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Abstract

High resolution computational weather models are becoming increasing complex. However, the analysis of these

models has not benefited from recent advancements in volume visualization. This case study applies the ideas

and techniques from multi-dimensional transfer function based volume rendering to the multivariate weather

simulations. The specific goal of identifying frontal zones is addressed. By combining temperature and humidity

as a multivariate field, the frontal zones are more readily identified thereby assisting the meteorologists in their

analysis tasks.

1. Introduction

High resolution computational weather models are widely

used throughout the world10; 14; 15. Recent advancements in

volume visualization can benefit the analysis of these in-

creasingly complex and higher fidelity datasets. Meteorol-

ogists employ similar methods to analyze weather models

as they would to track sensed weather data. These meth-

ods are effective at providing forecasts but lacks the detailed

information to accurately model such features as baroclinic

zones, more commonly known as fronts.

Baroclinic zones, or fronts, form the boundary between

airmasses with different temperature and humidity charac-

teristics. It is precisely these differences in thermal charac-

teristics which provide the energy by which, under the right

circumstances, a wave-like perturbation along the front may

amplify to form a mid-latitude storm. Dynamics along cold

fronts are also responsible for much of the summer severe

weather experienced in mid-latitudes. Hence, fronts are very

important for meteorologists.

There exists a “classical” frontal theory, in which fronts

consist of a zone of strong thermal gradient, both at the

surface and extending in the vertical, potentially to the

tropopausey. The fronts slope in the vertical toward the

colder airmass, with cold fronts having a sharper slope

than warm fronts. Classic warm frontal weather consists

of continuous rain, with possibly some embedded convec-

tion, while cold fronts tend to produce convection, including

showers and thunderstorms, the latter potentially resulting in

hail, damaging winds, tornadoes, etc.

In the real world, things are often not “classical”. The ver-

tical extent of fronts are difficult to analyse explicitly due to

the poor resolution of data in the free atmosphere, so mete-

orologists tend to concentrate on the surface manifestation.

Surface features however can be masked by various phenom-

ena including terrain, radiative effects, low-level moisture

sources and sinks, cloud cover, etc.

1.1. Current Techniques

There are many different methods employed for the analysis

of fronts. The standard joke is that if you put twelve meteo-

y The tropopause is a term referring to the top of the troposphere,

which is the layer of the atmosphere extending outward 7 to 10 miles

from the earth’s surface.
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rologists in a room, they will come up with a dozen frontal

analyses for the same situation. This illustrates that there are

many different ways to attack the problem. The critical sur-

face fields are temperature and humidity, as noted above.

Also important are the surface pressure, pressure tendency

(the three-hourly change in pressure), and wind fields, since

fronts tend to be found in pressure troughs. There are char-

acteristic signatures of fronts to be found in satellite imagery

as well.

In terms of the upper structure of fronts, operational me-

teorologists at the Canadian Meteorological Centre objec-

tively analyse or forecast 1000-500 hPaz thicknesses, 850

hPa thetawx and 250 hPa jet stream chart in addition to other

data sources such as radiosonde, satellite, and aircraft data.

The thicknesses are proportional to the average temperature

in that layer of the atmosphere, giving a good indication

of where there are strong thermal gradients. The 850 hPa

thetaw also gives a good indication of the thermal gradients

at a level that is low enough in the atmosphere where most

fronts will appear, while high enough to be separate from

most terrain effects. The jet stream is an artifact of thermal

gradients, through the thermal wind equation, which states

that the vector difference in the wind between two levels in

the atmosphere is proportional to the average horizontal tem-

perature gradient in that layer.

Since the summer of 2000, meteorologists at the Cana-

dian Meteorological Centre (CMC) have been using a graph-

ical editor (called Edigraf) to do their frontal analyses on-

screen. This application allows the meteorologist to over-

lay any number of model generated meteorological fields,

data and satellite imagery, enabling a comprehensive view

of the atmosphere. This application takes advantage of color

mapped scalar data, glyphs, and contours.

There has been a wealth of other visualization systems

used in weather forecasting and analysis. The most widely

used is Vis5D3; 4. This package uses scalar and vector visu-

alization methods such as isosurfacing, vector glyphs, and

volume rendering. However, all scalar render modalities are

univariate. Other packages add various analysis capabilities

but still are limited to univariate fields12; 13; 15.

2. Background

Volume rendering is an important technique for scalar field

visualization. Most volume rendering systems set color and

opacity based on a single scalar value. Levoy’s seminal

work8; 9 in volume rendering utilized 2D transfer functions

of data value and gradient magnitude. The use of multi-

dimensional transfer functions has all but disappeared from

the literature and commercial volume rendering tools, with

z Pa is the offical metric unit of atmospheric pressure. hPa means

hecto-pascal, it is equivalent to mb or millibar.
x Thetaw or theta-w is the wet-bulb potential temperature.

a few exceptions5; 6. One reason for this is that the process

of selecting a good 1D transfer function is often trial and er-

ror. The complexity of this process is compounded by the

additional degrees of freedom introduced by adding dimen-

sions to the transfer function. Another reason stems from

the popularity of graphics hardware volume rendering tech-

niques. Until recently, multi-dimensional table lookups were

not possible, even on very high-end graphics hardware.

Simulation and medical applications which require visu-

alization often produce multiple values per sample point, or

voxel. Clearly, multi-dimensional transfer functions could be

beneficial in the analysis of such data. Analysis of multivari-

ate fields in the context of color images has led to some in-

teresting methods for both segmentation and rendering.

2D color image segmentation is an example of multivari-

ate classification. A detailed description of this process can

be found in 11 and the references contained therein. Sapiro’s

approach uses multivariate derivative measures to guide im-

plicit surface evolution.

Ebert et al.2 investigate the mapping of multi-valued color

data to a scalar density or opacity. They have developed

different techniques for managing the multi-value mapping,

while directly rendering volumes from photographic data.

They use a two step method which maps RGB into the CIE

L = U = V color space. This allows them to explore pho-

tographic images without committing to an a priori segmen-

tation. While this approach allows users to classify the data

based on the behavior of a gradient magnitude measure, it

lacks a mechanism to specify an arbitrary transfer function

based on the color data directly.

Current volume rendering approaches for visualizing

multi-valued datasets rely on separate transfer functions for

each modality, and then combine them16. The composite vi-

sualization can simply overlay the classified modalities or

use portions of the different transfer functions, for instance

color from one modality and opacity from another. Others

combine visualization techniques such as isosurfaces and

glyphs to convey the relationship of values from each of the

modalities3; 4; 14.

Laidlaw7 describes a framework for contrast enhancement

and pulse sequence optimization for spin-echo MRI data

acquisition using multi-valued fields. This approach also

demonstrates the utility of using multiple pulse sequences to

better classify materials for visualization using 2D transfer

functions.

Recent advancements in graphics hardware have enabled

the use of multi-dimensional transfer functions within an in-

teractive framework6. A key feature of this approach is the

ability to set transfer functions that emphasize regions of in-

terest using a straight forward point and click interface, a

process known as dual-domain interaction. This work ex-

plores multi-dimensional transfer functions restricted to the

scalar value, the magnitude of the gradient of the field, and
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the signed second derivative magnitude in the gradient direc-

tion of the field.

3. Multi-Dimensional Transfer Functions for

Multi-Fields

The goal of this case study is to explore the utility of multi-

dimensional transfer functions for the visualization of multi-

variate fields. It is often the case that numerical simulations

and medical image acquisition techniques produce a number

of data values per sample point. Together, these data values

may describe a phenomena or feature of interest better than

any one of them in isolation.

Our system allows the user to specify a fully general

multi-dimensional transfer function with up to three axes.

For instance, the first two axes can map data values and

the third can map the gradient magnitude of the multi-value

field. For multi-dimensional transfer functions with greater

than three axes, the additional axes are treated as sepa-

rable portions of the transfer function. The use of multi-

dimensional transfer functions is advantageous for volume

visualization because a feature of interest may not be lo-

calized in the data space of any single variable. Creating a

higher dimensional data space by adding independent or de-

rived variables to the transfer function increases the likeli-

hood that a feature can be classified. We have found this to

be true in our attempts to visualize airmasses in atmospheric

simulations. In this case the feature of interest is the frontal

zones of airmasses. This feature is not adequately described

by either temperature or humidity alone, nor does there exist

a mathematical formulation capable of classifying it a priori.

Given the difficulty of specifying a multi-dimensional

transfer function, we find dual-domain interaction to be an

important interaction modality for dataset exploration. Dual-

domain interaction is the process of setting a transfer func-

tion based on values queried, or pointed at, in the spatial do-

main of the volume rendering6 . This is especially important

for multi-dimensional transfer functions, given the complex

relationship between a feature of interest and the ranges of

data values that describe it.

It has been shown that gradient magnitude is a use-

ful measure for data classification in volume rendering

applications5; 6; 8; 9. Gradient measurement is a well defined

operation for scalar datasets. Gradient estimation for multi-

valued fields, however, is not well defined. For this rea-

son we choose a gradient measure with demonstrated effec-

tiveness for color image edge detection. Our formulation is

taken from 1; 11, but is repeated here for convenience with

notation for 3D fields.

Let �(u1; u2; u3) : <3 ! <
m. This defines a multi-

valued 3D field with m elements at each sample, ie. each

sample is a vector in<m. The difference between two points,

P = (u01; u
0

2; u
0

3) and Q = (u11; u
1

2; u
1

3), is a vector in <
m

given by:
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When the distance between P and Q tends to zero the

difference becomes the vector in <m
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The use of this measure for color image edge detection is

simplified by the fact that each of the color channels have

the same dynamic range. This is most often not the case

for simulation data. We handle this by multiplying each data

channel’s derivative by a weight constant. Our heuristic for

determining the weight for each channel is to take the recip-

rocal of that channel’s maximum data value minus its min-

imum data value. This prevents a channel with a very high

dynamic range from dominating the derivative calculation.

This heuristic assumes that each channel should have equal

influence in derivative estimation relative to the other chan-

nels and there are no outliers. This may not always be desir-

able. Domain specific knowledge may be required to adjust

these weights so that the feature or phenomena will be accu-

rately represented in the visualization. We can express this

component-wise multiply as a m�m scale matrix W with

diagonal elements equal to the m per-channel weight con-

stants. We now have

d� =W

 
3X

i=1

Æ�

Æui
dui

!
; W :=

2
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In the above equations, [gij ℄ is a metric tensor which de-

scribes the rate of change in all directions. One way to ac-

cess the total change at a location is to take the L2 norm

of this matrix. Clearly there are other ways to extract mean-

ingful information from this tensor, such as the magnitude

of the largest eigenvalue or the sum of the eigenvalues (the

trace). In any case, this value can then be used as an addi-

tional axis in the transfer function. Given the limitations of

modern graphics hardware, we apply the gradient portion of

the transfer function separably for fields with three or more

values per sample.

Lighting provides the human visual system with impor-

tant cues about the shape and curvature of surfaces. Lighting

for scalar volumes is often done by pre-computing the nor-

malized gradient for each sample in the volume. This vec-

tor is then used as the surface normal for a graphics light-

ing model. This is appropriate for volume visualizations of

features near regions with high gradient magnitude. The ap-

proach for generating multi-field gradients discussed above

provides the orientation but not the absolute direction. The

choice of gradient is often the eigenvector corresponding to

the largest eigenvalue of the metric tensor. Thus, lighting

with these gradients does not provide robust results since the

gradient can flip direction in local neighborhoods, and the

choice of eigenvector may not be clear when two or more

eigenvalues have the same or similar values. Furthermore,

this orientation may not even correspond to the surface of the

classified region. Our approach uses an atmospheric lighting

model which does not rely on a surface normal, see Figures

3 and 4. This lighting model simply attenuates light through

the volume, providing simple but robust lighting.

4. Results

A comparison with satellite imagery suggests that additional

information can be gained from the volume rendered multi-

fields.

Figure 1(a) shows a map of the globe underlying the sim-

ulation data. The data was generated using a forcing func-

tion from atmospheric measurements. Figure 1(b) shows the

results of analysis by an expert with access to all relevant

variables of the simulation including temperature (shown in

Figure 1(c)), humidity (shown in Figure 1(d)), and pressure,

as well as derived data such as dew point and wet-bulb tem-

perature. We have investigated the use of multi-dimensional

transfer functions with various combinations of these values

and found temperature and humidity to be the most appro-

priate for this task.

Figures 2(a) and (b) show the results of a composite vol-

ume rendering that combines the attributes from two sepa-

rate transfer functions, one for temperature and one for hu-

midity. In this case color is taken from one transfer function

and opacity is taken from the other. While a user could learn

to read this type of visualization, we feel that this approach

(a) Map (b) Expert Analysis

(c) Temperature (d) Humidity

Figure 1: (a) shows a map of the dataset extent. (b) shows

the expert analysis using Edigraph. (c) and (d) show slices

of temperature and humidity, respectively, passed through a

spectral color map.

would not adequately capture the complex relationship be-

tween the data channels being visualized. However, if one

desires this effect, it can easily be duplicated using a multi-

dimensional transfer function.

(a) Color = Temperature,

Opacity = Humidity

(b) Color = Humidity,

Opacity = Temperature

Figure 2: This is an example of volume rendering using

properties from each of the data channels. In (a), color

varies only with temperature and opacity varies only with

humidity. (b) shows the reverse of this, color with humidity,

opacity with temperature.

Figures 3 and 4 show the results of a 3D transfer function

specified using dual-domain interaction. These illustrations

represent different timesteps in the simulation. The horizon-

tal axis of the transfer function maps temperature, the ver-

tical axis maps humidity, and a third axis, which is not ex-

plicitly shown, maps the multi-gradient magnitude described

in Section 3. The opacity assigned to low gradient magni-

tudes can be restricted by manipulating the sliders located
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at the top of the transfer function widget. These transfer

functions could be set by hand in the transfer function do-

main. However, the additional feedback from the transfer

function being updated as the queried location changes al-

lows a user to identify features of interest more intuitively.

A more detailed explanation of dual-domain interaction can

be found in 6. This process is important given the fact that

small changes to the transfer function may result in large

unintuitive changes to the classified regions in the volume

rendering. The interface between warm and cold airmasses

is made apparent using dual-domain interaction; when the

queried position passes through the interface between air-

masses, the classified regions make a dramatic shift from one

side of the boundary to the other. This effect can be seen in

the second half of the accompanying animation. Adding the

ability to animate the data over several 6-hourly analysis pe-

riods allows the meteorologist to see the evolution of frontal

zones and airmasses; an example of this can be seen in the

first part of the accompanying animation.

Figure 3: This figure demonstrates the full expressivity of

a multi-dimensional transfer function. The transfer function

was created using dual-domain interaction. The sliders on

the top of the transfer function widget allow us to restrict the

opacity applied to samples with low gradient magnitudes.

Blue regions indicate cold airmasses, red regions indicate

warm airmasses.

By combining temperature and humidity, frontal zones

are very clearly delineated (see Figures 3 and 4), and ad-

ditional structure in mid-latitude systems is evident as well.

Using combinations of atmospheric data values in a higer di-

mensional transfer function appears to be advantageous over

other univariate methods.

Figure 4: This image shows a transfer function similar to

the one in Figure 3 applied to a different timestep.

5. Conclusions and Future Work

This case study applied the ideas and techniques from multi-

dimensional transfer function based volume rendering to

multivariate weather simulations. The specific goal of iden-

tifying frontal zones was addressed and proved to be useful

by meteorologists. The combination of temperature and hu-

midity as a multivariate field aided the identification of the

frontal zones.

While this work has proven useful, additional investi-

gation is warranted in several areas. The non-orthogonal

three-dimensional volumetric representations of the data,

as seen at the end of accompanying animation, have not

proven as useful to the meteorologists as the plane level

data shown in the figures and the beginning of the anima-

tion. This is an area for future research. Utilizing the 3D

non-orthogonal representations may be more applicable to

severe weather phenomena such as hurricanes. Another use-

ful feature would be a heuristic based default transfer func-

tion well suited for this type of data. This transfer function

would make visible regions which are likely to be of interest.

Our current heuristic assumes that regions of change tend to

be regions of interest. In this case we give higher opacity

to higher multi-gradient magnitudes. Better heuristics, how-

ever, exist for identifying weather fronts.

In addition to frontal analysis, the visualization techniques

presented in this case study may be useful for the evaluation

of numerical model objective analyses, the field trials used to

create these analyses, as well as creating subjective forecast

products based on objective guidance.
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While our system has the potential to handle transfer func-

tions with arbitrary dimensions, the issue of keeping the

user interface convenient and intuitive becomes a problem

for transfer functions with greater than three dimensions.

We feel that there is still a great deal of work to be done

generalizing multi-dimensional transfer functions for the vi-

sualization of numerical simulations and medical imaging.

We also believe that the visualization techniques presented

in this case study can be directly applied to other types of

simulation data as well as multi-modal medical imaging. We

intend to continue our investigation of this approach in these

application areas.
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