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ABSTRACT

A thres-cJ i mens i ona I homomorphic model of human color vision 

based on neurophysioIogicaI and psychophysical evidence is 

presented. This model permits the quantitative definition of 

porcoptuaI Iy important parameters such as brightness, saturation, 

hue and strength. By modelling neural interaction in the human 

visual system as three linear filters operating on perceptual 

quantities, this model accounts for the automatic gain control 

properties of the eye and for brightness and color contrast effects.

In relation to color contrast effects, a psychophysical 

experiment was performed. It utilized a high quality color 

television monitor driven by a general purpose digital computer. 

Thi9 experiment, based on the cancellation by human subjects of 

simultaneous color contrast illusions, allowed the measurement of 

the I ow spatial frequency part of the frequency responses of the 

filters operating on the two-chromatic channels of the human visual 

system. The experiment is described and its results are discussed.

. Next, the model is shown to provide a suitable framework in 

which to perform digital images processing tasks. First,

applications to color image enhancement are presented and discussed 

in relation to photographic masking techniques and to the handling 

of digital color images. Second, application of the model to the 

definition of a distortion measure between color images (in the



sense of Shannon’s rate-distortion theory), meaningful in terms of 

human evaluation, is shown. Mathematical norms in the "perceptual" 

space defined by the model are used to evaluate quantitatively the 

amount of subjective distortion present in artificially distorted 

color images. Third, applications to image transmission and coding 

are presented. Results of a coding experiment yielding digital 

color images coded at an average bit rate of 1 bit/pixel are 9hown.

Finally conclusions are drawn about the implications of this 

research from the standpoint of psychophysics and of digital image 

procesG i ng.



The research presented in this report is concerned with image 

processing. In a very general sense, image processing can be 

thought of as a transformat i on of an image from one form into 

another. The results can appear as another image, a set of 

decisions, a model or parametrization. Here, we will restrict 

ourselves to the case where the tran9formation yields as its output 

another image which is different from the original in some desirable 

way.

Since a human observer is likely to be the last element in the 

processing chain, it seems natural to become interested in the 

properties of the human visual system. The idea of applying the 

current knowledge about the human visual system to the field of 

image processing is a recent one though. It stemmed from the 

availability of digital methods on one hand and the lack of a 

quantitative definition of subjective image quality on the other 

hand. ■

Indeed, digital methods are characterized by their flexibility 

and their precision. Good subjective distortion measures built from 

a clear and concise formalism have begun to emerge for achromatic 

images. For color the knowledge is not as advanced. In both cases, 

still a lot remains to be done in order to further sharpen our 

understanding of the way visual information is processed and 

extracted by the visual- neural system.

INTRODUCTION



Stockham [53, 511, was the first one to suggest that a 

multiplicative rather than linear system was better fitted to the 

structure of black and white images and furthermore uas similar to 

the processing occuring in the earlier stages of the human visual 

path. His efforts to define and use a multiplicative homomorphic 

visual model have been carried on and fully justified by Baudelaire 

[1] and extended by Baxter [2]. The use of the model for the 

definition of a subjective distortion measure has been explored by 

flannos [33] and Rom [33].

Very briefly, the multiplicative homomorphic model has the 

following property: by modelling the non linearity in the absorption 

of light energy in the retina as ueI I as neural interaction later on 

the visual path, it accounts for brightness contrast and brightness 

constancy and realizes the separation of reflectance from 

iI Ium i na t i on.

Effects similar to those previously mentioned are also present 

in color vision. Color constancy effects which show the tremendous 

ability of the eye to adapt instantaneously to ambiant illumination 

even if heavily color biased are well known [G, 32]. Color contrast 

effects and color Plach Bands have also been recognized [22, 28].

But a clear formalization of these phenomena is hampered by the 

three-dimensionality of color vision. A color can be defined in 

term9 of its brightness, hue and saturation and interaction between 

colors can cause the change of all these parameters. Clearly, a 

model of color adaptation and a quantitative description of 6uch 

parameters as color brightness and saturation would be welcome.

Knowing this, it seem9 very appealing to attempt to model human



color vision using a multiplicative homomorphic model. This 

approach should guarantee that the new model reduces to the old one 

for achromatic vision. Also, it would allow us to use the powerful 

tool of Fourier analysis which has proven to be well suited to a 

precise description of achromatic brightness contrast and constancy 

effects Cl, 6] and is therefore hoped to perform as well for color 

s f fect6.

In our opinion, the achievements of this research are twofold: 

On the side of psychophysics, we have shown that by using a model 

based on neurophysioIogicaI and psychophysical evidence as a 

theoretical background, and a high precision television monitor 

driven by a digital computer as a tool, we could obtain some 

relevant experimental results about the way chromatic information is 

processed by the human visual system.

On the side of image processing, we have shown that this model

al lowed us to think about and perform in a meaningful way our image

/

processing tasks.

• Chapter 1 lays the psychophysical and neurophysioIogical basis 

which is used in chapter 2 to develop a quantitative description of 

achromatic and chromatic information processing in the visual path. 

Chapter 3 describes the psychophysical experiment by which we probed 

the chromatic channels. Chapters 4 and 5 are dedicated to the 

applications of the model to image processing. Chapter 4 describes 

some ways of enhancing color images. Chapter 5 elaborates on the 

use of the model to define a perceptual distance between color 

images and on related problems of transmission and coding. Chapter 

S draws the conclusions of this research project.



PSYCHOPHYSICAL AND NEUROPHYSIOLOGICAL BACKGROUND

1.1 Colorimetry

The main fact about color vision is its basic trichromatic 

nature. Overwhelming support has been provided over the past one 

hundred and fifty years for the notion first put forth clearly by 

Thomas Young that three separate varieties of receptors underlie 

color vision. .

In particular the experimental laws of co 101—matching are an 

indirect verification of this fact. They state that over a wide 

range of conditions of observation colors can be matched by additive 

mixtures of three fixed primary colors. These primaries must be 

such that none of them can be matched by a mixture of the other two. 

Furthermore those matches are linear over a wide range of observing 

conditions which implies two things. First, the match between any 

two colors continues to hold if the corresponding stimuli are 

increased or reduced by the same amount, their respective relative 

spectral energy distributions being unchanged (scalability 

condition). Second, if colors C and D match and colors E and F 

match, then the additive mixture of colors C and E matches the 

corresponding additive mixture of colors D and F.

This linearity property allows us to represent colors by 

three-dimensional vectors and color matches by linear equations

CHAPTER 1



between such vectors. If C represents a given color and R, G and B 

represent unit amounts of three fixed primaries then the equation 

C-RR+GG+BB

expresses the fact that the given color is matched by an additive 

mixture of quantities R, G and B respectively of the given 

primaries. R, G and B are called the tri stimulus values of the 

given color in the particular set of primaries used. Another set of 

frequently used quantities is the chromaticity coordinates r, g, b 

defined by

r - R/(R+G+B) 

g - G/(R+G+B)

b - B/(R+G+B) .

The linearity property also allows us to define completely the 

color-matching properties of the observing eye in the given primary 

system by three functions of wavelength r(X), g(X) and b(X) called 

color-matching functions. If the color C has a spectral energy 

distribution p(X) then its tristimulus values are ■

R- J* p (X) r (X) dX .

G-J’ p(X)g(X)dX 

B-J’ p (A) b (X) dX

where the integrals are taken over the visible spectrum. Colors C t 

and C7 of spectral energy distributions pt(X) and p2(X) match if and 

only if

S Pi (A) r (A) dA» J’ p2(X)r(X)dX (1.1a)

S Pi (X) g (A) dX- J" p2(X)g(X)dX (1.1b)

S Pi(X)b(X)dX-J' p2 (X) b (X) dX (1.1c)
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essential to an understanding of color vision. Psychophysical 

evidence has come from Uillmer [60], Blackwell and Blackwell [3], 

Stiles [49] and Pitt [36] among many. Rushton [40, 41] has 

attempted to answer the same question by reflection densitometry. 

Attempts have also been made to measure those curves from unit 

recordings later in the visual pathway (De Valois 1365, [11], Uiesel 

and Hubei 1966, [53]). ^

All these studies agree well on two points. The first is that 

there are three types of cones uith their absorption curves peaking 

at about 445, 540 and 570 nm. The second is that these absorption 

curves are quite broad and fit to a first approximation the Dartnall 

nomogram (Dartnall 1953, [7]).

The common reference to those receptors as "red", "green" and 

"blue" receptors stems from the spread of Young-HeI mho Itz type of 

theories of coIor-vision. This terminology is confusing. For 

example. let us consider the case of the 570 pigment cone so 

misleadingly called by many the "red receptor". Not only is it not 

limited in its sensitivity to the part of the spectrum we see as red 

(about 600 to 700 nm) but it is not even maximally sensitive in this 

spectral region. In fact it is more sensitive to that part of the 

spectrum we see as pure green (510 nm) than to pure red (650 nm) !

So both on account of its point of maximal absorption and of 

the breadth of its absorption curve it is a gross misnomer to ca I I 

the 570 receptor a "red receptor" or the 540 cone a "green 

receptor". But worst is the fact that calling those receptors "red" 

or "green" implies that their excitation signals "red" or "green" 

further away on the visual path.



Ue will use the terms L-cones (containing the I ong-uaveIength 

peaking pigment), fl-cones (containing the medium-waveIength peaking 

pigment) and S-cones (containing the short-wave Iength peaking 

pigment) to denote the cone types containing the 570, 540 and 445 nm 

peaking pigments.

1.3 Nonlinear response of the cones

Physiological studies have shown that the activity or response 

of the cone receptors is proportional not to the intensity of the 

stimulus but rather to its logarithm over a large range of stimulus 

intensities [54, 37, SI. One psychophysical equivalent of these 

physiological data is the well known Fechner’s law which 9tate9 that 

the just noticeable brightness difference is proportional to the 

logarithm of the stimulus intensity [271.

It is interesting to point out that this quasi- Iogarithmic 

mapping of light intensity into neural activity at the output of the 

three cones allows the retina to accept inputs over a very wide 

range of intensities [24]. It has already been recognized [58] and 

it will be shown quantitatively in this report that this ability for 

visual stimuli compression at the receptor level together with 

neural interaction later on the visual path is the fundamental basis 

for visual adaptation. ' . '

1.4 The processing of brightness and color information past the 

retina

Ue know that in higher vertebrates the retina projects itself 

to the lateral geniculate nucleus (LGN) and from there to the 

striate cortex [12]. Unfortunately it is far from possible at our

9



present state of knowledge to describe the central neural processing 

of visual information past the LGN. However from the close 

parallels one finds between the responses of cells at the LGN level 

and color perception, it would appear that much of the processing of 

color information takes place before the cortex. Uith the risk of 

oversimplifying we will summarize the results obtained by 

neurophysioIogicaI experiments on LGN cells of primates [10, 13, 

53] .

Four varieties of so-called spectrally opponent cells were 

found in the LGN. They showed excitation to some wavelengths and 

inhibition to others when the eye was stimulated with flashes of 

monochromatic lights. Moreover this type of response was maintained 

over wide intensity ranges thus indicating that the cells responded 

differentially to color rather than to luminance differences. The 

cells whose responses showed maximum excitation around 500 nni and 

maximum inhibition around G30 nm were called green excitatory, red 

inhibitory cells (+G-R) . Other cells showing rough mirror image 

responses were called red excitatory, green inhibitory.ceI I s (+R-G) . 

The cells showing maximum excitation (inhibition) at G00 nm and 

maximum inhibition (excitation) at 440 nm were named yellow 

excitatory, blue inhibitory cells (+Y-B) and blue excitatory, yellow 

inhibitory cells (+B-Y) respectively.

In addition to these four varieties of spectrally opponent 

cells, two other classes of cells were found that did not give 

spectrally opponent responses but rather responded in the same 

direction (either excitation or inhibition) to lights of all 

wavelengths. Those cells thus appear not to be involved with color



vision and were named white excitatory, black inhibitory cells 

(+Uh-B!) and black excitatory, white inhibitory cells t+BI-Uh).

Furthermore these studies were able to answer the question of 

what are the cone inputs to the LGN cells. Red-green cells (+R-G 

and +G-R) receive their inputs from the L and M-cones. One of the 

cona type is excitatory, the other inhibitory. Which cones feed 

into the yellow-blue system is a matter of dispute. It is certain 

that they receive inputs from the S-cones but whether the other 

inputs are from the L or M-cones (or possibly both) is uncertain. 

Since the weight of the evidence seems to indicate that the first 

situation is the one which actually exists C12] , we will assume that 

the second type of inputs is received from the L-cones. Like the 

rod-green cells, one cone input to the yellow-blue cells is 

excitatory, the other inhibitory. For the non-opponent cells there 

is good evidence that both the L and M-cones (and possibly S-cones 

as well) are feeding into them and acting in the same direction.

There is thus much evidence from unit recording experiments in 

favor of the existence of separate chromatic and achromatic channel.s 

each gaining its information from the same receptors but processing 

it in different ways. Spectrally non-opponent cells which 

correspond to the achromatic channel add together the (Log) outputs 

of the L, M and S-cones. Spectrally opponent cells which correspond 

to the chromatic channels subtract the (Log) outputs of the L and 

M-cones for the red-green system, of the L and S-cones for the 

yellow-blue system.

It is clear that, although the physiological processes involved 

are quite different from those Hering [251 proposed in 1878, the

11



cell types found in the LGN correspond very closely to the types of 

retinal outputs he hypothesized to account for color appearances.

1.5 Spatial organization of LGN cells

The cone inputs to the LGN cells are spatially distributed. 

The spectrally non-opponent cells have a center-surround 

organization where the center is excitatory and the surround 

inhibitory or vice versa [591. U i t h regard to the spectrally 

opponent cells, the situation is somewhat more complicated. Two 

types of organization are found. The most common variety ha9 an 

excitatory input from one cone type in the center and an inhibitory 

input from the other type in the surround or vice versa. By far the 

largest number of these cells are red-green cells with only a few 

yellow-blue cells. The second variety is found much less frequently 

and consists in spectrally opponent cells in which the two cone 

inputs have identical spatial distributions. About half of those 

colls are red-green cells and half yellow-blue cells. This 

situation is summarized in figure 1.3.

12
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It is interesting to investigate whether this spatial 

organization can account for spatial effects. The color seen at one 

point in space at a particular time does not depend only upon the 

stimulus at that point in space and time but also on the stimuli at 

neighboring points. One very well known spatial interaction is 

called contrast. Simultaneous contrast refers to the fact that a 

surround of one color or brightness tends to induce the opposite 

color or brightness into a neighboring region. For example, in 

simultaneous brightness contrast, a grey appears black in a white 

surround and white in a black surround. In simultaneous color 

contrast, a grey appears reddish in a green surround, greenish in a 

red surround.

It is commonly supposed that the center-surround organization 

of non-opponent cells in the LGN accounts for simultaneous 

brightness contrast although this has been recently questioned [14]. 

On the other hand the spatial organization of opponent cells 

predicts the absence of pure color Nach Bands (induced by constant 

brightness stimuli) and does not account for simultaneous color 

contrast. Indeed, for pure color stimuli, the center and the 

surround act in the same direction and there is no center-surround 

antagonism to attenuate the responses to large stimuli. For 

example, in a (+R-G) cell in which the L-cones are excitatory in the 

ccntor and the d-cones inhibitory in the surround, a green light 

will not evoke a large response but a red light of the same 

brightness will produce an increase in center excitation and a 

decrease in surround inhibition, thus evoking a much Iarger 

response. The center and the surround act in the same direction.



This is to be opposed to what happens in a non-spectra I Iy opponent 

cell when switching from dark to light. Ue will say that it appears 

that simultaneous brightness contrast in part and simultaneous color 

contrast depend upon interactions that occur past the LGN C123 .

Ue now turn to a precise description of the model that can be 

built on these experimental data.

15



A HOMOMORPHIC MOOEL FOR HUMAN COLOR VISION

2.1 Cone Stage

As described in chapter 1 there are three cone types involved 

in human photopic vision, each of them containing a pigment with 

different spectral absorption characterist i cs. From color-matching 

experiments, the CIE ("Commission Internationale de I' ecIairage") 

derived a set of three color matching functions which, according to 

Grassman laws of color mixture, have to be a linear combination of 

the pigments absorption curves.

Of course there is an infinite number of such combinations but 

we are restricted by the fact that the resulting curves must be 

positive in the visible spectrum and have a single maximum at a 

wavelength close to the ones indicated by the methods referred to in 

chapter 1. Nonetheless, despite these important restrictions on the 

linear transformation there are quite a few systems of so-called 

"fundamentals" in the Iiterature [20, 30, 61].

The system we chose is the one proposed by Stiles [47, 48]. 

The three resulting absorption curves I ,m i\),s(X) are positive in 

the visible spectrum and have single maxima at respectively 575, 540 

and 445 nm. They are shown in figure 2.1. The exact linear 

transformation that relates those spectral absorption curves to the 

CIE x(X), y(A) and z(A) curves is given in appendix C.

CHAPTER 2



He are now in position to give a precise description of the 

cone absorption stage of the model. Let I(x,y,A) be an image, where 

x and y are the spatial coordinates and X is the wavelength of the 

light. Then the absorption of this light energy by the three 

pigments yields the following three signals:

L(x,y)»J' I (x,y, A) I (A)dA (2.1a)

f‘l(x,y)-J’ I (x, y , X) m (A) dA (2.1b)

S(x,y)=J' I (x, y , A) s (A) dA (2.1c)

where each integral is taken over the visible spectrum (from 380 to 

800 nm).

The nonlinear response of the cones transforms th09e signals in 

the foI Iowi ng way:

L*(x,y) - Log(L(x,y)) (2.2a)

M*(x,y) - Log(M(x,y)) (2.2b)

S*(x,y) =■ Log(S(x,y)) (2.2c)

It is interesting to mention that the problem of the exact type of 

the nonlinearity in human cones has yet to be solved. Cornsweet 

C£] , for instance, advocates a non linearity of the type U*I/(V+I_). 

where U and V are constants and I is the input intensity. His 

reasons are based on a model of the chemical processes taking place 

during the cone absorption stage which predicts such a law. He also 

points out that over a large range of intensities this nonlinearity 

and the logarithm are in close agreement. Indeed it may be noted 

that the assumption of an exact logarithmic form for the 

nonlinearity is not a critical feature as far as psychophysics goe9 

and that over large ranges of the variables other simple functions 

behave in much the same way. But, as we will see in paragraph 2.7,

18



from an image processing standpoint the situation is quite different 

and explains why we chose the logarithm apart from its computational 

simp Iici ty.

Before we leave the topic of the absorption of light in the 

cone receptors and of the non linearity that immediatly follows it, 

we would like to mention one more fact. The light which is absorbed 

at the receptor level has already travelled through the optic media 

(cornea, aqueous humor, crystalline lens and vitreous humor) causing 

a blurred retinal image.This can be modelled as the result of a 

linear space-invariant filtering operation whose modulation transfer 

function has been measured [5] and is character i zed by a high 

frequency attenuation. Another consequence is the introduction of 

chromatic aberrations where the image for shorter wavelengths lies 

slightly in front and for longer wavelengths slightly behind the 

retina. Ue will neglect this last effect in what follows.

2.2 Separation of chromatic and achromatic information

Ue showed in chapter 1 that there is strong neurophysioIogi ca I 

evidence in favor of the existence of separate chromatic and 

achromatic channels in the human visual path, each gaining its 

information from the same receptors but processing it in different 

ways. The studies wa referred to suggested a mathematical 

expression for the achromatic response, we will call it A, and the 

two chromatic responses, we will call them and C2:

A-a (aLw+anw+rS*) -a (aLog (L)+0Log (PI) +vLog (S)) (2.3a)

C1-u1(Lw-n*)-u1Log(L/n) (2.3b)

19
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A is a mathematical description of the response of (+BI-Uh) and 

(+Wh-Bl) cells which add the Log-outputs of the L-, M- and S-cones.

C, and C, are mathematical descriptions of the responses of (+R-G), 

(+G-R) and (+B-Y), (+Y-B) cells which subtract the Log-outputs of 

the L- and M-cones and L- and S-cone9 respectively. The relation 

between A, C 4, C2 and L", H*, S" is thus a linear one. The 

correspond i ng matrix 1/4 is given in appendix C. a, a, |3, y, ult u2 

are constants which will be defined later.

2.3 Summation and contrast effects

Two important features of the way information is processed in 

the visual system have not yet been included in the model. The 

fir3t one, which is responsible for the limited resolution of the 

human vision, is caused by the finite density of receptors in the 

retina and spatial summation of neural activity at different stages 

on the visual path {neural blur). As we mentioned earlier, another 

cause of this limited resolution is the optics of the eye (optical 

blur). The neural blur effect can be modelled as a linear system 

character i zed by an attenuation of high frequencies L’l, 5].

The second feature is the existence of lateral inhibition 

between receptors and neural cells at different places in the visual 

path (retina, LGN, cortex). This lateral inhibition effect by which 

a cell inhibits the activity of neighboring cells with a strength 

proportional to its excitation and decreasing with the distance is 

very much linear and, as shown by many authors [1, 8, 24], has a 

sharpening effect. It is characterized by a low-frequency
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3- The homomorphic model of color vision as suggested 
by neurophysiological and psychophysical evidence.
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I(x,y)

Fig. 2.4- Stockham's homomorphic model of  achromatic vis ion.

Fig. 2.5- The breakdown of re f lectance- i l luminat ion separa
tion. The model of color v i s ion,  just  as the eye, 
does not exactly separate i l lumination from 
ref lectance since the logarithmic state operates 
on integrals of  products rather than on products.



Thus the total effect of the neural activity can be considered 

as the result of the cascade of those two systems, the neural blur 

attenuating high spatial frequencies and lateral inhibition 

attenuating low spatial frequencies.

Although both phenomena seem to be distributed all along the 

visual path and sometime difficult to separate from a physiological 

standpoint, we will assume here that we can approximate reality in a 

sufficiently precise manner by modelling those effects by three 

linear space invariant filters acting on signals A, C t and C2.

Let H(fl,f7), H^fj.fj), Hj(flt f2) be the frequency responses 

of those filters where ft and f2 are the two spatial frequencies. 

Ue will furthermore assume that each of these functions is the 

product of two functions corresponding to lateral inhibition and 

neural blur. In other words we dichotomize the two effects in every 

channel by considering each filter as the cascade of two filters 

modelling respectively lateral inhibition and neural blur. The 

corresponding point-spread functions are denoted by. h(x,y), h t(x,y) 

and hy (x,y). The perceptual interpretation of those filters will be 

discussed more in paragraph S and in chapter 3. They yield outputs 

A", Ci* and Cr" given by:

. A"(x,y)-J' S A (x-/o, y-r) h (p , r) dPdr (2.4a)

C1"(x,y)«J' J' Ct (x-p, y-r) ht ip, r) dPdr (2.4b)

C/tx.y)-]' S C2 (x-/o, y-r) h2 (p, r) dpdr (2.4c)

Ue are now in a position where we can draw a complete block 

diagram of our model. This is shown in figure 2.3.
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2.4 Relation to other models

This model can be classified as an "opponent-color" model in 

the line of the theory proposed first by Hering [25]. He 

hypothesized three paired and opponent visual qualities, 

white-black, red-green and yellow-blue, independent of each other. 

His theory has had many followers who tried to make it quantitative 

in different ways. The most recent efforts in this direction have 

boen made by Jameson and Hurvitch [2S] , tleessen [34], Shk I over [46] , 

Koenderink et. al. [31] and Frei [17]. But this is to our 

knowledge the first time that such a formalism is used for image 

processing and for an experimental study of color contrast effects.

Further this model is related to a model for achromatic vision 

that has been proposed and used for image processing by Stockham 

[50]. For an achromatic image the outputs of the cone absorption 

stage are by definition equal:

L (x, y) =>11 (x, y) =S (x, y) '

and thus: '

' C, (x, y )-C, (x ,  y ) -0 ' • ‘ ■

In that case only the achromatic channel A is active :

A-a (cx+|3+y ) L“(x , y) .

and figure 2.3 reduces to figure 2.4 which is exactly Stockham’s 

model. This implies a very important fact namely that we know the 

frequency response H(f1Pfj). It is the amplitude modulation 

transfer function measured by Davidson [8], Baudelaire [1] and 

others.

2.5 The problem of brightness perception
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In order to discuss the perception of brightness, ue will have 

to go back to the CIE observer and examine more closely another 

visual property he embodies and which bears on the perception of 

brightness. The property in question is expressed by the basic 

principle of photometry, the additive Iau for brightness also called 

Abney’s lau. According to this law, the condition for a match in 

brightness of two stimuli of radiances (spectral energy 

distributions) R(A) and R' (M takes the form:

; R(A)V U ) d X  - ; R ’U ) V U ) d A  (2.5)

the integrals being taken as usual over the visible spectrum.

V (\) is a function of wavelength known as the relative luminous 

efficiency function. There are several methods for measuring this 

function, all involving monochromatic stimuli, many of them are 

reviewed in Guth [23]. They yield similar although not identical 

resuIts.

The standardized V (.X) curve, result of the CIE measurements, i9 

everywhere positive in the visible spectrum and has a single maximum 

normalized to 1 at 555 nm. .

Let us now investigate the meaning of equation (2.5) in terms 

of perception:

a) if two patches of light P and P’ of radiances R O J  and R ’ (>,) 

match in brightness then the two patches of radiances cR (>,) and 

c R’(>,) still match in brightness (scalability property).

b) if patch P0 matches patch Pt and also matches patch P2 then the 

additive mixture of patches Pt and P2 will match patch P 0 

increased to double its original radiance (additivity property).
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according to Grassmann’s laws of additive color mixture it can be 

shown that the function V (X) must be a linear combination of the 

color-matching functions and thus also of the cones spectral 

absorption curves. This fact together with the knowledge that the 

cone responses are nonlinear has lead people to assume that V (A) was 

one of the responses [17], Of course this is in contradiction with 

our current knowledge about these fundamentals which we know to be 

peaking at 445, 540 and 575-580 nm while V(A) peaks at 555 nm.

Nonetheless our model should account for the measurements 

yielding to the function V(A). One method that can be used to 

measure the V(A) function is called the step by step method. Two 

juxtaposed monochromatic lights of slightly different wavelengths 

are viewed and the radiance of one is varied until the total 

"difference" between the patches is minimum. The wavelength 

difference can be made so small that the difference in color at this 

minimum setting is barely perceptible. This procedure is then 

repeated step by step along the spectrum.

A relative luminous efficiency function can be derived from our 

model by a corresponding procedure as explained in appendix A. The 

resulting function that may be caI Ied V*(A) is related to the cone 

spectral absorption curves by the following equations

V* (A)-c I (A) m (A) s(A)r'“*l)*r (2.G)

where the constant c has been adjusted to yield a maximum of 1. A 

comparison between V*(A) and V (A) is shown in figures 2.6 and 2.7 on 

a linear and a logarithmic scale for the following values of the 

parameters a, (3 and Y:
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Fig. 2.6- Comparison between the C.I.E. relative luminous
efficiency function V(X) and V*(X) predicted by the 
model: on a linear scale (a) and a Log-scale (b). The 
values of V*(X) are larger than the values of V(X) 
in the blue end of the spectrum, in qualitative 
agreement with results obtained by Judd.



Fig. 2.7- The (A,C-pCg) space as a three-dimensional
vector space provides a quant i tat ive d e f i n i 
tion of  some perceptual ly important parame
ters.  The or ig in 0 corresponds to a medium 
grey.
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F1g. 2.8- Lines of  constant hue and saturation predicted
by the model in the C.I .E. chromaticity diagram.



The reader will notice that the value9 of V " ( M  are greater 

than the values of V (>,) in the blue end of the spectrum. This is 

not to be considered as a handicap for our model, on the contrary, 

since there is plenty of evidence that the CIE curve is 

underestimated in this part of the spectrum (see Uyszecki and Stiles 

[G1J, pp.429, 435).

. Clearly we cannot say anything about Abney’s law as long as we 

do not give a precise definition of brightness in the framework of 

our model. Ue showed that the visual information is conveyed from 

the retina to the brain via three independent channels one of them 

transmitting the achromatic or black and white information. This 

together with the aforementioned fact that for an achromatic image 

only this channel was excited makes it reasonable to say that it 

carries the brightness information. Thus, for a given color Q 

defined by its tri stimulus values L, M, S, which in turn uniquely 

do fine the values of A, Clt Cz, the brightness is proportional to A 

and hence to oLog (L) +£Log (M) +Yl_og (S). ' . •

Ue can see at first that with this definition brightness obeys 

the scalability condition. Indeed if patch P of tristimulus values 

(L.M.S) matches in brightness patch P’ of tristimulus values 

(L’, n \ S ’) then:

crLog (L) +(3Log (M) +yLog (S) » aLog (L’ ) +£Log (PI* ) +vl_og (S’ ) 

and patches of tristimulus values (cL,cM,cS) and (cL’,ctt’,c S’) still 

match in brightness.

On the other hand the additivity property is lo9t which means 

that in our model brightness perception does not completely follow

30

(in particular a+/3+v-l).

•5



Abney’s law. Now careful studies of the validity of the law have 

been conducted [23] and 9how that Abney’s law does not hold 

especially for direct brightness matches. The authors further add 

that there does not seem to be an obvious replacement for the law 

because some colors are aluays subadditive (red and green) while 

others are subadditive at threshold and superadditive at high 

intensity levels (violet and green).

2.S More about the perceptual interpretation of the (A,CltCz) space

As can be seen in figure 2.3, the model takes as its input an 

intensity image I(x,y,A) which is then processed to yield the three 

perceptual quantities A(x,y), Cj(x,y), Cz(x,y) and eventually 

A*(x,y), Cj*(x,y) and Cz*(x,y) uhich we will conveniently describe 

as two three-dimensional vectors ?(x,y) and ?*(x,y).

Let us ignore the spatial filtering which changes the values of 

the perceptual quantities but not their interpretation and let us 

ci I so ignore for simplicity the spatial dependency. Every color Q of 

trigtimulus values (L,M,S), uhich we will also describe as a 

three-dimensional vector ?, is also defined by a "perceptual vector" 

P - [A.CpC,]’.

Ue have already discussed the interpretation of A with regard 

to brightness and we will just add to what has already been said 

that a value of zero corresponds to a neutral grey while increasing 

positive values of A correspond to brighter and brighter stimuli and 

decreasing negative values correspond to darker and darker stimuli.

If we now consider colors for which the value of A is constant 

one may ask how is the variation of Ct and C? related to the
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perception of hue and saturation. Ue will say that the perception 

of saturation is related to the distance bQ of the point Q to the 

A-axis while the perception of hue is related to the angle 0 (figure 

2.7) .

Uhen we make these assumptions we are defining a euclidian 

vector space structure on the (A,CltCj) space which allows us to 

talk about adding vectors and about distances and angles. Ue will 

show in chapter 5 that the norm does not have to be euclidian and 

that other choices are possible. Ue will come back to the 

interpretation of vector addition with regard to the structure of 

images in paragraph 2.7 and concentrate now on what may be cal led 

the metric.

Saturation is proportional to the distance Oq (see figure 2.7) 

and is thus related to the sum of the activities in the C t and C z 

channels while hue is related to the ratio of these activities. The 

distance OQ of the point representing the color to the origin 0 of 

the (A.Cj.C,) space is also of interests

00 - (0qJ + Ob-1)4/1 . . .

It is a measure of both the brightness and the saturation of the 

color or equivalently of the total activity in all three channels. 

Following Stockham we might call it the strength of the color Q.

At constant brightness, lines of constant hue are straight 

I i nes rad i at i ng from and perpend i cu I ar to the A-axis and lines of 

constant saturation are circles centered on this axis. It is 

interesting to represent those lines in the CIE (x,y) plane as in 

figure 2.8. The resulting network has the same general shape as the 

one obtained from co l.or-order systems such as Munsell or Din. To



give an idea of what we mean by planes of constant A or constant 

brightness, such a plane is shown in figure 2.2. Each point of 

coordinates (ClfC7) in this plane is represented by a perceptual 

vector P - CA.Ct.C?]* where A is the same for all points. This 

perceptual vector uniquely defines a tristimulus vector f - CL.M,5]t 

which is represented on a film by different dyes concentrations. 

The curved boundaries are due to the limited gamut of colors 

reproducible by the display primaries.

Another very important property of the (C^.C,) plane is the 

following: it is a close approximation to a uniform chromaticity 

plane which has the characteristic that at a given point, the locu9 

of all points correspond-!ng to a just noticeable difference in hue 

is a circle of radius 1 centered on the point. Similarly, the 

(A.C^Cy) space is a uniform perceptual space in the sense that at a 

given a point, the locus of all points corresponding to a just 

noticeable difference in perception (brightness or chromaticity) is 

a sphere of radius 1 centered at that point. Th'rs is achieved as 

explained in appendix B by adjusting the values of parameters a, 

and u, of equations 2.3a, 2.3b and 2.3c, respectively.

2.7 Discussion of the label homomorphic . .

Homomorphic is an adjective that is used in mathematics where 

people study special functions called homomorphisms. Grossly 

speaking they are functions from one set to another that are 

compatible with the laws of composition of elements in both set9. 

For example the logarithm function is a homomorphism of the 

multiplicative group of real positive numbers onto the additive 

group of all real numbers.

33



In the engineering field homomorphic systems that use these 

abstract ideas have been studied by Qppenheim and others [35] and 

proven to be very powerful tools by which the basic theory of linear 

systems has been extended.

In particular, Stockham [50, 51] proposed a multiplicative 

homomorphic model for processing achromatic images that matched both 

the structure of images and of the human visual system. The 

multiplicative process of image formation (product of illumination 

i (x ,y ) and reflectance r(x,y)) is harmoniously undone by the Log 

sensitivity of the retinal receptors that maps this product into a 

sum of two components that can later on be separated by linear 

filtering techniques since in general their spatial frequency 

content tends to be distinct.

This analysis applies to black and white images but partly 

breaks down for color since it ignores image wavelength content. 

Indeed, the image formation is a multiplicative process that yields 

the product of the scene illumination i(x,y,A) and reflectance 

r(x,y,A) but, before the visual system processes this product with.a 

logarithm, the light is linearly absorbed by the three cone 

pigments. Hence no longer do we have the logarithm of a product but 

the logarithm of a sum of products which is considerably different. 

This situation is depicted in figure 2.5 for the L-cones.

At first glance it seems that the color model is not able to 

account for the automatic gain control properties of the human 

visual system as the achromatic model is. Nonetheless, let us show 

that the model of figure 2.3 does account for the ability of the 

visual system to discard the i I I uni i nan t. Indeed suppose we
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uniformly increase the absolute level of illumination by letting 

i(x,y,A) become ki(x,y,M where k is a constant Iarger than 1. Then 

it is clear that L(x,y), H(x,y) and S(x,y) are changed to kL(x,y), 

kH(x,y) and kS(x,y) respectively. In other words all three cone 

outputs increase by the same amount and thus the chromaticity 

channels outputs C t and C2 don’t change while the brightness channel 

output A is biased by the constant aLog(k) (equations 2.3a to 2.3c), 

which in turn is readily eliminated by lateral inhibition (or 

synonymously spatial filtering with low frequency attenuation).

Now suppose we not only change the absolute level of 

i I I umi nation but also the color of the i I luminant so that we can 

approximately write that L(x,y), N(x,y) and S(x,y) become 

respectiveIy IL(x,y), mN(x,y) and sS(x,y) where l,m and s are 

difforcnt constants.. In other words the cone outputs are changed by 

different amounts uniformly over the field.

The brightness channel output is biased by the constant 

a (aLog ( I)+|3Log (m)+y|_og (s)) , again readily eliminated by lateral 

inhibition. But, in contrast to the first case, the chromaticity 

channels outputs are biased respectively by u,Log(l/m) and 

u^Log(l/s) which are non zero. In order that this bias be readily 

eliminated we must assume that lateral inhibition also occurs in 

those channels. Chapter 3 wi I I be devoted to show that this is 

indeed the case.

As a summary, when we go from achromatic vision to color vision 

we lose the exact match between image structure as a product of two 

components and model or processor structure. Our model, like the 

aye, does not exactly separate reflectance from illumination.



Nonetheless we have been able to show that it can explain the 

tremendous adaptation ability of the human visual system and 

chapters 4 and 5 will shou that it can be used to perform useful 

processing tasks on images.

From this standpoint, let us model the tristimulus vector 

?(x,y) - Cl(x,y),m(x,y),s(x,y) ] * as a product of two components 

t(x,y) - Cltx.yJ.mfx.yJ.sfx.y)]* and

t’(x,y) - [ I ’ (x,y),m’ (x,y),s’ (x,y) ]* so that one has:

? (x, y) - x (x, y) . t ’ (x, y) 

or equivalently:

L(x,y) - I (x,y) I’ (x,y)

M {x , y ) - m(x,y)m’(x,y)

S (x, y) - s (x, y) s’ (x, y)

It is clear from figure 2.3 that if p(x,y) and P ’(x,y) are the 

perceptual vectors corresponding to t(x,y) and t’(x,y) respectively 

then ?{x,y) - ?(x,y).t'(x,y) corresponds to p(x,y) + ? ’(x,y). Thus, 

wo now have the interpretation of vector addition in the {A,Ct,C7) 

space, it simply corresponds to mu ItipIication of tristimulus 

vaIues.

Let us see how this remark coupled with our assumption of 

independant spatial filtering on the perceptual quantities (A,.Ct,Cz) 

is of interest to an image processor. Suppose that t(x,y) is slowly 

varying and t’(x,y) rapidly varying, then the" same will be true of 

p {x ,y ) and ? ’(x,y) respectively. But since they are now additively 

combined, it will be possible to separate them, at least 

approximately, by means of linear filtering thus opening the door to 

many applications, some of them described in chapter 4.
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We now realize how the notion of the model as a 3-dimensional 

homomorphic system is important. It accounts for the automatic gain 

control properties of the eye and introduces new meaningful color 

image processing techniques.



A STUDY OF SPATIAL EFFECTS IN THE CHRQMATICITY CHANNELS

3.1 Visual adaptation and contrast effects

There are two types of visual adaptation. One 9ort happens 

with sudden changes in the intensity or chromaticity of the 

illuminant and is a fairly slow process (several minutes) related to 

the bleaching of visual pigments [SI. The other 9ort that shows the 

ability of the human visual system to adjust instantaneously to the 

illuminant is related to neural interactions past the retina. This 

io in this last type of adaptation we are interested here and will 

at tompt to mode I.

The phenomenon of brightness constancy is such a type of 

adaptation and shows the tremendous ability of the visual system to 

discard the spatial variations in intensity of the illuminant. It 

has been shown by several authors [6, 50] that a Log type 

sensitivity at the receptor level followed by a spatial linear 

filtering characterized by an attenuation of low frequencies would 

account for this ability. Experimental studies conducted by several 

authors Cl, 8] have confirmed this hypothesis by actually measuring 

the modulation transfer function of the neural network.

It should be noted that this low frequency attenuation not only 

accounts for brightness constancy but also for brightness contrast
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effects where the brightness at one point is influenced by the 

brightness of neighboring points and does not correspond to what 

might be expected from the distribution of light intensities if 

there was no neural interaction. ttach Bands, simultaneous 

brightness contrast illusions, Herman Grids, are example of such 

effccts and the interested reader is referred to Ratliff [37], 

Baudelaire [1] and Baxter C2] for a more complete coverage.

Not only is the visual system able to discard variations in 

intensity of the illuminant but also variations in color. The light 

of an ordinary light bulb is very yellow and the light outside on a 

clear sunny day is very blue but in both cases ue uiII call a piece 

of white paper white even though the spectral content of the light 

it reflects to our eye is very different in both cases. This 

phenomenon is called color constancy.

Just as color constancy corresponds to brightness constancy, 

brightness contrast has its conterpart with color contrast. Here it 

is the hue and saturation at one point which is influenced by hues 

and saturation at neighboring points (figures 3.1 and 3.2). Of 

course both effects (brightness and color contrast) can occur 

simultaneously and it might be difficult to separate them.

. Land’s retinex theory is an attempt to account for brightness 

and color constancy [32].In this theory the log-outputs of 

neighboring receptors are pair-wise subtracted in an independent 

manner for every cone system. By adding these data along a path 

connecting two points on the retina the ratio of the corresponding 

cone outputs can be computed. This permits a comparison 

independently of a uniform or quasi-uni form illumination. But the
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result does not depend on comparisons elsewhere and therefore this 

theory does not account for either brightness or color contrast 

effects. Another drawback of this theory is its lack of algebraic 

structure which makes it difficult, if not impossible, to use to 

make quantitative predictions.

Empirical formulations, such as the von Kries coefficients, 

have been presented to account for the perceptual appearance of 

colors and color induction [23, 38, 52] but it seems that the 

homomorphic approach which already models brightness effects fairly 

well is a more powerful and general tool.

Before getting more into these questions, one might ask what 

are the practical implications of gaining an understanding of how 

colors interact and how the eye adapts to the illuminant.

One possible answer can be found among the many people 

producing colored products. They have to worry about how their

i 1n a I product is going to look and, in order to avoid bad surprises 

such as colors that do not look the way they are supposed to because 

another color has been placed beside, those people have had to study 

color induction problems empirically. A good quantitative model for 

such effects would obviously be welcome (Judd 1940, [29]).

Another answer can be found by looking toward the film 

industry. Color films which have a fixed spectral response cannot 

adapt to different illuminants and if a film balanced for, for 

example, tungsten lamp light is used to take an outdoor scene the 

result will be an objectionable color cast on the final print which 

can only be avoided by trial and errors in the photo lab during the 

printing process. In that case again a good understanding of the
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adapting ability of the human eye would be welcome and a step 

foruard toward an automatization of such a process as ue II as a 

solid basis for the handling of digital color images.

Since a spatial filtering on the chromaticity signals in our 

model characterized by an attenuation of low spatial frequencies 

would account for color constancy and color contrast, an experiment 

was designed to test this hypothesis.

3.2 The ideas involved in the design

The validity of the multiplicative homomorphic model of 

achromatic vision has been questioned for patterns with sharp edges. 

Davidson and Whiteside [9] indicated, that edge effects were 

incompatible with the model predictions. Their results have been 

confirmed by Baudelaire who concluded that the existence of a highly 

nonlinear edge oriented mechanism centrally located (that is to say 

past the LGN) and influencing the whole visual field was most 

likely. The neural interaction network responsible for most 

brightness effects on the other hand is quite linear in the absence 

of edges.

Ue will also adopt here a careful attitude toward edges and use 

smooth patterns when measuring Ht(fltf2) and Hz(ft,fz). In other 

words, we will only use patterns containing a few low spatial 

frequencies. Also we assume for simplicity that the lateral 

inhibition postulated in the tuo chromaticity channels of our model 

is the same in al I directions which means that the frequency 

responses and H2I and the correspond i ng point-spread functions 

and h7, are circularly symmetric. Consequently, they are entirely
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defined by their cross-section which allows us to experiment only 

with one-dimen9ionaI patterns.

These patterns were displayed on the face of a high quality 

color television monitor, part of a Comtal display unit, driven 

by a general purpose digital computer. The display was carefully 

calibrated so that it was easy to relate precisely the digital 

intensities to the intensities of the red, green and blue lights 

emitted by the three phosphors on the face of the tube. The 

calibration procedure is explained in appendix D.

If Si(x) (i-1,2,3) is the spatial modulation of intensity for 

the i th phosphor and pt(A) the spectral distribution of the light 

emitted by this phosphor, the image generated on the face of the 

tube is

M x . M  - Z i . W x J p i U )

The corresponding tristimulus values are 

L(x) - Zi3iS,(x)J’ pt (X) I (X) dX 

and two other similar equations for Pl(x) and S(x).- If we denote by 

L v, M'i and Sv (i=l,2,3) the tristimulus values of the light emitted 

by the i th phosphor (for example Li=J’ pt (>») I (M  d* ) then this can be 

conveniently rewritten as a vector equation -

. t* (x ) - U, 5(x)

where §(x) - [s4 (x) , s2 (x) , s3 (x) ] T, f(x) - Ll (x ) , m (x) , s (x)]* and U, 

is a three by three matrix whose column vectors are the tristimulus 

values of the phosphors. is computed as explained by the

foI Iow i ng d i agram:
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Fig. 3.3- Computation of the U4 matrix from matrices E 4 and 0 4.

E 4 is the matrix given in appendix C that relates the cone spectral 

sensitivities to the CIE color matching functions x(A), y(A) and 

z(A). D 4 has for column vectors the chromaticity coordinates of the 

lights emitted by the phosphors and is thus characteristic of those 

phosphors and given by the builder. Thus E4 depends only on the 

model (uhich cone sensitivities uere chosen) and 0 4 depends only on 

the phosphors. The only relationship betueen the two is through the 

wh i te.

Indeed D 4 and E4 are not completely defined as long as a 

reference uhite has not been chosen. For the monitor i.t corresponds 

to equal drive signals on the three guns (or equivalently to equal 

digital intensities) and for the eye model to equal tri stimulus 

values L, M, S. In other words if w is the three-dimensional vector 

whose components are the chromaticity values (x,y,z) of the chosen 

white (for the television monitor it is usually D6500) then one has 

I - Ei w and £ ■ Oi w

co that

I - U4 I 

where 1* is the vector . [1,1,1]t.



This completely defines Ut and thus the relationship between 

the three digital images §(x) and the tristimulus vector ?(x).

It should be pointed out that we have neglected in this 

computation the effect of the eye optics which as we recall is 

equivalent to a linear low pass filter. But since we are 

experimenting with smooth patterns our approximation is justified 

Cl] .

Uhat we want to achieve with the images §(x) is to generate 

perceptual signals A(x), Ct(x) and C2(x) in the visual system of a 

human observer that allow us to study the frequency responses H t and 

H-,. This situation is summarized in figure 3.4.

In other words the problem is, knowing what A, C t and C* have 

to be, what are S,, S2 and S3. This question is easily answered by 

inverting the model of figure 3.4. If we condense all the steps or 

subsystems between (Sl(S?,S3) and (A ,C4,C2) and represent them as a 

system V then, since it is a cascade of invertible subsystems, V 

itself is invertible to V-‘ as pictured in figure 3.5. So if we know 

what A, C i( C2 signals we want it is easy to define the required S t, 

S,, S„ signals by applying V'1 to them.

The (A.C^C,) pattern we used are given by:

CA-a Cj-Cj+k (sin (2rtfx) +asi n (Srtfx) ) C?=c?] (3.1a)

CA-a C l»ct C?»c2+k (si n (2nf x)+asi n (Snf x) ) ] (3.1b)

where a, clf c k ,  a are constants, f is the spatial frequency and 

x the spatial coordinate. The frequency content of such patterns is 

limited to the 0-frequency (DC) component for the two channels that 

are not probed (the achromatic channel is always one of those) and
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to frequencies f and 3f as well for the chromatic channel that is 

tested.

As we mentioned earlier those patterns were generated in a 

general purpose digital computer that performed the required 

simulation of the inverse of V and were displayed on the face of a 

high quality television monitor driven by the computer.

The examples of those patterns shown in this thesis use as the 

final recording media a piece of photographic film. Unfortunately 

there is no good quantitative model which, given the spectral 

distribution of the input light and the characteristics of the film 

and of the printing process used, can predict the resulting 

tristimulus values experienced by a human observer when looking at 

the final print illuminated by a given light. One attempt has been 

made in that direction by Wall is [57] but his results, although 

encouraging, show that more research effort needs to be put in this 

doma i n.

Consequently in opposition to the case of the television 

monitor it is very difficult to re l ate . accurate I y digital 

intensities to tristimulus values for the film media and the 

pictures in this thesis showing color illusions are intended only to 

give an idea of the actual stimuli seen on the face of the color 

television monitor.

The shape of the curve of equation

C (x) =c+k (s i n (2ixfx) +as i n (Gixfx)) (3.2)

ia shown in figure 3.G for a=*l, a >1 and a <1. Setting a equal to 1 

in equation (3.2) allows us to test for low spatial frequency 

a t tenua t i on i n



- J Mac.* s.t«ac*»
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Fig. 3.6- The shape of the curve of equation 
C(x)=c+k(sin(2Trfx)+ctsin(6Trfx)):

a) a=l , the leftmost trough and the rightmost 
peak are at the same level.

b) a>l , the leftmost trough is at a lower level 
than t*he rightmost peak.

c) a<l , the leftmost trough is at a higher level 
than the rightmost peak.



the channel of interest. Indeed if we assume linear spatial 

filtering on C(x) characterized by an amplitude modulation transfer 

function K (f) the actual stimulus experienced is

C*(x) - K(0)c + k (K (f) si n (2nfx) + cxK (3 f) s i n (6itfx)) 

which can be rewritten as

C*(x) - K(0)c + kK(f) (sin(2nfx) + a(K(3f)/ K (f)) sin(Gnfx)) (3.3) 

so if K (3 f) is greater than K (f) and a. equals 1 we should experience 

an i Ilusion as indicated by figures 3.6, 3.7 and 3.8.

This illusion can actually be cancelled by setting a to 

K (f)/K(3f) (equat ion (3.3)). This is the key to the measurement o f 

the low frequency attenuation in the chromaticity channels.

For a fixed spatial frequency f, patterns corresponding to 

values of a between 1 and .1 were presented to a set of observers 

and the value of a which cancelled the color illusion experienced 

when a was equal to 1 was a measure of the ratio K(f)/K(3f). The 

experience was repeated for four spatial frequencies (fl=0.142, 

fy-0.234, fa-0.568, f fc-l. 136 cycles/degree) on both chromaticity 

channels. The experiment is described in more details in appendix

It should be emphasized that all this reasoning is based upon 

the assumption of linearity of the lateral inhibition and that this 

experiment is also a test of that property.

3.3 Results of the experiment

Ue found that in the range of frequencies studied the following 

relations held:

Ht (3f) - 2. 0Ht (f) (3.4a)
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H7(3f) - 1.7H2(f) (3.4b)

which should be compared with Baudelaire’9 result for H:

H(3f) - 2.0H(f) (3.4c)

and Davidson’s result:

H (3 f)-2.2H (f) (3.4d)

These relations imply a power-law for H, and Hz in the frequency 

band tested and thus a linear relationship on a Log-Log scale. Thus 

our conclusion is that there is a Iou frequency attenuation in the 

chromaticity channels and the relative amplitude modulation of 

frequencies f and 3f is about the same in the red-green channel as 

in the achromatic and a little less in the yellow-blue channel for 

the band of frequencies studied. This is in agreement with other 

studies [21] which concluded that the contrast sensitivity of the 

yellow-blue mechanism is less than the contrast sensitivity of the 

red-green and brightness mechanisms. Of course relations (3.4a) and 

(3.4b) do not completely determine H, and H? and in particular say 

nothing about very low frequencies (below .1 cycle/degree) and about 

frequencies higher than about 4 cycles/degree. . ■ . ’

But, just as for brightness effects the important band of 

frequencies is from about .1 to G cycles/degree [1], for color 

effects the important band is from about .1 to 2-4 cycles/degree.

Nonetheless we were able to get at least a rough idea of the t 

shapes of H, and H? at higher frequencies as follows. First of all 

in the experiment on the C,-channe I (yellow-blue) at frequency 

f*-1.136 cycle/degree four out the five observers reported seeing 

the illusion in reverse that is to say reported seeing the stripes 

in the middle of the blue bars bluer than the stripes in the middle



seeing the illusion much weaker than for the other three 

frequencies. This effect is called simultaneous color similitude 

[12]. In our case, this means that for the majority of observers 

H^(3f^) was less than H2(fJ (see figure 3.6) thus allowing us to 

roughly estimate the position of the maximum at 2 cycles/degree. 

The same phenomenon also happened in the study of the C t-channel but 

for a higher frequency (2.272 cycles/degree) which also allowed us 

to roughly position the maximum of at about 4 cycles/degree.

Past those maxima there seems to be a rolloff toward higher 

frequencies. Ue indeed know that the neural network between the 

retina and the visual cortex is character i zed by. two important 

properties: lateral inhibition which applies only over a limited 

range and whose transfer function is characterized by a 

low-frequency attenuation and is flat for high frequencies 

(high-pass filter) is the first. Neural summation that occurs at 

different levels and whose equivalent transfer function is 

characterized by a high frequency attenuation (low-pass filter) is 

the second. Although it is clear that those two processes are 

physiologically combined their effects on visual patterns are quite 

different and it seems justified to separate them conceptually.

Ue mentioned ear Iier that the contrast sensitivity of the 

visual neural system had been measured by contrast threshold methods 

by Campbell and Green [53. Baudelaire used their data for 

frequencies higher than 8 cycles/degree as a good estimate of the 

modulation transfer function of the neural summation for the 

brightness channel. Ue will also use them here in the following
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Fig. 3.9-  The frequency responses H(f),  ( f ) and ^ ( f )  of  the
f i l t e r s  operating on the A, and C2 signals (a,  c ,  e ) ,
respect ively,  and (b, d, f )  the corresponding 
point-spread functions h(x),  h^(x) and f ^ x ) .  The
frequency responses are plotted on a log-log scale ,  the 
point-spread functions for a span of one degree of visual  
angle.



way.

Let K (f) be the Campbell and Green data transformed as follows. 

K(f) is flat and equal to 1 from 0 to 8 cycles/degree and for higher 

frequencies is the previously mentioned data. This is what we will 

take, after Baudelaire, as the modulation transfer function 

equivalent to the neural summation for the brightness channel.

Ue will assume that K t(f) , the modulation transfer function 

equivalent to neural summation in the Cj-chromaticity channel, is a 

shifted version of K(f) (K1 (f) -K (2 f)). This is in agreement with 

our finding of a maximum at about 4 cycles/degree for H t(f) and with 

the fact that visual acuity is poorer for pure colors than for 

br i ghtness.

In the same way we will assume that K2(f) is also a shifted 

version of K(f) (K, (f)= K (4f)) which, again, is in agreement With our 

finding of a maxi mum at about 2 cycles/degree for H 2(f) and with the 

fact that visual acuity is poorer for yellow-blue colors than for 

red-green colors [5S]. -

Next we will combine our experimental data-on the low-frequency 

part of H t and H, with the modified Campbell and Green data. The 

resulting frequency responses are shown in figure 3.9 as well as the 

corresponding point spread functions.

3.4 Relation to the color Mach Bands problem

The question of whether it is possible to induce flach B a nds 

with chromatic gradients only (keeping brightness constant) is still 

con troversia I. Some people reported negative results' C15, 18, 55] 

tending to show that lateral inhibition was not present in the



chromaticity channels thus leaving the well verified fact of 

simultaneous color contrast completely unexplained. Some other 

people [22, 28] reported that colored Mach Bands were visible on 

color gradients with constant luminance but that those effects were 

weaker than in the achromatic case.

Lot ue see how our findings might provide us with an 

explanation for this controversy. Comparing equations (3.1a) to 

(3.1c) and taking into account the fact that the peak frequencies 

are 8,4 and 2 cycles/degree for H, H t and H* respectively we can 

approximately write

H 4 (f) - H (2 f)

H7 ( f ) -  H(4 f ) •

which state that the two chromatic frequency responses are shifted 

versions of the achromatic frequency response. In the 9pace domain 

these equations are equivalent to

h4(x) - l/2h(x/2) (3.5a)

h,(x) - l/4h(x/4) (3.5b)

Qualitatively, as can be seen in figures 3.9b, -3.9d and 3.9f , the 

effect is to broaden the point-spread functions h 4 and h? by a 

factor of 2 and 4 respectively with respect to h as well as scaling 

them down by the same factors.

Coming back to the colored Mach Bands problem, relations (3.5a) 

and (3.5b) suggest that they should be broader than the achromatic 

Mach Bands and consequently less visible.



CHAPTER 4

4.1 Scanning color images in and out of a computer

In order to te9t the model on real life color images it uas

necessary first to digitize such images and second to use a
/

scanning-out procedure where a piece of color film was exposed and 

processed in a fixed and controlled way. Thi9 was done to minimize 

display equipment and film non I i nearities as well as the effects of 

the printing process on the result9 of the experiments and make sure 

that what we were looking at were actual consequences of the digital 

processing and not of film processing.

A color film (Kodak Ektacolor Professional Film, Type S) was 

exposed outdoors yielding a color negative after development. Ue 

made sure that the dynamic range of the scene fitted that of the 

film so that the only nonlinearity in this process was represented 

by the gammas of the D-LogE curves of the three dyes present in the 

negative after development. They were measured by exposing the same 

day a calibrated grey-scale and plotting the three curves showing 

transmission density on the negative versus reflection densities on 

the grey-scale. The next step in the scanning-in process was to 

prepare three black and white prints from this color negative. They 

were obtained by exposing panchromatic paper (Kodak Resisto Rap i d  

Pan) from the color negative through three Uratten filters (Red 92,

APPLICATION OF THE MODEL TO IMAGE PROCESSING



Green 59 and Blue 47B). It turned out that when doing so we had to 

use the whole dynamic range of the paper and that consequently we 

were not using only the linear part of its Q-LogE curve as in the 

case of the negative but also the parts usually referred to as the 

"toe" and the "shoulder" thus introducing another non I inearity. 

Those three prints were then scanned independently on a reflectance 

scanner and the two nonlinearit i es mentioned ear Iier compensated for 

by software.

The net result of this set of operations wa9 three digital 

images corresponding to the red, green and blue light intensities in 

the original scene. Since we compensated for all non I inearities in 

the scanning-in process, the numbers in the computer* were actual ly 

proportional to the light intensities incident on the film when the 

shutter was opened.

The scanning-out process was done in two ways. The first, 

intended to provide a "quick look" at the results of an experiment 

was simply to display, the red, green and blue images on the face of 

the television monitor we used for the psychophysical experiments 

described in chaptor 3. The second, intended to get a high-quality 

hard-copy, consisted in displaying the red, green and blue images on 

the face of a very high quality cathode ray tube (CRT) and exposing 

sequentially a piece of color film (Kodak Ver-icolor S Film) through 

three filters (Uratten filters number 25, 58 and 4 7 B ) . The film was 

then taken to the photo lab where it was developed according to a 

fixed procedure described in appendix Q.

5 9

The r e s u l t s  o f  t h e  t o t a l  s c a n n i n g - i n  and o u t  p r o c e d u r e s  a r e



shown for two real life color images "BECKY" and "CAR-PQRT" in 

figures 4.1 and 4.2. -

4.2 Practical implications

Let us see now how the model developed in the fir9t three 

chapters can be used to process those images. The obvious problem 

is that the input to the model (figure 2.3) is I(x,y,A), a function 

of wavelength as well as of spatial coordinates, while the only data 

that are available to us are three images R(x,y), G(x,y) and 0(x,y), 

results of the scanning-in process, where the wavelength information 

has been lost.

But we notice that ue already solved this problem in chapter 3. 

Indeed in the case of the television monitor we knew the 

chromaticity coordinates of the lights emitted by the phosphors and 

thus the matrix transformation from the tristimulus values 

corresponding to those primaries into cone responses. In the case 

of the CRT we know the character i st i c of the light emitted by its 

phosphors (CIE C illuminant) and this entirely defines the 

chromaticity coordinates of the light coming through the three 

Uratten filters used. Thus in this case again we can easily compute 

the matrix 11? such that

[L (x, y ) , M (x, y ) , S (x, y) 3' * U2 [R (x, y) , G (x, y ) , B (x, y ) 3 *

Uo can nou redraw figure 2.3 as figure 4,3. l)j is given in appendix

C.

Since we have a way of mapping color images defined by 

? (x,y) - [R(x,y),G(x,y),B(x,y)3x into the perceptual space as 

. P ( x , y ) « [A(x,y),Ct(x,y),C*(c,y)3 * and that furthermore this mapping

S I



Fig.  4 . 3 -  The homomorphic model of  co l or  v i s i o n  when the input  
image has been analysed in some s e t  of  pr imar ies .

Fig.  4 . 4 -  C r o s s - s e c t i o n  of the frequency response  of the  
f i l t e r  used to enhance b r i ghtnes s  informat ion.



is invertible, it is tempting to process P(x,y) because we know that 

by doing so we will actually be processing the quantities that are 

perceptually important for a human observer. This idea is 

summarized in figure 4.7. From equations 2.3a to 2.3c it is easy to 

der i ve

L* - l * + (a -  a ) /a + ((3/u,) (c, - c,) + (y/uz) (c2 - c2) (4.1a)

ft* - ri" + (S - a ) /a + ((<3 - l)/ut) (c, -  c.) + (v/uz) (c2 - Cz) (4.1b) 

£■ -  S *  +  (S - a ) /a +  ( c t - c j  +  ( ( v  - l)/u2) ( c 2 - c2) (4.1c)

4.3 Brightness processing

Using those ideas we first experimented with the brightness 

information. For instance figure 4.5 shows the effect of setting 

A(x,y) to a constant across the whole image which now looks like a 

cartoon with very little variation in brightness but where 

variations in color have been preserved. The reader may argue for 

example that the sky or the horse head look brighter than the rest 

of the scene. He is however confusing brightness with strength (see 

figure 2.7). From equations 4.1a to 4.1c it is easy to u nderstand 

what happens to the tristimulus values. Since we have
j  .

A -  constant -  c c 4 -  C, £2 -  Cz '

they can be rewritten  as 

: L* -  L*+A’

H* - m n -a ' . ■

S* = 5*+A ’ 

where A ’ - (c-A)/a and thus

L - L exp (A’) •

n - n exp(A’)
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S - S exp(A*) 

or in vector notation

?  - exp(A’) ? (4.2)

I f ue remember that these quantities are functions of the spatial 

coordinates x and y, the i nterpretat i on of our processing is as 

fol lows. At a point (x,y) on the image where A is close to c, the 

chosen constant brightness, A’ is small and thus e x p ( A’) is close to 

1 and we do not change the tristimulus vector^T very much. If A is 

less than c, then A ’ is positive, exp(A’) greater than 1, and ue 

Increase the tristimulus values at that point. Finally if A is 

greater than c, A ’ is negative, exp(A’) less than 1, and we d e crease 

the tristimulus values at that point. ’

In the same line of ideas we can also perform linear 

cpace-invariant filtering on A(x,y) where the frequency response H 

of the filter is circularly symmetric and has a low frequency 

attenuation as shown in figure 4.B. Equation (4.2) can be rewritten 

as

' f - (1/exp(-A’)) ? " • ' (4.3)

Noticing that - a’ - (a - £)/a and that, as shown in figure 4.G, 

A - A is a low-pass filtered version of A, equation (4.3) expresses 

nothing else than what is known to photographers as unsharp masking. 

Of course there is nothing that can hamper us from choosing a 

different frequency response, for example with not only a low 

frequency attenuation but also a high frequency amplification thus 

obtaining a processing much more general than unsharp masking. This 

processing, in the example just described, can be understood from 

equation (4.3) but also from the standpoint of our concluding
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Fig.  4 . 7 -  The process i ng  i s  based on a mapping of  images 
in to  a "perceptual" space def ined  by the model 
where one operates  on p e r c e p t u a l l y  meaningful  
q u a n t i t i e s .  After  p r o c e s s i n g ,  the image i s  map
ped back i nto  the system of  d i s p l a y  pr imar ie s .



Original image ?(x,y )=t ( x ,yM'  (x,y)

L O G

T*'(x ,y )®t*(x ,y ) + t ' * (x , y )

. 4 . 8 -  Homomorphic i n t e r p r e t a t i o n  when l i n e a r  process i ng  
i s  performed in the "perceptual" space.  Not ice  at  
every s tep the harmony between the p ro ces s i ng  and 
the s tr u ct u re  of  the processed q u a n t i t i e s .



Fig.  4 . 1 1 -  C r o s s - s e c t i o n s  of  the frequency responses  o f  the 
f i l t e r s  used to enhance the chromatic informat ion  
in (a) the C p  and C2- channels  for "CAR-PORT",
i n  ( b )  t h e  C j -  c h a n n e l  f o r  "BECKY" a n d  i n  ( c )  t h e

C2 _ c h a n n e l  f o r  "BECKY".



Indeed if we model T-Cl.M.sI* as a product of a slowly varying 

component t-U.m.s]* and a rapidly varying component t ’ - CI ’ , m ’ , s’ ] 

figure 4.7 can be redrawn as figure 4.8. ?(x,y), t(x.y) and x' (x,y) 

are mapped through the model respectively onto 

p(x,y)»[A(x,y),cl(x,y),C?(x,y)]tI p(x,y)«[b(x,y),cl(x,y),c2(x,y)]'*

and P ’ (x,y)-[b’ (x,y) , c/ (x,y) , c2’ (x,y)]t such that

P (x,y)» p(x,y)+ p'(x,y). In this particular case we do not process 

the chromatic signals and thus Ci ■ clt c2 - c2, - c /  and

C /  - c^’. The brightness signal A(x,y) is the sum of a slowly and 

rapidly varying components b(x,y) and b'(x,y) which are proc e s s e d  

differently by our filter. The slowly varying component b, equal to 

a (a I *+(3m'+ys') and correspond i ng roughly to illumination brightness, 

is reduced by the low-frequency attenuation thus achieving dynamic 

range compression while the rapidly varying component b ’, equal to 

a (a I ’ *+/3m’*+7s’*) and correspond i ng roughly to reflectance 

brightness, is enhanced by the high frequency emphasis. This 

processing is the equivalent for color images to S t o c k h a m’s work on 

black and white images. Notice that according to our model we 

should not be changing the chromatic content of the original image. 

Results are shown in figure 4,9. The radial frequency response used 

is shown in figure 4.4.

4.4 Chromatic processing

If we now process chromatic information and leave bright n e s s  

information untouched, supposing again that the processing is 

linear, we can rewrite equations 4.1a to 4.1c as

r e m a r k s  i n  c h a p t e r  2 .



O  (L^ + L 2*) /2+ (A- (S‘+S2) /2) /a+ ((3/2) (c^-c,2) +

(y/2) (c2J-czl) (4.4a)

A*- (nl*+n2*) /2+ (a- (a‘+a2) 12) /a+ ((|3-1) /2) (c^-c,2) +

(y/2) (c2J-c2‘) (4.4b)

§*- (sl*+s2*) /2+ (a- (S‘+ a 2) /2) /a+ (0/2) (c4‘-ct2) + #

( (1-y )/2) (cz‘-cz2) (4.4c)

where At refers to the filtering in the C t-channel and a* refers to 

the filtering in the C7-channel. The meaning of those equations is 

not immediatly obvious but if we suppose for simplicity that the 

linear filtering on C4 and C? is the same, then equations (4.4a) to 

(4.4c) rewrite very simply as

L* - l 1* + (a - A 1)/a (4.5a)

+ (a - A l)/a (4.5b)

§* . §l* + (a - A l)/a (4.5c)

where, for example, Ll" represents the filtered version of L* by the 

"chromatic" filter. So the net effect is in this case the same as 

performing the same linear filtering on L*, N*, S* as on C 4 and C z 

and have it followed by masking on the resulting tristimulus values.

A complementary interpretation of this processing is the 

"homomorphic" one. Again we model L, N, S as products of slowly and 

rapidly varying components which makes the perceptual vector P the 

sum of two vectors p and p ’, the coordinates of which are 

respectively slowly and rapidly varying. Ue can interpret the 

slowly varying part of C 4 and C? as the illumination chromaticity 

and the rapidly varying part as the reflectance chromaticity. Then 

a linear space invariant filtering on C 4 and C2 characterized by a 

low frequency attenuatfon and a high frequency emphasis will enhance
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saturation of objects which tend to be small and discard uhat may be 

called the chromatic component of the illumination thus realizing an 

automatic color balance control. This can particularly well be seen 

when comparing figure 4.2 with figure 4.18b where the slightly 

yellowish low-frequency chromatic component ha9 been completely 

removed by the filtering performed on the and 9ignal9.

Examp I os of 6uch a process are shown in figure 4.10. The radial 

frequency responses used are shoun in figure 4.11.

4.5 Brightness and chromatic processing

Finally one might want to combine brightness and chromatic 

enhancement as shown in figure 4.12. If we denote by A the 

processed brightness, equations 4.5a to 4.5c can be rewritten as 

L* -  L** + ( i  -  A1) /a 

M* - * + (A - S M / a  

§* . s l" + (A - S M / a  

again we assume for simplicity that the linear filtering on C t and 

C, is the same. Note that the masking is different from the one in 

the case of chromatic processing only. The "homomorphic" 

i n terpre ta t i on is the same as before but now a combination of 

paragraphs 3 and 4.



5.1 The use of the model for defining a distortion measure between 

color images

S h annon’s rate-distortion theory [19, 45] was o riginally 

developed to handle such problems as efficient encoding of images 

and speech. Since we are interested here in images, let us review 

very briefly the essence of his results in that case.

Lot I(x,y,A) be an original image that we want to transmit over 

Gome noisy channel and J(x,y,*) the received image. Let a I so d ( , ) 

be a positive real valued function of two images and consider d ( i , D  

to be the distortion that occurs when I is transmitted and I 

received. The performance of the system is then measured by 

d* - E[d (I. I) ]

where the expected value E is taken over the ensemble of images of 

interest. Shannon’s rate-distortion function R(d*) is a lower bound 

on the transmission rate required to achieve average distortion d*. 

Moreover, Shannon’s coding theorem also states that one can design a 

code with rate only negligibly greater than R(d*) which achieves 

overage distortion d*. Thus this function R(d*) exactly specifies 

the minimum achievable transmission rate R required to transmit an 

image with average distortion level d* and provides an absolute 

yardstick against which to compare the performance of any practical 

system (see for example [19]).

CHAPTER 5

APPLICATION OF THE MODEL TO IMAGE TRANSMISSION AND CODING



There are three reasons why this potential value has not been 

realized to date. The first one is that there does not currently 

exist any tractable mathematical models for an image source, the 

Gaussian one being obviously a poor choice. The second one is the 

difficulty of computing the rate-distorti on function for other than 

Gaussian sources and square-error distortion measures. The third 

one is that a distortion measure d( , ) in agreement with subjective 

evaluation of image quality is not known. By thi9 we mean that if

I (x ,y ,X) is a reference original image and Tj(x,y,X), j - 1 , 2 .....

is any set of reproduced images, then d (I, T j) should rank the 

reproduced images in the same order as the end user of the images.

It has been argued (Sakrison and tlannos [43]) that this might 

be the prime reason of the three why rate-distortion theory is not 

currently applicable. Some work toward the definition of such a 

distortion measure for black and white images has been carried out 

after the pioneering work of Stockham [50, 51] by Hannos [33], Rom 

[33] who used the mono-frequency channel model of human vision. 

This work is currently being extended toward incIuding. the existence 

of several frequency channels [2, 44], On the side of color images, 

very little has been done and part of this work is an attempt to 

define such a distance between color images.

Ue will assume for simplicity that the original image is 

represented in some set of primaries by its correspond i ng 

tristimulus values R(x,y), G(x,y) and B(x,y). Our r eference 

or i g i naI will thus be

?(x,y) - [R(x,y),G(x,y),B(x,y)]x 

while the distorted version will be



f(x,y) - [fttx.yJ.Gtx.yJ.Stx.y)]*

We knou that

d(T.T) - S S  < C?(x.y)-T(x,y)] . [? (x. y ) ( x ,  y) ] )1/2 dxdy (5.1)

.where . stands for inner-product, is in very poor agreement uith 

subjective evaluation. But we also knou a great deal about about 

how the v i 9uaI system processes the information it receives from the 

outside nor Id and thus what is important for the human observer. In 

other words i t seems very likely that

dCi’.T) - S ' S  < CP*(x,y)-?*(x.y)] . [?'(*, y ) y )  ] )*'* dxdy (5.2) 

i 3 a much better measure of the distortion betueen ? and T than 

equation (5.1). In equation (5.2) and f5* are the perceptual 

voctors corresponding respectively to f and T. This equation is 

nice because it measures distances in the (A",C^,Cj*) space uhi c h  

is the {A,CltCy) space after spatial filtering by the linear filters 

of fraquency responses H, H 1( H? (see chapter 3). This means that 

no are taking into account both the fact that the (A.CltCj) space is 

uniform in terms of perception (see chapter 2) and that different 

sensitivities to spatial frequencies exist in the three channels. •

5.2 Agreement between distance and perceptual ranking •

Ue artificially distorted an original image ? in w a y 9 to be

■

described. This resulted in a set of five disturbed versions ?j,

j - 1 , 2 .....5, of ?. For each T0 we computed d(f,Tj) = dj according

to equation (5.2). Ue found that the way most observers ranked- the 

images in terms of similarity to the original was the same as the 

one obtained by ordering the numbers dj (the smallest numb e r  

corresponding to the picture judged closest to the original).

7 7



(a)

(b) ‘•*1

Fig. 5.1- Distorted versions of (a) "BECKY" and (b) "CAR-PORT".
Noise has been added to the components corresponding 
to the red, green, blue primaries.



5.2- Distorted versions of (a) "BECKY" and (b) "CAR-PORT"Fig
Noise has been added to the components corresponding
t o  t h e  Y,  I , N . T . S . C .  t r a n s m i s s i o n  D r i m a r i e s



Fig. 5.3- Distorted versions of (a) "BECKY" and (b) "CAR-PORT".
Noise has been added to the L*, M*, S* cones loq-outputs 
in the model of figure 4.3.



(a)

Fig. 5.4-  Dis tor t ed  vers ions  of  (a) "BECKY" and (b) "CAR-PORT".
Noise has been added to the A, C-, , C0 components in the 
model of  f i gu r e  4.3.  c



(a)

Fig. 5.5- Distorted versions of (a) "BECKY" and (b) "CAR-PORT".
Noise has been added to the A 1, C-j 1 , components,

filtered versions of the A, C-j, components in the

model  o f  f i g u r e  4 . 3 .



The distorted versions of "CAR-PORT" and "BECKY" numbered from 

1 to 5 are shown in figures 5.1 to 5.5. The computed distortions 

dj, (j-1,,.,5), normalized to an average distortion per point, are 

shown in table 5.1 for "BECKY", in table 5.2 for "CAR-PORT". They 

correspond to the entry Dt. Ue can see that in both cases the 

ordering i s 5, 4, 3, 1, 2. For "CAR-PORT", for example, the most 

disturbed image T* is at an average distance of 20 perceptual units 

from the original (remember that a distance of 1 corresponds to a 

just noticeable difference in the (A,CltC?) space). is 5 %

closer, Th 15% closer, ?t 30% closer and f s 35% closer.

This can be considered as a good confirmation of our claim that 

the distance defined by the model is "good" in the sense of 

paragraph 5.1. It is interesting here to make a remark on the 

nature of the distance or metric we defined on the (A.CnC?) space. 

Ue cho9e it to be a square-error or euclidian distance because, as 

wo mentioned in paragraph 5.1, it is the one which mathematically is 

tho moro tractable. But we must stress the fact that from the 

physioIogcaI standpoint it is a little bit difficult to defend 

because it assumes some kind' of mechanism able to sense the outputs 

of the three channels (which is not unrealistic) and somehow to 

compute the square-root of the sum of their squares (which is 

unrealistic). Another distance which would be more in agreement 

with what we know about neural networks can be informally defined as 

"the channel that shouts the loudest determines the response" and 

formally as the "maximum" distance whereby if 0 is the origin of the 

perceptual space and Q the point of coordinates (A,C,,CZ) then 

OQ - Max (IA J, ICJ, IC21)

8 3



where I I stands for magnitude of. Another distance, also more 

defendable from the physiological standpoint, and which alike the 

euclidian one yields the i nterpretat i on of OQ as a measure of the 

total activity in all three channels would be 

QQ - IA I + 1C, I + IC21 

For those two distances, the unit spheres locus of the points 

representing colors which are just noticeably different from a given 

color would be unit cubes and the Mac-Adam ellipses would map onto 

unit-squares. It is pleasant to notice, as 9hown in tables 5.1 and 

5.2, that if those distances are used for computing the d istortions 

dj instead of the euclidian one the resulting ranking i9 the same 

(the "maximum" distance corresponds to the entry D7, the "Bum of the 

magnitudes" distance corresponds to the entry Da) .

Let us mention for completeness the fact that these three norms 

are special cases of a broad class of vector norms, the Ho I der-norms 

w here

OQ - ( I A I “ + IC, I « + IC2I“)W “

The sum of the magnitude norm correspond i ng to a = 1, the euc I idian 

norm correspond i ng to a » 2 and the maximum norm corr espond i ng to 

a -

Obviously more work needs to be done in order to test further 

the metric of the (A,Ci,C*) space but those results are extremely 

encouraging.

5.3 Color image transmission and coding

ie description of the way images represented in figures 5.1 to

5.5 have been distorted will provide us with a transition to

8 4



from C1 , (c)  C2 ' from C2 - In each case  the low-
frequency part i s  the same as for the curves  
shown in f i g u r e s  3 . 9 a ,  3 . 9 c ,  3 . 9 e ,  r e s p e c t i v e l y .



the problem of image coding. Noise was added to the three 

components of the images in different domains. The domains were the 

rod, green, blue display primaries for figure 5.1, the Y, I, Q NTSC 

transmission primaries (not gamma corrected) for figure 5.2, the L*, 

M", S" cone Log-outputs for figure 5.3, the A, C 4, C7 components of 

figure 3.2 for figure 5.4 and the A ’, C /  , C7' components for figure 

5.5. A ’, C,’, C /  were obtained by filtering A, C 4, Cz with linear 

filters of frequency responses equal to H, H, and H? of chapter 3 in 

the low frequency part up until the maximum and then flat at h i gher 

frequencies (high-pass filters) as shown in figure 5.6. The r e asons 

for this choice will be explained later, After the noise was added 

the image was mapped back, if necessary, into the display p rimaries 

system and displayed.

In all cases the noise added to the three components was 

uncorrelated from one component to the other and for each component 

it was zero-average uniformly distributed white noise. F u r t h ermore 

the peak to peak signal to noise ratio was 4:1 in the case of 

CAR-PORT and 2:1’ in the case of BECKY. •

If we recall that uniformly quantizing a signal with n bits is 

approximately equivalent to adding uniformly distributed white noise 

uncorrelated to the signal with peak to peak signal to noise ratio 

2", it is obvious by looking at figures 5.1 to 5.5 that with the 

same number of bits or equ i va I ent I y the same relative noise level 

the quality achieved is much better if we use the perceptual signals 

A, C lf C, or A ’, C /  , C?’.

More formally, it has been shown recently [39] that in the case 

of transmission of black and white images over a noisy channel, if



one wants to minimize the mean square error in- the perceptual space, 

the optimum pre- and post-processors are as shown in figure 5.7. F 

and G are the frequency responses of two spatially invariant linear 

filters and H is the brightness-channeI frequency response of 

chapter 3. F depends on H, I(x,y) and the noise N, G is the 

corresponding Uiener-fiI ter. As pointed out by Rom, the dependency 

on H is weak and in all practical cases F is a high-pass filter and 

G a Iow-pass f i I ter.

This can be immediatly generalized to the case of color images 

as shown in figure 5.3. So, according to this theoretical argument, 

the example where we disturbed A’, C t’ and C7’ corresponds almost to 

the optimum since the filters of figure 5.S are hi.gh-pass filters 

and thus their inverses are low-pass filters. The results should 

indeed look better to a human observer than results obtained by 

different methods.

These arguments strongly support the validity of our model to 

define a distortion measure between color images and the more subtle 

claim that when processing images we should process them after a 

mapping so that the processed quantities are as close as possible to 

the perceptually important quantities to a human observer.

As a final example we would like to show applications of this 

model to image coding. The idea was to code the A, C,, C z 

perceptual components of an image independently and use the fact 

that they are spatially filtered in different ways by the visual 

system. Ue noticed in chapter 3 that the visual acuity for the 

red-green channel seemed to be about twice poorer than the visual 

acuity for brightness and twice better than the visual acuity for
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PERCEPTUAL DISTANCES FOR "BECKY"

Image number

1 2  3 4

13.SI 23.04 IS.18 13.21

17.G0 21.15 14.18 11.04

2G.77 30.53 22.30 13.53

TABLE 5.2 

PERCEPTUAL DISTANCES FOR "CAR-PORT"

Image number

1 2  3 4

D t 18.33 13.67 16.28 13.15

D, • 16.73 17.56 14.13 10.77

Da 26.41 27.00 23.47 13.85

TABLE 5 . 1

Di

D,

Da

5

12.53

10.35

18.87

S

12.57

10.08

19.22



the yellow-blue channel. These properties were taken into account 

in the encoding process where we used a spatial transform encoding 

method developed by Tescher [531. Hagnitude and phase of the 

Fourier transforms of filtered versions of A, C lt C ? were encoded in 

such a way that the average bit-rate was 0.7 bit/pixel for the 

brightness information, 3.2 bit/pixel for the red-green information 

and 0.1 bit/pixel for the yellow-blue information thu9 yielding a 

total average bit rate of 1 bit/pixel. The image wa9 then 

reconstructed through the inverse of the model and displayed. The 

results are shown in figure 5.9. Since the originals were scanned 

in with 27 bits/pixel, that is 9 bits/pixel for the red, green and 

blue information, the reduction factor is 27:1. .

9 1



CONCLUSIONS

G.l Psychophysics and modelling

Using the homomorphic modelling approach, we have been able to 

show experimentally that spatial linear inhibition is present in the 

chromaticity channels of the human visual system. Of course, our 

results hold only if the model we hypothesized is correct since the 

design of the entire experiment described in chapter 3 is based upon 

the inversion of that model.

In particular, one may argue that what we called brigh t n e s s  

does not correspond to perceptual brightness and that, consequently, 

the simultaneous contrast effects we measured were partly or solely 

cluo to brightness contrast. But this criticism supposes one thing, 

that is that there exists a good quantitative definition of 

brightness. Ue know this is true for monochromatic lights. It is 

defined by the CIE V U )  function uith the necessary corrections in 

the blue end of the spectrum . Ue were not operating with that kind 

of stimuli since the lights emitted by the phosphors are far from 

being monochromatic. An alternate possibility would have been to 

keep the luminance constant where the luminance V of a stimulus of 

radiance R(A) is defined as: .

Y - /  R U ) V U )  dA

But this in turn assumes that Abney’s law is valid which ue knou to
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he wrong [23], especially for direct brightness matches which are 

the experimental conditions we were operating under.

Thus, our definition of brightness is not worse than any other 

definition. Furthermore, it is based on solid neurophysioIogica I 

evidence and we were able to show that it predicted a relative 

luminous efficiency function V"(X) in extremely close agreement with 

other experimental data. To put it another way, our definition of 

brightness is right in the only case where there is agreement among 

the scientific community on its definition, namely in the case of 

monochromatic lights. As a summary, we will say that the results of 

our psychophysical experiment are in full agreement with our models 

the constant (model) brightness patterns we used were indeed judged 

as so by the subjects. Those results are also compatible with our 

hypothesis of linear lateral inhibition and summation in the 

chromaticity channels which, ue would like to stress it again, was 

fundamental in the design of the experiment.

Ue will not claim to have solved all the problems of co I or 

vision but we hope to have contributed to a better understanding of 

the questions of chromatic' adaptation and simultaneous color 

contrast effects. At any rate, this field is a most difficult one 

to work in because, to quote Rushton, "whereas nearly al I the 

phenomena of nature are simply observed, those of sensory physiology 

can only be experienced. So in colour vision we perce i ve the 

essential hollowness of formal scientific explanation." And "the 

content of our hollow scientific structure is such stuff as dreams 

are made on: there is nothing either green or grey but thinking 

makes i t so." .



After the model was calibrated using our experimental re9ult9 

as well ae those of others, it suggested several interesting ideas. 

First we showed how the perceptual space offered a meaningful way of 

thinking about important perceptual parameters such as brightness, 

hue, saturation and a concise formalism to describe them 

quantitativeIy. Second we showed that the idea of structuring the 

perceptual space as a vector space where vector addition corresponds 

to tristimulus values multiplication, coupled with the existence of 

spatial filtering in that space accounted for contrast and c onstancy 

affects and suggested interesting image processing methods which we 

showed to be indeed succesful both for enhancement and transmission 

and coding. Third we showed that the introduction of a norm on that 

space, which allowed us to measure distances herein, was the key to 

defining a distortion measure in agreement with perceptual 

ova Iuat i on.

G.3 Further research

From the psychophysioIogicaI standpoint, one may try to verify 

the linearity of neural interactions for more complicated patterns 

than the one which were used in this study. True two-dimensional 

patterns could be used on Cj and Cz (we used only one-dimensional 

one), patterns exciting both C4 and Cz and patterns exciting all 

three channels could also be used. .

It is also likely that more than three quantities govern our 

perception of colors [15] in complex scenes. We defined a new one, 

which we called strength, that was related to the total activity in

G . 2  Imago  p r o c e s s i n g



all throe channels but did not investigate its role in perception 

any further. A more systematic study of such parameters may open 

new avenues in the fields of psychophysics and image processing.

But we think that the real improvement of this model and 

similar ones will come from a study of visual perception near edge9. 

Indeed, Baudelaire [1] showed that the predictions of the 

homomorphic model for achromatic v i s i o n  broke down for patterns with 

sharp edges. Of course this is also true of thi9 model which is 

based on the same ideas of modelling vision as a cascade of a 

nonlinear memoryless stage ( L o g )  and a linear system. The trouble 

is that edges determine our perception of contours and thus of 

shapes. That is why we think that if the next step toward a bett e r  

understanding of the information processing capability of the human 

visual system is a step in the direction of trying to describe how 

ue perceive and recognize shapes and objects, the problem of edge 

porception and the fundamental nonlinearity it introduces in the 

vision process will have to be solved. '

U q are still far from being able to explain how. we structure 

and understand what we see with what we know about the visual system 

but it is hoped that studies like ours are in the right direction.



To determine experimentally the relative luminous efficiency 

function one can use the so-called step by step method where two 

patches of monochromatic lights are viewed side by side. The 

wavelengths of the two patches are slightly different and the 

radiance of one is varied until the total perceptual difference 

between the two patches reaches a minimum. This procedure is then 

repeated step by step along the spectrum.

Let us now see how such a function can be derived from the 

model. Let P an P ’ be two patches of light of tristimulus values 

(L,t1,S) and (L’.N’.S’) and chromaticity coordinates (l,m,s) and 

( I ' , in' , s' ) where '

i - L / ( L + n + s )  -  l / z r  -  L’ / f L ’ +n’ + s ’ ) -  l ’ / z * .

and four other similar expressions for m, m’, s, s’.

Ul« are going to make I ’ vary while keeping I’, m ' , s’ fixed 

(change the radiance of patch P ’ without changing its color). 

Patches P and P ’ are represented in the (A,Cj,C2) space by two 

points Q and O ’ of coordinates

A - a(aLog(Zl) + |3Log(Zm) + yLog(Zs))

C, - u,Log(l/m)

APPENDIX A

DERIVATION OF THE RELATIVE LUMINOUS EFFICIENCY FUNCTION

C7 -  u^Log { I /  s ) ■

f o r  Q and



A ’ - a (aLog (Z ’ I ’) + f3Log(Z’m’) + v L o g ( Z’9’))

C4’ -  UjLog ( I ’ / ni’ )

C,’ - u . L o g d’/s’)

for Q ’. The perceptual difference D between those two patches is 

defined a9 the norm of the vector Q Q’

0* - (A - A ’)1 + (C, - C/)* + (C, - C7’ )2 

Ue want to minimize Q* when varying I ’ , a l l  o t h e r  v a r i a b l e 9  b e i n g  

c o n s t a n t

dtO^/dZ* - d ( (A - A *) *) /dZ7 ■ -2(A - A ’M d A ’/ d Z’)

It is interesting at this point to note that minimizing D* '19 

equivalent to minimizing (A - A ’)1 which i9 the brigh t n e s s  

difference between the two patches. A straightforward comput a t i o n

yields

cl (□*) /dZ ’ - (2a*/Z *) (ct+0+v) («Log(Z’ I ’ / Z  I) +0Log (Z ’ m’ /Zm) +yLog (Z ’ s’ /Z s) ) 

Keeping only first order terms yields

d(D2)/dZ’ = (2a2/Z) (a + (3 + 7) (aAL/L + (3AH/H + y AS/S)

Uhere AL - (Z * I * - Zl) and two other similar exprefigiong for AM and 

AS. The minimum perceptual difference is obtained for'

cjAL/L + (3An/n + y AS/S = 0 (A.l)

Let us now take into account the fact that patches P and P ’ are 

monochromatic of wavelengths * and * + dX and radiancee R{\) a n d  

R(X) + dR(X). !(>.), m(>>) and s (X ) being the cone ab9orption curves 

we have

L - I U ) R U )  AL = ((d I ( X)/dA) R (X) + I U ) ( d R ( X ) / d X ) )AX 

and four other similar expressions.

AL/L - ((l/l (X)) (dl (X)/dX) + (1/R(X)) (dR(X)/dX)) AX

Th e n
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and two similar expressions.

Equation (A.l) can now be rewritten as

(a + (3 + v) (1/R(A) )dR(A)/dA + (a/I (A)) d I (A)/dA +

{/3/m (A) ) dm (A) /dA + Iv/s (A) ) ds (A) /dA - 0

- (dR (A) /R (A)) - (l/o + (3 + y) (ocd I (A)-/I (A) + (3dm(A)/m(A) + 

yds (A) /s (A))

This differential equation is readily integrated and yields 

1/R(A) - | (a) (a) a'«*o*rs (a)

and thus the relative luminous efficiency function predicted by the 

mode I i s .

V * (A) - k/R (A) =• kl (A)“/«*tf*rm(A)‘,/«*’3*rs(A)r/“*‘,*r 

uhero the constant k is adjusted to make the maximum equal to 1. 

Constants a, (3, y are adjusted so that this maximum occurs at 555nm.



APPENDIX B

Color matches have a normal distribution around a given color 

conter in the CIE (x, y, 0 . 2 1 ogl0 (Y) ) space (Brown and Hac-Adam 1949

[4]). Given that just-noticeable differences are about three times 

standard deviations, the locus of colors just noticeably different 

from the given color center is an ellipsoid. Ue would like this 

ellipsoid to map to a sphere of unit radius in the (A,Cl,C2) space.

In order to do that, we first assume that chromaticity and 

brightness errors are independent which allows us to optimize 

independently a and (ut,u2).

For an achromatic color, we have L=H=S and thus A-aLog(L). 

A I 9 0 , if the model is calibrated for the equal energy white, then we 

also have L*X=Y-Z and thus A=al_og(Y). This implies 

(dA)J - aJ(dY/Y)1 

If (dA)*-l is the just noticeable difference that we want 

aJ (dY/Y)J - (60.10V9) (dY/11.53Y)2

and thus

a - 22.S

Optimization of parameters u, and u? is done in the following way. 

Ua take the tlac-Adam ellipses, projections of the 

standard-deviations ellipsoids on the (x,y) plane, and map them onto 

the (CltC 7) plane of the model (see figure B.l). Ue then adjust u.

OPTIMIZATION OF a ,  u lt u 2



and u2 to get the best fit with circles of radius 1/3. Table 1

shows the re9ult9 for u,=64 and u2=10.

TABLE B.l

Color center Mac-Adam ellipses Model

X0 y0 lOOOu lOOOv e 3U 3V

0.1S0 0.057 0.85 0.35 G2.5 1.44 0.72
0.187 0.118 2.2 0.55 77.0 0.72 0.73
0.253 0.125 2.5 0.50 55.5 0.70 0.70
0.150 0.G80 9.G 2.3 105 •1.70 0.82
0.131 0.521 4.7 2.0 112.5

✓
0.64 0.74

0.212 0.550 5.8 2.3 100.0 0.97 0.83
0.258 0.450 5.0 2.0 92.0 0.88 0.81
0.152 0.3G5 3.8 1.9 110.0 0.63 0.93
0.280 0.385 4.0 1.5 75.5 0.73 0.69
0.380 0.498 4.4 1.2 70.0 1.72 0.48

0.1S0 0.200 2.1 . 0.95 104.0 0.44 0.82
0.228 0.250 3.1 0.90 72.0 0.62 0.61
0.305 0.323 2.3 0.90 58.0 0.51 0.49
0.385 0.393 3.8 1. G G5.5 0.95 0.77
0.472 0.399 3.2 1.4 51.0 1.29 0.73

0.527 0.350 2. G 1.3 20.0 1.25 0.84
0.475 0.300 2.9 1.1 28.5 1.00 0.84
0.510 0.23G 2.4 1.2 29.5 0.G9 1.60
0.59G 0.283 2. G 1.3 13.0 1.53 1.50
0.344 0.284 2.3 0.90 GO. 0 •0.45 . 0.60

0.390 0.237 2.5 1.0 47.0 0.52 0.93
0.441 0.198 2.8 0.95 34.5 0.G4 1.39
0.278 0.223 2.4 0.55 57.5 0.56 0.43
0.300 0.1G3 2.9 0. GO 54.0 0.G2 0..72
0.3S5 0.153 3. G 0.95 40.0 0.75 1. 60



APPENDIX C

IHPORTANT MATRICES

Ue had to 9olve several times the problem of finding the matrix 

representing a change of primaries, the standard primaries being 

defined by the CIE X, V, Z tristimulus values. This situation is 

depicted on figures C.l and C.2 -

C O N E S  

O U T P U T S

C . l U

P H O S P H O R S

P R I M A R I E S

Fig. C.1-Computation of the U, matrix from matrices E t and D 4. 

uhere the reference white w, = [1,1.051,1.144]* is the D6500 whit<

C; I

C O N E S

O U T P U T S

U.

F I L T E R S

P R I M A R I E S

F i g .  C . 2 -  C o m p u t a t i o n  o f  t h e  U2 m a t r i x  f rom m a t r i c e s  E2 a n d  Dz.
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where the reference  white w2 = [1 ,1 .0 1 9 ,1 .1 7 4 ]x i s  the CIE 

i l lu m in an t  C.

Thus ue have Ui-EiD̂ '1 ( i - 1 , 2 ) .  and Et are normalized so that:

and

EiU*

I  -  D*Ui

(i-1,2)

(i-1,2)

(C . la )

(C . lb )

, stem from E'* given by S

’ SSI 12S0 -112

E*‘ - -438 1S20 123

.708 0 417

. S28 .343 .155

Fr1 - .345 .585 .066

.027 .072 .779

(C. 2)

□4 stems from Ft such that F /1 has for column v e c t o r s  the  

chrom at ic i ty  coordinates  x, y, z of the phosphors l i g h t s

(C.3)

in the same way D, stems from Fz such that F2-‘ has for column

v e c t o r s  the chromatic ity  coordinates  x, y, z of the l i g h t  coming

through the Uratten f i l t e r s  25, 58 and 47B when i l lu m in a ted  by the  

CIE i l luminant  C

(C.4)

The normalization procedure goes as fo llows for E4 as  an example.  

Let us rewrite  E*‘ as

E -1 - E?i.?,.?,]

where fi  ( i - 1 , 2 , 3) i s  the i  th column vector .  Then Ej*1 i e  o f  the  

form

.6808 .2425 .1579

Fz“ - .3190 .6923 .0187

.0002 .0652 .8234



0 0 *,j

and Xlf \  are three parameters. Then equation (

where

' \  0 0

0 X, 0

a s

thus

or

Ut  -  E i ‘‘t  -  £**> t

[XjjXj.Xg]'  ■ e UJi 

Matrices  Dlt Ez, Dz are computed exact ly  the same way, 

has:

U»

.2457 .5840 . .0703

.1101 .7625 .1273

.0132 .0842 .9026

.3534 .6102 .0264

.1245 .8138 .0616

. 0009 .0602 .9389

U2 -

Another important matrix i s  the matrix which achieves  

of  b r ig h tn e ss  and chromatic information

aa a(3 ar

-u, 0

0 -u

where a-22.6, Ut-64 and u,=10.

.la) rewrites

One f i n a l l y

the s e p a r a t io n



APPENDIX D

Uo saw in chapter 4 what the non I i near i t i ea involved in the 

input process were and hou they had been compensated for. The 

output process could be two things: either display the image on the 

face of a television monitor (chapter 3) or display the image row by 

row on the face of a CRT which was used to expose a piece of color 

f i I in .

In the first case the calibration procedure consisted in two 

s t e p s # First the white (corresponding to equal drive signals on the 

three guns) was precisely adjusted to D6533 using a split-field 

color coiiipara tor. Then the nonlinear! ty of the tube was estimated 

in the following way. A digital step-wedge pattern consisting of 

density steps between 2.5 and 8 by steps of .5 (thus corresponding 

to digital intensities between 2T2.5 and 2'i'8 by steps of 2T. 5) was 

displayed on the face of the television monitor and the luminance of 

every step was measured with a Tektronix JIG photometer connected to 

a JG503 luminance probe. The graph Iuminance/intensity turned out 

to be an exact straight line of slope 2.5 on a Log-Log scale thus 

indicating a gamma of 2.5 for the tube. This was compensated for by 

table lookup in the Comtal before conversion through the 8-bit DACS.

In the second case the method was pretty much the same except 

for the complication introduced by the film. A step-wedge p a ttern

CALIBRATION PROCEDURES



was used to expose a piece of color film through three filters. The 

film was then processed and the negative printed for an exact 

donsitometric grey on the fifth step. The 0-LogE curves were then 

measured for the three colors red, green and fcHue. A typical set of 

cuch curves is shown in figure 0.1. The correspond i ng

non linear i t i es (CRT and film) were again compensated for by table 

lookup before conversion through the 11-bit DAC. Examples of an 

uncompensated and properly compensated color-wedge are shown in 

figure 0.2. For the compensated one, the three D-LogE curves are 

straight lines of slope 1, thus guaranteeing that photographic 

intensities correspond closely to digital intensities.

The procedure for printing on photographic paper the images 

c.hown in this report was then the following. Every time we e x p o s e d  

color film on the CRT, we also exposed a piece of film with a wedge. 

The fi I ms were then developed. The wedge was printed for a grey so 

that the three Q-LogE curves were straight lines of slope 1. Then 

the whole batch of negatives was printed exactly the same way as the 

wedge thus reducing to a minimum distortions introduced by film 

processing in the photo-lab. ‘

1 0 5



Digital intensities

Fig.  D. l -  D-LogE curves  measured from an uncompensated 
co l or  stepwedge.



The experiment was intended to test the.. linearity of spatial 

noural interaction in the chromaticity channels C t and C* and answer 

thrj question of whether this interaction was character i zed by an 

attenuation of low spatial frequencies. Ue excited one channel at a 

tinio with a pure chromatic pattern of the form

Ci - ct + k4 (sin(2nfx) + asin(6nfx)) (E.la)

C 7 - c7 (E. lb)

and •

C, - c, (E. lc)

, C-, ~ c-, + k, (s i n (2nf x) + as i n {Sitf x) ) (E.ld)

following the method pioneered by Baudelaire. The brightness 

channel was constant in both cases (A=a). The values of parameters 

u t and u, controlled the position of the average point in the 

(Ci,C?) plane (see figure). After mapping through the inverse of 

the model of figure 2.3, that is to say through fo M o w e d  by 

exponent i at i on on each component and U'1, those patterns were 

tiro'r.rjnted to a set of five observers of both sexes on the face of a 

COMTAL whore they sustained a field of view of 7 degrees. .

Ue experimented with four spatial frequencies 

ft =» 0.142 eye I es/degree 

f-, - 0.284 cycles/degree

APPENDIX E
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f„ - 0.563 cycles/degree 

f* - 1.136 cycles/degree

In all cases, all subjects declared that the brightness was 

uniform accross the pattern thus indicating that the brightness 

do fined by the model is in good agreement with perceptual 

br i gh tness.

Two central bands whose subjective appearance is controlled by 

oimultaneous color contrast were indicated by markers. The subjects 

worn asked to focus their gaze at the center of the pattern and 

immediately report verbally their judgement by one of the following 

an&werst

R (right): The band to the right is redder 

L (left): The band to the left is redder 

S (same): The two bands are the same color 

for the C 4-channeI and

R (right): The band to the right is yellower 

L (left): The band to the left is yellower 

S (same): The two bands are the same color ■

for the C,-channel.

For each spatial frequency and every channel, the parameter a 

was varied from 1 to .1 by steps of .1. The contrast was kept 

constant by adjusting the parameter k in equations (E.la) and 

(E.ld). For a-1 a strong simultaneous color contrast illusion was 

produced except for frequency ffc in the C?-channe I . For a=.l, the 

fnet varying component disappears completely in equations (E.la) and 

(E.ld), thus producing what may be called an over-compensation of 

the color illusion. The idea of the experiment is to estimate the



intermediate value of oc which produces target bands of same color. 

This value of a is then considered as indicating the value of the 

relative amplification of frequencies f and 3f for the particular 

chromatic channel tested. Each set of ten stimuli was shown twice 

to every subject, the order in the set being reversed from one 

presentation to the next.

E . 2 The resuIts

The values c/t (i —1,2) for which the target bands appear to be 

the same color are defined as the point of subjective equality (PSE) 

for the i th channel. For every channel, every observer and every 

fraquency, the parameter was estimated by taking the average of 

the two presentations. For each presentation, the PSE was taken as 

the mean of the transition values T* and T* of ct;, where the 

subjective judgement switched from R to S and from S to L 

respectively, as shown on the following example based on the typical 

data of table 1:

average of T* » <T*v = 0.50 

average of T* * <T’> = 0,43

interval of uncertainty IU » <T*> - <T'> = 0.10 

point of subjective equality PSE = (<T*> + <T'>)/2 - 0.45 

Tables 2 and 3 contain the experimental results for the Cj-channel, 

tables 4 and 5 contain the experimentaI results for the C 7- c h a n n e I . 

Uo averaged these results over the five subjects and obtained the 

following means and standard-deviations



mean 0.50 0.54 0.50 0.49

s.dev. 0.05 0.04 0.05 0.11

interval of uncertainty 

frequency 

mean 

s.dev.

C 7-channeI :

point of subjective equality

frequency ft f2 fa 

mean 0.S1 0.59 0.63

s.dev 0.35 0.12 0.12

Interval of uncertainty

frequency fl f? . f-3 .

' mean 0.13 0.14 0.10

s.dev. 0.35 0.04 0.03

E. 3  Conclusions

Ue concluded from these experimental results that the point of 

E.ubjcctive equality was about constant over the range of frequencies 

studied, equal to 0.50 for the Cj-channel and 0.60 for the 

C ?-channel. The yellow-blue channel has a lower contrast

oancitivity than the red-green channel combined with a lower visual 

acui ty.

C j - c h a n n e  I :

p o i n t  o f  s u b j e c t i v e  e q u a l i t y

f r e q u e n c y  f ? f a f t

U  U  f. u

0.13 0.16 0.14 0.15 

0.05 0.06 0.05 0.09



Indeed, the results for frequency ft are not shown for this 

channel because the illusion was seen in reverse by four out of the 

five observers and seen much weaker by the fifth one. As we 

montioned in chapter 3, we used this fact to estimate the position 

of the peak frequency of the frequency response H2.
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a

TABLE E.l 

TYPICAL RESULTS FOR ONE SET 

OF STIMULI FOR THE C.-CHANNEL

Presentat i ons

1 R R

0.9 R R

0.8 R R

0.7 R R

0. G S S

0.5 S S

0.4 L S

0.3 L L

0.2 L L

0.1 L L

T*

T"

.55 .55 

.45 .35
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TABLE E.2 

POINT OF SUBJECTIVE EQUALITY 

(^-CHANNEL)

Frequenc i es

f. U f 3 h

Subject 1 .450 .525 .500 .500

Sub j ec t 2 .575 .575 .575 . 530

Subject 3 .525 .500 .525 .500

Subject 4 .500 . 500 .475 .475

Subject 5 .450 .500 .425 .300

TABLE E.3

INTERVAL OF UNCERTAINTY 

(C,-CHANNEL)

Frequenc i es

f. f, U U

Eiul'j j ec t 1 .100 .250 .200 .200

Sub j ec t 2 .150 .150 .150 0

Sub j ec t 3 .050 . .100 .050 .200

Sub j ec t 4 .150 .100 .150 .250

Subject 5 .200 .200 .150 .100
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POINT OF SUBJECTIVE EQUALITY 

(C?-CHANNEL)

Frequenc ies

TABLE E . 4

f, f*

Sub j ec t 1 . £25 .675 .675

Sub j ec t 2 .550 .400 .500

Sub j ec t 3 .053 .675 .803

Subject 4 . S75 .700 .703

Subject 5 . 550 .530 .475

TABLE E.5

INTERVAL OF UNCERTAINTY 

(Cj-CHANNEL)

Frequenc i es

f, f*

Sub j t i c  t 1 .050 .150 .150

Subj oc t 2 .100 .233 .103

Subject 3 .103 .150 .103

Subject 4 .053 .100 .130

Subject 5 .203 .130 .150
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