error term ߝௗ related to equation (5.3). 

In this study, we enhance a dynamic traffic flow simulator, namely 

DYNASMART-P, to describe a traffic simulation process with day-to-day varying 

system noise, ݓௗ  in equation (5.2). Corresponding to the traffic flow assignment model, 

Equation (5.4), a day-to-day learning module is presented to describe adaptive traveler 

behavior across multiple days in a stochastic traffic evolution environment. The essential 

idea for the learning module is to enable certain users to use their historical traveling 

experiences to construct their estimates and make decisions under uncertain system travel 

times (introduced by the system noise	ݓௗ). To simplify the route choice rules, we assume 

0d  in our following discussion. As a result, the proposed model does not involve the 

use of a Probit or Logit model to assign traffic flows and does not require a travel 

perception error updating process.  
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5.3.2 Route choice utility function and simplified route switching rule 

Jia, Zhou, Li, Rouphail and Williams (2010) adapted a behaviorally sound route 

choice utility function, proposed and calibrated by Brownstone and Small (2004) and 

Lam and Small (2001), to consider the stochastic nature of traffic systems.  

 

VOR TOLL TOLL
GT T TSD T TSD

VOT VOT VOT
         (5.4) 

 

where 

 ,the generalized travel time =ܶܩ

ܶ = the expected travel time for traveler, 

 .perceived travel time variability = ܦܵܶ

 reliability ratio (computed as the ratio of Value of Reliability (VOR) and Value of = ߚ

Time (VOT)). 

Toll = road toll charge, and it is assumed to be zero in the following discussions as no 

toll-related strategies will be evaluated in this paper.  

It has been well recognized that travel time variability and reliability are 

important measures of service quality for travelers. In the above utility function, equation 

(5.4), the travel time standard deviation (TSD) is used to measure system travel time 

variability associated with the underlying stochastic traffic process. This contrasts with 

the perception error variance in a deterministic assignment model.  For a single traveler v, 

the route choice decision is made by comparing the generalized travel time of habitual 

path, ܩ ௩ܶ
௛, and that of alternate path, ܩ ௩ܶ

௔.   
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h a
v vGT GT  (5.5) 

 

where 

v = traveler index,  

h=index for habitual path, and  

a=index for potential alternative path. 

According to Equation (5.4), if the generalized travel time of the habitual path, 

ܩ ௩ܶ
௛, is greater than that of alternate path, ܩ ௩ܶ

௔, as shown in Equation 8, a vehicle should 

switch his route from the habitual path to the alternative path. The resulting decision rule 

could be derived as: 

 

 h a a h
v v v vT T TSD TSD    (5.6) 

 

In this study, ௩ܶ
௛ is equal to തܶ௩

ௗି௄,ௗିଵ	as calculated in equation (5.7). In order to 

take a traveler’s multiday travel time experience into account. ௩ܶ
௔	is calculated using the 

estimated travel time on the shortest path. It should be noted that the calculation of 

௩ܶ
௔varies for different user classes, which will be discussed in section 5.3.3.  

 

     1 1

, 1

d K d K d
v v v

v
d K d

T P T P
T

T P

K

   
 

 
  (5.7) 

 

where d  = day index  

K = number of days in the learning memory window 
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തܶ
௩
ௗି௄,ௗିଵ= traveling experience (i.e., average travel time) for traveler v from day d-K to 

day d-1, on a particular path, 

ܶሺ ௩ܲ
ௗିଵሻ = travel time on path ௩ܲ

ௗିଵ, and ௩ܲ
ௗିଵ is the path traveled by vehicle v on day d-

1. 

The right side of equation (5.6) can be viewed as the minimum acceptable 

absolute tolerance needed for a route switch decision.  This value arises from three 

components: the reliability ratio ߚ, the standard deviation of travel time on the habitual 

path ܶܵࢎ࢜ܦ, and the standard deviation of travel time on the alternative path ܶܵࢇ࢜ܦ. The 

calibration study from Noland et al. (1998) indicated a reliability ratio value of ߚ ൌ 1.27 

based on survey data from more than 700 commuters in the Los Angeles region. The 

setting of parameter K depends on the signal-to-noise ratio in the traffic system. 

Specifically, the more stable the travel time process, the smaller K can be and still yield a 

reliable mean travel time estimate. In general, K must be large enough to filter out the 

process noise from the stochastic traffic system.  

The travel time variability measure, ܶܵࢎ࢜ܦ, for the habitual path can be calculated 

from multiday travel times experienced by the traveler. The remaining challenge is how 

to estimate the standard deviation of travel time on the alternative path,	ܶܵࢇ࢜ܦ, where the 

traveler has little or no experience on this path. When there is no external pretrip or en-

route information available, ܶܵࢇ࢜ܦ  needs to be calculated from the traveler’s prior 

experience. To our knowledge, there is no widely accepted method to calibrate the 

standard deviation of perceived travel times on alternative paths for travelers without 

access to advanced traveler information systems and relying on prior knowledge only. In 

this research, we assume ܶܵࢇ࢜ܦ  is significantly larger than ܶܵࢎ࢜ܦ   due to the lack of 
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precise information and the high level of uncertainty associated with the perceived 

alternative travel time. The calibration of the minimum acceptable absolute tolerance was 

beyond the scope of this study. Therefore, this research uses a simplified, single term 

model, ࢇ࢜ܦ൫ܶܵߚ	 െ ,൯ࢎ࢜ܦܵܶ  to represent the minimum acceptable absolute tolerance 

needed for a route switch decision. This simple model is intuitively sound, and using it 

eliminates the need for extensive calibration efforts.  

In this study, a bounded rationality model, which states that a driver’s decision 

depends on their desired satisfaction level, is adapted to make the route choice 

comparison. The bounded rationality concept is employed because there has been 

growing attention (starting from the early work by Mahmassani and Herman (1990) to 

bounded rationality since Herbert Simon (1995) pointed out that perfectly rational 

decisions are often not feasible given the limits of human cognition.   

Based on the minimum acceptable absolute tolerance and the relative acceptable 

tolerance, a set of bounded rationality rules, shown in Equation (5.11), are used to 

describe users' route switching behavior. As opposed to the optimization theory in which 

users select the best option from all possible decisions, in the bounded rationality 

approach, users perform limited searches, accepting the first satisfactory decision.  

 

, 11 [ , ]
δ

0

d K d a h
v v vif T T MAX T

otherwise

     
  
 

 (5.8) 

 

where 

δ =1, switch to an alternative path; 0, remain on the habitual/ current path, 
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α = Minimum acceptable absolute tolerance needed for a switch and   ߙ ൌ ௩௔ܦሺܶܵߚ െ

  ,௩௛ሻܦܵܶ

λ = Relative acceptable tolerance (i.e., relative improvement threshold). 

 

5.4 Conceptual Simulation Framework and System Implementation 

The system evolution-modeling simulation framework for the enhanced version 

of DYNASMART-P is illustrated in Figure 5.2. In the proposed modeling framework, 

static demand (i.e., the same number of vehicles with fixed departure times) is simulated 

over different days.  

In the above conceptual simulation framework, three critical inputs (illustrated in 

the input boxes in Figure 5.2) should be prespecified by users, which are listed as follows: 

 Time-dependent traffic demand, 

 Bottleneck locations, 

 Percentage of unequipped, pretrip and en-route users, 

 Parameters of the bounded rationality rule.  

The following day-to-day learning procedure is developed in this study to 

realistically model the incremental adaptation of traveler route selection behavior to the 

implementation of targeted strategies for improving sustainable flow rates within the 

network.  
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Figure 5.2- Comprehensive conceptual simulation framework. 
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Given the stochastic nature of the improved traffic models, changes in preferred 

paths are made based on running averages with a fixed look-back period and a minimum 

travel time improvement threshold. The number of travelers that are willing to change 

planned routes is limited to ensure a stable route switching response. The route choice 

model enables driver classes with access to pretrip or en-route information to select 

alternate routes in response to random queues on their preferred routes. Minimum travel 

time improvement thresholds are also used for the dynamic route choice model.  

Notations 

d  = day index  

K = number of days in the learning memory window 

i = origin index 

j = destination index 

v = traveler index 

 = departure time interval 

d
, ,pi j   = least travel time path for OD pair ( , , )i j   on day d 

d
i,j,   = least travel time for path d

, ,pi j   

dpv  = path traveled by vehicle v on day d 

d-K,d
vT  = average travel time for traveler v traveling on the path dpv  from day d-K to day d 

 = absolute improvement threshold bound for bounded rationality rule  

 = relative improvement threshold for bounded rationality rule 

The day-to-day learning simulation algorithm is detailed as follows.  

Initialization Set the iteration counter of outermost loop d=0. 
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0. Generate information user class for each vehicle according to prespecified 

market penetration rates.  

1. Identify traffic bottleneck locations in the network according to the network 

topology and number of lanes, and then output freeway merge/diverge/weaving 

bottleneck locations to input data block A. 

Day-to-day Traffic Simulation 

2. Generate random capacity input for each freeway bottleneck every 15 minutes, 

according to calibrated stochastic headway models for merge, diverge and weaving links. 

3. Generate random capacity input for each arterial link at the beginning of each 

signal cycle, according to a calibrated stochastic headway model for arterial streets. 

4. According to network-wide prevailing travel time, generate pretrip and en-route 

shortest paths for each origin-destination pair.  

5. Load vehicles into the network with their habitual paths dpv . 

6. For each vehicle equipped with ATIS information (pretrip or en-route), 

compare the prevailing travel time between the habitual path and the suggested path from 

ATIS strategy, fetch bounded rationality rule parameters for different information classes 

from input data blocks B and C, and change the vehicle’s path to suggested path from the 

pretrip or en-route information provision services if the relative and incremental 

improvement thresholds are satisfied.  

7. Given updated flow pattern from the route switching module, perform a 

dynamic network assignment under stochastic capacity for the entire planning horizon. 

Post-trip Traveler Learning and Route Switching Decision 

8. Obtain the percentage of travelers willing to learn from data input block D.  
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9. For each vehicle v willing to switch, obtain its current path on day d. calculate 

the mean travel time 
d-K,d
vT  from day d – K to current day d. 

10. Based on the time-dependent network-wide travel time database, generate the 

least travel time path d
, ,pi j  as a post-trip alternative route for OD pair (i,j) and departure 

time  , and calculate the corresponding travel time d
i,j, . 

11. Update habitual paths according to the bounded rationality rules and the 

parameters are specified in data input block E.  

If   d-K,dd
i,j, vT     Or  

d-K,dd
i,j, (1 )vT     

then switch route to the shortest travel time path; that is, set d d
, ,p =pv i j  . Otherwise, remain 

on the current habitual route on day d. 

12. Stability checking: if the current flow pattern is stable or the network-wide 

traveler switching rate is close to steady-state conditions, then stop. Otherwise, continue. 

 

5.5 Case Study 

The proposed simulation frameworks are applied to a real-world subarea network 

within the Portland, Oregon metropolitan area in order to demonstrate the model 

applicability and usefulness. The subarea network selected for this purposes is illustrated 

in Figure 5.3. It is relatively large in size and therefore represents a good opportunity to 

test scaling issues associated with the method applications. The network (Figure 5.3) 

includes 858 nodes, 2000 links, and 208 origin-destination zones. Among the 858 nodes, 

169 of them are modeled as signalized intersections with actuated control and the 

remaining are modeled at uncontrolled nodes with capacity constraints.   
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historical traveling experience. The calibrated parameters of the stochastic models 

described in section 3 were applied to generate stochastic capacity and queue discharge 

flow rates for freeway bottlenecks (i.e., on-ramp and lane drop segments) and saturation 

flow rates for signalized arterials. For simplicity, the minimum acceptable absolute 

tolerances used in bounded rationality rule are 5 minutes for unequipped users and 2 

minutes for pretrip/en-route users. The default value of the relative switching threshold is 

set to 20% in this study. 

In the case study by Jia, Zhou, Li, Rouphail and Williams (2011), the simulation 

run is performed over 100 days of simulated time in order to effectively generate realistic 

results. Figure 5.4 shows the network-wide average travel time and route switching rate 

of total vehicles segmented in three time regimes.  

 

 

Figure 5.4- Network-wide simulation results. 

Source: SHRP2 C05 Final Report (2010) 
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In this study, for example, during the baseline stabilization period (Regime I in 

Figure 5.4) 50 days are simulated to achieve a stable baseline scenario. The average 

travel time diminishes significantly during the first 40 days and stabilizes afterwards. 

After the baseline stabilization period was completed, the operational and/or 

construction strategies to be evaluated were introduced into the network, and we carried 

out the simulation process for an additional 30 days to allow driver adjustments and 

achieve stable conditions under the new scenario. This is referred to as the strategy 

stabilization period and is illustrated as Regime II.  Following immediately upon this 30-

day period was a simulation of an additional 20 days (Regime III in Figure 5.4) that 

formed the basis for the summary results output associated with the particular strategy 

being investigated. In regime III, although the average travel time or switching rate is 

relatively stable, there are still obvious day-to-day fluctuations, because the travel time 

experience on a single day can be dramatically affected by the underlying stochastic 

capacity features. Therefore, evaluation of network performance only based on the last 

simulation day (last iteration) is not recommended and new reliability-oriented system 

performance measures should be applied to take multiple days into account. In this study, 

for example, the simulation results from the last 20 days were used to report the network 

performance. 

 

5.6 Summary 

In this study, methodological and analytic enhancements to existing dynamic 

traffic simulation models have been proposed for the purpose of increasing the realism 

and sensitivity of the models in simulating real-world network and the effects of strategy 
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applications. The particular focus is on how to seamlessly integrate stochastic capacity 

models and compatible route choice models within a stochastic capacity environment. 

These enhancements have been prototyped and tested through a mesoscopic DTA 

simulator, DYNASMART-P, and could be easily incorporated into other dynamic traffic 

simulation/analysis models as well. The study described in this paper provides the 

following contributions to the existing DTA models: 

 An innovative simulation platform incorporating stochastic road capacity for both 

freeway and arterial links, which enables reasonable and realistic modeling of 

travel time. 

 A new set of day-to-day learning and route choice models which enables a 

realistic representation of drivers’ route selection process and effectively 

stabilizes overall network flow under stochastic capacity conditions.  

 Practical modeling guidelines which are effective for the enhanced DTA model to 

simulate various capacity-enhancing design, operational, and technological 

strategies. 

 

  



 
 

 
 

 

 

CHAPTER 6  

 

ANALYTICAL MODELS ON DERIVING TRAVEL TIME  

VARIABILITY DISTRIBUTIONS FROM STOCHASTIC  

CAPACITY DISTRIBUTIONS 

 

6.1 Introduction 

Travel time reliability has been widely recognized as an important element of a 

traveler’s route choice and departure time scheduling decision. In recent years, operating 

agencies have begun to shift more focus toward monitoring and improving the reliability 

of transportation systems, in addition to ensuring the mobility performance measures. 

With a growing trend of incorporating trip time variability into traveler information 

provision systems, many ongoing Intelligent Transportation Systems (ITS) development 

efforts are devoted to establishing probe-based data collection systems.  

As an essential attribute in travelers’ route and departure time decision, travel 

time reliability serves as an important quality-of-service measure for dynamic 

transportation systems. Dong and Mahmassani (2009) recently developed a statistical 

approach to calibrate the travel time reliability measure as a function of flow rates, and 

the resulting regression models were used to predict trip reliability costs and user benefits 

for a given set of flow rates obtained from dynamic traffic assignment/simulation results. 
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Another approach for systematically estimating travel time variability in a traffic 

network is to perform a day-to-day dynamic traffic assignment module, where the travel 

time patterns evolve depending on a number of variability sources, e.g., stochastic 

capacity, stochastic demand and random route choice behavior. Although this approach 

provides a fully dynamic and stochastic modeling environment for studying various 

uncertainty sources and assessing the benefits of traffic management strategies, it still 

requires considerable data collection, calibration and computational efforts to perform 

realistic day-to-day assignment results.  

This chapter investigates a fundamental problem of quantifying travel time 

variability from its root sources: stochastic capacity and demand variations that follow 

commonly used log-normal distributions. A volume-to-capacity ratio-based travel time 

function and a point queue model are used to demonstrate how day-to-day travel time 

variability can be explained from the underlying stochastic demand and capacity 

distributions.  

This chapter also uses simplified peak-hour demand profiles to estimate time-of-

day or time-dependent travel time variability functions at traffic bottlenecks. The 

proposed models provide theoretically rigorous and practically usefully tools to 

understand the causes of travel time unreliability and evaluate the system-wide benefit of 

reducing demand and capacity variability.  

Given a set of observed or simulated traffic conditions, e.g., traffic flow and 

queue profiles on a link or a corridor, this study aims to provide efficient analytical 

approximation methods to specify the PDF of travel time distributions as a result of 

stochastic capacity and demand distributions. Focusing on planning-level applications, 
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the goal of our proposed research is to enable a quick characterization of travel time 

reliability statistics without resorting to the comprehensive but computationally 

challenging day-to-day simulation or numerical approximation approaches. We also 

envision that an efficient travel time variability estimation module can be extremely 

useful in a real-time traffic information provision system where travel time reliability 

information needs to be rapidly predicted based on a set of predicted traffic conditions 

(e.g., for the next 30 minutes). In this case, travel time reliability statistics calibrated from 

the archived travel time database are insufficient or difficult to predict future system 

performance variations, which are highly dependent on the dynamic states of prevailing 

and future traffic conditions, rather than the steady-state historical pattern. 

In addition, we are interested in estimating the time-dependent travel time 

variability for a traffic bottleneck. Congestion caused by bottlenecks contributes about 40% 

of the nationwide urban congestion. As a bottleneck is activated when the provided 

capacity is insufficient for and restricts the incoming traffic flow, it is critical to achieve a 

better understanding on how the travel time variability at bottlenecks are contributed by 

variations of its incoming flow and queue discharge flow.  To this end, we will derive and 

construct analytical relationship between the capacity change and the waiting time 

change on a bottleneck, by extending theoretical results from the link cost marginal 

analysis for traffic queuing systems. 

This chapter is organized as the following sequence.  

(1) Several key statistical properties of log-normal distribution are reviewed, 

which is a state-of-practice distribution used in many empirical studies for describing 

travel time variability.   
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(2) By assuming log-normal distributions for stochastic demand and capacity, and 

in the context of the BPR function as travel time performance functions,  this chapter 

aims to prove that the resulting travel time follows a log-normal distribution, so the travel 

time variability can be analytically derived from the variation parameters in demand and 

capacity.  

(3) Furthermore, a more realistic point queue model is considered, and under an 

assumption of log-normal distributions for stochastic capacity variations, the 

corresponding total waiting time can be characterized through log-normal distributions.  

(4) This chapter then uses simplified peak-hour demand profiles to derive time-of-

day travel time variability functions at a traffic bottleneck.  

(5) A simple case study with real-world data from the I880 corridor in the Bay 

Area, CA is conducted to demonstrate and verify the proposed analytical methods.  

 

6.2 Review of Statistical Properties of Log-Normal Distribution 

There are a wide range of probability distributions available, such as Weibull and 

normal distributions, to describe travel time variability and its sources of randomness. 

The reason for selecting the log-normal distribution in the proposed analytical framework 

is based on (1) its goodness-of-fit on empirical data, and (2) its attractive mathematical 

properties for multiplicative functions of log-normally distributed random variables, 

which are particularly useful for conceptualization, formalization, and abstraction in 

travel time variability study.  

 In general, the Gaussian (normal) distribution has been widely used to 

characterize symmetrical random variations. For many skewed variations, for example, 
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mean values are low but variances are large, the log-normal distribution can achieve a 

desirable fit. More importantly, what we should recognize the major difference between 

normal and log-normal distributions is their additive vs. multiplicative effects. Specially, 

if 2~ ( , )j j jX N   , then j
j

Y X  is also normally distributed.  

For functions of log-normally distributed random variables, there are the 

following properties (Aitchison and Brown, 1957).  

Property  1:   If  2( , )X LN   , then variable
1

Y
X

  is also log-normally 

distributed,  2~ ( , )Y LN   . 

Property 2: If 2~ ( , )j j jX LN    are n independent log-normally distributed 

variables, then product
1

n

jj
Y X


  is also log-normally distributed as 

2

1 1
~ ( , )

n n

j jj j
Y LN  

   .  

Property 3: If 2~ ( , )X LN     and a ≠ 0, then aY X  is also log-normally 

distributed as   2 2~ ( , )Y LN a a  .  

Property 4: If 2~ ( , )X LN   , then Y aX  is also log-normally distributed as ,  

2~ (ln , )Y LN a    

Property 5: If 2~ ( , )X LN   , then X c  becomes a shifted log-normal 

distribution with    E X  c   E X   c   and    Var X  c   Var X  . 

 
21

2E X e
 

 , 

  2 22Var X ( 1)e e     
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2
2

1

2[ ] [ ] ( 1)SD X Var X e e
  

    

Property 6: Sum of lognormal 

Consider 
1

n

jj
Y X


  , where 2~ ( , )j j jX LN    are independent log-normally 

distributed variables There is no closed-form expression available to describe the 

stochastic distribution of Y , but random variable Y can be numerically approximated by 

another log-normal distribution Z at the right tail.  

 

6.3 Deriving Travel Time Variability Distribution Based  

on BPR Function 

Consider the following BPR function on a single link or corridor, 

 

1
V V

T FFTT FFTT FFTT
C C

 

 
                    

 (6.1)  

 

where T= travel time 

 FFTT = Free-flow travel time, 

V = link volume, 

C = link capacity 

Coefficients   and   can be set to commonly used default values 0.15 and 4, 

respectively.  

Proposition 1: If incoming demand and capacity are assumed to be log-normal 

variables, that is, 2~ ( , )V VV LN   and 2~ ( , )C CC LN   , then  
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 2 2 2~ ln( ) ( ), ( )V C V CT LN FFTT FFTT              (6.2)  

 

Proof:  

According to property 1, since the link capacity c is a log-normal variable, 

21
~ ( , )C CLN

C
  . 

According to property 2, since the demand V and 
1

C
 are log-normal variables, 

2 21
~ ( , )V C V C

V
V LN

C C
        

According to property 3,   2 2 2~ ( ), ( )V C V C

V
LN

C



           
 

. 

According to property 4,  

 2 2 2~  ln( ) ( ), ( )V C V C

V
FFTT LN FFTT

C



                
 

. 

According to properties 5 and 6,  

 2 2 2~ ln( ) ( ), ( )V C V CT LN FFTT FFTT              

and 2 2 21
( ) exp(ln( ) ( ) ( ))

2V C V CE T FFTT                .  

The coefficient of variations =SD(T)/E(T) =  2 2 2exp ( ) 1V C        , where 

SD(T) can be derived from Property 5.  

End of proof. 

In summary, if both road demand and capacity are log-normally distributed, then 

the resulting travel time is a shifted log-normal variable with analytical form for the 
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expected value and variance.  Using those properties, one can quantify how reducing 

variations in the source of randomness affects the overall travel time variability.  

 

6.4 Deriving Travel Time Variability Distribution  

Based on Point Queue Model 

In this section, we consider a bottleneck with a study time horizon from 0 to time 

H. The stochastic capacity, more precisely, queue discharge rate Q for a point queue 

model at the bottleneck can be described as a shifted log-normal function

max 2~ ( , , )Q QQ LN Q   , where shift = the maximum queue discharge rate Qmax.  That is, Q 

= Qmax- ΔQ, where ΔQ is the deviation of queue discharge rates and 2~ ( , )Q QQ LN   . 

Note that we assume a constant queue discharge rate for each congestion period in this 

study, where the actual queue discharge rates can slowly evolve as a time-varying 

parameter within the same congestion peak period.  As the theoretical development in 

this chapter involves both static V/C-based BPR function and point queue model, it is 

important to highlight two key differences between these two models. First, the point 

queue model assumes zero delay unless V > C, while a BPR-type function still produces 

delays when V<C.   

In addition, a traffic queuing model needs to clearly distinguish prebreakdown 

flow rates (that triggers the change of traffic states from uncongested to congestion) and 

queue discharge flows (after a breakdown occurs), and these two types of flow rates are 

time-dependent. A travel time performance function like BPR functions, on the other 

hand, simply uses hourly capacity to characterize the overall congestion level. 
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 For simplicity, we first assume constant demand in this example. Using a known 

(time-dependent) demand pattern, and the maximum queue discharge rate Qmax, we can 

use the point queue model to calculate the queue profile, characterized in the input-output 

queuing diagram shown as Figure 6.1, where curves A and D represent vehicle upstream 

arrival pattern and downstream departure pattern, respectively. All the curves are 

expressed in terms of cumulative numbers of vehicles, where the slop of a departure 

curve indicates the queue discharge rates of vehicles at the bottleneck. 

In the point-queue model, the horizontal distance between curves A and D shows 

the waiting time of a vehicle, and the total waiting time is denoted as W. The vertical 

distance between curves A and D shows the number of vehicles accumulated in the queue 

starting from time s to dissipating at time e. The area between two curves, A and D in 

Figure 6.1, represents the total queuing delays of all vehicles. The following discussion 

aims to construct a probability distribution function of the total waiting time W.  

To evaluate the impact of flow switching strategies in the dynamic traffic 

assignment process, a variety of studies have been conducted for computing local link 

marginals due to adding or deleting a vehicle from a link. Ghali and Smith (1995) used a 

deterministic point queue model to describe traffic flows and gave analytical formula to 

quantify the marginal impact of total link travel time due to a small change in incoming 

flow.  In particular, the marginal improvement with respect to adding or deleting a 

vehicle is approximately proportional to the time interval from a vehicle entering time t to 

the end of congestion e, that is, the system-wide marginal travel time change is m =  (et). 
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Figure 6.1- Local link marginal delay evaluation method for vehicle entering at time t. 

(based on figure by Ghali and Smith (1955)) 
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In Figure 6.2, we can derive the impact to the total waiting time due to one unit of 

departure flow change at time t .If we consider the queue discharge rate is changed by 

one unit for the congested period from time s to e simultaneously, then the total system-

wide waiting time change ΔW is 

 

2 21 1
( ) ( )

2 2

e

s

Q e x dx Q e s Q M         ,  (6.3) 

 

where ΔQ is the capacity change rate and M is the queue duration.  

 

 

Figure 6.2- Local marginal delay evaluation method for one unit of departure flow 
change at time t. 
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Shown in Figure 6.3, we can have the following geometric interpretation for the 

key formula used in this study 

 

21
( )

2
W Q M      (6.4) 

 

where ΔQ is the capacity change rate and M is the queue duration.  

Note that the total system-wide waiting time is the area between the cumulative 

curves A and D. 

 

 

Figure 6.3- Total delay change for one unit of discharge rate change for the entire 
congestion duration. 
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The change of total waiting time (a change in queue discharging rate) can be 

approximated by  

 

  21 1 1
'( ) ( ) ( ) ( ) ( ) ( ) ( )

2 2 2
D e D e e s Q e s e s Q M                (6.5) 

 

where '( ) ( )D e D e  is the height of the “change” hashed triangular, which can be roughly 

approximated by ( ) ( )Q e s   .  

M e s  corresponds to the width of the “change” triangular.  

Proposition 2: If the variations of queue discharge rate Q is assumed to be a log-

normal variable, that is, 2~ ( , )Q QQ LN   , then the total waiting time variability can be 

described by 

 

2 21
~ ln ,

2 Q QW LN M     
 
（ ）  (6.6) 

 

Proof:  

According to property 4, since Q  is a log-normal variable, 

21
( )

2
W Q M      also follows a log-normal distribution

2 21
~ ln ,

2 Q QW LN M     
 
（ ） .  

End of Proof. 

A useful implication from proposition 2 is that the entire congestion duration of a 

queue is the leading factor that determines delay variability, and a longer queue duration 
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leads to higher variability. In other words, travel time reliability is more sensitive to 

queue duration than mean queue length.  As illustrated in Figure 6.4(a), two congestion 

periods have the same duration length (M1= M2) but different total waiting times (W1<W2), 

the derived analytical formula in equation (6.6) indicate that their waiting time variability 

has the same magnitude if the queue discharge rates follow the same distribution.  On the 

other hand, even the first congestion period in Figure 6.4 (b) has a smaller waiting time 

than the second congestion period (W1<W2), and the travel time unreliability associated 

with the first period is higher because M1>M2. 

Recently, many research efforts (i.e., Bates et al., 2003) are devoted to using 

empirical data to calibrate the relationships between Coefficient of Variation (CV) and 

Congestion Index (CI) as equation (6.7).  As shown in our analytical derivation, 

congestion duration M should have a stronger correlation with the coefficient of variation, 

compared to the average travel time.  

 

CV CI   (6.7) 

 

where CV=Standard deviation /mean of travel time 

CI = Mean travel time / Free-flow travel time. 

γ = Constant or scale factor  

 = elasticity coefficient for congestion index 
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Considering both stochastic incoming flow and queue discharge rates, a nature 

extension is to incorporate stochastic demand into the above framework using the 

following generalized flow change formula.   

 

21
( )

2
W Q R M        (6.8) 

 

where R  is the change of incoming demand/flow.  

 Although there are approximation models available for representing the sum of 

two log-normal variables as a single log-normal variable, according to property 6, the 

random distribution Q R    does not have a closed-form formula for the resulting µ 

and σ.  

 

6.5 Deriving Time-Dependent Delay Variability Distribution 

The above analysis calculates the waiting time variability for the entire congestion 

period over a long analysis horizon, and it is also desirable to quantify the time-

dependent delay variability for any given timestamp within the congestion period, in 

order to estimate and further control the travel time variability under a dynamic and 

stochastic environment in a finer time resolution.  

In the following discussion, we consider a point queue system with a time-

dependent demand profile as shown in Figure 6.5.  
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Figure 6.5- Time-dependent queuing evolution diagram. 

 

From time 0 to time e, each realization of stochastic queue discharge rates 

remains as constant Q. From time 0 to time p, the arrival rate λ is higher than outgoing 

flow rate Q, leading to an increasing queue length profile up to Lmax.    

In this first congestion building up period, the queue length at time t is 

 

 ( )L t Q t    (6.8) 

 

The time-dependent waiting time for vehicles arriving at the stop bar of the queue 

system is the prevailing queue length L(t) divided by the (constant) queue discharge rate 

Q: 

 



132 
 

 
 

 ( )
( ) ( 1)

QL t
W t t t t t

Q Q Q Q

  
          (6.9) 

 

Proposition 3: If incoming flow rate λ and queue discharge rates Q are assumed 

to be log-normal variables, then delay ( )W t  at time t is a shifted lognormal distributed 

variable.  

Proof: If both λ and Q are log-normally distributed, then their ratio is also a log-

normal variable, according to Properties 1 and 2, 2 2~ ( , )Q QLN
Q  
       .   

By further considering the multiplier of time index t,  

2 2( ) ~ (ln , )Q QW t LN t t        . 

End of Proof. 

Based on the above proposition, the time-varying or time-of-day delay variability 

W(t) is still determined by the underlying demand and capacity randomness, and one can 

analytically estimate the mean and variance of W(t) for given stochastic demand and flow 

distributions. Furthermore, as the parameter μ for random variable W(t) increases as 

congestion time t advances  (that is, through function of Ln(t)), the time-dependent delay 

variability rises when traffic congestion gets worse.   

In this congestion dissipation period from time p to time e, the arrival rate λ' is 

lower than queue discharge flow rate Q, so the queue length is gradually reduced from 

Lmax  to 0. The corresponding queue length at time t' is 

 

 ( ') ' ( ' )MaxL t L Q t p      (6.10) 
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and the delay at time t' is  

 

( ') ' '
( ') ( ' ) ( ' )

'
( ' ) ( ' )

MaxL t L Q Q Q
W t t p p t p

Q Q Q Q Q

p t p p t p
Q Q

  

 

  
        

      
 (6.11) 

 

There are three elements in equation (6.11), it is easy to show that random 

variables  p
Q


 and 

'
( ' )t p

Q


   are log-normally distributed, but ( ')W t  does not have a 

closed-form expression as the sum of log-normal variables.  As p
Q


 and 

'
( ' )t p

Q


   

share the same random variable Q in the denominator, these two variables is more likely 

to be statistically correlated. As a result, the numerical approximation formulas suitable 

for Property 6 are not applicable here due to the violation of independence assumption.    

 

6.6 Calibrating Probability Distributions 

Recent empirical research (Brilon et al., 2005; Jia et al., 2010) indicates that 

highway capacity can be characterized as a random variable. In this section, we use a data 

set for a bottleneck at the I880 freeway corridor, San Francisco Bay Area to calibrate 

statistical distributions of capacity (long-term capacity C in the static traffic assignment 

model and queue charge rate Q in the point-queue model) and incoming demand flow 

rates. To calibrate queue discharge rates, the volume, speed and occupancy data are 

extracted from the PeMS database covering from 01/01/2007 to 09/30/2008. To verify 

the travel time variability prediction results, the flow volume and travel time index 
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measures are collected and processed from 03/01/2009 to 07/30/2009 between 8AM and 

9AM (morning peak hour).  

 The 15-minute queue discharge rate after the breakdown (Figure 6.6) is provided 

by Jia et al. (2010). We can obtain a shifted log-normal distribution with the following 

probability density function (Figure 6.7). Figure 6.8 shows the log-normal probability 

density function for demand flow rate distributions. The detailed definitions of 

prebreakdown flow rates and queue discharge rates are provided in the paper by Jia et al. 

(2010). 

 

௑݂ ൌ ሺݎ;µ, ሻߪ ൌ
ଵ

ሺ௫ିఊሻఙ√ଶగ
݁ି

ሾౢ౤	ሺೣషംሻషµሿమ

మ഑మ ݔ			, ൐ 0						  (6.12) 

 

where 

x = random variable 

γ = the shift parameter   

µ = the mean of the variable's natural logarithm, and 

σ = the standard deviation of the variable's natural logarithm.  

In the last row of Table 6.1, the measure of travel time index (TTI) is defined as a 

ratio of travel time /FFTT, as FFTT is a constant, according to Property 4, TTI can be 

shown as a log-normally distributed random variable. Many empirical studies (Emam and 

Al-Deek, 2006; Oh and Chung, 2006) shows that the log-normal distribution is a good 

representation of travel time variations. 
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Probability Density Function

Lognormal  (0.67; -0.982; 1)
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Figure 6.10- Complete PDF for predicted travel time variations. 

mode = 1.24, mean = 1.47, standard deviation = 0.35, coefficient of variation =0.24. 

 

Furthermore, according to the recommended BPR parameters in Highway 

Capacity Manual, we select  =0.39,  =6.3 for Interstate 880, which is a freeway 

facility with a free-flow speed of 75 miles per hour (or 120 km per hour).   

By using  2 2 2~ ln( ) ( ), ( ) 1V C V CTTI LN             , which is adapted 

from equation (6.2), we can analytically derive the following parameters for the resulting 

log-normal distribution for congested traffic conditions.   =-0.983,  =0.67, shift γ = 1.  
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The corresponding PDF over the entire possible region of TTI (from 1.0 to 2.2) is plotted 

in the top graph of Figure 6.10.  The bottom plot specifically compares the observed TTI 

and derived TTI from our proposed model in the congestion region (TTI from1.16 

to1.48). 

We have a few remarks based on the above preliminary estimation results. First, 

the analytically derived log-normal distribution can reasonably resemble the variability 

trend in travel time distributions.  On the other hand, the real-world travel time variations 

might come from other sources such as weather conditions, work zones and special 

events, while our proposed model only focuses on the randomness sources in terms of 

capacity and demand fluctuations. It should be also noticed that the theoretical travel time 

index distribution has a shift parameter of 1.0 (according to the underlying BPR function), 

which cannot reproduce “speeding” travel time index <1. 

 

6.7 Summary 

This chapter investigates a fundamental problem of quantifying travel time 

variability from its root sources: stochastic capacity and demand variations that follow 

commonly used log-normal distributions. A volume-to-capacity ratio-based travel time 

function and a point queue model are used to demonstrate how day-to-day travel time 

variability can be explained from the underlying stochastic demand and capacity 

distributions. This chapter also uses simplified peak-hour demand profiles to estimate 

time-of-day or time-dependent travel time variability functions at traffic bottlenecks. The 

proposed models provide theoretically rigorous and practically useful tools to understand 
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the causes of travel time unreliability and evaluate the system-wide benefit of reducing 

demand and capacity variability.  

In summary, this chapter now provides a method to derive reliability in travel 

demand models that use BPR functions, based on distributions of demand and capacity. 

Our future research plans to characterize those distributions based on facility type and 

FFTT, and we also need to test the bottleneck theory with point queue and validate it with 

empirical data. Additionally, it is necessary to find appropriate approximate solutions 

when closed form ones do not exist. 

 

  



 
 

 
 

 

 

CHAPTER 7  

 

CONCLUSIONS AND FUTURE RESEARCH NEEDS 

 

7.1 Overall Conclusions 

This dissertation presents several methodological advances addressing a series of 

important research questions for modeling traveler behavior under stochastic supply and 

demand and quantifying travel time variability from stochastic capacity distributions. 

This dissertation addresses a series of critical and challenging issues in evaluating 

the benefits of Advanced Traveler Information Strategies under different uncertainty 

sources. In particular, three major modeling approaches are integrated in this dissertation, 

namely: mathematical programming, dynamic simulation and analytical approximation. 

The proposed models can: (1) represent static-state network user equilibrium conditions, 

while considering knowledge quality and accessibility of traveler information systems 

under both stochastic capacity and stochastic demand distributions; (2) characterize day-

to-day learning behavior with different information groups under stochastic capacity; and 

(3) quantify travel time variability from stochastic capacity distribution functions on 

critical bottlenecks.  

In the planning-level methodology for evaluating traveler information 

provision strategies under stochastic capacity conditions, a new nonlinear optimization-
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based analysis method is proposed for incorporating modeling components on stochastic 

capacity, travel time performance functions and different degrees of traveler knowledge 

in an ATIS environment. The proposed method categorizes commuters into two classes: 

(1) those with access to perfect traffic information every day, and (2) those with 

knowledge of the expected traffic conditions across different days. Using a gap function 

framework (for describing the user equilibrium under different information availability), 

a mathematical programming model is formulated to describe the route choice behavior 

of the perfect information (PI) and expected travel time (ETT) user classes under 

stochastic day-dependent travel time. Driven by an operational algorithm suitable for 

large-scale networks, the model was applied to a simple corridor and medium-scale 

networks to illustrate the effectiveness of traveler information under stochastic capacity 

conditions. 

A multiday multiclass traffic equilibrium analysis model is further presented for 

quantifying traffic information provision benefits under stochastic demand and capacity 

conditions. This study offers a powerful modeling option to evaluate how travelers with 

different information accessibility adjust their route choice patterns when various sources 

of travel time uncertainty, e.g., stochastic demand fluctuations and different levels of 

information quality, are altered.  

The day-to-day traffic simulation and traveler learning framework focuses on 

how to seamlessly integrate stochastic capacity models and compatible route choice 

models within a stochastic capacity environment. These enhancements have been 

prototyped and tested through a mesoscopic DTA simulator and could be easily 

incorporated into other dynamic traffic simulation/analysis models as well. 
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This dissertation also investigates a fundamental problem of quantifying travel 

time variability from its root sources: stochastic capacity and demand variations that 

follow commonly used log-normal distributions. A set of analytical models are proposed 

for quantifying travel time variability from its root sources: stochastic capacity and 

demand variations. A volume-to-capacity ratio-based travel time function and a point 

queue model are used to demonstrate how day-to-day travel time variability can be 

explained and approximated from the underlying stochastic demand and capacity 

distributions. 

From this dissertation, the key findings related to ATIS strategy evaluation are 

summarized below. 

1.Under stochastic link capacity, users equipped with ATIS can reduce both their 

mean travel time and travel time variability across different days, compared to travelers 

who rely only on knowledge of average traffic conditions.  

2.Equipping a small percentage of users with access to travel information can help 

the system better balance flow between congested and uncongested routes, and fully 

utilize available unused capacity.  

3. Better system-wide benefits regarding travel time saving and reliability are 

achieved compared to the no information or limited information cases until reaching a 

saturated market penetration rate. 

4. An appropriate tolling or real-time information service scheme may encourage 

travelers to switch from a congested to a less congested route under stochastic link 

capacity conditions, and it can improve both travel time and its reliability. On the other 
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hand, the generalized travel time for users is increased due to an inclusion of equivalent 

travel time and user cost associated with charged toll.  

5. In terms of reducing travel time variability, demand smoothing strategies 

produce the most effective variability reductions, followed by traveler information 

accessibility enhancement strategies.  

 

7.2 Research Contributions 

7.2.1 Theoretical Contributions 

Conventional network analysis models typically focus on finding a single-day 

steady-state equilibrium solution by assuming fixed demand and constant capacity. To 

systematically quantify the system-wide mobility and reliability impact of traveler 

information provision strategies, this study presents a novel multiday multiclass (in terms 

of information use) equilibrium model with stochastic capacity and stochastic demand.  

The proposed methodology can: (1) model complexity and uncertainty in the 

dynamic traveler adaptive learning behavior; (2) provide an effective and efficient quick-

response tool to decision-makers to understand the uncertainty by using advanced 

modeling tools with minimal data requirements to perform; and (3) generate new 

knowledge to address the fundamental research challenges in traffic congestion 

mitigation application domains. 

The proposed approach can use peak-hour demand and demand profiles to 

analytically estimate time-of-day or time-dependent travel time variability functions at 

traffic bottlenecks. These models provide theoretically rigorous and practically usefully 
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tools to understand the causes of travel time unreliability and evaluate the system-wide 

benefit of reducing demand and capacity variability.  

 

7.2.2 Practical Contributions 

In addition to providing investigation results to the above theoretical questions, 

this study will contribute to the current state of practice in the following aspects. 

It will help traffic planners to systematically quantify the impact of traffic 

mitigation strategies (such as pretrip and en-route information) under stochastic capacity. 

It will model predictive information and day-to-day evolution which result from user 

decision and network dynamics. 

In particular, the study described in this dissertation provides the following 

contributions to the existing DTA models: 

 A new set of day-to-day learning and route choice models which enables a 

realistic representation of drivers’ route selection process and effectively 

stabilizes overall network flow under stochastic capacity conditions.  

 Practical modeling guidelines which are effective for the enhanced DTA model to 

simulate various capacity-enhancing design, operational, and technological 

strategies. 

In this study, methodological and analytic enhancements to existing dynamic 

traffic simulation models have been proposed and implemented for the purpose of 

increasing the realism and sensitivity of the models in simulating real-world network and 

the effects of strategy applications. 
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7.3 Future Research Needs 

 With enhanced traffic modeling formulations under stochastic capacity and 

demand, this dissertation illustrates considerable potential for generalizing the modeling 

framework into the field of traffic state estimation and large-scale planning applications. 

On the other hand, these innovative methods still require further investigation into 

numerous issues, especially in the following dimensions: 

1) Modeling nonrecurring congestion conditions. Quantifying benefits of 

traveler information provision strategies in a stochastic environment creates a great need 

for rigorous formulations and practical solution procedures for the traffic network 

assignment problem. It is desirable to further enhance the proposed model to systemically 

evaluate the value of information and reliability associated with stochastic demand 

fluctuations and different levels of information quality, under both recurring and 

nonrecurring congestion conditions. Without considering the impact of nonrecurring 

delay sources, the benefits of ATIS strategies can be significantly underestimated.  

2) Efficient variance reduction methods. The computational challenges 

introduced by the proposed method stem from the sampling-based representation of 

stochastic capacity distributions. Future research plans to use variance reduction 

techniques, such as importance sample, to reduce the required sample size, and apply 

distributed computing techniques, e.g., cloud computing, to improve the computational 

efficiency within a nonshared memory environment. 

3) Incorporating reliability-related route choice models. The proposed model 

can also be enhanced to consider more realistic route choice utility functions involving 

both expected travel time and travel time reliability. In this case, a new path finding 
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algorithm using multiday samples should also be developed to account for the potential 

link travel time correlations due to stochastic variations in origin-to-destination demand 

patterns.  

4) Quantifying facility-dependent and state-dependent travel time variability 

distributions. Regarding identification of the location and impact of system bottlenecks, 

one future research plans to characterize the travel time distributions based on facility 

type and different travel conditions (e.g., free-flow vs. congested). In particular, a 

multistate travel time reliability model should be suitable to represent the travel time 

variability pattern through a mixture of multiple normally or log-normally distributed 

components (in terms of stochastic capacity and demand). Additionally, it is necessary to 

find appropriate approximate solutions when closed form ones do not exist. 

 



  
 

 
 

 

 

APPENDIX  

 

LIST OF TERMS 

 

ATIS Advanced Traveler Information Systems 

ATMS Advanced Traffic Management Systems  

BPR Bureau Of Public Roads 

DTA Dynamic Traffic Assignment 

ETT Expected Travel Time  

EV Expected Value  

FFTT Free-Flow Travel Time  

ITS Intelligent Transportation Systems 

KKT Karush-Kuhn-Tucker  

LETP Least Expected Travel Time Path  

LTP Least Travel Time Path  

MOE Measure Of Effectiveness  

MP Market Penetration 

MSA Method Of Successive Averages 

OD Origin-Destination 

PDF Probability Density Function  
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PI Perfect Information 

SD Standard Deviation  

SUE Stochastic User Equilibrium  

TI Traveler Information  

TSD Travel Time Standard Deviation  

TTF Travel Time Function 

TTI Travel Time Index  

UE User Equilibrium 

VMS Variable Message Signs 

VOT Value Of Time  
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