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Abstract

This paper describes a new method for architectural
synthesis of timed asynchronous systems. Due to the
variable delays associated with asynchronous resources,
implicit schedules are created by the addition of sup-
plementary constraints between resources. Since the
number of schedules grows erponentially with respect
to the size of the given data flow graph, pruning tech-
niques are introduced which dramatically improve run-
time without significantly affecting the quality of the
results. Using a combination of data and resource con-
straints, as well as an analysis of bounded delay in-
formation, our method determines the minimum num-
ber of resources and registers needed to implement a
given schedule. Results are demonstrated using some
high-level synthesis benchmark circuits and an indus-
trial example.

1. Introduction

Architectural-level synthesis is the process of tak-
ing an abstract behavioral model of a desired circuit
and refining it to an optimal macroscopic structure.
Issues such as latency, area, and power must be tak-
en into consideration to balance trade-offs in a design.
Architectural-level synthesis is an approach to manag-
ing these trade-offs at a macroscopic level. There has
been a plethora of methods developed to manage these
trade-offs for synchronous design (synchronous high-
level synthesis methods are surveyed in [6], and recent
work includes [14, 16, 7, 15, 11]).

As transistors decrease in size, the integrated cir-
cuit industry continues to increase clock speeds and
increase density making global synchronization across
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large chips more difficult to maintain. As a result,
asynchronous design is being looked at as an alternative
because it eliminates clocking issues and has the poten-
tial to achieve lower power, as well as average-case per-
formance. In [10], some resources can be asynchronous
with an unbounded delay, and a synchronous sched-
ule is determined relative to their completion. This
method, however, does not apply when the entire de-
sign is asynchronous as it does not determine a schedule
of the asynchronous resources or support bounded vari-
able delays. There has only been limited research in the
architectural-level synthesis of fully asynchronous sys-
tems. Several automated asynchronous design methods
exist which transform high-level algorithmic descrip-
tions down to layout [1, 4, 12]. These methods, how-
ever, do not consider design tradeoffs such as resource
and register sharing in an automated way. Heuristic
techniques for high-level synthesis of synchronous cir-
cuits have been extended to asynchronous circuits [3].
A graph-based algorithm for synthesis has also been
approached, but the complexity of this technique re-
stricts its application to small examples [17].

This paper presents a new architectural-level synthe-
sis method for asynchronous systems. This method be-
gins with a behavioral specification, a library of charac-
terized asynchronous datapath resources, and optional
area and/or delay constraints. From this information,
our method determines a datapath and a schedule for
the operations. For synchronous systems, scheduling
determines when operations are executed in time. This
can be done efficiently using discrete-time intervals
based on a global clock. In an asynchronous circuit,
the absence of a global clock and the asynchronous tim-
ing of events make scheduling difficult. The scheduling
of resources is dependent only on the availability of
the resource and its inputs. For accurate asynchronous
scheduling, resources must be modeled with variable
completion delays. It is also difficult to break time in-
to discrete bins because the fine grain discretization



needed for asynchronous scheduling makes tradition-
al synchronous scheduling algorithms computationally
infeasible. For these reasons, scheduling information is
not used here to explicitly schedule an operation to a
specific time. It is only used to determine conservative
windows of time in which an operation may occur. The
actual schedule is determined by the resource sharing
and the order of operations. To accomplish this, our
synthesis method performs timing analysis and adds re-
source edges into the DFG to determine a schedule. A
number of filters are introduced which reduce the num-
ber of possible schedules which need to be explored.
For each schedule, our synthesis method attempts to
share resources and registers whenever possible to im-
prove the area of the resulting datapaths. The synthe-
sized architectures are evaluated, and a list of potential
datapath configurations are presented to the user. The
utility of our architectural-level synthesis method is e-
valuated using several high-level synthesis benchmarks,
as well as an industrial example.

2. DFGs and the Resource Library

An architecture is typically specified using a high-
level hardware description language such as VHDL or
Verilog. This description can then be compiled into a
data flow graph (DFG). A data flow graph (DFQ) is an
abstract representation of the functional behavior of a
circuit. The nodes are operations, such as additions
and multiplications. The data edges represent the flow
of data from one operation to the next, where each
directed edge represents a data dependency between
two operations. Figure 1(a) shows an example of a
data flow graph for a differential equation solver.

TN _2F T~
- i S Pt v b
v
[

Figure 1. A DFG for a differential equation
solver (a) before and (b) after adding resource
edges.

The resources in the asynchronous datapath library
can be dual-rail, bundled data, or some hybrid. They
are characterized with an area and a minimum, maxi-
mum, and typical delay. It should be noted that even
bundled data resources have significant delay variation
due to temperature, voltage, and process variation.

3. Scheduling using Resource Edges

The first step of architectural synthesis is to deter-
mine the schedule in which resources are to be used.
The goal of scheduling is to restrict when certain op-
erations in the DFG can occur such that multiple op-
erations can be completed using the same resource. T-
wo or more operations can share the same resource if
they are of the same type and they are not in conflict
with each other. Operations are in conflict if their ex-
ecution windows overlap in time. This happens when
either operation starts before the other has completed.
Operations that are scheduled in disjoint windows of
time are guaranteed not to overlap and are, therefore,
always compatible. The conflict window can be de-
termined by using the best-case and worst-case ASAP
(as-soon-as-possible) schedules to determine the start
and stop time of the window.

Another way to show that two operations are com-
patible is to analyze the DFG. If there is a path from
operation ¢ to operation j, then those two operations
are compatible regardless of their scheduled windows
of time. This is because the existence of a path guar-
antees that operation ¢ must complete before operation
7 begins. Edges used to explicitly denote two sharable
operations are known as resource edges and are added
to the DFG during design space exploration. They
are distinguished from data edges, because they do not
imply the transfer of data from one operation to the
next. A resource edge forces two operations to occur
at disjoint times and denotes the ordering in which the
operations must occur.

Figure 1(a) shows a DFG with only data edges. In
this configuration, four multipliers are required and
three ALUs. With the resource edges shown in Fig-
ure 1(b), only two multipliers and one ALU are re-
quired. Note that there are many other ways to add
resource edges to the graph. Each resource edge added
to the graph, in essence covers an aggregate of all the
possible discrete time schedules that the given opera-
tion sequencing and resource sharing would produce.
Hence, scheduling of operations is done independent
of the discretization of time. For efficiency, our tool,
Mercury, utilizes both the information from the DFG
and where applicable, conservative ASAP scheduling
information to aid in performing resource sharing.



The key contribution of this paper is a new algo-
rithm for concurrent scheduling and resource allocation
which uses resource edges to increase sharing oppor-
tunities. Using resource edges is beneficial for asyn-
chronous design because the computational complexi-
ty is constant with regard to the discretization of time.
This approach, in effect, allows scheduling to take on a
continuous time paradigm. Our experiments show that
synchronous methods, such as Force-Directed Schedul-
ing [13], become computationally infeasible as the gran-
ularity of time is increased. Being able to discretize
time without a loss in performance is important for
asynchronous design because of the naturally continu-
ous nature of the time at which events can occur in an
asynchronous circuit.

Design space exploration starts with the DFG and
incrementally adds resource edges to the graph. Each
added edge serializes more operations. Each serialized
operation potentially reduces the area of the system
because better resource sharing may occur. However,
the increased serialization may in turn increase the la-
tency of the system. Therefore, each potential resource
edge is added, and the area and delay implied by the
resulting DFG is evaluated.

The complexity of the design space for a configura-
tion in which all operations are concurrent, compatible,
and not dependent on one another grows at a rate of
0(3™"=1)/2), where n is the number of nodes in the
graph. This configuration has the worst possible com-
plexity, since graphs with data dependencies or graphs
having non-compatible resources constrain the system
and reduce the number of edges which can be added
to serialize operations. In exploring the design space,
all possible orderings of adding resource edges to the
original DFG are potentially considered. Furthermore,
since edges are directional, each direction of an edge
between two nodes is also explored. Evaluating each
possible configuration of a DFG to find the best asyn-
chronous datapath configuration quickly becomes com-
putationally intractable. Therefore, it is advantageous
to eliminate as many branches of the design space as
possible before they are analyzed. Each branch elim-
inated can potentially cause an exponential reduction
in design space. To take advantage of this, several op-
timizations to reduce the design space are used. The
rest of this section describes the filters that are used to
prune the design space.

3.1. Infeasible and Redundant Edges

If an added edge creates a cycle, the resulting D-
FG is infeasible and the design space can be pruned.
If an added edge creates a transitive resource arc, the

resulting DFG is redundant and can also be pruned.
Our study shows that many infeasible and redundant
designs are detected during exploration. It has been
found that pruning the design space using these filters
yields a significant reduction in exploration and run-
time without any sacrifice in the quality of solutions.

3.2. Implied Edges

An implied edge is an edge which can be inferred
between two compatible resources based on ASAP
scheduling analysis. An edge is implied between two
operations if they have the same type of operation and
scheduling analysis shows that the two operations can
never be in conflict with each other. Implied edges can
be added to the graph without affecting the schedul-
ing of operations. Implied edges are important because
they may affect the sharing of resources.

To do the scheduling analysis, the critical window
of the resource is calculated using minimum and maxi-
mum ASAP scheduling. ASAP scheduling, or schedul-
ing without resource constraints, can be used to deter-
mine the lower and upper bound on the latency of the
system. ASAP scheduling is solved in polynomial time
by iterating through the nodes of the DFG in topologi-
cal order. For minimum ASAP, each node is scheduled
by setting its start time to the minimum ending time
of all of its predecessors. The ending time of each op-
eration is computed by adding the minimum delay of
the operation to its starting time. Similarly, for max-
imum ASAP, the start time is set to the maximum
ending times, and the ending time is found by adding
the maximum delay.

If any two resources have overlapping critical win-
dows, then there cannot be an implied edge between
those operations. Implied edges are always used to de-
termine sharable operations when doing resource shar-
ing. Thus, if a candidate edge is an implied edge, then
adding the candidate edge does not yield additional
information and consequently the candidate edge does
not need to be explicitly considered. Therefore, the
design space can be pruned.

3.3. Minimal Latency

It is often the case that the designer would like
the best possible performance for a design using min-
imal area. This is known as the latency-constrained
minimum-area problem. When a designer seeks to find
only minimal latency solutions, an additional optimiza-
tion can significantly reduce the design space of the ex-
ploration. For this optimization, it must be assumed
that latency monotonically increases as each candidate



edge is added to a design. It is believed that this is
a fair assumption, because each additional edge either
leaves the design unchanged or further serializes opera-
tions. Serializing an operation and employing resource
sharing potentially adds delay to the system, but it is
unlikely to decrease the delay. This is because larger
muxes are required to feed multiple operands to the
resource and the computation may potentially be de-
layed due to a resource conflict. While a more serial
design may decrease delay by reducing some overhead
such as in the control logic, it is not likely to be sig-
nificant with respect to the delay of a functional unit.
The design space is pruned when a candidate edge is
found which increases the overall latency of the sys-
tem beyond a desired limit because future designs o-
riginating from that configuration typically have equal
or longer latencies. The overall system latency is cal-
culated using unconstrained ASAP scheduling. When
solving for a minimal-latency solution, if the overal-
| system latency is greater than the value determined
by typical ASAP scheduling then the design space can
be pruned. Alternatively, a user can specify a maximal
latency limit, and all designs with a latency below this
limit are produced.

This filter can be optimized further, and addition-
al savings can be made by comparing the ASAP and
ALAP bounds of source and target operations of a can-
didate edge. If the best-case start time of the source
of a candidate resource edge is greater than the worst-
case completion time of the target, then it can be con-
cluded that there is no way to serialize the two op-
erations without additional system delay being intro-
duced. This is because the edge would force one of the
operations out of its zone of mobility, which would in
turn lengthen the critical path of the system. The over-
all delay is increased because the edge forces the target
and all of its successors to shift to later starting times,
forcing the design to have non-minimal latency. Us-
ing this technique is very efficient because it does not
require calculating the overall system delay with the
added candidate resource edge. In order to prune the
design space, this method only needs to examine the
original schedule and determine if adding an edge be-
tween two given operations would lengthen the critical
path.

3.4. Hierarchical Approach

Another method to reduce the design space uses a
hierarchical exploration approach. The hierarchical ap-
proach groups operations of the same type into blocks
of a given maximum size. Then, exploration is done
separately for each block. For example, if the number

of ALU and multiply operations are each less than the
maximum block size, then exploration is done for al-
1 ALU operations separately from exploration for all
multiply operations.

Each block is explored by adding resource edges be-
tween operations in the block. Edges between opera-
tions that are not in the block are not modified. Re-
source edges in a block that affect the overall area and
delay in a favorable manner (critical edges) are stored.
When the critical edges for each block are found, all
possible combinations of the critical edges are added
to the original DFG. Each new configuration is evalu-
ated and a final set of solutions is discovered.

This approach detects edges that do not have an
impact on scheduling or allocation locally and removes
them from further consideration. In other words, the
best results from a local optimization are used during
global optimization in an attempt to reduce the com-
plexity of the design space while still producing com-
petitive solutions. Extracting groups of edges can sub-
stantially reduce the complexity of the design space.
This happens because, in general, the sum of the com-
plexity of each blocks’ design space is much smaller
than the complexity of exploring the entire design s-
pace all at one time. Furthermore, if a block does not
have any favorable edges, then that block, or set of op-
erations, is dominated by other operations in the graph.
This focuses exploration on blocks of operations which
have the potential to optimize the overall design fur-
ther.

The solutions produced using this method, howev-
er, may not be globally optimal. When critical edges
are determined for each block, it is assumed that other
operations are scheduled and allocated without con-
straint. This means that it is possible to skip critical
edges that are dependent on other critical edges, which
are not part of the current block being explored. For
example, if edge A from block X is not a critical edge,
independent of edges from other blocks, it would not
be considered. But, if critical edge B from block Y
is added to the graph causing A to become a critical
edge, then A should be considered. Using the hierar-
chical approach, edge A would be skipped. However,
using the hierarchical approach can produce dramatic
runtime savings for large parallel DFG’s.

4. Resource Sharing

Resource sharing is used to minimize the area re-
quired for a design. Once a set of resource edges have
been selected for a given DFG, we have developed a
modified version of the left-edge algorithm to efficient-
ly do resource sharing. The algorithm first sorts the



operations or nodes by their scheduled start time, or
left-edge. It considers one instance of a resource at
a time and assigns as many operations as possible to
that instance by searching the nodes sorted in ascend-
ing order. Each iteration of the algorithm considers a
new instance of the resource, until all operations are
allocated to a specific resource instance.

With two important modifications, the left-edge al-
gorithm from [8] is used to perform asynchronous re-
source sharing. First, the left-edge of each operation
is determined by its scheduled start time in place of a
specific clock cycle. The right-edge of each operation
is determined by its scheduled stop time. This reflects
the window of time in which the resources should not
be shared. Second, the existence of a path between t-
wo operations is tested. When a path exists between
two operations, it does not matter if the operations are
scheduled at potentially conflicting times, the two oper-
ations are considered compatible because the existence
of a path guarantees the operations are serialized with
respect to each other. The asynchronous version of the
left-edge algorithm is shown in Figure 2. The complex-
ity of the algorithm is O(nlogn). While the algorithm
is not exact, it is found, in practice to efficiently give
good results.

Asynchronous-Left-Edge(list of operations I) {
Sort I in ascending order of start time.
instance = 1;
foreach operation [ in I {

linstance = instance;
t=1;
foreach operation k in I after [ {
if (kmin_start >= tmaw_stop or
there exists a path between ¢t and k) {
kinstance = instance;
t=k
remove k from I;
}
}

instance++;
remove [ from I;

Figure 2. Asynchronous left-edge algorithm.

5. Register Sharing

Registers must be associated with each data input
variable and the result of each operation in the data
flow graph. Although it suffices to use a unique register

for each data item, it is inefficient in terms of register
count because registers, like functional units, can be
recycled for future use. Therefore, we have developed
a register sharing algorithm for DFG’s with resource
edges to reduce the number of registers.

If the lifetimes of two variables do not overlap each
other, then the registers holding them can be shared.
The lifetime of a variable is the interval from the ear-
liest time when the value is generated as an output
of an operation to the latest time when the variable
is referenced as an input to another operation. This
section presents an algorithm based on the above prin-
ciple. This algorithm considers three cases, each of
which suggests a condition to decide the sharing be-
tween registers.

Case 1: The sharing between registers is decided
simply based on the topology of the data flow graph.
In the data flow graph, each register is connected to a
functional unit (the predecessor) which generates data
for the register that is consumed by multiple functional
units (the successors). A data edge in a data flow graph
represents not only the path on which data can flow,
but also the sequence of the operations of the functional
units and registers. Therefore, if there is a path from
a unit f; to f;, then f; completes its operation before
f; starts its operation. This observation applies to the
resource edges as well.

Based on the observation above, our algorithm de-
termines how registers are connected to decide the
sharing between them. An example is shown in Fig-
ure 3. In this and following figures, circles with a char-
acter ’f’ inside represent functional units, squares with
a cross inside represent registers. In Figure 3(a), there
is only one path from r1 to 72, and r! becomes free at
the same time or before the operation of the functional
unit completes and 72 latches the data. Therefore, r1
can be shared with 72. Now, considering the case in
Figure 3(b), there are two paths from r1, one to r2,
and the second one to another functional unit which
has no path to r2. Register r1 has to latch the data
until operations of all functional units complete, and
it is not known which functional unit completes lat-
er, so the lifetimes of r1 and r2 may be overlapped
and they cannot be shared. In another case shown in
Figure 3(c), both successors of rI have a path to r2.
This guarantees that r1 is free before r2 latches data.
Therefore, 71 and 72 can share the same register be-
cause their lifetimes are disjoint. To abstract this case,
we can state that for two registers r! and r2, if each
successor of r1 has a path to r2, then r1 and 72 can
share.

Case 2: After lifetimes of all registers are deter-
mined, the register sharing algorithm checks to see if
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Figure 3. Three register topologies.

there is an overlap between lifetimes of registers. If
there is not an overlap, they can share; otherwise, they
cannot share. Two examples are shown in Figure 4.
In these examples, two concurrent data flow graph seg-
ments are shown. Each functional unit is associated
with two sets of values. The set above the function-
al unit is the start time bound, and the set below the
functional unit is the end time bound. Each register
has two values. The one above is the start time and the
one below the end time of its lifetime. For simplicity,
the preceding and succeeding registers and function-
al units are ignored. In Figure 4(a), the earliest time
that r1’s predecessor completes its operation is at time
3, which means r1 must be ready at time 3 to latch
data from its predecessor; the latest time that r1’s suc-
cessor completes its operation is time 17, which means
r1 is free only after time 17. Therefore, we can deter-
mine that the lifetime of r1 is from 3 to 17. Similarly,
we can determine that the lifetime of r2 is from 20 to
40 (i.e., max(40, 31)). Since the lifetimes of rI and r2
do not overlap, r1 and r2 can be shared. However, in
Figure 4(b), the lifetimes of rf and r2 overlap, so r!
and r2 cannot be shared.
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Figure 4. Sharing using timing constraints.

Case 3 Consider the example shown in Figure 5.
The lifetimes of r1 and r2 overlap. According to the
discussion in case 1 and case 2, rf and 72 cannot share.
However, since there is a path from 71 to r2, and the
successor sl of 71 completes its operation before s2
does, this assures that the lifetimes of r1 and r2 are
disjoint, so r1 and r2 can actually be shared.

To summarize the above discussion, we give the de-
tailed description of the algorithm as follows:
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Figure 5. Combining timing information and
topology for register sharing.

Algorithm 5.1 For two different registers r1 and r2
in o data flow graph, they can share if they satisfy one
of the following three conditions:

e Condition 1: each successor of r1 has a path to r2.

o Condition 2: the lifetimes of r1 and r2 do not over-
lap. The start and end of the lifetime of a register
is determined as follows:

start
end =

min end time of its predecessor
mazx end times of all its successors

o Condition 3: there is a path from rl to r2, and
the mazimum end time of all r1’s successors which
have no path to r2 is less than r2’s start time.

6. Evaluation of Designs

Using a branch-and-bound technique the design s-
pace is searched for the best possible set of schedules
and allocations by incrementally adding resource edges
to the DFG. Each resource edge added can affect the
area and performance. Thus, after each edge is added,
the new graph is analyzed in terms of area and delay.
These are calculated using the estimates in the datap-
ath library. At this time, the area and delay of both
control logic and interconnect is neglected. It is as-
sumed that the difference in these areas for different
design alternatives is negligible.

Trade-offs between area and latency are managed by
using Pareto points [5]. Any point in the design space
which is superior to all other points in one objective,
or a combination of objectives, is a Pareto point. If the
new design is a Pareto point, then that configuration is
stored in a set of solutions. Solutions which are added
to the set may be better than former solutions in the
set, so any former solutions which are no longer Pareto
points are removed from the list.

The branch-and-bound algorithm for this problem
begins by selecting two operations A and B from the



graph and determining if adding a candidate resource
edge between the two operations satisfies all of the
bounding conditions. This includes not being removed
by any of the filters described above. Each time a can-
didate edge is filtered, or the algorithm exceeds con-
straints, the design space is pruned. If the candidate
resource edge satisfies all of the bounding conditions,
then the algorithm recurses to another level of the ex-
ploration. The next level considers all remaining edges
with and without the candidate resource edge. Recur-
sion continues until all possible edges between any two
compatible operations have been explored or pruned.
Once the algorithm completes, the Pareto points re-
maining in the solution set are the best solutions.
Each time an edge is added or removed from the
graph, a topological sort must be done on the graph,
and the ASAP and ALAP schedules must be updat-
ed. In addition, the transitive closure of the system,
which determines whether a path exists between any
two operations, must be updated. For these incremen-
tal changes, two optimizations are employed. First, a
dynamic transitive closure algorithm; and second, dy-
namic computation of the ASAP and ALAP schedules.
Both optimizations take advantage of the incremen-
tal changes to the graph by reducing unwarranted cal-
culations to areas of the graph that are not changed.
For brevity, the details of these algorithms are not dis-
cussed here, but we refer the interested reader to [2].

7. Case Studies

To test the effectiveness of the filters, three common
high-level synthesis benchmarks are used: a differential
equation solver (DIFFEQ), a fifth order elliptical wave
filter (EWF), and an inverse discrete cosine transform
(IDCT). We have also applied our method to a filter
bank from an industrial application. DIFFEQ is the
smallest of the examples with a total of 11 operations
and 13 variables needing registers. EWF is larger with
32 operations and 43 variables. IDCT is the largest
with 46 operations and 56 variables. The filter bank
from the industrial application has 23 operations and
29 variables. All of the case studies were performed
using a Pentium IT 400 Mhz processor. The maximum
amount of memory used is only 13 megabytes, so mem-
ory is not an issue.

For DIFFEQ, exploration is done using both the
hierarchical and non-hierarchical approaches. By de-
fault, the infeasible edge filter is always active for each
of these tests, since exploring infeasible designs is not
useful. ALU operations are modeled with a minimum
delay of one, typical delay of two, and maximum de-
lay of three. It is assumed that they require 21 units

of area. Multiply operations have a minimum delay of
four, a typical delay of five, and a maximum delay of
six. It is assumed that they require 43 units of area.
Multiplexors are modeled with a base area of three u-
nits, corresponding to a 2x1 multiplexor. For an (Nz1)
multiplexor the area is modeled as base x (N — 1).

The results of exploration are shown in Table 1. The
table shows the active filters for each test, the amount
of CPU runtime required for the test, the total num-
ber of configurations explored, and the number of so-
lutions in the final Pareto point set. For the hierar-
chical approach, the graph is broken in two sets: ALU
operations and multiplication operations. Using this
approach, fewer solutions are found, but the quality of
the solutions are comparable. For example, comparing
the results of the non-hierarchical approach using none
of the filters, with the hierarchical approach, also us-
ing none of the filters, it is found that the first method
yielded 292 solutions, while the second method yield-
ed only 82 solutions. Of the 292 solutions, there are
five unique Pareto points. Of the 82 solutions from the
hierarchical approach there are also the same Pareto
points. When all filters, excluding the minimal-latency
filter, are used, the two approaches yield 81 and 26 so-
lutions. Again, both methods give the same 5 Pareto
points. The unique Pareto points are shown in Table 2.
There have been a couple of asynchronous designs of
the differential equation solver: one using hardwired
control [18] and one using microcode [9]. Both of these
designs use 2 ALUs and 2 multipliers. Our method
finds this datapath, as well as 4 other alternative dat-
apaths.

The second case study uses a fifth order digital ellip-
tical wave filter. The DFG for the filter is taken from
[15]. The same parameters given above are used for
the functional units. For these results, the hierarchical
approach is used with a maximum block size of ten.
This means that the algorithm randomly breaks each
set, of similar operations into blocks of ten. Exploration
is then done considering only resource edges between
operations in each block. Runtime grows rapidly as the
block size is increased. After exploration is done on all
sets, exploration is done again considering only criti-
cal resource edges which are included in the individual
block Pareto point solutions. Table 3 shows the exper-
imental results. The fastest solution uses 4 adders, 4
multipliers, and 14 registers and has a typical delay of
37. The minimum area solution found uses 2 adders
and 1 multiplier and 13 registers with a typical delay
of 61.

The IDCT is the most difficult example to solve be-
cause of the high degree of parallelism between opera-
tions. The data flow graph for the IDCT is from [15].



Table 1. DIFFEQ: experimental results (I = im-
plied, R = redundant, M = minimal latency, H
= hierarchical).

| Filters | Runtime | Configurations | Solutions |

none | 8318.58s 22167679 292
I 8132.70s 21714011 292
R 558.68s 1503207 81

IR 539.96s 1489156 81
M ATs 1039 3
M .45s 1038 3
RM .30s 578 3

IRM .258 578 3

H 72.18s 162015 82
IH 64.78s 159913 82
RH 8.43s 20909 26

IRH 8.44s 20741 26

MH ATs 1039 3

IMH 45s 1038 3

RMH .30s 578 3

IRMH .258 578 3

Table 2. DIFFEQ: unique Pareto points.

| ALUs | Multipliers | Registers | Area | Delay ]

DN = N

1

W w NN

5

N0 O

119
157
172
195
210

32
19
17
16
14

Table 3. EWF: experimental results using hi-
erarchical approach (I=zimplied, R=redundant,

M=minimal latency).

| Filters | Runtime | Configurations | Solutions

none | 160814.64s 58194121 18
I 160534.51s 58171711 18
R 1361.72s 544983 12

IR 1380.11s 544569 12
M 325.65s 88630 12
M 346.81s 88630 12
RM 80.91s 22047 12
IRM 76.77s 22047 12

The only reasonable method to solve this problem is
to use the hierarchical approach. For these tests, the
block size is set to four. We also only report results for
minimal latency. If other results are desired, this can be
accomplished by setting a maximum delay constraint.
If this is not set too much above the minimum, it com-
pletes. It also completes if we use some other heuristic
filters not described here (see [2]). The results using
this method are shown in Table 4. The minimal de-
lay solution found uses 8 adders, 15 multipliers, and 27
registers with a typical delay of 15.

Table 4. IDCT: experimental results using hi-
erarchical approach (I=zimplied, R=redundant,
M=minimal latency)

| Filters | Runtime | Configurations | Solutions |

M 15.35s 9885 62
M 15.37s 9885 62
RM 13.14s 7511 62

IRM 14.00s 7511 62

To compare our methods with synchronous high-
level synthesis methods, we analyzed EWF using modi-
fied resource delays. In this case, the minimum, typical,
and maximum delays for ALU operations is set to one,
and for multiply operations each delay is set to two.
Because the minimum, typical, and maximum delays
are all equal, the model corresponds to a synchronous
design. Then, to compare our results with those ob-
tained in [13], the maximum delay of the system is set
to 21 time units. This means exploration finds all so-
lutions with a delay equal to, or less than 21. The area
of a multiplier is modeled to be twice the size of an
adder. Using all filters and the hierarchical approach
to exploration, it took just over 10 seconds to find all
solutions in which the latency of the system is between
17 and 21 time units. Our results shown in Figure 6
are comparable with FDS, FDLS, and ASAP methods.
This shows that the more time given for the system to
complete, the less adders and multipliers are required
because operations are serialized and share fewer func-
tional units. The FDLS method found better results
for a case where the delay of the system is 18. This
result, however, is achieved by re-timing.

Next, the delay of the adders and multipliers are s-
caled by a factor of 10. The granularity is adjusted to
allow for the modeling of a typical delay. A typical de-
lay of 9 for adders and 17 for multipliers is used. The
system is then optimized for typical delay with a max-
imum system delay of 210 time units. Figure 6 shows
the results. Again, exploration using our method took



Synchronous New method with all filters and hierarchal

methods

DS FDLS AsAp / Dels<=21 ¥ Delays <=210
17 3 3 4 3 | #Adders Typical 150 | 3 | #Adders
3 3 4 3 | #Mulipliers (Max) (170) | 3 | #Multipliers
18] 3| 2 3 158 | ,
Maximum 2 2 2 (180) | 3
Delay vl 2 [, - ScaleMax __ 74 5
g 5 Delay by 10 0 | 5
21 2 2 2 Granularity 183 é
1 1 1 adjusted for 210
typical delay 192 2
1

2-6 min each. 10.1s

3
1989 CPU 1035

1999 CPU 220

Adder = 1 unit of delay
Multiplier = 2 units of delay

Adder = 10 max, 9 typical
Multiplier = 20 max, 17 typical

Figure 6. Comparison with synchronous
methods.

just over 10 seconds, and several solutions are obtained.
Although the required time to find the solutions re-
mains constant, the FDS and FDLS methods at this
point become computationally intractable.

It should also be noted that several nonintuitive re-
sults are obtained. For example, the case where the
typical delay is 158, and the case where the typical de-
lay is 183. In both of these solutions, the number of
allocated adders is less than the number of allocated
multipliers. This is because the typical delay of mul-
tipliers compared with its worst-case delay is propor-
tionally less than the typical delay of adders and their
worst-case delay. Hence, the typical delay of the sys-
tem can be optimized in greater proportion when more
multipliers are on the critical path in place of adders.

The final design is a filter bank from an industrial
application. Due to the designs regularity, we consid-
ered the design of a single stage of the filter bank. The
complete design is simply a repetition of the schedule
for each stage. Each stage splits the frequency into
a low and high frequency component. The filter is
composed of two allpass filters which are added and
subtracted to produce a low and a high pass output.
Using the same area and delay constraints of the orig-
inal hand designed architecture, Mercury produces 15
alternative schedules for four different datapath archi-
tectures. Three of the schedules use the same number
of functional units and registers as the hand design.
One schedule meets the delay constraint using one less
adder than the hand design. This is possible in an
asynchronous design because it is the typical, not the
maximum, delay that determines performance. Unfor-
tunately, our designs include more multiplexors than
the hand design. The datapath architectures produced

by Mercury require 13 multiplexors, some as large as
5x1, while the hand design uses only 3 2x1 multiplex-
ors. Therefore, as future work, we plan to guide the
resource and register sharing algorithms to minimize
the number and size of the multiplexors.

8. Conclusion

A methodology for the design and synthesis of asyn-
chronous circuits from high-level specifications is p-
resented. Our method extends synchronous methods
of scheduling and resource allocation to asynchronous
circuit design. This new automated synthesis method
generates datapaths optimized for asynchronous oper-
ation, namely to improve typical performance.

The large size of the design space is addressed and
several filters are proposed and implemented to reduce
the required exploration of the design space. In addi-
tion, a hierarchical approach is presented and applied,
allowing large complex designs to be optimized. It is
found that the filters are very effective in reducing the
required exploration time. When heuristic methods are
used, there is a reasonable trade-off between the time
required to generate a solution, and the quality and
quantity of solutions. Where exact methods failed to
efficiently solve a complex problem, the heuristic meth-
ods made the problem manageable.

Due to the large number of variables, an efficient
register sharing algorithm is also needed. Our regis-
ter sharing algorithm optimizes the number of regis-
ters based on the topology and scheduling information
of the data flow graph, and it can result in significant
reduction in the number of registers needed to store
intermediate variables.

Compared with synchronous methods it is demon-
strated that the proposed methods are advantageous
as time is made more discrete to increase granularity.
As the granularity of time is increased, synchronous
methods become computationally infeasible, while the
complexity of our method remains constant. This is
important for asynchronous scheduling because time
must be modeled very accurately without sacrificing
runtime and solution quality. It is illustrated that using
resource edges is an effective way to serialize operations
and determine scheduling. In addition, it is illustrated
that solutions using this method are competitive with
traditional synchronous methods.
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