
A D a ta D i s t r i b u t e d , P a r a l le l A lg o r i th m fo r R a y -T r a c e d V o lu m e R e n d e r in g

Kwan-Liu Ma^, James S. Painter*, Charles D. Hansen^, Michael F. Krogh§
tICASE, Mail Stop 132C, NASA Langley Research Center, Hampton, Virginia 23681

■^Department of Computer Science, University of U tah, Salt Lake City, U tah 84112
§ Advanced Computing Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

km a^icase.edu, jainie®cs.utah.edu, hansen(Q)acLlaiil.gov, krogh^acl.lanl.gov

A b s t r a c t

This paper presents a divide-and-conquer ray-traced vol
ume rendering algorithm and a parallel image compositing
method, along with their implementation and performance
on the Connection Machine CM-5, and networked worksta
tions. This algorithm distributes both the d a ta and the
computations to individual processing units to achieve fast,
high-quality rendering of high-resolution data. The volume
data, once distributed, is left intact. The processing nodes
perform local raytracing of their subvolume concurrently.
No communication between processing units is needed dur
ing this locally ray-tracing process. A subimage is generated
by each processing unit and the final image is obtained by
compositing subimages in the proper order, which can be
determined a priori. Test results on the CM-5 and a group
of networked workstations dem onstrate the practicality of
our rendering algorithm and compositing method.

K ey W ords: Scientific Visualization, Volume Rendering, Net
work Computing, Massively Parallel Processing.

1 I n t r o d u c t io n

Existing volume rendering methods, though capable of mak
ing very effective visualizations, are very computationally
intensive and therefore fail to achieve interactive rendering
rates for large d a ta sets. Our work was motivated by the
following observations: First, volume d a ta sets can be quite
large, often too large for a single workstation to hold in
memory at once. Moreover, high quality volume render
ings normally take minutes to hours on a single processor
machine and the rendering time usually grows linearly with
the data size. To achieve interactive rendering rates, users
often must reduce the original data, which produces poor
visualization results. Second, many acceleration techniques
and data exploration techniques for volume rendering trade
memory for time. Third, motion is one of the most effective
visualization techniques. An animation sequence of volume
visualization normally takes hours to days to generate. Fi
nally, we notice the availability of hundreds of high perfor
mance workstations in our computing environment, which
are frequently sitting idle for many hours a day. This lead
us to consider ways to distribute the increasing am ount of
data as well as the time-consuming rendering process to the
tremendous distributed computing resources available to us.

In this paper, we describe the resulting parallel volume
rendering algorithm and a image compositing method along
with their im plementations and performance on the CM-5
and networked workstations. For a homogeneous computing
environment, a computing environment with uniformly dis
tributed processing and memory units, this parallel volume

0 - 8 1 8 6 - 4 9 2 0 - 8 / 9 3 $ 3 . 0 0 ® 1 99 3 IEEE

rendering algorithm evenly distributes d a ta to the com put
ing resources available. Each subvolume is then ray-traced
locally and generates a partial image, w ithout the need to
communicate with other processing units. These partial im
ages are merged in the proper order through a new parallel
compositing algorithm to achieve the correct final image.
Our test results on both the homogeneous and heteroge
neous computing environments are promising, and expose
different performance tuning issues for each environment.

2 R e la te d W o rk

An increasing number of parallel architectures and algo
rithms for volume rendering have been developed. The ma
jor algorithmic strategy for parallelizing volume rendering
is the divide-and-conquer paradigm. The volume rendering
problem can be subdivided either in data space or in im
age space. While data-space subdivision assigns the compu
tation associated with particular subvolumes to processors,
image-space subdivision distributes the com putation associ
ated with particular portions of the image space. Data-space
subdivision is usually applied to a distributed-mem ory par
allel computing environment. On the other hand, image-
space subdivision is simple and efficient for shared-memory
multiprocessing. Hybrid m ethods are also feasible.

Among the parallel architectures developed which are ca
pable of performing interactive volume rendering, the Pixel-
Planes 5 system [5] is a heterogeneous multiprocessor graph
ics system using both MIMD and SIMD parallelism. The
hardware consists of multiple i860-based Graphics Proces
sors, multiple SIMD pixel-processors arrays called Render-
ers, and a conventional 1280x1024-pixel frame buffer, inter
connected by a five-gigabit ring network. In [22], variations
of parallel volume rendering implemented on this system are
presented. One approach similar to the idea we proposed
earlier in [11] and now elaborate in this paper, distributes
data as well as ray casting among separate Graphics Proces
sors and reconstructs the ray segments into coherent rays.
Incorporating dynamic load balancing, lookup tables and
progressive refinement, this approach can render shaded im
ages from 128x128x56 volume data at 20 frames per second.
In the following sections, we survey most recent research re
sults from other algorithmic approaches.

2.1 Montani
Montani et al. [13] propose a hybrid ray-traced method
for running on distributed-mem ory parallel systems like a
nCUBE, in which processing nodes are organized into a set
of clusters, each of them composed of the same number Of
nodes. The image space is partitioned and a subset of pixels
is assigned to each cluster, which will compute pixel values

15

Authorized licensed use limited to: The University of Utah. Downloaded on July 08,2010 at 22:45:40 UTC from IEEE Xplore. Restrictions apply.

independently. D ata to be visualized is replicated in each
cluster, and is partitioned among the local memory of the
cluster’s nodes. A static load balancing strategy based on
the estim ated work load of each processor is used to improve
efficiency, and on average a twenty percent speedup in ren
dering time can be obtained. In addition, a mechanism for
preventing deadlock is necessary to handle the dependency
between processing nodes in the same cluster. The best ef
ficiency reported by the authors while using a single cluster
of 128 nodes is 0.74. However, when increasing the number
of clusters, the efficiency drops significantly. For example,
using 16 clusters with 8 nodes per cluster, the efficiency re
ported is only 0.31.

2.2 N ieh
Nieh and Levoy [14] implement ray-traced volume render
ing on Stanford DASH Multiprocessors, a scalable shared-
memory MIMD machine. Their method employs algorith
mic optimizations such as hierarchical opacity enumeration,
early ray term ination, and adaptive image sampling [9]. The
shared-memory architecture providing a single address space
allows straightforward implementations. The parallel al
gorithm distributes volume d a ta in an interleaved fashion
among the local memories to avoid hot spotting. The ray
tracing com putation is distributed among the processors by
partitioning the image plane into contiguous blocks and each
processor is statically assigned an image block. Each block
is further divided into square image tiles for load balancing
purposes. When a processor is done computing its block,
instead of waiting, it steals tiles from a neighboring pro
cessor’s block to keep itself busy. Experiment results show
this load balancing scheme cuts the variation of execution
times across the 48 processors used by 90%. Currently, each
processor in DASH is a 33 MHz MIPS R3000. Using all
48 processors available, a 416x416-pixel image for a 2563
data set can be generated in subsections; for nonadaptive
sampling, the speedup over uniprocessor rendering is 40.

2.3 S ch ro d e r
.Schroder and Stoll [18] develop a data-parallel ray-traced
volume rendering algorithm th a t exploits ray parallelism.
They describe the ray tracing steps as discrete line drawing.
This algorithm is both more memory efficient and less com
munications bound than an algorithm introduced earlier by
the first author [17]. They have implemented this algorithm
on both the Connection Machine CM-2 and the Princeton
Engine, which consists of 2048 16-bit DSP processors ar
ranged in a ring. To allow for a SIMD implementation, rays
initially enter only the front-m ost face of the volume and
proceed in lock step. Consequently, each sample has the
same local coordinates in a voxel. When rays exit the far
face, a toroidal shift of the data is performed and new rays
are initialized to enter the visible side face of the volume. As
a result, the rotation angle selected influences about 10% of
the runtim e of the algorithm. Tests using a 1283-voxel data
set on both the CM2 from 8K to 32K processors in size
and the Princeton Engine of 1024 processors show subsec-
ond rendering time.

2.4 V ez in a

Vezina, et al. [21] implement a multi-pass algorithm similar
to Schroder’s on MP-1, which is a massively data-parallel
SIMD com puter with a 2D array of processing elements
(PEs). Their algorithm, based on work done by Catmull and

Smith [2], and Hanrahan [7], converts both 3D rotation and
perspective transform ations into only four ID shear/scale
passes, compared to Schroder’s eight-pass rotation algorithm
composed exclusively of shear operations. Volume transpo
sition is then performed to localize d a ta access. MP-1 pro
vides a global router which allows efficient moving of data
between PEs. On a 16K-PE MP-1, a 128xl28-pixel volume
rendered image of a 1283-voxel data can be generated in sub-
seconds. However, it seems th a t if either a smaller number
of PEs or larger data sets are used, the data transposition
time can degrade the performance significantly.

3 A D iv id e - a n d - C o n q u e r A lg o r i th m

The idea behind our algorithm is very simple: divide the
data up into smaller subvolumes distributed to multiple
computers, render them separately and locally, and combine
the resulting images in an incremental fashion. While mul
tiple com puters are available, the memory demands on each
com puter are modest since each com puter need only hold a
subset of the to tal d a ta set. This approach can be used to
render high resolution d a ta sets in an environment, for exam
ple, with many midrange workstations (e.g. equipped with
16MB memory) on a local area network. Many computing
environments have an abundance of such workstations which
could be harnessed for volume rendering provided th a t the
memory usage on each machine is reasonable.

3.1 R ay -T race d V olum e R e n d e r in g
The starting point of our algorithm is the volume ray-tracing
technique presented by Levoy [8]. An image is constructed
in image order by casting rays from the eye through the im
age plane and into the volume of data. One ray per pixel is
generally sufficient, provided th a t the image sample density
is higher than the volume data sample density. Using a dis
crete rendering model, the data volume is sampled at evenly
spaced points along the ray, usually at a rate of one to two
samples per voxel. At each sample point on the ray, a color
and an opacity are computed using trilinear interpolation
from the d a ta values at each of the eight nearest voxels.

The color is assigned by applying a shading function such
as the Phong lighting model. A color map is often used to
assign colors to the raw data values. The normalized gra
dient of the data volume can be used as the surface normal
for shading calculations. The opacity is derived by using
the interpolated voxel values as indices into an opacity map.
Sampling continues until the d a ta volume is exhausted or
until the accumulated opacity reaches a threshold cut-off
value. The final image value corresponding to each ray is
formed by compositing, front-to-back, the colors and opac
ities of the sample points along the ray. The color/opacity
compositing is based on Porter and Duff’s o v er operator
[16]. It is easy to verify tha t the o v er is associative-, th a t is,

a o ve r (i o ve r «) = (a o ve r i>) o ve r c.

The associativity of the ov er operator allows us to break a
ray up into segments, process the sampling and compositing
of each segment independently, and combine the results from
each segment via a final compositing step. This is the basis
for our parallel volume rendering algorithm.

3.2 D a ta S u b d iv is io n /L o a d B a lan c in g
The divide-and-conquer algorithm requires th a t we parti
tion the input data into subvolumes. There are many ways

16

Authorized licensed use limited to: The University of Utah. Downloaded on July 08,2010 at 22:45:40 UTC from IEEE Xplore. Restrictions apply.

TOP * ^ Bottom a a

& ^
/ \ ✓ \ / \ / \

Figure 1: k-Dtree Subdivision of a Data Volume

to partitio n th e d a ta ; th e only requirem ent is th a t an un
ambiguous fron t-to -back ordering can be determ ined for the
subvolum es to establish the required order for com positing
subimages. Ideally we would like each subvolum e to require
about th e sam e am oun t of com puta tion . In practice, this
is generally no t som ething th a t we can always control well.
For exam ple, if th e view point is known and fixed, we could
partition th e volum e in a m anner th a t m inim izes the overlap
between the im ages resulting from the subvolum es. T his will
reduce the cost of th e m erging since com positing need only
be applied w here subim ages overlap as shown la ter. For an
anim ation sequence, th is technique can no t be applied since
the view point changes w ith each fram e. We can also p a rti
tion the volum e based on an estim ation of th e d is tribu tion
of the am ount of com puta tion w ithin the volume by pre
processing th e volum e to identify high gradient regions or
em pty regions. In addition , we m ay partition and d is trib u te
the volume according to the perform ance of individual com
puters when using a heterogeneous com puting environm ent.

T he sim plest m ethod is probably to partition the volume
along planes parallel to th e coordinate planes of the d a ta .
Again, if th e view point is fixed and known when p a rtitio n
ing the d a ta , th e coord inate plane m ost nearly orthogonal to
the view direction can be determ ined and th e d a ta can sub
divided into “slices” orthogonal to this plane. W hen o rtho
graphic projection is used, th is will tend to produce subim
ages w ith little overlap. If the view point is no t known,
or if perspective projection is used, it is b e tte r to partition
the volume equally along all coord inate planes. T h is can be
accomplished using a k-D tree s tru c tu re [1], w ith a lte rn a t
ing binary subdivision of th e coord inate planes a t each level
in the tree as indicated in Figure 1. As shown la ter, this
struc tu re provides a nice m echanism for im age com positing.

As shown in Figure 2, when a volum e of grid points (vox
els) is evenly subdivided into, for exam ple, two subvolumes,
each subvolum e m ay contain half of the to ta l grid points.
Note th a t each voxel is located a t a corner of the grid. C on
sequently, those ray sam ples th a t lie in the cu t boundary
region (the d o tted region) are lost. If the view vector is
parallel to the cu t plane, a black s trip will appear a t each
cut boundary in th e com posited im age. In order to avoid
this problem , we need to replicate one layer of th e bound
ary grid a t each subvolum e so the com posited ray-casting
image does no t drop ou t fea tu res originally in the volume.
For the case shown in Figure 2, one possible arrangem ent is

Figure 2: Volume B oundary Replication.

Figure 3: C orrect Ray Sampling.

th a t Subvolum e 1 includes layer 1 to layer k and Subvolum e
2 includes layer k to layer n; th a t is, in Subvolum e 2, layer
k is replicated.

3.3 P a ra lle l R e n d e r in g

We use ray-casting based volum e rendering. Each com puter
can perform ray trac ing independently ; th a t is, there is no
d a ta com m unication required during the subvolum e render
ing. All subvolum es are rendered using an identical view
position and only rays w ithin the im age region covering the
corresponding subvolum e are cast and sam pled. Since we
sam ple along each ray a t a predeterm ined interval, consis
ten t sam pling locations m ust be ensured for all subvolum es
so we can reconstruct the original volume. As shown in Fig
ure 3, for exam ple, the location of th e first sam ple .£2 (1) on
th e ray shown in Subvolum e 2 should be calculated correctly
so th a t the d istance betw een .$2 (1) and S i(n) is equivalent
to the p redeterm ined interval. O therw ise, sm all fea tu res in
the d a ta m ight be lost or enhanced in an erroneous way.

3.4 Im ag e C o m p o sitio n

T he final step of our algorithm is to m erge ray segm ents and
thus all p artia l im ages into the final to ta l im age. In order to
merge, we need to store no t only the color a t each pixel bu t
also the accum ulated opacity there. As described earlier,
the rule for m erging subim ages is based on th e o v e r com
positing opera to r. W hen all subim ages are ready, they are
com posited in a fron t-to -back order. For a stra igh tforw ard
one-dim ensional d a ta p a rtition , this order is also stra igh tfo r
w ard. W hen using the k-D tree s tru c tu re , this fron t-to -back
im age com positing order can then be determ ined hierarchi
cally by a recursive traversal of th e k-D tree stru c tu re , visit
ing the “fro n t” child before the “back” child. T his is sim ilar

17

Authorized licensed use limited to: The University of Utah. Downloaded on July 08,2010 at 22:45:40 UTC from IEEE Xplore. Restrictions apply.

to well known fron t-to -back traversals of B SP-trees [4] and
octrees [3]. In addition , th e hierarchical s tru c tu re provides a
n a tu ra l way to accom plish the com positing in parallel: sib
ling nodes in the tree may be processed concurrently.

A naive approach for m erging the p artia l im ages is to do
binary com positing. By pairing up com puters in order of
com positing, each disjoint pair produces a new subim age.
T hus after the first stage, we are left w ith th e task of com
positing only j subim ages. T hen we use half the num ber of
the original com puters, and pair them up for the nex t level
com positing. C ontinuing similarly, a fter log n stages, the
final im age is obtained. O ne problem for the above m ethods
is th a t during th e com positing process com positing, m any
com puters becom e idle. A t th e top of the tree, only one
processor is active, doing th e final com posite for the entire
im age. W hen running on a massively parallel com puter like
OM-5 w ith thousands of processors, th is would significantly
affect th e overall perform ance; consequently, the com posit
ing process would becom e a bo ttleneck when in teractive ren
dering ra tes are desired. To avoid th is problem , we have
generalized the binary com positing m ethod so th a t every
processor partic ipa tes in all the stages of the com positing
process. We call the new schem e binary-swap com positing.
T he key idea is th a t , a t each com positing stage, th e two
processors involved in a com posite operation split th e im age
plane into two pieces and each processor takes responsibility
for one of the two pieces.

In the early phases of th e algorithm , each processor is
responsible for a large portion of the im age area, b u t the
im age area is usually sparse since it includes con tribu tions
only from a few processors. In la te r phases, as we move
up the com positing tree, the processors are responsible for
a sm aller and sm aller po rtion of the im age area, b u t the
sparsity decreases since an increasing num ber of processors
have con tribu ted im age d a ta . A t th e top of the tree, all
processors have com plete inform ation for a sm all rectangle
of th e im age. T he final im age can be constructed by tiling
these subim ages onto th e display.

Figure 4 illu stra tes th e binary-swap com positing algo
rithm graphically for four processors. W hen all four com put
ers finish ray -tracing locally, each com puter holds a partia l
im age, as depicted in (a). T hen each p artia l im age is subdi
vided into two half-im ages by sp litting along the X axis. In
our exam ple, as shown in (b), C om puter 1 keeps only the left
half-im age and sends its right half-im age to its im m ediate-
right sibling, which is C om pu ter 2. Conversely, C om puter
2 keeps its righ t half-im age, and sends its left half-im age to
C om puter 1. B oth com puters then com posite the half im
age they keep w ith th e half im age they receive. A sim ilar
exchange and com positing of p a rtia l im ages is done betw een
C om puter 3 and 4. A fter th e first stage, each com puter only
holds a p artia l im age th a t is half the size of th e original one.
In the nex t stage, C om puter 1 a lte rn a tes th e im age sub
division d irection. T h is tim e it keeps th e upper half-im age
and sends th e lower half-im age to its second-im m ediate-right
sibling, which is C om puter 3, as shown in (c). Conversely,
C om puter 3 trad es its upper half-im age for C om puter l ’s
lower half-im age for com positing. C oncurrently , a sim ilar
exchange and com positing betw een C om pu ter 2 and 4 are
done. A fter th is stage, each com puter holds only one-fourth
of the original im age. For th is exam ple, we are done and
each com puter sends its im age to th e display device. T he
final com posited im age is shown in (d). I t has been brought
to our a tten tio n th a t a sim ilar m erging algorithm has been
developed independently by M ackerras [12].

In our cu rren t im plem entation , th e num ber of processors

LI Rl

L1+L2

T1

B1

(b)

T1+T3 T2+T4

Upper-Left Upper-Right
B2+B4B1+B3

Lower-Left Lower-Right

Figure 4: Parallel C om positing Process.

(n p r o c) m ust be a perfect power of two. T h is simplifies
the calculations needed to identify th e com positing pa rtn e r
a t each stage of the com positing tree and ensures th a t all
processors are active a t every com positing phase. T he al
gorithm can be generalized to relax th is restric tion if the
com positing tree is kept as a f u l l (b u t no t necessarily com
plete) b inary tree, w ith som e additional com plexity in the
com positing p a rtn e r com puta tion and w ith som e processors
rem aining idle during the first com positing phase.

4 I m p le m e n ta t io n o f t h e R e n d e r e r

We have im plem ented two versions of our d is tribu ted vol
um e rendering algorithm : one on the CM -5 and ano ther on
groups of netw orked w orkstations. O ur im plem entation is
com posed of th ree m ajo r pieces of code: a d a ta d is tribu to r,
a renderer, and an im age com positor. C urrently , th e d a ta
d is trib u to r runs as a single “h o st” process th a t determ ines
the partition ing of th e d a ta set, reads th e d a ta set piece by
piece from disk and d is tribu teds it to a set of “node” pro
c e s s e s th a t perform th e ac tua l rendering and com positing.
A lternatively, each node program could read their piece from
disk directly.

T he renderer im plem ents a conventional ray -traced vol
um e rendering algorithm [8] using a Phong lighting model
[15], O ur renderer is a basic renderer and is no t highly tuned
for best perform ance. C om pared to a perform ance tuned
ray -traced volum e rendering program we im plem ented pre
viously [10], we estim ate th a t the cu rren t im plem entation
of the renderer can be fu rth e r im proved in speed by 10%-
15%. In fac t, d a ta dependen t optim ization m ethods m ight
affect load balancing decisions by accelerating the progress
on some processors m ore th an o thers. For exam ple, a pro-

18

Authorized licensed use limited to: The University of Utah. Downloaded on July 08,2010 at 22:45:40 UTC from IEEE Xplore. Restrictions apply.

cessor tracing through empty space will probably finish be
fore another processor working on a dense section of the
data. We are currently exploring data distribution heuris
tics tha t can take the complexity of the subvolumes into
account when distributing the d a ta to ensure equal load on
all processors.

For shading the volume, surface normals are approxi
mated as local gradients using central differencing. We trade
memory for time by precomputing and storing the three
components of the gradient at each voxel. As an example,
for a data set of size 256x256x256, more than 200 megabyte
are required to store both the data and the precomputed gra
dients. This memory requirement prevents us from sequen
tially rendering this d a ta set on most of our workstations.

4.1 C M -5 a n d C M M D 3.0

The CM-5 is a massively parallel supercom puter which sup
ports both the SIMD and MIMD programming models [19],
The CM-5 in the Advanced Computing Laboratory at Los
Alamos National Laboratory has 1024 nodes, each of which
is a Sparc microprocessor with 32 MB of local RAM and
four 64-bit wide vector units. W ith four vector units up
to 128 operations can be performed by a single instruction.
This yields a theoretical speed of 128 GFlops for a 1024-node
CM-5. The nodes can be divided into partitions whose size
must be a power of two. A user’s program is constrained to
operating within a partition. Our CM-5 implementation of
the parallel volume renderer takes advantages of the MIMD
programming features of the CM-5. MIMD programs use
CMMD, a message passing library for communications and
synchronization, which supports either a hostless model or
a host/node model [20].

We chose the host/node programming model of CMMD
because we wanted the option of using X-windows to dis
play directly from the CM-5. The host program determines
which data-space partitioning to use, based on the number
of nodes in the CM-5 partition, and sends this information
to the nodes. The host then optionally reads in the volume
to be rendered and broadcasts it to the nodes. Alternatively,
the data can be read directly from the DataVault or Scal
able Disk Array into the nodes local memory. The host then
broadcasts the opacity/colorm ap and the transform ation in
formation to the nodes. Finally, the host performs an I/O
servicing loop which receives the rendered portions of the
image from the nodes.

The node program begins by receiving its data-space par
titioning information and then its portion of the data from
the host. It then updates the transfer function and the trans
form matrices. Following this step, the nodes all execute
their own copy of the renderer. They synchronize after the
rendering and before entering the compositing phase. Once
the compositing is finished, each node has a portion of the
image tha t they then send back to the host for display.

4.2 N e tw o rk ed W o rk s ta tio n s a n d P V M 2.4.2

Unlike a massively parallel supercom puter dedicating uni
form and intensive com puting power, a network computing
environment provides nondedicated and scattered com put
ing cycles. Thus, using a set of high performance work
stations connected by an E thernet, our goal is to set up a
volume rendering facility for handling large data sets and
batch animation jobs. T hat is, we hope tha t by using many
workstations concurrently, the rendering time will decrease
linearly and we will be able to render data sets th a t are too

large to render on a single machine. Note th a t real-time
rendering is generally not achievable in such environment.

We use PVM (Parallel V irtual Machine) [6], a paral
lel program development environment, to implement the
data communications in our algorithm. PVM allows us to
portably implement our algorithm for use on a variety of
workstation platforms. To run a program under PVM, the
user first executes a daemon process on the local host ma
chine, which in turn initiates daemon processes on all other
remote machines used. Then the user’s application program
(the node program), which should reside on each machine
used, can be invoked on each remote machine by a local
host program via the daemon processes. Communication
and synchronization between these user processes are con
trolled by the daemon processes, which guarantee reliable
delivery.

A host/node model has also been used. As a result, the
way it has been implemented is very similar to tha t of CM-
5’s. In fact, the only distinct difference between the work
sta tion’s and CM-5’s implementation (source program) is
the communication calls. For most of the basic communica
tion functions, PVM 2.4.2 and CMMD 3.0 have one-to-one
equivalence.

5 T e s ts

We used three different d a ta sets for our tests. The vorticity
data set is a 256x256x256 voxel CFD data set, computed on
a CM-200, showing the onset of turbulence. The head data
set is the now classic UNC Chapel Hill CT head at a size of
128x128x128. The vessel d a ta set is a 256x256x128 voxel
Magnetic Resonance Angiography (MRA) d a ta set showing
the vascular structure within the brain of a patient. Plate
1 illustrates the compositing process described in Figure 4,
using the images generated with this vessel d a ta set. Sim
ilarly, each column shows the images from one processor,
while the rows are the phases of the compositing algorithm.
The final image is displayed at the bottom .

5.1 C M -5

We performed multiple experiments on the CM-5 using par
tition sizes of 32, 64, 128, 256 and 512. When these tests
were run, a 1024 partition was not available. All times are
given in seconds. For the vortic ity d a ta set, we show com
plete timing results in Table 1 and the speedup graph in
Figure 5. The times shown are the broadcast time (data)
and the maximum times for all the nodes for the two steps
of the core algorithm: the rendering step (rend) and the
compositing step (comp), followed by the actual communi
cation component (comm) in the compositing step and lastly
the image gathering time (send). Note th a t the speedup was
measured for the core algorithm and it is a function of the 32
node running time. Due to limited space, for the head and
vessel data sets, we show only the corresponding speedup
graphs in Figure 6 and 7, respectively.

Looking at Table 1, it is easy to see th a t rendering time
dominates the process. It should be noted th a t this im
plementation does not take advantage of the CM-5 vector
units. We expect much faster com putation rates in the ren
derer when the vectorized code is completed. As there is
no communication in the rendering step, one might expect
linear speedup when utilizing more processors. As can be
seen from the three speedup graphs, this is not always the
case due to the load balance problems. The vortici ty data
set is relatively dense (i.e. it contains few empty voxels) and

19

Authorized licensed use limited to: The University of Utah. Downloaded on July 08,2010 at 22:45:40 UTC from IEEE Xplore. Restrictions apply.

size opt 32 64 128 256 512
data 89.87 93.516 83.185 94.326 49.157

642

rend
comp
comm
send

0.8038
0.0137
0.0013
0.0161

0.3995
0.0125
0.0008
0.0168

0.2072
0.0101
0.0006
0.0187

0.1116
0.0101
0.0005
0.0218

0.0597
0.0094
0.0003
0.0280

1282

rend
comp
comm
send

3.1446
0.0473
0.0030
0.0608

1.5974
0.0406
0.0026
0.0615

0.8247
0.0300
0.0018
0.0657

0.4086
0.0279
0.0012
0.0687

0.2041
0.0235
0.0011
0.0734

2562

rend
comp
comm
send

12.334
0.1807
0.0210
0.2406

6.3133
0.1466
0.0075
0.2417

3.2305
0.1108
0.0052
0.2615

1.6158
0.1001
0.0037
0.2470

0.8063
0.0836
0.0027
0.2537

5122

rend
comp
comm
send

48.200
0.7152
0.0843
0.9918

24.430
0.5810
0.0231

0.96500

12.697
0.4272
0.0181
0.9645

6.3434
0.3874
0.0138
1.0151

3.1878
0.3310
0.0097
0.9849

Table 1: CM-5 R esults on th e Vorticity D a ta Set

therefore exhibits nearly linear speedup. O n th e o ther hand,
b o th the head and the vessel d a ta sets contain m any em pty
voxels which unbalance th e load and therefore do no t ex
hibit the best speedup. Figure 5 dem onstra tes th a t for the
vort ici ty d a ta set, our im plem entation achieves very good
speedup for all im age sizes except 64x64 . T he rendering
of the 64x64 im age exhibits less speedup th an larger im age
sizes due to overhead costs associated w ith th e rendering
and com positing steps. In particu lar, th e com positing step
showed a speedup of only 1.46 when going from 32 nodes
to 512 nodes. For all im age resolutions above 64x64 , the
overall speedup was nearly th e sam e.

T he broadcast tim e includes the tim e it takes to read the
d a ta over NFS a t E th ern e t speeds on a loaded E therne t.
T he b roadcast tim e for the 512-node case is substan tia lly
less th an for the sm aller p a rtitions because while the tim ings
were being gathered for p a rtitions sm aller th an 512 nodes,
the o ther partitions were also running o ther jobs causing
bo th disk and E th ern e t contention . T he im age gathering
tim e (send) is the tim e it takes for th e nodes to send their
com posited im age tiles to th e host. As can be seen, the
im age gathering tim e is only slightly slower for larger p a rti
tions which have m ore im age-tiles. B oth of these tim es will
be m itigated by use of th e parallel sto rage and the use of
the H IP P I fram e buffer.

5.2 N e tw o rk ed W o rk s ta tio n s

For our w orkstation tests, we used a set of 32 high per
form ance w orkstations. T he first four m achines were IBM
RS/6000-550 w orkstations equipped w ith 512 MB of m em
ory. T hese w orkstations are ra ted a t 81.8 SPE C fp92. T he
nex t 12 m achines were H P9000/730 w orkstations, som e w ith
32 MB and o thers w ith 64 MB. T hese m achines are ra ted
a t 86.7 SPE C fp92. T he rem aining 16 m achines were Sun
Sparc-10/30 w orkstations equipped w ith 32 MB, which are
ra ted a t 45 SPE C fp92. T he te s ts on one, two and four work
sta tions used only th e IB M ’s. T he tes ts w ith eight and 16
used a com bination of th e H P ’s and IB M ’s. T he 16 Sun’s
were used for th e tes ts on 32. It was no t possible to as
sure absolute quiescence on each m achine because they are
in a shared environm ent w ith a heavily used E th ern e t and
large files system s. D uring th e period of testing there was
a netw ork traffic from NSF activ ity and across-the-net tape

backups. T he four IB M ’s were all on th e sam e subnet, while
th e rem aining nodes lie on different subnets. T hus, we ex
pect th e com m unication perform ance for the one, two and
four m achines to be b e tte r th an for th e eight or more.

In a heterogeneous environm ent, it is less m eaningful to
use speedup g raphs to study the perform ance of our algo
rithm and im plem entation . T hus in Figure 8, 9 and 10, for
the rendering step and the com positing step , varying the
num ber of w orkstations and the im age size, we display the
m axim um tim es from th e te s ts on the vorticity, head and
vessel d a ta sets, respectively. N ote th a t we use a log scale
along th e y axis. T he solid lines show th e tim e for both
steps and th e d o tted lines show th e tim e for the rendering
step only.

In a shared com puting environm ent, th e com m unication
costs are highly variable due to the use of the local E therne t
shared w ith hundreds of o ther m achines. T here are many
fac to rs th a t we have no contro l over th a t are influential to
our a lgorithm . For exam ple, an overloaded netw ork and
o ther users’ processes com peting w ith our rendering process
for C PU and m em ory usage could greatly degrade th e per
form ance of our a lgorithm . Im proved perform ance could be
achieved by carefully d is tribu ting the load to each com puter
according to d a ta con ten t, and the co m p u te r’s perform ance
as well as its average usage by o ther users. Moreover, com
m unications costs are expected to d rop w ith higher speed
in terconnection netw orks (e.g. FD D I) and on clusters iso
la ted from th e larger local a rea netw ork.

Unlike th e C M -5’s results, tes ts on w orkstations show th a t
th e com m unication com ponent is th e dom inan t fac to r in the
com positing costs. T h is can be seen by com paring the solid
lines w ith the d o tted lines in th e g raphs. On the average,
com m unication takes ab o u t 97% of the overall com positing
tim e. However, while using eight or fewer w orkstations, the
rendering tim e still dom inates the com positing tim e in m ost
cases. Again, the significant perform ance degradation for
rendering sm aller im ages is due to the overhead costs as
sociated w ith the rendering and com positing steps. These
g raphs exclude the d a ta d is tribu tion and im age ga ther tim es.
T hese tim es varied greatly, due to th e variable load on the
shared E therne t. T he d a ta d is tribu tion tim es varied from 17
seconds to 150 seconds while th e im age ga ther tim es varied
from an average of .06 seconds for a 64x64 im age to a high
of 8 seconds for a 512x512 im age. Prelim inary results w ith
PVM 3.1 ind icate much lower com m unications costs.

6 C o n c lu s io n s

We have presented a parallel volum e ray -tracing algorithm
for a massively parallel com puter or a set of in terconnected
w orkstations. T he algorithm divides bo th the com putation
and m em ory load across all processors and can therefore be
used to render d a ta sets th a t are too large to fit into the
m em ory system of a single uniprocessor. A parallel (binary-
swap) com positing m ethod was developed to com bine the
independently rendered results from each processor. T he
binary-swap com positing m ethod has m erits which make it
particu larly su itab le for massively parallel processing. First,
while th e parallel com positing proceeds, the decreasing im
age size for sending and com positing makes the overall com
positing process very efficient. N ext, th is m ethod always
keeps all processors busy doing useful work. Finally, it is
simple to im plem ent w ith the use of th e k-D tree s tru c tu re
described earlier.

T he algorithm has been im plem ented on bo th the CM-5
and a netw ork of scientific w orkstations. T he CM-5 imple-

20

Authorized licensed use limited to: The University of Utah. Downloaded on July 08,2010 at 22:45:40 UTC from IEEE Xplore. Restrictions apply.

N um ber o f P rocessors

Figure 5: CM -5 Speedup for the Vorticity D a ta Set.
N um ber o f P rocessors

Figure 8: PVM R esults on the Vorticity D ata Set.

N um ber o f P rocessors
Figure 6: CM-5 Speedup for the Head D a ta Set.

N um ber o f P rocessors

Figure 9: PVM R esults on th e Head D a ta Set.

N um ber o f P rocessors
Figure 7: CM -5 Speedup for the Vessel D a ta Set.

N um ber o f P rocessors
Figure 10: PVM R esults on th e Vessel D a ta Set.

21

Authorized licensed use limited to: The University of Utah. Downloaded on July 08,2010 at 22:45:40 UTC from IEEE Xplore. Restrictions apply.

mentation showed good speedup characteristics out to the
largest available partition size of 512 nodes. Only a small
fraction of the to ta l rendering time was spent in communi
cations, indicating the success of the parallel compositing
method. Several directions appear ripe for further work.
The host data distribution, image gather, and display times
are bottlenecks on the current CM-5 implementation. These
bottlenecks can be alleviated by exploiting the parallel I/O
capabilities of the CM-5. Rendering and compositing times
on the OM-5 can also be reduced significantly by taking ad
vantage of the vector units available at each processing node.
We are hopeful th a t real time rendering rates will be achiev
able for medium to high resolution with these improvements.

Performance of the distributed workstation implementa
tion could be further improved by better load balancing. In
a heterogeneous environment with shared workstations, lin
ear speedup is difficult. A simple approach is to do static
load balancing. The data subdivision can be done unevenly,
taking into account the predicted capacity on each machine
to try to balance the load. Alternatively, the data can be
subdivided into a larger number of equal sized subvolumes
and the more capable machines can be assigned more than
one subvolume. The later approach has the advantage that
it can be generalized to a dynamic load balancing approach:
divide the data into many subvolumes and assign them to
processors in a demand driven fashion. The finer subdi
vision of the data volumes would improve load balancing
during rendering at the cost of some additional compositing
time due to more levels in the compositing tree.

A ck n o w led g in en t s

The MRA vessel data set was provided by the MIRL at the
University of Utah. The vorticity d a ta set was provided
by Shi-Yi Chen of T-Div at Los Alamos National Labora
tory. David Rich, of the ACL, and Burl Hall, of Think
ing Machines, helped tremendously with the CM-5 timings.
The Alpha_l and CSS groups at the University of Utah pro
vided the workstations for our performance tests. Thanks
go to Elena Driskill for comments on a draft of this paper.
This work has been supported in part by NSF/ACERC and
NASA/ICASE.

R e fe re n c e s

[1] B e n t l e y , J. Multidimensional Binary Search Trees
Used for Associative Searching. C om m un. A C M 18, 8
(September 1975), 509-517.

[2] C a tm u l l , E ., a n d S m ith , A. R. 3-D Transformations
of Images in Scanline Order. Computer Graphics 14, 3
(1980), 279-285.

[3] D o c to r , L., a n d T o rb o r g , J. Display Techniques
for Octree-Encoded Objects. IE E E Comput. Graphics
and Appl. 1 (July 1981), 29-38.

[4] F uchs, H., A bram , G., a n d G r a n t , E. D. Near Real
Time Shade Display of Rigid Objects. In Proceedings
o f S I G G R A P H ’83 (1983), pp. 65-72.

[5] F u c h s , H., P o u l t o n , J ., E y le s , J ., G r e e r , T .,
G o l d f e a t h e r , J ., E l l s w o r t h , D ., M o l n a r , S.,
T u r k , G ., T e b b s , B., a n d I s r a e l , L. Pixel-Planes 5:
A H eterogeneous M ultiprocessor G raphics System Us
ing P rocessor-E nhanced M em ories. Com puter Graphics
23, 3 (July 1989), 111-120.

[6] GEIST, G., an d S u n d eram , V. Network-based Con
current Com puting on the PVM System. Concurrency:
Practice and Experience 4, 4 (June 1992), 293-312.

[7] H a n ra h a n , P. Three-Pass Affine Transforms for Vol
ume Rendering. C omputer Graphics 24, 5 (1990). Spe
cial issue on San Diego workshop on Volume Rendering.

[8] Levoy, M. Display of Surfaces from Volume Data.
IE E E C omputer Graphics and Applications (May
1988), 29-37.

[9] Levoy, M. Efficient Ray Tracing of Volume Data.
A C M Transactions on Graphics 9, 3 (July 1990), 245
261.

[10] M a, K .-L., C ohen , M., a n d P a in te r , J. Volume
Seeds: A Volume Exploration Technique. The Jour
nal o f Visualization and C om puter A n im a t io n 2 (1991),
135-140.

[11] M a, K .-L., an d P a in te r , J. S. Parallel Volume Vi
sualization on W orkstations. Computers and Graphics
17, 1 (1993).

[12] Mackerras, P. A Fast Parallel Marching Cubes Im
plementation on the Fujitsu AP1000. Tech. Rep. TR-
CS-92-10, Departm ent of Com puter Science, Australian
National University, 1992.

[13] M o n ta n i, C., P e re g o , R., an d S co p ig n o , R. Paral
lel Volume Visualization on a Hypercube Architecture.
In 1992 Workshop on Volume Visualization (1992),
pp. 9-16. Boston, October 19-20.

[14] N ieh, J., AND L evoy, M. Volume Rendering on Scal
able Shared-Memory MIMD Architectures. In 1992
Workshop on Volume Visualization (1992), pp. 17-24.
Boston, October 19-20.

[15] P h o n g , B. Illumination for Com puter-Generated Pic
tures. C om m un. A C M 18, 6 (June 1975), 311-317.

[16] P o r t e r , T ., an d D u ff , T . Compositing Digital Im
ages. In Proceedings o f S I G G R A P H ’84 (July 1984),
pp. 253-259.

[17] S c h r o d e r , P ., an d S alem , J. B. Fast Rotation of
Volume D ata on D ata Parallel Architectures. In Pro
ceedings o f Visualiza tion’91 (October 1991), pp. 50—57.

[18] S c h r o d e r , P ., an d S t o l l , G. D ata Parallel Volume
Rendering as Line Drawing. In 1992 Workshop on vol
ume Visualization (1992), pp. 25-31. Boston, October
19-20.

[19] T h in k in g M ach ines C o r p o ra t io n . The Connection
Machine CM-5 Technical Sum m ary , 1991.

[20] T h in k in g M ach ines C o r p o r a t io n . CM M D Refer
ence Manual; Preliminary D ocum enta tion fo r Version
3.0 Beta, February 1993.

[21] V ezina, G., F l e t c h e r , P. A., an d R o b e r ts o n ,
P. K. Volume Rendering on the M asPar MP-1. In
1992 Workshop on volume Visualization (1992), pp. 3
8. Boston, October 19-20.

[22] Y oo, T ., N eum ann, U., F u ch s, H., P iz e r , S., C u l-
lip , T ., R h o ad es, J., an d W h i ta k e r , R. Direct Vi
sualization of Volume Data. I E E E C omputer Graphics
and Applications (July 1992), 63-71.

22

Authorized licensed use limited to: The University of Utah. Downloaded on July 08,2010 at 22:45:40 UTC from IEEE Xplore. Restrictions apply.

