
592 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

E f f i c i e n t V e r i f i c a t i o n o f H a z a r d - F r e e d o m i n

G a t e - L e v e l T i m e d A s y n c h r o n o u s C i r c u i t s
Curtis A. Nelson, Member, IEEE, Chris J. Myers, Senior Member, IEEE, and Tomohiro Yoneda, Member, IEEE

Abstract—This paper presents an efficient method for verifying
hazard-freedom in gate-level timed asynchronous circuits. Timed
circuits are a class of asynchronous circuits that are optimized us­
ing explicit timing information. In asynchronous circuits, correct
operation requires that there are no hazards in the circuit im­
plementation. Therefore, when designing an asynchronous circuit,
each internal node and output of the circuit must be verified for
hazard-freedom to ensure correct operation. Current verification
algorithms for timed circuits require an explicit state exploration
that often results in state explosion for even modest-sized ex­
amples. The goal of this paper is to abstract the behavior of
internal nodes and utilize this information to make a conservative
determination of hazard-freedom for each node in the circuit.
Experimental results indicate that this approach is substantially
more efficient than existing timing verification tools. These results
also indicate that this method scales well for large examples that
could not be previously analyzed, in that it is capable of analyzing
these circuits in less than a second. While this method is conser­
vative in that some false hazards may be reported, our results
indicate that their number is small.

Index Terms—Hazard-freedom, technology mapping, timed
asynchronous circuits, verification.

I. I n t r o d u c t i o n

r • ^ IMED circuits are a class of asynchronous circuits that
B use explicit timing information during circuit synthesis.

This timing information, however rough the estimates may be,
can potentially reduce the amount of circuitry as compared
with a design that adheres to speed-independent constraints.
The estimates for the timing can be verified once the design
is mapped to a library and actual timing values are known.
This simplification can lead to significant gains in circuit per­
formance. This was demonstrated in the Intel RAPPID project,
in which an asynchronous instruction length decoder for an x86
processor was designed using timed circuits. It was found to be
three times faster while using half the power of the comparable
synchronous design [1],

While timed asynchronous circuits offer potential advantages
over synchronous circuits such as faster operation and lower

Manuscript received December 21, 2005; revised April 19, 2006. The
work of C. A. Nelson and C. J. Myers was supported in part by the SRC
under Contract 2002-TJ-1024 and Contract 2005-TJ-1357, in part by an SRC
Graduate Fellowship, and in part by NSF Japan Program Award INT-0087281.
This paper was recommended by Associate Editor R. F. Damiano.

C. A. Nelson is with the School of Engineering, Walla Walla College,
College Place, WA 99342 USA (e-mail: nelscu@wwc.edu).

C. J. Myers is with the Department of Electrical and Computer Engineering,
University of Utah, Salt Lake City, UT 84112 USA (e-mail: myers@ece.
utah.edu).

T. Yoneda is with the National Institute of Informatics, Tokyo 101-8430,
Japan (e-mail: yoneda@nii.ac.jp).

Digital Object Identifier 10.1109/TCAD.2006.883912

power, these advantages are often offset by the expense of
the circuit overhead needed to eliminate hazards. Hazards
are conditions generated by the structure of the circuit or
timing relationships between inputs and propagation delays
that can cause incorrect behavior. As synthesized hazard-free
logic equations are mapped to a given gate library, new internal
nodes are introduced in the circuit netlist. Each new internal
node as well as the outputs of the circuit must be verified
for hazard-freedom to ensure correct operation of the mapped
circuit. This verification must be extremely efficient to allow for
many alternative designs to be considered during technology
mapping. Current timing verification algorithms [2]—[7] often
suffer from state explosion problems because each node in
the circuit netlist is treated as a new state variable, potentially
doubling the number of states.

There are numerous methods for verifying hazard-freedom
in gate-level speed-independent circuits [8]—[14]. In speed-
independent circuits, no timing assumptions are made about
gates or the environment, except that wire delays are negligible.
An efficient verification method for determinate speed-
independent circuits is proposed in [10]. Determinate speed-
independent circuits allow input choice (conditionals) but not
output choice (arbitration). The work in [10] reduces state
explosion by examining individual behavior at each internal
node and approximating this behavior for each state in the
specification. The hazard-freedom of the circuit is then verified
by examining this cube approximation. When the number of
internal signals is high as compared with the number of primary
inputs and outputs (a feature common of many circuit design
styles), this cube approximation technique has the potential to
substantially reduce the complexity of verification as demon­
strated in the results shown in [10].

Abstraction of internal nodes to combat state explosion is
performed in [15] and [16]. This work, however, is not directed
at verification of hazard-freedom and requires the use of timed
Petri nets for all design descriptions including the gates to
be analyzed. This work could potentially be used to verify
hazard-freedom, so it may be interesting in the future to explore
combining this approach with the one proposed in this paper.

This paper extends the work in [10] to verify timed circuits.
It is often the case that hazard conditions found in speed-
independent circuits do not manifest as glitches in the real
circuit implementation due to the actual timing behavior. The
reason for this is that internal signals, once enabled, certainly
do fire in some finite time. If the time evolution can be tracked
in the state space, then it may be possible to identify the sta­
bility of internal signals. Using this timed cube approximation,
a gate-level timed circuit can be rapidly analyzed for hazards.

0278-0070/S25.00 © 2007 IF.F.F.

mailto:nelscu@wwc.edu
mailto:yoneda@nii.ac.jp

NELSON et al.: VERIFICATION OF HAZARD-FREEDOM IN GATE-LEVEL TIMED ASYNCHRONOUS CIRCUITS 593

Experimental results show that this approach can be substan­
tially faster than existing timing verifiers. Thus, the method
presented in this paper has the potential to greatly increase the
size of circuits that can be verified.

In order to construct a timed cube approximation, it is
necessary to determine the stability of internal signals using
some form of timing analysis. There are essentially two related
approaches that can be applied. The first approach is to use
a method that finds the time separation between events such
as those described in [17]—[20]. The second approach is to
use a state-based approach in which timing information is
represented using difference bound matrices (DBMs) or zones
[2]-[7]. While time-separation-based methods have been used
for analyzing both timed circuits and burst-mode circuits, they
do have their drawbacks, i.e., they are substantially more com­
plex when specifications include either choice or circuits with
disjunctive behavior, such as OR gates. These methods can
also be overly conservative at times when the time separation
is state dependent. In our experience, we have found that
time-separation methods are efficient when only a few time
separations are required, but they are very inefficient when
many are required such as when finding the reachable states of
a timed specification. It is for these reasons that synthesis tools
for timed circuits utilize zone-based representations during
state-space exploration. The ATACS tool, to which we have
added the timing verifier described in this paper, is one such
zone-based tool [2], [3], [5]. Since the goal of this paper is
to utilize this timing verifier during technology mapping, the
zone-based representation of the state space is already available
from the preceding synthesis step. For this reason, we decided
that performing the timed stability analysis beginning from
the zones associated with a state would be the most efficient
approach. These zones already contain partial state-dependent
time-separation information. Starting with any zone, a modified
timed state-space exploration can determine the amount of
time elapsed while following a sequence of states. Our method
starts in a state in which an internal signal changes evaluation;
when the amount of time elapsed is found to be larger than
the worst-case delay of the logic, the internal node is known
to have stabilized. Our experimental results show that for the
circuits that this paper targets (namely, those produced by our
technology mapper), the analysis is very efficient and produces
very few false negative results.

II. B a c k g r o u n d T e r m i n o l o g y

The verifier described in this paper takes as input a time
Petri net (TPN) that defines the circuit and the behavior of
the environment and a netlist that represents the circuit to be
verified. The verification procedure also creates a state graph
(SG) to represent reachable timed states. The goal of this
verification procedure is to identify hazards in the circuit being
verified. This section describes each of these terms formally.

A. TPNs

Our method uses TPNs [21] to model the possible input be­
haviors and the required output behaviors for timed circuits. Let
W be a finite set of wires in a timed circuit. The behavior of a

Fig. 1. TPN for our running example.

circuit is modeled as sequences of rising and falling transitions
on W . For any w G W , w + is a rising transition, and w —
is a falling transition on wire w. In the following definitions,
let Q + and M+ denote the sets of nonnegative rational and
nonnegative real numbers, respectively. A W-labeled one-safe
TPN is a directed bipartite graph described by the tuple TPN =
(W, T, P, F, M 0, so, /, u, L) , where:

• W = I U O is the set of wires where I is the set of input
wires and O is the set of output wires;

• T is the set of transitions;
• P is the set of places;
• F C (T x P) U (P x T) is the flow relation;
• Mo C P is the initial marking;
• so C W is the set of wires that are initially HIGH;
• I : T —» Q + is the lower timing bound function;
• u : T —» Q + U {oo} is the upper timing bound function;
• L : T ^ W is the labeling function.

The state of a TPN is a pair (M, D) , where M is the current
marking (i.e., the subset of places that hold tokens) and D :
T —» M+ is a clock assignment function that assigns nonnega­
tive real-valued ages to transitions. With every transition t G T,
its associated preset is •£ = {p G P | (p, t) G F } . The postset of
a transition is defined as £• = {p G P \ (t , p) G F } . Note that the
preset and postset for places are defined similarly. A transition t
is enabled in a state if the members of its preset form a subset
of the places in the marking of the state (i.e., •£ C M). A
transition t is fireable in a state if it has been enabled longer
than its lower timing bound (i.e., D (t) > l(t)). A transition t
must fire before it has been enabled longer than its upper timing
bound (i.e., D (t) < u(t)) .

An example TPN is shown in Fig. 1. In the initial state,
transitions a + and b + / I are enabled, and exactly one of these
transitions fires within 2 to 5 time units. The “/ I ” and ‘72”
notations indicate different transitions on the same signal wire.
If a + fires, then b + /2 becomes enabled and fires within 2 to 5
more time units, enabling d+. Note that the timing on the firing
of d+ is specified in the netlist, which is defined next.

The TPNs are restricted to one-safe nets to simplify the
software, but this is not a fundamental restriction. Any TPN
with a finite state space can be analyzed. This includes any
arbitrary choice constructs in the TPN as well. The state space
generated for the TPN though must be output semimodular.
A state space is output semimodular when the only transitions
that can be disabled without firing are inputs, and they are only
disabled by other inputs. Our method cannot analyze the hazard
behavior of gates such as arbiters since the hazard analysis
searches for gate disablings, which are inherent in these gates.

594 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

(b)

Fig. 2. (a) Netlist that is hazardous under the speed-independent model,
(b) Netlist that is hazard-free under the speed-independent model.

B. Netlists

The goal of this paper is to verify the correctness of a circuit
implementation against a given TPN specification. The circuit
to be verified is described using a netlist modeled by a directed
graph NET = (V , E) , where:

• V = I U O U N is the set of vertices in the circuit;
• E C (/ U O U TV) x (TV U O) is the set of edges.

Each vertex v E V represents a node in the netlist. This set is
composed of both the input wires I and output wires O from
the TPN description, as well as new nodes internal to the circuit
TV. Each e E E represents a directed connection in the netlist
from one node to another node. The set of fanins to a node is
denoted by F I (v), and thq fanouts are denoted by F O (v) . Each
node that is in TV U O has an associated gate output function
f v (v i , . . . , v r), where F I { v) = { v \ , . . . , v r }- This gate output
function also has an associated minimum m inv and maximum
m axv gate delay.

The netlist for a possible implementation of signal d in
our example is shown in Fig. 2(a). The set of vertices, V,
is {a, b, c, d, e j , and the set of edges, E, is {(a,e), (b,e),
(e, d), (c, d)j. The function associated with e is f e(a,b) =
a n d (a, b), which has a delay of 1 to 2 time units. An alternative
circuit implementation for signal d is shown in Fig. 2(b). While
this model assigns delays to gates, delays on wires are easily
supported. Consider a signal x that forks to two different gate
inputs. Differing delays on these wires can be modeled by
introducing a fictitious buffer on each branch of the fork and
then assigning these delays to the buffers. These buffers are
then included when determining the maximum delay path from
primary inputs to outputs.

The verification method described in this paper requires that
the primary outputs cut the circuit. In other words, if all primary
outputs are removed from the netlist, the netlist would become
acyclic. Intuitively, this means that there can be no internal
cycles in the netlist. If there are internal cycles, then to apply
this method, nodes from TV would need to be moved into O
such that the circuit would now be cut by its primary outputs.
Most synthesis tools actually satisfy this requirement. Further­
more, since the goal of this paper is to use this verifier as a
hazard checker during technology mapping and the technology
mapper that has been developed satisfies this restriction, this
seems acceptable. However, in the future, we are interested in
generalizing this paper to the case where internal feedback is
allowed.

C. SGs

In order to check correctness, a verification method typically
uses a specification such as a TPN and a representation of the
circuit implementation such as a netlist and finds all possible
states represented using a SG. This verification method then
checks the SG (often on the fly as the SG is being generated)
for various correctness properties.

A SG is a labeled directed graph whose nodes are sta tes and
edges are sta te transitions. Formally, a SG is modeled by the
tuple SG = (S, TsgjS), where:

• S is the set of states;

• Tgc is the set of transitions;

• 5 S x T$q x S is the set of state transitions.
Each state s e S is modeled as a tuple 5 = {v,z}, where v C V
is the set of wires that are HIGH in the state, and z is a zone rep­
resenting timing relationships.Timing information is described
using zones that are typically represented using DBMs [22].
These matrices represent time differences between recently
fired transitions. Each entry, Zij, in the matrix represents a
timing relationship of the form rti — rtj < z^, where rti is
the time at which ti fires. In other words, represents the
maximum amount of time in which ti fires after tj (denoted
max(z, ti,tj)). The minimal time separation after tj before U
fires (i.e., m in(z,U,tj)) is equal to —Zj\. The notation var(2:)
is used to denote the set of variables in zone 2 . An example
zone for the point right after a+ fires, which represents the
relationship 2 < r a+ — r c_ < 5, is given by

7c— +
rc— 0 —2 .
Ta+ 5 0

Using a timed state-space exploration algorithm such as the
ones in [3] and [5], it is possible to derive a SG using a TPN
to drive the inputs and check the outputs and a netlist to drive
the outputs. However, the key result of this paper is that our
method never explicitly derives this SG. Instead, a SG for a
com plex-ga te equ iva len t (CGE) version of the netlist is derived.
In other words, a SG generated from a CGE version abstracts
the internal nodes to reduce the verification complexity. The
CGE circuit for both netlists in Fig. 2(a) and (b) is shown in
Fig. 3(a). The SG found using this circuit and the TPN in Fig. 1
is shown in Fig. 3(d). Using v, each state vector is labeled in the
SG to show the value of all signal wires. The zones calculated
during the timed state-space exploration are omitted for clarity.
Each edge of the SG is labeled with a signal transition t E T. In
other words, Tsg is equal to transition set T from the TPN. The
input wire set is {a, b, c}, and the output wire set is {d}. There
are nine states including 0000 and 1000 and ten state transitions
including (0000, a+ , 1000). One detail to note is that during
state-space exploration to derive this SG, this method checks
that the given CGE circuit is equivalent to the desired one. For
example, if the CGE circuit given had been the one in Fig. 3(b),
after a+ fires, the netlist could produce a d-\- when one is not
expected in the TPN. This complex-gate-equivalence failure
would then be reported to the user.

NELSON et al.: VERIFICATION OF HAZARD-FREEDOM IN GATE-LEVEL TIMED ASYNCHRONOUS CIRCUITS 595

f in d _ sta b le_ sta tes (TPN, SG, NET)

check_. Lty (SG, NET)

Fig. 3. (a) Correct CGE circuit, (b) Incorrect CGE circuit, (c) Another
incorrect CGE circuit, (d) SG for correct CGE circuit.

Fig. 4. (a) Example circuit to illustrate hazards, (b) Timing scenario for an
acknowledgment hazard, (c) Timing scenario for a monotonicity hazard.

D. Hazards

Hazards can m anifest in asynchronous circuits due to viola­
tions in the acknowledgment or monotonicity properties [10].
This subsection describes these hazard conditions briefly using
a simple example. Both acknowledgm ent and monotonicity
hazards are defined algorithm ically in Section III-C.

An acknowledgm ent hazard occurs when an internal node
becomes excited to change to a new value, but the conditions
that caused the excitation change before the node can be shown
to have becom e stable. A node is said to be stable when it equals
its evaluation. In other words, it is not enabled to change. An
example of a circuit with an acknowledgm ent hazard is shown
in Fig. 4(a), and the hazard manifests under the tim ing shown
in Fig. 4(b). This three-gate circuit implements the function
g = abed. The output g should never be enabled to go h i g h
during the time period depicted in Fig. 4(b) since there is no
time point in which all four inputs are simultaneously HIGH.
A t tim e zero, input signals a and d are LOW, while b and c are
HIGH. This forces the internal nodes e and / and the output g
to be LOW. A t time zero, input a changes to HIGH and stays
HIGH for 3 tim e units. This enables node e to rise. However,
since the delay of the AND gate driving node e has a tim e delay
between 2 and 4 tim e units, it is not certain whether or not
node e actually rises before signal a goes LOW. This represents

Fig. 5. Top-level algorithm for verification.

an uncertainty on node e in response to the pulse on a, and
the possible failure to acknowledge the transition on a indicates
an acknowledgm ent hazard on node e. If input tim ings and
gate delays allow this possible glitch on e to propagate to the
output, the prim ary output g may have a monotonicity hazard
as described below.

A m onotonicity violation occurs when an internal or output
node is supposed to rem ain stable, but it becom es mom entarily
excited, or when it is supposed to m ake a transition, but it makes
the transition nonmonotonically. This occurs when a gate has
a potential hazard, while there is no stable forcing side input.
For example, a potential hazard exists when the output of an
AND gate is supposed to rem ain stable LOW or fall, but one
input is rising. If a side input that is stable LOW cannot be found
while the other input is rising, it is possible that the AND gate
may mom entarily evaluate to 1, causing a glitch on its output.
In the example shown in Fig. 4, it is possible that the glitch
on node e discussed previously can propagate to the output.
Consider the tim ing diagram shown in Fig. 4(c). After input
a goes LOW at time 3, input d rises at time 4. This causes node
/ to be enabled to rise and can do so as early as tim e five. A t
tim e five, both inputs to the AND gate driving the output are in
transition, and there is the possibility for a glitch on the output.
This tim ing scenario represents a monotonicity hazard on the
output g.

III. VERIFICATION A LGO RITH M

In [10] and [23], the following theorem giving sufficient
conditions for correctness of a determ inate speed-independent
asynchronous circuit is presented (reworded to m atch the nota­
tion used in this paper). These conditions are also sufficient for
correctness of tim ed circuits.

Theorem 3.1—Sufficient Conditions fo r Correctness: Let
NET = (V ,E) be a circuit im plem enting the behavior de­
scribed by TPN = (W, T, P, F, M0, s 0, Z, u, L). The NET is a
correct im plem entation of the TPN if 1) it is CGE to the
TPN and 2) it satisfies the acknowledgm ent and monotonicity
properties.

Our verification algorithm shown in Fig. 5 checks these
correctness conditions. This algorithm takes as input a TPN to
represent the possible input behavior and the required output
behavior and a NET to represent the circuit to be checked.
W hen the circuit is not correct, this algorithm reports the
locations of the errors that it finds. This section describes this
algorithm in detail.

A. Checking Equivalence

The c h e c k _ e q u iv a le n c e function forms a CGE netlist,
uses this netlist and the TPN to derive a SG, and checks if the
CGE netlist provides outputs when and only when allowed by
the TPN. The first step is to derive a CGE netlist in which there

596 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

are no internal signals. In other words, it derives a netlist that
has one gate per primary output signal. The Boolean function
for this gate is expressed only in term s of the primary inputs
and outputs. The delay of this gate is set to the minim um and
m axim um delay from any input to the prim ary output. Although
false paths through the logic may exist, this algorithm need not
identify them at this point. Their inclusion results in a higher
and thus more conservative m axim um delay. A t worst, this may
result in a node being falsely determ ined to be hazardous. In
this example, the CGE representation for the netlists in Fig. 2(a)
and (b) is shown in Fig. 3(a). This gate’s delay is [1, 4] since
in both cases, there exists a m inim um delay path of one and a
m axim um delay path of four.

Using this CGE netlist and the given TPN, a SG is found
using a tim ed state-space exploration algorithm. During this
state-space exploration, output firings are checked. If an output
fires prematurely, such as in the example shown in Fig. 3(b), an
error is reported to the user. One interesting fact about this cir­
cuit though is if the m inim um delay of this gate is increased to
six, then this circuit would actually be correct as tim ing would
guarantee that d always rises after b + /2 fires as required by the
TPN. If during the analysis, an output is expected and the circuit
does not provide one, an error is also reported. In our example,
if the function shown in Fig. 3(c) is used, after a-\- and b+
fire, a d+ is expected, but the circuit does not produce it. This
check models a progress condition similar to completeness with
respect to specification [9]; and strong conformance [12]. W hen
no errors are detected, c h e c k _ e q u iv a le n c e returns a SG.

B. Finding Stable States

A fter the c h e c k _ e q u iv a le n c e step, this method has shown
that the circuit is correct at a com plex-gate level. By hiding the
internal signals before finding the state space, the state space is
potentially reduced from 0 { 2 ^ * 2l°l * 2^1) to 0 { 2 ^ * 2 l°l).
W hen the num ber of internal signals is large, as is often
the case in real designs, this savings can be quite dramatic.
However, hazards on internal nodes can still produce incorrect
circuit behavior. Therefore, it is now necessary to check that all
internal nodes are hazard-free. This is accom plished by deter­
m ining the internal signal behavior implicitly. In particular, the
f i n d _ s t a b l e _ s t a t e s algorithm determines in which states
and for which state transitions in the com plex-gate SG that
each internal node is stable. This is accom plished by deriving
a predicate s t a b l e (5 , n) for each state s E S and node n E N
and another predicate s t a b l e (5 , s' , n) for each state transition
(s, t , s f) E 5. The predicate s t a b l e (s , n) is defined to return
TRUE when we have been able to determine through our
analysis that node n is stable HIGH or LOW in state 5 . It returns
FALSE when either node n is found to be changing in state 5 or
the algorithms are unable to determine that the node is certainly
stable. In other words, it is a conservative approxim ation of
the stability of each node in each state. Similarly, the predicate
s t a b l e (s , n , s') is defined as a conservative approxim ation of
the stability of node n during the state transition from state
5 to state s '. These stability predicates are used, as shown in
Section III-C, to determine if there are any hazards in the given
netlist.

find_stable_states (T P N , SG, NET)
foreach s £ S and n £ V f i n d e v a l (s , n)

m o d if i e d = s t a b i l i z e _ u n t i m e d (SG, NET)

Fig. 6. Algorithm for finding stable states.

stabilize_untim ed (S G , N E T)

Fig. 7. Untimed stabilization algorithm.

The algorithm to find the stability inform ation is shown in
Fig. 6. The algorithm begins by first determining the predicate
e v a l(s , n) by finding the Boolean evaluation in each state in
the SG for each node in the netlist. This is accom plished by
simply fixing the values for each primary input and output
in the netlist to the values given in the state and propagating
this inform ation through the netlist. From the SG in Fig. 3(d)
and netlist in Fig. 2(a), e v a l(1 1 0 0 ,e) and e v a l(1 1 0 0 ,d) are
determined to both be 1. For node e, the states in the set {1100,
1101, 1111, 1110} evaluate to 1, while the rem aining states
evaluate to 0.

The algorithm next initializes the stability predicates to
FALSE to initially indicate that it is not known whether the
internal signals are stable or changing. The goal of the rest
of the algorithm is to determine the stability o f the internal
signals, whenever possible. In the next subsection, a brief
review of untim ed stabilization, which comes from the work
in [10], is given, followed by a detailed discussion of our new
contribution, which is tim ed stabilization. The tim ed stabiliza­
tion routine does not need to be iterated, so it is executed
first. The untim ed stabilization routine may require iteration
since stabilizations on one node of the network can influence
stabilizations on other nodes.

1) Untimed Stabilization: The objective of stabilization is
to show that at some points in the SG, the evaluations of
some internal node n are certain to be stable. The algorithm
to determine untim ed stability is shown in Fig. 7. An internal
node is considered untim ed stable if a change in evaluation
on an internal node is acknowledged on a primary output.
In other words, for a state transition (s,£, s'), if transition t
could only have occurred if the internal node n is stable at
its Boolean evaluation, then it can be said that transition t has
acknowledged that node n is stable.

To determine if an internal node n is acknowledged to be
stable by a state transition (s, £, s'), the e x i s t s _ p a t h function
is used first to check if a path exists from n to the output
transition under consideration. The m u s t_ p ro p function is then

NELSON et al: VERIFICATION OF HAZARD-FREEDOM IN GATE-LEVEL TIMED ASYNCHRONOUS CIRCUITS 597

used to check if the value at n must propagate through any
possible path to the output. This is done by ensuring that all
functions in the path from n to the output have noncontrolling
stable values on the side inputs. Consider the example netlist
in Fig. 2(a) and the state transition (1100, d-\~, 1101). There
exists a path between node e and output d . In state 1100,
node e evaluates to 1. This value at e must propagate to the
output because d cannot go h i g h until e has gone h i g h . M ore
succinctly, output d switched from LOW to HIGH as a direct
consequence of node e going HIGH and the side input c being
at 0. Therefore, s t a b le (1 1 0 0 ,1101, e) is set to TRUE.

The d i s t r i b u t e function is used to copy this stabi­
lization forward in the SG until a change in evaluation is
encountered. In particular, s ta b le (1 1 0 0 ,1 1 0 1 ,e) implies that
the following stability conditions are TRUE: s t a b l e (1101, e),
s t a b le (1 1 0 1 ,1111, e), s t a b l e (l l l l , e), s t a b l e (l l l l ,
1110, e), s ta b le (1 1 1 0 , e), and s ta b le (1 1 1 0 , 0110, e). This
distribution of stability inform ation halts when it reaches state
0110 since the Boolean evaluation of e in this state changes
from 1 to 0. The com plexity of the d i s t r i b u t e function is
0(1*51), where |*S| is the num ber of states in the SG.

The other transition in the SG that could possibly indicate
an untim ed stabilization for node e is the state transition (1111,
d — , 1110). In this case, however, the input c is 1 (a controlling
value), prohibiting the propagation of node e to the output d.
Thus, no stabilization can be assumed for the falling transition
of d. As explained later in the text, this lack of stabilization on
the falling transition of e indicates a hazard on node e.

A similar analysis of the circuit in Fig. 2(b) finds the rising
transition on node e acknowledged by d + and the falling tran­
sition acknowledged by d — since b is HIGH (a noncontrolling
value) when d goes LOW. As a result, this circuit is hazard-free
under the speed-independent model.

2) Timed Stabilization: W hen tim ing inform ation is taken
into account, the hazard found for the netlist shown in Fig. 2(a)
may not actually manifest. If this is the case, then node e is
hazard-free. This section describes our new method to deter­
mine stabilization using tim ing information. Timed stabiliza­
tion attem pts to show further stability in the SG by calculating
the m axim um possible tim e through the network to the node
of interest n and com paring this against the m inim um time
spent traversing the SG. W hen it can be shown that in the worst
case, a sufficient am ount of tim e has elapsed, node n can be
stabilized.

The algorithm to determine tim ed stabilization is shown in
Fig. 8. For each node n, the algorithm first measures the longest
path delay from any prim ary input to node n and also from
any primary output, which is an input to the cone of logic
that produces the signal n. This m ust be done because the
actual signal that causes n to change evaluation may not be
known due to differences in path lengths. For our example
netlist in Fig. 2(a), this delay for e is determined to be 2.
This is accom plished using the f in d _ m ax _ d e lay function,
which com putes the longest path in a directed acyclic graph.
Its com plexity is 0 (\V + E |). Next, the algorithm initializes
the v i s i t array, which is used to let the recursion know when
a state has been visited along multiple paths when determining
the stabilization of node n. A t this point, the algorithm finds

stab ilize_tim ed (TPA/, SG , NET) ^ *

Fig. 8. Timed stabilization algorithm.

forea^c^ in rev erse order

Fig. 9. Algorithm to update the zone.

state transitions (s ,^ ,s ') , where the Boolean evaluation of n
changes. This indicates locations in the SG where the node n
becomes unstable. Note that ti is the transition on a primary
input or output signal that feeds the cone of logic that ends
with the node n, and the change in this signal’s value is
what causes n to become unstable. The algorithm then takes
the zone z associated with state 5 and updates it to include
transition ti.1 The reason this is done rather than taking the
zone associated with s' is that ti may have been pruned from
this zone. It is important that ti is in the zone that is used
for timed stabilization as ti serves as a reference transition as
the algorithm moves forward in the SG. Finally, the algorithm
initializes a p a th array, which is used to terminate cycles during
the analysis of a path in the SG.

The update_zone algorithm shown in Fig. 9 adds a new
transition to a given zone. The first step is to extend the zone to
include a new row and column for the new transition ti. Next,
for this extended zone z', it searches var(2:;), starting with the
transitions that have been added most recently for transitions
that enable ti (i.e., tj E • •U). The first such transition tj
that it finds is the causal transition for ti. The maximal time
separation of ti from t j , z[j is either the upper timing bound
taken from the TPN when ti is a transition on an input wire
or the maximum delay in the netlist generating ti when it is a
transition on an output wire. For all transitions tj that enable
ti , the minimal time separation of ti from tj, —Zji9 is either the

!We are using a past variable style zone algorithm, so transitions are only
added to the zone after they fire.

598 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

Fig. 10. Zone creation and evolution.

do_timed (TPAT, SG,NETr̂ ^ ^ n , s, z , tlr d, v i s i t , path)

Fig. 11. Timed stabilization recursion.

lower timing bound taken from the TPN or the minimum delay
in the netlist. The minimum delay in the netlist is computed
using the f in d _m in _d elay function, which finds the shortest
path in a directed acyclic graph and has complexity 0 (\ V +
E |). For the other transitions t j , z\j and z ,j i are set to infinity.
At this point, the zone is recanonicalized using Floyd’s all­
pairs shortest-path algorithm to tighten any loose inequalities.
This recanonicalization step is necessary because tightened
bounds increase accuracy. In addition, there are often cases
where no timing relationship is known between a newly entered
transition and the other entries in the zone. Recanonicalization
can determine these timing relationships. As an example, the
zone found for the state 1110 in our example is shown in
Fig. 10(a). The new zone after adding transition a — is shown
in Fig. 10(b).

The do_tim ed algorithm shown in Fig. 11 is used to re­
cursively explore the SG, attempting to accumulate sufficient
time to stabilize a given node n before reaching a termination
condition. This algorithm first marks the current state 5 as
visited in the v i s i t and p a th arrays described earlier. Next,
it considers each state transition (s , t k , s f). First, it adds the
transition tk to the zone. Next, it checks the zone to determine
if enough time has accumulated from the reference transition
U to the new transition tk such that the node of interest n has
certainly stabilized. If it has, it must also check that state s'
has not been visited along a different path. It must be the case
that the minimum time upon reaching a state along all paths to
that state has exceeded the maximum logic delay d. Therefore,

if this state is encountered along a different path and did not
stabilize, then this state transition cannot stabilize node n. If
the amount of accumulated delay does not exceed the delay
d, then the algorithm must determine if it is going to recurse
down this state transition. If this state has been seen previously
upon this path, the algorithm has encountered a cycle of states
and must not recurse. If the Boolean evaluation of node n has
changed, then again the algorithm must not recurse. If this is a
new state on this path and the Boolean evaluation is maintained,
then the algorithm recursively visits the state s'. Note that this
edge may have been found to be stable along a different path,
but it is not stable along the path the algorithm is currently
working on. Therefore, the algorithm must say that this edge
is not stable before recursing. Upon returning from recursion,
the path variable is set to false to allow other potential paths to
visit state 5.

Our algorithm has the potential for requiring the exploration
of a large number of paths. In the worst case, 0(|aS|!) paths
would need to be analyzed. This complexity bound, however,
requires the SG to be fully connected and all states to be
explored before a timed stabilization is encountered. In real­
ity, SGs are typically very sparsely connected, and the time
accumulated during the traversal would accumulate beyond the
maximum delay of the circuit being analyzed well before all
states are considered. Therefore, assuming that the average
number of successors for a state is x and the average depth
required by analysis is y , then the number of paths that would
typically need to be explored is 0 (x y). While this can still be
a very substantial number, in the experimental results reported
in Section V, the average value for x is 1.29, and that for y is
3.41. This means that each call to do_tim ed tends to only need
to explore two or three paths. If the other examples require the
algorithm to recurse further through the SG before finding a
point of timed stabilization, then there is the potential that a
substantial number of side paths would need to be explored.
For such examples, the value of y can be fixed, meaning that
the algorithm would be limited in the path length that would be
explored. This can improve efficiency at the potential cost of
more false negative results.

It is now useful to again consider the example netlist in
Fig. 2(a). A change in evaluation on node e occurs between
states 1110 and 0110. As mentioned previously, the do_tim ed
function is called with the zone shown in Fig. 10(b). As the
SG is traversed, the next transition encountered is b—. Since
b— fires 2 to 5 time units after a —, these entries are entered
into the appropriate rows and columns, as shown in Fig. 10(c).
The timing of the other nondiagonal entries is set to oo. The
zone is then recanonicalized, and the resulting zone is shown in
Fig. 10(d). The parameter of interest is the minimum elapsed
time between the last transition entered, b—, and the initial
transition a —, which is two in this case. Note that lower bounds
appear as negative values in a DBM. Since 2 time units is
insufficient time to say with certainty that node e has stabilized,
the algorithm considers recursing on state 0010. Since this state
has not yet been explored on this path and since node e still
evaluates to 0 in this state, the algorithm recurses to state 0010.
Upon recursion, the algorithm adds transition c— to the zone,
as shown in Fig. 10(e), and recanonicalizes to obtain the zone

NELSON et al: VERIFICATION OF HAZARD-FREEDOM IN GATE-LEVEL TIMED ASYNCHRONOUS CIRCUITS 599

check_acknowledgment (SG, NET)

if ((e v a l(s ,n) 7 ̂ ev a l (s; , n)) and

Fig. 12. Algorithm to check for acknowledgment hazards.

Fig. 13. Algorithm to check for monotonicity hazards.

shown in Fig. 10(f). The new minimum time elapsed from a —
to c— is 4 time units. Since this number is larger than the
maximum delay of the AND gate (2 time units), the algorithm
can mark this edge as stabilized. The d i s t r ib u t e function
then copies this stabilization onto states 0000, 0100, and 1000
and edges (0000, b + / l , 0100), (0100, c + / l , 0110), (0000,
a + , 1000), and (1000, b + /2 , 1100). This is significant in
that the hazard condition that existed after untimed stabilization
cannot manifest because of the timing relationships between the
circuit and the SG, as shown in the next section.

C. Checking f o r Hazard-freedom

As described earlier, hazards can manifest in asynchronous
circuits due to violations in the acknowledgment or monotonic­
ity properties [10]. This section explains how our method
checks for violations of these two properties. While the theory
used is essentially the same as that in [10], this section intro­
duces new algorithms to perform these checks.

The algorithm shown in Fig. 12 uses the stability information
found earlier to check for acknowledgment on all excited nodes.
The algorithm examines each node n and each state transition
(s, £, s'), in which n changes Boolean evaluation. If n has not
stabilized before it changes evaluation, then an acknowledg­
ment hazard is reported. For the netlist shown in Fig. 2(a), using
only untimed stabilization, a hazard is found on node e for
the state transition (1000, 6 + /2 , 1100). Timed stabilization,
however, detects that this state transition is stable for node e, so
it is hazard-free when timing is considered.

The algorithm to check a netlist for monotonicity violations
is shown in Fig. 13. Monotonicity violations are caused on
a node n G (N U O) by one of its fanins v G F I (n) in a
particular state 5 G S. For each node, all states in the SG are
applied to the netlist. At this point, the algorithm constructs a
cube formed from all n G (I U O U N) and applies it to f n to
determine if, given what is known about the current state, the
value of node n is being forced to a known value. The function
cube (s) is a cube formed from the values determined on each
n G (I U O U N) using the state vector and what is known
about internal nodes from the s t a b le and e v a l predicates.

| (eva l (s,n) ^ ev a l (bitcomp (s, v) , n))) then

Fig. 14. Algorithm to check for a potential hazard.

Note that the value returned by cube(5) represents a set of
implementation states. More formally, cube(5) is defined for
each node v as

{
s(^), if v G I U O
ev a l(s ,? ;), if v G N A s ta b le (s , v)

X , otherwise

where s(u) denotes the value of signal v in state 5. Note that
“X ” means that the value of the node is unknown.

Next, cube(s) is applied to the function f n (v 1,^ 2, • • - v r).
f n (cube (5)) is written to denote / n (cube(s)(?;i),
c u b e ^) ^) , • • •, cube(s)(?v)). In other words, the value
of each fanin in the cube is extracted and applied to the
function f n . Since some values applied to the function may
be unknown, the function f n may return X . For example, if
f n (a,b) = a n d (a,b), f n (0 , X) = 0, while / „ (1 , X) = X .

If the value at node n is determined to be unknown, then
all fanins of node n are checked for potential hazards. The al­
gorithmic definition for p o te n t ia l_ h a z a rd shown in Fig. 14
is modified from [10] to fit the definitions used in this paper.
To help in the evaluation of potential hazards, a potential cube
pcube(s, v) (u) is formed as follows:

, , / cube(s)(v), i f u ^ v
pcube(s, v) (u) = < \ -fe v a l(s ,u) , it u = v

The potential cube for 5 and v is equivalent to cube (5), except
at node v, which is set to its final evaluation. The b itcom p
function referenced in Fig. 14 takes as arguments a state 5
and node v G (/ U O) and returns a new state that has the
bit v complemented. This new state and node n then become
arguments to the predicate e v a l.

The absence of a potential hazard is determined by examin­
ing the conditions that prevent it from occurring. There are four
such conditions shown in the algorithm of Fig. 14 and briefly
described here. A potential hazard cannot occur on node n in
state 5 for fanin v:

1) if v is an internal node and is stable in state 5 ;
2) if v is a primary input or output and the evaluation of n

changes when v is complemented;
3) if n is not stable in state 5 and / n (pcube(s, v)) does not

indicate that n is being forced to a known value;
4) if / n (pcube(s,?;)) is equal to the Boolean evaluation of

n in state s.

600 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

No I Yes

Fail Hazard-Free Netlist

Fig. 15. Technology mapping design flow.

Condition 1 implies that potential hazards can only be caused
by internal nodes if they are unstable. Condition 2 implies that
potential hazards are only caused by external nodes when a
change in their values does not result in a change in evaluation.
Condition 3 indicates that there is no potential hazard when
node n is not being forced to some value if n is not stable to
begin with. Finally, condition 4 implies that there is no potential
hazard if setting node v to its final evaluation forces node n
to its final evaluation. If all four of these conditions cannot be
met, then a potential hazard exists, and a monotonicity hazard
is reported on node n in state 5 caused by fanin v.

IV. T e c h n o l o g y M a p p i n g

We have incorporated the gate-level hazard verifier presented
in this paper within a hazard-aware technology mapper for
timed circuits. This section gives an overview of our technology
mapper, but more detail can be found in [24]. Technology
mapping, which is also called library binding, is the process
whereby a technology-independent logic representation is
mapped to a technology-dependent library. As shown in Fig. 15,
our technology mapper takes as inputs a TPN, a synthesized
netlist, and a gate library and, in most cases, outputs a hazard-
free netlist composed of library elements. The technology map­
ping process combines the steps of partitioning, decomposition,
hazard verification, and matching/covering. If the technology
mapper is unable to find a hazard-free solution, there are a
number of optimizations that can be applied [24], and the
process is repeated until a hazard-free implementation is found;
otherwise, a failure is reported to the user.

Fig. 16. Technology mapping example, (a) Example circuit req. (b) Circuit
annotated with hazards, (c) Cover based on area minimization, (d) Cover based
on hazard awareness.

Partitioning of the synthesized netlist is unnecessary within
the framework of our research because the form of the synthe­
sized netlist is a single-output cone of logic. Decomposition
transforms the synthesized netlist into a logically equivalent
network called the subject graph, which consists entirely of
base functions. Typical base functions include inverters, two-
input n a n d gates, and a state-holding device. For asynchronous
applications, the state-holding device is a Muller C-element
(CEL). We employ the same decomposition process used in
synchronous systems, i.e., repeatedly applying DeMorgan’s
laws and the associative law to the subject graph.

Each cell in the gate library is modeled as an atomic gate.
The combinational and sequential cells are single-output logic
functions. The sequential elements are either CELs or gen­
eralized CELs (gCs) with internal feedback for state-holding
purposes. A gC incorporates both logic and state holding in
one atomic gate. The same decomposition algorithm that is
applied to the synthesized netlist is also applied to each cell in
the library, resulting in a pattern graph for each library cell.
This insures that a subgraph of the subject graph can then
be structurally matched to the pattern graphs in the library.
Inverter pairs are often inserted in the decomposed netlist [25]
to increase granularity, which provides more options in the
matching/covering stage.

An example subject graph is shown in Fig. 16(a). This
synthesized netlist is the output req from the benchmark alloc-
outbound. The logic equation describing this netlist is req =
ack • y l • yO. The subject graph in Fig. 16(a) is shown after
decomposition and with inverter pairs inserted. The subject

NELSON et al.: VERIFICATION OF HAZARD-FREEDOM IN GATE-LEVEL TIMED ASYNCHRONOUS CIRCUITS 601

TABLE I
Comparison of Standard Benchmarks Against Other Tim ing Verification Tools

Example Gates
KRONOS
Time(s)

PENA
Time(s) Time(s)

ATACS
Mem(MB) Hazards Time(s)

New Method
Mem(MB) Hazards

alloc-outbound 11 0.09 3 0.33 5.6 0 0.09 2.9 0
chul33 9 0.63 1 0.16 3.0 1 0.11 2.2 1
converta 12 0.19 12 0.24 3.8 2 0.11 1.8 2
dff 6 0.19 3 0.12 2.5 3 n/a n/a n/a
ebergen 9 0.14 1 0.15 3.0 3 0.13 1.8 3
half 7 0.41 1 0.13 2.2 1 0.08 1.5 1
mp-forward-pkt 10 0.24 5 0.17 3.5 0 0.10 2.5 0
nowick 10 0.05 3 0.20 3.8 0 0.10 2.0 0
rcv-setup 6 0.22 1 0.16 3.2 0 0.08 1.8 0
rpdft 8 2.93 2 0.30 4.0 1 0.10 1.9 2
sbuf-ram-write 17 31.77 415 0.32 5.8 1 0.20 3.7 2
sbuf-read-ctl 10 0.13 2 0.14 3.3 0 0.10 2.5 0
sbuf-send-ctl 13 54 0.49 0.65 6.1 1 0.10 2.8 1
sbuf-send-pkt2 13 0.07 103 0.42 6.6 0 0.10 3.1 1
vme 12 0.39 30 0.39 4.9 1 n/a n/a n/a
mrl 16 607.43 317 0.30 5.1 0 n/a n/a n/a
tsend-bm 12 589.56 46 5.32 8.6 1 n/a n/a n/a
mmu 22 >595.09 480 0.53 7.1 0 n/a n/a n/a
mrO 20 >593.24 48 0.55 7.1 0 n/a n/a n/a
ram-read-sbuf 17 >678.48 550 0.34 6.0 0 0.18 3.4 0
trimos-send 24 >580.33 127 10.7 25.0 5 4.87 3.6 5

graph is then verified using the gate-level algorithms presented
in this paper. Fig. 16(b) shows how the nodes are annotated with
the type of hazards determined during verification. An A means
that an acknowledgment hazard is found on that node, and an
M indicates that that node causes a monotonicity error at the
output of the gate to which it is a fanin.

The final step of technology mapping is to match pattern
graphs to the subgraphs of the subject graph. This matching
process is typically optimized for a parameter such as area
or delay. For instance, Fig. 16(c) shows how our example
would be matched when optimized for area. Here, it is assumed
that each element in the library is assigned an area and delay
number. This singular focus on area ignores the consequences
of covering circuits with hazardous nodes. The area covering
leaves one acknowledgment hazard exposed, and verification
performed on the resulting netlist indicates that this acknowl­
edgment hazard is still present in the final netlist. In addition,
a new monotonicity hazard has been created on the output req
due to timing relationships that have changed in the final netlist.
This circuit therefore is hazardous.

Fig. 16(d) shows how the same netlist would be covered if
hazard-freedom is the primary cost factor. Our experience has
shown that if the hazard-aware technology mapper attempts
to encapsulate acknowledgment hazards and leave nodes with
monotonicity hazards exposed in the covered netlist, then the
resulting circuit is usually hazard-free. For the example in
Fig. 16(d), hazard-aware covering encapsulates one acknowl­
edgment hazard and leaves the node with the monotonicity
hazard exposed. The node with the exposed acknowledgment
hazard is not a problem because the inverter pair preceding this
node is removed from the final netlist (since its implementation
is just a wire), and the node with the acknowledgment hazard
becomes the input node ack. By definition, primary inputs can­
not have hazards. Therefore, verification on this newly covered
netlist is found to be hazard-free.

V. E x p e r i m e n t a l R e s u l t s

The gate-level timing verification method described in this
paper has been tested on numerous examples. Table I com­
pares our new gate-level timing verification method using stan­
dard benchmarks against results for the timed automata tool
KRONOS [6], a conservative approximation method described
in [4], and the ATACS explicit-state timing verifier [26]. All
runtimes are specified in seconds. For KRONOS runtimes, an
entry with a greater than sign (>) indicates the amount of time
after which the verification ran out of memory. The runtimes
for KRONOS and Pena et aUs methods are taken from their
papers, while the runtimes for ATACS and our new method
are from a 900-MHz Pentium 4 with 256 MB of memory.2 For
our new method, an entry of “n/a” indicates that this example
has an internal cycle and cannot be analyzed using our new
method. For the smaller examples, our method has comparable
and usually better runtimes than the other methods. However,
for larger examples with more concurrency such as trimos-
send, our method is more than two orders of magnitude faster
than KRONOS, 25 times faster than Pena et a l 's tool, and
twice as fast as the explicit state method used in ATACS. In
addition, our new method shows some reduction in memory
usage as compared to the ATACS explicit state timing verifier.
This reduction in runtime and memory usage is directly related
to the reduced complexity of the SG as stated earlier.

Since our goal is to determine which gates have hazards on
their outputs, the explicit state method in ATACS is configured
to continue after finding one hazard and identify all hazards.
The number of hazards found is reported in the hazards column
under ATACS. Since the explicit state method is exact, the
hazards column represents the number of true hazards in these

2We selected this computer as it has a processor with comparable perfor­
mance to the ones available when KRONOS and Pena et al.'s results were
generated.

602 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

TABLE II
Comparison for Decom posed Netlists

Example Gates Time(s)
ATACS

Mem(MB) Hazards Time(s)
New Method
Mem(MB) Hazards

scsiSV 18 1.35 7.9 0 0.13 1.3 0
slatch 29 33.5 53.4 0 0.15 1.8 0
lapbsv 37 20.0 41.5 0 0.17 1.3 0
elatch 38 183 229 0 0.28 1.8 0
cnt3 80 >1000 >256 ? 0.24 1.7 15
srgate 85 >1000 >256 ? 0.29 2.3 0
selopt 164 >2000 >256 ? 0.90 3.3 46
cnt 11 213 >2000 >256 ? 1.20 4.8 78

circuits. It should be noted that KRONOS does not check for
hazards but instead is only checking conformance, while Pena
et al. ’s tool halts after a hazard is found. Since all these methods
are exact, if configured to return all hazards found, they would
all produce the same number of hazards. The number of hazards
found by the new method is also reported in the last column.
When the number of hazards in our new method is larger,
this indicates that our method found additional false hazards.
Despite being a conservative approximation, our method found
the exact number of hazards in most cases. However, in the
three examples rpdft, sbuf-ram-write, and sbuf-send-pkt2, our
new method found one additional false hazard. It should also
be noted that six benchmark circuits included internal cycles,
which meant that our method cannot be applied. The exact
methods do not have this limitation.

The key advantage of our new method is its ability to
efficiently verify circuits with a large number of internal sig­
nals. In order to demonstrate this, a few of our benchmark
circuits derived from a variety of sources are selected, and gate-
level circuits that use only two-input NAND gates, inverters,
and CELs are derived for them. This is accomplished using
the decomposition procedure within our technology mapper
described in Section IV. Our results are shown in Table II. In
all the examples, our method is still able to check for hazards
in 1.2 s or less, while for the largest examples, the explicit state
method cannot complete.

Our new verification method uses a combination of timed
and untimed algorithms to determine hazard-freedom for each
node and each output in a netlist. It is found that stabilizations
in the SG due to timing occur much more frequently than
do stabilizations using untimed (speed-independent) methods.
These results are shown in Table III. They are not surprising
because the delays used for the basic circuit elements are
fairly small (but physically practical), so circuit delays in the
decomposition, up to the node of interest, are often small, and
stabilization through the SG occurs reasonably quickly.

The surprising result from Table III is how effective the
timed stabilization algorithms are. The numbers in the last three
columns indicate how many nodes in each circuit are found to
be hazardous. When untimed stabilization alone is used, in all
cases but one, over half the nodes are hazardous. When only
timed stabilization is used, this number is reduced considerably.
The last column indicates the results achieved by first running
timed stabilization, followed by untimed stabilization. Note
how timed stabilization alone gives identical results to the case
where timed stabilization is followed by untimed stabilization.

TABLE III
Hazards Found Based on the Stabilization Method

Example Gates
One mt

Untimed
jthod

Timed
Timed/

Untimed
alloc-outbound 11 6 0 0
chul33 9 7 1 1
converta 12 8 2 2
ebergen 9 4 3 3
half 7 7 1 1
mp-forward-pkt 10 6 0 0
nowick 10 7 0 0
ram-read-sbuf 17 13 0 0
rcv-setup 6 5 0 0
rpdft 8 8 2 2
sbuf-ram-write 17 12 2 2
sbuf-read-ctl 10 6 0 0
sbuf-send-ctl 13 11 1 1
sbuf-send-pkt2 13 11 1 1
trimos-send 24 18 5 5

This is a potentially significant finding in that it says, at least
for these examples, that there is no need to do untimed sta­
bilization. Since untimed stabilization may need to be iterated
(unlike timed stabilization), a cost savings in computation time,
without apparent loss of accuracy, occurs if timed stabilization
is run by itself.

V I. H a z a r d I s s u e s

There are two issues that arise, warranting further discussion:
false hazards and nonpropagating internal hazards.

A. False Hazards

In a small number of cases, our conservative method re­
ports that a node is hazardous when a full-timed state-space
exploration indicates that there is no hazard present. These
false hazards are a result of the abstraction method, which
limits the visible states to those contained in the CGE SG.
Between any two states in this SG, a number of internal signals
can be undergoing an ordered sequence of transitions. The
stabilization algorithms do not always find internal nodes to
be stable, and if more than one input to a gate is unstable in
the same state and a forcing side input cannot be found, then a
monotonicity hazard is reported.

An example circuit to illustrate a false hazard is shown in
Fig. 17. This circuit is from the rpdft example in the suite of
examples used by the timed automata tool KRONOS [6]. Here,

NELSON et al: VERIFICATION OF HAZARD-FREEDOM IN GATE-LEVEL TIMED ASYNCHRONOUS CIRCUITS 603

Fig. 17. False hazard example using circuit rpdft. Assume that gates have a
delay of [1, 1].

a false monotonicity hazard is reported on output node t in state
10001 caused by fanin 658. This is seen by starting in state
00001, where the external signals are stable at the values in
the state vector. These stable values force signal 658 to be LOW
and signal 655 and output t to be HIGH. When signal d rises
and the circuit moves to state 10001, signal 655 is enabled to
fall (through two gate delays) and signal 658 is enabled to rise
(through three gate delays). However, the algorithm is not able
to determine the order in which these internal nodes actually
switch. Thus, in state 10001, neither 655 or 658 has stabilized,
and a monotonicity hazard on output t is reported.

After the timed and untimed stabilization has been completed
for the circuit in Fig. 17, the stability information for state
10001 is shown on each internal node. For the internal signals, a
U indicates that this node is unstable, and a 0 indicates that the
node has stabilized at that value. Note also that all gates have at
least one stable input, except for the gate driving the output t .

To explore why this hazard is false, the full-timed SG for
the region of interest must be examined. This SG is shown in
Fig. 18. Note that between the time signal d rises when state
10001 is entered and signal 6 rises when state 10001 is exited,
internal signals 647, 650, and 658 rise, and signals 655 and 648
fall. It is clear from this SG that signal 655 falls before 658 rises.
Thus, there is no actual state in this SG where the ambiguity in
Fig. 17 is present.

We plan to develop techniques to evaluate if a hazard is
false or not. When an acknowledgment hazard is found on a
node n, the state transition (s, £, s') where the hazard occurs
is reported. For monotonicity hazards, the state 5 and input
v that cause the monotonicity violation are reported. In either
case, this information can be used to create an error trace from
the initial state. This error trace can then be used to perform a
guided simulation of the circuit to detect if the hazard can occur
or not. While in theory, this simulation could result in full state-
space exploration, it is likely only to require exploration of a
small subset of the state space to determine if it is false or not.

B. Non-propagating Internal Hazards

The intent of the verification portion of this paper is to iden­
tify nodes where hazardous behavior is occurring. However,
it is known that hazardous activity on internal nodes does not
necessarily mean that the circuit fails. In other words, if hazards

Fig. 18. Full-timed SG for the region of interest in circuit rpdft. The state
vector is (d, c, 6, a, 647, 648, 658, 650, 651, 655, t).

Fig. 19. Nonpropagating acknowledgment hazard example, (a) half circuit,
(b) half state graph. Assume that all gates have a delay of [1, 1].

on internal nodes do not propagate to the output, the circuit as
a whole may not be hazardous.

An example of one such circuit (there are many) is shown
in Fig. 19(a). This circuit is called half and is taken from the
examples used by the KRONOS tool. Fig. 19(b) shows the SG
for the half circuit. Note that in the SG, stability information for

604 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 3, MARCH 2007

internal nodes x94 and x96 is placed in square brackets next to
each state. After verification, it is found that node x96 has an
acknowledgment hazard between states 0101 and 0111. This is
seen in the SG by noticing that node x96 is unstable in both
of these states, but its evaluation changes, i.e., x96 evaluates to
0 in state 0101 but evaluates to 1 in state 0111. As shown in
the algorithm of Fig. 12, an acknowledgment hazard is reported
between two states under these conditions.

After circuit verification, it is also found that output d is
hazard-free. In other words, the acknowledgment hazard on
node x96 did not propagate to the output. This is because the
output is held in a HIGH state by node x94, which is stable at 0
during the state transition from 0101 to 0 1 1 1 .

The point of this example is that it may be possible to
declare some circuits hazard-free even when there is hazardous
activity on the internal nodes. One reason this is often the case
is because of blocking side inputs such as in the example of
Fig. 19. This topic is of keen interest because it may be possible
to develop algorithms that identify nonpropagating hazardous
activity that has no effect on the primary outputs.

VII. C o n c l u s i o n

This paper presents a new method for efficiently checking
hazard-freedom in gate-level timed circuits. This method uses
a cube approximation of the internal signal behavior that is
refined with a new timed stabilization procedure. This allows
our method to avoid generating an explicit SG representing the
switching behavior of the internal signals. Our experimental
results show that this new method can be substantially faster
than previous gate-level timing verification tools. While this
method is conservative and thus can report some incorrect
hazards, the number of such false negative results appears to
be small. This method has been shown to scale very well in that
it can verify examples with more than 150 gates in less than a
second, while previous methods fail to complete.

We utilized this hazard analyzer within a technology mapper
for timed circuits [24], In asynchronous circuits, hazards must
be avoided, and care must be taken during technology mapping
so as not to introduce hazards in the design. Therefore, an
asynchronous technology mapper requires a method to rapidly
determine when a transformation of the netlist has introduced a
hazard. The hazard analyzer described in this paper addresses
this need, making efficient technology mapping of timed cir­
cuits possible.

A c k n o w l e d g m e n t

The authors would like to thank K. Stevens of the University
of Utah for his feedback on this work.

R e f e r e n c e s

[1] K. S. Stevens, S. Rotem, R. Ginosar, P. Beerel, C. J. Myers, K. Y.
Yun, R. Koi, C. Dike, and M. Roncken, “An asynchronous instruction
length decoder," IEEE J. Solid-State Circuits, vol. 36, no. 2, pp. 217-228,
Feb. 2001.

[2] C. J. Myers, T. G. Rokicki, and T. H.-Y. Meng, “POSET timing and its
application to the synthesis and verification of gate-level timed circuits,"

IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 18, no. 6,
pp. 769-786, Jun. 1999.

[3] W. Belluomini and C. J. Myers, “Timed state space exploration us­
ing POSETs," IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 19, no. 5, pp. 501-520, May 2000.

[4] M. A. Pena, J. Cortadella, A. Kondratyev, and E. Pastor, “Formal verifi­
cation of safety properties in timed circuits," in Proc. Int. Symp. Adv. Res.
Asynchronous Circuits and Syst., Apr. 2000, pp. 2-11.

[5] E. Mercer, C. Myers, and T. Yoneda, “Improved POSET timing analy­
sis in timed Petri nets," in Proc. 10th Workshop SASIMI, Oct. 2001,
pp. 127-134.

[6] O. M. M. Bozga, H. Jianmin, and S. Yovine, “Verification of asynchronous
circuits using timed automata," in Electronic Notes in Theoretical Com­
puter Science, vol. 65, O. M. E. Asarin and S. Yovine, Eds. Amsterdam,
The Netherlands: Elsevier, 2002.

[7] T. Yoneda and H. Ryu, “Timed trace theoretic verification using partial
order reduction," in Proc. 5th Int. Symp. Adv. Res. Asynchronous Circuits
and Syst., 1999, pp. 108-121.

[8] D. L. Dill, Trace Theory for Automatic Hierarchical Verification
o f Speed-Independent Circuits, ser. ACM Distinguished Dissertations.
Cambridge, MA: MIT Press, 1989.

[9] J. Ebergen and S. Gingras, “A verifier for network decompositions of
command-based specifications," in Proc. Hawaii Int. Conf. Syst. Sci.,
Jan. 1993, vol. I, pp. 310-318.

[10] P. A. Beerel, T. H.-Y. Meng, and J. Burch, “Efficient verification of
determinate speed-independent circuits," in Proc. ICCAD, Nov. 1993,
pp. 261-267. [Online], Available: http://jungfrau.usc.edu/pub/iccad93.ps

[11] M. Kishinevsky, A. Kondratyev, A. Taubin, and V. Varshavsky, “Analy­
sis and identification of speed-independent circuits on an event model,"
Form. Methods Syst. Des., vol. 4, no. 1, pp. 33-75, Jan. 1994.

[12] G. Gopalakrishnan, E. Branvand, N. Michell, and S. Nowick, “A cor­
rectness criterion for asynchronous circuit validation and optimization,"
lEEETrans. Comput.-Aided Design Integr. Circuits Syst., vol. 13,no. 11,
pp. 1309-1318, Nov. 1994.

[13] O. Roig, J. Cortadella, and E. Pastor, “Hierarchical gate-level
verification of speed-independent circuits," in Asynchronous Design
Methodologies. Los Alaminos, CA: IEEE Comput. Soc. Press, May
1995, pp. 129-137. [Online], Available: ftp://gaudi.ac.upc.es/pub/reports/
DAC/1995/UPCDAC- 95-01 .ps.Z

[14] , “Verification of asynchronous circuits by BDD-based model check­
ing of Petri nets," in Proc. 16th Int. Conf. A ppl and Theory Petri Nets,
Jun. 1995, vol. 815, pp. 374-391.

[15] H. Zheng, C. J. Myers, D. Walter, S. Little, and T. Yoneda, “Verification
of timed circuits with failure directed abstractions," in Proc. IC.CD, Oct.
2003, p. 28.

[16] H. Zheng, E. Mercer, and C. Myers, “Modular verification of timed cir­
cuits using automatic abstraction," IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 22, no. 9, pp. 1138-1153, Sep. 2003.

[17] C. J. Myers and T. H.-Y. Meng, “Synthesis of timed asynchronous cir­
cuits," IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 1, no. 2,
pp. 106-119, Jun. 1993.

[18] H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello, “An algorithm for
exact bounds on the time separation of events in concurrent systems,"
IEEE Trans. Comput., vol. 44, no. 11, pp. 1306-1317, Nov. 1995.

[19] S. Chakraborty, D. L. Dill, and K. Y. Yun, “Min-max timing analysis
and an application to asynchronous circuits," Proc. IEEE, vol. 87, no. 2,
pp. 332-346, Feb. 1999.

[20] , “Timing analysis of asynchronous systems using time separation of
events," IEEE Tram. Comput.-Aided Design Integr. Circuits Syst., vol. 18,
no. 8, pp. 1061-1076, Aug. 1999.

[21] P. Merlin and D. J. Faber, “Recoverability of communication protocols,"
IEEE Trans. Commun., vol. COM-24, no. 9, pp. 1036-1043, Sep. 1976.

[22] D. L. Dill, “Timing assumptions and verification of finite-state concurrent
systems," in Proc. Workshop Autom. Verification Methods fo r Finite-State
Syst., 1989, pp. 197-212.

[23] P. A. Beerel, J. R. Burch, and T. H.-Y. Meng, “Checking combinational
equivalence of speed-independent circuits," Form. Methods Syst. Des.,
vol. 13, no. 1, pp. 37-85, May 1998.

[24] C. A. Nelson, “Technology mapping of timed asynchronous circuits,"
Ph.D. dissertation, Univ. Utah, Salt Lake City, UT, 2004.

[25] E. Detjens, G. Gannot, R. Rudell, A. Sangiovanni-Vincentelli, and
A. Wang, “Technology mapping in MIS," in Proc. ICCAD, 1987,
pp. 116-119.

[26] C. J. Myers, W. Belluomini, K. Killpack, E. Mercer, E. Peskin, and
H. Zheng, “Timed circuits: A new paradigm for high-speed design," in
Proc. Asia and South Pacific Des. Autom. Conf, Feb. 2001, pp. 335-340.

http://jungfrau.usc.edu/pub/iccad93.ps
ftp://gaudi.ac.upc.es/pub/reports/

NELSON ct al.: VERIFICATION OF HAZARD-FREEDOM IN GATE-LEVEL TIMED ASYNCHRONOUS CIRCUITS 605

Curtis A. Nelson (M '89) received the B.S. degree
in engineering with a concentration in electrical en­
gineering from Walla Walla College, College Place,
WA, in 1978, the M.S.B.B. degree from Washington
State University, Pullman, in 1986, and the Ph.D.
degree from the University o f Utah, Salt Lake City,
UT, in 2004.

He is currently a Professor o f engineering with
the School o f lingineering, Walla Walla College.
His primary teaching responsibilities are in the areas
o f VLSI design, embedded systems, and computer

architecture. His current research interests include verification of asynchronous
circuits and power driven logic design.

Dr. Nelson was an SRC Fellow from 2001 to 2004.

Chris J. Myers (S '91 -M '96-S M '04) received the
B.S. degree in electrical engineering and Chinese
history from the California Institute o f Technology,
Pasadena, CA, in 1991, and the M.S.ii.ii. and Ph.D.
degrees from Stanford University, Stanford, CA, in
1993 and 1995, respectively.

He is currently a Professor with the Department
o f Blectrical and Computer lingineering, University
o f Utah, Salt Lake City, UT. He is the author of
more than 70 technical papers and the textbook Asyn­
chronous Circuit Design (Wiley, 2001). He is also a

co-inventor on four patents. His research interests include algorithms for the
analysis o f real-time concurrent systems, analog error control decoders, formal
verification, asynchronous circuit design, and modeling and analysis o f genetic
regulatory circuits.

Dr. Myers received the National Science Foundation (NSF) Fellowship
in 1991, the NSF CARIiliR Award in 1996, and the Best Paper Award at
Async'99.

Tomohiro Yoneda (M '85) received the B.B., M.B.,
and Dr.Iing. degrees in computer science from Tokyo
Institute of Technology, Tokyo, Japan, in 1980, 1982,
and 1985, respectively.

In 1985, he joined the staff o f Tokyo Institute of
Technology. In 2002, he joined the National Insti­
tute o f Informatics, Tokyo, where he is currently a
Professor. He is also a Professor with Sokendai, The
Graduate University for Advanced Studies, Hayama,
Japan, and a Visiting Professor at Tokyo Institute of
Technology. From 1990 to 1991, he was a Visiting

Researcher at Carnegie Mellon University, Pittsburgh, PA. His current research
interests include formal verification o f hardware and synthesis o f asynchronous
circuits.

Dr. Yoneda is a member o f the Institute o f Blectronics, Information, and
Communication Bngineers o f Japan and the Information Processing Society
o f Japan.

