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ABSTRACT 

 

I have opted for a three-paper dissertation, studying the relationship between 

travel and the built environment for three types of trips: walk and bike trips by the entire 

population, trips from home to school and back for students, and trips of all types by the 

elderly. As part of my dissertation, I have gathered the most extensive set of regional 

travel surveys that anyone has ever collected, specifically including 815,160 trips by 

81,056 households in 23 regions. I have also linked travel records to so-called D variables 

for buffers of different widths around households and routes from home to school. The 

five D variables, widely used in travel research, are development density, land use 

diversity, street network design or connectivity, destination accessibility, and distance to 

transit. The main goal of this dissertation is to determine how we can promote walking 

and biking, especially for students and seniors. 

 From the first paper, walk mode choice in the 23 regions depends primarily on 

land use diversity, street connectivity, and transit accessibility, while bike mode choice 

depends primarily on street connectivity and transit accessibility. The resulting trip chain 

shows that accessibility of destinations to one another may be almost as important as 

accessibility of residences to destinations. The second paper analyzes student travel to 

school in the 14 regions. I find that the most important D variables in the decision to walk 

or bike to school is development density and street network design or connectivity, and 

the least important is land use diversity. While not a D variable exactly, the need to cross 
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major roads or commercial developments has strong negative impacts on active travel to 

school. In the third paper, the analysis of variance (ANOVA) tests show that seniors 

living in compact neighborhoods are more active than those living in sprawl 

neighborhoods. They generally travel more and travel more by walking and public 

transportation, yet travel less by automobile. 

The resulting models and findings in this dissertation are appropriate for post-

processing outputs of conventional travel demand models, and for sketch planning 

applications in traffic impact analysis, climate action planning, and health policy 

implementations.  
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CHAPTER 1 

 

INTRODUCTION 

 

Shifting travel from the automobile to walk and bike (also called active or 

nonmotorized transportation) is a core strategy for reducing greenhouse gases, regulated 

air pollutants, road infrastructure expenditures, traffic fatalities, and other social, 

economic, and environmental costs of automobile use. Also, walk and bike are more 

affordable transportation modes comparing with automobile. It is one way to promote 

social equality for lower income people. At the same time, walk and bike are widely 

recommended for their health benefits as physical activities. To help policy makers, 

planners, and developers promote walking and biking, it is necessary to understand the 

relationship between built environment and people’s travel choices, especially for 

different cohorts like students and seniors. The goal of this dissertation is to identify the 

relationship between people’s travel choice and built environment and how we can 

promote walking and biking, especially for students and seniors, in an urban context. 

Despite more than 5 decades of research into travel-demand modeling, there are 

currently few functional models that predict walk and bike trips. In many models, only 

trips by vehicles are modeled, and trip rates are related only to sociodemographic 

characteristics of people, rather than characteristics of place. Therefore, in my 

dissertation, firstly I will build walk and bike choice models based not only on 
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sociodemographic characteristics of people but also built environment characteristics of 

place, with controlling for weather conditions. 

Secondly, I will examine how students travel to and from school and what kinds 

of built environments along the shortest route between schools and homes affect their 

travel choices. National Household Travel Surveys (NHTS) show that the number of 

children walking or biking to school has significantly declined today, compared with 50 

years ago (Botchwey et al., 2014; Ewing et al., 2004). Travel to and from school can be a 

source of physical activity added to a child’s daily total energy expenditure (Ahlport et al. 

2008). Perhaps more importantly, exposing children to walking and biking at an early age 

can help establish healthy habits, increasing the likelihood that they will use these modes 

of transport later in their life (Schlossberg et al., 2006). 

Thirdly, I will examine seniors’ travel behavior: where older adults go 

(destinations) and how they get there (travel modes); and what characteristics of the built 

environment are important to promote healthy aging (more active travel). When getting 

old, people want to “age in place” or live in their homes or communities as long as 

possible (Yen & Anderson, 2012). A good place for aging should have good accessibility 

for the elderly and promote more physical activities. Examining the changes of travel 

behavior will help us understand more clearly the emerging accessibility needs of older 

adults and improve transportation infrastructure systems to cater to those needs. 

 

1.1 Commonalities and Differences in the Three Studies 

I have opted for a three-paper dissertation, studying the relationship between 

travel and the built environment for three types of trips: walk and bike trips by the entire 
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population, trips from home to school and back for students, and trips of all types by the 

elderly. As part of my dissertation, I have gathered the most extensive set of regional 

travel surveys that anyone has ever collected, specifically including 815,160 trips by 

81,056 households in 23 regions. I have also linked travel records to so-called D variables 

for buffers of different widths around households and routes from home to school. The 

five D variables, widely used in travel research, are development density, land use 

diversity, street network design or connectivity, destination accessibility, and distance to 

transit. All three studies in this dissertation used this dataset with the main goal of 

determining how we can promote active living (walking and biking) by increasing 

density, diversity, design, and destination accessibility, and reducing distance to transit. 

Each of the three studies is also different from each other in terms of studied 

population, research questions, unit of analysis, and additional methods (Table 1.1). The 

significant contribution of study one to the literature is that I analyzed trip chaining to test 

the importance of accessibility of destinations versus the importance of accessibility of 

destinations to walk. For study two, I limited my sample to school trips that were within 2 

miles, where walking and biking are in the choice set of students’ travel to school. It does 

not make sense at all to include a trip that is 10 miles because no student would walk 10 

mile to school. In the third study, principle component analysis (PCA) and analysis of 

variance (ANOVA) were employed to test whether built environment matters to keep 

seniors active. 
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Table 1.1 Summary of the three studies 

 Study one Study two Study three 

Population general population students (K-12) senior (65 or 
older) 

Research 
question 

walk and bike; accessibility 
of destinations vs. residences 

promote active 
travel to school 

Keep senior 
active 

Unit of 
analysis 

individual trips and 
households 

individual school 
trips 

seniors and 
senior 
households 

Sample size 81,056 households 21,892 school trips 28,060 seniors 
Travel 
outcomes trip frequency mode choice trip frequency 

Methods Trip chaining, hurdle model multinomial logistic 
regression 

PCA, ANOVA, 
hurdle model 

 

1.2 Travel Behavior and Built Environment 

In the literature, there are at least 200 studies of the association between travel 

and built environment (Ewing & Cervero, 2010). Indeed, there are at least 13 literature 

reviews and two meta-analyses of this vast literature (Badoe & Miller, 2000; Cao et al., 

2009; Cervero, 2006; Crane, 2000; Ewing & Cervero, 2001; Ewing & Cervero, 2010; 

Handy et al., 2005; Heath et al., 2006; Leck, 2006; McMillan, 2005, 2007; Pont et al., 

2009; Saelens et la., 2003; Saelens & Handy, 2008; Stead & Marshall, 2001).  

Built environment variables generally include the following: land use patterns; the 

transportation system, the physical infrastructure of roads, sidewalk, etc., as well as the 

service this system provides; and urban design, the arrangement and appearance of the 

physical elements in a community (Saelens & Handy, 2008). For example, residents of 

communities with higher density, greater connectivity, and more land use mix report 

higher rates of nonmotorized trips. Based on previous studies, Ewing and Cervero (2010) 

categorized all built environment variables impacting travel choices in terms of the five 

Ds (Table 1.2): Density, Diversity, Design, Destination accessibility, and Distance to  
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Table 1.2 The D variables 

D Variable Measurement 
Density Density is always measured as the variable of interest per unit of area. 

The area can be gross or net, and the variable of interest can be 
population, dwelling units, employment, or building floor area. 
Population and employment are sometimes summed to compute an 
overall activity density per areal unit. 

Diversity Diversity measures pertain to the number of different land uses in a 
given area and the degree to which they are balanced in land area, 
floor area, or employment. Entropy measures of diversity, wherein 
low values indicate single-use environments and higher values more 
varied land uses, are widely used in travel studies. Jobs-to-housing or 
jobs-to-population ratios are less frequently used.  

Design Design measures include average block size, proportion of four-way 
intersections, and number of intersections per square mile. Design is 
also occasionally measured as sidewalk coverage (share of block 
faces with sidewalks); average building setbacks; average street 
widths; or numbers of pedestrian crossings, street trees, or other 
physical variables that differentiate pedestrian-oriented environments 
from auto-oriented ones. 

Destination 
accessibility 

Destination accessibility measures ease of access to trip attractions. It 
may be regional or local (Handy, 1993).  In some studies, regional 
accessibility is simply distance to the central business district. In 
others, it is the number of jobs or other attractions reachable within a 
given travel time, which tends to be highest at central locations and 
lowest at peripheral ones. The gravity model of trip attraction 
measures destination accessibility.  Local accessibility is a different 
animal.  Handy (1993) defines local accessibility as distance from 
home to the closest store. 

Distance to 
transit 

Distance to transit is usually measured as an average of the shortest 
street routes from the residences or workplaces to the nearest rail 
station or bus stop. Alternatively, it may be measured as transit route 
density, distance between transit stops, or the number of stations per 
unit area. In this literature, frequency and quality of transit service are 
overlooked. 
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transit (Ewing & Cervero, 2010). 

Furthermore, a review of 42 published studies by Saelens and Handy (2008) 

confirmed that there are consistent positive relationships between walking for 

transportation and density, land use mix, distance to destinations, and street connectivity. 

Specifically, people who use public transit or live in high-density urban areas have more 

walking to and from transit (Besser & Dannenberg, 2010). Better network connectivity is 

associate with increased walking frequency (Sehatzadeh et al., 2011). T-intersections or 

3-way intersections lead to poor connectivity and represent nongrid street patterns and 

dead-ends, considered as a barrier to walking and biking (Cervero & Duncan, 2003; 

Sehatzadeh et al., 2011; Wells & Yang, 2008). Other intersections (four- or more-way 

intersections) lead to increased connectivity, thus providing people with a greater variety 

of potential routes (Leslie et al., 2007; Sehatzadeh et al., 2011). The more varied the land 

use mix, the more conducive it is to walk to various destinations (Leslie et al., 2007). 

Street connectivity and land use mix improve accessibility across neighborhoods (Handy 

& Xing, 2011; Saelens et al., 2003). 

 

1.3 Conceptual Framework 

Based on the literature, the conceptual framework underlying this dissertation is 

shown in Figure 1.1. Individuals’ travel behaviors or travel choices are associated with 

personal sociodemographic status, the surrounding neighborhood development, regional 

characteristics, as well as weather conditions, and social and cultural norms. 

Sociodemographic characteristics of an individual include gender, age, income, 

household size, etc. Individuals in different life stages have different travel activities. For  
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Figure 1.1 Conceptual framework 

 

example, youths travel to school, adults travel to work or shopping, older people travel 

for exercise or leisure.  

The land uses and streets provide the physical setting in which individuals make 

travel choices. If the travel distance is long, an automobile or public transit constitutes the 

choice set. For walking or biking to be a choice, the distances between origins and 

destinations should be walkable or bikeable (“walkable” and “bikeable” are imprecise 

Local 
characteristics 

- Density 
- Diversity 
- Design 
- Distance to transit 
- Destination accessibility 

Traveler 
characteristics 

- Household income 
- Household size 
- Race 
- Gender  
- Age 
- Driver license 

Mode choice 

- Walk 
- Bike 
- Transit/school bus  
- Auto 

External factors 

- Weather 
- Social/culture norm 
- Safety  
- etc. 

Regional 
characteristics 

- Size 
- Compactness index 
- Gas price 
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distances that depend on the individual). Meanwhile, the streets between origins and 

destinations should be walkable or bikeable, i.e., complete with sidewalks or bike lanes, 

crossing intersections, etc. Urban land use patterns, including density, diversity, and 

design, generate walkable and bikeable distances.  

 

1.4 Data Sources 

The most widely used data source to study travel behavior is household travel 

survey. Household travel survey data are the fundamental input for regional travel 

demand modeling and forecast. Many regional metropolitan planning organizations 

(MPOs) conduct their own travel survey for their uses. In the last 5 years, I have been 

contacting regional MPOs and collecting household travel survey data. A main criterion 

for inclusion of regions in this study was data availability. Regions had to offer regional 

household travel surveys with XY coordinates, so I could geocode the precise locations 

of trip ends. It is not easy to assemble databases that meet this criterion, as confidentiality 

concerns often prevent metropolitan planning organizations from sharing XY travel data. 

The resulting pooled dataset consists of 815,160 trips generated by 81,056 households 

(Table 1.3) in 23 regions (Figure 1.2), from which senior trips could be extracted and 

mode choices analyzed. 

The regions included in my household travel survey sample were, in addition, 

able to supply GIS data layers for streets and transit stops, population and employment 

for traffic analysis zones, and travel times between zones by different modes for the same 

or close enough to the years that the household travel surveys were conducted (Table 

1.4). In addition to these GIS layers, I collected data of weather conditions from Climate  
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Table 1.3 Regions (metropolitan areas) included in this dissertation 

Regions Survey 
year Surveyed household Surveyed trips 

Atlanta, GA 2011                         9,575               93,681  
Austin, TX 2005                         1,448               14,249  
Boston, MA 2011                         7,826               86,915  
Denver, CO 2010                         5,551               55,056  
Detroit, MI 2005                            939               14,690  
Eugene, OR 2009                         1,674               16,563  
Greensboro, NC 2009                         2,023               17,561  
Houston, TX 2008                         5,276               59,552  
Indianapolis, IN 2009                         3,777               37,473  
Kansas City, KS 2004                         3,022               31,779  
Miami, FL 2009                         1,433               11,580  
Minneapolis-St. Paul, MN-WI 2010                         8,234  79,236  
Phoenix, AZ 2008                         4,314               37,811  
Portland, OR 2011                         4,508               47,551  
Provo-Orem, UT 2012                         1,464               19,255  
Rochester, NY 2011                         3,439               23,146  
Sacramento, CA 2000                         3,520               33,519  
Salem, OR 2010                         1,668               16,231  
Salt Lake City, UT 2012                         3,491               44,576  
San Antonio, TX 2007                         1,563               14,952  
Seattle, WA 2006                         3,908               40,450  
West Palm Beach, FL 2009                            944                 7,166  
Winston-Salem, NC 2009                         1,459               12,168  
Total                         81,056           815,160  
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Figure 1.2 Map of regions (metropolitan areas) included in this dissertation 

Table 1.4 Data sources and usage 

Data Type Source Usage or information 

household travel 
daily survey regional MPOs 

travel choice, personal and 
household characteristics, 
household location 

parcel with land 
use shapefile regional MPOs, 

county accessors 
calculate land use mix 
entropy 

street network shapefile regional MPOs, 
state DOTs 

use to generate network 
buffer and intersections 

transit stop shapefile regional MPOs, 
transit agencies 

calculate transit stop 
density 

socioeconomic 
data table regional MPOs, 

US census 
calculate job-population 
density 

travel analysis 
zone (TAZ) shapefile regional MPOs calculate employment 

accessibility 

Travel time skim table regional MPOs calculate employment 
accessibility 

road function 
classification shapefile, table regional MPOs, 

state DOTs 
identify major roads 

library 
table with 
locations 
(survey data) 

Institute of 
Museum and 
Library Services 

relevant destinations 

museum 
table with 
locations 
(universe data) 

Institute of 
Museum and 
Library Services 

relevant destinations 
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Table 1.4 continued 

Data Type Source Usage or information 

parks shapefile state and city 
public data 

relevant destinations 

street smart 
walkscore 

table with 
geographic 
information 

Walkscore 
measure walkability at 
census tract level 

weather 
conditions table NOAA 

calculate average weather 
conditions and days with 
extreme weather  
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Data Online of National Centers for Environmental Information in the same years with 

the household travel survey data for each region. 

 

1.5 Methodology 

1.5.1 Buffers to Capture Built Environment 

It is important to define a spatial unit that can best capture local built 

environments that affect individual’s travel behavior. There is no right answer to which 

spatial unit is preferred. Predefined spatial units have been used a lot in the literature, 

such as census block group boundary, census tract boundary, and traffic analysis zone 

(TAZ). The problem of these predefined geographic areas is that they are too big and 

cannot accurately capture built environment for walking and biking. For instance, the size 

of TAZs usually ranges from census block group to census tract or even several square 

miles in area. Walk and bike trips tend to be much shorter than that. The average 

distances for walking and biking are 0.7 miles and 2.6 miles, respectively, in National 

Household Travel Survey (NHTS) 2009. The origin and destination of a walk trip might 

be contained within one TAZ in many cases. 

For walking and biking behavior study, road network buffer has been proven 

more appropriate than circular buffer or any predefined spatial units such as TAZs, 

census block groups, etc. (Oliver et al., 2007). To capture the built environment around 

households, the location information for households is also needed. 

The next question is to what extent the built environment is most relevant to 

individual’s travel decision. Theoretically, buffers (distances from household locations) 

could be wide or narrow. Even a determinant as straightforward as walking distance 
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could be anywhere from one quarter mile to one mile or more. For Chapters 2 and 4 in 

this dissertation, buffers are established around household geocode locations with three 

different buffer widths, one quarter mile, one half mile, and one mile. Built 

environmental variables were computed for each household and all three buffer widths.  

For Chapter 3, a one-quarter-mile buffer along the shortest route between home 

and school is used. The micro built environment along the routes to school is important 

for active travel. These are factors that influence the experience of walking or biking on 

the street, which further affect the decision of mode choice. A one-quarter-mile buffer 

width was used because that is wide enough to capture other possible routes between 

home and school. Based on the household travel survey data, students’ home and school 

were identified first. Then, the shortest route between each student’s home and school 

was calculated by using network analysis in GIS. 

 

1.5.2 Analysis Techniques 

In each study of this dissertation, different techniques of analysis and modeling 

have been used based on the specific research questions and the nature of the data 

structure. These techniques include principal component analysis (PCA), analysis of 

variance (ANOVA), multinomial logistic regression, two-stage hurdle models (first stage 

– logistic regression; second stage – negative binomial regression), and multilevel 

modeling. 

In the first and third studies, I modeled trip frequency, which is a count variable 

with significant zero values. I used the two-stage hurdle model to handle that – logistic 

regression at the first stage to determine whether a household wants to walk or bike; 
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negative binomial regression at the second stage to determine how many walk or bike 

trips a household has after they decide to walk or bike. In the second study, I am 

interested with what mode students use to travel to school, so I employed multinomial 

logistic regression to estimate a mode choice model.  

All of the three studies are based on the data from multiple regions. With the data 

from multiple regions, the data structure is hierarchical, with households or students 

nested within regions. The best statistical method to deal with nested data is multilevel 

modeling (MLM), also called hierarchical modeling (HLM). MLM accounts for 

dependence among observations, in this case the dependence of households or students 

within a given region on characteristics of the region. All households or students within a 

given region share these characteristics. This dependence violates the independence 

assumption of ordinary least squares (OLS) regression. Standard errors of regression 

coefficients based on OLS will consequently be underestimated. Moreover, OLS 

coefficient estimates will be inefficient. MLM overcomes these limitations, accounting 

for the dependence among observations and producing more accurate coefficient and 

standard error estimates (Raudenbush & Bryk, 2002). 

Regions such as Boston and Houston are likely to generate very different travel 

patterns regardless of household or student and around built environment characteristics. 

The essence of MLM is to isolate the variance associated with each data level. MLM 

partitions variance between the household or student level (Level 1) and the region level 

(Level 2) and then seeks to explain the variance at each level in terms of D variables. 

MLM is used for all the modeling processes in this dissertation. 
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1.5.3 Spatial Autocorrelation 

Spatial autocorrelation, which began with the discipline of geography, has been a 

common issue in planning now. Spatial autocorrelation measures the correlation of a 

variable with itself through space (Anselin, 1988). Observations made at different 

locations may not be independent. Measurements made at nearby locations may be closer 

in value than measurements made at locations farther apart. This phenomenon is called 

spatial autocorrelation. Any study that uses spatial data should address this issue first. If 

there is spatial autocorrelation and a study does not control for it, the results will be 

biased. The effects of whatever has been tested will be misleading, either overestimated 

or underestimated.  

The way to test spatial autocorrelation in a dataset as I have is also a challenge. I 

have tested spatial autocorrelation for the dataset in this dissertation by using global 

Moran’s I and local Moran’s I. Using the walk trips as an example, the global Moran’s I 

is 0.13 with a significant z-core, which provides evidence that there is a spatial 

autocorrelation issue in the dataset. Then, I tried the local Moran’s I to identify where the 

spatial autocorrelations are. The results show that 90% of the local Moran’s I are not 

statistically significant, which means the majority of the individual locations 

(households) do not have the spatial autocorrelation issue. 

I have plotted the data and find that there are clear spatial patterns. The values of 

households within the same regions tend to similar. The values of households within 

different regions vary a lot. Some regions have high walk and bike trips, some regions 

have very low walk and bike trips.  

Back to the Moran’s I tests, these actually all make sense. The spatial 
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autocorrelation of global Moran’s I is the overall spatial patterns of region to region. 

There is a spatial autocorrelation issue over the whole dataset, but locally, the spatial 

autocorrelation is weak within each region, which is indicated by the fact that 90% local 

Moran’s I are not significant. This is also consistent with the travel pattern analysis that 

the travel patterns are very different from region to region. For instance, the walk mode 

share is as high as 22.1% in Bostin and as low as 3.1% in Houston. 

Given the nested structure of the dataset in this dissertation, households nested 

within regions, it is not surprising that there is spatial autocorrelation at the regional level. 

The employment of multilevel modeling technique is specifically to deal with data that 

share characteristics among groups (regions in this case). 

 

1.6 Highlights 

This dissertation will advance our understanding of the influence of built 

environment on travel choice, especially for students and seniors, in several ways:  

• Providing results with external validity by pooling household travel and build 

environment data from 23 diverse US regions. This is the largest sample of 

household travel records ever assembled for such a study outside the National 

Household Travel Survey (NHTS). And relative to NHTS, this dataset 

provides much larger samples for individual regions and permits the 

calculation of a wide array of built environmental variables based on the 

precise location of households. NHTS provides geocodes (identifies 

households) only at the census tract level. 

• Analysis of walk behavior in trip chaining to test the importance of 
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accessibility of destinations and residences. The concepts of “destination 

accessibility” and “residential accessibility” are concepts discussed in the 

early literature on travel and the built environment, but forgotten more 

recently. 

• Limiting school trips that are less than 2 miles, where walk and bike are 

possible options in students’ mode choice set, and computing the built 

environment within the buffer along the shortest route between home and 

school. 

• Use of principal component analysis (PCA) to extract built environment and 

analysis of variance (ANOVA) tests to see if elderly trips differ by 

neighborhood type and income level. 

• Measuring build environment consistently across the 23 regions and testing 

relevant variables to walk, bike, students and seniors, including parks, 

libraries, museums, Walkscore, and weather condition. 

• Use of multilevel modeling (MLM) to account for dependence of households 

in the same region on shared regional characteristics. 

• Estimation of ‘hurdle’-style models to account for the excess number of zero 

values in the distributions of dependent variables. 

• Testing of built environmental variables for different buffer widths around 

household locations to see which scale best explains travel behavior; use of 

buffer around the shortest route between home and school. 

• Modeling of bike trips, heretofore precluded by small samples of bike trips in 

individual regional household travel surveys. 
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CHAPTER 2 

 

WALK AND BIKE: EVIDENCE FROM 23 DIVERSE REGIONS 

OF THE UNITED STATES 

 

This chapter studies walk and bike trips by pooling household travel, built 

environment, and weather condition data from 23 diverse U.S. regions with more external 

validity than any to date. Of the 23 regions, only 9.0% of all trips in my sample are by 

walking and 1.2% of all trips are by biking, while 83.9 of all trips are by car. Even for 

trips of less than 1 mile from origin to destination, only 35.7% of trips are by walking and 

2.1% of trips are by biking. The built environment is implicated in these surprisingly low 

mode shares.  

I employ multilevel modeling to account for the dependence of households in the 

same regions on shared regional characteristics and estimate two-stage hurdle models to 

account for the excess number of zero values in the distributions of dependent variables. 

Walk mode choice depends primarily on land use diversity, street connectivity, and 

transit accessibility, while bike mode choice depends primarily on street connectivity and 

transit accessibility. Other factors may enter into the decision to use a car rather than 

walk or bike. In addition to long distances of trips and low values of the D variables, both 

extreme temperature and precipitation discourage walking and biking, but precipitation 

has stronger influence than temperature does. 
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On multipurpose linked trips (three or more trips in a series from home to one 

destination, from that destination to another destination, and eventually back to home), 

the resulting trip chain shows that, surprisingly, 85% of walk trips were involved in 

complex trip chains. Even 20% of walk trips are within complex trip chains that start and 

end with an automobile trip, which means people drive somewhere, then leave their cars 

and walk from destination to destination before returning home. This tells us that 

accessibility of destinations to one another may be almost as important as accessibility of 

residences to destinations. 

 

2.1 Introduction 

Despite more than 5 decades of research into travel-demand modeling, it is a 

challenge to develop models that reliably predict walk and bike trips (Kuzmyak et al., 

2014; Liu et al., 2012; Singleton & Clifton, 2013). This study proposes walk and bike trip 

generation models, which are based on attributes of built environment around households 

and regional characteristics. Weather condition and sociodemographic influences on 

walking and biking are controlled as potential confounders. 

In the past 2 decades, there have been two fields interested in walking and biking 

(Saelens & Handy, 2008). The transportation planning field treats walking and biking as 

modes of transportation. In this field, studies make the connection between the built 

environment and travel behavior. The public health field represents walking and biking as 

a form of leisure-time physical activities. Studies in this field focus on the connection 

between the built environment and walking and biking for recreation or exercise.  

Shifting travel from the automobile to walking and biking is also a core strategy 
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for reducing greenhouse gases, regulated air pollutants, road infrastructure expenditures, 

traffic fatalities, and other social, economic, and environmental costs of automobile use 

(Alliance for Biking and Walking, 2012; Jacobsen, 2003; Krizek et al., 2009). At the 

same time, walking and biking are widely recommended for its health benefits (Frank et 

al., 2007; Pucher & Dijkstra, 2003).  

When assessing the benefits, costs, and priorities of proposed pedestrian and 

cyclist improvements for the government or developers, it is necessary to answer the 

following question: What kinds of built environments encourage people to choose to 

travel on foot? 

Conventional travel-demand modeling procedures generally predict total trip 

making (or in older models, trip making by vehicle) and mode choice based on variables 

such as a household’s demographic characteristics, the time and cost of traveling by 

competing modes, and the spatial characteristics of the built environment through which 

the trip occurs. In a four-step model, if total trips can be generated (including 

nonmotorized trips), then it should be possible to distribute trips in the trip distribution 

step, split trips between motorized and nonmotorized modes in the mode choice step, and 

then assign motorized and nonmotorized separately to their respective networks. 

However, even though there are several ways to handle nonmotorized modeling within a 

four-step model, nonmotorized modeling is often not carried past the trip generation step 

in such models owing to local data and resolution limitations.  

An alternative approach, analogous to direct demand modeling of transit ridership 

(direct ridership modeling), is pursued in this paper (Cervero, 2006). Using household 

travel survey data from 23 diverse regions of United States and consistent built 
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environment measurements, this study proposes a walk trip generation model and bike 

trip generation model. 

 

2.2 Literature Review 

Trip generation is “the process by which measures of urban activity are translated 

into numbers of trips” (U.S. Department of Transportation, 1977, p. 1-25). Trip 

generation analysis is used to forecast the number of trips for different purposes in terms 

of land use patterns and socioeconomics. For instance, a neighborhood in a suburban area 

might generate work commute trips mostly by automobile, whereas a shopping center 

close to a downtown light rail station might generate more shopping trips by public 

transit. Trip generation studies aim to quantify the relationship among the built 

environment, human activity, and travel behavior. 

 

2.2.1 Walking and Biking in Current Travel Demand Models 

2.2.1.1 ITE Trip Generation Studies 

Planners, engineers, developers, and government decision makers all rely on trip 

generation to predict traffic impacts of new development projects (Shoup, 2003).  The 

Trip Generation Manual and Trip Generation Handbook of the Institute of Transportation 

Engineers (ITE) are standard sources for analysis of traffic impacts. ITE’s Trip 

Generation Manual provides estimates of the number of vehicle trips generated by a 

specific land use based on trip surveys of suburban developments constructed after the 

1960s.  The trip rates given by ITE are mostly generated in single-use suburban 

development dominated by automobile travel. As the report describes, “Data were 
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primarily collected at suburban localities with little or no transit service, nearby 

pedestrian amenities, or travel demand management (TDM) programs” (ITE 2012, vol. 1, 

p. 1), and “All data presented in this manual represent VEHICLE trip generation rather 

than person trip generation” (ITE 2012, vol. 1, p. 11). Further, ITE advises: “At specific 

sites, the user may want to modify the trip generation rates presented in this document to 

reflect the presence of public transportation service, ridesharing or other TDM measures, 

enhanced pedestrian trip-making opportunities, or other special characteristics of the site 

or surrounding area” (ITE 2012, vol. 1, p. 1). Walk and bike trips, the focus of this paper, 

are not captured by the ITE manuals. 

 

2.2.1.2 Four-Step Models 

Travel demand models are primarily used to predict the number of vehicle and 

transit trips that will use the road and transit networks in the future based on projections 

of future land use patterns and future network capacities. The conventional four-step 

model has become the workhorse of long-range transportation planning. Its steps include 

trip generation, trip distribution, mode choice (or mode split), and route choice (trip 

assignment) (Beimborn et al., 1996; McNally, 2008; Zhou et al., 2009). However, the 

conventional four-step model has limitations when walk and bike are considered as a 

transportation modes. In the conventional four-step model, an urban area is divided into a 

series of geographic subareas called travel analysis zones (TAZs). Although TAZs tend 

to be rather homogenous in terms of land uses (e.g., entirely residential or largely 

commercial) that would seem to suggest that most walk and bike trips will be interzonal, 

the size of TAZs usually ranges from census block group to census tract or even several 
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square miles in area. Walk and bike trips tend to be much shorter than that. The average 

distances for walking and biking are 0.7 miles and 2.6 miles, respectively, in National 

Household Travel Survey (NHTS) 2009. Though the origin and destination of a walk trip 

might be contained within one TAZ in many cases, a surprisingly high percentage of 

walk and bike trips are actually intrazonal (For example, 56% walk trips from the 

Portland household travel dataset are intrazonal), which means that the conventional four-

step model often excludes walking in the trip generation step. Furthermore, if walking 

and biking are included in trip generation, trip rates often ignore local land use and street 

network characteristics since the four-step model reduces land use patterns to a single 

point (called the zone centroid) and the street networks to one or more links to the 

external street network (called centroid connectors). A four-step model that aggregates 

urban characteristics at TAZ level cannot represent the actual built environment affecting 

pedestrians and cyclists.  

The first regional travel model to explicitly include nonmotorized modes appeared 

more than 20 years ago (Porter et al., 1999; Singleton & Clifton, 2013), but current 

regional pedestrian and cyclists modeling practices vary considerably. A recent review 

reported that between one-half and two-thirds of large metropolitan planning 

organizations (MPOs) include nonmotorized travel in their trip-based models, with about 

half the models separating out nonmotorized trips in the mode choice step (Liu et al., 

2012). The percentages would be smaller, of course, for small and medium-size MPOs. 

Clifton et al. (2016) present a framework to improve how travel demand models represent 

walking and biking trips and demonstrate an application in the Portland, Oregon, region. 

There are challenges for MPOs to incorporate nonmotorized travel into regional travel 
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demand models, including limited nonmotorized travel behavior data, limited built 

environment data, the aggregate nature of TAZ data, limited modeling resources, and 

even lack of decision-maker interest (Liu et al., 2012; Singleton & Clifton, 2013). 

 

2.2.1.3 Direct Demand Model 

Direct demand modelling (DDM) is another tool used to forecast travel. DDM 

departs from the sequential process of the four-step model by attempting to develop a 

one-step equation for trip estimation based on socioeconomic characteristics, travel times, 

travel cost, mode availability, etc. (Anderson et al., 2006; Wardman, 1997). A typical 

strategy for DDM is to use multiple linear regression to estimate the trips between origin 

and destination by a specific mode. Many direct demand models have been developed for 

forecasting travel outside the four-step process and ITE trip generation methodology, but 

these models have been mostly for prediction of transit trips. Only few studies have done 

this for nonmotorized travel (such as Baran et al., 2008; Cao et al., 2006; Shay et al., 

2006). 

 

2.2.2 Accessibility and Trip Chain 

Accessibility is defined in terms of ease of access to desired activities. The more 

activities available within a given travel time, the better the “accessibility” of a location.  

Good accessibility offers the potential for “maximum contact with minimum effort.” Two 

types of accessibility may affect household travel behavior. Residential accessibility 

refers to the ease of access to activities from one’s place of residence, destination 

accessibility to ease of access to activities from other activities, whether work, school, 
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shopping, or recreational sites.  Destination accessibility is potentially significant in that 

it affects travelers’ ability to efficiently link trips for different purposes into chains or 

tours or, better still, complete more than one activity at a single stop. 

Accessibility to regional activities has much more effect on household travel 

patterns than does density or land use mix in the immediate area. The benefits of 

accessibility are primarily in the form of shorter auto trips, and also shift to alternative 

modes when a cluster of destinations are accessible. The relationship between built 

environment and travel can be fully understood only in terms of multipurpose trip 

making. 

The study of trip chaining in travel behavior started as early as the 1970s. Back to 

1978, Adler and Ben-Akiva argued that there is a need for expanding the scope of 

existing travel forecasting models to explicit considerations of trip chaining behaviors 

(Adler & Ben-Akiva, 1978). In recent years, with the availability of travel data and the 

development of activity-based modeling techniques, studies have been done to evaluate 

the interactions between the model choice and trip chain. The key finding is that people 

usually make a complex trip chain pattern first, and then their mode choices (Krygsman 

et al., 2007; Ye et al., 2007; Yang et al., 2016). Also, a study found that complex trip 

chain pattern is a barrier to public transit use (Hensher & Reyes, 2000). 

 

2.2.3 Challenge of Walk and Bike Trip Generation 

The widely used built environment D variables mainly measure neighborhood 

characteristics such as development density and land use diversity. When design is 

operationalized, it is usually in terms of neighborhood street network characteristics such 
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as intersection density and percentage of four-way intersections (Ewing & Cervero, 

2010). Other design characteristics are omitted for lack of available data from national or 

local sources. For example, there is no national source of sidewalk data, and even local 

geographic information systems seldom include a sidewalk layer. Physical features of a 

specific street impact an individual’s sense of safety and comfort, which further impact 

people’s travel choices. Ewing and Handy (2009) identify street environments associated 

with walking behavior by using ratings from an expert panel. Failure to include micro 

environment characteristics such as street design in walk and bike trip generation models 

can compromise the internal and construct validity of the research (Cervero & Duncan, 

2003). First, a conceptual framework of how built environment may influence walk and 

bike trip generation is needed (Oliver et al., 2007). Second, finding sufficiently detailed 

data on the built environment that can be spatially matched to sufficiently detailed data 

on travel behavior is a challenge (Handy et al., 2002). Since walking and biking distance 

is short compared to automobile trips, more refined spatial unit is necessary to identify 

the spatial location of respondents and objectively and accurately capture their local 

environments (Liu et al., 2012). The challenge of finding detailed built environment data 

to be matched with travel behavior, cited by Handy et al. 13 years ago, has decreased 

with the increasing use of Google Street View and related products. At least three 

manuscripts have compared Street View to in-street audits, and have concluded that for 

the vast majority of built environment attributes, Street View performs just fine (Griew et 

al. 2013; Kelly et al., 2013; Rundle et al., 2011). 

Also, weather condition is an important factor that influences walk and bike mode 

choice (Böcker et al., 2013; Nankervis, 1999a; Saneinejad et al., 2012). It has been found 
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that rates of walking and biking trips appear to exhibit some seasonal and daily 

fluctuation. Precipitation and temperature markedly affect pedestrian and cyclists 

volumes (Aultman-Hall et al., 2009; Miranda-Moreno & Nosal, 2011; Nankervis, 1999b). 

This study proposes walk and bike trip generation models that incorporates more 

built environmental variables than any to date, while controlling for weather conditions 

and sociodemographic influences.  

 

2.3 Methodology 

2.3.1 Data Collection 

The most widely used data source to study travel behavior is the household travel 

survey. Household travel survey data are the fundamental input for regional travel 

demand modeling and forecast. Many regional metropolitan planning organizations 

(MPOs) conduct their own travel survey for their uses. In the last 5 years, we have been 

contacting regional MPOs and collecting household travel survey data. A main criterion 

for inclusion of regions in this study was data availability. Regions had to offer regional 

household travel surveys with XY coordinates, so we could geocode the precise locations 

of trip ends. It is not easy to assemble databases that meet this criterion, as confidentiality 

concerns often prevent metropolitan planning organizations from sharing XY travel data. 

The resulting pooled dataset consists of 81,056 households in 23 regions, from which 

walk and bike trips could be extracted and mode choices analyzed.  

The regions included in our household travel survey sample were, in addition, 

able to supply GIS data layers for streets and transit stops, population and employment 

for traffic analysis zones, and travel times between zones by different modes for the same 
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or close enough to the years that the household travel surveys were conducted. 

All the GIS layers that were used to compute built environment are: 

• parcel level land use data with detailed land use classifications; from these we 

can compute detailed measures of land use mix; 

• street networks and intersections; from these we can build the buffer widths 

and compute intersection density; 

• transit stops; from these data we can compute transit stop densities; 

• population and employment at the block or block group level; from these we 

can compute activity density; 

• TAZs with socioeconomic information (population and employment); 

• travel times for auto and transit travel from TAZ to TAZ (so-called travel time 

skims); from these and TAZ employment data we can compute regional 

employment accessibility measures for auto and transit. 

• walkscore, street smart walkscore measuring the walkability of neighborhood 

at census travel level 

At present, we have consistent datasets for 23 regions (Table 2.1). The regions are 

as diverse as Boston and Portland at one end of the urban form continuum and Houston 

and Atlanta at the other. To our knowledge, this is the largest sample of household travel 

records ever assembled for such a study outside the NHTS. Relative to NHTS, our 

database provides much larger samples for individual regions and permits the calculation 

of a wide array of built environmental variables based on the precise location of 

households. NHTS provides geocodes only at the census tract level. 
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Table 2.1 Regions (metropolitan areas) in the dataset 

Regions Year of 
data 

Regions Year of 
data 

Regions Year of 
data 

Atlanta, GA 2011 Indianapolis, IN 2009 Sacramento, CA 2000 
Austin, TX 2005 Kansas City, KS 2004 Salem, OR 2010 
Boston, MA 2011 Miami, FL 2009 Salt Lake City, UT 2012 
Denver, CO 2010 Minneapolis-St. 

Paul, MN-WI 
2010 San Antonio, TX 2007 

Detroit, MI 2005 Phoenix, AZ 2008 Seattle, WA 2006 
Eugene, OR 2009 Portland, OR 2011 West Palm Beach, 

FL 
2009 

Greensboro, 
NC 

2009 Provo-Orem, UT 2012 Winston-Salem, 
NC 

2009 

Houston, TX 2008 Rochester, NY 2011   
 

2.3.2 Variables 

The final dataset contained 815,160 trips made by 81,056 households in 23 

regions. To maintain a full complement of independent variables for subsequent analysis, 

trips were dropped for lack of travel mode and households were dropped for missing any 

of the following variables: household size, vehicle ownership, etc. The greatest loss of 

cases was due to unknown household income. As is often the case in travel surveys, 

household income went unreported by a large number of respondents. We could exclude 

household income to maintain a larger sample size, but household income was too 

important from a theoretical perspective to be omitted from the mode choice analysis. 

The unit of analysis is the households, so the dependent variables are numbers of 

walking and biking trips made by households. Four variables were created based on 

travel modes (Table 2.2). 

Independent variables include socioeconomic characteristics and built 

environment variables that have been reported as important factors on travel choice by 

different studies in the literature. These built environment variables cover all of the Ds, 



33 

 

Table 2.2 Dependent and independent variables 

Variable Description N Mean S.D. 
Dependent variables –household 

anywalk any household walk trips (1 = yes, 0 = no) 81,056 0.23 0.42 

walktrips number of household walk trips (for 
households with any walk trips) 18,622 3.88 3.34 

anybike any household bike trips (1 = yes, 0 = no) 81,056 0.04 0.19 

biketrips number of household bike trips (for 
households with any transit trips) 3,042 3.14 2.53 

Independent variables – sociodemographic characteristics 
hhsize household size 81,056 2.5 1.36 
workers number of workers in the household 81,056 1.24 0.88 

hhincome real household income (in 1000s of 2012 
dollars) 81,056 76.87 49.52 

Independent variables – built environment within buffers 

actdenqmi 
activity density within ¼ mile buffer 
(population + employment per square mile 
in 1000s) 

81,056 6.65 11.01 

jobpopqmi1 job-population balance within the ¼ mile 
buffer 81,056 0.58 0.27 

entropyqmi2 land use entropy within the ¼ mile buffer 81,056 0.21 0.26 
intdenqmi intersection density within the ¼ mile buffer 81,056 195.32 289.36 

int4wayqmi the percentage of 4-way intersections the ¼ 
mile buffer 81,056 27.67 28.96 

stopdenqmi transit stop density within the ¼ mile buffer 81,056 24.64 46.17 
actdenhmi activity density within the ½ mile buffer 

(population + employment per square mile 
in 1000s) 

81,056 6.53 10.51 

jobpophmi  job-population balance within the ½ mile 
buffer 81,056 0.60 0.26 

                                                 
1 The job-population index measures balance between employment and resident population within a buffer. 
Index ranges from 0, where only jobs or residents are present within a buffer, not both, to 1 where the ratio 
of jobs to residents is optimal from the standpoint of trip generation. Values are intermediate when buffers 
have both jobs and residents, but one predominates.  jobpop = 1 – [ABS (employment – 
0.2*population)/(employment + 0.2*population)], ABS is the absolute value of the expression in 
parentheses. The value 0.2, representing a balance of employment and population, was found through trial 
and error to maximize the explanatory power of the variable. 
 
2 The entropy index measures balance between three different land uses.  Index ranges from 0, where all 
land is in a single use, to 1 where land is evenly divided among the three uses.  Values are intermediate 
when buffers have more than one use but one use predominates. The entropy calculation is:  
entropy = -[residential share*ln (residential share) + commercial share*ln (commercial share) + public 
share*ln (public share)]/ ln (3), where ln is the natural logarithm of the value in parentheses and the shares 
are measured in terms of total parcel land areas. 
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Table 2.2 continued 

Variable Description N Mean S.D. 
entropyhmi  land use entropy within the ½ mile buffer 81,056 0.34 0.28 
intdenhmi intersection density within the ½ mile buffer 81,056 141.55 100.12 
int4wayhmi the percentage of 4-way intersections the ½ 

mile buffer 81,056 26.81 22.32 

stopdenhmi transit stop density within the ½ mile buffer 81,056 22.53 32.94 
actden1mi activity density within the ½ mile buffer 

(population + employment per square mile 
in 1000s) 

81,056 6.75 9.54 

jobpop1mi  job-population balance within the ½ mile 
buffer 81,056 0.62 0.25 

entropy1mi  land use entropy within the ½ mile buffer 81,056 0.46 0.27 
intden1mi intersection density within the ½ mile buffer 81,056 113.53 78.73 
int4way1mi the percentage of 4-way intersections the ½ 

mile buffer 81,056 26.04 18.44 

stopden1mi transit stop density within the ½ mile buffer 81,056 20.18 25.89 
railhmi rail station within ½ mile buffer (1 = yes, 0 

= no) 81,056 0.07 0.61 

emp10a percentage of regional employment within 10 
min by car 81,056 7.05 10.14 

emp30t percentage of regional employment within 30 
min by transit 81,056 19.71 22.63 

walkscore the walkscore of the census tract where the 
household is  81,056 37.87 25.38 

Independent variables – region 

reginpop population within the region 1000s 23 2317.7
7 1678.13 

gasprice average gasoline prices for 2010 at the 
region 23 2.90 0.13 

compact 

measure of regional compactness index 
developed by Ewing and Hamidi (2014); 
higher values of the index correspond to 
more compact development, lower values to 
more sprawling development 

23 97.64 26.90 

temp_low annual average of low temperature 23 42.25 14.01 
temp_high annual average of high temperature 23 75.04 8.40 

dayt32 number of days the low temperature <= 32 
°F 23 32.43 39.17 

dayt90 number of days the low temperature >= 90 
°F 23 53.65 48.30 

annprecip annual precipitation in inch 23 38.19 16.35 

dayp50 number of days the precipitation >= 0.50 
inch 23 24.83 11.41 
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from density to demographics.  

What extent of the built environment is most relevant to individual’s travel 

decision? Theoretically, buffers (distances from household locations) could be wide or 

narrow. Even a determinant as straightforward as walking distance could be anywhere 

from ¼ mile to 1 mile or more. In this study, buffers were established around household 

geocode locations with three different buffer widths, ¼ mile, ½ mile, and 1 mile. Built 

environmental variables were computed for each household and all three buffer widths.  

Point, line, and polygon data from the different sources were joined with buffers 

to obtain raw data, such as the number of intersections within buffers. These were then 

used to compute refined built environmental measures such as intersection density, which 

is simply the number of intersections divided by land area within the buffer. Additionally, 

Walkscore was tested to see its explanatory power of walk and bike choices. 

This study also includes nine variables at the regional level: population measuring 

the size of a metropolitan area, compactness index measuring the overall built 

environment of a region, gas price, and six weather variables measuring weather 

condition. The weather variables were collected from Climate Data Online of National 

Centers for Environmental Information in the same years with the household travel 

survey data for each region. With different measures, a total of 33 independent variables 

are available to explain senior travel choice in this study. All variables are consistently 

defined from region to region.  
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2.3.3 Model Selection 

2.3.3.1 Multilevel Modeling 

With the household travel survey from 23 regions, our data structure is 

hierarchical, with households nested within regions. The best statistical method to deal 

with nested data is hierarchical modeling (HLM), also called multilevel modeling 

(MLM). HLM accounts for dependence among observations, in this case the dependence 

of households within a given region on characteristics of the region. All households 

within a given region share these characteristics. This dependence violates the 

independence assumption of ordinary least squares (OLS) regression. Standard errors of 

regression coefficients based on OLS will consequently be underestimated. Moreover, 

OLS coefficient estimates will be inefficient. HLM overcomes these limitations, 

accounting for the dependence among observations and producing more accurate 

coefficient and standard error estimates (Raudenbush & Bryk, 2002). 

Regions such as Boston and Houston are likely to generate very different travel 

patterns regardless of household and around built environment characteristics. The 

essence of HLM is to isolate the variance associated with each data level. HLM partitions 

variance between the household level (Level 1) and the region level (Level 2) and then 

seeks to explain the variance at each level in terms of D variables.  

 

2.3.3.2 Count Data and Hurdle Model 

The dependent variables (household walk trips and bike trips) are count variables, 

with nonnegative integer values, many small values, and few large ones. This kind of 

distribution is ordinarily modeled with Poisson or negative binomial regression. 



37 

 

However, if there is a much larger number of observed zeros than assumed by a Poisson 

or negative binomial distribution, the distribution is said to be “zero-inflated” and an 

alternative analytical approach is required. One solution to the zero-inflated distribution 

is two-stage hurdle models (Greene, 2012; Hu et al., 2011).  “In some settings, the zero 

outcome of the data-generating process is qualitatively different from the positive ones.  

The zero or nonzero values of the outcome is the result of a separate decision whether or 

not to ‘participate’ in the activity. On deciding to participate, the individual decides 

separately how much to, that is, how intensively [to participate]” (Greene, 2012, p. 824). 

In a two-stage hurdle model, stage 1 categorizes households as having at least one 

walk or bike trip or not, and uses logistic regression to distinguish these two states. The 

stage 2 model estimates the number of walk or bike trips generated by households with 

any (positive) walk or bike trips. Either Poisson regression or negative binomial 

regression can be used at stage 2. The difference between these two methods is their 

assumptions about the distribution of the dependent variable. 

Negative binomial regression is more appropriate than Poisson regression if the 

dependent variable is over-dispersed, meaning that the variance of the count is greater 

than the mean. Popular indicators of overdispersion are the Pearson and χ2 statistics 

divided by the degrees of freedom, so-called dispersion statistics.  If these statistics are 

greater than 1.0, a model is said to be over-dispersed (Hilbe, 2011).  By these measures, 

in this study, both the number of walk trips and bike trips are over-dispersed, and thus the 

negative binomial model is more appropriate than the Poisson model.   

In sum, this study will use multilevel logistic regressions and multilevel negative 

binomial regressions to model the data. The equations of the regressions are as follow: 
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First stage of hurdle models (multilevel logistic regression):  

Level 1:   𝑃(𝑦 = 1 | 𝑥1, … 𝑥𝑛) = 1/(1 + 𝑒−(𝛽0+� 𝛽𝑖𝑥𝑖
𝑛
𝑖=1  )                         (2.1) 

Level 2:   𝛽0 = 𝛾00 +     � 𝛾0𝑗𝑊𝑗

𝑚

𝑗=1
 +  𝑢0𝑗                                            (2.2) 

𝛽𝑖 =  𝛾𝑖0                                                                                       (2.3) 

                     Where: P refers to the probability of the dependent variable equals 1, 

β0 refers to the intercept of the dependent variable at the level 1, 

βi refers to the coefficient of independent variables at the level 1, 

xi refers to the independent variables at the level 1, 

γ00 refers to the overall intercept, 

γ0j refers to the coefficient of independent variables at the level 2, 

Wj refers to the independent variables at the level 2, 

u0j refers to the random error component for the deviation of the 

intercept, 

γi0 refers to the overall coefficients. 

Second stage of hurdle models (multilevel negative binomial regression): 

Level 1:   𝐸(𝑦 = 1 | 𝑥1, … 𝑥𝑛) = 𝑒−(𝛽0+� 𝛽𝑖𝑥𝑖)
𝑛
𝑖=1                                        (2.4) 

Level 2:   𝛽0 =  𝛾00 +     � 𝛾0𝑗𝑊𝑗

𝑚

𝑗=1
 +  𝑢0𝑗                                              (2.5) 

                𝛽𝑖 =  𝛾𝑖0                                                                                        (2.6) 

                     Where: E refers to the estimated value of the dependent variable, 

β0 refers to the intercept of the dependent variable at the level 1, 

βi refers to the coefficient of independent variables at the level 1, 

xi refers to the independent variables at the level 1, 



39 

 

γ00 refers to the overall intercept, 

γ0j refers to the coefficient of independent variables at the level 2, 

Wj refers to the independent variables at the level 2, 

u0j refers to the random error component for the deviation of the 

intercept, 

γi0 refers to the overall coefficients. 

 

2.4 Travel Pattern Analysis 

2.4.1 Descriptive Analysis 

The overall travel patterns in the 23 regions dataset are shown in Table 2.3. The 

mode shares are 9% walk, 1.2% bike, 2.7% transit, and 83.9% auto. This is very 

consistent with the model shares in 2009 NHTS. Even for trips of less than 1 mile from 

origin to destination, only 35.7% of trips are by walking and 2.1% of trips are by biking. 

The walk mode share ranges from 3.5% in San Antonio up to 22.1% in Boston. 

The regions with the top three walk mode shares are Boston, Portland, and Eugene. The 

bike mode share ranges from 0.2% in San Antonio to 4.2% in Eugene. The regions with 

the top three bike mode shares are Eugene, Austin, and Portland. The transit mode share 

ranges from 0.2% in Austin to 8.7 in Boston. The regions with the top three walk mode 

shares are Boston, Portland, and Denver. The three regions with highest non-auto mode 

shares are Boston – 32.2%, Portland – 26.2%, and Eugene – 19.4. The three regions with 

the lowest non-auto mode shares are Kansas City – 4.8%, Houston – 4.4%, and San 

Antonio – 4.4%. Additionally, Boston has the lowest VMT per capita and Eugene has the 

lowest VMT per household. These findings are not surprising based on the common  
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Table 2.3 Comparison of mode shares in different regions 

Regions Survey 
year 

Househo
ld Trips 

Mode share (%) VMT 
per 

capita 

VMT 
per 

househ
old 

Walk Bike Transit Auto 

Atlanta, GA 2011 9,575 93,681 5.4 0.3 1.9 87.1 24.02 50.84 
Austin, TX 2005 1,448 14,249 4.0 3.1 0.2 90.7 24.33 61.5 
Boston, MA 2011 7,826 86,915 22.1 1.4 8.7 64.9 17.55 38.97 
Denver, CO 2010 5,551 55,056 12.2 1.4 4.1 80.8 18.08 37.19 
Detroit, MI 2005 939 14,690 8.2 0.6 3.9 81.0 30.27 74.4 
Eugene, OR 2009 1,674 16,563 12.2 4.2 3.0 79.2 19.31 32.77 
Greensboro, 
NC 2009 2,023 17,561 6.7 0.4 0.3 90.4 39.68 59.78 

Houston, TX 2008 5,276 59,552 3.1 0.5 0.8 90.5 26.96 74.35 
Indianapolis, 
IN 2009 3,777 37,473 6.3 1.0 1.7 88.1 22.12 48.11 

Kansas City, 
KS 2004 3,022 31,779 3.6 0.3 0.9 91.3 22.59 42.44 

Miami, FL 2009 1,433 11,580 11.2 0.7 2.0 83.7 27.22 44.68 
Minneapolis-
St. Paul, MN-
WI 

2010 8,234 79,236 6.0 1.5 2.0 87.5 23.96 43.26 

Phoenix, AZ 2008 4,314 37,811 8.7 1.2 0.8 86.6 33.27 56.79 
Portland, OR 2011 4,508 47,551 17.7 2.9 5.6 71.0 20.12 43.21 
Provo-Orem, 
UT 2012 1,464 19,255 8.6 1.8 0.6 87.2 34.42 69.17 

Rochester, NY 2011 3,439 23,146 4.3 1.0 1.0 93.0 23.97 37.52 
Sacramento, 
CA 2000 3,520 33,519 4.7 1.6 1.2 91.2 29.23 62.66 

Salem, OR 2010 1,668 16,231 10.3 1.2 2.1 83.8 22.50 48.72 
Salt Lake City, 
UT 2012 3,491 44,576 7.1 1.6 1.7 88.3 30.82 60.58 

San Antonio, 
TX 2007 1,563 14,952 3.5 0.2 0.7 91.8 20.89 50.67 

Seattle, WA 2006 3,908 40,450 8.3 1.0 2.8 83.2 22.79 47.29 
West Palm 
Beach, FL 2009 944 7,166 10.8 0.9 0.6 86.3 29.55 45.28 

Winston-
Salem, NC 2009 1,459 12,168 6.2 0.3 0.4 91.0 38.06 59.74 

Total   81,056 815,160 9.0 1.2 2.7 83.9 24.60 53.74 
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sense of these metropolitan areas. Boston is one of the most traditional neighborhoods 

with a good public transportation system, and Portland is becoming an exemplary 

planning model in the US in terms of its more recent compact developments and 

investments in bike and public transportation infrastructures. Houston and San Antonio 

are more typical sprawling suburban developments with more extreme summer 

temperatures. 

In the 23 regions, the average walk and bike distances are 0.63 mile and 2.43 

miles (Table 2.4), respectively, which are both slightly shorter than the national average 

in 2009 NHTS. The average walk and bike time are 11.50 minutes and 20.52 minutes, 

respectively. The average walk and bike distance vary across regions. In Sacramento, the 

average walk distance is as long as 2.75 miles, where in Atlanta and Denver, the average 

walk distance is as short as 0.28 miles. The longest average bike distance is 5.19 miles in 

Austin and shortest average bike distance is 1.44 miles in Salem. Although the overall 

average walk distance is around ½ mile, the average walk distance is different from 

region to region. When planning pedestrian-related work, planners should be careful to 

assume the ½ mile walking distance in their own regions. 

 

2.4.2 Trip Chain Analysis 

A trip chain, also called a trip tour, refers to a series of linked trips that start at 

home and end at home. According to the number of trip stops, a trip chain can be 

classified into a simple chain with one outside stop or a complex chain with multiple 

outside stops. So, a simple chain is chains with two trips, and a complex chain is chains 

with three or more trips.  
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Table 2.4 Comparison of walk and bike in different regions 

Regions 

Walk Bike 

# of 
trips 

average 
distance 
(mile) 

average 
time 

(minute) 

# of 
trips 

average 
distance 
(mile) 

average 
time 

(minute) 
Atlanta, GA 5,014  0.28 10.85        315  1.89 19.88 
Austin, TX      573  0.74 9.16        438  5.19 25.83 
Boston, MA  19,184  0.46 9.59     1,193  1.97 19.56 
Denver, CO    6,693  0.28 9.55        744  1.56 17.47 
Detroit, MI    1,204  1.16 16.69          84  1.51 17.75 
Eugene, OR    2,027  0.33 10.26        700  1.52 17.17 
Greensboro, NC    1,170  0.69 14.45          63  2.38 15.21 
Houston, TX   1,852  1.20 9.10        267  2.30 10.55 
Indianapolis, IN    2,367  0.50 10.95        373  1.74 20.02 
Kansas City, KS   1,130  0.86 11.28        108  1.69 18.06 
Miami, FL    1,294  0.67 13.98          83  2.27 20.05 
Minneapolis-St. Paul, 
MN-WI    4,786  1.10 16.29 1,150  2.92 27.03 

Phoenix, AZ    3,280  0.72 18.02        437  2.63 18.76 
Portland, OR    8,400  0.34 8.91     1,353  1.96 20.93 
Provo-Orem, UT    1,648  0.66 13.45        343  2.12 14.43 
Rochester, NY       996  1.17 16.22        225  2.85 23.89 
Sacramento, CA   1,570  2.75 12.48        547  3.08 15.10 
Salem, OR    1,671  0.32 10.13        196  1.44 18.27 
Salt Lake City, UT    3,161  0.88 16.26        691  3.20 25.07 
San Antonio, TX       528  0.57 9.74          29  2.14 14.14 
Seattle, WA    3,372  1.17 12.33        387  3.94 25.64 
West Palm Beach, FL       773  0.77 13.22          61  2.47 17.20 
Winston-Salem, NC       759  0.67 13.87          31  2.49 23.71 
Total 73,452  0.63 11.50     9,818  2.43 20.52 
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This study deviates from standard practice in its classification of trips.  Standard 

practice, which has its origins in conventional travel modeling, classifies trips as either 

home-based work (HBW), home-based other (HBO), and non-home-based (NHB).  

These trips are treated as independent of each other, when in fact they are necessarily 

linked. So in this trip chain analysis, all trip chains should start from home, either for 

work purposes (the most important “peg”) or other purposes. It comes closer to capturing 

households’ complex travel behavior than does the standard scheme.  

In this study, I am particularly interested with walk and bike travel behavior. 

However, bike mode is less likely involved into a trip chain with other modes, especially 

with walk and auto. Once an individual leaves home with a bicycle, he or she probably 

will travel with it for the following trips. So here, I just focus on walk trips in a trip chain. 

The statistics of walk trips in trip chains are shown in Table 2.5. There are several 

significant findings. 

First, there are more walk trips that happened in complex chains than simple  

 

Table 2.5 Walk trip distribution in trip chains  

Walk trips in simple chain 

Mode of first trip 
Purpose of first trip 

Total 
HBW HBO 

All        2,243                         26,878         29,121  
Walk trips in complex chain 

Mode of first trip 
Purpose of first trip 

Total 
HBW HBO 

Walk        1,365                         25,064         26,429  
Bike           344                              324              668  
Transit           469                              438              907  
Auto        3,547                         11,163         14,710  
Total                                                               42,714  



44 

 

chains. This is surprising. Common sense is that walk is limited by distance primarily, so 

people are more likely to walk from home for a specific trip that is walkable. However, 

this shows that more walk trips are involved in complex trip chains. People do walk for 

multiple purposes or have a trip made by walking when they are on a trip for other 

purposes. These walk trips probably happen in neighborhoods where the physical built 

environment is supportive to walk. 

Second, the majority, 76%, of walk trips happened either in sample chains 

(29,121, 40% of the total walk trips in the sample) or complex chains started with walk 

(26,429, 36% of the total walk trips in the sample). All of these walk trips should be 

around people’s homes. This means that accessibility of residences to a mix of land uses 

is the key to encourage people to walk. If there are multiple destinations close to home, 

people will walk from home to one destination, and then walk to another one, and so on. 

This supports transportation and health studies in the literature that the built environment 

around home locations is important. 

Third, another surprising finding is that 20% (14,710) of walk trips happened in a 

trip chain that is started with auto. People drive to workplaces or some other places, then 

leave their cars there and walk. This tells us that accessibility to shopping by itself is 

relatively unimportant, as is accessibility to workplaces. However, if it is a workplace 

with good accessibility to shopping, services, schools, and other, people can efficiently 

link trips for different purposes into a chain, and involve walk in the chain. This means 

the accessibility of destinations is, at least, as important as the accessibility of residences 
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2.5 Modeling Results 

Walk and bike trips were estimated with HLM 7, Hierarchical Linear and 

Nonlinear Modeling software (Raudenbush et al., 2010). HLM 7 allows the estimation of 

multilevel models for continuous, dichotomous and count variables, and for the last of 

these, HLM 7 can account for overdispersion. Different variables may emerge as 

significant in different models, so trial and error was used to arrive at the best-fit models 

for the travel outcomes of interest. For the same D variables measured in three different 

buffer widths, only one of them was included in the model at the same time. Variables 

were substituted into models to see if they were statistically significant and improved 

goodness-of-fit. For each dependent variable, we were looking for the model with the 

most significant t-statistics and the greatest log-likelihood. 

 

2.5.1 Walking 

The best-fit model for the dichotomous variable, any walk, is presented in Table 

2.6. The likelihood of a household making any walk trips increases with household size 

and number of workers in the household. The likelihood of any walk trips increases with 

job-population balance and land use entropy within ¼ mile of home. The likelihood of 

any walk trips increases with activity density, intersection density, and percentage of 

four-way intersection within 1 mile of home. These measures of density, diversity, and 

design place destinations within walking distance of home. The likelihood of any walk 

trips increases with accessibility to employment within 10 minutes by auto and with 

transit stop density within 1 mile of home. Transit service is complementary to walking, 

as households within good transit access tend to own fewer vehicles. The likelihood of  
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Table 2.6 Multilevel logistic regression model of log odds of any walk trips  

  Outcome variable is anywalk 
  coefficient standard error t-ratio p-value 
constant -9.837 1.452 -6.775 < 0.001 
hhsize 0.298 0.016 18.101 < 0.001 
workers 0.051 0.022 2.319 0.020 
emp10a 0.007 0.004 1.808 0.070 
jobpopqmi 0.145 0.046 3.156 0.002 
entropyqmi 0.468 0.067 6.962 < 0.001 
actden1mi 0.015 0.004 3.845 < 0.001 
intden1mi 0.002 0.001 2.225 0.026 
int4w1mi 0.003 0.002 2.177 0.029 
stopden1mi 0.007 0.002 3.840 < 0.001 
walkscore 0.005 0.001 4.910 < 0.001 
compact 0.004 0.002 1.940 0.071 
temp_low 0.054 0.010 5.521 < 0.001 
temp_high 0.083 0.018 4.500 < 0.001 
dayt32 0.004 0.002 1.835 0.086 
dayt90 -0.025 0.005 -5.365 < 0.001 
annpreci -0.089 0.015 -5.968 < 0.001 
dayp50 0.094 0.018 5.271 < 0.001 
Pseudo-R2: 0.57 

 

any walk trips also increases with Walkscore of the census tract that the household is 

located and regional compactness. Higher walkscore means the walkability of a 

neighborhood is better. The more compact a region is, the more destinations are within a 

walkable distance.  

For the weather conditions, the likelihood of any walk trips increase with regional 

annual average low temperature, average high temperature, and number of days with 

temperature lower than 32 °F and decreases with number of days with temperature 

greater than 90 °F. This means, generally, people are more likely to walk in conditions of 

warm temperature. Either extreme low or high temperature discourages people to walk. I 

do not have a good explanation for the positive sign of number of days within 
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temperature lower than 32 °F. The likelihood of any walk trips also decreases with annual 

precipitation and increases with number of days with precipitation higher than 0.5 inches. 

This makes sense. After controlling for annual precipitation, more days with precipitation 

higher than 0.5 inches mean fewer days with any precipitation in a given year. Hence, the 

two variables together mean precipitation also discourages households making any walk 

trips. 

The number of walk trips for a subset of households that make walk trips 

increases with household size and declines with household income and number of 

employed members (Table 2.7). The last of these relationships is counterintuitive but 

actually makes sense. The overwhelming majority of walk trips are for non-work 

purposes. Workers are otherwise engaged rather than walking during the workday. The 

number of walk trips increases within these D variables: land use entropy ½ mile from  

 

Table 2.7 Multilevel negative binomial regression model of household walk trips (for 
households with any walk trips) 

  Outcome variable is walktrips 
  coefficient standard error t-ratio p-value 
constant 0.246 0.158 1.562 0.135 
hhsize 0.145 0.009 15.957 < 0.001 
workers -0.057 0.007 -8.446 < 0.001 
income -0.0007 0.0002 -3.170 0.002 
emp30t 0.004 0.001 3.120 0.002 
entropyhmi 0.233 0.047 4.924 < 0.001 
intden1mi 0.0008 0.0002 3.412 0.001 
stopden1mi 0.002 0.0004 4.484 < 0.001 
walkscore 0.002 0.0004 3.929 < 0.001 
compact 0.003 0.001 2.637 0.017 
annpreci -0.015 0.006 -2.331 0.031 
dayp50 0.021 0.009 2.467 0.024 
Pseudo-R2: 0.18 
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home, intersection density and transit stop density within 1 mile of home. It also 

increases with transit accessibility to employment within 30 minutes and regional 

compactness.  

The number of walk trips also decreases with annual precipitation and increases 

with number of days with precipitation higher than 0.5 inches. This is the same 

relationship with any walk trips. After controlling for annual precipitation, more days 

with precipitation higher than 0.5 inches mean fewer days with any precipitation in a 

given year. Hence, the two variables together mean precipitation discourages walk trip 

frequency. One interesting finding is that none of the four temperature variables is 

statistically significant. After deciding to walk, the number of walk trips is not affected 

by temperature anymore. 

Probably the most interesting finding is that walk trip frequency depends on the 

built environment at a larger scale than the usual ¼ mile walk distance assumed by 

planners. In fact, according to the NHTS, the average walk trip length in the USA varies 

by trip purpose from 0.52 miles for shopping trips to 0.88 miles for work trips. The 

overall average is 0.70 miles, which implies a relevant environmental scale of ½ to 1 

mile. 

 

2.5.2 Biking 

The likelihood of a household making any bike trips depends on household size, 

number of workers, and household income (Table 2.8). All of the three have a positive 

relationship. For built environment variables, it depends on diversity and design 

variables, specifically within job-population balance within ½ mile of home, percentage  
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Table 2.8 Multilevel logistic regression model of log odds of any bike trips  

  Outcome variable is anybike 
  coefficient standard error t-ratio p-value 
constant -5.486 0.438 -12.523 < 0.001 
hhsize 0.319 0.023 13.681 < 0.001 
workers 0.178 0.043 4.089 < 0.001 
income 0.001 0.0007 1.857 0.063 
emp30t 0.008 0.005 1.839 0.065 
jobpophmi 0.304 0.095 3.215 0.002 
int4whmi 0.011 0.002 4.672 < 0.001 
stopdenhmi 0.003 0.001 2.792 0.006 
intden1mi 0.003 0.001 3.188 0.002 
compact 0.010 0.003 3.119 0.006 
regpop -0.0002 0.00006 -2.900 0.010 
annpreci -0.079 0.025 -3.146 0.006 
dayp50 0.090 0.033 2.694 0.015 
Pseudo-R2: 0.62 

 

of four-way intersections within ½ mile of home, and intersection density within 1 mile 

of home. It also depends on transit stop density within ½ mile of home and transit 

accessibility to employment within 30 minutes. This transit relationship may be explained 

by the same phenomena as with walking. Bicycle use may be complementary to transit 

use. 

Regional compactness is also significant, suggesting that compact regions 

encourage bike trips. However, regional population is negatively related to any bike trips, 

suggesting that small metropolitan regions encourage bike trips. This makes sense that 

biking to destinations is more feasible in small metropolitan areas and this finding is 

consistent with the literature (Ewing et al., 2015). Additionally, the likelihood of any bike 

trips decreases with annual precipitation and increases with number of days with 

precipitation higher than 0.5 inch. This may be explained by the same phenomena as with 

walking. After controlling for annual precipitation, more days with precipitation higher 
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than 0.5 inch mean fewer days with any precipitation in a given year. Hence, the two 

variables together mean precipitation discourages households making any bike trips. 

Bike trip frequency for the subset of households that make bike trips increases 

with household size, increases with intersection density within one-half mile, increases 

with percentage of four-way intersection with a mile, and increases with transit stop 

density within ½ mile (Table 2.9). The second and third of these relationships suggests 

the importance of an interconnected street network as a facilitator of biking, perhaps 

because it shortens trip distances or provides routing options. It may simply mean that 

bicyclists are not channeled up and down the suburban hierarchy of streets and therefore 

can avoid high-speed arterials. The fourth of these relationships is explained by the same 

phenomena as before that bicycle use may be complementary to transit use.  

Bike trip frequency for the subset of households that make bike trips increases 

with regional annual average low temperature, regional annual average high temperature, 

number of days with temperature lower than 32 °F, and number of days with precipitation   

 

Table 2.9 Multilevel negative binomial regression model of household bike trips (for 
households with any bike trips) 

  Outcome variable is biketrips 
  coefficient standard error t-ratio p-value 
constant 1.656 0.278 5.946 < 0.001 
hhsize 0.091 0.008 11.203 < 0.001 
intdenhmi  0.0005 0.0002 2.520 0.012 
stopdenhmi 0.002 0.0005 4.703 < 0.001 
int4w1mi  0.003 0.0008 3.804 < 0.001 
temp_low -0.006 0.002 -3.518 0.003 
temp_high -0.008 0.003 -2.208 0.040 
dayt32 -0.002 0.0008 -2.628 0.017 
dayp50 -0.009 0.002 -5.520 < 0.001 
Pseudo-R2: 0.14 
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more than 0.5 inches. These relationships suggest that both high and low temperature and 

precipitation make biking a less favorable travel choice. This is the model that may be 

underspecified. Other variables may prove significant as the sample of households with 

bike trips expands with the addition of other regions. The current sample is 3,042 

households, not as many as the sample for walking. 

 

2.6 Discussion and Conclusion 

This study explained walk and bike trips generation by households using 

household travel survey data, built environment variables at neighborhood level, and 

regional characteristics in 23 diverse regions of United States. The built environment at 

different scales must be considered for different travel modes. Motorized trips are more 

heavily impacted by regional spatial patterns, while nonmotorized trips are more heavily 

impacted by the built environment of the neighborhood (Greenwald & Boarnet, 2001; 

Handy et al., 2002) 

To capture neighborhood built environments, road network buffers based on 

household locations were used instead of a circular buffer or predefined unit like TAZs. 

The network buffer can more accurately represent the physical environment surrounding 

the household than can a circular buffer or TAZ. Also, the study tested built environment 

variables for three different buffer widths around household locations to see which scale 

best explains walk and bike behavior. 

The results show that sociodemographic characteristics are strong predictors of 

walk and bike trip generation, which is consistent with the literature (Ewing & Cervero, 

2010). Specifically, household size, the number of workers in a household, and household 



52 

 

income influence the probability of a household making any walk and bike trips, and also 

the walk and bike trip frequencies.  

Characteristics of the built environment around homes are also significant. All the 

D variables are associated with walk and bike trip generation. However, land use 

diversity, street connectivity, and transit accessibility seem more important than other D 

variables to walk trip generation. Street connectivity and transit accessibility seem more 

important than other D variables for bike trip generation. Additionally, with including 

more and more regions, compactness index is statistically significant in three of the four 

models. Regional compactness is important to both walk and bike trip generation. 

This study also tested built environmental variables for different buffer widths 

around household locations to see which scale best explains walking and biking behavior. 

The relevant built environment is anywhere from ¼ to 1 mile. However for certain built 

environment variables, the smaller scale seems to have more predictive power than the 

larger scale. For other variables, the scale effects are reversed. Specifically, diversity – 

represented by job-population balance and land use entropy – has more predictive power 

at ¼ mile and ½ mile. Design and distance to transit – represented by intersection density, 

percentage of four-way intersection, and transit stop density – have mostly predictive 

power at a mile. 

This study controlled the regional weather conditions when examining the effects 

of built environment on walk and bike, which has not been done much in the literature. 

Average and extreme temperature and precipitation were used to measure weather 

conditions. The results show that weather conditions do have influences on walk and bike 

trip generation. Both extreme temperature and precipitation discourage walk and bike trip 
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generation, but precipitation has a stronger influence than temperature does.  

The trip chain analysis shows that accessibility of residences and accessibility of 

destinations are both important. The majority of walk trips happened either in sample 

chains or complex chains started with walk. All of these walk trips should be around 

people’s homes. This means that accessibility of residences to a mix of land uses is the 

key to encourage people to walk. At the same time, good accessibility of destinations, 

like workplaces or shopping places, to other activities is also important to encourage 

walking. A shop that is close to an individual’s place of employment may be quite 

accessible (as indicated by the frequency of use) even though it may be quite distant from 

the individual’s place of residence, because employees could visit it on foot when they 

are at the workplaces if accessibility were improved to the point where people can walk. 

I conclude by acknowledging the limitations of this study. Though it covered the 

D variables, the study still omits certain variables that have presumptive effects on 

household walk and bike choice. Parking supplies and prices, particularly at the 

destination end of trips, may strongly affect mode choices of individuals. Urban design 

qualities such as windows overlooking the street, continuous building facades, and active 

uses at street level have been shown to affect pedestrian volumes (see Chapter 5 of Ewing 

and Clemente, 2013). For lack of data on streetscapes, these qualities have not been 

modeled. Finally, for lack of data on modal attitudes and residential preferences, the 

study fails to control for residential self-selection. 
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CHAPTER 3 

 

STUDENT TRAVEL: EVIDENCE FROM 14 DIVERSE 

REGIONS OF THE UNITED STATES 

 

Active travel to school (walk and bike) can play an important role in increasing 

physical activity and reducing obesity among children. However, by analyzing student 

travel to school in the 14 regions, I find that of school trips, only 12.7% are walking trips, 

1.7% are biking trips, 33.9% are school bus trips, and 50.9% are car trips. Even among 

trips of less than 2 miles from home to school, reasonable for walking or biking, 45.7% 

of these trips are by car. This begs the question of why more school trips are not by active 

modes of transportation. Is the built environment, basically low values of the D variables, 

implicated in these results? 

In this chapter, I conducted a multilevel multinomial logistic regression to 

estimate a school travel mode choice model based on student travel dailies from 14 

diverse U.S. regions. The built environment is measured around the shortest route from 

home to school consistently. I find that the important built environment variables in the 

decision to walk or bike to school are development density and street network design or 

connectivity, and the least important is land use diversity. Land use diversity even has a 

negative relationship with walking to school. While not a D variable exactly, the need to 

cross major roads or commercial developments has strong negative impacts on active 
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travel to school too. 

 

3.1 Introduction 

Travel to and from school can be a source of physical activity adding to a child’s 

daily total energy expenditure (Ahlport et al., 2008). Active transportation to school can 

play an important role in increasing physical activity and reducing obesity among 

children. Perhaps more importantly, exposing children to walking and biking at an early 

age can help establish healthy habits, increasing the likelihood that they will use these 

modes of transport later in their life (Schlossberg et al., 2006).  

However, National Household Travel Surveys (NHTS) show that the number of 

children walking or biking to school is significantly lower today, compared with 50 years 

ago. According to the most recent 2009 NHTS, only 9.6% of students between the ages 

of 5 and 15 walked to or from school, and 1.1% biked. In 1969, at the time of the first 

Nationwide Personal Transportation Survey (predecessor to NHTS), 48% of students 

walked or biked to school (Ewing et al., 2004). By 2009, even children living close to 

school were not walking much. In 1969, 87% of children who lived within 1 mile of 

school walked, and only 7% were obese. Today, however, only 31% of children living 

within 1 mile from school walk, and perhaps relatedly, 17% of children are obese 

(Botchwey et al., 2014).  

Why the decline in walking and biking to school? Built environment of 

neighborhoods, characteristics of children and households, and children and parents’ 

attitudes have all been reported to affect student travel choice by both quantitative and 

qualitative studies. However, evidence in literature from each study using data for single 
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regions, specification of different models, and different metrics to represent the built 

environmental variables are not consistent. Built environmental factor influences on 

school mode choice remains an issue. 

This study examines the relationship between mode of school trips and a large 

range of factors that might affect student mode, by pooling household travel and built 

environment data from 14 diverse U.S. regions and using consistently defined built 

environmental variables captured around the shortest route to school. Also, this study 

tests variables that have not been studied much in the literature such as major roads and 

weather conditions. 

 

3.2 Literature Review 

Distance is reported as a primary factor that impacts children walking or biking to 

school by many studies (Black et al., 2001; Bringolf-Isler et al., 2008; Emond & Handy, 

2012; Ewing et al., 2006; Frank et al., 2007; Larsen et al., 2012; McDonald, 2007; Mitra 

& Builung, 2012; Müller et al., 2008; Schlossberg et al., 2006; Stewart, 2011; Timperio 

et al., 2006; Yarlagadda & Srinivasan, 2008). For over 50 years, the U.S. has been 

shifting away from small, neighborhood schools to larger schools in lower density areas 

(Botchwey et al., 2014). Schools have been increasing in size and drawing students from 

ever-larger areas. This means relatively few students live within appropriate distances 

from school to walk or bike, which may account for much of the decline in walk and bike 

mode shares. 

However, as already noted, even short school trips are now made primarily by 

automobile, indicating that other factors are at work. The walkability of neighborhoods 
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has been linked to travel mode choices in the general population and would be expected 

to affect walking and biking to school. Residential density, intersection density, street 

connectivity, land use mix, access to recreation or open space, and the presence of street 

trees are reported to be positively associated with the choices of walking and biking to 

school (Botchwey et al., 2014; Frank et al., 2007; Giles-Corti et al., 2011; Larsen et al., 

2012; Marique et al., 2013; Mitra & Buliung, 2012; Panter et al., 2008; Stewart et al., 

2012). 

The travel behavior literature emphasizes the importance of such built 

environmental variables in travel decision making, which have been categorized in terms 

of the five Ds: density, diversity, design, destination accessibility, and distance to transit 

(Ewing & Cervero, 2010). Density is always measured as the variable of interest, like 

population and employment, per unit of area. Diversity measures pertain to the number of 

different land uses in a given area and the degree to which they are balanced in land area. 

Entropy and employment and population ratios are frequently used. Design measures 

usually include average block size, proportion of four-way intersections, and number of 

intersections per square mile. Distance to transit is usually measured in terms of transit 

stop density or distance to the closest stop. Destination accessibility measures ease of 

access to trip attractions, such as number of jobs reachable within a given travel time or 

distance to the closest nonresidential trip attraction. 

However, these relationships are not always found to apply to students (Ewing et 

al., 2004; Wong et al., 2011; Yarlagadda & Srinivasan, 2008). Apparently, school trips 

are different from other trip. They tend to be unlinked to other activities, and thus reduce 

the need for proximity to other land uses. They are mandatory, thus the walking 
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environment may be less important than it is with discretionary travel. Environmental 

correlates of active transport in children and adults may differ. Even negative 

relationships between walking and biking to school and residential densities, mixed land 

uses, and intersection density (or connectivity) are reported (Larsen et al., 2012; Timperio 

et al., 2006). Built environmental factor influences on school mode choice remains an 

issue in the literature. 

Route safety is another factor that influences student travel choice. Traffic speed, 

traffic volume, and lack of sidewalks have been identified as barriers to walk and bike to 

school (Ahlport et al., 2008; Chaufan et al., 2012; Timperio et al., 2006). In 2005, the 

United States Congress created the Safe Routes to School (SRTS) program to improve 

route safety and increase the number of children walking and biking to and from school 

through educational efforts, encouragement programs, and road improvements at or near 

schools. Studies have found that SRTS programs do have immediate effects of making 

more students walk or bike to and from school (McDonald et al., 2013; McDonald et al., 

2014; Stewart et al., 2014). However, there are questions about which programs are more 

effective and how early exposure to regular walking and biking affects individuals over 

several years (McDonald, 2015). 

Empirical results also indicate that the characteristics of child, like age, gender, 

and ethnicity, and employment and work flexibility characteristics of the parents have 

strong impacts on the mode choice decisions (Kerr et al., 2007; Wilson et al., 2010; 

Yarlagadda & Srinivasan, 2008). Boys are more likely to use active travel modes than 

girls (Larsen et al., 2012; McMillan et al., 2006; Robertson-Wilson et al., 2008). Older 

children are more likely to use active travel modes than younger children (Sidharthan et 
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al., 2011). Children from higher income neighborhoods are less likely to actively travel 

than children from lower income neighborhoods (Larsen et al., 2012). 

A supportive physical environment (including short distance to school, good 

walkability, safe route, etc.) is a necessary but insufficient condition to encourage active 

travel to school. Children and parents’ safety concerns are also important factors 

(Banerjee et al., 2014; Bringolf-Isler et al., 2008; McDonald & Aalborg, 2009; McMillan, 

2005; Napier et al., 2011; Romero, 2010; Rosenberg et al., 2006; Stewart, 2011; Wilson 

et al., 2010; Zhu & Lee, 2009), especially the decision making of parents as the 

gatekeepers of younger children (Giles-Corti et al., 2009). Nearly half of parents driving 

their children less than 2 miles did not allow their child to walk to school without adult 

supervision. Ahlport et al. (Ahlport et al., 2008) reported that fear of child abduction was 

the number one barrier identified by parents and children, but many other factors, 

including the flexibility of parent work schedules, parent motivation, and the physical 

load students must carry to and from school, also influence parents’ decisions about 

whether or not children walk or bicycle to school. Planning interventions can only 

overcome some of the barriers to increased active transport (Schlossberg et al., 2006). 

 

3.3 Methodology 

This study employs a cross-sectional research design to determine the relative 

influence of individual, household, built environment, regional factors, and weather 

conditions on student travel choice. The unit of analysis for the study is the individual 

school trip made by students in kindergarten through 12th grade (K-12), as reported in 

regional household travel surveys.  
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3.3.1 Data Collection 

The most widely used data source to study travel behavior is the household travel 

survey. Household travel survey data are the fundamental input for regional travel 

demand modeling and forecast. Many regional metropolitan planning organizations 

(MPOs) conduct their own travel survey for their uses. In the last 5 years, we have been 

contacting regional MPOs and collecting household travel survey data. A main criterion 

for inclusion of regions in this study was data availability. Regions had to offer regional 

household travel surveys with XY coordinates, so we could geocode the precise locations 

of trip ends. It is not easy to assemble databases that meet this criterion, as confidentiality 

concerns often prevent metropolitan planning organizations from sharing XY travel data. 

The resulting pooled dataset consists of 815,160 trips made by 81,056 households in 23 

regions, from which school trips could be extracted and mode choices analyzed.  

The regions included in our household travel survey sample were, in addition, 

able to supply GIS data layers for streets and transit stops, population and employment 

for traffic analysis zones, and other related data for the same or close enough to the years 

that the household travel surveys were conducted. 

All the GIS layers that were used to compute built environment are: 

• parcel level land use data with detailed land use classifications; from these we 

can compute detailed measures of land use mix; 

• street networks and intersections; from these we can build the buffer widths 

and compute intersection density; 

• transit stops; from these data we can compute transit stop densities; 

• population and employment at the block or block group level; from these we 
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can compute activity density; 

• TAZs with socioeconomic information (population and employment); 

• road function classifications; from these we can identify major roads; 

• relevant destination – parks. 

Point, line, and polygon data from the different sources were joined with buffers 

to obtain raw data, such as the number of intersections within buffers. These were then 

used to compute refined built environmental measures such as intersection density, which 

is simply the number of intersections divided by land area within the buffer. In addition 

to these GIS layers, we collected data of weather conditions from Climate Data Online of 

National Centers for Environmental Information in the same years with the household 

travel survey data for each region. 

The unit of analysis for the study was the individual school trip, which were made 

by K-12 students travelling from or to school. School trips were identified by trip purpose 

reported in the household travel survey. If the trip purpose of either the origin or 

destination of a trip was attending school, this trip was counted as a school trip. Trips that 

were for school-related activities were not included. To identify K-12 students, two 

criteria were used: the age of the traveler should be from 5 to 18 and the level of school 

that the traveler is attending should be Kindergarten to Grade 12. Not every household 

travel survey provided both pieces of information, so any traveler that met either of the 

two criteria was counted as a K-12 student. However, there were nine regions missing 

key information in the household travel survey so that we could not identify school trips 

made by K-12 students. We also did not include individual trips in which the travel 

distance is more than 100 miles.  
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At present, we have consistent datasets for 14 regions (Table 3.1). The regions are 

as diverse as Boston and Portland at one end of the urban form continuum and Houston 

and Atlanta at the other. To our knowledge, this is the largest sample of household travel 

records ever assembled for such a study outside the NHTS.  And relative to NHTS, our 

database provides much larger samples for individual regions and permits the calculation 

of a wide array of built environmental variables based on the precise location of 

households. NHTS provides geocodes only at the census tract level.  

 

3.3.2 Buffer of Shortest Route to School 

What extent of the built environment is most relevant to students’ travel 

decisions? Theoretically, buffers could be wide or narrow. Even a determinant as 

straightforward as walking distance could be anywhere from ¼ mile to 1 mile or more. In 

the literature, one ¼ and ½ mile are the most widely used widths, but 1 mile or even 

wider distances have also been used. The other thing is where to build the buffer. Trip 

ends (destinations and/or origins, in this case homes and/or schools) are used a lot in the 

literature. However, there are a few studies using the buffer around the shortest route 

 

Table 3.1 Regions (metropolitan areas) in the dataset 

Regions Year of data Regions Year of 
data 

Atlanta, GA 2011 Minneapolis-St. Paul, 
MN-WI 

2010 

Boston, MA 2011 Phoenix, AZ 2008 
Denver, CO 2010 Portland, OR 2011 
Detroit, MI 2005 Rochester, NY 2011 
Eugene, OR 2009 Sacramento, CA 2000 
Houston, TX 2008 San Antonio, TX 2007 
Indianapolis, IN 2009 Seattle, WA 2006 



67 

 

between homes and schools to studying student active commuting (Larsen et al., 2012; 

Panter et al., 2010). 

In this study, we chose to establish a ¼ mile buffer along the shortest route 

between home and school and computed the built environmental variables for each 

school trip within the buffer. The micro built environment along the routes to school is 

important for active travel. These are factors that influence the experience of walking or 

biking on the street, which further affect the decision of mode choice. A ¼ mile buffer 

width was used because we think that is wide enough to capture other possible routes 

between home and school. Based on the household travel survey data, students’ home 

and school were identified first. Then, the shortest route between each student’s home 

and school was calculated by using network analysis in GIS. The use of the buffer of the 

shortest route to school is one of the distinctions of this study compared to most studies in 

the literature. 

 

3.3.3 Choice Sets 

Practically speaking, certain modes were unavailable to certain students, and their 

choice sets had to be restricted. For school trips in this sample, the trip distance ranged up 

to 57 miles. No student could be expected to walk or bike this far. Therefore, a cutoff 

value of 2 miles was established for travel distance. Thousands of school trips in the 

sample were restricted to two or three modes. The model was estimated with school trips 

with travel distance was less than 2 miles. 
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3.3.4 Variables 

The final dataset contained K-12 school trips for which origin and destination 

were known. Cases were dropped for lack of travel mode or if travel mode was “others”. 

The unit of analysis is the individual school trip. The dependent variable is travel mode of 

an individual trip with values as walk, bike, transit, school bus, and auto. A categorical 

variable was created based on travel mode (see the next section for a discussion of model 

selection). 

To maintain a full complement of independent variables for subsequent analysis, 

cases were dropped for missing any of the following variables: household size, vehicle 

ownership, household income, etc. The greatest loss of cases was due to unknown 

household income. As is often the case in travel surveys, household income went 

unreported by a large number of respondents. We could exclude household income to 

maintain a larger sample size, but household income was too important from a theoretical 

perspective to be omitted from the mode choice analysis. We included two extra variables 

that have been reported as important factors for student’s mode choice in the literature: 

number of siblings and possession of a driver’s license. 

Built environment characteristics cover all D variables – density, diversity, 

design, and distance to transit – except destination accessibility. The destination 

accessibility usually measures the accessibility to regional employment, which does not 

seem relative to school trips. Additionally, we tested a few more built environment 

variables: whether the shortest route crosses a major road, area of parks and open space 

within the buffer, the presences of libraries and museums within in the buffer. The major 

roads were identified as A1, A2, or A3 by Census Feature Class Codes (CFCCs). We also 
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included variables at the regional level: population measuring the size of a metropolitan 

area, compactness index measuring the overall built environment of a region, gas price, 

and three weather variables measuring weather condition. 

In the end, we identified 21,892 school trips made by 11,185 K-12 students in the 

14 regions. The dependent and independent variables tested in this study are shown in 

Table 3.2.  Sample sizes and descriptive statistics are also provided.  A total of 26 

independent variables is available to explain student travel choice. All variables are 

consistently defined from region to region. 

 

3.3.5 Model Selection 

McFadden developed the logit (MNL) model to explain choices made among 

alternatives when attributes of the alternatives themselves, and attributes of decision 

makers, both influence outcomes (McFadden, 1981). In the choice of travel modes, the 

attributes of alternative modes such as travel time, and attributes of travelers and their 

households such as income, would be expected to influence choices (see Figure 3.1). 

Thus, the logit model will be chosen as the preferred specification in this study. 

To increase statistical power and external validity, we pooled household travel 

data from 14 diverse regions. The data and model structure are hierarchical, with trips 

“nested” within regions. The best statistical approach to nested data is multilevel 

modeling (MLM), also called hierarchical modeling (HLM). MLM accounts for 

dependence among observations, in this case the dependence of trips within a given 

region on characteristics of the region. All trips within a given region share these 

characteristics. Regions such as Boston and Houston are likely to generate very different 
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Table 3.2 Variable description and descriptive statistics 

Variable Description N Mean S.D. 
Dependent variable 

mode 
categorical variable indicating the travel mode 
(1 = walk, 2 = bike, 3 = transit, 4 = school bus, 
5 = auto) 

21,892 3.72 1.59 

Independent variables – trip 
tdist travel distance (in mile) 21,892 0.99 0.56 
Independent variables – sociodemographic characteristics 
female student’s gender (1 = female, 0 = other) 21,892 0.48 0.50 

license driver’s license owned by a student (1 = yes, 0 = 
other) 21,892 0.08 0.27 

age age of the student 21,892 11.06 8.45 
sibling the number of siblings of the student 21,892 2.22 1.00 
hhsize household size 21,892 4.35 1.19 
worker mumber of worked in the household 21,892 1.65 0.77 

hhincome real household income (in 1000s of 2012 
dollars) 21,892 93.21 53.41 

vehcap number of motorized vehicles per capita in the 
household 21,892 0.52 0.26 

Independent variables – built environment within the quarter mile buffer of the 
shortest route from home to school 

actden activity density within the buffer (population + 
employment in 1000s / area of the buffer) 21,892 6.63 8.98 

jobpop3 job-population balance within the buffer 21,892 0.66 0.24 

respct the percentage of residential land within the 
buffer 21,892 54.82 26.41 

compct the percentage of commercial land within the 
buffer 21,892 6.34 7.58 

pubpct the percentage of institutional land within the 
buffer 21,892 9.86 8.88 

entropy4 land use entropy within the buffer 21,892 0.52 0.23 
                                                 
3 The job-population index measures balance between employment and resident population within a buffer. 
Index ranges from 0, where only jobs or residents are present within a buffer, not both, to 1 where the ratio 
of jobs to residents is optimal from the standpoint of trip generation. Values are intermediate when buffers 
have both jobs and residents, but one predominates. jobpop = 1 – [ABS (employment – 
0.2*population)/(employment + 0.2*population)], ABS is the absolute value of the expression in 
parentheses. The value 0.2, representing a balance of employment and population, was found through trial 
and error to maximize the explanatory power of the variable. 
 
4 The entropy index measures balance between three different land uses.  Index ranges from 0, where all 
land is in a single use, to 1 where land is evenly divided among the three uses.  Values are intermediate 
when buffers have more than one use but one use predominates. The entropy calculation is: entropy = -
[residential share*ln (residential share) + commercial share*ln (commercial share) + public share*ln 
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Table 3.2 continued 

Variable Description N Mean S.D. 
intden intersection density within the buffer 21,892 117.31 65.97 

int4way the percentage of 4-way intersections within the 
buffer 21,892 26.67 18.47 

stopden transit stop density within the buffer 21,892 20.19 34.43 

mjroad 
a dummy variable indicating the shortest route 
crosses a major road (1 = yes, 0 = other), major 
roads were identified as CFCC = A1, A2, or A3 

21,892 0.68 0.47 

park a dummy variable indicating whether there are 
parks within the buffer (1 = yes, 0 = no) 21,892 0.72 0.45 

Independent variables – region 
regpop population within the region 1000s 14 3093.57 1616.05 
gasprice average gasoline prices for 2010 at the region 14 2.89 0.15 

compact 

Measure of regional compactness index 
developed by Ewing and Hamidi (2014); higher 
values of the index correspond to more compact 
development, lower values to more sprawling 
development 

14 97.20 27.73 

temp_low annual average of low temperature 14 36.07 12.40 
temp_hig
h annual average of high temperature 14 77.26 7.27 

annprecip annual precipitation (in inch) 14 36.86 14.61 
                                                                                                                                                 
(public share)]/ ln (3), where ln is the natural logarithm of the value in parentheses and the shares are 
measured in terms of total parcel land areas. 
 

 
Figure 3.1 MNL structure of mode choice 

  

Mode Choice 

Walk Bike Transit Auto School bus 
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travel patterns regardless of household and school characteristics. The essence of MLM is 

to isolate the variance associated with each data level. MLM partitions variance between 

the trip/individual/household level (Level 1) and the region level (Level 2) and then seeks 

to explain the variance at each level in terms of D variables (Figure 3.2). We can expect 

to explain a good portion of the variance at Level 1 given the large number of available 

variables and the large sample of trips. We cannot expect to explain much of the variance 

at Level 2 with such a small sample of regions. Variables such as regional population (as 

a measure of region size) may not prove statistically significant predictors of travel 

choice due to limited degrees of freedom.  Still, there is a statistical advantage to 

partitioning the variance as MLM does, and estimating a random effects model. Regional 

variance is captured in the random effects term of the Level 2 equations. In the model 

estimations, only the intercepts were allowed to randomly vary across Level 2 units. The 

best model that fits the data structure would be multilevel multinomial logistic regression. 

The final equation of the multilevel multinomial logistic regression model is as 

follows: 

Level 1:   𝑃(𝑌𝑘 = 1) = 𝑒𝛽01+𝛽𝑖1𝑋𝑖1 /(1 + � 𝑒𝛽𝑜𝑜+𝛽𝑖𝑜𝑋𝑖𝑜 𝑘−1
𝑘=1 )                 (3.1) 

 

 

Figure 3.2. Data and model structure 

Level 2: Regions 

Level 1: Trips/Individuals/Households 
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                      𝑃(𝑌𝑘 = 2) = 𝑒𝛽02+𝛽𝑖2𝑋𝑖2 /(1 + � 𝑒𝛽𝑜𝑜+𝛽𝑖𝑜𝑋𝑖𝑜 𝑘−1
𝑘=1 )                  (3.2) 

                       … … 

                𝑃(𝑌𝑘 = 𝐾) = 1/(1 + � 𝑒𝛽0𝑜+𝛽𝑖𝑜𝑋𝑖𝑜 𝑘−1
𝑘=1 )                                 (3.3) 

Level 2:   𝛽0𝑘 =  𝛾00𝑘 +   𝛾0𝑗𝑘𝑊0𝑗𝑘 +  𝑢0𝑗𝑘                                             (3.4) 

                𝛽𝑖𝑘 =  𝛾𝑖0𝑘                                                                                  (3.5) 

                     Where: P refers to the probability of the dependent variable equals k, 

           K refers to the k categories of the dependent variable, 

β0k refers to the intercept at the level 1 when the dependent variable 

equals k (k ranges from 1 to K), 

βik refers to the coefficient of i independent variables at the level 1 

when the dependent variable equals k, 

xik refers to the independent variables at the level 1 when the 

dependent variable equals k, 

γ00k refers to the overall intercept when the dependent variable 

equals k, 

γ0jk refers to the coefficient of independent variables at the level 2 

when the dependent variable equals k, 

W0jk refers to the independent variables at the level 2 when the 

dependent variable equals k, 

u0jk refers to the random error component for the deviation of the 

intercept, 

γi0k refers to the overall coefficients of i independent variables when 

the dependent variable equals k. 
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3.4 Travel Pattern Analysis 

Of all the 43,000 school trips, 50.9% of them were made by driving, 12.7% of 

them were made by walking, 1.7% of them were made by biking, and 33.9% of them 

were made by school bus. Of the 21,892 school trips that travel distance is less than 2 

miles, 45.7% of them were made by driving, 22.8% of them were made by walking, and 

2.8% of them were made by biking. No surprise, driving to school still was the first 

choice. This is consistent with 2009 NHTS. 

There is great variation in mode shares from region to region. Across regions for 

all school trips, the walk share varies from a low of 7.4% for Atlanta to a high of 37.7% 

for Boston and the bike share varies from a low of 0.0% for Detroit to a high of 10.8% 

for Eugene (Table 3.3). In two regions, Eugene and Portland, active travel (walking and 

biking) becomes the dominant means of travel to school for less than 2 mile school trips.  

There were 4,981 walk trips and 608 bike trips of the total 21,892 school trips. 

The average trip distance and travel time for walk trips were 0.58 mile and 13.2 minutes. 

The average trip distance and travel time for bike trips were 0.90 miles and 12.7 minutes. 

For walk trip, 48% of trip distances were under 0.5 mile and 76% of trip distances were 

under 1 mile. For bike trip, 53% of trip distances were under 1 mile and 72% of trip 

distances were under 1.5 miles. See more details in Figure 3.3 (1). Figure 3.3 (2) shows 

the distribution of walk and bike trips by age. For walk trips, it generally spreads out in 

age 8 to 16 with around 7 %. Students who are either younger than eight or older than 16 

walk much less. For students who are younger than 8, parents probably have safety 

concerns for them to walk. For students who are older than 16, students probably start to 

get driver’s licenses and drive to school. For bike trips, it is more concentrated at age 9 to 
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Table 3.3 Comparison of mode shares of school trips (travel distance ≤ 2 miles) in 
different regions 

 

Survey 
Date 

Surveyed 
School 
Trips 

Mode share (%) 

Walk Bike Transit School 
bus Auto 

Atlanta 2011  4,293  7.4% 0.7% 0.0% 52.6% 39.3% 
Boston 2011  2,784  37.7% 2.4% 0.1% 17.7% 42.1% 
Denver 2010  1,718  32.7% 3.9% 0.0% 9.1% 54.3% 
Detroit 2005  822  39.9% 0.0% 3.0% 13.9% 43.2% 
Eugene 2011  649  37.1% 10.8% 0.6% 16.0% 35.4% 
Houston 2008  1,982  12.7% 4.1% 0.1% 25.1% 57.9% 
Indianapolis 2009  855  15.1% 0.7% 1.6% 50.6% 31.9% 
Kansas City 2004  1,364  14.1% 0.9% 0.1% 30.4% 54.6% 
Minneapolis-St. 
Paul 2010  1,448  14.2% 2.1% 0.4% 41.3% 41.9% 

Phoenix 2008  745  29.3% 7.1% 1.1% 24.0% 38.5% 
Portland 2011  1,879  32.7% 4.6% 0.2% 26.9% 35.6% 
Sacramento 2000  906  22.7% 5.2% 1.1% 8.0% 63.0% 
San Antonio 2007  732  19.7% 0.8% 0.0% 18.4% 61.1% 
Seattle 2006  1,715  30.6% 3.0% 0.1% 15.2% 51.1% 
Total - 21,892 22.8 2.8 0.4 28.4 45.7 

 

13, where each age group has higher than 10%. This is quite interesting. 

From a planning practice perspective, there are two important findings of 

student’s travel choice from this travel pattern analysis. First, the average travel time for 

both walking and biking is about 13 minutes. This is the average travel time for active 

travel to school, no matter if it is walking or biking. Second, students at age 9 to 13 are 

more likely to bike than students in other ages. 

 

3.5 Modeling Results 

We modeled mode choice for school trips with HLM7, Hierarchical Linear and 

Nonlinear Modeling software (Raudenbush et al., 2010). HLM7 allows the estimation of 

multilevel multinomial logistic models. In the model estimations, only the intercept was 
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(1) 

 
(2) 

Figure 3.3 Distributions of tip distance and age for walk and bike 
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allowed to randomly vary across Level 2 units. All of the coefficients at Level 2 were 

treated as fixed. This is referred to as a random intercept model (Raudenbush & Bryk, 

2002). 

The auto was treated as the reference case. The utilities of other modes were 

modeled relative to the auto. The final model of school trip mode choice is shown in 

Table 3.4 and 3.5. These tables present the same basic information in different forms. In 

Table 3.4, coefficient values indicate the effects of independent variable on mode choice 

probabilities. In Table 3.5, the elasticity for each independent variable is presented. It 

expresses the marginal effects of independent variables on mode choice probabilities, that 

is, percentage changes in probabilities associated with a 1% change in each independent 

variable. Elasticities are commonly used in travel research to summarize relationships 

between travel outcomes and explanatory variables. The values presented are point 

elasticities at the mean values of the independent variables. The pseudo R2 of the model 

is 0.80. 

 

3.5.1 Travel Distance Influences 

As expected, students with shorter walk and bike distance to and from school are 

significantly more likely to walk and bike. The elasticities are -0.58 and -0.13, 

respectively. For walking, distance has the greatest elasticity at level 1 in the mode, 

which means distance is the primary factor that influences student’s choice of walk. The 

probability of walking is more sensitive to travel distance than biking. Perhaps this is 

because the speed of walking is slower than biking. A small increase of distance would 

take a much longer time to walk. 
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Table 3.4 Multilevel multinomial logistic regression of school trips, using auto as 
reference case 

  Walk Bike Transit School bus 
constant -2.472 -6.541 -34.392 -4.114 
Level 1 
tdist -2.269*** -0.513***  0.383  0.696*** 
female -0.354*** -0.776*** -0.206 -0.138*** 
license -0.962*** -0.761*** -0.602 -1.558*** 
age  0.042***  0.016***  0.150*** -0.035*** 
sibling -0.020 -0.205*** -0.207  0.006 
hhsize -0.044  0.103* -0.114  0.046* 
worker -0.090***  0.014  0.204 -0.089*** 
hhincome -0.002***  0.004*** -0.010*** -0.004*** 
vehcap -0.986*** -1.959*** -2.488*** -0.968*** 
actden  0.019***  0.021*** -0.016  0.011* 
jobpop -0.189*  0.085 -0.193  0.124 
res_pct  0.0004  0.003 -0.011  0.001 
com_pct -0.007* -0.039*** -0.029 -0.007* 
pub_pct  0.024***  0.010 -0.034 -0.001 
entropy -0.318* -0.013  1.283 -0.070 
intden  0.0002  0.003**  0.002 -0.003*** 
int4way  0.003**  0.002  0.016** -0.005*** 
stopden  0.006***  0.002  0.006 -0.011*** 
mjroad -0.110** -0.220** -0.395  0.322*** 
park -0.055  0.247** -0.785** -0.062 
Level 2 
compact  0.009** -0.002  0.011 -0.011 
regpop  0.00002 -0.0002 -0.0002 -0.00007 
gasprice  1.492*  1.388  7.383***  1.031 
temp_low  0.007  0.029 -0.091*** -0.043** 
temp_high -0.012  0.008  0.173**  0.046 
annprecip -0.011* -0.016 -0.028  0.015 
Pseudo R2: 0.80 
*** < 0.01  **< 0.05  *<0.1 
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Table 3.5 Elasticity estimates from the multilevel multinomial logistic regression 

  Walk Bike Transit School bus 
tdist -0.58 -0.13   0.18 
female     
license     
age 0.12 0.05 0.42 -0.10 
sibling   -0.12     
hhsize   0.11   0.05 
worker -0.04     -0.04 
hhincome -0.05 0.10 -0.24 -0.10 
vehcap -0.13 -0.26 -0.33 -0.13 
actden 0.03 0.04   0.02 
jobpop -0.03       
res_pct         
com_pct -0.01 -0.06   -0.01 
pub_pct 0.06       
entropy -0.04       
intden   0.09   -0.09 
pct4way 0.02   0.11 -0.03 
stopden 0.03     -0.06 
mjroad     

 park      
compact 0.22       
regpop         
gasprice 1.10   5.46   
temp_low     -0.84 -0.40 
temp_high     3.42   
annprecip -0.10       

 

3.5.2 Sociodemographic Influences 

Female students are less likely to walk or bike to school than take a car, and even 

less likely to take a school bus. With age increases, the probabilities of walking, bike, or 

using public transportation increase. This makes sense because when children get older, 

they are more independent and parents have less concern for their safety when not driving 

them to school. Students with more siblings are less likely to bike.  

Students from households with higher income and more vehicles per capita are 
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less likely to walk, use transit, or a school bus than to take a car. It is obvious why greater 

vehicle availability and higher income would make these alternatives less attractive 

relative to car travel. An interesting finding is that the probability to bike increases with 

household income. This leaves us a question why that is. 

Students holding drivers’ licenses are less likely to walk, bike, or take a school 

bus than those without drivers’ licenses. Based on elasticities, the influence of drivers’ 

licenses on school bus is stronger than on walk and bike. This makes perfect sense. 

Students living too far from school to walk or bike are prime candidates for school bus 

service until they reach driving age, at which time they become prime candidates for 

driving themselves and if their families’ financial situation permits it. 

 

3.5.3 Built Environment Influences 

The most important findings from the built environment influences are major 

road. The probability of walking and biking to school significantly decreases when the 

shortest route to school crosses a major road; the elasticities are -0.02 and -0.04, 

respectively. Most likely, major roads are wide and have more traffic. Walking or biking 

across a major road increases the travel time (both the time to cross the major road and 

the time waiting for the traffic single) and the chance of accidents. This factor has not 

been studied much in the literature.  

The surprising finding is that the probability of walking to school is negatively 

related to job-population balance and land use entropy, which means students are less 

likely to walk to school in more mixed use areas. The probability of biking to school is 

not significantly related to job-population balance or land use entropy. Also, the higher 
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percentage of commercial land uses, the lower probability of walking or biking to school. 

This is opposite to the relation with the general mode choice that land use diversity is the 

strongest built environment for walking and biking, but makes sense. The destination of 

school trips is either school or home. The mixed used areas with commercial uses are 

attractions for general travel and generate internal walking and biking trips, but not for 

school trips. Additionally and more importantly, areas with more mixed land uses have a 

higher concentration of cars, which threatens the safety of students walking or biking on 

the street, even though overall mixed land uses generate lower share of vehicle trips and 

higher share of walking, biking, and transit trips (Tian et al., 2015).  

Of the many built environment variables, the regional compactness index proved 

to have the most significant influence on walking. Students living in compact regions are 

more likely to walk. The probability of walking to school has an elasticity of 0.22 with 

respect to regional compactness. This is the largest elasticity among all built environment 

variables on walking. Interestingly, regional compactness did not have a significant effect 

on biking and transit. 

Of other built environment variables, activity density has positive relations with 

walking and biking. Percentage of public land, percentage of four-way intersection, and 

transit stop density have positive relations with walking. Intersection density has a 

positive relation with biking. These relationships are consistent with mode choice of 

general travel. Streets with higher intersection density or more four-way intersection 

generate more route choices. Transit uses usually involve some walking or biking. 
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3.5.4 Other Influences 

Interesting but not surprising, gas price has strong influence on walking and 

transit usage with elasticities of 1.10 and 5.46, respectively. With the increase of gas 

price, the cost of driving to school increases. Other alternatives, walking or using transit, 

start to be considered as options of travel to school. The interesting part is that the 

elasticity for transit is so big. 

Weather does have influence on student’s choice of active travel to school. 

Students are less likely to walk in regions in which the average annual precipitation is 

high. This means that the chance of students walking to school decreases on days with 

precipitation. This agrees with the effects of weather on general travel. 

 

3.6 Discussion and Conclusion 

This study estimated student travel-to-school mode choice using regional 

household travel data and built environmental variables from 14 diverse regions across 

Unites States. The mode choices were estimated with multilevel multinomial logistical 

regression. The results show that students with shorter walk and bike distance to school 

proved significantly more likely to walk and bike. This finding is consistent with the 

literature showing that distance is a primary factor impacting students walking or biking 

to school. If distances are too long, students may not use active travel modes, even in 

supportive environments. On the other hand, if home is close enough to school, students 

may use active travel modes, even in unsupportive environments (e.g. active travel is the 

dominant choice for less than 2 mile school trips in two regions).  

The results also confirm sociodemographic influences on student mode choices. 
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Female students with driver licenses from households with higher incomes and more 

vehicles per capita are less likely to use active travel modes to school. It makes perfect 

sense that when students holding drivers’ licenses and their families’ financial situation 

permits, active travel modes become less attractive. But the reason for boys being more 

likely to walk and bike than girls is not clear. 

This study also provides evidence on which built environmental factors along the 

shortest route between home and school influence student mode choices. The findings are 

interesting. Not every built environmental factor has the same relationships with student 

travel choice as with general travel. Development density, street design, and transit 

service are still important to increase students’ walking and bike, but not land use 

diversity. These findings agree with safety concerns in the literature and the study that 

found more school travel–related collisions happen on highways and interstates and 

arterial roads and where there are traffic generating land uses (Yu, 2015). Additionally, 

student travel choice differs from region to region. Students in compact regions are more 

likely to use active modes than students in sprawling regions.  

This study points to the importance of factors at different levels – individual and 

household, built environment around schools, and regional – for student mode choice. 

From a planning perspective, this study suggests that promoting more compact and 

pedestrian-bicyclist friendly developments can be expected to have beneficial effects on 

student active travel. From a policy perspective, this study suggests that policies aimed at 

increasing the cost of driving (i.e., taxes on vehicle ownership and gas price) may also be 

effective in shifting students away from driving to school. 

Weather has been reported as an important factor on individual’s travel behavior 
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and travel choice in general (Böcker et al., 2013). This study tests whether this is the case 

for school travel too. The results show that weather does have significant impacts on 

school travel, especially walk. Weather conditions, precipitation and temperature, have 

strong impact on both walk and transit use. Precipitation discourages students to actively 

travel to school. The impact of weather on biking has not been found in this study. There 

are two possible reasons. First, due to data availability, the weather conditions measured 

in this study are an annual average, instead of the actual weather on the travel day. They 

could be very different. Second, the samples in this study are limited to trips with travel 

distance less than 2 miles. Shorter trips might be less impacted by weather. We cannot 

control or change weather. Still from a planning perspective, by knowing the influence of 

weather on student’s travel choice, it benefits planners to address the influence of weather 

when designing safe routes to school projects. Also with controlling for weather 

condition in the model process, it helps to uncover the true relationship between built 

environment and student’s travel choice.  

Though this study covered sociodemographic status, built environmental 

variables, and regional characteristics, there are other factors omitted that can be 

measured objectively and have presumptive effects on student travel choice. Firstly, 

SRTS programs have been reported to have immediate effects of making more students 

walk or bike to and from school. This study has not identified the existing SRTS 

programs in all the study areas and failed to control for influence of SRTS programs on 

walking and biking. 

Another variable that has been omitted in this study is school enrollment. The 

utility of walking and biking was expected to decline with enrollment, as schools would 
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be drawing from larger areas. Whether this variable would be significant after controlling 

for travel distance to and from school is anyone’s guess. School enrollment was 

important in one study (Kouri, 1999) and did not prove significant in another study 

(Botchwey et al., 2014). It is necessary to test with a larger sample. 
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CHAPTER 4 

 

SENIOR TRAVEL BEHAVIOR: EVIDENCE FROM 23 

DIVERSE REGIONS OF THE UNITED STATES 

 

As most of developed countries, the senior age group has become the fastest 

growing group of the population in the United States. When people are getting old, they 

want to “age in place”. A good place for aging should have good accessibility for the 

elderly and promote more physical activities. To face the aging society, I ask the 

following questions: do seniors travel differently with younger adults and does built 

environment matter to keep seniors active? In this chapter, I aim to answer these 

questions by using analysis of variance (ANOVA) and multilevel modeling based on a 

dataset from 23 diverse regions of the United States. Most importantly, this dataset 

contains the widely used built environment variables, socioeconomic characteristics, and 

weather conditions.  

I find that much a higher percentage, about 60%, of their trips are home based. 

The top activities for travel are grocery shopping, personal business including medical 

visits, and other social/recreational/religious events. The model results show that 

diversity, design, and destination accessibility by transit are the most important 

neighborhood built environments to encourage seniors to walk. The analysis of variance 

(ANOVA) tests show that compared with those living in sprawling neighborhoods, 
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seniors living in compact neighborhoods generally travel more in total, and hence can be 

deemed more active and mobile, which is a good thing as people age. They also travel 

more by walking and public transportation, which is also a good thing for their health. 

They travel less by automobile as well, which is a good thing for traffic safety as driving 

ability declines at advanced ages.  

 

4.1 Introduction 

People want to “age in place” or live in their homes or communities as long as 

possible when they are old (Yen & Anderson, 2012). A good place for aging should have 

good accessibility for the elderly and promote more physical activities. It is widely 

accepted that physical activity is important to maintain health and has positive effects in 

the prevention and treatment of many chronic diseases and age-related disabilities 

(Chudyk et al., 2014). Designing age-friendly neighborhoods with destinations nearby 

encourages older adults to get out and be physically active (Winters et al., 2014). 

Walking and biking are relatively easy ways for older adults to be physically active 

(Kemperman & Timmermans, 2009). 

Globally, the population aged 65 or older is estimated to increase from 524 

million in 2010 (8% of total), to 1.5 billion (16% of total) in 2050; the 85-and-over 

population will increase five times over the same period (World Health Organization, 

2011). Particularly in postindustrial Western countries, the aging of the Baby Boom 

generation (born 1946–1964) promises a greater older population increase for decades to 

come. In the United States, the population aged 65 or older will double from 40.2 million 

in 2010 (13% of total) to 88.5 million (20.2% of total) in 2050; the 85-and-over 
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population will increase from 5.8 million in 2010 (1.9% of total) to 19 million in 2050 

(4.3% of total) (Vincent & Velkof, 2010). 

The Baby Boom generation is aging and continues to out travel each previous 

generation; there is no evidence to assume that as they reach retirement age that trend 

will end. Also, seniors today are remaining active and working well into their older age 

and the age group has continued to increasingly contribute to total travel. These increases 

will be echoed by the Baby Boom generation and must be considered by traffic 

forecasters, researchers, and policy makers in the future. 

To face the aging society, we ask the following questions: do we know enough 

about seniors’ travel behavior and are we planning to meet seniors’ travel needs? The 

research questions for this study are the following: Where do seniors go? How do they 

get to their destinations? What factors influence their travel choices? What can planners 

do to improve active living? 

This study aims to answer these questions based on a dataset of seniors’ travel 

dailies from 23 diverse regions of the United States. This dataset is the largest sample of 

household travel records ever assembled outside of the National Household Travel 

Survey. The overall sample consists of 81,914 trips made by 12,453 senior households. 

Number of trips, types of activities, trip duration, and mode choice were evaluated to 

analyze senior’s travel patterns. More importantly, the dataset contains the widely used 

built environment variables for travel research, density, diversity, design, distance to 

transit, and destination accessibility, consistently in all the regions. Multilevel modeling 

(MLM), also called hierarchical modeling (HLM), was used to test the impact of built 

environment on senior’s mode choices. 
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4.2 Literature Review 

4.2.1 Senior’s Travel Behavior 

Research on older adult travel behavior has studied trends and patterns in terms of 

trip numbers, trip distances, trip purpose, and mode choice. Older adults have different 

socioeconomic characteristics and different travel behaviors, compared to young adults. 

According to the 2009 national household travel survey, older adults have smaller 

household size (without children, 93% are a couple or single) and fewer vehicles, 

compared with all households. Most of them are unemployed (Samus, 2013), and their 

travel behaviors are strongly influenced by possession of driver’s licenses, and living 

with or without a partner (Hensher, 2007).  

Evidence shows that total trips and mean distances decline when age advances 

(Boschmann & Brady, 2013; Mercado and Paez, 2009; Moniruzzaman et al., 2013; 

Newbold et al., 2005; Scott et al., 2009), including transit and active trips (Moniruzzaman 

et al., 2013; Samus, 2013). Currie and Delbosc’s (2010) study shows that older adults 

demonstrated 30% lower trip making overall compared to young adults in Australia. 

Older adults travel for different reasons than those in the labor force. Destinations 

most relevant to older adults are grocery stores, malls, restaurants, and medical offices 

(Chudyk et al., 2014; Newbold et al., 2005; Samus, 2013; Winters et al., 2014). 

The car is still found to be the most convenient and major transport option for 

older people (Cao et al., 2010; Davis et al., 2011; Newbold et al., 2005; Scott et al., 2009; 

Zeitler, 2013), though some studies have found the mode of travel shifts away from the 

car as people age (Boschmann & Brady, 2013; Cao et al., 2010; Golob & Hensher, 2007). 

Many older people shift from car driver to car passenger and then to public transportation 
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because of loss of driver licenses (Golob & Hensher, 2007). Still, transit trips accounted 

for only a small proportion of the overall travel among older people (Broome et al., 2009; 

Vine et al., 2012). Driver friendliness, convenient bus stop locations, ease of entry/exit, 

and information usability are prioritized barriers and facilitators of transit use for older 

people (Broome et al., 2010). Additionally, destinations that facilitate more social 

interaction generate more walking among seniors (Nathan et al., 2012; Winters et al., 

2014). 

 

4.2.2 Senior Travel and Built Environment 

The relationship between built environment and travel behavior is well studied in 

the literature. Built environments are often characterized in terms of D variables. The Ds 

all have an effect on travel behavior (Ewing & Cervero 2010). The first three Ds—

development density, land use diversity, and urban design—were coined by Cervero and 

Kockelman (1997). Two additional Ds—destination accessibility and distance to 

transit—were included in later research (Ewing & Cervero 2001; Ewing & Cervero 

2010). These D variables have been widely used to explain trip distances, trip 

frequencies, mode choices, and overall vehicle miles traveled.  

Studies on senior travel behavior have found that the relationships applying to the 

general population also apply to older adults in general (Chudyk et al., 2014; Frank et al., 

2010; Li et al., 2005; Moniruzzaman et al., 2013; Winters et al., 2014). However, there 

are certain built environment variables that are particularly associated with active travel 

and physical activity in older adults. Land use mix is one of the mostly reported variables 

in the literature for older adults. There is a positive relationship between the sum of 
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destinations within walking distance of home and the number of walk trips by seniors 

(Cao et al., 2010; Frank et al., 2010; Hanson et al., 2012; King et al., 2003; Mercado & 

Paez, 2009; Michael et al., 2006; Nagel et al., 2008). Older adults who live in diverse use 

neighborhoods have higher activity levels, instead of staying at home or traveling outside 

their neighborhoods (Rosso et al., 2013). Street design quality, like the presence and 

condition of sidewalks, presence of benches, safe street crossings, etc., is another key 

issue for older adults reported in the literature (Hanson et al., 2012). Additionally, quality 

of the transit services is a big concern for older people taking public transit (Boschmann 

& Brady, 2013; Broome et al., 2010; Mercado et al., 2010). Access to open space can 

increase older people’s physical activity levels (Kemperman & Timmermans, 2009; King 

et al., 2003). 

 

4.2.3 Impact of Weather on Travel Behavior 

With climate change becoming a global issue, weather has been getting more and 

more attention by travel behavior study (Böcker et al., 2016). Studies have reported the 

influence of weather conditions on individual’s mode choices, especially walk and bike 

(Böcker et al., 2013; Koetse & Rietveld, 2009). Precipitation and temperature are the 

most widely used measures of weather conditions. In general, studies report there is 

negative influence of precipitation and warmer/colder temperature on walk and bike 

(Böcker et al., 2013; Nankervis, 1999; Saneinejad et al., 2012). 

The impact of weather conditions on transit ridership has also been studied in the 

literature. By using an hourly ridership model, a study in New York City found the 

adverse impact of weather conditions on transit ridership and ridership on weekends was 
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more severe (Singhal et al., 2014).  To identify perceived barriers of using buses, a study 

found participants reported a need for bus shelters to provide adequate seating, shade, and 

protection from weather conditions (Broome et al., 2010). Another study in Brisbane, 

Australia found a nil association of precipitation and temperature and transit usage by 

using (Kashfi et al., 2015). However, after conducting a literature review of 54 studies, 

Böcker et al. (2013) concluded that “the existing studies present an incomplete and 

fragmented picture of the impact of weather on travel behavior, which makes effective 

planning for climate change a harsh job” (p. 71).  

In sum, in 2004, a review conducted by Cunningham and Michael (2004) found 

studies on the impact of the built environment on physical activity for older adults were 

limited and the findings were inconsistent. Ten years later, Garin et al. (2014) showed 

evidence from 48 papers that some built environment variables impact on older people 

health, but there is need for further investigation to clarify this relationship. Additionally, 

studies of senior travel behavior have acknowledged the potential influence of weather 

condition on senior’s travel choice in the literature. However, to our knowledge, there is 

no study having controlled for weather conditions when studying the relationship of built 

environment and senior travel behavior. 

 

4.3 Methodology 

This study employs a cross-sectional research design to understand seniors’ travel 

behavior and determine the relative influence of household characteristics, built 

environment, regional factors, and weather conditions on seniors’ travel choice. 
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4.3.1 Data Collection 

The most widely used data source to study travel behavior is the household travel 

survey. Household travel survey data are the fundamental input for regional travel 

demand modeling and forecast. Many regional metropolitan planning organizations 

(MPOs) conduct their own travel survey for their uses. In the last 5 years, we have been 

contacting regional MPOs and collecting household travel survey data. A main criterion 

for inclusion of regions in this study was data availability. Regions had to offer regional 

household travel surveys with XY coordinates, so we could geocode the precise locations 

of trip ends. It is not easy to assemble databases that meet this criterion, as confidentiality 

concerns often prevent metropolitan planning organizations from sharing XY travel data. 

The resulting pooled dataset consists of 81,056 households in 23 regions, from which 

senior trips could be extracted and mode choices analyzed.  

The unit of analysis for the study is the senior households, which are households 

that only have seniors. Originally, we identified about 20,000 households with seniors, 

but we chose to focus on the households with only seniors for three reasons. First and 

most important, accessibility and mobility become a more important or serious issue 

when seniors live with themselves, especially when they lose their drivers’ licenses. For 

seniors living with other adults, they could get help from others and their travel behaviors 

might be affected by others. Second, from a planning perspective, this way would be 

more helpful for polices about senior housing and planning. Third, we still have enough 

samples when we just focus on senior households, even though the sample size goes 

down to 12,453 households. We also do not include individual trips for which the travel 

distance is more than 100 miles. 



97 

 

The regions included in our household travel survey sample were, in addition, 

able to supply GIS data layers for streets and transit stops, population and employment 

for traffic analysis zones, and travel times between zones by different modes for the same 

or close enough to the years that the household travel surveys were conducted. 

All the GIS layers that were used to compute built environment around household 

locations are: 

• parcel level land use data with detailed land use classifications; from these we 

can compute detailed measures of land use mix; 

• street networks and intersections; from these we can build the buffer widths 

and compute intersection density; 

• transit stops; from these data we can compute transit stop densities, 

• population and employment at the block or block group level; from these we 

can compute activity density; 

• TAZs with socioeconomic information (population and employment); 

• travel times for auto and transit travel from TAZ to TAZ (so-called travel time 

skims); from these and TAZ employment data we can compute regional 

employment accessibility measures for auto and transit; 

• Relevant destinations including library, museum, and park; 

• Street Smart Walkscore at census tract level. 

Point, line, and polygon data from the different sources were joined with buffers 

to obtain raw data, such as the number of intersections within buffers. These were then 

used to compute refined built environmental measures such as intersection density, which 

is simply the number of intersections divided by land area within the buffer. 
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What extent of the built environment is most relevant to seniors’ travel decisions? 

Theoretically, buffers (distances from household locations) could be wide or narrow. 

Even a determinant as straightforward as walking distance could be anywhere from ¼ 

mile to 1 mile or more. In this study, buffers were established around household geocode 

locations with three different buffer widths, ¼ mile, ½ mile, and 1 mile. Built 

environmental variables were computed for each household and all three buffer widths. 

At present, we have consistent datasets for 23 regions (Table 4.1). The regions are 

as diverse as Boston and Portland at one end of the urban form continuum and Houston 

and Atlanta at the other. To our knowledge, this is the largest sample of household travel 

records ever assembled for such a study outside the NHTS.  And relative to NHTS, our 

database provides much larger samples for individual regions and permits the calculation 

of a wide array of built environmental variables based on the precise location of 

households. NHTS provides geocodes only at the census tract level. 

 

4.3.2 Variables 

The final dataset contained 81,914 trips made by 12,453 senior households in 23 

regions. To maintain a full complement of independent variables for subsequent analysis, 

trips were dropped for lack of travel mode and households were dropped for missing any 

of the following variables: household size, vehicle ownership, etc. The greatest loss of 

cases was due to unknown household income. As is often the case in travel surveys, 

household income went unreported by a large number of respondents. We could exclude 

household income to maintain a larger sample size, but household income was too 

important from a theoretical perspective to be omitted from the mode choice analysis. 
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Table 4.1 Regions (metropolitan areas) in the dataset 

Regions Year of 
data 

Regions Year of 
data 

Regions Year of 
data 

Atlanta, GA 2011 Indianapolis, IN 2009 Sacramento, CA 2000 
Austin, TX 2005 Kansas City, KS 2004 Salem, OR 2010 
Boston, MA 2011 Miami, FL 2009 Salt Lake City, UT 2012 
Denver, CO 2010 Minneapolis-St. 

Paul, MN-WI 
2010 San Antonio, TX 2007 

Detroit, MI 2005 Phoenix, AZ 2008 Seattle, WA 2006 
Eugene, OR 2009 Portland, OR 2011 West Palm Beach, 

FL 
2009 

Greensboro, 
NC 

2009 Provo-Orem, UT 2012 Winston-Salem, 
NC 

2009 

Houston, TX 2008 Rochester, NY 2011   
 

The unit of analysis is the senior households, so the dependent variables are 

numbers of trips made by senior households using different travel modes. Five variables 

were created based on travel modes (Table 4.2). Bike trips were not included due to the 

small sample size. There were only 106 households with bike trips even in this large 

dataset.  

Independent variables include socioeconomic characteristics and built 

environment variables that have been reported as important factors on travel choice by 

different studies in the literature. These variables cover all of the Ds, from density to 

demographics.  

Three particular variables are included: parks, libraries, and museums. These are 

destinations that may play important roles in seniors’ travel behavior, given the fact that 

seniors have much higher percentage trips for social/religious/recreational purposes. 

Dummy variables are created based on the presences of parks, libraries, and museums 

within certain buffer widths. Additionally, Walkscore is tested to see its explanatory 

power of seniors’ travel behavior. 



100 

 

Table 4.2 Dependent and independent variables 

Variable Description N Mean S.D. 
Dependent variables –household 

anywalk any household walk trips (1 = yes, 0 = no) 12,453 0.16 0.37 

walktrips number of household walk trips (for 
households with any walk trips) 1,981 3.18 2.42 

anytransit any household transit trips (1 = yes, 0 = no) 12,453 0.04 0.21 

transittrips number of household transit trips (for 
households with any transit trips) 556 2.84 1.60 

trips total number of trips made by household 12,453 6.58 4.16 
Independent variables – sociodemographic characteristics 
hhsize household size 12,453 1.44 0.52 
workers number of workers in the household 12,453 0.37 0.59 

hhincome real household income (in 1000s of 2012 
dollars) 12,453 52.05 38.33 

vehcap number of motorized vehicles per capita in 
the household 12,453 1.00 0.52 

Independent variables – built environment within buffers 

actdenqmi 
activity density within ¼ mile buffer 
(population + employment per square mile in 
1000s) 

12,453 6.70 10.63 

jobpopqmi5 job-population balance within the ¼ mile 
buffer 12,453 0.57 0.27 

entropyqmi6 land use entropy within the ¼ mile buffer 12,453 0.22 0.27 
intdenqmi intersection density within the ¼ mile buffer 12,453 202.28 262.90 

int4wayrmi the percentage of 4-way intersections the ¼ 
mile buffer 12,453 29.60 30.08 

stopdenqmi transit stop density within the ¼ mile buffer 12,453 27.80 52.01 
libraryqmi library within ¼ mile buffer (1 = yes, 0 = no) 12,453 .03 .18 
museumqmi museum within ¼ mile buffer (1 = yes, 0 = no) 12,453 .07 .26 

                                                 
5 The job-population index measures balance between employment and resident population within a buffer. 
Index ranges from 0, where only jobs or residents are present within a buffer, not both, to 1 where the ratio 
of jobs to residents is optimal from the standpoint of trip generation. Values are intermediate when buffers 
have both jobs and residents, but one predominates.  jobpop = 1 – [ABS (employment – 
0.2*population)/(employment + 0.2*population)], ABS is the absolute value of the expression in 
parentheses. The value 0.2, representing a balance of employment and population, was found through trial 
and error to maximize the explanatory power of the variable. 
 
6 The entropy index measures balance between three different land uses.  Index ranges from 0, where all 
land is in a single use, to 1 where land is evenly divided among the three uses.  Values are intermediate 
when buffers have more than one use but one use predominates. The entropy calculation is:  
entropy = -[residential share*ln (residential share) + commercial share*ln (commercial share) + public 
share*ln (public share)]/ ln (3), where ln is the natural logarithm of the value in parentheses and the shares 
are measured in terms of total parcel land areas. 
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Table 4.2 continued 

Variable Description N Mean S.D. 
parkqmi park within ¼ mile buffer (1 = yes, 0 = no) 12,453 .04 .20 
actdenhmi activity density within the ½ mile buffer 

(population + employment per square mile in 
1000s) 

12,453 6.67 10.52 

jobpophmi  job-population balance within the ½ mile 
buffer 12,453 0.60 0.27 

entropyhmi  land use entropy within the ½ mile buffer 12,453 0.35 0.28 
intdenhmi intersection density within the ½ mile buffer 12,453 145.76 81.64 
int4wayhmi the percentage of 4-way intersections the ½ 

mile buffer 12,453 28.61 22.68 

stopdenhmi transit stop density within the ½ mile buffer 12,453 24.63 37.35 
libraryhmi library within ½ mile buffer (1 = yes, 0 = no) 12,453 .12 .33 
museumhm
i 

museum within ½ mile buffer (1 = yes, 0 = 
no) 12,453 .19 .39 

parkhmi park within ½ mile buffer (1 = yes, 0 = no) 12,453 .08 .27 
actden1mi activity density within the 1 mile buffer 

(population + employment per square mile in 
1000s) 

12,453 6.89 9.54 

jobpop1mi  job-population balance within the 1 mile 
buffer 12,453 0.62 0.25 

entropy1mi  land use entropy within the 1 mile buffer 12,453 0.47 0.26 
intden1mi intersection density within the 1 mile buffer 12,453 115.79 60.85 
int4way1mi the percentage of 4-way intersections the 1 

mile buffer 12,453 27.63 18.84 

stopden1mi transit stop density within the 1 mile buffer 12,453 21.54 26.99 
railhmi rail station within ½ mile buffer (1 = yes, 0 = 

no) 12,453 0.07 0.81 

emp10a percentage of regional employment within 10 
min by car 12,453 7.88 10.74 

emp20a percentage of regional employment within 20 
min by car 12,453 30.43 25.61 

emp30a percentage of regional employment within 30 
min by car 12,453 51.12 32.15 

emp30t percentage of regional employment within 30 
min by transit 12,453 20.64 22.98 

library1mi library within 1 mile buffer (1 = yes, 0 = no) 12,453 .35 .48 
museum1m
i museum within 1 mile buffer (1 = yes, 0 = no) 12,453 .44 .50 

park1mi park within 1 mile buffer (1 = yes, 0 = no) 12,453 .15 .36 

walkscore the walkscore of the census tract where the 
household is within 12,453 39.45 24.54 
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Table 4.2 continued 

Variable Description N Mean S.D. 
Independent variables – region 
reginpop population within the region 1000s 23 2317.77 1678.13 
gasprice average gasoline prices for 2010 at the region 23 2.90 0.13 

compact 

measure of regional compactness index 
developed by Ewing and Hamidi (2014); 
higher values of the index correspond to more 
compact development, lower values to more 
sprawling development 

23 97.64 26.90 

temp_low annual average of low temperature 23 42.25 14.01 
temp_high annual average of high temperature 23 75.04 8.40 
dayt32 number of days the low temperature <= 32 °F 23 32.43 39.17 
dayt90 number of days the low temperature >= 90 °F 23 53.65 48.30 
annprecip annual precipitation in inch 23 38.19 16.35 
dayp50 number of days the precipitation >= 0.50 inch 23 24.83 11.41 
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This study also includes nine variables at the regional level: population measuring 

the size of a metropolitan area, compactness index measuring the overall built 

environment of a region, gas price, and six weather variables measuring weather 

condition. The weather variables were collected from Climate Data Online of National 

Centers for Environmental Information in the same years with the household travel 

survey data for each region. With different measures, a total of 46 independent variables 

are available to explain senior travel choice in this study. All variables are consistently 

defined from region to region.  

 

4.3.3 Model Selection 

With the household travel survey from 23 regions, our data structure is 

hierarchical, with senior households nested within regions. The best statistical method to 

deal with nested data is hierarchical modeling (HLM), also called multilevel modeling 

(MLM). HLM accounts for dependence among observations, in this case the dependence 

of households within a given region on characteristics of the region. All households 

within a given region share these characteristics. This dependence violates the 

independence assumption of ordinary least squares (OLS) regression. Standard errors of 

regression coefficients based on OLS will consequently be underestimated. Moreover, 

OLS coefficient estimates will be inefficient. HLM overcomes these limitations, 

accounting for the dependence among observations and producing more accurate 

coefficient and standard error estimates (Raudenbush & Bryk, 2002). 

Regions such as Boston and Houston are likely to generate very different travel 

patterns regardless of household and around built environment characteristics. The 
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essence of HLM is to isolate the variance associated with each data level. HLM partitions 

variance between the household level (Level 1) and the region level (Level 2) and then 

seeks to explain the variance at each level in terms of D variables.  

The dependent variables (household walk trips, transit trips, and total trips) are 

count variables, with nonnegative integer values, many small values, and few large ones. 

This kind of distribution is ordinarily modeled with Poisson or negative binomial 

regression. However, if there is a much larger number of observed zeros than assumed by 

a Poisson or negative binomial distribution, the distribution is said to be “zero-inflated” 

and an alternative analytical approach is required. One solution to the zero-inflated 

distribution is two-stage hurdle models (Hu et al., 2011; Greene, 2012).  “In some 

settings, the zero outcome of the data-generating process is qualitatively different from 

the positive ones.  The zero or nonzero values of the outcome is the result of a separate 

decision whether or not to ‘participate’ in the activity. On deciding to participate, the 

individual decides separately how much to, that is, how intensively [to participate]” 

(Greene, 2012, p. 824). 

In a two-stage hurdle model, stage 1 categorizes households as having at least one 

walk or transit trip or not, and uses logistic regression to distinguish these two states. The 

stage 2 model estimates the number of walk or transit trips generated by households with 

any (positive) walk or transit trips. Either Poisson regression or negative binomial 

regression can be used at stage 2. The difference between these two methods is their 

assumptions about the distribution of the dependent variable. 

Negative binomial regression is more appropriate than Poisson regression if the 

dependent variable is over-dispersed, meaning that the variance of the count is greater 
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than the mean.  Popular indicators of overdispersion are the Pearson and χ2 statistics 

divided by the degrees of freedom, so-called dispersion statistics.  If these statistics are 

greater than 1.0, a model is said to be over-dispersed (Hilbe, 2011).  By these measures, 

in this study, the number of walk trips and the number of total trips is over-dispersed, and 

thus the negative binomial model is more appropriate than the Poisson model. The 

number of transit trips is not over-dispersed, and thus the Poisson model is more 

appropriate than the negative binomial model. The equations of the models are as follow:  

First stage of hurdle models (multilevel logistic regression): 

Level 1:   𝑃(𝑦 = 1 | 𝑥1, … 𝑥𝑛) = 1/(1 + 𝑒−(𝛽0+� 𝛽𝑖𝑥𝑖
𝑛
𝑖=1  )                         (4.1) 

Level 2:   𝛽0 =  𝛾00 +     � 𝛾0𝑗𝑊𝑗

𝑚

𝑗=1
 +  𝑢0𝑗                                              (4.2) 

                𝛽𝑖 =  𝛾𝑖0                                                                                        (4.3) 

                     Where: P refers to the probability of the dependent variable equals 1, 

β0 refers to the intercept of the dependent variable at the level 1, 

βi refers to the coefficient of independent variables at the level 1, 

xi refers to the independent variables at the level 1, 

γ00 refers to the overall intercept, 

γ0j refers to the coefficient of independent variables at the level 2, 

Wj refers to the independent variables at the level 2, 

u0j refers to the random error component for the deviation of the 

intercept, 

γi0 refers to the overall coefficients. 

Second stage of hurdle models (multilevel Poisson regression): 
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Level 1:   𝐸(𝑦 = 1 | 𝑥1, … 𝑥𝑛) = 𝑒𝛽0+� 𝛽𝑖𝑥𝑖
𝑛
𝑖=1                                            (4.4) 

Level 2:   𝛽0 =  𝛾00 +     � 𝛾0𝑗𝑊𝑗

𝑚

𝑗=1
 +  𝑢0𝑗                                             (4.5) 

                𝛽𝑖 =  𝛾𝑖0                                                                                        (4.6) 

                     Where: E refers to the estimated value of the dependent variable, 

β0 refers to the intercept of the dependent variable at the level 1, 

βi refers to the coefficient of independent variables at the level 1, 

xi refers to the independent variables at the level 1, 

γ00 refers to the overall intercept, 

γ0j refers to the coefficient of independent variables at the level 2, 

Wj refers to the independent variables at the level 2, 

u0j refers to the random error component for the deviation of the 

intercept, 

γi0 refers to the overall coefficients. 

 

4.4 Travel Pattern Analysis 

To better understand the travel pattern of the elderly, it is necessary to compare 

elderly with other adult cohorts, such as Generation X (born 1965 to 1976) and Baby 

Boomers (born 1946 to 1964). Since most of my data are around 2010, I got three cohorts 

for comparison: Generation X – age 34-45, Baby Boomers – age 46-64, and elderly – age 

65 or older. 
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4.4.1 Descriptive Analysis 

The comparison of travel patterns among different cohorts, Generation X, Baby 

Boomers, and elderly, are shown in Table 4.3. With age increases, the average number of 

trips and vehicle miles traveled per person decreases within these three cohorts. Among 

these three cohorts, baby boomers have the longest average travel time and distance per 

trip. Elderly have the shortest longest average travel time and distance per trip. 

In terms of travel mode shares, the auto mode share is dominant for all three 

cohorts. The auto mode share of the elderly is about 90%. The walk mode shares 

decrease with the age increases through the three cohorts. Although the decrease is slight, 

from Generation X (8.49%) to Baby Boomers (8.47%), the decrease is quiet significant 

from Baby Boomers (8.47%) to elderly (7.06%). The bike mode share is pretty similar to 

walk mode share. However, for transit mode share, baby boomers have the highest 

among the three cohorts. In sum, compared to younger cohorts, elderly travel less by  

 

Table 4.3 Comparison of senior travel patterns among different cohorts 

  Gen X Baby Boomers  Elderly 

Person 

Sample size 29,241 61,005 28,060 
Average number of 
trips per person 5.03 4.70 4.45 

VMT per person 29.56 28.41 23.59 

Trip 

Sample size 146,985 287,028 124,909 
Time per trip (minute) 18.18 19.38 17.98 
Distance per trip (mile) 6.80 7.08 5.84 

Mode 
shares (%) 

Walk 8.49 8.47 7.06 
Bike 1.29 1.04 0.43 
Transit 2.83 3.08 1.74 
Auto 86.58 86.48 89.71 

Trip 
purposes 

(%) 

HBW 18.61 19.55 6.21 
HBO 44.52 42.77 59.30 
NHB 36.46 37.30 34.28 
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walking, biking, and using transit.  

For the trip purpose, no surprise, elderly have much less home-based work 

(HBW) trips since many of them are retired and do not work anymore. At the same time, 

seniors have more home-based other (HBO) trips and less non-home-based (NHB) trips. 

This means that more travels are related with home for seniors. From the planning 

perspective, the accessibility of home locations is more important for seniors than for 

other adults. 

In the household travel survey data, the categories of trip destinations are different 

from region to region. In order to conduct a descriptive analysis, we unified and 

summarized the destinations into a few major categories. Table 4.4 shows the comparison 

of destinations for the two senior cohorts and comparison adult cohort.  

First, not surprisingly, seniors have a slightly higher percentage of non-work-

related activities at home and much lower percentage of work or work-related activities. 

This confirms the findings from trip purposes pattern in Table 4.3. Second, seniors have a  

 

Table 4.4 Percentage of top destinations for seniors 

  Younger 
adults  

Seniors 
(65 – 74) 

Seniors 
(75+) 

home activities, non-work-related  31% 32% 34% 
work or work related 19% 7% 4% 
all shopping 12% 17% 18% 

*  groceries shopping 6% 9% 12% 
* other shopping (clothing, hardware, etc.) 9% 9% 9% 

eat meal out at restaurant 5% 6% 6% 
personal business (laundry, dry cleaning, 
barber, bank, health care, etc.) 8% 12% 14% 

* health care 2% 3% 5% 
social/religious/recreational 8% 12% 13% 

* based on regions that have these categories separately. 
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higher percentage of shopping trips, and these differences are mainly from groceries 

shopping. Especially for age 75+ senior group, the percentage of their groceries shopping 

is twice that of the comparison adult group. Third, senior groups have a higher percentage 

of personal business (laundry, dry cleaning, barber, bank, health care, etc.) and 

social/religious/recreational activities. The percentages of these activities are even higher 

for the age 65-74 senior group than age 75+ senior group. In sum, compared with young 

adults, seniors have less work-related activities and they have more activities related to 

groceries shopping, personal business, and social/religious/recreational. 

 

4.4.2 Analysis of Variance 

To answer the question whether seniors living in compact neighborhoods are 

more active than those living in sprawl neighborhoods, analysis of variance (ANOVA) 

was employed. The dependent variables were the travel outcomes of each senior, 

including number of total trips, number of walk trips, number of transit trips, and number 

of auto trips. Number of bike trips was not included due to small sample size. 

Whether the place was compact or sprawling was defined based on the D 

variables measured within a ½ mile buffer of the senior’s home (in Table 4.2). First, a 

principal component analysis (PCA) was applied to measure neighborhood compactness. 

Density was represented by actdenhmi, diversity by entropyhmi, design by intdenhmi and 

int4wayhmi, destination accessibility by emp30a and emp30t, and distance to transit by 

stopdenhmi. They were combined into a single principal component, which was a linear 

function of these D variables. The jobpophmi was dropped due to the wrong sign and low 

factor loading. The extracted principal component has an eigenvalue of 2.65, meaning 
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that this one component explains the combined variance as 2.65 of the original variables. 

Factor loadings (correlations between the principal component and component variables) 

range from 0.519 for diversity to 0.775 for distance to transit, as shown in Table 4.5. 

Second, using factor score coefficients for the first principal component, the built 

environment was categorized into two groups – compact if the factor score is above the 

average and sprawling is the factor score is below the average. This categorical built 

environment variable became the independent variable for the ANONA test, along with 

household income. 

When studying the effect of built environment on travel, sociodemographic 

characteristics should always be controlled. Household income was used here as the 

representative of socioeconomic status. Income was also categorized into two groups – 

high income group for those above the median and low income group for those below the 

median. With these two independent factors, a two-way ANOVA test was conducted for 

each of the travel outcomes. The results are presented in Table 4.6. 

The estimated marginal mean value, instead of descriptive mean or actual mean, 

is reported because the estimated marginal mean is the mean response for each factor,  

 

Table 4.5. Factor loadings on built environment measure  

D variables Measures First Component 
Density actdenhmi 0.720 
Diversity entropyhmi 0.519 
Design intdenhmi 0.546 

int4wayhmi 0.552 
Destination 
accessibility 

emp30a 0.553 
emp30t 0.596 

Distance to transit stopdenhmi 0.775 
Eigenvalue 2.65 
Explained variance 37.88% 
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Table 4.6 Results of two-way ANOVA for the effects of income and built environment 
on seniors’ travel behavior 

 

Income (high vs. low) Built environment (compact 
vs. sprawl) 

Estimated 
marginal 

means 
F P-value 

Estimated 
marginal 

means 
F P-value 

number of total 
trips 

0.387 137.270 < 0.001 0.128 15.044 < 0.001 

number of walk 
trips 

-0.022 2.438 0.118 0.267 357.981 < 0.001 

number of transit 
trips 

-0.043 42.086 < 0.001 0.118 314.134 < 0.001 

number of auto 
trips 

0.470 213.519 < 0.001 -0.281 76.143 < 0.001 

 

adjusted for any other variables in the test. The estimated marginal means for income and 

built environment are adjusted for the covariation between them. This, of course, is the 

reason for including income in the test – particularly, we want to see if the built 

environment factor still has an effect, beyond the effect of income. 

The results show the significance of the variation between compact and sprawl 

neighborhoods, even when household income has been controlled for. The F values show 

the ratio of variation between neighborhoods (or income groups) to the variation within 

neighborhoods (or income groups) – higher ratios suggest a stronger effect, as indicated 

by the low p-value. For the number of total trips, both income and built environment have 

significant effects, though the income effect is greater than built environment effect based 

on F values. The average number of total trips for seniors living in compact 

neighborhoods is statistically higher than those for seniors living in sprawling 

neighborhoods. 

For both numbers of walk and transit trips, the built environment effects are 



112 

 

greater than income. Built environment has the strongest effect on number of walk trips. 

Seniors living in compact neighborhoods generate significantly higher numbers of walk 

and transit trips. Seniors within higher incomes generate significantly lower number of 

transit trips. 

Income has the strongest effect on number of auto trips. Seniors within higher 

income generate much greater numbers of auto trips. After accounting for the strong 

effect of income, built environment still has a significant effect on auto trips. Seniors 

living in compact neighborhoods generate statistically lower numbers of auto trips. 

In sum, these findings support the literature that built environment have a 

significant effect on senior’s travel behavior after controlling for sociodemographic 

characteristics. More important, these findings tell us that seniors living in compact 

neighborhoods are more active than those living in sprawl neighborhoods. They generally 

travel more and travel more by walking and public transportation, yet travel less by 

automobile. 

 

4.5 Modeling Results 

Walking, transit trips, and total trips were estimated with HLM 7, Hierarchical 

Linear and Nonlinear Modeling software (Raudenbush et al., 2010). HLM 7 allows the 

estimation of multilevel models for continuous, dichotomous, and count variables, and 

for the last of these, HLM 7 can account for overdispersion. Different Ds may emerge as 

significant in different models, so trial and error was used to arrive at the best-fit models 

for the travel outcomes of interest. For the same D variables measured in three different 

buffer widths, only one of them was included in the model at the same time. Variables 
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were substituted into models to see if they were statistically significant and improved 

goodness-of-fit. For each dependent variable, we were looking for the model with the 

most significant t-statistics and the greatest log-likelihood.  

 

4.5.1 Walking Trips of Senior Households 

The best-fit model for the dichotomous variable, any walk, is presented in Table 

4.7. The likelihood of a senior household making any walk trips increases with household 

size, number of workers, and household income and decreases with vehicle per capita.  

The likelihood of any walk trips increases with land use entropy within ¼ mile of  

 

Table 4.7 Multilevel logistic regression model of log odds of any walk trips  

  Outcome variable is anywalk 
  coefficient standard error t-ratio p-value 
Constant -8.715 2.524 -3.453 0.004 
hhsize 0.114 0.069 1.658 0.097 
workers 0.176 0.058 3.026 0.003 
vehcap -0.935 0.127 -7.370 < 0.001 
income 0.003 0.001 2.379 0.017 
emp30t 0.007 0.003 2.232 0.026 
entropyqmi 0.362 0.143 2.530 0.012 
museumqmi 0.342 0.113 3.019 0.003 
actden1mi 0.016 0.004 3.804 < 0.001 
intden1mi 0.002 0.001 2.239 0.025 
int4w1mi 0.005 0.003 1.837 0.066 
park1mi 0.215 0.066 3.243 0.002 
temp_low 0.071 0.015 4.698 < 0.001 
temp_high 0.079 0.033 2.380 0.030 
dayt32 0.007 0.003 2.179 0.004 
dayt90 -0.027 0.008 -3.406 0.004 
annpreci -0.078 0.027 -2.926 0.010 
dayp50 0.075 0.032 2.310 0.035 
Pseudo-R2: 0.37 
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home and activity density, intersection density, and percentage of four-way intersections 

within a mile of home. These measures of density, diversity, and design place 

destinations within walking distance of home. The likelihood of any walk trips also 

increases with museum within ½ mile of home, park within a mile of home, and regional 

accessibility to employment within 30 minutes by transit. Museums and parks are more 

relevant destinations for seniors; this is consistent with the finding in the travel pattern 

analysis that seniors have a higher percentage of trips for social/religious/recreational 

purpose.  Transit service is complementary to walking, as senior households with good 

access to transit tend to own fewer automobiles, having transit available for their travel.  

At the regional level, the likelihood of any walk trips increases with regional 

annual average low temperature, average high temperature, and number of days with 

temperature lower than 32 °F and decreases with number of days with temperature 

greater than 90 °F. This means, generally, either extreme low or high temperate 

discourage seniors to walk. I do not have a good explanation for the positive sign of 

number of days within temperature lower than 32 °F. The likelihood of any walk trips 

also decreases with annual precipitation and increases with number of days with 

precipitation higher than 0.5 inch. This makes sense. After controlling for annual 

precipitation, more days with precipitation higher than 0.5 inches mean fewer days with 

any precipitation in a given year. Hence, the two variables together mean precipitation 

also discourages seniors to walk. 

The number of walk trips for the subset of senior households that make walk trips 

increases with household size, number of workers, and household income and decreases 

with vehicle per capita (Table 4.8). The number of walk trips increases with these D  
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Table 4.8 Multilevel binomial negative binomial model of household walk trips (for 
households with any walk trips) 

  Outcome variable is walktrips 
  coefficient standard error t-ratio p-value 
Constant 0.541 0.131 4.140 0.001 
hhsize 0.151 0.057 2.645 0.009 
workers 0.046 0.028 1.619 0.105 
vehcap -0.224 0.064 -3.487 0.001 
income 0.001 0.0006 1.743 0.081 
emp30t 0.002 0.001 2.726 0.084 
entropyqmi 0.196 0.080 2.463 0.014 
intden1mi 0.0007 0.0003 2.166 0.030 
stopden1mi 0.002 0.0008 2.450 0.015 
compact 0.002 0.0006 3.006 0.008 
annpreci -0.009 0.005 -1.911 0.071 
dayp50 0.013 0.007 1.847 0.080 
Pseudo-R2: 0.15 

 

variables: land use entropy within ¼ mile, intersection density and transit stop density 

within a mile of home, and accessibility to employment within 30 minutes by transit. It 

also increases with regional compactness and number of days with precipitation higher 

than 0.5 inches and decreases with annual precipitation at regional level. The more 

compact a region is, the more destinations are within a walkable distance. The 

relationship of walking to D variables has already been discussed, as has the relationship 

of walking to weather condition. Probably the most interesting finding is that walk trip 

frequency depends on the built environment at a larger scale than the usual ¼ mile walk 

distance assumed by planners.  This is consistent with the finding by a previous study in 

the literature (Ewing et al., 2015). 
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4.5.2 Transit Trips of Senior Households 

The likelihood of a senior household having any transit trips increases with 

household size and number of employed members and decreases with vehicle per capita 

(Table 4.9). It also depends on diversity and design of the environment around a senior 

household, which are measured by land use entropy within ¼ mile and intersection 

density and percentage of four-way intersection within a mile of home. Two transit 

service variables affect the likelihood of transit trips: transit stop density within a mile of 

home and percentage of regional jobs that can be reached within 30 minutes by transit. At 

a regional level, the likelihood of transit trips is also affected by regional compactness, 

population size, and gasoline price. Large and compact metropolitan areas have better 

transit service. The increasing gasoline price increases the cost of driving, which 

encourages mode shifts and the use of transit. 

The number of senior household transit trips for the subset of senior households  

 

Table 4.9 Multilevel logistic regression model of log odds of any transit trips  

  Outcome variable is anytransit 
  coefficient standard error t-ratio p-value 
Constant -9.910 3.323 -2.982 0.008 
hhsize -0.435 0.111 -3.929 <0.001 
workers 0.827 0.087 9.480 <0.001 
vehcap -2.896 0.205 -14.126 <0.001 
emp30t 0.019 0.005 3.698 <0.001 
entropyqmi 0.356 0.173 2.053 0.040 
intdenqmi 0.00018 0.00008 2.171 0.030 
Int4whmi 0.0046 0.0028 1.642 0.100 
stopden1mi 0.005 0.0015 3.372 0.001 
compact 0.012 0.007 1.799 0.088 
regionpop 0.00023 0.0001 2.394 0.027 
gasprice 2.109 1.198 1.761 0.094 
Pseudo-R2: 0.58 
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that use transit increases with household size and decreases with vehicle per capita (Table 

4.10). Transit trip frequency increases with land use entropy within ¼ mile and job-

population balance within a mile of home, two measures of land use mix. It has long been 

speculated that, in general, mixed-use areas would generate more transit trips because of 

the feasibility of trip chaining on the access trip to transit, that is, stopping along the way 

to conduct other personal business. It seems the case for seniors too. Transit trip 

frequency also increases with regional population size and decreases with days with 

temperature greater than 90 °F. 

 

4.5.3 Trip Frequency of Senior Households 

The number of senior household total trips increases with household size, number 

of employed members, vehicle per capita, and real household income (Table 4.11). Total 

trip frequency increases with the availability of museum within ½ mile of home, presence 

of a rail station within ½ mile of home, and regional compactness. Seniors living in 

metropolitan areas that are compact and have better transit service generate more trips. 

 

Table 4.10 Multilevel Poisson regression model of transit trips (for households with any 
transit trips) 

  Outcome variable is transittrips 
  coefficient standard error t-ratio p-value 
Constant 0.495 0.170 2.908 0.010 
hhsize 0.170 0.066 2.576 0.011 
vehcap -0.131 0.030 -4.335 <0.001 
entropyqmi 0.334 0.075 4.431 <0.001 
jobpop1mi 0.258 0.067 3.833 <0.001 
regionpop 0.00005 0.00003 1.736 0.100 
dayt90 -0.002 0.0009 -2.214 0.041 
Pseudo-R2: 0.51 
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Table 4.11 Multilevel negative binomial regression model of senior household total trips   

  Outcome variable is total number of trips 
  coefficient standard error t-ratio p-value 
Constant 0.848 0.080 10.593 < 0.001 
hhsize 0.616 0.028 22.267 < 0.001 
workers 0.039 0.014 2.841 0.005 
vehcap 0.038 0.021 1.834 0.066 
income 0.001 0.0002 3.750 < 0.001 
museumhmi 0.058 0.016 3.597 0.001 
railhmi 0.027 0.002 14.099 < 0.001 
compact 0.0008 0.0004 2.081  0.051 
dayt90 -0.0007 0.0003 -2.313 0.032 
dayp50 -0.002 0.001 -2.534 0.021 
Pseudo-R2: 0.37 

 

This means they are more active. The number to total trips also decreases with days 

within temperature greater than 90 °F and precipitation higher than 0.5 inch. High 

temperature and precipitation discourage seniors to travel in general. 

 

4.6 Discussion and Conclusion 

Summarizing across the travel pattern analyses and preceding models, we find the 

following results about senior’s travel behavior and choice. 

Baby Boomers have the highest average trip distance and travel time per trip 

among Generation X and elderly. Elderly have the lowest values. Travel frequency 

decreases with age increases. The senior group has the smallest number of trips per 

person. The mode share analysis confirmed the literature that the auto is the dominant 

travel mode for seniors. Seniors’ mode shares of walk, bike, and transit are lower than 

Generation X and Baby Boomers. Especially, the use of bike mode for seniors is limited. 

Even with this large dataset, we still did not have a large enough sample to model bike 
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trips. 

No surprise, seniors have much less work-related trips and other trips go up. The 

destination analysis shows where these trips go and how they are distributed for different 

destinations. Shopping, personal business (laundry, dry cleaning, barber, bank, health 

care, etc.), and social/religious/recreational are the top activities for seniors. This tells 

planners that the accessibility of senior home locations to services, especially grocery 

stores and social and health care facilities, is more important for seniors than for other 

adults. 

The sociodemographic characteristics show that seniors living in bigger 

households or households with more workers generate more walking trips, transit trips, 

and travel more frequently, which basically means that seniors living with others and/or 

still working are more active.  

Consistent with the literature, all the D variables influence senior household travel 

decisions. However, not every D variable has the same strength. Land use entropy within 

¼ mile of home is the strongest built environment variable. It is statistically significant in 

four of our five models and each has the greatest coefficient in the specific model. 

Intersection density and percentage of four-way intersection are important to walk, but 

within a larger scale – 1 mile buffer of home. Transit is also important as shown in the 

models by transit stop density and destination accessibility by transit. Overall, the model 

results show that the D variables – diversity, design, and destination accessibility by 

transit – are the most important neighborhood built environment to keep seniors active. 

Density, which is only significant in one model, is less important.  

There are two specific destinations that have strong explanatory power of senior’s 
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travel behavior: museum and park. Seniors living in places with the presence of museum 

and park are more likely to walk. Seniors living in places with presence of museum 

generate more trips. This is consistent with the travel pattern analysis that seniors have 

much higher percentage of trips related to social/religious/recreational purpose. Museums 

and parks represent the destinations that meet seniors’ travel need of these purposes. 

Also, perhaps places with more museums are more cosmopolitan. 

Walkscore is also tested in this study and it is not significant in any of the models. 

This tells us that Walkscore has no explanatory power of senior travel behavior. This is 

not surprising. Walkscore measures neighborhood walkability mainly based on 

destinations and street designs, which are already captured by other variables in the 

models. 

The regional compact index is also significant in three models. Senior households 

in compact regions generate more walk trips, are more likely to use transit, and have 

higher travel frequency. Together, the two-way ANOVA tests and MLM results show 

that seniors living in compact neighborhoods are more active than those living in sprawl 

neighborhoods. They generally travel more and travel more by walking and public 

transportation, yet travel less by automobile. 

Weather has been reported as an important factor on individual’s travel behavior 

and travel choice in general (Böcker et al., 2013). This study tests whether this is the case 

for seniors too. The results show that weather does have significant impacts on senior’s 

travel. Weather conditions, precipitation and temperature, have strong impact on both 

walk and overall trip frequency, and less impact on transit usage. Extreme temperature 

and precipitation discourage seniors to leave their homes and travel, especially by 
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walking. We cannot control or change weather. Still from a planning perspective, by 

knowing the influence of weather on senior’s travel behavior and choice, it benefits 

planners to address the influence of weather when designing housing or other facilities 

for seniors. Also with controlling for weather condition in the model process, it helps to 

uncover the true relationship between built environment and senior’s travel behavior.  
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CHAPTER 5 

 

CONCLUSIONS AND IMPLICATIONS 

 

5.1 Key Findings 

Generalizing across the three studies in this dissertation, the most significant 

findings are the following. First of all, built environment matters to people’s travel 

behaviors, and the effect of different D variables on walk and bike for different cohorts is  

different. Second, the accessibility of destinations is just as important as residential 

accessibility for encouraging people to walk. Third, land use diversity is important for 

walking and biking generally, but not for active travel to school. Major road and 

commercial developments have strong negative impacts on active travel to school. 

Fourth, seniors living in compact neighborhoods are more active than those living in 

sprawling neighborhoods. They generally travel more and travel more by walking and 

public transportation, yet travel less by automobile. 

The other findings emerge with great relevance to travel behavior and travel 

modeling. 

 

5.1.1 Travel Patterns 

There is great variation in mode shares from region to region. The following are 

the key findings of travel patterns across regions: 
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• Overall, 9.0% of all trips are by walking and 1.2% of all trips are by biking, 

while 83.9 of all trips are by car. Even for trips of less than 1 mile from origin 

to destination, only 35.7% of trips are by walking and 2.1% of trips are by 

biking.  

• The walk mode share ranges from 3.5% in San Antonio up to 22.1% in 

Boston. The regions with top three walk mode share are Boston, Portland, and 

Eugene.  

• The bike mode share ranges from 0.2% in San Antonio to 4.2% in Eugene. 

• Across regions for all school trips, the walk share varies from a low of 4% for 

Atlanta to a high of 26.3% for Boston and the bike share varies from a low of 

0.0% for Detroit to a high of 8.4% for Eugene. 

• For bike trips in school travel, it is more concentrated at age 9 to 13, where 

each age group has higher than 10%. 

• Comparing to age young adults, seniors travel a little bit less by walking, but 

much less by biking and using transit. The auto mode share is dominant for 

seniors. The walk mode share is about 7%. 

Travel distance and time for walking and biking: 

• In the 23 regions, the average walk and bike distances are 0.63 miles and 2.43 

miles, respectively.  

• The average walk and bike time are 11.50 minutes and 20.52 minutes, 

respectively. 

• The average distance of active travel to school are 0.58 miles and 0.9 miles, 

for walk and bike, respectively. 
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• The average time of active travel to school is about 14 minutes, for both 

walking and bike. 

About seniors: 

• When they are getting older, seniors are getting less and less active. 

• With age increasing, more and more trips are home related. 

• Shopping, personal business (laundry, dry cleaning, barber, bank, health care, 

etc.), and social/religious/recreational are the top activities for seniors. 

 

5.1.2 The Effect of D Variables on Travel Choices 

In all the models in this dissertation, sociodemographic characteristics have strong 

influences in any travel choices, which is consistent with the literature (Ewing & 

Cervero, 2010). Overall built environment influences people’s travel decisions, though 

the effects of different D variables vary according to different travel outcomes. 

• Land use diversity, street connectivity, and transit accessibility seem more 

important than other D variables to walk trip generation. 

• Street connectivity and transit accessibility seem more important than other D 

variables for bike trip generation. 

• Not every built environmental variable has the same relationships with student 

travel choice as with general travel.  

• Street design and transit service are still important to increase students’ 

walking and bike, but not land use diversity. 

• Diversity, design, and destination accessibility by transit are the most 

important neighborhood built environment to keep seniors active. 
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• Compactness index is a good measurement to represent regional 

characteristics. 

• Seniors in compact regions generate more walk trips, are more likely to use 

transit, and have higher travel frequency. 

The relevant built environment is anywhere from ¼ to 1 mile. However, for 

certain built environment variables, the smaller scale seems to have more predictive 

power than the larger scale. For other variables, the scale effects are reversed. 

Specifically, diversity – represented by job-population balance and land use entropy – has 

more predictive power at ¼ mile and ½ mile. Design and distance to transit – represented 

by intersection density, percentage of four-way intersection, and transit stop density – 

have mostly predictive power at a mile. 

 

5.1.3 Weather and Other Built Environment 

Weather has been reported as an important factor on individual’s travel behavior 

and travel choice in general (Böcker et al., 2013), but has not been widely tested by 

studies for some particular groups in the literature. For all the studies in this dissertation, 

weather conditions were controlled for when examining the effects of built environment 

on walk and bike. The results show that weather conditions do have influences on walk 

and bike trip generation and students and seniors’ travel. Both extreme temperature and 

precipitation discourage walk and bike trip generation, but precipitation has stronger 

influence than temperature does. Also with controlling for weather condition in the model 

process, it helps to uncover the true relationship between built environment and travel 

behavior. 
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This dissertation has also tested the explanatory power of Walkscore on travel 

choices. The results show that Walkscore is a good predictor for general walk modeling, 

but has no explanatory power of students and seniors’ travel behavior. This is not 

surprising. Walkscore measures neighborhood walkability mainly based on destinations 

(restaurants, shops, etc.) and street designs, which are captured by other variables in the 

models at some degree. Perhaps more important is that many destinations included in 

Walkscore metric are not relevant to students or seniors.  

One of the most important findings for student travel to school is that major roads 

and commercial developments have strong negative impacts on active travel to school. 

The probability of walking and biking to school significantly decreases when the shortest 

route to school crosses a major road or commercial development. These factors have not 

been reported in the literature. Most likely, major roads are wide and have heavy traffic. 

Walking or biking across a major road increases the travel time (both the time to cross the 

major road and the time waiting for traffic single) and the chance of accidents. 

Commercial developments are attractions for traffic. This finding agrees with safety 

concerns in the literature. A study found that more school travel-related collisions happen 

on highways and interstates and arterial roads and where there are traffic generating land 

uses (Yu, 2015). 

There are two specific destinations that have strong explanatory power of senior’s 

travel behavior: museum and park. Seniors living in places with the presence of a 

museum and park are more likely to walk. Seniors living in places with presence of a 

museum generate more trips. This is consistent with tine travel pattern analysis that 

seniors have much higher percentage of trips related to social/religious/recreational 
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purpose. Museums and parks may represent the destinations that meet seniors’ travel 

need for these purposes. 

 

5.2 Limitations 

I acknowledge that there are several limitations on this dissertation. These include 

the following: 

• Sample of regions; 

• Cross-sectional study; 

• Street network assumptions; 

• Missing variables; 

• Self-selection; 

• Individual trip purposes; 

The sample for the study, while large in terms of trips, covers only 23 regions of 

the U.S. Thus, for certain outcome variables, I will be unable to predict variations in 

individual travel behavior across regions. As the sample of regions expands, so will the 

external validity of the study and the ability to predict variations. Also, based on the 

cross-sectional research design of this dissertation, it is not appropriate to draw causality 

conclusions based on the results showing here. Instead, this dissertation shows the 

association or correlation between travel choices and built environment and other factors 

that have been tested. 

Less importantly, I will use the street network as a proxy for paths of all modes, 

including walk and bike. This approach assumes that individuals travel only on streets 

and that all streets have sidewalks, although paths through open lots, parking lots, or 
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parks would be attractive alternatives for walking or biking. A more appropriate approach 

would use the sidewalk network for walking and bike route network for biking, but it is 

not possible to construct a complete database. Another limitation related to the street 

network is that, in the absence of other information, we must assume that travelers follow 

the most direct path between origin and destination. This is clearly not the case for many 

trips. 

Though this study will cover the D variables and regional characteristics, the 

study still omits other factors that can be measured objectively and have presumptive 

effects on people’s travel choice. Parking supplies and prices, particularly at the 

destination end of trips, may strongly affect mode choices of individuals. 

Finally, for lack of data on mode attitudes and residential preferences, the study 

fails to control for residential self-selection. More than anything else, the possibility of 

self-selection bias has engendered doubt about the magnitude of travel benefits associated 

with compact urban development patterns. According to a National Research Council 

report, “If researchers do not properly account for the choice of neighborhood, their 

empirical results will be biased in the sense that features of the built environment may 

appear to influence activity more than they in fact do. (Indeed, this single potential source 

of statistical bias casts doubt on the majority of studies on the topic to date.)” (TRB 

Special Report 282, 2005, pp. 134-135) 

At least 38 studies using nine different research approaches have attempted to 

control for residential self-selection (Cao, Mokhtarian, & Handy, 2009; Mokhtarian & 

Cao, 2008). Nearly all of them found “resounding” evidence of statistically significant 

associations between the built environment and travel behavior, independent of self-
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selection influences (Cao et al. 2009, p. 389). However, nearly all of them also found that 

residential self-selection attenuates the effects of the built environment on travel. 

Although I have data from 23 regions, the sample sizes still do not seem ample 

when studying walk, bike, and specific age groups. In the first study in Chapter 2, there 

are only a few variables that are statistically significant in the bike trips model, where the 

model may be underspecified. Other variables may prove significant if the sample of 

households with bike trips expands with the addition of other regions. In the three studies 

of senior travel behavior in Chapter 4, there are not even enough samples to model bike 

trips. For a transit trip that has been modeled, there are just about 500 cases. With the 

limitation of sample size, this dissertation does not model mode choice for different trip 

purposes, such as home-based work, home-based shopping, non-home-based trips, etc. 

 

5.3 Implications in Policy 

First of all, built environment matters to individual’s travel choice. In all three 

studies in this research, people living in neighborhoods with richer D variables use more 

active transportation. Neighborhoods with rich D variables are commonly called compact 

development. The benefits of compact development go beyond increased walking and 

biking to reduced residential energy consumption, reduced pedestrian and motor vehicle 

fatalities, increased physical activity and reduced obesity, reduced household 

transportation costs, decreased crime, increased traffic safety, and increased upward 

social and economic mobility (Ewing et al., 2016b), increased social interaction and 

neighborliness, and increased social capital (Ewing & Hamidi, 2015; Ewing et al., 2016). 

Policies should be made to promote compact development. 
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This research finds that travel patterns vary from region to region. The first 

recommendation is that regional MPOs or state departments of transportation should be 

careful of making long-range land use and transportation policy based on assumptions of 

national trends or common knowledge. For instance, the common sense of walk distance 

is about ½ mile, which is also close to the overall average walk distance of this research. 

However, the average walk distance is different from region to region studied in this 

research. When planning pedestrian- and cyclist-related facilities, planners should be 

careful not to assume the ½ mile walk distance in their own regions. If possible, regions 

should conduct travel data in their own regions to make forecast, planning, and policy. Or 

studies with more external validity, such as this research, could be a reliable alternative 

source. 

Active travel to school should be considered as early as in the school siting 

process. Places with supportive physical environment (including short distance to school, 

good walkability, etc.) are good options. Increasing the number of students walking and 

biking to school should be a goal of existing schools in their programs. Programs can 

focus on moving away the barriers preventing students from walking and biking. For 

instance, they should increase the safety of students across major roads with heavy 

traffic. 

People want to “age in place” or live in their homes or communities as long as 

possible when they are old. A good place for aging should have good accessibility for 

elderly and keep them active. Policy should be made to make that happen. Good 

accessibility for seniors means two aspects. First, good accessibility for seniors should be 

accessibility by more active and public transportation. Currently, driving is the dominant 
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mode to move around for seniors, which is the least healthy transportation mode. The 

public transportation mode share is extremely low. More important, when they lose the 

ability of driving at some point, seniors will rely more on active and public 

transportation. It suggests that transportation policies should be prepared for that and 

public transportation should focus more on older people’s travel needs to design the 

system. Second, good accessibility for seniors should be accessibility to what they need. 

This research shows that seniors’ travel needs are different. Their travel destinations are 

more related to service and social purposes. Also with age increases, more travels are 

related with the home. The accessibility of home locations to service and social 

destinations is more important for seniors than for other adults. Housing and land use 

policies should lean to the direction to make these possible, such as mixed-use 

development.  

The whole world is facing the threat of climate change. Active transportation, as 

serious transportation modes, is a core strategy for policy to promote healthier and more 

sustainable transportation. Due to the nature of weather exposure of walking and biking, 

the understanding of weather on individual travel behavior is critical. This research 

provides evidence of the influences of weather on walking and bike, especially for 

students and seniors. We cannot control or change the weather like the built environment. 

Still from a planning perspective, by knowing the influence of weather on travel choice, it 

will benefit planners and engineers to address and limit the negative influences of 

weather on travel when designing walking and biking facilities, safe routes to school 

projects, and senior housing. 
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5.4 Implications in Practice 

The models developed in this study give us log odds and expected values of 

variables. Model outputs must be transformed to compute effects. The transformations 

involve several steps. 

For example, for walk trips, the logistic equation in Table 2.6 allows us to 

compute the odds of any walk trips by exponentiating the log odds, and then to compute 

the probability of any walk trips with the formula for the probability in terms of the odds. 

odds of any walk trips = exp (log odds any walk trips)                                     (5.1) 

probability of any walk trips = 

odds of any walk trips / (1 + odds of any walk trips)                       (5.2) 

From the negative binomial equation in Table 2.7, we next compute the expected 

number of walk trips for households with any walk trips, again, by exponentiating: 

number of walk trips (for households with walk trips) = 

exp ( log of expected number of walk trips)                                     (5.3) 

The expected number of walk trips for all households is just the product of the 

two: 

Number of walk trip (for all households) =  

probability of any walk trips 

×  number of walk trips (for households with walk trips)                  (5.4) 

The models have many potential applications in practice. Most obviously, they 

can be used to postprocess outputs of conventional four-step travel demand models. Four-

step models are patently inadequate when it comes to accounting for density, diversity, 

and design effects on household travel. They treat all development as if located at the 
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centroids of traffic analysis zones, and local street networks as if completely represented 

by two or three centroid connectors to the external street network. Thus, they cannot 

distinguish between dense, mixed, interconnected development, and sprawling single-use 

development with the same housing and employment totals. They fail to account for the 

effects of accessibility on trip generation rates. They use crude approximations to predict 

intrazonal travel. They typically ignore the effects of density, diversity, and design on 

mode choice.       

The literature covers postprocessing applications well (Cervero, 2006; DKS 

Associates, 2007; Johnston, 2004; Walters et al., 2000). These new models can be used in 

exactly the same way as earlier elasticity estimates from the literature, which have found 

their way into regional transportation planning. 

Sketch planning applications are limited only by the creativity of planning 

analysts. A potential sketch planning application could be to assess health impacts. Rates 

of physical activity, including walking, are inputs to health assessment models. Again, 

once planners make assumptions about changes in the D variables under future scenarios, 

increases in walking can easily be computed using these equations. Until now, there has 

been no empirically grounded methodology for making such projections. 

These equations could also be applied to traffic impact analysis. There has been 

no way to adjust the ITE’s trip generation rates for walking and biking, which has left 

developers of dense developments at urban sites paying impact fees and other exactions 

at the same rate as their suburban counterparts. The only adjustment previously allowed 

was for internal capture of trips within mixed-use developments, which did nothing for 

the typical infill project. Equations in this study could be used to adjust ITE trip rates for 
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suburban developments to reflect how greater densities and other environmental 

attributes would affect trip making. There is also specific data collection and research that 

is going on to address the connection between urban environment, neighborhood 

characteristics, multimodal accessibility, and nonmotorized trip generation in several 

major metropolitan areas (e.g., D.C. Department of Transportation; California 

Department of Transportation). It may be the time to start to adjust the ITE’s trip 

generation rates. 

It is my hope that models introduced in this dissertation will find wide application 

in the planning practice. 
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