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ABSTRACT 

 

Wildfire is a multifaceted, global phenomenon with ecological, environmental, 

climatic and socioeconomic impacts. Live fuel moisture content (LFMC) is a critical fuel 

property for determining fire danger. Previous research has used meteorological data and 

remote sensing to estimate LFMC with the goal of extending direct ground measurement. 

A fundemental understanding of plant physiology and spectral response to LFMC 

variation is needed to advance use of LFMC for fire risk  management and remote 

sensing applications. This study integrates field samples of three species, lab 

measurements, remote sensing data and statistical analysis to construct a more complete 

knowledge of the physical foundations of LFMC seasonality from three perspectives: 1) 

relationships between soil moisture and LFMC; 2) spectroscopic analysis of seasonal 

changes in LFMC and leaf dry mass; 3) relationships between LFMC and leaf net heat 

content, and between leaf net heat content and remotely sensed indices. This study is the 

first to demonstrate a relationship between in situ soil moisture and LFMC. It also 

challenges the current asumption of changing water content and stable dry matter content 

over time in remote sensing esimation of LFMC, showing the dominant contribution of 

dry matter in LFMC variation in some conifer species. The results demonstrate the 

combination of spectroscopic data and partial least squares regression can improve 

modeling accuray for LFMC temporal variation, but the spectral response to changing 

LFMC and dry mass is difficult to seperate from broader spectral trends due to temporal



 

iv 

change in chlorophyll, leaf structure, water and covaried biochemical components. Lastly 

it introduces a new vegetation variable, leaf net heat content, and demostrates its 

relationship with LFMC and potential for remote sensing estimation. This study will 

improve present capabilities of remote sensing for monitoring vegetation water stress and 

physiological properties. It will also advance understanding of seasonal changes in 

LFMC to better estimate fire danger and potential impacts of fire on ecosystems and the 

carbon cycle.  
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CHAPTER 1 

 

INTRODUCTION 

 

Wildfire is a significant disturbance in the terrestrial biosphere. It results in 

significant CO2 emission which contributes to climate change, carbon sink-source 

conversion and ecosystem function transition (Bowman et al. 2009; Cochrane 2003; Van 

Der Werf et al. 2006). It is a devastating hazard which causes considerable fatalities and 

economic loss and escalates the cost of fire suppression and damage mitigation (FAO 

2001). The severity and impact of fires in the United States have increased over the past 

two decades, with higher large-wildfire frequency and longer fire seasons in western US 

forests (Westerling et al. 2006). These are correlated with higher spring and summer 

temperatures and earlier snowmelt (Running 2006). Increased temperature in the future 

will likely extend fire seasons throughout the western US, with more fires occurring 

earlier and later than is currently typical, and will increase the total area burned in some 

regions (McKenzie et al. 2004). If climatic change increases the amplitude and duration 

of extreme fire weather, we can expect significant changes in the distribution and 

abundance of dominant plant species in some ecosystems. This would thus affect habitat 

for sensitive plant and animal species. Thus it is important to develop scientific methods 

to estimate wildfire danger for fire management and risk mitigation. 

Live fuel moisture content (LFMC) is defined as the ratio of water content to dry 
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matter content in live vegetation. LFMC is an important fuel property controlling both 

fire ignition probability and fire spread rates (Rothermel 1972). The direct measurement 

of LFMC is done by collecting fresh field samples, drying them until all moisture is 

evaporated, and calculating the water content using the mass difference between fresh 

and dry samples (Lawson and Hawkes 1989; Pollet and Brown 2007). Field sampled

LFMC represents conditions for a vegetation type at a single site and time, and it is 

difficult to extrapolate field measurements to larger regions and longer time periods. 

Seasonal LFMC change is fundamentally controlled by soil water availability and 

plant physiological processes. Previous studies have used meteorological data, such as 

precipitation and temperature, as water-stress indicators to estimate LFMC (e.g., 

Dennison et al. 2003; Dennison and Moritz 2009). The second chapter seeks to examine 

the empirical relationship between soil moisture and LFMC by field sampling two 

species in Northern Utah, Gambel oak (Quercus gambelii Nutt) and big sagebrush 

(Artemisia tridentata Nutt). This is the first analysis comparing in situ soil moisture 

measurements and field-collected LFMC.  

Both water and dry matter change during the plant phenological cycle, resulting in 

seasonal LFMC variation. Vegetation reflectance spectra change in response to variation 

in plant physiological status, such as the foliar concentration of water, dry matter, 

pigment, and leaf structure. Remote sensing data offer a potentially cost-effective way to 

improve LFMC temporal and spatial monitoring. Previous studies have used various 

empirical methods and physical-based radiative transfer modeling methods to estimate 

LFMC. Common assumptions in early works were stable dry matter and varied water 

content over time. However, physiological studies have shown that dry matter changes 
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over the growth season and dominates LFMC change in comparison to water content 

(e.g., Kozlowski and Clausen 1965; Jolly et al. 2014). In the third chapter I conduct a 

temporal monitoring of plant LFMC and spectroscopic data of two species, lodgepole 

pine (Pinus contorta Douglas ex Loudon) and big sagebrush (Artemisia tridentata Nutt). 

This study provides a more complete understanding of: 1) how water and dry matter 

contribute to LFMC variation over time; 2) how spectroscopic data respond to water and 

dry matter change over time.  

As a ratio of water to dry matter, LFMC has been used as an indirect indicator of 

fire danger. Heat content (energy produced by combustion of dry matter) is an additional 

variable related to fire danger. Semi-empirical fire behavior models (e.g., Rothermel 

1972) assume constant dry matter over time and across species. The findings in the third 

chapter challenged this assumption. Decreasing water or increasing dry matter may result 

in similar LFMC "dry-down" trends, but the potential fire danger and energy release 

would be significantly different. The fourth chapter introduces a new variable, leaf net 

heat content (LNHC), to capture both water and dry matter contribution to net energy 

produced by combustion, serving as a complementary metric to LFMC. This chapter also 

tests the possibility of using remote sensing to estimate LNHC as leaf and canopy scale.  

In total, this dissertation investigated the physical foundation of LFMC from three 

perspectives. It intended to explain the nature of LFMC variation and to inform new 

insights for the remote sensing applications of LFMC. 



 

 

CHAPTER 2 

 

SOIL MOISTURE AND LIVE MOISTURE CONTENT 

 

2.1 Introduction 

Live fuel moisture content (LFMC) is an important fuel property for assessing fire 

danger.  LFMC is defined as the proportion of water content to dry matter content in live 

vegetation. LFMC has been incorporated in fire danger rating systems, such as the 

National Fire Danger Rating System (NFDRS) in the US (Deeming et al. 1978) and the 

Canadian Forest Fire Danger Rating System (CFFDRS) (Stocks et al. 1989). LFMC can 

also be used by fire behavior models to determine energy needed for ignition and fire 

spread rate (Rothermel 1972). The direct measurement of LFMC is done by collecting 

fresh field samples, drying them until all moisture is evaporated, and calculating the 

water content using the mass difference between fresh and dry samples (Lawson and 

Hawkes 1989; Pollet and Brown 2007). Field sampled LFMC represents conditions for a 

vegetation species at a single site and time, and it is difficult to extrapolate field 

measurements to larger regions and longer time periods.  

Previous studies have used meteorological indices to estimate LFMC (Burgan et 

al. 1998; Sebastián-López et al. 2002; Viegas et al. 2001). Although weather data are 

easily accessible, two problems still challenge meteorological indices: first, 

meteorological indices assume a constant relationship between observed parameters and 
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LFMC; and second, meteorological data are still linked to point observations that may not 

be representative of larger areas. LFMC is fundamentally controlled by the plant 

physiological processes and soil water availability, so meteorological indices may not 

reflect local variation in topography, soil type, precipitation, and vegetation type and 

cover. Weather conditions like foehn winds can also complicate relationships between 

meteorological data and LFMC.  

Remote sensing data have been proposed for use in LFMC estimation to improve 

spatial and temporal coverage. Most empirical studies have used band-ratio indices or 

radiative transfer models (RTM) to correlate variables based on vegetation greenness or 

moisture content with field-measured LFMC. Results of previous studies have varied 

across study sites and species (Dennison et al. 2005; Roberts et al. 2006; Yebra et al. 

2008). Another potential proxy for LFMC, soil moisture, has not previously been 

compared to field-measured LFMC. My research investigates four potential proxies for 

LFMC that could improve spatial and/or temporal coverage of LFMC estimation. Soil 

moisture responds to precipitation and evapotranspiration, and soil moisture 

measurements can be done continuously. Remote sensing provides extensive spatial 

coverage with a temporal resolution similar to current LFMC sampling protocols 

(Dennison et al. 2005). The objectives of this research are to: 1) examine relationships 

between soil moisture and LFMC and determine whether soil moisture has potential as an 

LFMC proxy, and 2) compare soil moisture to more established remote sensing indices as 

proxies for LFMC estimation.   
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2.2 Background 

Seasonal LFMC variation is controlled by precipitation, soil moisture, 

evapotranspiration, and plant physiological processes. Water is transported along a water 

potential gradient in the soil-plant-atmosphere continuum. The soil water potential 

generally declines with decreasing soil moisture, and corresponding plant water uptake 

drops due to smaller hydraulic conductance between soil and root (Schulze et al. 2005). 

Soil moisture available to vegetation is controlled by soil properties, precipitation and 

evapotranspiration fluxes over time scales of weeks to years. In extreme conditions rapid 

decrease in LFMC can happen in days, for example, during Santa Ana winds affecting 

southern California. The relationship between drought and fuel moisture is presumably 

that low precipitation and/or high evapotranspiration result in lower LFMC and increase 

wildfire area burned (Bessie and Johnson 1995; Chuvieco et al. 2009; Keetch and Byram 

1968; Littell et al. 2009).   

LFMC trends in southern California chaparral have been predicted using seasonal 

precipitation (Dennison et al. 2008) and monthly precipitation terms (Dennison and 

Moritz 2009). Previous studies have designed soil water indices to estimate LFMC.  

Dimitrakopoulos and Bemmerzouk (2003) demonstrated a strong relationship between 

Keetch Byram Drought Index (KBDI) (Keetch and Byram 1968) and LFMC for 

herbaceous understory vegetation in a Mediterranean pine forest. KBDI uses precipitation 

and maximum temperature to estimate the net effect of daily precipitation and 

evapotranspiration on soil water balance. Dennison et al. (2003) found a strong, nonlinear 

relationship between a cumulative water balance index (CWBI) model and LFMC in 

chaparral. CWBI cumulatively sums precipitation and reference evapotranspiration over 
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time. More complex than the standard KBDI, the Dennison et al. (2003) CWBI calculated 

reference evapotranspiration from a modified Penman equation (Snyder and Pruitt 1992) 

using solar irradiance, air temperature, vapor pressure and wind speed, but did not take 

into account plant physiological processes. No previous study has directly compared in 

situ soil moisture measures to field-sampled LFMC.     

Remote sensing offers a potentially cost-effective way to improve LFMC 

temporal and spatial monitoring. The reflectance spectrum of vegetation contains 

absorption features that result from harmonics and overtones of various foliar chemical 

components (Curran 1989). At the leaf level, the typical spectral features of green 

vegetation include chlorophyll absorption in the visible (400-700 nm), leaf structure 

expressed in the near infrared (NIR, 700-1300 nm) and water absorption dominating in 

the shortwave infrared (SWIR, 1300-2500 nm) (Bowyer and Danson 2004; Ceccato et al. 

2001). At the canopy level, reflectance is a function of solar and view geometry, leaf-

level reflectance, canopy structure, and vegetation cover. As LFMC declines, visible and 

SWIR reflectance generally increase while NIR reflectance decreases (Figure 2.1). 

Changes in NIR reflectance and water absorption with changing LFMC can be used to 

predict LFMC from remote sensing data (Chuvieco et al. 2002; Dennison et al. 2005). 

Changes in indices measuring chlorophyll absorption have also been correlated with 

changes in LFMC (Roberts et al. 2006; Stow et al. 2006), since vegetation greenness 

measures have shown good correlation with moisture content in ecosystems such as 

grasslands and shrublands.  

Remote sensing data have been proven useful for estimating LFMC using 

empirical methods and radiative transfer models (RTM) (Chuvieco et al. 2009). Most  
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Figure 2.1 An example of field reflectance spectra (400-2500nm) for sagebrush collected 
over the summer of 2005. As the line colors change from blue to red, LFMC decreases. 
MODIS bands (grey) with their central wavelength (in parentheses) are also shown. 

 

empirical studies have used regression analyses to compare vegetation indices with field- 

measured LFMC (e.g., Dennison et al. 2005; Roberts et al. 2006; Stow et al. 2006). RTM 

simulates the reflection, absorption, and transmission of electromagnetic radiation at leaf  

and canopy scales and has been mathematically inverted to estimate canopy water content 

and LFMC (Riaño et al. 2005; Trombetti et al. 2008; Yebra and Chuvieco 2009; Zarco-

Tejada 2003). Many previous papers have focused on Mediterranean vegetation, such as 

chaparral in southern California (Dennison et al. 2005; Roberts et al. 2006; Serrano et al. 

2000; Ustin et al. 1998), and herbaceous vegetation and shrubland in Spain (Chuvieco et 

al. 2003, 2004). Yebra et al. (2008) found that empirical and RTM methods had 

comparable performance for LFMC estimation in Mediterranean vegetation, but RTM 

was more robust for applications across different species and sites.  
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2.3 Methods 

I conducted this research at ten sites in northern Utah, USA (Table 2.1). Two 

species, Gambel oak (Quercus gambelii Nutt) and big sagebrush (Artemisia tridentata 

Nutt) were studied at five sites each (Table 2.1). These sites were chosen because they 

were operational LFMC field sampling sites for the US Bureau of Land Management 

(BLM) or Forest Service (USFS). The sites were within a geographic region 

approximately 8800 km2 in size, and cover large gradients in elevation (1582 – 2073 m), 

slope (2 – 33 degrees), vegetation cover and meteorological conditions.     

Field sampled LFMC data were downloaded from the National Fuel Moisture 

Database (NFMD: http://www.wfas.net/index.php/national-fuel-moisture-database-

moisture-drought-103, last accessed in May 2014). Standard protocols for LFMC 

sampling established by Pollet and Brown (2007) were followed by BLM and USFS 

personnel. Live foliage and pliable small stem material (up to 0.32 cm [1/8 in] diameter) 

were clipped from Gambel oak and sagebrush shrubs.  Several shrubs were sampled at 

different height and aspects. Samples were stored in containers with tight-fitting lids and 

kept cool and dry. The samples were weighed in the field to provide wet mass, and then 

were dried in a mechanical convection oven for at least 24 hours at 100 oC and reweighed 

to provide dry mass. LFMC was calculated by dividing the water mass (wet mass – dry 

mass) by dry mass. LFMC was generally sampled biweekly during the summer and fall 

without regard for leaf age, and species names, sampling dates; LFMC values were 

submitted to the NFMD.  

In the summer of 2009 and 2010, soil moisture stations were installed at LFMC 

sampling locations in collaboration with BLM and USFS personnel. At each site, a 15 cm  



 

 

Table 2.1 Description of ten study sites in northern Utah, USA including geographic locations, species, soil texture at 20cm depth, 
slope (degrees), aspect (in degrees from north), elevation (meters), soil moisture measurement start date, number of LFMC 
observations, and maximum and minimum of LFMC measurements (%). 

 
 

Site Latitude  Longitude  Species Soil Texture Slope Aspect Elevation Start Date N Max  
LFMC 

Min  
LFMC 

Little Cottonwood 40.57 -111.77 Gambel oak Loamy sand 15 208 1718 5/18/09 26 191 79 

Hobble Creek 40.15 -111.54 Gambel oak Sandy loam 33 202 1910 6/6/10 14 217 76 

Maple Canyon 40.13 -111.53 Gambel oak Sandy loam 29 162 1870 6/6/10 16 201 79 

Squaw Peak 40.30 -111.62 Gambel oak Clay 8 50 2073 6/8/10 12 152 81 

Black Cedar 38.98 -112.24 Gambel oak Clay loam 6 285 1979 6/7/10 20 231 89 

Vernon 40.06 -112.33 big sagebrush Gravelly loam 2 35 1712 4/28/09 59 237 57 

Mud Springs 39.88 -112.22 big sagebrush Sandy loam 6 18 1790 5/5/09 38 221 67 

Muskrat 40.64 -112.65 big sagebrush Very gravelly 
loam 16 259 1582 6/3/10 36 210 63 

Sevier Reservoir 39.33 -112.06 big sagebrush Sandy loam 9 44 1662 6/7/10 22 197 71 

Black Cedar 38.98 -112.24 big sagebrush Clay 6 285 1979 6/7/10 22 230 78 

10 
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(6 in) diameter hole was dug and four Decagon 5TE probes were inserted into the hole 

wall. Rocky soils prevented deep probe placement at many of the sites, so probes were 

placed at all sites as follows: two at a depth of 20 cm, and two at 40 cm. Volumetric soil 

water content (m3 m-3) and soil temperature (oC) were recorded by a Decagon Em50 data 

logger every 60 min. Measurements over 24 hour periods were averaged to provide daily 

soil moisture values. Since incomplete contact with the soil can result in low measured 

soil moisture, the probe with the highest average moisture at 20 cm depth was used for 

further analysis. Incomplete data were available for the Black Cedar Gambel oak site 

after the data logger was accidentally disconnected from the probes, likely due to 

disturbance by grazing cattle.  

The Terra Moderate Resolution Imaging Spectroradiometer (MODIS) surface 

reflectance product MOD09A1 was used to calculate remote sensing measures. 

MOD09A1 is an 8-day composite product of atmospherically corrected reflectance for 

the first seven spectral bands of the MODIS instrument at 500 m spatial resolution (bands 

shown in Figure 2.1). The original products were downloaded from the Oak Ridge 

National Laboratory MODIS Global Subsets site (http://daac.ornl.gov/cgi-

bin/MODIS/GLBVIZ_1_Glb/modis_subset_order_global_col5.pl, last accessed in May 

2014). Cloud and bad band data were masked using a MODIS quality assurance layer. 

The 500 m pixel containing each soil moisture/LFMC sampling site was extracted and 

three remote-sensing based measures were calculated from MODIS bands: normalized 

difference vegetation index (NDVI), normalized difference water index (NDWI) and 

canopy water content (CWC). NDVI is a normalized ratio between NIR and red 

reflectance (Rouse et al. 1973) that captures both chlorophyll absorption in the visible 
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and leaf additive reflectance in the NIR spectral region: 

𝜌856 − 𝜌655

𝜌856 + 𝜌655
 

where the subscript indicates the band center wavelength in nm. Higher NDVI values 

indicate higher chlorophyll absorption, leaf area and vegetation cover. NDWI is a 

normalized ratio between a NIR band and a SWIR band that can be used for estimating 

vegetation liquid water content (Gao 1996): 

𝜌856 − 𝜌1240

𝜌856 + 𝜌1240
 

NDVI and NDWI have shown strong correlations with LFMC in previous studies 

(Roberts et al. 2006; Stow et al. 2006). CWC was calculated by an inversion of a 

radiative transfer model through an artificial neural network (ANN) (Trombetti et al. 

2008) combined with NDVI and normalized difference indices using 1640 nm and 2130 

nm as absorption bands. The Prospect-SailH radiative transfer model (Jacquemoud et al. 

1995; Kuusk 1995) was used by Trombetti et al. (2008) to derive CWC. The CWC 

(expressed in mm) was computed as the product of leaf area index and leaf water content, 

which was defined as the theoretical thickness of a single layer of water per unit leaf area.  

Modeled CWC is not equivalent to LFMC, since LFMC is dependent on the amount of 

dry matter in relation to CWC. However, if dry matter remains relatively stable over 

time, then CWC and LFMC should be strongly correlated. 

For each site I conducted regression analyses between LFMC and each 

independent variable, including soil moisture, CWC, NDVI and NDWI. Coefficient of 

determination (R2) of the four bivariate linear regression models were calculated to 

investigate performance of soil moisture and remote sensing proxies in explaining LFMC 
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variation. I calculated the mean absolute error (MAE) for each regression model to 

measure the average magnitude of LFMC estimation errors. To test the model 

performance across sites and species, I applied regression models to pooled datasets 

among and between species. LFMC variation is dependent on local characteristics of 

individual sites. To eliminate cross-site diversity within the pooled data, an offset was 

calculated for each proxy as its value subtracted by its mean value for that site, then these 

offsets were pooled together from all sites. Bootstrap validation was employed to test the 

robustness of each model for the pooled data. For each explanatory parameter, a random 

number of observations were taken out with replacement from the samples, and a new 

linear regression model was constructed. I then calculated the R2, calibration error (root 

mean square error of residuals between predicted and observed LFMC of all 

observations) and validation error (root mean square error of residuals between predicted 

and observed LFMC of taken-out observations) of the new model. The bootstrap 

validation was repeated 1000 times to examine the model robustness.    

 

2.4 Results 

Time series of LFMC demonstrated seasonal pattern of green-up in early spring 

and drying down through late spring and summer. The amplitude and timing of seasonal 

changes varied considerably between years. An example is provided by the Vernon big 

sagebrush site (Figure 2.2). Big sagebrush LFMC measurements started at 200 % LFMC 

at day 110 in 2010 and 154 % LFMC at day 103 in 2011. LFMC peaked and decreased 

earlier in 2010 than 2011. Both years showed similar LFMC in late summer and a slight 

increase of LFMC in the fall, but this happened about 15 days earlier in 2011. All proxies  
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Figure 2.2 2010 and 2011 time series plots for the Vernon big sagebrush site. Some 
remote sensing measures are missing following removal by quality assessment. 

 

generally decreased at different rates. In 2011, soil moisture spiked due to precipitation 

events in spring and then gradually declined over the season. 

Strength of correlations between LFMC and the four independent variables varied 

across sites (Table 2.2). Soil moisture showed positive relationships with LFMC and the 

highest R2 value (0.66) when averaged across all ten sites. The R2 values for soil moisture 

were generally higher than those for remote sensing variables, with the exception of big  
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Table 2.2 R2 and mean absolute error (MAE) of bivariate linear regression results 
between LFMC and soil moisture or remote sensing variables. 

 

 
 
N/A: No analysis due to bovine disturbance of soil moisture data logger 
Significance level: *** P< 0.001, **P< 0.01, * P< 0.05  
 

 

Site 
CWC NDVI NDWI Soil Moisture 

R2 MAE R2 MAE R2 MAE R2 MAE 

Little Cottonwood 0.38** 17.66 0.13 21.98 0.22* 21.65 0.63*** 14.15 

Hobble Creek 0.36* 20.12 0.4* 18.35 0.24 24.13 0.86*** 9.76 

Maple Canyon 0.12 21.77 0.01 24.36 0.38* 18.09 0.86*** 10.72 

Squaw Peak 0.7*** 8.63 0.58** 9.61 0.69*** 9.77 0.89*** 5.14 

Black Cedar 0.01 26.59 018 25.61 0.06 28.1 0.53*** 18.45 

Vernon 0.34*** 33.49 0.39*** 31.81 0.38*** 33.98 0.65*** 24.51 

Mud Springs 0.6*** 22.39 0.62*** 22.36 0.46*** 27.59 0.46*** 28.79 

Muskrat 0.39*** 25.35 0.75*** 15.44 0.22** 31.61 0.41*** 22.87 

Sevier Reservoir 0.45*** 20.06 0.46*** 19.7 0.24* 26.95 0.63*** 19.52 

Black Cedar 0.02 34.09 0.01 34.05 0.02 34.05 N/A N/A 

Average of Gambel oak 0.32 18.69 0.26 19.98 0.32 20.35 0.75 11.64 

Average of big 

sagebrush 0.36 27.07 0.44 24.67 0.26 30.84 0.54 23.92 

Average of all sites 0.34 22.88 0.35 22.33 0.29 25.59 0.66 17.1 

Pooled Gambel oak 0.13*** 19.74 0.01 22.29 0.12*** 20.97 0.65*** 13.31 

Pooled big sagebrush 0.31*** 31.52 0.26*** 32.68 0.24*** 34.08 0.48*** 20.04 

Pooled all sites 0.27*** 28.05 0.15*** 31.45 0.18*** 31.53 0.49*** 23.97 
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sagebrush sites at Mud Springs and Muskrat. Values of R2 for soil moisture were also 

more stable across sites. The weakest relationship for soil moisture was for big sagebrush 

at the Muskrat site, with an R2 value of 0.41. The strongest relationship for soil moisture 

was Gambel oak at the Squaw Peak site, where the R2 of the relationship with LFMC was 

0.89. Mean of MAE across all sites was lowest for soil moisture, with a mean MAE of 

17.1 % LFMC. The smallest MAE was 5.14 % at the Squaw Peak Gambel oak site, while 

the largest MAE was 28.79 % for big sagebrush at Mud Springs. For species averages, 

Gambel oak showed higher R2 and smaller MAE than big sagebrush.   

 Among the remote sensing measures each regression model showed wide 

variation within sites of same species and between species (Figures 2.3 and 2.4). The 

highest R2 values of each variable were found at Squaw Peak with CWC (0.7), Muskrat 

with NDVI (0.75), and Squaw Peak with NDWI (0.69). All remote sensing measures had 

smaller averaged R2 values than soil moisture, and multiple measures had weak 

correlations with LFMC (R2< 0.2) at Maple Canyon and Black Cedar. NDVI had stronger 

correlations than CWC and NDWI at six sites, and NDVI had a slightly higher averaged 

R2 of 0.35. Comparing the two species, CWC and NDVI showed stronger correlations 

with big sagebrush, but NDWI had a higher averaged R2 with Gambel oak. MAE results 

also varied across sites and proxies within a range between 8.6 % and 34 % LFMC. Mean 

MAE values were 22.3 % for NDVI, 22.9 % for CWC, and 25.6 % for NDWI. Soil 

moisture had smaller MAE values than the remote sensing proxies at all five Gambel oak 

sites and two big sagebrush sites, except Mud Springs and Muskrat. Gambel oak had 

smaller averaged MAE values for remote sensing variables than big sagebrush. Some soil 

moisture values diverged from the general trends, for example, in the big sagebrush sites 
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Figure 2.3 Plots of MODIS-derived CWC, NDVI, NDWI and soil moisture against 
LFMC for Gambel oak sites. (a-d) Little Cottonwood Canyon, (e-h) Hobble Creek, (i-l) 
Maple Canyon, (m-p) Squaw Peak, (q-t) Black Cedar. The red lines indicate best fit 
linear equations. 

 

Vernon (Figure 2.4d) and Muskrat (Figure 2.4i). According to the historical weather and  

soil moisture data, many abnormally high soil moisture values were observed following 

precipitation events. Soil moisture was higher in the short-term, while LFMC changed 

more slowly with a peak that lagged peak soil moisture (Figure 2.2).   

In the regression models for pooled datasets, soil moisture showed the strongest 

correlation with a R2 of 0.65 for Gambel oak, 0.48 for big sagebrush and 0.49 for all sites 

(Figure 2.5). Across all sites and across individual species, CWC had a higher pooled R2   
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Figure 2.4 Plots of MODIS-derived CWC, NDVI, NDWI and soil moisture against 
LFMC for big sagebrush sites. (a-d) Vernon, (e-h) Mud Spring, (i-l) Muskrat, (m-p) 
Sevier Reservoir, (q-s) Black Cedar. The red lines indicate best fit linear equations. 

 

than NDVI and NDWI. For remote sensing measures big sagebrush had higher pooled R2 

values. Soil moisture had smaller MAE than other proxies, and Gambel oak sites had 

smaller MAE than big sagebrush sites (Table 2.2). Boxplots shown in Figure 2.6 

demonstrate the range of R2 values, calibration errors, and validation errors from 

bootstrap validation.  Soil moisture showed a median R2 of 0.5 across all sites, followed 

by CWC, NDWI and NDVI. Soil moisture also had the smallest calibration error and 

validation error. The stronger correlations with soil moisture were maintained for both  
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Figure 2.5 Plots of soil moisture and MODIS-derived CWC, NDVI, and NDWI after 
offset adjustment and pooling for all 10 sites. Black circles correspond to Gambel oak, 
and open circles correspond to big sagebrush.  

 

species. The three remote sensing proxies had higher R2 for big sagebrush than Gambel 

oak. CWC showed consistently better performance than the two indices. NDVI had 

stronger correlations than NDWI only for big sagebrush. The calibration errors and 

validation errors for big sagebrush were generally larger than those for Gambel oak.  

 

2.5 Discussion 

The regression models and bootstrap validation demonstrated that soil moisture 

was most strongly correlated with LFMC in both species and across sites. The median R2  
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Figure 2.6 Boxplots of bootstrap validation for R2 (left column), calibration error (middle 
column), and validation error (right column) for Gambel oak (top row), big sagebrush 
(middle row) and all sites (bottom row). The bottom and top ends of the whiskers 
represent the minimum and maximum. The bottom and top of the box represent the first 
and third quartiles. The band near the middle of the box represents the median. 

 

of validation showed that about 50 % LFMC variation was explained by soil moisture in 

the pooled data. The unexplained variation might be partially related to soil depth, soil 

available water capacity, and plant physiological processes. The soil available water 

capacity, the water content between field capacity and wilting point, is determined by soil 

texture.  Some Gambel oak sites had fine soil texture, like clay loam at Black Cedar and 

clay at Squaw Peak. However, big sagebrush sites had coarse soil texture including sandy 

loam and gravelly loam (Table 2.1). Fine soil with narrow pore spacing can hold more 

water than coarse soils with wide pore spacing. Given the same meteorological 
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conditions, soil at Gambel oak sites might provide more available water to support plants  

than soil at big sagebrush sites. I did not have soil depth data for my sites. The minimum 

root depth of big sagebrush is 40 cm, and Gambel oak is 90 cm with site-dependent 

variation (USDA Plants Database: http://plants.usda.gov/java/, last accessed in May 

2014). Both species have a deep taproot coupled with laterally diffused roots near the 

surface, allowing plants to absorb water from both surface precipitation and the water 

table several meters beneath. In addition, soil moisture may increase rapidly due to 

precipitation recharge, while LFMC exhibits a lagged response. The spatial variability of 

soil moisture can be influenced by small scale factors such as soil type, topography and 

vegetation species, and large scale factors such as variability in precipitation and evapo- 

transpiration (Brocca et al. 2007; Entin et al. 2000). A single soil moisture station at each 

site cannot capture local spatial variation in soil moisture. Some of my sites were on 

steeper slopes, where the local hydraulic drainage conditions were different from flat 

sites. This might partially cause the wide variation of R2 values among sites. In addition, 

big sagebrush hydraulically redistributes water from deeper depths to shallower depths 

and has high tolerance to drought and restricted water conditions (Kolb and Sperry 1999; 

Richards and Caldwell 1987). Thus sagebrush may be less vulnerable to soil moisture 

variation than Gambel oak. At larger scales, my ten sites covered a geographical region in 

northern Utah with varied topography, ecosystem and weather conditions. As a result, 

pooling data across multiple years and sites incorporated different seasonality and 

interannual variation into the regression models, which partially contributed to small R2 

and large MAE for some sites and pooled data across species. 

Among the three remote sensing proxies, CWC showed the best regression results 
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with higher R2 in the pooled data and smaller validation errors. This demonstrates the 

comparative advantages of using RTM across sites and species rather than relying on 

band-ratio indices. Between the two indices, NDVI showed slightly better explanatory 

performance than NDWI for big sagebrush sites and pooled data, but NDVI had weak 

correlation with LFMC for Gambel oak sites. There are several potential factors that 

could influence the strength of correlations between LFMC and remote sensing 

measurements.  Although MODIS data had been screened by a quality assurance layer to 

eliminate bad data before building models, error in atmospheric correction and geometric 

errors may be present in MODIS data (Vermote and Kotchenova 2008). Fensholt et al. 

(2010) showed that MODIS red and NIR reflectance were highly dependent on sun-

sensor geometry, and NDVI variation was dependent on vegetation density. The 

MOD09A1 data were not corrected by bidirectional reflectance distribution function 

(BRDF) to near-nadir reflectance. Both NDVI and NDWI use MODIS band 2 (NIR), so 

they could be affected by seasonal and interannual variation in viewing geometry (Sims 

et al. 2011).   

An important underlying assumption of upscaling LFMC field sampling to a 

remote sensing pixel is that remote sensing data are exclusively sensitive to changes in 

LFMC. In fact, the surface reflectance was an aggregated product of radiative interaction 

with all features on the landscape within a ground instantaneous field of view (GIFOV). 

The radiance measured within a MODIS GIFOV is assigned to a 500 m pixel, but can in 

fact be a measurement of a much larger area depending on viewing geometry. Due to 

changes in viewing geometry over an orbital cycle, the area measured by a single pixel 

may not be consistent over time. Even within a single 500 m by 500 m area, vegetation 
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can be spatially heterogeneous. Many of the 10 sites had multiple vegetation species and 

complex topography and land cover within a 500 m radius of the site. Changes in features 

other than the targeted fuel type introduced spectral variation in surface reflectance and 

challenged successful linkage between LFMC and each remote sensing variable. For 

instance, the mixed landscape of big sagebrush, Gambel oak and exposed soil at the 

Black Cedar sites might explain the oddly negative slopes and weak correlations with 

remote sensing proxies (Figures 2.3 q-s and 2.4 q-s). A final complicating factor for the 

remote sensing measures is that NDVI, NDWI and CWC are indirectly related to LFMC. 

NDVI is more closely related to chlorophyll than water content. Variation in chlorophyll 

content can be caused not only by moisture content, but also plant nutrient deficiency, 

disease and phenological stages (Bowyer and Danson 2004; Ceccato et al. 2002). NDWI 

and CWC have stronger connections to water content but do not explain dry matter 

variation that is a part of the LFMC equation (Serrano et al. 2000). CWC was computed 

by the method developed by Trombetti et al. (2008). The ANN inversion algorithm used 

by Trombetti et al. (2008) grouped vegetation into shrubland, forest, and grassland 

classes. This simplified classification might not describe landscape diversity in my sites.   

Most major changes in LFMC are associated with physiological activities of 

vegetation in response to meteorological conditions and phenology. Big sagebrush starts 

leaf and stem growth in the spring when temperatures are warm and soil moisture is high.  

Growth will continue until weather is too hot or soil moisture becomes too low to support 

transpiration. If moderate temperate and precipitation are present in late summer or early 

fall, sagebrush may produce a second flush of new growth, although at a smaller scale 

compared to spring. The surge of LFMC in the spring, decline during the summer and 
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possible increase in the fall is dependent on the timing and amplitude of moisture 

availability. Under water stress, sagebrush will express morphological plasticity, 

including shedding spring leaves, allocating more biomass to vegetative versus 

reproductive shoots, leaves versus stems, and perennial versus ephemeral leaves. In 

contrast, new growth of Gambel oak generally starts in late spring and continues until late 

summer or early fall when soil moisture is a limiting factor. Variation in plant phenology 

and adaption to moisture availability needs to be accounted for at all levels, from LFMC 

sampling through remote measurement. 

 

2.6 Conclusions 

This paper examined using soil moisture and remote sensing proxies for 

estimating LFMC in big sagebrush and Gambel oak. Soil moisture is a point-based, 

continuous measurement of drought condition in situ. My results demonstrated that soil 

moisture can provide better predictive power than remote sensing measures across 

multiple sites and two species. It can potentially provide an alternative means for LFMC 

estimation with more frequent temporal coverage, and a soil moisture network could 

complement LFMC field sampling. Remote sensing measures proved to be less strongly 

correlated with LFMC data, but provided superior spatial coverage. To make the remote 

sensing proxies more accurate for operational management, selection of high quality 

MODIS data with BRDF correction and more homogeneous sampling sites may improve 

relationships. Seasonality and interannual variation need to be considered in generalized 

models of pooled data. 
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CHAPTER 3 

 

SPECTROSCOPIC ANALYSIS OF SEASONAL CHANGES IN 

LIVE FUEL MOISTURE CONTENT AND LEAF DRY MASS 

 

3.1 Introduction 

Live fuel moisture content (LFMC) is regarded as an important fuel property for 

determining fire ignition probability (Deeming et al. 1978), fire spread rate (Rothermel 

1972), fire occurrence (Chuvieco et al. 2009), fire size (Chuvieco et al. 2009), fire season 

timing (Dennison and Moritz 2009; Dennison et al. 2008), and fire propagation behavior 

(Plucinski et al. 2010; Weise et al. 2005). LFMC is measured by oven drying fresh field 

samples until all moisture has evaporated, and calculating the water content by the mass 

differences between fresh (mf) and dried (md) samples (Lawson and Hawkes 1989; Pollet 

and Brown 2007): 

    𝐿𝐹𝑀𝐶 =
𝑚𝑓−𝑚𝑑

𝑚𝑑
                                  (Equation 3.1) 

Field sampling measures LFMC for a specific species at a single site and time, 

and it is difficult to extrapolate values to larger regions and longer periods. Remotely 

sensed data have the ability to improve temporal and spatial monitoring of LFMC (Yebra 

et al. 2013). A number of studies have used empirical methods based on vegetation 

indices (Dennison et al. 2005; García et al. 2008; Peterson et al. 2008; Qi et al. 2012; 

Roberts et al. 2006; Stow et al. 2006). Many of these empirical studies have relied on
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indices calculated from spectral features not associated with water absorption. 

Gravimetric water and dry mass measurements can be divided by leaf area to create 

metrics such as equivalent water thickness (EWT) and dry matter content (DMC). LFMC 

can be calculated as the ratio of EWT to DMC, and radiative transfer modeling (RTM) 

can be used to estimate EWT and LFMC (Jurdao et al. 2013; Trombetti et al. 2008; Yebra 

and Chuvieco 2009; Zarco-Tejada 2003). Leaf spectroscopy approaches for estimating 

LFMC have included first derivative spectra (Curran et al. 1992), spectral indices 

(Colombo et al. 2008; Datt 1999; Maki et al. 2004; Peñuelas et al. 1997; Stimson et al. 

2005), artificial neural networks (Dawson et al. 1998), RTM inversion (Riaño et al. 

2005), continuous wavelet analysis (Cheng et al. 2011), and PLSR (Li et al. 2007). 

One challenge in spectral estimation of LFMC is decoupling water and dry mass 

absorption features in fresh leaf reflectance (Fourty and Baret 1997; Riaño et al. 2005). 

Biochemical components in dry matter include lignin, cellulose, starch, sugar, and 

protein; these components and water have absorption features in the near infrared (NIR: 

700-1400 nm) and short-wave infrared (SWIR: 1400-2500 nm) (Ceccato et al. 2001; 

Danson and Bowyer 2004; Fourty et al. 1996). Water absorption usually masks dry 

matter absorption in the SWIR due to water’s higher specific absorption coefficients and 

frequently greater mass. Kokaly and Clark (1999) and Tian et al. (2001) reported that 

spectral variation in the SWIR induced by increasing LFMC showed not only a decrease 

in the amplitude of reflectance due to water absorption, but also changes in the depth and 

shape of absorption near 1730 and 2100 nm attributed to dry mass. Several studies have 

compared the estimation of EWT and LFMC using RTM simulation and leaf 

spectroscopy (Cheng et al. 2011; Colombo et al. 2008; Datt 1999; Maki et al. 2004), 
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illustrating that LFMC was more difficult to estimate than EWT due to difficulty in 

estimating DMC. Riaño et al. (2005) obtained poor estimation of LFMC in 37 species 

due to high uncertainty in the estimation of DMC using a PROSPECT model inversion. 

DMC was estimated using dry leaves and assumed constant throughout the season. 

However, plant physiology research has indicated dry mass may not be seasonally 

constant, and LFMC may change in response to trends in both water and dry mass. For 

example, Kozlowski and Clausen (1965) studied LFMC and dry mass of leaves and buds 

for several gymnosperms and angiosperms in the 1963 growing season. The seasonal 

decrease of LFMC was traceable primarily to increase in leaf dry mass than to decrease 

in actual water content. More recently, Jolly et al. (2014) found that changes in lodgepole 

pine moisture content were driven by seasonal changes in foliage dry mass allocation 

instead of water content. These studies contradict that stable dry mass can be assumed for 

remote sensing estimation of LFMC.   

Several recent studies have explored spectroscopic analysis of dry mass. The leaf 

mass per area (LMA, equivalent to DMC) has been examined using spectral indices 

(Féret et al. 2011; le Maire et al. 2008; Wang et al. 2011), PLSR (Asner and Martin 2008; 

Asner et al. 2011; Doughty et al. 2011), PLSR coupled with variable selection methods 

(Serbin et al. 2012), Bayesian model averaging (Zhao et al. 2013), and continuous 

wavelet analysis (Cheng et al. 2014).  Most of these models were derived from samples 

across multiple species collected at discrete times, and the remote sensing literature has 

not investigated the spectral expression of continuously measured temporal variation in 

dry mass. It is not clear how the individual biochemical components that make up dry 

mass change over time and how reflectance spectra respond to combined changes in 



28 

 

water mass, dry mass, biochemical components, and structural changes. 

This article addresses the knowledge gap of spectral-temporal response of LFMC 

and leaf dry mass over the growth season. I seek to answer the following research 

questions: (i) How do LFMC and dry mass change during the growth season? (ii) How do 

biochemical components in dry mass contribute to LFMC change and covary over time? 

(iii) How are changes in leaf spectra over time correlated with changes in LFMC and dry 

mass? To answer these questions, this study examined seasonal changes in LFMC, dry 

mass, and leaf spectra of  two important species in the western US, sagebrush and 

lodgepole pine. This analysis evaluated multivariate PLSR models for identifying 

spectral features correlated with temporal variation in LFMC, dry mass, and biochemical 

components. Finally, I discuss the physiological interpretation of temporal variation in 

spectra and make recommendations to the remote sensing and fire research communities. 

 

3.2 Data and Methods 

3.2.1 Study Sites and Sampling Design 

I collected LFMC samples at four sites near Missoula, Montana between May and 

October 2012 for two common species in the western US, lodgepole pine (Pinus contorta 

Douglas ex Loudon), an evergreen conifer species, and big sagebrush (Artemisia 

tridentate Nutt), a semideciduous broadleaf shrub species. The two lodgepole pine sites 

were in natural conifer forest on south slopes at elevations averaging 1330 and 1590 m. 

The two sagebrush sites were on flat natural shrubland adjacent to mixed conifer forests 

at elevations of 1133 and 1226 m. All sites represented relatively homogenous patches of 

the sampled species and spanned a geographic region approximately 558 km2 in size. 
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The study period started with rainfall in late May, followed by a dry-down period during 

the summer, and ended with observed precipitation after the middle of October (Figure 

3.1). Terminal buds of lodgepole pine started to break in late May, and the elongation of 

new needles continued until October. New sagebrush leaves flushed in the spring at the 

tips of branches. New sagebrush leaf blades expanded early during the growing season 

and later became fragile, and some leaves abscised during prolonged periods of water 

stress.  

I sampled four sites once per week using a random sampling scheme to span a 

large range of individual trees and shrubs within each study site. Current year (“new”) 

and second year and older (“old”) lodgepole pine needles were sampled separately. Due 

to the difficulty of discriminating first year leaves and older leaves for sagebrush, I 

collected sagebrush branch tips (3-5 cm) to create one mixed-age sample. I collected 

about 40 g of needles/leaves from each site on each sampling day. Samples were mixed, 

and stored in sealed plastic bags in a cooler with ice. Leaves for spectroscopy, LFMC, 

and biochemical analysis were taken from the same mixed sample pool. 

 

3.2.2 LFMC and Biochemical Measurements 

LFMC was measured for 12 groups of 5 needle fascicles from each age group and 

12 sagebrush branch tips at each site per sampling day. Fresh mass was determined 

within 4 h after collection, and then samples were dried in a convection oven for 24 h at a 

temperature of 95 Celsius degreeand re-weighed. The difference between fresh mass and 

dry mass was used to determine water mass, and LFMC was calculated using equation 

3.1. Dry mass percentage (DMP), the ratio of dry mass to fresh mass, was calculated to  
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Figure 3.1 2012 plots for weather stations proximate to sagebrush (a) and lodgepole pine 
(b) sites. Precipitation for (a) was measured at a station an average of 4 km north of the 
two sagebrush sampling sites, while temperature for (a) was measured at a station 500 m 
higher in elevation and 7 km to the south of the sampling sites. Precipitation and 
temperature (b) were measured at lodgepole pine site 2, approximately 12 km to the south 
of lodgepole pine site 1. (http://www.ncdc.noaa.gov/cdo-web/, last accessed in May, 
2014). 
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track the proportional change of dry mass (Equation 3.2). Relative water content (RWC) 

is commonly used to assess the water status of plants (Barrs and Weatherley 1962) and 

has been estimated by spectral data (Serrano et al. 2000). RWC was measured by first 

recording the fresh mass, recording the turgid mass (mt) after immersing the needles or 

leaves in deionized water for 24 hours, and then oven drying the samples for 24 hours to 

obtain a dry mass (Equation 3.3).  

   𝐷𝑀𝑃 =  
𝑚𝑓−𝑚𝑑

𝑚𝑓
                                               (Equation 3.2) 

   𝑅𝑊𝐶 =  
𝑚𝑓−𝑚𝑑

𝑚𝑡−𝑚𝑑
                                               (Equation 3.3) 

Approximately 20 g of the sample were used to further partition dry mass into 

biochemical components by AgriAnalysis Forage Analysis Laboratory 

(http://www.agrianalysis.com/, last accessed in May, 2013). Wet chemistry analysis was 

used to determine neutral detergent fiber (NDF), nonstructural carbohydrate (NSC), 

neutral detergent soluble fiber (NDSF), protein, fat, and ash as a percentage of dry mass 

(Table 3.1). NDF includes lignin, cellulose and hemicellulose. Lignin is a complex 

chemical compound and mainly used in the secondary cell walls of xylem and 

sclerenchyma. Cellulose is an end product of carbohydrates produced by plant 

photosynthesis, and it is used for the wall of parenchyma cells in plant leaves. NSC is 

mainly starch and sugar supplying energy to support respiration. NDF and NSC are 

usually the two most abundant components of dry mass.  

 

3.2.3 Spectroscopic Measurements 

All spectroscopic data were measured using an Analytical Spectral Devices 

FieldSpec4 High-Res spectrometer (380 – 2500 nm) and an integrating sphere (model  
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Table 3.1 Description of biochemical components. 
 

Name Abbreviation Description 

Neutral detergent fiber NDF lignin, cellulose, hemicellulose 
Non-structural 
carbohydrate NSC sugar, starch 

Neutral detergent soluble 
fiber NDSF pectin, β-glucan, galactan, fructan 

Protein N/A nitrogen bearing content, 
rubisco 

Fat N/A isoprenoid, essential oil, wax and 
other lipid 

Ash N/A mineral content 

RTS-3ZCR2) in a darkroom within 24 hours after sample collection. Measurements used 

Daughtry’s method (Daughtry et al. 1989) with revision by Mesarch (Mesarch et al. 

1999) to measure small leaves. Pine needles and sagebrush leaves were laid side by side 

to form a flat mat and taped to a sample holder. Reflectance and transmittance were 

measured for the mat using the integrating sphere. Leaf samples were subsequently 

scanned with a flatbed scanner at resolution of 1200 dpi. Gap fraction was retrieved from 

grayscale scanned images as the ratio of the number of white pixels (gaps) to the total 

number of pixels within the mount aperture (Di Vittorio 2009; Rautiainen et al. 2012). 

Leaf reflectance was then derived from the mat measurements by correcting for the gap 

fractions between leaves: 

    ρ = ρtotal

1−𝐺𝐹
                                               (Equation 3.4) 

where ρtotal is the reflectance of the flat sample mat, GF is gap fraction, and ρ is the 

single leaf reflectance. New and old lodgepole needles were measured separately. Since 

there is a reported discrepancy between needle adaxial and abaxial optical properties due 

to needles’ curved shape (Middleton et al. 1997), reflectance and transmittance were 
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measured on both sides of the needle surface for each sample and averaged. I calculated 

average reflectance spectra of eight samples for new lodgepole pine needles, old needles, 

and sagebrush leaves for each observation date. Raw reflectance spectra for each date 

were convolved to five nm bandwidths. This bandwidth was selected based on the full 

width-half maximum of the Airborne Visible/Infrared Imaging Spectrometer Next-

Generation (AVIRIS-NG) instrument (Kampe et al., 2010). Four hundred and twenty-five 

spectral bands spanning the 380 – 2500 nm wavelength range were subset to 248 bands 

by deleting atmospheric water vapor absorption bands at 1340 -1495 nm and bands 

longer than 1800 nm due to poor performance of the integrating sphere, producing low 

signal-to-noise ratio beyond this wavelength.  

 

3.2.4 Statistical Analysis 

To understand major variation among all measurements during the growth season, 

I first pooled all data in the sampling period and used principle component analysis 

(PCA) to determine common seasonal variation in biochemical components and LFMC. 

In addition, I conducted semipartial correlation analysis to investigate how water and dry 

mass contribute to LFMC variation. Semipartial correlation estimates the relationship 

between a predictor variable and an outcome variable while removing the effects of other 

predictors. Since LFMC is controlled by water mass and dry mass, this method can 

separate their contributions to temporal variability in LFMC.   

I used partial least squares regression (PLSR) to examine temporal variation in 

spectra correlated with temporal variation in LFMC and biochemical components. PLSR 

is a particular type of multivariate statistical method widely used in chemometrics and 
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NIR spectroscopy for analyzing quantitative relationships between multiple predictor and 

response variables (Martens and Naes 2001). The typical PLSR model includes one 

response variable at a time, for example, LFMC, and uses spectroscopic data as predictor 

variables. Multivariate PLSR accounts for the complex correlation between multiple 

response variables, revealing the relevance of single predictors with regard to individual 

responses. Since LFMC, dry mass and biochemical components covary over the growing 

season, I constructed a multivariate PLSR model using all biochemical variables as 

response variables (normalized before entering the model) and spectroscopic data as 

predictor variables over the study period. This algorithm handled the correlations 

between biochemical measurements by projecting correlated response variables to 

orthogonal components and regressed the components with one set of latent features of 

predictor variables. Incremental numbers of latent components were tested, and more 

latent components usually generated higher R-squared values (R2) and smaller root-

mean-square-error (RMSE) but at the risk of over-fitting the data. I reported R2 and 

RMSE from PLSR using five components as determined by predictive residual sum of 

squares (PRESS) analysis (Wold et al. 2001). The regression coefficients of each band 

over the full wavelength range were analyzed to extract wavelengths sensitive to 

temporal changes in LFMC and biochemical absorptions. 

 

3.3 Results 

3.3.1 Seasonal Variation of LFMC and Biochemical Components 

For each species, plot values were averaged and seasonal trends of LFMC and 

biochemical components were plotted (Figure 3.2). LFMC of new needles was 202% in 
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Figure 3.2 Seasonal variation of LFMC, DMP, RWC and biochemical components. For 
each species, the measurements of two sampling sites were averaged on the observation 
date. 

 

early June and decreased to 122%, while old needles stayed relatively stable with a slight 

increase from 93% to 112% in early season. Sagebrush LFMC decreased consistently 

during the sampling period from 268% to 77%. The DMP of new needles increased from 

about 35% to 45% and sagebrush increased from about 30% to 55%, while the DMP of 

old needles dropped slightly from 50% in July and then slightly increased through 

October. As dry mass accumulated in the new needles, LFMC of new and old needles 

converged toward late October. The RWC of new and old needles was relatively stable, 

while in sagebrush RWC decreased over time, demonstrating water stress in August, 
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September, and October. In sagebrush, NDF and NDSF were relatively stable, but fat 

content increased while protein and ash content decreased over the study period. The 

abrupt changes in biochemical components, such as NDSF of new needles in mid-June 

and fat of sagebrush in late July, were most likely due to measurement errors in wet 

chemistry analysis. NDF composed the largest percentage of dry mass in both species 

(Figure 3.3), decreasing from July to September in new and old lodgepole needles, but 

staying consistent in sagebrush leaves. NDSF and NSC were a smaller fraction of dry 

mass, with NSC increasing from July to September in all three leaf categories.  

PCA analysis showed the temporal covariation among multiple biochemical 

components (Figure 3.4). Notably, RWC was nearly orthogonal to LFMC and DMP for 

new needles, while RWC was strongly aligned with these variables in sagebrush. This 

difference in RWC relationship with LFMC between species reveals a potential 

difference in water content contribution to LFMC. NSC was directly in opposition to 

LFMC in the PC1-PC2 space for both new and old needles, demonstrating NSC’s strong 

association with LFMC temporal variation.  On the contrary, NSC showed a weaker 

correlation with LFMC in sagebrush, while ash, protein and fat changed in close response 

to LFMC. Since LFMC and DMP are complementary measures based on fresh and dry 

mass, they fell along the same axis of variation but in opposite directions in each plot. 

Semipartial correlation analysis provided evidence that dry mass was the 

dominant driver of LFMC in lodgepole pine needles. Dry mass explained about 37% of 

the variance in LFMC over time and water mass explained about 5% for new needles 

(Table 3.2). Dry mass explained 7% more variance of LFMC in old needles than water 

mass. The covariance between dry mass and water mass explained about 45% of needle  
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Figure 3.3 Barplot of averaged biochemical components in dry mass of new/old 
lodgepole pine needles and sagebrush leaves, July and September, 2012. 

 

 

Figure 3.4 Principle component analysis of biochemical components, LFMC and RWC. 
The percentage in the axis label shows the variance explained by the component. 
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Table 3.2 Semipartial correlation coefficients of water mass (g) and dry mass (g) in 
LFMC variation. 

Species Dry Matter Water Covariance 
New needles 0.37 0.05 0.45 
Old needles 0.17 0.1 0.45 
Sagebrush 0.24 0.23 0.40 

 

LFMC variation in both new and old needles. Dry mass and water mass showed similar 

contributions to variation in sagebrush LFMC, while their covariance explained about 

40% of variation. 

 

3.3.2 Spectroscopic Analysis 

Leaf spectroscopy examined the temporal spectral changes corresponding to 

variation in LFMC and foliar biochemical composition (Figure 3.5). Comparing July and 

September, the reflectance of new needles increased across visible, NIR and SWIR 

(1500-1775 nm) regions as LFMC decreased from 221% to 129%. Changes in visible  

 

Figure 3.5 Reflectance spectra on two observation dates in July and September for new 
needles, old needles, and sagebrush leaves. The values in the parentheses were LFMC. 
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reflectance and water absorption at about 970 and 1200 nm were apparent along with a 

slight red-edge position shift toward longer wavelength in the NIR. The LFMC of old 

needles remained stable, but old needles showed slight increases in reflectance in visible 

bands, near 1200 nm, and in the SWIR. Sagebrush expressed large spectral changes 

corresponding to LFMC dropping from 229% to 83%. Chlorophyll and water absorption 

features became weaker causing reflectance to increase, and a weak absorption feature 

likely associated with dry mass components was expressed near 1700 nm. The red edge 

shifted towards longer wavelengths between July and September. 

PLSR overall showed good estimation for lodgepole pine needle LFMC (R2 = 

0.94 for new needles; R2 = 0.72 for old needles) and DMP (R2 = 0.94 for new needles; R2 

= 0.75 for old needles, see Table 3.3). Most biochemical components were accurately 

estimated in new needles with higher R2 values for NSC, protein and fat, but the R2 

values were lower than those for LFMC and DMP. Old needles had lower R2 values for 

all biochemical components relative to new needles. For sagebrush, LFMC and DMP 

Table 3.3 R-squared values (R2) and root mean square error (RMSE) of partial least 
square regression between leaf reflectance spectra and scaled biochemical components, 
LFMC, DMP, and RWC with five latent components. RMSE is in the original unit of 
each variable: percent for LFMC and DMP, fractional value for RWC, and percent of dry 
mass for biochemical components.    

 
 New Needles Old Needles Sagebrush 

R2 RMSE R2 RMSE R2 RMSE 
LFMC 0.94 5.84 0.72 3.51 0.91 21.03 
DMP 0.94 1.00 0.75 0.01 0.94 3.00 
RWC 0.15 0.03 0.43 0.03 0.85 0.04 
NDF 0.57 2.98 0.28 2.92 0.43 2.41 

NDSF 0.25 3.20 0.18 2.29 0.08 3.03 
NSC 0.72 1.38 0.33 1.61 0.52 1.48 

Protein 0.72 0.32 0.42 0.32 0.87 1.22 
Fat 0.82 0.57 0.32 0.73 0.58 1.19 
Ash 0.6 0.18 0.53 0.30 0.87 0.48 
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showed comparable R2 but higher RMSE than models of new needles (RMSE = 21.03 for 

LFMC, RMSE = 3.00 for DMP). Biochemical component models showed the highest R2 

values for protein and ash. Spectroscopic data explained about 85% variance in sagebrush 

RWC, much higher than 15% in new needles and 43% in old needles.  

I constructed multivariate PLSR models on pooled data for each species and 

compared coefficients between response variables (Figure 3.6). The coefficients showed 

to what magnitude a spectral region is associated with seasonal changes in LFMC and dry 

mass. In lodgepole pine, PLSR identified common wavelength ranges across most 

biochemical variables, with high coefficients located near the green reflectance peak (550 

 

Figure 3.6 Spectral mean, standard deviation, and range over the season (a and c) and 
coefficients of partial least square regression models (b and d). (a-b) Pooled lodgepole 
pine new and old needles; (c-d) pooled big sagebrush leaves. 
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nm), near chlorophyll absorption bands (450 and 650 nm), and near the red-edge in the 

NIR (710 nm). Sagebrush showed common high coefficients across most biochemical 

variables around 430 nm, at the red-edge (710 nm), in NIR regions associated with 

structural scattering (750-800, 1000-1100 nm), and dry matter-associated absorption 

peaking near 1720 nm. Water absorption regions were also highlighted with higher 

coefficients near 980 and 1245 nm.   

 

3.4 Discussion 

Seasonal changes in foliar biochemical components explained the physiological 

foundations of LFMC variation. Simple carbohydrates are produced by photosynthesis 

and converted into new protoplasm and cell wall by the existing protoplasm (Kramer and 

Kozlowski 1960). In many evergreen species the old needles supply carbohydrates for 

expansion of the new growth (Kozlowski 1964). Dry weight of gymnosperm old needles 

significantly decreased when new shoots were expanding. Early field studies in Pinus 

resinosa (Kozlowski and Clausen 1965) and Pinus sylvestris (Rutter 1957) have 

demonstrated this mechanism. In this study, the NSC increased in new needles as they 

expanded, and peaked toward the end of the October. NSC increased markedly in old 

needles during the spring. Immediately after the rapid new growth in early July, old 

needle NSC declined (Figure 3.2). Thus, increase in NSC in new needles was associated 

with a temporary decrease in NSC in older foliage. New growth supplies an increasingly 

larger share of the carbohydrates used in their growth toward the end of their expansion 

period, thus they depend progressively less on imported carbohydrate from older needles. 

Near the end of the period of needle elongation, new needles continued to develop 
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structurally, and older needles regained dry mass. Bansal and Germino (2009) observed 

similar NSC temporal patterns in several montane conifer species in the Rocky 

Mountains, USA. The semipartial correlation analysis provides statistical evidence that 

dry mass is a more important factor than water content for determining LFMC variation 

in lodgepole pine needles. New and old needle RWC stayed relatively stable over the 

season, confirming that water content is not likely to be driving changes in LFMC. In 

comparison, sagebrush showed decreasing LFMC, increasing DMP, and a substantial 

drop in RWC, which corresponded to a consistent dry-down pattern during the summer 

and a reflush in early August due to a short period of precipitation.  

Leaf reflectance spectra are determined by leaf surface properties, internal 

structure, and the concentrations and distributions of leaf biochemical components 

(Peñuelas and Filella 1998). Changes in leaf structure and biochemistry occur seasonally. 

Photosynthetic pigments (mainly chlorophyll a and b) in new foliage increase from the 

spring to the late growth season (Demarez et al. 1999; Gond et al. 1999; Zhang et al. 

2008), resulting in changes of absorption features in the visible region. Leaf morphology, 

including LMA, leaf thickness, and leaf density, changes with leaf development 

(Mediavilla et al. 2011). I found seasonal changes in new pine needle morphology 

including needle thickness, length, width and density (unpublished data). Gradually 

increasing needle thickness and density is associated with increased NIR reflectance. The 

variation in leaf pigment and leaf structure was also expressed through seasonal trends in 

red-edge characteristics (Miller et al. 1991). Water and biochemical components in dry 

matter changed concurrently with plant physiological processes and confounded time-

series absorption and scattering features in the SWIR (Stuckens et al. 2011). Seasonal 
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trends in pigment absorption and needle morphology expressed through visible and NIR 

reflectance were apparently stronger than the expression of changes in biochemical 

components expressed in the SWIR. 

Numerous spectral features ranging from the visible to the SWIR have been found 

to be correlated with LFMC. Previous studies have found that indices not based on water 

absorption nor on dry matter absorption (e.g., normalized difference vegetation index and 

visible atmospherically resistant index) are correlated with seasonal variation in LFMC 

(e.g., Stow et al. 2006; Qi el al 2012). Several spectroscopic analyses of LFMC have 

highlighted wavelengths ranging from the visible to the SWIR. Li et al. (2007) used 

genetic algorithm partial least squares regression (GA-PLSR) to model LFMC in 49 

samples of 37 species, and the model selected spectral regions around the green peak 

(517-606 nm), near-infrared plateau (720-740 nm), and SWIR regions beyond 1350 nm. 

The selection of green peak and NIR bands reflected a correlation between chlorophyll-a 

and LFMC. Cheng et al. (2011) modeled LFMC with continuous wavelet analysis (CWA) 

in 265 samples of 47 species in tropical forest, highlighting two features on the leading 

edge of water absorption bands and four features in SWIR accounting for the depth and 

width of dry matter absorption. Their analysis showed that more LFMC information was 

captured by the variation in depth and shape of dry matter absorptions than by changes in 

water absorption features. In my study, PLSR coefficients of LFMC in two species 

generally indicate higher weightings across broad spectral regions in the visible, red-edge, 

and NIR (Figure 3.6). Relatively lower PLSR coefficient weightings are located at water 

and dry mass absorption regions for lodgepole pine, while sagebrush did have higher 

weightings in these absorption regions. My study is unique from previous studies in that I 
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examined multitemporal fresh leaf spectroscopy of the same species. Although leaf dry 

mass increases in new lodgepole pine needles drive LFMC to decrease, dry matter 

absorption in the SWIR is not the dominant feature in seasonal reflectance trends. The 

highlighted visible region is associated with chlorophyll absorption, and the red-edge and 

NIR regions are correlated with leaf structural changes (Miller et al. 1991). 

Previous studies using leaf spectroscopy to estimate field sampled LFMC showed 

significantly different accuracy across species, which was partially attributed to poor 

estimation of dry mass (Cheng et al. 2011). Recent studies have used spectroscopic data 

to estimate leaf mass per area (LMA). Asner et al. (2011) identified that NIR and SWIR 

contributed the most to reflectance-based estimates of LMA in tropical forest species, 

especially between 1300 and 2400 nm. Cheng et al. (2014) determined two major wavelet 

features at 1639 and 2133 nm for predicting LMA. Serbin (2012) used variable selection 

method with PLSR to predict LMA and selected wavelengths in visible, NIR and SWIR. 

These studies are based on aggregated datasets from multiple species, and show potential 

differentiation of leaf dry mass between species. Continuing on these efforts, my research 

is an assessment of the utility of PLSR models to track temporal leaf dry mass change 

and individual biochemical components. The novel result of this study is that 

spectroscopy combined with PLSR can estimate seasonal variation in leaf dry matter 

(DMP) at high accuracy, but this result is due to broad spectral changes rather than 

specific absorption features associated with each component of dry matter. The strong 

spectral features located in visible and NIR regions were given high weightings for most 

biochemical components, showing general agreement with previous studies. Lignin and 

cellulose (NDF) was the most abundant constituent in dry leaf matter accounting for 49% 
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of new needles, 44% of old needles, and 39% of sagebrush leaves. Coefficient weightings 

near 1720 nm, associated with lingo-cellulose absorption, were high for sagebrush and 

indicated increased expression of this absorption feature as LFMC declined over time. 

Stronger expression of NDF beyond 1800 nm may have produced more spectrally distinct 

features for lodgepole pine and sagebrush, but unfortunately, this spectral range was not 

measureable using the RTS-3ZCR2 integrating sphere.                 

My study demonstrates that spectroscopic techniques may be capable of 

monitoring seasonal variation in LFMC, but that spectral changes over time may be 

weakly linked to actual water content in some species. Temporal changes in spectra and 

PLSR coefficients indicate that pigments, leaf structure, water and dry mass may all have 

coinciding temporal trends that are correlated with LFMC trends. Temporal trends in a 

single variable, such as water content or a single biochemical component, may be 

difficult to separate using spectral information due to these coinciding temporal trends. 

Several authors have combined band selection methods with PLSR to identify bands 

sensitive to LFMC (Li et al. 2007) and LMA (Serbin et al. 2012), but PLSR coefficients 

may select bands that are not directly caused by water content or dry mass absorption. 

My study makes further efforts to investigate the utility of PLSR for modeling 

multitemporal changes. Accurate estimation of LFMC in conifer species like lodgepole 

pine calls for careful wavelength selection, since water absorption bands may not capture 

seasonal trends and less prominently expressed dry matter may be responsible for most of 

the temporal variability in LFMC. 
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3.5 Conclusions 

Leaf spectra, LFMC, DMP, RWC, and biochemical components measured over a 

May-October study period revealed substantial covariation. New and old lodgepole pine 

needles showed distinctly different seasonal trends in LFMC, with old needles presenting 

little change over time. Biochemical measurements illustrated the underlying foundation 

of LFMC variation, and dry mass appears to be a more important driver of LFMC 

variation than water in lodgepole pine needles. Water and dry mass had similar 

contributions to LFMC variation of sagebrush. These findings coincide with previous 

plant physiological studies for several conifer species and challenge the assumption of 

stable dry mass and leaf structure used in RTM retrieval of LFMC. Lodgepole pine and 

many conifer species can retain multiple years of needles, and new needle growth will 

influence LFMC of the whole canopy. Since much of the canopy reflectance signal 

should come from new needles at the branch tips, the complexity of temporal variation in 

dry mass should make the remote estimation of LFMC at the canopy scale more difficult. 

My PLSR analysis showed good estimation of temporal trends in LFMC and dry mass. 

PLSR coefficients for LFMC and dry mass tended towards high weightings for broadly 

attributable spectral features rather than to discrete absorption features produced by dry 

matter. While choosing correlated wavelength (such as visible and NIR bands) can 

indirectly predict LFMC variation, accurate estimation of dry matter remains an 

important step toward better temporal LFMC monitoring. 

LFMC and many biochemical components could be modeled by PLSR and 

spectroscopic data with reasonable accuracy. My multivariate PLSR model provided new 

insights by taking into consideration the multilinearity between dependent variables in 
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order to isolate spectral signals to a single constituent. Identified spectral features were 

broad and likely dominated by changes in chlorophyll absorption and structural attributes, 

and in the case of sagebrush, changes in water content. Fresh leaf spectroscopy is 

valuable for estimating collective trends in dry matter and LFMC, but might not be 

efficient for modeling individual components of dry mass due to complex 

interdependence. Future work will need to examine how foliar spectral signatures of 

LFMC and dry matter are confounded by canopy structure, leaf area index (LAI), soil 

backscattering and vegetation fraction at the canopy scale.    

LFMC has been a foundational component of the past 40 years of scientific work 

on fire behavior. Previous studies assumed LFMC to represent the changing water 

content of fuels, while fuel loading (i.e., dry mass) remains stable over time. My study 

has demonstrated strong seasonal trends in dry matter variation. Accurate remote 

estimation of LFMC is likely possible for many species based on strongly correlated 

trends in visible, NIR, and SWIR reflectance. However, remotely observed changes in 

LFMC should be regarded cautiously for species with terminal new growth, such as 

lodgepole pine. Temporal trends in LFMC for some species may not indicate the “dry 

down” signal of water frequently attributed to decreasing LFMC, and may have 

important departures from the assumption of constant dry mass used for LFMC in fire 

behavior modeling.  
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CHAPTER 4 

REMOTE SENSING ESTIMATION OF LEAF NET HEAT CONTENT  

FOR IMPROVED ESTIMATION OF FIRE BEHAVIOR 

4.1 Introduction 

Wildfire is a significant disturbance in the terrestrial biosphere. It results in 

carbon sink-source conversion, long-term alteration of CO2 flux, and ecosystem function 

transition (Bowman et al. 2009; Cochrane 2003; Van Der Werf et al. 2006). LFMC is 

defined as the ratio of water content to dry matter content in live vegetation (Equation 

4.1). It is measured by oven drying fresh field samples until all moisture has evaporated, 

and calculating the water content by the mass differences between fresh (mf) and dried 

(md) samples (Lawson and Hawkes 1989; Pollet and Brown 2007): 

    𝐿𝐹𝑀𝐶 =
𝑚𝑓−𝑚𝑑

𝑚𝑑
                                  (Equation 4.1) 

The popularity of LFMC as a measure of fire danger stems from its use as an 

input to the Rothermel (1972) model of surface fire spread rate. Fuel models used in the 

Rothermel-type fire behavior and fire spread models typically assume that dry mass does 

not change over time, and the heat content of dry mass is constant over time and across 

species. However, plant physiology studies have demonstrated seasonal variation in dry 

mass, such that temporal variation in LFMC can be due to changes in both water mass 

and dry mass. Kozlowski and Clausen (1965) found the seasonal decrease of LFMC was 



49 

 

traceable primarily to greater increase in leaf dry mass than to decrease in actual water 

content for several gymnosperms and angiosperms. Chapter 3 found that changes in 

lodgepole pine LFMC were driven by seasonal changes in foliage dry mass instead of 

water content. For big sagebrush, water and dry mass had similar contribution to LFMC 

seasonal change. As a ratio of water to dry mass, the LFMC cannot describe how water or 

dry mass change individually, resulting in an incomplete proxy of fire danger. A more 

direct measure of potential heat release by combustion as a function of both water and 

dry mass could potentially improve both fire behavior and fire danger modeling.   

Fire behavior models use fuel models to parameterize different fuel categories as 

a set of mathematical inputs (Albini 1976; Andrews et al. 2003; Burgan and Rothermel 

1984; Finney 1998; Rothermel 1972). The original 13 fuel models used a single value of 

18.61 MJ kg-1 for heat content in all fuel models. Those fuel models have worked well for 

predicting surface fire spread rate and intensity of active fires at peak of fire season in 

part because the associated dry conditions lead to a more uniform fuel complex, an 

important assumption of the underlying fire spread model (Scott and Burgan 2005). 

However, the actual heat release from burning fuel varies as the water mass and dry mass 

change during the season and across fuel types. Several studies have specified heat 

content variation in a variety of species at greater precision (Dibble et al. 2007; 

Dimitrakopoulos and Panov 2001; Reid and Robertson 2012; Van Wagdendonk et al. 

1998; Williamson and Agee 2002).  

Here, I introduce leaf net heat content (LNHC) as a complementary measure of 

fire danger to LFMC. LNHC is defined as the total heat released by combustion of dry 

matter subtracted by the heat absorbed for preheating and evaporating water (Equation 
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4.2). Heat content (HC) is defined as total heat released from combustion per unit dry 

  𝐿𝑁𝐻𝐶 = 𝐻𝐶 − 𝐿𝐹𝑀𝐶 ∗ (𝐶 ∗ ∆𝑇 + 𝐻𝑉)                    (Equation 4.2) 

mass (J g-1). 𝐶  is the specific heat of water (4.186 J g-1 oC-1), ∆𝑇  is the temperature 

change from ambient temperature to 100 oC, and 𝐻𝑉 is the heat of vaporization of water 

(2260 J g-1). Since LNHC captures independent effects of both water mass and dry mass, 

it is a more direct estimate of combustion energy than LFMC for modeling fire behavior.  

LFMC has been the most frequently used measure of fire danger in remote 

sensing applications (Yebra et al., 2013), as vegetation reflectance spectra respond to 

water and dry matter absorption features. Previous studies have used remotely sensed 

vegetation indices (Dennison et al. 2005; García et al. 2008; Peterson et al. 2008; Qi et al. 

2012; Roberts et al. 2006) and radiative transfer modeling (Jurdao et al. 2013; Riaño et al. 

2005; Trombetti et al. 2008; Yebra and Chuvieco 2009; Zarco-Tejada 2003) to estimate 

LFMC. Since LNHC directly associates with leaf water and dry mass, empirical 

correlations between vegetation indices and LFMC based on seasonal variation may also 

extend to LNHC (Qi et al. 2014; Stow and Niphadkar 2007; Stow et al. 2006). I intend to 

answer these research questions: 1) how do LFMC and LNHC change over time; 2) what 

is the relationship between LFMC and LNHC; 3) is it possible to remotely estimate 

LNHC? LNHC and LFMC were measured using samples from two species over a period 

of three months. I also collected leaf-scale lab spectra and MODIS spectra over the same 

sampling period. Relationships between LNHC, LFMC, and vegetation indices calculated 

from lab and MODIS spectra were analyzed using regression modeling. 
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4.2 Data and Methods 

4.2.1 Study Area 

I studied two common species in the western USA, lodgepole pine (Pinus 

contorta Douglas ex Loudon), an evergreen needleleaf tree species, and big sagebrush 

(Artemisia tridentate Nutt), a semideciduous broadleaf shrub species. I collected field 

samples at two lodgepole pine sites in natural conifer forests and at two big sagebrush 

sites near Missoula, Montana between July and October, 2012. Current-year pine needles 

started to emerge in early June and elongated until the end of growth season. Sagebrush 

started a flush of new leaves in late May. All sites represented relatively homogenous 

patches of the sampled species and spanned a geographic region approximately 558 km2 

in size, with elevations ranging between 1133 and 1590 m. I sampled all four sites once 

per week using a random sampling scheme to include a large number of individuals from 

each species. Current year pine needles and sagebrush branch tips (3-5 cm) were 

collected to represent new growth. About 40 g of foliage were collected and mixed from 

each site on the sampling day, and then stored in sealed plastic bags in a cooler with ice. 

Leaves for measurement of HC, LNHC, LFMC, and spectroscopy were taken from the 

same mixed sample.   

 

4.2.2 HC, LNHC, and LFMC Measurements 

About 0.3 g of oven-dried pine needles and sagebrush leaves were burned in a 

calorimeter to measure HC (J g-1), and the average of three measurements was recorded 

for each site for each date. LFMC was measured for 12 groups of 5 needle fascicles and 

12 sagebrush branch tips at each site. Fresh mass was determined within 4 hours after 
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collection, and then samples were dried in a convection oven for 24 hours at a 

temperature of 95 oC and re-weighed. The difference between fresh mass and dry mass 

was used to determine water mass, and LFMC was calculated using equation 4.1. LNHC 

was calculated using equation 4.2 after pairing HC and LFMC data for each site for the 

same sampling day. Ambient temperature in equation 4.2 was set as 30 oC to approximate 

dry, hot, summer conditions. 

 

4.2.3 Spectroscopic Measurements 

I used an Analytical Spectral Devices FieldSpec4 High-Res spectrometer (380 – 

2500 nm) and an integrating sphere (model RTS-3ZCR2) to measure leaf-scale 

spectroscopic data within 24 hours after sample collection. Pine needles and sagebrush 

leaves were laid side by side to form a flat mat. Measurements used Daughtry’s method 

(Daughtry et al. 1989) with revision by Mesarch (Mesarch et al. 1999) to calculate the 

reflectance and transmittance of a single needle. For both species I measured reflectance 

on the adaxial and abaxial surface of leaves and took the mean as the reflectance for one 

sample. I then measured eight samples on each observation date for each species per site 

and calculated average reflectance spectra. Raw reflectance spectra were convolved to 

bands 1-7 of the Moderate Resolution Imaging Spectroradiometer (MODIS). 

 

4.2.4 MODIS Data 

I downloaded MODIS NBAR MCD43A4 products from the Oak Ridge National 

Laboratory MODIS Global Subsets site (http://daac.ornl.gov/cgi-bin/MODIS/GLBVIZ_ 

1_Glb/modis_subset_order_global_col5.pl, last accessed in May 2014). MCD43A4 is a 
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500 m, 16 day aggregated product that approximates a nadir view zenith angle and solar 

zenith angle for local solar noon. I extracted a single pixel of relatively homogenous 

species cover centering on or adjacent to each sample site. I excluded one sagebrush site 

from MODIS scale analysis because the sagebrush cover was less than one pixel for the 

500 m pixels surrounding the site. In order to preserve the temporal trend of ground 

measurements, multiple LNHC and LFMC within each 16-day MCD43A4 observation 

window were averaged. Cloud and bad band data were masked using the MODIS quality 

assurance layer. 

 

4.2.5 Vegetation Indices and Statistical Analysis 

I calculated a series of vegetation spectral variables using convolved leaf spectra 

and MODIS data (Table 4.1). These include vegetation greenness indices (NDVI, SAVI, 

EVI, and VARI) and water indices (NDWI, NDII6, and GVMI), all of which have been 

used in previous MODIS studies to estimate LFMC (e.g., Caccamo et al. 2012; Dennison 

et al. 2005; Peterson et al. 2008; Qi et al. 2012; Roberts et al. 2006; Stow et al. 2005 ). 

Greenness indices used the red wavelength in the band ratio calculation to account for 

chlorophyll absorption. The chlorophyll content is correlated with water content so the 

greenness indices can be used as indirect indicators for LFMC. Water indices used water 

absorption features in the shortwave infrared to provide a more direct connection to water 

content.  

Since NDVI is prone to soil backscattering effect, SAVI was explicitly designed 

to correct for background soil brightness (Huete 1988). Huete (2002) introduced EVI to 

improve sensitivity in high biomass regions and reduce canopy background signal and  
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Table 4.1 Spectral indices calculated for MODIS including their shortened acronym, 
mathematical formulation and reference. ρ is reflectance and the subscripts refer to 
MODIS bands. 

 

Index Formulation Reference 

Normalized Difference 

Vegetation Index 
NDVI =

ρ2 − ρ1

ρ2 + ρ1
 Rouse et 

al.(1973) 

Soil Adjusted Vegetation 

Index 
SAVI = (1 + 0.5) ∗

ρ2 − ρ1

ρ2 + ρ1 + 0.5
 Huete (1988) 

Enhanced Vegetation 

Index 
EVI =

2.5 ∗ (ρ2 − ρ1)

(ρ2 + 6 ∗ ρ1 − 7.5 ∗ ρ3 + 1)
 

Huete et al. 

(2002) 

Visible Atmospherically 

Resistant Index 
VARI =

ρ4 − ρ1

ρ4 + ρ1 − ρ3
 Gitelson et al. 

(2002) 

Normalized Difference 

Water Index 
NDWI =

ρ2 − ρ5

ρ2 + ρ5
 Gao and Goetz 

(1995) 

Normalized Difference 

Infrared Index 
NDII6 =

ρ2 − ρ6

ρ2 + ρ6
 Hardisky et al. 

(1983) 

Global Vegetation 

Moisture Index 
GVMI =

(ρ2 + 0.1) − (ρ6 + 0.02)

(ρ2 + 0.1) + (ρ6 + 0.02)
 

Ceccato et al. 

(2002) 

 

atmosphere influences. Although leaf spectra did not have influences from soil and 

canopy, I still calculated SAVI and EVI in leaf spectra to compare with MODIS spectra.  

I also calculated canopy water content (CWC) in leaf and MODIS spectra by an inversion 

of Prospect-SailH radiative transfer model (Jacquemoud et al. 1995; Kuusk 1995) 

through an artificial neural network (ANN) combined with NDVI and normalized 

difference indices using 1640 nm and 2130 nm as absorption bands (Trombetti et al. 
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2008). CWC (expressed in mm) was computed as the product of leaf area index and 

equivalent water content. CWC was not designed for application to leaf spectra, but was 

applied to both convolved leaf and MODIS spectra for comparison.  

I conducted bivariate linear regression between LFMC, LNHC and remote 

sensing variables for each site. I reported adjusted R-squared values (R2
adj) and  

normalized root-mean-square-error (NRMSE) to compare model performance (Equation 

4.3). NRMSE gives an indication of actual error without being influenced by the data unit, 

as is the case for RMSE, allowing for comparison of error between measures with 

different units such as LFMC and LNHC (Richter et al. 2012). 

   𝑁𝑅𝑀𝑆𝐸 = 100 ∗
𝑅𝑀𝑆𝐸

𝑅𝑎𝑛𝑔𝑒(𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛)
               (Equation 4.3) 

 

4.3 Results 

Field sampled LFMC, HC, and LNHC values were pooled for each species. 

LFMC for lodgepole pine needles was 202% in mid-July when new growth started to 

emerge (Figure 4.1). As the needles developed, LFMC decreased to 121% in mid-

October. Sagebrush had high LFMC at 239% at the beginning of the sampling period and 

dropped to 71% at the end of September. LFMC rate of decrease over time slowed at the 

end of the sampling period. The HC of pine needles increased from 20226 to 21366 J g-1, 

and sagebrush increased from 19043 to 20601 J g-1 (Figure 4.2). Compared to HC, LNHC 

showed larger seasonal variation due to the inclusion of a water heat sink. The LNHC of 

needles was 15057 J g-1 in mid-July and increased to 18199 J g-1 in mid-October, while 

sagebrush LNHC increased consistently during the sampling period from 12953 to 18779 

J g-1 (Figure 4.3). 
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Figure 4.1 Seasonal trends in LFMC for new pine needles and sagebrush leaves.  
 

 

Figure 4.2 Seasonal trends in HC for new pine needles and big sagebrush leaves. The 
solid line is the standard HC values 18610 J g-1 in Albini (1976).  
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Figure 4.3 Seasonal trends in LNHC of new pine needles and big sagebrush leaves. 
 

LNHC and LFMC were negatively correlated for both species (Figure 4.4). As the 

LFMC decreased during the season, the LNHC increased to its highest values. The R2
adj 

of linear regression between LNHC and LFMC was 0.95 for lodgepole pine needles and 

0.99 for sagebrush leaves. More importantly, lodgepole pine generally had higher LNHC 

than big sagebrush when they presented similar LFMC. For example, pine and sagebrush 

showed 17713 and 16443 J g-1 LNHC, respectively, at 133% of LFMC, which was due to 

the different HC, with 21144 J g-1 for pine and 19848 J g-1 for sagebrush. 

For leaf scale measurements, relationships between vegetation indices and LNHC 

or LFMC varied by the spectral regions used for each index (Figure 4.5). Greenness 

indices generally had lower R2
adj and larger NRMSE than water indices in pine needle 

LNHC models. Three water indices produced comparable R2
adj values with GVMI having 

the highest R2
adj of 0.68 for LNHC at lodgepole pine site 1. Each index produced 

comparable NRMSE between LNHC and LFMC with the average difference within 5%. 
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Figure 4.4 Relationships between LFMC and LNHC for new lodgepole pine needles and 
big sagebrush leaves. 

 

 

Figure 4.5 Linear correlation between LNHC and NDVI and NDWI at leaf scale. (a-b) 
Lodgepole pine site 1; (c-d) big sagebrush site 1. 
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On the contrary, all greenness indices in sagebrush LNHC models showed higher R2
adj 

values and smaller NRMSE than water indices. The VARI at sagebrush site 2 showed 

highest R2
adj of 0.88 and smaller NRMSE of 9.93%. Compared to LNHC, all indices in 

sagebrush LFMC models produced R2
adj values above 0.7. LNHC had smaller NRMSE 

values in greenness indices and higher NRMSE values in water indices than LFMC 

models. The RTM-inverted CWC showed weaker correlation with LNHC than vegetation 

indices at the two lodgepole pine sites. However, CWC performed better for sagebrush 

sites with the highest R2
adj values of 0.81 in LNHC models. In both species, the R2

adj of 

greenness indices in LNHC models were similar to or higher than those in LFMC 

models, but R2
adj of water indices in LNHC models were lower than those in LFMC 

models. Weak correlation between greenness indices and LNHC at leaf scale showed 

nonlinear relationships. For example, the NDVI showed little variation when LNHC 

decreased below 17000 J g-1 at lodgepole pine site 1 (Figure 4.6). While in sagebrush 

NDVI expressed a stronger linear relation with LNHC, NDWI produced higher R2
adj in 

estimating lodgepole pine LNHC than sagebrush.   

For MODIS pixel spectra, the R2
adj of greenness indices in LNHC models 

increased at two lodgepole pine sites (Figure 4.7). For example NDVI increased from 

0.34 to 0.76 at lodgepole site 1 (Figure 4.8). However, the R2
adj values of water indices 

generally decreased, except NDWI at lodgepole pine site 1. As a result, the greenness 

indices outperformed water indices in estimating LNHC of lodgepole pine, and LNHC 

models generally similar to or higher R2
adj than LFMC models. At the sagebrush site, 

both greenness and water indices produced higher R2
adj of LNHC in MODIS pixel  
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Figure 4.6 R2
adj and NRMSE of linear models for leaf spectra. (a-b) Lodgepole pine site 

1, (c-d) lodgepole pine site 2, (e-f) big sagebrush site 1, (g-h) big sagebrush site 2. 
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Figure 4.7 R2
adj and NRMSE of linear models for MODIS spectra. (a-b) Lodgepole pine 

site 1, (c-d) lodgepole pine site 2, (e-f) big sagebrush site 1. 
 

spectra. All greenness indices produced similar R2
adj values about 0.92, while water 

indices produced slightly lower R2
adj values. CWC of lodgepole pine produced lower R2

adj 

values than greenness indices, while sagebrush's CWC showed comparable R2
adj values. 

Comparison between LNHC and LFMC models showed similar NRMSE across all 

remote sensing variables for two species, with the largest difference of about 5% from 

water indices at sagebrush site 1. 
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Figure 4.8 Linear correlation between LNHC and NDVI and NDWI in MODIS spectra. 
(a-b) Lodgepole pine site 1; (c-d) big sagebrush site 1. 

 

4.4 Discussion 

This study showed a species-dependent temporal trend in LFMC, HC and LNHC 

during the growth season. Lodgepole pine generally had larger LFMC/HC and smaller 

LNHC than big sagebrush at the same date. As LFMC decreased in lodgepole pine and 

big sagebrush, HC and LNHC increased by a different mechanism. Qi et al. (2014) 

demonstrated that a seasonal decrease in LFMC in lodgepole pine current-year growth 

needles was mainly attributed to dry matter increase, where LFMC decrease in sagebrush 

resulted from both water and dry matter in similar weight. Multiple biochemical 

components in the dry matter covaried during the season, causing interspecies HC 

difference between lodgepole pine and sagebrush. By considering the water heat sink, 

LNHC and LFMC had a negative, strongly correlated linear relationship. Lodgepole pine 

showed a LNHC about 1000 J g-1 higher than sagebrush at the same LFMC, meaning that 
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LFMC might be a less complete proxy of fire danger. This difference in LNHC was 

caused by HC difference between pine and sagebrush, which was likely due to different 

biochemical composition in the dry matter. The Rothermel (1972) model accounts for 

both LFMC and HC in the surface fire spread rate function. LFMC and HC were 

measured separately to represent specific fuel models, with HC assumed to be uniform 

across seasons and most fuel types on a per dry mass basis. I used standard HC values 

(18600 J g-1, or 8000 BTU lb-1 in Abini 1976, Scott and Burgan 2005) to calculate 

standard net heat as function 4.3. The standard net heat consistently underestimated the 

LNHC for two species, and the estimation difference become larger with higher LNHC 

(Figure 4.9). LNHC provides a direct measure to aggregate these two variables for an 

appropriate proxy for fire danger. LNHC is easily measured in the calorimeter and can 

use the same samples as used for measuring LFMC, so it would be valuable to include 

LNHC in field sampling protocols along with LFMC. 

My study also demonstrated that LNHC can be spectrally estimated with 

vegetation indices and RTM inversion with comparable correlations and error to LFMC. 

Indices based on water absorption features outperformed indices based on chlorophyll 

absorption and differences in visible-NIR reflectance at the leaf scale, likely since LNHC 

is more directly related to water absorption than chlorophyll absorption. The reversal in 

the performance of water absorption and greenness-based indices for MODIS data is 

potentially attributable to the multiple scattering effects in canopies. Linear regression 

models showed that vegetation indices can estimate LNHC and LFMC with comparable 

NRMSE and R2
adj in MODIS pixel spectra. For example, EVI produced the highest R2

adj 

values (0.8) and smallest NRMSE (13.7%) in both LFMC and LNHC models at two  



64 

 

 

Figure 4.9 Comparison between LNHC and standard net heat. Standard net heat was 
calculated as standard HC subtracted by water heat sink as function 4.2.   

 

lodgepole pine sites. Previous studies have shown that vegetation indices and RTM 

methods had comparable performance for estimating LFMC, but RTM was more robust 

for applications across different species and sites (Yebra et al. 2008). The RTM-inverted 

CWC generated different results between leaf spectra and MODIS pixel data. It showed 

similar performance as vegetation indices at sagebrush sites, but it did not produce high 

R2
adj values at lodgepole pine sites. The spatial estimation of LNHC at MODIS scale 

could be incorporated into fire behavior models. Future work is needed to explore the 

upscaling of LNHC from leaf to canopy scale with RTM simulation.  

 

4.5 Conclusions 

This study introduced a new variable LNHC to facilitate fire danger assessment 

and fire behavior modeling. LNHC in lodgepole pine and sagebrush increased from July 
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to October as the LFMC decreased, and it showed a negative linear correlation LFMC. 

Two species produced different LHNC at the same LFMC due to different biochemical 

components in the leaf dry mass. This finding demonstrates the complexity of using 

LFMC as the fire danger indicator. LNHC is designed to measure actual heat release by 

considering both heat source by dry mass and heat sink by fuel moisture. It subtracts the 

HC of dry mass by absorbed heat for preheating and water evaporation. The LNHC could 

provide more direct measurement of energy release than LFMC. This study demonstrated  

the potential utility of using remote sensing variables to estimate LNHC. Greenness 

indices showed better modeling performance than water indices in MODIS spectra, 

though CWC did not produce better results over standard vegetation indices. LNHC 

could be estimated with similar NRMSE as LFMC. In combination with future analysis at 

canopy scale, this study showed the promising potential of remote sensing of LNHC to 

supplement assumption of constant HC in fuel models without having to separately 

model HC in addition to LMFC. Spatial and temporal monitoring of LNHC could be of 

great benefit to fire behavior modeling and fire danger estimation with the availability of 

models capable of appropriately using this information.  
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CHAPTER 5 

 

CONCLUSIONS 

 

This dissertation focused on the physical foundations of remote sensing 

estimation of LFMC and fire danger. Chapters 2-4 dealt with three perspectives of LFMC 

seasonal variation. All research questions were answered by this dissertation and research 

objectives were fulfilled.  

The research questions in Chapter 2 were: "1) Whether soil moisture has potential 

as an LFMC proxy? 2) How does soil moisture as a proxy for LFMC estimation compare 

to remote sensing proxies?" Chapter 2 collected ground soil moisture measurements and 

MODIS data in 2010 and 2011 for Gambel oak (Quercus gambelii Nutt) and big 

sagebrush (Artemisia tridentata Nutt), and constructed linear regression models with 

field-sampled LFMC. The results demonstrated that soil moisture can produce the lowest 

mean absolute error (MAE) in predicted LFMC values at most of the sites when 

compared with remote sensing measures. Soil moisture can potentially provide an 

alternative to remote sensing for frequent temporal monitoring for LFMC estimation. 

When sites were pooled, canopy water content (CWC) had stronger correlations with 

LFMC than normalized difference vegetation index (NDVI) or normalized difference 

water index (NDWI). Although remote sensing proxies showed less strong correlations 

with LFMC in this study, their estimation power could be improved by using high quality 
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MODIS data and more homogeneous sites. MAE values for all proxies were frequently 

above 20 % LFM at individual sites.  Despite this relatively large error, remote sensing 

and soil moisture data may still be useful for improving the understanding of spatial and 

temporal trends in LFMC.    

The research questions in Chapter 3 were: "1) How do LFMC and dry mass 

change during the growth season? 2) How do biochemical components in dry mass 

contribute to LFMC change and covary over time? 3) How can leaf spectroscopy track 

seasonal variability in LFMC and dry mass? 4) Can PLSR provide new insights into 

temporal spectral variation due to changes in LFMC and dry mass?" Chapter 3 integrated 

5 months of field sample and lab measurements in May-October 2012 for two species 

common in the western US, lodgepole pine (Pinus contorta Douglas ex Loudon) and big 

sagebrush (Artemisia tridentata Nutt), and then examined seasonal variation in LFMC, 

leaf dry mass, and leaf spectroscopy. The results showed that new lodgepole pine needles 

initially had higher LFMC and a smaller proportion of dry mass, but differences between 

new and old needles converged as the new needles matured. New needle dry mass had 

strong temporal trends, and dry mass explained more variation in LFMC than water in 

both new and old needles. Sagebrush leaves exhibited decreasing trends in LFMC, but 

water and dry mass comparably contributed to LFMC seasonal variation. Spectroscopic 

analysis using partial least squares regression (PLSR) showed good modeling accuracy 

for LFMC temporal variation in new needles (R2 = 0.94, RMSE = 5.84%), old needles 

(R2 = 0.72, RMSE = 3.51%), and sagebrush (R2 = 0.91, RMSE = 21.03%). Spectral 

variation in response to changing LFMC and dry mass was difficult to isolate from 

broader spectral trends due to chlorophyll absorption, leaf structure, water absorption, 
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and covaried biochemical components. The results stressed cautious spectral 

interpretation and wavelength selection for LFMC estimation in some species (e.g., 

lodgepole pine), since temporal changes in spectra may dominantly reflect temporal 

variation in dry mass, pigments, and/or structure rather than water content. Since new 

needles should have stronger spectral expression at the canopy scale, differing temporal 

trends in new and old lodgepole pine needles provide an additional complicating factor 

for remote monitoring of LFMC. 

The research questions in Chapter 4 were: "1) How do LFMC and leaf net heat 

content (LNHC) change over time; 2) What is the relationship between LFMC and 

LNHC; 3) Is it possible to remotely estimate LNHC?" The study measured LNHC and 

LFMC for lodgepole pine and big sagebrush in July-October, 2012. I also collected leaf-

scale spectroscopy and MODIS pixel spectra over the same sampling period. Lab spectra 

of leaf samples convolved to MODIS bands and single MODIS pixel spectra were used to 

calculate vegetation indices. Linear regression was used to compare relationships 

between vegetation indices and both LNHC and LFMC over time. The results showed 

LNHC and LFMC were strongly correlated for current-year needles and sagebrush 

leaves, with LNHC increasing over time and LFMC decreasing over time. Relationships 

between LNHC and LFMC were species dependent. Vegetation indices of MODIS pixel 

spectra generally produced comparable R-squared values and normalized root mean 

squared error for fits to LNHC and LFMC trends. Greenness indices were more strongly 

correlated with LNHC than water indices. This study suggests that LNHC is a more 

direct measurement of fire danger than LFMC. MODIS data have potential utility for 

estimating temporal trends in LNHC. 



69 

 

LFMC is one of the primary fuel variables in fire danger assessment systems (e.g., 

Deeming et al. 1978; Stocks et al. 1989) and fire behavior models (e.g., Andrews 1986; 

Rothermel 1972). LFMC changes with two fundamental mechanisms, environmental 

conditions and plant physiological processes. The accurate LFMC prediction requires a 

deeper understanding of LFMC seasonal changes with these two mechanisms. The first 

major contribution of this dissertation is advancing current knowledge of how LFMC 

varies with soil moisture as one environmental variable. It constructs empirical 

relationships between soil moisture and LFMC of Gambel oak and big sagebrush. The 

decreasing trend in the soil moisture correlates with the dry-down trend in LFMC during 

the dry and hot summer and fall. This demonstrates that soil water availability is likely a 

control on LFMC. The second contribution is decoupling the water and dry matter 

sources of LFMC seasonal change by focusing on lodgepole pine and sagebrush. For the 

first time, I examine biochemical components varying along with LFMC and explain the 

role of dry matter. This result warns against the false assumption of constant dry matter 

and suggests a more careful interpretation of LFMC decrease as a dry-down signal. 

The third contribution is to the remote sensing estimation of LFMC. To date, no 

satellite-based LFMC product has been operationally integrated into wildfire danger 

assessment. One of the theoretical challenges is the difficult retrieval of dry matter. The 

absorption feature of water content usually masks the dry matter spectral signature, since 

water has larger absorption coefficients over most of the solar-reflected spectrum. Some 

physical methods for estimating LFMC have relied on the assumption of constant dry 

matter during the season (Riaño et al. 2005). As the first study emphasizing the temporal 

trend in dry matter, this study demonstrates the dry matter change over time, and the 
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spectral response to LFMC and dry matter change is not isolated from confounding 

absorptions of water, pigment and biochemical components. This study will potentially 

improve the physical methods by providing realistic ranges of parameters for solving the 

ill-posed RTM inversion problem. This study will also enhance the utility of PLSR in 

imaging spectroscopy for LFMC estimation. The fourth contribution is improving on 

LFMC by introducing LNHC as a direct measure of fire risk. This study demonstrates the 

potential for LNHC estimation with remotely sensed data such as MODIS. The spatially 

variable LNHC will allow a more comprehensive fire risk assessment system and could 

be used by fire behavior modeling.  

Operational LFMC or LNHC estimation with remote sensing is important for 

spatial and temporal monitoring of fire danger. Future work will need to increase 

prediction accuracy. Hyperspectral sensors such as AVIRIS and the planned HyspIRI 

mission would provide continuous spectral domain and higher spatial resolution to 

improve LFMC estimation, though their temporal resolution cannot provide frequent 

monitoring capacity. Moderate resolution sensors such as MODIS and newly launched 

VIIRS would potentially provide weekly or daily products by validation with 

hyperspectral sensors. This dissertation conducted spectroscopic analysis at leaf scale. 

Future studies will examine changes in canopy spectra in response to LFMC and dry 

matter over time, by either continuous field spectroscopy over canopy or satellite data in 

homogeneous species patch. More research is needed to test how covaried biochemical 

components are expressed in spectra at canopy scale, and for evergreen plants, how 

canopy spectra resemble combinations of spectral characteristics from new and old leaves. 

This research calls for a more careful interpretation by the end-user community for 
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LFMC seasonal variation in conifer species, since LFMC decrease coincides with dry 

matter accumulation and LNHC increase. This research will contribute to the 

fundamental knowledge of the risk and impact of wildfires. It will also provide 

significant societal benefit for the fire management community and governmental 

agencies, assisting in development of strategies and policies for disaster and resource 

management. 
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APPENDIX 

LEAF SPECTROSCOPY PROCEDURES 
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This study used field spectrometer ASD FieldSpec4 High-Res spectrometer 

linked with an ASD integrating sphere (model RTS-3ZCR2) to measure needle 

reflectance and transmittance. Smaller than broad-leaves, needles cannot cover the whole 

sample port on the integrating sphere. Two categories of methods have been developed to 

handle needles and small leaves: Daughtry’s method (Daughtry et al. 1989) revised from 

Mesarch (Mesarch et al. 1999), and Harron’s method (Harron 2000). In Daughtry’s 

method, needles were laid side by side to form a flat mat. Optical properties were 

measured on the mat, and individual needles reflectance and transmittance were derived 

from the mat measurements by correcting gap fraction between needles. Mesarch 

investigated the effect of gap fraction on optical measurements and proposed a threshold 

of 0.2 under which the measurements could be trusted. He also suggested an image 

analysis-based method for calculating gap fraction to replace error-prone painting 

methods in Daughtry’s paper. The gap fraction has been the major criticism in 

Daughtry’s method. It significantly changes the optical measurements by introducing 

complex light scattering between gaps, mostly due to the hemicylindrical shape of 

needles. As a result, it decreases the signal-to-noise ratio especially in longer wavelengths. 

To solve this problem, Harron’s method designed a customized needle-carrier to hold the 

samples, which fixed the gap fraction and eliminated specular reflectance on the abaxial 

surface. Mathematic calculation can correct the carrier effect and derive individual needle 

reflectance and transmittance.  

In my study, I choose the Daughtry’s method instead of Harron’s method. One 

reason is the timely schedule and lack of access to the manufacture of leaf sample holders. 

More importantly, Harron’s thesis showed that the almost constant offset between 
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measurements in Daughtry’s method and Harron’s method was majorly attributed to 

underestimated gap fraction when measuring abaxial surface, where curved surfaces 

enlarged the actual gaps between needles by specular reflection. The geometrical design 

of needle carrier caused an underestimation of needle reflectance and transmittance 

(Zhang et al. 2008). It is thus reasonable to argue that better work on the needle mat 

configuration and gap fraction computation would limit the errors in optical 

measurements.  

The function to calculate reflectance is (Mesarch et al. 1999): 

     ρ = ρtotal

1−𝐺𝐹
     (1) 

where ρ = reflectance of individual needle 

     ρtotal = 𝑅𝑡𝑜𝑡𝑎𝑙−𝑆𝑇𝑅

𝑅𝐸𝐹−𝑆𝑇𝑅
    (2) 

𝑅𝑡𝑜𝑡𝑎𝑙 = total reflected radiation from the sample 

𝑆𝑇𝑅 = tray light radiation 

𝑅𝐸𝐹 = reflected radiation from a BaSO4 reference standard 

GF = gap fraction on the sample 

The function to calculate transmittance is: 

     τ = [τtotal − (𝜌𝑤𝐺𝐹)]
1

1−𝐺𝐹
   (3) 

τ = transmittance through individual needle 

     τ total = 𝑇𝑡𝑜𝑡𝑎𝑙

𝑅𝐸𝐹−𝑆𝑇𝑅
     (4) 

𝑇𝑡𝑜𝑡𝑎𝑙 = total transmitted radiation through the sample 

𝜌𝑤 = reflectance of the integrating sphere wall 

Different port configuration on the integrating sphere needs to be applied to the 
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measurements above. Turn on the spectrometer at least 15 min to warm up before taking 

measurements. Collecting all spectra in ratio mode (i.e., run a white reference with the 

sphere in the reflectance configuration) is preferred over collecting raw DN or radiance 

mode. Optimize the spectrometer and take the white reference first in each sample 

measurement. Reflectance port setup shown in Table A.1. Transmittance port setup 

shown in Table A.2. In equation (2), ρtotal = (Rs−Rd)∗Rr

(1−Rd)
, where Rr = reflectance of the 

calibrated reference standard. In equation (4), τtotal = (𝑇𝑠−𝑅𝑑)

(1−𝑅𝑑)
.  

Table A.1. Integrating sphere plug configuration in reflectance mode. 

Port Reflectance Reference Reflectance Sample Dark Reading  
(Stray light correction) 

 Rr Rs Rd 

[A] Collimated light 
source 

Collimated light 
source Collimated light source 

[B] Sample+Light trap Reference standard Reference standard 

[C] Reference standard Sample+Light trap Open port with light 
trap 

[D] White plug White plug White plug 
[E] White plug White plug White plug 

Table A.2. Integrating sphere plug configuration in transmittance mode. 

Port Reflectance Reference Transmittance Sample 
Dark Reading 

(Stray light 
correction) 

 Rr Ts Rd 
[A] White plug White plug White plug 

[B] Uncalibrated zenith 
standard Uncalibrated zenith standard Open port with light 

trap 

[C] Sample Open port with light trap Uncalibrated zenith 
standard 

[D] Collimated light 
source 

Collimated light source and 
sample 

Collimated light 
source 

[E] White plug White plug White plug 
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Middleton et al. (1997) reported a clear discrepancy between needle adaxial and 

abaxial optical properties. To make more realistic estimation of needle albedo for 

upscaling to canopy level, I will measure both sides of needle surfaces. The average of 

abaxial and adaxial reflectance and transmittance will represent needle optical properties 

in situ. Ideally the needle should be arranged side by side at the same surface as closely 

as possible to make a relative homogenous flat mat. The needles are taped at two ends. I 

have designed a sample holder for needle and sagebrush leaves with an alignment mark 

with the purpose of :1) stabilize the bundle to minimize gap variation due to sample 

movement and gravity; 2) ensure the same needle area will fill the field of view of light 

source when changing ports configuration; 3) make the gap fraction measurement easier. 

Sagebrush leaves are too short to fit the sample port on the integrating sphere. The blue 

print of leaf mounts will be designed to align with ports on the integrating sphere in order 

to ensure the same area will be illuminated when changing plug configuration (Figure 

A.1). The sample holder painted in black does not contribute to the total reflectance or 

transmittance.  

 

Figure A.1 Blue print of the sample holder.  
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The needle sample is subsequently scanned with a double-lamp desktop scanner   

at resolution of 1200 dpi above (to prevent the occurrence of needle objects shadow in 

scanned image). GF is retrieved from 8-bite gray-scale scanned images as the ratio of the 

total number of white pixels (air gaps, greater than a threshold value determined in situ, 

zero is black, 255 is white) to the number of pixels of the total measured (illuminated 

area) within the mount aperture (Di Vittorio 2009; Rautiainen et al. 2012). The 

spectroscopy steps are as follows:  

1. For each one sample, 10-12 needles can make a flat needle mat on the sample 

holder (flat black painting cardboard). Clean the needle surfaces if needed. Put 

double-side tape on the holder sides first, be careful to align adaxial (flat) surfaces 

of needles on the holder and minimize the gap, cover two ends of needles with 

black PVC tape. Three to four sagebrush leaves can fill up the sample holder 

aperture. Try to align the leaf surface at the center of the aperture and gaps to the 

edge in order to minimize gap effect within the illumination area.  

2. Group 16 samples into new and old categories. Set up spectrometer and 

integrating sphere and take lab spectroscopy separately. Connect the optical fiber 

to the top port of integrating sphere. Be careful to keep the fiber in a relaxed 

position. The underlying reason is that, assuming the variation within one 

category is less than 20%, the white reference measurement can be taken only 

once for each category, which will speed up following measurements.   

3. In the new needle category, turn on the spectrometer 60 min before taking 

measurement, then the laptop. Turn on the light source 5 min before 

measurement. In RS3 software, “control” – “adjust configuration,” increase the 
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“spectrum” to 200 in order to optimize the signal-to-noise ratio, especially in the 

SWIR2 (This means the spectrometer will take 200 scans and average them to one 

measurement).  

Face the adaxial surface toward the sample port on the integrating sphere port [B]. 

Set up the integrating sphere in reference mode (Rr in Table A.1), optimize the 

spectrometer and take the white reference.  

4. Take the stray light measurement (Rd in Table A.1). Only one measurement is 

necessary, and the measurement can be used repeatedly in future reflectance 

measurements.  

5. Take one measurement of sample reflectance (Rs in Table A.1). This is the 

reflectance on adaxial surface. Repeat this step for all eight samples in one 

category.  

6. Flip the sample to face abaxial surface toward sample port on the integrating 

sphere port [B]. Set up the integrating sphere in reference mode (Rr in Table A.1), 

optimize the spectrometer and take the white reference again.  

7. Take the stray light measurement (Rd in Table A.1). Only one measurement is 

necessary, and the measurement can be used repeatedly in future reflectance 

measurements. 

8. Take one measurement of sample reflectance (Rs in Table A.1). This is the 

reflectance on abaxial surface. Repeat this step for all eight samples in one 

category. 

9. Face the adaxial surface toward the light source on the integrating sphere port 

[C]. Replug the integrating sphere in transmittance mode (Rr in Table A.2), 
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optimize the spectrometer and take the white reference. 

10. Take the spray light (Rd in Table A.2). Only one measurement is necessary, 

and the measurement can be used repeatedly in future transmittance 

measurements. 

11. Take one measurement of sample transmittance (Ts in Table A.2). This is the 

transmittance on adaxial surface. Repeat this step for all eight samples in one 

category.  

12. Flip the sample to face abaxial surface toward the light source on the 

integrating sphere port [C]. Replug the integrating sphere in transmittance mode 

(Rr in Table A.2), optimize the spectrometer and take the white reference again. 

13. Take the spray light (Rd in Table A.2). Only one measurement is necessary, 

and the measurement can be used repeatedly in future transmittance 

measurements. 

14. Take one measurement of sample transmittance (Ts in Table A.2). This is the 

transmittance on abaxial surface. Repeat this step for all eight samples in one 

category. 

Based on the statement in step 2, repeat steps 3-14 for old needle category. 
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