
MODULAR RADIANCE TRANSFER

by

Bradford J Loos

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computing

School of Computing

The University of Utah

May 2015

Copyright © Bradford J Loos 2015

All Rights Reserved

T h e U n iv e r s i t y o f U t a h G r a d u a t e S c h o o l

STATEMENT OF DISSERTATION APPROVAL

The dissertation of B radford J L oos

has been approved by the following supervisory committee members:

P eter-P ike Sloan

C harles H ansen

A d a m B argteil

P eter Shirley

C em Yuksel

Co-Chair

Co-Chair

Member

Member

Member

1 1 /2 5 /2 0 1 4

Date Approved

1 1 /2 5 /2 0 1 4

Date Approved

1 1 /2 5 /2 0 1 4

Date Approved

1 1 /2 5 /2 0 1 4

Date Approved

1 1 /2 5 /2 0 1 4

Date Approved

and by R oss W hitaker Chair /Dean of

the Department/College/School of C om pu tin g

and by David B. Kieda, Dean of The Graduate School.

ABSTRACT

Real-time global illumination is the next frontier in real-time rendering. In an attempt

to generate realistic images, games have followed the film industry into physically based

shading and will soon begin integrating global illumination techniques. Traditional methods

require too much memory and too much time to compute for real-time use. With Modular

and Delta Radiance Transfer we precompute a scene-independent, low-frequency basis that

allows us to calculate complex indirect lighting calculations in a much lower dimensional

subspace with a reduced memory footprint and real-time execution. The results are then

applied as a light map on many different scenes. To improve the low frequency results, we

also introduce a novel screen space ambient occlusion technique that allows us to generate a

smoother result with fewer samples. These three techniques, low and high frequency used

together, provide a viable indirect lighting solution that can be run in milliseconds on today's

hardware, providing a useful new technique for indirect lighting in real-time graphics.

CONTENTS

A B S T R A C T .. iii

A C K N O W L E D G M E N T S .. vi

C H A P T E R S

1......IN T R O D U C T I O N ... 1

2. B A C K G R O U N D .. 3
2.1 Radiom etry.. 3
2.2 The Rendering Equation... 5
2.3 The First Global Illumination M eth od .. 6
2.4 Traditional Global Illumination M eth ods... 7
2.5 Real-Time Global Illumination.. 9
2.6 Issues .. 16

3. M O D U L A R R A D IA N C E T R A N S F E R ... 17
3.1 Introduction .. 17
3.2 Preliminaries .. 19
3.3 Reduced Direct-to-Indirect Transfer .. 21
3.4 Direct-to-Indirect Transfer Between Shapes .. 23
3.5 Direct-to-Indirect Transfer on Real Scenes ... 25
3.6 Implementation and R esu lts.. 28
3.7 Discussion ... 34

4. M R T R U N T IM E IM P L E M E N T A T IO N ... 38
4.1 U Basis Functions... 38
4.2 Interface Functions... 40
4.3 Mapping MRT to L evels... 43
4.4 b-coefficients.. 44
4.5 r-coefficients .. 46
4.6 Lightmap Padding ... 48
4.7 Results .. 48

5. D E LTA R A D IA N C E T R A N S F E R ... 50
5.1 Introduction .. 50
5.2 Background - Modular Radiance Transport.. 52
5.3 Indirect Occlusions and Interreflections ... 55
5.4 Implementation Details... 59
5.5 D iscussion... 62

6. V O L U M E T R IC O B S C U R A N C E ... 63
6.1 Introduction .. 63
6.2 Obscurance and Ambient O cclusion .. 64
6.3 Volumetric Obscurance... 65
6.4 Results.. 70

7. F U T U R E W O R K .. 72
7.1 Modeling T o o ls .. 72
7.2 Directability .. 72
7.3 Real-time AO and Global Illumination.. 73
7.4 High Frequency Indirect L ighting... 73

8. C O N C L U S IO N .. 74

A P P E N D IC E S

A . B A SIS E N R I C H M E N T ... 76

B. Q U A D R A T IC SH T O H E M IS P H E R IC A L L IN E A R S H 78

R E F E R E N C E S ... 79

v

ACKNOWLEDGMENTS

There are many people I’d like to thank for helping me in my long journey to this point.

Kathy Loos, who always strove to introduce me to new technology as it came out, from

our first VCR to our first Macintosh.

Brandon Anderson, who explained to me why DB2 was different than actually program

ming a computer, resulting in my first programming class.

Craig Snow, for introducing me to a debugger, and many, many conversations on software

engineering practice over the years.

Pete Shirley, who, many years before I started my graduate studies, introduced me to

the idea of research programming and graphics research in general.

And last, but not least, my advisor Peter-Pike Sloan, whose tireless dedication to the

field has given me limitless sources of inspiration and without whom, this work would have

never come to fruition.

CHAPTER 1

INTRODUCTION

Indirection illumination is a highly desirable feature of realism in computer generated

imagery. However, its global nature makes it difficult to compute in real-time. Despite the

difficulty, many games are currently attempting to produce global illumination solutions

using varying techniques. Most are simple techniques, unlike the fully dynamic systems

talked about in academia. Games generally use precomputed global illumination stored in

light maps (otherwise known as static baked global lighting) or ambient occlusion as well as

placing nonshadowing static lights to fill in areas of shadow.

In live-action films, reflectors and bounce cards are used to reflect additional light back

into the scene. These planes and simple shapes only approximate indirect light from geometry

in the real-world, but offer a high level of control that allow directors of photography to

produce desired results. In digital film production, simple-shaped lights are commonly

used to allow artists to quickly iterate and achieve a desired look. The ease-of-use and

controllability of these approximations outweighs their physically incorrect nature.

We believe that by following this insight we have created a new, simple, global illumination

method that could be applied to current games, where global illumination is to be decomposed

and calculated on simple shapes and then reconstructed to generate pleasing visual results.

We have developed a technique that creates a set of bases in which we calculate indirect

lighting. Our approach is very efficient and uses very little data and a quick, one-time,

scene-independent precomputation step. It also allows real-time computation of approximate

indirect light and is designed with rapid iteration of light design in mind. We precompute light

transport operators (LTOs) for a handful of simple canonical “shapes,” then interactively

warp and combine these shapes, along with their LTOs, to more complex geometry. These

shape proxies are used to model direct-to-indirect transport, which is then applied as a light

map to the actual scene geometry. The flow o f indirect light between shapes is modeled

with lightfields, and all computations are performed in very low-dimensional subspaces

(Chapter 3: Modular Radiance Transfer). We generate another set of LTOs to capture the

2

finer details onto, off of, and blocked by objects within our dictionary (Chapter 5: Delta

Radiance Transfer). To improve the visual results o f these low-frequency calculations we

also introduce a novel screen space ambient occlusion method called Volumetric Obscurance

(Chapter 6) that, when paired with MRT and DRT, generates visually plausible, real-time

(on the order of milliseconds) indirect illumination.

Modular Radiance Transfer (MRT), Delta Radiance Transfer (DRT), and Volumetric

Obscurance (VO) result in plausible, dynamic global-illumination effects, rendering at high

frame rates with low memory overhead. Our methods have been shown to scale from high-end

to mobile platforms and, like precomputed radiance transfer (PRT), provide smooth results

that respond to dynamic changes in lighting.

CHAPTER 2

BACKGROUND

One o f the driving forces in computer graphics has been an attempt to generate

photorealistic images. While there are many different aspects that are required to generate

photorealistic images, we are mostly concerned with research in realistic lighting. While the

physics - at least at the geometric optics level - are well understood, solving the equations

for complicated scenes requires a large amount of processing power. Due to this, many

researchers have attempted to generate new methods that approximate the physical solutions.

To generate an image with realistic lighting we must begin with the physics of light,

using radiometry. Radiometry is a set of techniques in optics to measure electromagnetic

radiation.

The basic unit of radiometry is the photon. The photon is a small, indivisible unit of

energy defined based on the wavelength of the light:

hc
eA = y I2.1)

where A is the particular wavelength, h k 6.63 ■ 10-34 J ■ s is the Planck constant, and c is

the speed of light in a vacuum (defined to be 299,792,458 ms).

The next term to define is spectral radiant energy for a specific wavelength, which is

defined as the number of photons times the energy contained in each one.

In computer graphics, we are concerned with all visible wavelengths of light (roughly 400nm

to 700nm), which means we need to integrate over all visible wavelengths:

2.1 Radiometry

(2.2)

'700nm
Q\dA (2.3)

A=400nm

4

Traditionally, lighting is calculated three times, once each for red, green, and blue. This is

mostly due to the fact that traditional output devices use these three colors as primaries.

This breakdown is also similar to the long, medium, and short cones in the human eye.

The next term that is defined in radiometry is Radiant Flux, the change in radiant energy

per unit time:

$ = dQ (2.4)
dt

which is often just called flux.

Radiometry also defines radiant flux area density as the differential flux on surface per

differential area:

E (x) = dA (25)

This equation is used to define two quantities, radiant exitance and irradiance. Radiant

exitance is the amount of light leaving a differential area o f a surface in all directions

(also known as Radiosity B § 2.4.2), while irradiance is defined as the amount o f flux per

differential area impinging on the surface from all angles.

The measure of flux coming from a single direction (w) is called the radiant intensity

dW
1 (w) = dw (2-6)

where unit direction is measured in units of steradians, an SI unit used to measure solid

angle defined as the surface of the unit sphere in which we are interested.

If we measure the flux coming from a single direction over a small differential area, this

is known as the radiance at a given point on the surface. Mathematically, radiance leaving

point x in direction w (L (x,w)) is defined as

d2$
L (x ,w)= d , ^ (2.7)cosddAdw

Radiance is arguably the most important quantity in global illumination since it most closely

represents the color of an object [1]. It defines the photons coming off a given surface point

leaving in a given direction. These photons activate receptors in the eye, allowing us to see

images in our environment. Radiance is the value that we compute when generating light

transport between surfaces in a vacuum.

When photons hit a surface, they are either scattered or absorbed. The number of photons

that are reflected is based on different characteristics of the surface. The relationship between

incoming irradiance and outgoing radiance at a surface point is defined to be the Bidirectional

Reflectance Distribution Function (BRDF). Introduced by Nicodemus et al. [2], this allows

us to define radiance leaving a surface (Lr) in a slightly different fashion:

5

dLr (x,Uo) dLr (x,Uo)
fr (x, Ui, Wo) = ""Tjrw-------v = T 7 -------u --------^ T " (2.8)dEi(x,Wi) Li(x,Wi)(ui ■ n)dwi

When we rearrange this function to solve for the radiance leaving the surface, we get

Lr(x ,w)= / f r (x,Wi,Uo)Li(x,Ui)(ui ■ n)dui (2.9)
Jn,

When we add the light emitted from the point x , this rearrangement gives us what is

generally known as the rendering equation

2.2 The Rendering Equation
While there are many different formulations of the rendering equation, in this work we

are concerned with the vacuum, time-invariant, gray radiance equation, or VTIGRE [3].

The VTIGRE version of the rendering equation was originally introduced to computer

graphics by Kajiya [4] and was defined as

I (x, x ') = g(x, xr) e(x ,x ') + / p (x ,x ',x ")I(x ',x ")d xh
JS

(2.10)

where

I(x ,x ') is related to the intensity of light passing from point x' to x
g(x,x') is a ’’geometry” term
e(x, x ') is related to the intensity of emitted light from x ' to x

p(x,x',x'') ratio of light scattered from x" to x by a patch of surface at x'

This equation took inspiration from contemporary radiosity research and integrates over

all surfaces in the scene (S). In this formulation, g(x,x') is needed to define which surfaces

can see each other.

When we rewrite Kajiya’s formula using the derivation of BRDF from Section 2.1 we

end up with

Lr(x,Uo) = Le(x ,U o)+ fr(x, Ui, Uo)Li(x, Wi)(ui ■ n)dui (2.11)
J n,-

where

L(x, uo) The outgoing radiance at point x in the direction uo
Le(x ,uo) The emitted light from point x in the direction uo

Qi The full hemisphere of directions above the point x
fr(x ,u i,u o) Percentage of light coming from direction u-i reflected in direction uo

Li(x ,ui) The amount of light impinging on point x from direction ui
(ui ■ n) The cosine term attenuating the light based on the surface normal

While they may look superficially different, the two equations are in fact very similar. In

the more recent formulation, the geometry function g(x, x'') is taken care of implicitly due

6

to the integration over the hemisphere at point x. Directions that would be canceled out

due to g in Kajiya’s equation are now canceled out due to Lj(x, w) = 0 for the directions in

question.

The main difficulty in solving this equation is due to its recursive nature. When integrating

over the hemisphere at any point x, the value Li(x,wi) for almost any direction is equal

to another integration L(y,w i). For diffuse surfaces the number of photons spread in any

particular direction decreases with every bounce, meaning only a few bounces need to be

calculated to generate a good approximation. Specular surfaces, by definition, reflect most

photons in a very similar direction meaning that we need many levels to generate a good

approximation.

2.3 The First Global Illumination Method
Until recently, solving equation 2.11 in real-time was not feasible, and therefore many

simplifications were used in attempt to approximate the result.

In the late 60s and early 70s, several students at the University o f Utah - under the

direction of Dr. David C. Evans - investigated simplifying the rendering equation from an

integral over all directions to a sum over all lights.

L(x) = £ Sp (2.12)
lights

where I is the intensity of the light that is then scaled by the shading at Sp that changes at

every point on the object. The value Sp was defined in different ways by a few individuals.

Romney [5] gave the first definition where

cos2d
Sp = * normalization factor (2.13)

where cosd is a measure of the orientation of a polygon and R is a measure of the distance

to the polygon. Warnock gave a slightly different approximation [6] defining both a diffuse

and specular component

i cosd | cosmd
Sp = 1 1 +------^— 6 < m < 10 (2.14)

R R

for each of the three basic color components (R, G, and B).

Newell et al. [7] in their work on transparent materials were the first to add an ambient

term to their shading parameter:

Sp = r * cosn(a) + b (2.15)

where

7

r The desired intensity range
cosn A function that defines diffuse (n = 1) or specular (n > 1) shading

a Some measure of the angle between the incident light and the face normal
b The ambient level of lighting

This ambient level b, whether knowingly or not, was an attempt to add more of the

directions from (2.11) into the integral. By approximating the indirect lighting with a

constant value, Newell et al. were the first to include a global illumination value into their

renderings.

2.4 Traditional Global Illumination Methods
While the first attempts at solving light transport did attempt to include an approximation

of global illumination with ambient lighting, it was a crude - although computationally

inexpensive - attempt.

To improve the visuals of synthetic images, many researchers attempted to generate

novel methods to solve the actual rendering equation, including both direct and indirect

illumination in their results. The three main branches of research that emerged were ray

tracing, radiosity, and photon mapping.

2 .4 .1 R a y T ra c in g

Ray tracing was introduced in computer graphics in 1979 by Whitted [8]. The basic idea

was to create a “tree” of rays extending from the viewer out into the scene. When these

rays encounter their first surface, they reflect back into the scene, allowing us to compute

shadows, antialiasing, transparency, and lighting.

Ray tracing enabled the computation of many effects that would be otherwise complicated

to reproduce. Distributed ray tracing by Cook et al. [9] allowed for fuzzy reflection;

bidirectional path tracing [10] improved lighting convergence by connecting a set of rays

both from the viewer and from the lights in the scene, while Metropolis Light transport [11]

helps to find the most important samples in the image to ensure that all lighting sources are

taken into account.

While hardware speeds have improved over the years, ray tracing is still limited by its

acceleration structure. This structure is used to cull portions of the scene that are not

required to render the current viewpoint. Building these structures is complex and time

consuming. To use ray tracing in real time, the time required to build these acceleration

structures will need to be reduced so that they can be built as a fractional part of a normal

33ms frame.

8

2 .4 .2 R a d io s ity

Radiosity is another method to calculate global illumintion by solving a set of linear

equations relating visibility between surfaces patches in the scene. Introduced by Goral et al.

[12], it works very well for diffuse global illumination and inspires our work in this thesis.

The process to calculate radiosity uses the following equation for each surface in the

scene:

Bj = Ej + pj'ENL1B iFij forj = 1, N (2.16)

where

Bj radiosity of surface j (watts/meter2)
Ej rate of direct energy emission from surface j (watts/meter2)
pj reflectivity of the surface j (similar to BRDF)
B i radiosity of surface i (watts/meter2)
Fij Form factor between surfaces i and j representing visibility between the surfaces

With one of these equations for every surface in the scene we have a linear system of N

equations with N unknown B j values. By defining some of the surfaces as emissive lights

Ej > 0 the indirect lighting on all surfaces can be determined.

While the method has been extended for specular and translucent surfaces [13], it is

much more complex than using ray-tracing techniques for the same purpose. This could be

why much radiosity research declined in the mid-1990s.

For real-time dynamic scenes generating new form factors, every frame can be very

problematic. Also, solving a linear system every frame for complicated scenes becomes too

time consuming.

2 .4 .3 P h o to n M a p p in g

The last of the large branches of global illumination research is photon mapping [1].

Photon mapping uses a map of photons, which are later sampled to generate indirect

illumination at different points in the scene. The photons originate at emissive surfaces like

lights, and rebound off other surfaces. Diffuse surfaces generate photons in many directions,

while specular surfaces have preferential directions, in which to send photons.

In recent literature [14], photon mapping has been shown to be a variant of bidirectional

path tracing (see Section 2.4.1). Therefore, while it was a separate branch of research for

many years, when attempting to use it in real-time graphics it runs into similar problems as

ray tracing.

9

2.5 Real-Time Global Illumination
While hardware continues to increase in computational power and complexity there

has been much research into other methods that improve on the Newell’s simple ambient

coefficient as well as attempting to simplify the more traditional global illumination techniques

we have talked about so far.

In section 2.5.1 we discuss techniques that attempt to improve Newell’s ambient term or

Kajiya’s geometric term by blocking some of the light that reaches each surface, creating

greater contrast and a better image.

We then move on to more generic global illumination solutions that attempt to solve the

entire rendering equation (2.11) for directions other than those pointing directly to lights,

otherwise known as indirect illumination. Most of these techniques are not as physically

correct as the traditional methods; however, for what they lack in physical correctness, they

attempt to make up in speed. In section 2.5.2 we discuss techniques inspired by ray tracing

and in section 2.5.3 techniques that draw inspiration from radiosity.

We conclude in section 2.5.4 with techniques that do not neatly fit into either camp.

From new basis functions to attempts to add variation to the global illumination signal and

generate more plausible visible images without resorting to traditional global illumination

techniques.

2 .5 .1 O b s c u ra n ce an d A m b ie n t O cc lu s io n

Obscurance [15] and Ambient Occlusion (AO) [16] both model a visibility term for

constant illumination. Accessibility [17] is a related technique, where the scene is colored

based on the radius of the largest sphere that can touch a given point. While AO only

accurately models the shadowing of ambient light, Precomputed Radiance Transfer (PRT)

[18, 19] can extend this to more general lighting environments, but requires a precomputation

and is only practical for very smooth lighting represented using spherical harmonics. Several

recent papers [20, 21] have shown techniques that enable soft shadows from distant low

frequency lights for dynamic scenes by approximating objects in the scene using a moderate

number of spheres.

For dynamic scenes, several approaches have been taken to generate AO. Bunnell [22]

approximated faces as discs and used techniques from hierarchal radiosity to solve for an

AO-like quantity. Multiple iterations of Bunnell’ s technique simulate indirect lighting, but

may have problems scaling to complex scenes. Another approach is to define the Ambient

Occlusion from an object to any point in space efficiently [23, 24]; this can be problematic

for small objects and makes it difficult to reason about combining independent objects.

10

Concurrent with our work, McGuire [25] analytically computed the AO contribution for

polygons in the scene. An approach tailored for characters is to precompute a model of the

AO on the character and ground as a function of the joint angles [26, 27], but this does not

address how to combine the AO from disjoint characters or objects.

The approaches most closely related to ours work in screen space and use the depth

buffer to compute AO [24, 28, 29, 30]. Concurrently to our work a similar technique was

proposed [31] that includes a novel method to incorporate the effects o f the normal. One

benefit of these approaches is that execution is independent of scene complexity, depending

solely on display resolution. Two techniques [24, 30] are close to the traditional formulation,

scanning the frame buffer in the neighborhood of a point. Other techniques [28, 29] have

a more volumetric feel, but no formal mathematical model; these are the closest to our

technique. All of these approaches suffer from undersampling the scene, resorting to working

at a reduced resolution, randomizing the samples, and then blurring the scene [28, 29, 30] to

maintain performance. Our line sampling approach computes the integral more analytically

at a set of 2D points but still sometimes requires an edge aware blur. A related technique

[32] reprojects previous frames’ AO estimates [33] and blends them with the current frame.

Another approach that gives similar results is to use unsharp masking on the depth buffer

[34], to enhance some property of the image. Our approach is closer to ambient occlusion

because the radius of the effect is fixed in object space. To mimic this behavior using filtering

of the depth buffer would require a more complex spatially varying blur function. Our

technique can be used to create more stylized imagery as well, for example higher weight

lines at boundaries of objects as used in technical illustration [35]. But the primary focus is

closer to how ambient occlusion is used in film and games.

Variance Shadow maps [36, 37] use a statistical model of depth, but for the purpose

of computing soft shadows. Our area sampling technique for volumetric obscurance uses

a similar statistical model, but the query is much more involved. A similar method was

described in [38].

A recent paper [39] uses a technique similar to screen-space ambient occlusion (SSAO) to

approximate indirect lighting along with a directional model of visibility. While the results

are visually pleasing, the technique appears to be far too costly for current game consoles

and is still based on point queries of the depth buffer. It would be interesting to try and

extend this work using line or area sampling.

11

2 .5 .2 R a y -T ra c in g -B a s e d G lo b a l I llu m in a tio n T ech n iq u es

One of the main issues with calculating global illumination in real time is the size of the

problem. To generate realistic results many rays and intersections are required, which is the

main portion of the calculation. To alleviate this problem, many techniques have attempted

to approximate the traditional solution in such a manner that they can be used in real time.

2 .5 .2 .1 R e a l T im e R a y T ra cin g

One attempt is simply to increase the speed of traditional methods. Known as real time

ray tracing, there are many of these approaches that have gained popularity. Some of these

methods pay close attention to the allocation of resources [40]. Others attempt to package

rays together [41] so as to reduce the number of intersections required.

Others attempt to map traditional algorithms to the GPU [42]. Improvements on these

methods [43] attempt to use GPU-based ray tracing and approximate yet further by sorting

the ray-traced data using k-means to cluster the data making resampling simpler and faster.

There are also attempts [44] to generate dynamic acceleration structures so as to be able

to use real-time ray tracing in a video game context.

The main problem is that while real time ray tracing has become much faster than the

original CPU algorithm, the scalability and the high-performance requirements of interactive

gaming engines still preclude the widespread adoption of this technology.

2 .5 .2 .2 In sta n t R a d io s ity

Another popular method of generating real-time indirect illumination are instant radiosity

approaches [45], which trace and deposit virtual light points (VPLs) in a scene and

then compute direct lighting from them to approximate diffuse, and sometimes specular,

interreflections.

This technique was improved upon with Reflective Shadow Maps [46] (RSM). Instead

of storing particle lights around the scene, they use a shadow map technique that stores

position, normals, and color. This set of data is then used to generate lighting information.

RSMs have also been used in deferred lighting scenarios [47]. To do this, RSM position

data are used as the center of a projected ellipsoid, which is then associated with the other

lighting information and used to light data stored in the deferred lighting buffers.

One of the main drawbacks of instant radiosity up to this point was the lack of shadows.

Imperfect Shadow Maps [48] were an attempt to ameliorate this problem. By storing a

point sampled representation of the scene, the points can be splatted into many tiny shadow

maps. Even though these shadow maps have many artifacts, they are used on low powered

12

lights, which causes the artifacts to be much less visible. This allows artists to use VPLs for

indirect lighting as well as shadowing.

While these techniques can and have been used in real time, they can be problematic

on low-end graphics platforms such as the iPhone and iPad, where evaluating a single

unshadowed point light takes at least 25 ms, precluding the feasibility of VPL techniques.

2 .5 .2 .3 P ro x ie s

Instead of simplifying the lighting, other techniques attempt to simplify the visibility

computation by generating simple proxies for objects in the scene, which results in simplified

visibility.

In Image Based Proxy Illumination [21] proxy spheres are used for all objects in the

scene. These spheres are used to block environment lighting, approximating low frequency

indirect lighting from the environment. Spherical proxies can also be used as lights [49].

Instead of blocking light, the proxies are also marked as light emitters allowing for indirect

lighting effects such as color bleeding.

2 .5 .2 .4 S p h erica l H a rm o n ics

Instead of spheres, spherical harmonics (SH) can be used to simplify lighting and visibility

equations. Spherical harmonics is a different basis defined over the surface of a sphere. This

allows us to encode directions on the sphere using only a set of coefficients. SH has been

used in many real-time indirect lighting techniques.

Precomputed Radiance Transfer (PRT) [18] was one of the first techniques used to apply

spherical harmonics to real-time lighting. Using a long preprocessing step, the amount of

lighting received at every vertex is stored as a set of SH coefficients that are then used at

runtime to modulate the changing environment light.

PRT has been modified in many ways [19, 50] to compute shading response to basis

illumination, capturing soft shadows, indirect light and caustics for static geometry. However,

extensions to local lighting [51] require lengthy preprocessing and large amounts of data, as

well as being scene dependent.

Spherical harmonic exponentiation [20] defines blocker geometry as spherical harmonic

coefficients. These allow more complicated visibility functions but still can be simply

combined using spherical harmonic exponentiation.

A more recent technique, Light Propagation Volumes (LPVs) [52], augment VPL

approaches with a discrete, volumetric propagation phase for approximate global illumination.

By storing and propagating a linear spherical harmonics (SH) radiance distribution in a

13

volume grid encompassing the entire scene, LPVs avoid precomputation, capture indirect

shadows, and attain high-performance. However, the heavyweight nature of LPVs precludes

implementation on low-end platforms. Radiance propagation also causes energy loss, which

precludes distant light propagation; e.g., large maze examples would be challenging to render

with LPVs. This approach suffers from inherent energy dissipation and is not well-suited for

capturing distant indirect lighting and color bleeding in simple scenes can still pose problems

for this approach.

2 .5 .3 R a d io s ity B a se d G lo b a l I llu m in a tio n T ech n iq u es

Due to the complexity of running ray-tracing techniques at speeds usable for video games,

some research has been inspired by radiosity in an attempt to generate indirect illiumination

in real time.

2 .5 .3 .1 D ir e c t - to -In d ir e c t T ra n sfer

Direct-to-indirect approaches [53] map direct lighting on the surfaces of a static scene to

indirect lighting. This is similar to radiosity where each surface pixel is a small surface patch.

During precomputation, a direct-to-indirect transport operator is constructed using another

traditional method (for example, ray tracing). This operator defines how the direct light

on a surface affects indirect light on other surfaces. This allows us to calculate expensive

indirect lighting as a linear function of the direct lighting, which is easy to calculate. This

operator is stored and applied to the direct lighting, which is easily calculate at runtime.

2 .5 .3 .2 P o in t -B a s e d R a d io s ity

A recent interactive approach [54] attempts to recreate radiosity in real-time. This

technique creates a set of points that represent the geometry in the scene. It then solves the

radiosity equations using binary visibility between points in the scene. The result at each

point is mapped to the actual geometry. Since indirect lighting is low frequency, interpolating

the data from a limited point set does not create many artifacts. By solving for different

portions of the scene over different frames the technique can generate real-time radiosity for

static video game level geometry in real time.

2 .5 .3 .3 V o x e l C o n e T ra c in g

Another popular method for generating indirect illumination designed for video games is

Voxel Cone Tracing [55]. This technique rasterizes all the direct lighting information into

a regular grid. These high frequency data are then averaged and stored in an octree data

structure. This structure can then be queried quickly at runtime.

14

When the scene is being rendered, a set of cones are sent from each screen pixel. These

cones use the different levels of the octree to approximate the indirect lighting impinging on

the point in question. To generate diffuse indirect illumination, a set of five cones are sent

out in many directions over the hemisphere. For specular lighting, a single cone is sent out

in the appropriate specular direction for the material in question.

2 .5 .4 O th e r G lo b a l I llu m in a tio n T ech n iq u es

Sometimes, artists are more concerned with generating an indirect lighting result that

is plausible, but not necessarily physically correct. There are many ways outside of the

traditional techniques that this can be accomplished.

2 .5 .4 .1 S u rfa ce n orm a ls

There are many examples of adding high-frequency surface variation to smooth shading

in both direct and indirect lighting. This is a popular approach used in many games [56, 57].

2 .5 .4 .2 M o d e lin g su rfa ce ligh t v a r ia tion

There are also ways to modify the indirect surface lighting over a larger area than normal

maps typically address. Meyer and Anderson [58] perform principal component analysis

(PCA) on noisy indirect light, leveraging the low-frequency nature of color bleeding to quickly

filter out noise. Ashdown [59] also performs spectral analysis on transport operators (in a

radiosity context). Similarly, lightfields [60, 61] use response bases to propagate and couple

light flow to distant geometry.

2 .5 .4 .3 M o d e lin g v o lu m e ligh t v a r ia tion

Many times the desire is to change indirect illumination within the play space instead

of simply on the surface of objects. Irradiance volumes [62] store radiance distributions

in a volumetric grid so that, at runtime, dynamic objects can be lit by the surrounding

environment. While games have used irradiance volumes to give dynamic objects a sense of

immersion, our research introduces a method that allows dynamically generated indirect

irradiance volumes based on dynamic light transport.

2 .5 .4 .4 A n tira d ia n ce

Even with all these techniques, trying to compute accurate visibility between all the

ob jects in the scene still remains difficult. There are interactive techniques that allow indirect

lighting to be blocked in real-time. Antiradiance and implicit visibility approaches [63, 64]

iteratively compute global illumination without explicitly evaluating visibility. In order to

15

capture direct and indirect shadows, negative radiance distributions are propagated along

with standard radiance.

2 .5 .4 .5 B asis F u n ction s

While spherical harmonics are one set of basis functions that has been used with great

success for indirect lighting, that does not exclude others. The idea of using a new basis is

one of the main ideas of our research, but has also been applied in other techniques.

Stanton et al. [65] use nonpolynomial galerkin projection to simplify both fluid and

radiosity calculations. They show that surface patches can be moved in space and yet still

allow us to calculate radiosity between surfaces patches to generate indirect lighting.

Calian et al. [66] use piecewise constant basis functions over the sphere to generate real

time lighting for augmented reality applications.

There are also other, nonrendering applications to the simplification of signals to aid

in their reproduction. Antani et al. [67] use the idea of rectangular aural proxies to aid

in the location and reproduction of sounds, while Gerszewski et al. [68] apply the idea of

fluid model reduction to allow improved simulation bases and improved two-way solid fluid

coupling.

2 .5 .4 .6 S cen e s u b d iv is io n an d co u p lin g

Even with simplified approximations of indirect illumination sometimes the simulation

space is too large. To simplify the computation, many techniques attempt to split the play

space into many pieces, each of which can be solved separated and then reincorporated.

Lewis and Fournier [69] described the concept of lightfields, which could be used to pass

lighting information between areas of the scene split by portals. Similar concepts have been

used in fluid simulation [70] and off-line rendering [71].

2 .5 .4 .7 S cre e n -S p a ce A p p r o a c h e s

Instead of trying to simulate all light interactions between objects in a scene, there are

techniques that concentrate only on those effects that show up on screen. These can be

calculated in less time due to the fact that the number of calculations is constant regardless

of the number of objects that appear on screen since they are calculated per pixel.

Multiresolution splatting [72] works like deferred reflective shadow maps. However,

instead of calculating the lighting on every pixel, they begin the calculation on a very low

resolution buffer and only go to higher resolutions when the lighting is not similar enough

over the low resolution buffer sample. This technique was improved in [73] where areas of

16

discrepancy in depth, and normals were stored as stencil bits. Where the high resolution

lighting is only calculated in those areas marked by the stencil bits.

While these techniques are quick enough for real time, by ignoring any information that

is not on screen they introduce spatial and temporal artifacts and perform all computation

in high-dimensional spaces without exploiting coherence in the underlying light transport op

erators. For global illumination, screen space approaches do not meet the strict performance

constraints of modern gaming engines.

2.6 Issues
Among these approaches, simple methods such as fixed ambient lighting are easy to

author and render, but completely unrealistic. Static lighting [57, 74] has fast runtime

performance and good quality but does not easily couple with dynamic geometry and can

require hours of precomputation, hindering artist iteration. More complex high-quality

approaches, such as Instant Radiosity [45] and Light Propagation Volumes (LPVs) [52] do

not exploit low-dimensional computation and cannot scale to lower-end platforms, such

as consoles or mobile devices. In cases where console platforms are supported (e.g., [54]),

mobile platforms are not.

Techniques such as Precomputed Radiance Transfer (PRT) [18] and Screen-Space

Ambient Occlusion (SSAO) [30] do not converge to ground truth, but are among the

most used techniques in interactive graphics due to the smoothness and plausibility of their

approximations, as well as their favorable performance and memory behavior. Modular

Radiance Transfer (MRT) targets a similar brand of smooth shading approximation, responds

plausibly to dynamic lighting, has extremely high-performance (faster than direct lighting

computation), and allows fast author iteration.

CHAPTER 3

MODULAR RADIANCE TRANSFER1

3.1 Introduction
Indirect illumination increases the realism of computer generated images. The ambient

term is a simple inexpensive approximation that does not respond to dynamic lighting.

Accurate real-time techniques [45] have difficulty scaling to complex scenes and often have

significant performance requirements, particularly on modern console and mobile platforms.

Techniques that approximate different elements of indirect lighting have been extremely

successful in interactive graphics applications. Precomputation techniques used in video

games [57, 74] tend to assume static scenes and lighting, but suffer from long authoring

iteration times and memory requirements. Ambient Occlusion (AO) [15] captures only

salient shading effects. Variants of Precomputed Radiance Transfer (PRT) [18] generate soft

lighting results. These techniques are favorable compared to more accurate techniques due

to their lower storage and computation costs and the pleasing nature of their approximation.

Modular Radiance Transfer (see Figure 3.1) targets coarse-scale, distant indirect lighting

in scene geometry; responds plausibly and smoothly to dynamic lighting; has extremely

high-performance; and allows fast author iteration.

Our shapes are motivated by bounce cards used in live-action films. These planes only

approximate indirect light from geometry in the real-world but offer a high level of control

to produce the desired lighting. In digital film production, non-shadow-casting lights are

commonly used to allow artists to quickly iterate and achieve a desired look. The ease-of-use

and controllability of these approximations outweighs their physically incorrect nature.

Our approach is very efficient and uses very little data and a quick, one-time, scene-

independent precomputation step. It also allows real-time computation of approximate

indirect light and is designed with rapid iteration of light design in mind. We precompute light

1This chapter was originally published by B. Loos, L. Antani, K. Mitchell, D. Nowrouzezahrai, W. Jarosz,
and P.-P. Sloan as Modular Radiance Transfer in ACM SIGGRAPH Asia, Hong Kong, China, 2011 pp.
178:1-178:10. [Online] Available: http://doi.acm.org/10.1145/2024156.2024212 [75]

http://doi.acm.org/10.1145/2024156.2024212

18

Figure 3.1: Indirect light computed in reduced subspaces for a cave with 19 blocks and
4 lights. We derive low-dimensional transport operators, on simple proxy shapes, that are
warped and combined at runtime, at > 475 FPS on high-end GPUs and > 45 FPS on mobile
platforms, and can model indirect light at surfaces (with detailed normal variation) and
within volumes of large-scale scene geometry. The left column showing our method with the
ground truth is shown in the right column. The top row shows only indirect light while the
bottom row shows both direct and indirect lighting (both with multibounce enabled).

19

transport operators (LTOs) for a handful of simple canonical “shapes” , then interactively

warp and combine these shapes, along with their LTOs, to more complex geometry. These

shape proxies are used to model direct-to-indirect transport, which is then applied as a light

map to the actual scene geometry. The flow of indirect light between proxies is modeled

with lightfields, and all computations are performed on very low-dimensional subspaces.

MRT results in plausible, dynamic global-illumination effects, rendered at high frame rates

with low memory overhead. We design special LTOs for secondary transport effects such as

light volumes for dynamic characters and higher-order irradiance for normal mapping. We

illustrate our solution’s ability to scale from high-end to mobile platforms and, like PRT, to

provide smooth results which respond to light change.

Keeping the design goals mentioned above in mind, MRT makes the following contribu

tions:
• C om pact transport operators using a novel lighting prior: we represent direct

and indirect light in a specialized light prior basis, which enables us to build compact

and efficient LTOs to propagate multiple bounces of indirect light.

• M od u la r , scene-independent transport com pu tation : LTOs from different

canonical shapes are warped and combined, resulting in on-the-fly mapping of complex

scene geometry (and its light transport) to simpler shapes (and their LTOs).

• F lexib le and efficient im plem entation : we show that our approach runs on

low-end mobile platforms as well as high-end GPUs, all while maintaining high

performance.

3.2 Preliminaries
We adopt the following notation: italics for scalars and 3D points/vectors (e.g., w),

boldface lowercase for column vectors (e.g., l), and boldface uppercase for matrices (e.g., T).

Notation used in this chapter can be found in Table 3.1.

3 .2 .1 S ta n d a rd D ir e c t - to - In d ir e c t T ra n sfer

Suppose we choose n surface locations on the scene to sample direct light; direct-to-indirect

transfer maps direct illumination at these points to indirect lighting at these points:

lind = Fld (3.1)

where ld and lind are n-dimensional vectors of direct and indirect irradiance, and F is the

one bounce transport operator.

20

Table 3.1: Notation used in this chapter.

C om puted during precom putation then discarded:
Ld Matrix of all possible direct lighting signals.
P Light prior basis retaining kd left singular

vectors of Ld.
Limp Implicit lighting environment.

Hif Raw lightfield matrix.
Hrlf Reduced lightfield basis retaining krlf

modes of H lf.
M Light space indirect LTO.

C om puted during precom putation , used during level initialization:
R b ^ rlf Projects b ’s to rlf-space (at each dictionary

items’ interface).
R \ t / Propagates interface lightfield

(input/output are both in rlf-space).
T r l f Maps reduced lightfield values to kr surface

response modes.

C om puted during precom putation , used during runtime:
Td^b Transforms direct light (ld) to indirect light

coefficients (b).
Ub Indirect light basis after retaining kb modes.

Maps b ’s to lind.
U-b OHLSH version of U b (maps b ’s to vector

irradiance).
U bvol Maps b ’s to indirect volumetric light repre

sented in SH.
Ur Indirect lightfield response basis with kr

modes. Maps r ’s to lind.
T b^ r Maps b ’s to r ’s via lightfields of the level’s

block connectivity.

C om puted during runtime:
ld Direct lighting.
b Spectral lighting coefficients due to self

transfer (T d^ b ld).
r Lightfield response coefficients on surfaces

(Tb^r b).
lind Indirect lighting (Ub b + Ur r).

Evaluating (3.1) quickly limits runtime direct-to-indirect performance since F grows as

O(n2). Thus, we approximate F using singular value decomposition (SVD), F = U f S f V̂ F,

where Uf and V ^ are high-dimensional rotation matrices, and S f is a diagonal matrix of

singular values <Ji. Approximate indirect light can be computed by retaining the k largest

singular values, lind ~ U f S f VF ld, where U f /V ^ /S f are replaced with truncated matrices

(retaining only the top k columns/rows) U f/V F /S f .

21

3 .2 .2 O v e rv ie w

The truncated SVD of F requires large k for accurate computation of lind (see Table 3.2),

motivating a different approach. We define a novel lighting prior to compute reduced

dimensional transfer within a block (Section 3.3) and then couple the transfer between

blocks with lightfields at their mutual interface (Section 3.4). Lastly, we show how to warp

lighting from simple shapes to complex scene geometry (Section 3.5). These steps involve

several intermediate spaces for derivation, but we always perform runtime computation in

the low-dimensional spaces. The different spaces and quantities used in our derivations are

summarized in Figure 3.2.

3.3 Reduced Direct-to-Indirect Transfer
Taking the SVD of F assumes a uniform distribution of arbitrary n-dimensional direct

light patterns, explaining the slow decay of a*. In real scenes, direct light at a given point

obeys a (simplified) rendering equation and is not drawn from an arbitrary distribution. We

define a light prior over the distribution o f direct light to construct a space spanned

by physically-plausible ld. Our analysis will show that this space has dimensionality

significantly sm aller than n.

We first sample direct illumination patterns, { ld0, . . . , l dm}, in order to construct a

low-dimensional basis for plausible direct lighting. These patterns can be computed using

any approach; however, it is best to use the same direct illumination at runtime. We generate

each sample by placing a sphere light at uniform volumetric locations in our (canonical)

block shape and computing the direct lighting.

Next, we place the samples { ld0, . . . , ldm} into columns of a matrix Ld and compute its

SVD: Ld = U d X d V j . The left singular vectors yield our light prior basis: P = U d. Table

3.2 summarizes the singular value fall-off, justifying our earlier observation that physically

realizable direct light lies in a low-dimensional linear subspace: dim(Ld) ^ n. We do not

subtract the mean and compute PCA since we wish to represent lighting with arbitrary

intensities, which means all scales of input patterns should be well represented.

Table 3.2: Number of singular values to capture percentage of the energy for different
matrices (for a cube with n = 6 x 162 samples).

Matrix 80% 90% 95%

F / Ld / M 164 / 22 / 1 240 / 41 / 5 313 / 62 / 8

22

Dictionary Creation
Shapes

Lighting Prior Bases {Uh/Ur/U-jt/Ubvoi)

Level Creation
Block Map

Calculate

Runtime

b coefficients

Figure 3.2: Overview: dictionary creation precomputes light priors and bases for scene
independent shapes. Level creation maps the shapes and generates the lightfield propagation
matrix T ^ .r. At runtime, we generate b and r vectors to compute indirect light with U 5
and U , bases.

3.3.1 Light Transport in Indirect Light Space

Any plausible indirect lighting condition can be approximated as a linear combination

of indirect light due to the direct light prior basis vectors: lin(j = F P [PT la], where PT

projects la onto our light prior, resulting in scaling coefficients for indirect light induced

by the light prior basis vectors. In other words, each direct lighting (basis) pattern has a

corresponding indirect lighting (basis) pattern.

Unfortunately, this formulation does not exploit correlations in the indirect light (the

columns of F P are not independent). We aim to directly obtain an orthogonal basis for

indirect light, which accounts for our direct light prior, instead of simply reconstructing

direct light and applying the one-bounce operator to it (as described above).

We start by postmultiplying F P by the scaling matrix S = Xd, which leads to an

equivalent problem:

(3.2)lind = F P S S ' 1 PT ld

where we define the light, space indirect LTO M = F P S, which maps (scaled) direct lighting

prior coefficients (Id) to indirect light, and take its SVD: M = U m X m V ^ . Table 3.2 shows

that the SVD of M falls off much more rapidly than either F or Ld- We retain kb <C n
singular values, yielding the approximation

liind Ub T d̂ b Id = Ub b (3.3)

where T d_s.b = V l S '1 PT maps Id to spectral coefficients b, used to scale columns of

Ub = U m S m. These orthogonal columns form an indirect light space basis, and scaling by

S m makes the lengths proportional to the statistics from M. Figure 3.2 illustrates several

columns of Ub and rows of T j^ b -

23

3 .3 .1 .1 Im p lic it L ig h tin g E n v iro n m e n t

An interesting question to consider is whether there exists a direct lighting pattern

that, after application of the one bounce transport operator, generates the columns of U b

as an output indirect lighting pattern. In other words, we wish to find Limp such that

U b = F L imp. We derive this direct lighting pattern, which we call the implicit lighting

environment, as follows:

M = U m S m Vm = F P S by definition, and after postmultiplying both sides by V m, we

obtain U m S m Vm V m = F P S V m, with the left hand side simplifying to U m S m = U b.

And so, Limp = P S V m, and it will prove useful in several instances, e.g., when

generating higher-order lighting variation on surfaces (Section 3.5.4), volume samples within

the scene (Section 3.5.5), and interface lightfields between connected shapes (Section 3.4.1).

3.4 Direct-to-Indirect Transfer Between Shapes
We first couple transport between blocks in order to compute direct-to-indirect transfer

on large, interconnected sets of dictionary shapes.

Our high performance relies on computing coupled transport in reduced basis spaces.

Given b-coefficients for a simple shape (e.g. a cube with missing faces), our goal is to

compute operators that act directly on this vector and scatter light into neighboring shapes.

3 .4 .1 In ter fa ces : F a r -F ie ld L igh t T ra n sp o rt C o u p lin g

Our approach is independent of the dictionary’ s contents, and we illustrate results with

cube-based and cylinder-based dictionaries. For cubic shapes, we create five operators:

R b̂ rif describes how light leaves each shape via its missing faces or interfaces,

describes transfer between interfaces, and T rlf ^ r describes transfer from an interface onto

the surface of a block. These five operators are concatenated, based on block layout, at level

creation time to generate a sparse block matrix T ^ r, describing how light leaving each

block illuminates all other connected blocks.

We compose a raw lightfield matrix H lf at the Ni dictionary interfaces (see Section 3.5.1).

Columns of H lf are a resampling of implicit lights (columns of Limp), for each dictionary

element, at each position and direction of the interface’s lightfield. H lf is an s x Ni kself

matrix, where s is the spatiodirectional lightfield resolution.

Given the SVD of Hif « Urif S rlf V Tf, the krlf left singular vectors scaled by the

corresponding singular values (H rlf = U rlf S rlf) form a low-rank reduced lightfield basis.

This represents the response at the shape’s interfaces to L imp. We use basis enrichment to

handle more complex propagation operations (see Appendix A).

24

We define a Rb^rif operator for each interface of each dictionary element to map the

element’s b-coefficients to coefficients in the reduced lightfield basis. We construct this

operator by lighting each element with its implicit lighting environments, resampling the

implicit lighting from the surfaces to the interface(s), and projecting the resampled lightfields

into the reduced lightfield basis.

We construct three additional operators to capture near-field interface-to-interface,

lightfield propagation, and resampling.

Given an interface (red line in Figure 3.3), its lightfield can be propagated to the interface

straight ahead (dark blue line) with R|, or to the interface on the left adjacent face (green

line) with R^, or to the interface on the right adjacent face (orange line) with R^. These

square matrices (with dimensions krf) resample the lightfield at one interface to either the

straight-ahead, left-adjacent, or right-adjacent interface and project the resulting lightfield

back into the reduced lightfield basis.

Lastly, we define an operator to map reduced lightfield coefficients to lighting response

on geometry near a lightfield: G = F rlf H rlf, where F rlf is a transport matrix that computes

the surface response to the reduced lightfield basis lighting (columns o f H rlf). This only

needs to be done for a single canonical interface, due to symmetry.

Using a similar motivation as in Section 3.3.1, we compute the SVD of G = U g X g V j ,

leveraging coherence to Hrlf’ s response and retain the left singular vectors (columns of Ur,

where U r = U g) to form an indirect lightfield basis. T rlf^ r = X g 'V j maps reduced lightfield

coefficients to reduced lightfield responses r.

We only retain operators, R b^ rlf and T rlf^ r, that act in reduced spaces. Lightfields

never need to be reconstructed, resulting in significant memory and performances savings.

R
i

-t
L

R^m- ■►Rf

Figure 3.3: Example of all interfaces for one of our connected dictionary shapes.

25

3.5 Direct-to-Indirect Transfer on Real Scenes
We now combine compact direct-to-indirect transport operators within (Section 3.3) and

between (Section 3.4) simple shapes to quickly approximate direct-to-indirect transfer on

arbitrary scenes.

Smooth, plausible and dynamic light transport is computed every frame using a mapping

between dictionary shapes and scene geometry during scene creation. We derive special

transport operators for vector-valued irradiance (to model high-frequency surface detail),

and volumetric direct-to-indirect light probes (to relight dynamic objects), all of which will

be computed entirely in reduced spaces.

3 .5 .1 2D S h a p e D ic t io n a r y

To simplify our exposition, we first consider 2D mazes with cubes connected to each other

along missing faces (we also show cylinder-based results). For these scenes, we populate

a dictionary with all possible cubes with 0 to 4 faces missing.2 Exploiting symmetry, this

dictionary has six entries with a total of 12 missing faces.

3 .5 .2 A u th o r in g th e S cen e P r o x y

We map complex geometry to only a handful of connected blocks from our shape

dictionary. To do so, we begin by generating a set of connected blocks and associating

portions of the complex scene to each block. We are motivated to model scenes with

extremely coarse proxy geometry in order to capture large-scale indirect lighting effects

as efficiently and compactly as possible, unlike discrete ordinate methods that use a large

number of blocks. This is analogous to the use of bounce cards when lighting for film.

The real scene must be mapped to shapes in our dictionary before lighting can be

computed. Each shape in this proxy is an instanced transformation of an element in our

dictionary and also contains a region in texture space for a light map atlas that will be

constructed to light the real scene. We also compute a geometry image that will be used

to compute ld. A key point is that we can reuse the precomputed transfer data from the

dictionary. Dictionary shapes can be warped and attached by artists or automatically for

simple mappings (see Section 3.6.2). When applying severe warping to shapes, we can reduce

artifacts by dynamically warping the prior and Us (see Section 3.7 and Figure 3.4).

While each shape’s texture is self-contained, the final mapping to real scene geometry

requires continuous reconstruction between connected shapes. Moreover, clamping is required

2For 2D mazes, all cubes have a “top” and “bottom ” face; 3D mazes do not have this constraint and
result in a nine element dictionary.

26

Figure 3.4: The Great Hall mapped to 1 cube is better than using an ambient term, but
causes unrealistic lighting on the longest axis. You can see the result in the two left images
which use 1 and 32 modes respectively. Ray tracing the operators again creates better results.
Raytracing U again gives us the third image, and ray tracing U along with stretching the
cube prior to the bounding box achieves results similar to recomputing the entire prior
(fourth image).

over the shape’s internal creases. We rectify these continuity issues by creating a padded

light map atlas and a set of records that copy edge/corner values from neighboring unpadded

regions to the padded light maps (faces translate to the center of padded faces) [76].

3 .5 .3 In te r fa ce P r o p a g a t io n fo r D ista n t L igh t T ra n sp o rt

Once the set of proxy shapes is generated, we compute a block sparse operator T b^ r to

map b-coefficients at all the shapes to r-coefficients at each interface. The interface matrices

Rb^rif, R-1, R f, R^, and T rlf^ r are combined to propagate transport through a complex

scene in our reduced spaces. It is important to note that these steps only depend on the

block connectivity, and the input is parameterized by the b-coefficients, which results in an

efficient runtime.

To propagate indirect light from block x, breadth-first traversal of the block connectivity

(with a maximum traversal depth dmax) builds columns of T b^ r to map indirect light

coefficients b from x to reduced lightfield coefficients r at the traversal’ s current interface.

The relevant block of T b^ r is initialized to x ’s R b^ rlf and, as each interface is traversed,

is premultiplied with one of {R^, R f, R^}, depending on the propagation direction [76].

This traversal concatenates transport operators to “drive” indirect light from source shapes,

through interfaces, to the rest of the scene.

At each interface, the accumulated portion of T b^ r is premultiplied by T rlf^ r and stored.

If a path from the same source block has already been computed, the matrices are summed;

otherwise a new record is computed. These block matrices form a sparse representation of

the full matrix that maps the block’s b-coefficients to reduced interface response r at all

other lightfields visible from x. When this matrix is multiplied by the b ’ s, we are aggregating

the energy at every scene interface, avoiding more expensive reconstructions into a light

27

map. Figure 3.5 is a visual representation of a column and row of the matrix. This process

is only done when a scene is created and takes less than a second for all our example scenes.

3 .5 .4 H ig h e r -O rd e r Ir ra d ia n ce in In d ir e c t L igh t S p ace

We replace indirect irradiance (columns of U b in Equation 3.3) with vector-valued

irradiance capable of approximating indirect light due to high-frequency, normal-mapped

surface details (see Figure 3.6).

We derive an Optimal Hemispherical Linear Spherical Harmonics (OHLSH) basis for

vector-valued irradiance stored at the n sample locations in each canonical block. To compute

the vector-valued irradiance response basis, U —, we simply light a block with its Limp and

project the irradiance distribution into quadratic SH instead. This 9D vector is analytically

mapped to a 4D OHLSH vector (see Appendix B).

3 .5 .5 P a ra m e te r iz e d Ir ra d ia n ce V o lu m e s

We light dynamic geometry, such as animating characters and “ornamental clutter,” like

pillars and statues that do not map naturally to block faces (see Figure 3.7), by computing

parameterized light probes in the volume of the scene. These lightprobes are represented as

order-3 SH vectors sampled uniformly in space and allow us to shade animated (or “clutter”)

F igure 3.5: An example of how interfaces between blocks work. Left: light originating
from the block containing the red interfaces propagates to all other visible outgoing interfaces
in the maze. R ight: all the blocks that contribute light to the red interface. These are rows
and columns of the matrix T b—r that maps bs to rs.

28

Figure 3.6: Vector irradiance for surface details in a normal-mapped maze (top) and the
Great Hall (b ottom). Scalar irradiance is on the left, with vector irradiance on the right.
© 2011 B. Loos, L. Antani, K. Mitchell, D Nowrouzezahrai, W. Jarosz, P.P. Sloan

geometry using traditional SH techniques.

We compute an operator Ubvol (with size 9 x kself) that gathers radiance from implicit

lights (Limp) in a uniform volumetric grid in each block and projects these distributions into

SH. Ubvol maps indirect illumination in the indirect light space to SH coefficients. As with

surface and interface response, we use Limp to drive the generation of these probes entirely

in the indirect light space and need only precompute this operator once for the shapes in

our dictionary.

3.6 Implementation and Results
3 .6 .1 D ic t io n a r y C o n s tr u c t io n a n d P r e c o m p u ta t io n

We generate a 2D block dictionary with six basic cube shapes and a cylinder dictionary

with three shapes (straight, right turn, left turn).

For these dictionaries, we construct the prior P by lighting the basic shapes with 63

sphere lights placed uniformly in the block’s volume and through interfaces. We use kd = 64

and kself = 32, enriching the basis with functions that are constant on only one face at a

time, as well as Ub so that multiple light bounces are well represented.

29

F igure 3.7: Indirect transport on dynamic objects (character mesh) without (left) and
with (right) volume samples. © 2011 B. Loos, L. Antani, K. Mitchell, D Nowrouzezahrai,
W. Jarosz, P.P. Sloan

Most of our example blocks have 162 samples per face. We evaluate M by ray tracing

the scaled prior vectors (columns of P) using 16K gather rays with importance sampling.

We perform this at each of the 162 points on the face, from which U b, Limp, and T d—b are

computed. The cylinder dictionary uses 642 samples per shape. We also compute several

lower resolution dictionaries using only scalar surface response for the iPad and x86 CPU

implementations. Using fewer than 62 samples results in objectionable artifacts.

The U —, U r and Ubvol are computed by ray tracing implicit lights (columns of Limp) and

computing their respective output data. U — and U bvol are computed once per dictionary

shape, and the interface data are computed for only a single canonical interface.

To compute H lf from Limp we use 52 directional super-sampling of interfaces. Three

iterations of enrichment are applied to H rlf, retaining krlf = 128 lightfield modes and kr = 32

response modes.

We use raw interface resolutions of s = 122 spatial x 242 directional = 82944 total

samples, mapping the hemisphere to a square [77] for continuous directional interpolation.

3 .6 .1 .1 P r e c o m p u ta t io n

The dictionary (without interfaces) requires 4.7 M B, takes 59 s to build, and 60 s to

enrich. Interfaces increase precomputation by 260 s, adding 1.2 MB of memory. Timings are

on a dual 2.93 GHz 6-core Intel CPU. Interface computation does not scale well with the 12

30

cores, but the other stages scale linearly.

3 .6 .2 M a p p in g S h ap es t o C o m p le x S cen es

We use two approaches to compute texture coordinates (and position/normal geometry

images) in complex scenes. For the game scene (Figure 3.8), artists map blocks with our

level editor: a cube is warped to roughly align with part of the scene, then additional cubes

are extruded/warped from existing ones (see video for a modeling session). The artist can

preview indirect light directly in the tool. T b -r is also computed at this phase and takes a

second at most.

As an extreme stress test, we model the Great Hall scene (Figure 3.9) using only a single

block. The vertices are mapped to block faces using rasterization: a cube map camera at the

center of the block renders a downsampled “geometry texture,” which allows us to categorize

the vertices belonging to each face. The texture coordinates for a given vertex are computed

by orthographically projecting the vertex onto the chosen face, and these coordinates are

used to look up indirect light in the padded light-map texture atlas.

We create records, for each block’s face, to render indirect light (lind ~ U b b) into an

(unpadded) light map. Each record is positioned appropriately in the light map and contains

U b texture coordinates and a block index for the face to look up b-coefficients.

F igure 3.8: An 18 block scene from a video game: direct light (left, 1.2ms), direct and
indirect (right, 2.2ms).

31

Figure 3.9: Dynamic indirect light at >500 FPS. We ignore indirect shadows and focus
on adding smooth, approximate dynamic indirect light with low computation cost. In the
extreme case of the Great Hall modeled with 1 cube (and volume samples for “clutter”
geometry), our results respond to direct light at a cost similar to static ambient terms but
with soft shading quality common in e.g. PRT. From left to right the images represent direct
lighting only, indirect lighting using MRT (which takes 1.9 ms for the top row and 1.4 ms for
the bottom row), indirect lighting using a ray tracer, then direct + indirect lighting using
MRT, and direct + indirect lighting using a ray tracer.

3 .6 .3 S im p le R u n tim e Im p le m e n ta t io n

Our runtime is quite simple. An indirect light texture, using direct light evaluated at n

surface points, is computed as follows:

1. Compute direct light at a reduced resolution in each block (ld),

2. Compute per-block spectral coefficients (b = T ^ b ld),

3. Compute indirect light within a block into a lightmap (U b b),

4. Compute response coefficients at interfaces (r = T b^ r b),

5. Blend response from “external” blocks into a lightmap (U r r),

6. Create padded lightmap texture to eliminate texture seams,

7. Render scene using the dynamic lightmaps of indirect lighting,

8. [optional] Compute indirect light volume (from b s and r ’s),

9. [optional] Render dynamic objects with volume lighting.

As in Enlighten [54] it is easy to feedback indirect light (scaled by albedo) to get multiple

bounces with little overhead (Figures 3.10 and 3.11). Figure 3.1 compares our approximate

multibounce indirect light (476 FPS) to ground truth (many hours).

32

Figure 3.10: Feeding back the previous iteration’s indirect light buffer into the direct light
buffer generates multiple bounces.

F igure 3.11: Tunnel created with 10 cylinders. Direct lighting (left), direct and multibounce
indirect lighting (right, 5.2 ms = 192 FPS).

3 .6 .4 R e su lts

Examples of our final results can be found in Figure 3.12. GPU performance was recorded

on an NVIDIA 480 GTX with a DX11 runtime. Rendering of omnidirectional shadow maps

for direct lighting is by far the largest bottleneck of our runtime renderer for a moderate

number of blocks. Our indirect lighting performance scales linearly with the number of

blocks (see Figure 3.13) with the most expensive stage being computing b ’s. This could

potentially be optimized by using a single pass reduction or compute shader.

We also have two software implementations, one for x86 CPU’s using SSE and one for

iPad/iPhone using NEON instructions. The CPU versions support everything but volume

33

Figure 3.12: Lighting responses computed by Modular Radiance Transfer as compared
to a reference path tracing solution for four different scenes. Column 1 shows direct light.
Column 2 shows one-bounce indirect light computed using MRT. Column 3 shows combined
direct and one-bounce indirect light computed using MRT. Column 4 shows the reference
solution computed using path tracing.

34

1 6 11 16 21 26 31 36 41 46 51 57

Number of Blocks
■ Padding Volumes U ^ r U bvoi b ■ Padding Lightmap
■ Ur r Ubb Calculate R ■ Calculate B

Figure 3.13: Average performance taken from many random mazes.

samples and vector irradiance. We measure performance for two scenes on the CPU code

paths in Table 3.3. For comparison one unshadowed point light takes 25 ms on the iPad,

making VPL techniques difficult.

3.7 Discussion
Instead of computing ground truth indirect effects, we target large-scale indirect lighting

that responds to dynamic direct illumination, can be properly applied to fine scale surface

detail, and supports animated character meshes. Our very high-performance allows our

Table 3.3: Performance results. The iPad uses 62 textures and 12 modes. The x86 and
GPU use 162 textures and 32 modes.

Small Maze Large Maze

blocks

iPad ms

x86 ms

GPU ms

11

2.0

1.4

0.4

41

12.9

6.2

1.0

35

runtime to be easily integrated across many hardware platforms, as well as significantly

reducing iteration time (see accompanying video); lighting artists get instant indirect

lighting feedback that is guaranteed to m atch the in-game rendering.

3 .7 .1 L im ita tio n s

When mapping scenes to a single box, using only the first mode is akin to an “intelligent

ambient term” that is computed by averaging the direct light in the scene. Higher order

terms add spatial variation. The bottom row of Figure 3.9 illustrates that even in the

extreme case of a single cube mapped to complex geometry, our approach “fails gracefully,”

with smooth and plausible results. O f course, using a more accurate proxy shape would

produce better results. With a single cube, light propagates too far along the longest axis of

the scene’s bounding box; we could alleviate this with a prior that uses the aspect ratio of

the scene’ s bounding box, but almost equivalent results can be created simply by ray tracing

the U vectors again with an appropriately stretched prior (Figure 3.4), taking only seconds

to “re-precompute.” Our algorithm is designed for scenarios where a small number of coarse

proxies are mapped to complex geometry (like bounce cards in film production); using many

proxy shapes to model this scene would defeat our purpose.

Another limitation stems from performing all computation in reduced spaces: lighting

conditions outside our prior cannot be captured. Figure 3.14 highlights this issue, where a

light is positioned too close to a wall. Shadows, strong albedo changes, and direct lighting

used in video game scenes are outside of our prior, but plausible results are generated in

these cases using enrichment (Appendix A).

We choose a simple prior, trading off accuracy for flexibility and performance. A more

complex prior can be constructed using, e.g., permutable blockers in a scene and different

light sources, but this would require a higher-dimensional representation. As an extreme

Figure 3.14: Indirect light from a well-represented (left) and poorly represented (right)
direct-illumination pattern in the light prior.

36

example, we could use the scene from Figure 3.4 as a shape library element, yielding a

lighting prior that would capture higher fidelity results for that particular scene (but for

no other); however, especially when combined with direct illumination, it is clear that

the additional fidelity is not worth the decrease in performance and the elimination of

modularity/generality.

Our light prior bases are small, dense matrices derived using the SVD, in contrast

to multiresolution bases such as wavelets, which are typically represented as large sparse

matrices. Our dense matrices map more effectively to texture mapping hardware, have

more coherent access patterns, and require less overall memory than wavelets, which is

especially important on low-power handheld devices. This is particularly true with the 12 to

32 coefficients we use in practice.

3 .7 .2 N o n d iffu se T ra n sp o rt

Scalar (diffuse) response can be substituted with a directional radiance representation

(e.g., using a basis representation such as SH or wavelets). Our transport operators can

also be augmented to support nondiffuse light transport. We note that low-frequency glossy

reflectance models can still be applied to, e.g., our SH representation of volumetric light.

We have instead targeted flexible and rapid scene development with physically plausible

diffuse indirect illumination, as illustrated in our examples. Extending the simplicity of

our approach to high-frequency glossy transport while keeping the benefits (compactness,

high-performance, plausibility) is a challenging problem left to future work. Such directional

radiance transport modeling may also prove useful for handling fine-scale indirect shadows,

as we discuss below.

3 .7 .3 In d ir e c t S h ad ow s

Our approach models coarse-scale indirect shadows (e.g., around maze corners) while

ignoring large-scale indirect shadowing effects within blocks. While this is sometimes

problematic (e.g., the Cornell box in Figure 3.9), when direct lighting is included the lack

of exact indirect shadows is often difficult to notice. In fact, in film production, shadow

computation for the fill lights used to model indirect light is often disabled.

In the future, we plan on investigating techniques to include fine-scale indirect shadows

from objects and clutter geometry within blocks by applying light subtraction ideas from

antiradiance [63], as well as dynamic blocker accumulation and reflection from [21].

37

3 .7 .4 D ic t io n a r y S h ap es

The restriction to basic shapes allows us to eliminate scene-dependent transport pre

computation. To support modularity, we must restrict the generality of the shape library.

This constraint is softened during authoring by combining light transport coupling, warping,

volume samples, and support for normal variation. It is possible to use more complicated

shapes and extend our lighting prior to support, e.g., internal occluders.

3 .7 .5 A lte r n a t iv e R e a l-t im e In d ir e c t A p p r o a c h e s

We achieve much higher performance than other approximate indirect lighting solutions,

and our approach can readily be used in high-end and mobile gaming applications. Moreover,

MRT scales favorably with respect to both the number of direct lights and the number

of indirect bounces. However, these performance gains are only a by-product of the more

substantial, novel contributions of our work: the lighting prior, transport computation in

reduced spaces, and modularity (which also eliminates expensive scene-dependent transport

precomputation). We feel that these ideas can be applied more generally to other areas in

offline and real-time rendering, including other approximate indirect illumination techniques

(e.g., instant radiosity).

CHAPTER 4

MRT RUNTIME IMPLEMENTATION1

4.1 U Basis Functions
In practice, our U basis functions are a set of textures that store data at many points on

our dictionary shapes. For most of our experiments we used a dictionary of cubes, each with

a different number of faces (see Figure 4.1). These cubes always have a floor and ceiling and

are arranged to closely model whatever geometry we wish to light.

The default U basis functions are defined on the nonmissing faces of these cubes. Although

the textures could be of any resolution, ours are defined with 16x16 = 256 texels for each

face. The U basis texture is computed as a preprocess using the methods presented in

Section 3.3.1. The process is repeated for each dictionary piece (or cube) one at a time.

4 .1 .1 C o m p u t in g th e L ig h tin g P r io r P

We begin with the calculation of the P and S matrices for each block. First, calculate

the direct lighting response at each texel center for multiple lights (Ld). In our tests we

used sphere lights to generate the direct lighting. Inside each cube we use 6x6x6 = 216

light positions, and for every missing face we add another 3x6x6 = 108 samples to represent

2 Faces 3 Faces 4 Faces 4 Faces 5 Faces 6 Faces

Figure 4.1: Our cube-based dictionary. Here you can see the six components of our
dictionary, each one a cube with certain faces removed. These dictionary elements are
sparsely pieced together to sparsely represent the actual geometry of a game level.

1This chapter is based on information that was originally presented by B. Loos, L. Antani, K.
Mitchell, D. Nowrouzezahrai, W. Jarosz, and P.-P. Sloan as Modular Radiance Transfer: Runtime
Implementation - from DirectX to iPhone in ACM SIGGRAPH, Vancouver BC., 2011 [Online] Available:
http://doi.acm.org/10.1145/2037826.2037905 [76]

http://doi.acm.org/10.1145/2037826.2037905

39

lighting coming into the cube from the outside. For cubes that are missing two contiguous

faces we also sample another 3x3x6 = 54 samples kitty-corner to the cube.

Once the direct lighting values are stored in a matrix, with the direct lighting results
from each sphere position in a separate column, we take the SVD of that matrix, storing the

Ud as the lighting prior (P)and the as the prior scale values (S), but instead of keeping

all the singular triples (a.k.a. modes), we store just the first 64 of them, which results in 64

columns of P and 64 values in Xd.

4.1 .2 C om p u tin g the U Basis Funtions

The next piece we need to calculate is M , which will allow us to compute Um, , and

Vm. M is defined as M = FPS so we simply apply the operator F to P from section 4.1.1.
To do this, we generate the indirect lighting at every texel center when the direct lighting is

defined to be the modes of P applied to the walls of our shape. These ray-traced results are

stored in a matrix where the indirect lighting from the first prior is in the first column, the
second prior in the second column, and so on. This results in an F P matrix that has 64

columns of 16x16xfaceCount samples each. We multiply F P by S (also shown in section

4.1.1), and we have M (which also has 16x16xfaceCount rows). Then we take the SVD of

M to generate Um, £ m, and .

As we explained in section 3.3.1 Ub = Um£ m. These tildes represent that we have

truncated the number of rows and singular values to simplify our computation. Since the

SVD has already sorted the rows, singular values, and columns by energy, we can simply

remove the lower rows to generate our truncated values. On the desktop we truncated our

matrices to 32 modes (a.k.a. rows/singular values) as we felt that this gave us the results we
desired. Other experiments on iOS [76] used only 12 modes to reduce the GPU load when

reconstructing the signal.

4 .1 .3 Storage

Our U basis texture for each dictionary shape represents 32 values per pixel, the ones

with the most energy being in the earlier modes. To allow easy access to this information

during GPU calculations we store all the information in a single texture (see Figure 4.2).

Each face of each piece in our dictionary has 16x16 = 256 samples. The texture consists

of many of these 16x16 samples, one for each face of each dictionary piece. If you look at

the texture (Figure 4.2), you can see this organization as little squares. We use the color

channels of the texture to store the modes. This means that we require 8 rows of 16x16
samples to store all the data.

40

U Basis Texture
0-3

4-7

8-11
I /)
<U 12-15

TD
O 16-19

20-23

24-27

28-31

r t

t -j

5 Face 4 Face 4 Face

Dictionary Blocks

6 Face

3 n
3 Face 2 Face

Figure 4.2: The U Basis Texture. The U textures from each dictionary piece are placed
into a single large texture. The faces of each dictionary shape are stored horizontally, while
the modes of each face are stored vertically.

4.1.4 Other U Basis Textures

With the information we have already computed (§ 4.1.1 and § 4.1.2) we can generate

other basis textures by ray tracing the results of Limp = PSVm (see Section 3.3.1). This

allows us to generate our Uvec and Uvoi basis functions defined in section 3.3.1.

4.1.5 Calculating Td^ b

The other portion of the preprocessed dictionary we need is the ability to project our

direct lighting results into the proper basis so they can be multiplied by Ub to generate

the indirect lighting. We already have all the pieces we need to generate this operator. As

shown in section 3.3.1, T ^ b = ^ 5 _1P r , the calculations of which were explained in §4.1.2,
§4.1.1, and §4.1.1, respectively.

Like the U basis texture, the T ^ b texture (see Figure 4.3) for all dictionary pieces is

stored in the same texture, with the data for each face stored from left to right and the

modes stored from in color channels going top to bottom.

4.2 Interface Functions
With our technique for calculating and storing the U basis functions explained, we now

move onto how to create the interface basis that allows us to pass indirect lighting signals

between dictionary pieces.

41

Figure 4.3: Td̂ b texture. This texture, along with U gives us the data to convert
b-coefficients into indirect lighting.

4.2.1 O ut o f a D iction a ry B lock
To generate Rb̂ rlf (§3.4.1) we first create a lightfield at each missing cube face for

each dictionary element. To do this, we create a set of 12x12 spatial samples covering each

opening. At each spatial sample, we store the result of 24x24 ray-traced directions, each

subsampled at a resolution of 5x5. This ray tracing is performed against all 32 modes of the

implicit lighting (see Section 4.1.4) applied to the walls of the dictionary element.
Since some dictionary elements have more interfaces than others, we need to normalize

the values of each interface to represent the same amount of radiance leaving each element.

To do this we calculate the sum of the squared singular values from the original ray
tracing of the lighting prior (section 4.1.4) for each element (which we will call Sumelement),

as well as the sum total of Y?m over all elements (which we will call Sumtotal). For each

element, we calculate a scale factor

scaleFactor = W ----------- Sum<ota1------------ (4.1)
V Sumezementelement-count

For each mode of each interface we store scaleFactor * Sumelement for later use.
Now we are ready to reduce the dimensions of our signal. We take the multimodal

light field we created at each dictionary element opening and put them all into one large

matrix H f (§3.4.1), with the light field values of the first mode of the first interface in the

first column, the second mode in the second column, and so on. Once all 32 modes have

been inserted, we then insert the 32 modes of the next interface, creating an mxn matrix

Hif where m = (spatial samples)2 * (directional samples)2 = 12 * 12 * 24 * 24 = 82944 and
n = modes * interfaces = 32 * 11 = 352. We then scale each column by (4.1) to normalize

each basis.

42

Now that we have our Hlf we take the SVD to generate Ulf I lf Viff and keep the first 128

modes (rows of Ulf and singular values of I lf) to generate our reduced light field basis Hrlf

(§3.4.1). To generate Rb̂ rlf , we multiply Hrlf and Hlf , which results in a 32x128 operator
for each interface.

4 .2 .2 B etw een D iction a ry B locks

To move the values between dictionary blocks, we need to create operators to move the
values between interfaces on a given block. To do this, we put the full Urlf (§4.2.1) on one

interface and ray trace from the other three interfaces. This will give us R?, R ,̂ and R|.

4 .2 .3 In to a D iction a ry B lock

To generate the response operator Ur (see Figure 4.4) we again ray trace Urlf (§4.2.1)

mapped to an interface. Due to the symmetry of our block dictionary elements, we use

a single interface to generate results on the other five faces, which can then be used for
any other element in our dictionary. We store the results in a matrix G (§3.4.1) where the

ray-traced values of mode 0 for each of the five faces are stored in the first column and

mode 1 in the second column, all the way to the 127th mode. We then scale each column of

our matrix by I rlf (which is the same as ray tracing against Hrlf = Uri f I r l f as stated in
section 3.4.1).

Now we take an SVD of G resulting in Ug, I g, and V f , which will allow us to calculate
Ur = Ug (seen in Figure 4.4) and Trlf ̂ r = I gV f .

Figure 4.4: The Ur interface response texture. This texture contains the basis functions
used to light our dictionary elements, which will be indexed into using r-coefficients.

43

4.3 Mapping MRT to Levels
Modular radiance transfer is calculated on our basic dictionary shapes, but its intent is

to be applied to actual game levels.

4.3.1 C reatin g B lock to Level M ap p in g

While our dictionary blocks seem rigid and rectilinear, they can be remapped to fit

more organic level geometry. Due to the low frequency nature of indirect lighting, and the

approximate nature of our approach, the errors introduced in doing so are minimal.

The level in Figure 4.5 is an example of one such remapping. It shows our rectilinear
dictionary pieces can be connected and their vertices moved to represent actual geometry.

This block to level mapping is done when the level is created. Currently this extra geometry

is created manually, not dissimilar from how physics geometry is created for games today.

For the rest of this chapter we will be using a small, simple test level to demonstrate our
techniques. A rendering of this level can be seen in Figure 4.6. It will show how we apply

modular radiance transfer on, between, and within dictionary blocks.

This level consists of three separate piece of block geometry that map to two dictionary

pieces (two four- and two five-piece blocks). In our example the vertices of the geometry

and the dictionary blocks are coincident.

4.3.2 C a lcu late B lock to B lock In terface O perators
Once we have a mapping of blocks to an actual level, we need to calculate the interface

operators that define how light passes through the interfaces between all the blocks

(Figure 4.7). For all block pairs that can see each other we create a path between them

using Tb—rif , R ,̂ R f , R ,̂ and finally Trif—r. This results in a 32x32 matrix for each block

pair. In our example map (Figure 4.7) you can see we generate 6 such matrices. We stored

these matrices in a single large horizontal texture with each matrix to the left of the last

Blocks Only

Figure 4.5: An example of block to level mapping.

Level Geometry Level Closeup Blocks on Level

44

Trlf̂ r

1
R ___R̂ ‘----- ---- 1
Trlf̂ r Rb̂ rlf

Figure 4.7: All interface operators we need to store for our example map. On the left you
can see there are three blocks and four interfaces. The second column shows the interface
operators for block one, and the last column the interfaces for block two.

one, although other layouts may work better when more interfaces are used. This texture is
not scene independent. It will need to be calculated once for each new level created.

4.4 b-coefficients
The first step in modular radiance transfer is creating a set of b-coefficients, one set for

each dictionary block. These b-coefficients will allow us to generate the lighting shown in
Figure 4.8.

4.4.1 G enerating P e r-B lock b-coefficients
To generate the b-coefficients, we first generate a set of records, one for each face of each

dictionary block in our level. In our test map, that creates 14 records, four for the front left

and five each for the back and left block. Each record has uv coordinates at each vertex

that index into the U and T ^b textures.
Each record covers 16x16 pixels in a render target. We calculate the direct lighting

for each pixel using a geometry map that describes the position and normal of the level

geometry that face of the block is supposed to represent. The direct lighting output is input

to another pass where we use eight render targets for the 32 modes of the direct lighting

45

Figure 4.8: Output of Ubb + Uvolb on our example level.

multiplied by the associated Td̂ b data. The output of that pass is reduced twice to sum

the products into a single set of 32 b-coefficient per block.

4.4 .2 O ptim izin g the C a lcu lation

Unfortunately, doing this calculation three times (for r, g, and b) results in too many

passes, slowing down the calculation. Also, a separate pass for each color requires us to
recalculate the direct lighting 3 times, which is wasted work.

Instead of storing the modes in multiple render targets, we decided to store them vertically

like in the U and Td̂ b textures. This allows us to calculate the direct lighting once and

reduce the number of passes.

The sum at the end is also problematic due to the fact that for any given level there are

not many blocks defined, which results in too little parallelism for the GPU. Also, due to

each dictionary block having a different number of faces results in divergent flow. Instead of

summing all the results ourselves in the shader, we decided to enable blending and allow the
hardware to do the final sum for us. We tried summing 4, 16, and 64 values in the shader

ourselves, leaving the rest for hardware blending. Too few sums calculated in the shader and

we overload the frame buffer bandwidth, too many shader sums and there is not enough

parallelism for the GPU. We found that using 64 in-shader sums worked best, as long as the

pixels we output were not localized, so as to reduce frame buffer contention. All this work

reduces the number of passes and frame buffer bandwidth.

To reduce more frame buffer bandwidth, we also merged the direct lighting calculation,

the Td̂ b * ld multiplication, and the first reduction level so we only use one pass. With all
these changes, we reduce the frame buffer bandwidth by 75% (see Figure 4.9).

46

Algorithm Frame Buffer Bandwidth Costs
Save % of the Bandwidth

Old New

3 * Light Map

3 * 32 * Light Map 3 * 8 * Light Map

3 * 2 * Light Map

3 * 1/8 * Light Map

3 * 1/8 * Light Map

Negligible

Figure 4.9: Graphical representation of the optimization of the calculation of 6-coefficients.

4.4.3 6-coefficients to Lighting

Now that we have a 6-coefficient, for each block, we can use those data, along with the

U basis texture, to create a light map for each dictionary piece (see Figure 4.10). When

applied over the direct lighting, we get the results shown in Figure 4.8.

4.5 r-coefficients
Now we need to calculate the indirect lighting that is traveling between the blocks. The

result of this calculation can be seen in Figure 4.11. To do this, we convert 6-coefficients

into r-coefficients and use them to apply the Ur basis functions to the faces of our dictionary

elements.

4.5.1 6-coefficients to r-coefficients

Starting with the set of 6-coefficients, we convert those values using the T ^ ,r texture

that we precomputed for our level (§4.3.2).

We start with a 3:rl:r8 texture representing the 32 modes of block’s 6-coefficients. We

then create an output render target that is ixlxS to store the 32 modes of the r-coefficients

- one for each interface, see Figure 4.7. To this render target we render six records - one

for each interface operator, see Figure 4.7. Each record will contain uv coordinates that
reference our T ^ ,r texture. This will allow us to perform the calculation T^ ,r6, which will

result in a 32-entry vector that we store in the four color channels of the eight render targets

of our output.

47

'W K j —fc

A A - A
' ^ K

'̂ n '̂ ■H ^ ig

^ I A A MH:
Figure 4.10: Per-pixel U basis shown on the five-face dictionary block. In the center is
the weight of each mode in our example map. Red represents positive light values and blue
represents negative light values. Mode 0 is in the top left, going left to right, top to bottom.

4.5 .2 r-coefficien ts to In d irect L ighting

With our 4x1x8 r-coefficients, we can now apply the indirect lighting to the walls of

our cubes. To do this, we create a 16x16 pixel render record for each of the 14 faces in

our example map. Each record will have uv coordinates that reference both the location in

the r-coefficient texture and the proper location in the Ur texture. Then, the 32 modes of

each 16x16 Ur texture are scaled by the 32 modes of the r-coefficient to give us the indirect
lighting for each face.

48

4.6 Lightmap Padding
With all indirect lighting within and between block computed, we have one more small

step to ensure a smooth lighting solution, and that is to pad our light map.

4.6.1 A d d ition a l Light M a p R ecord s

For our example map we have been dealing with 16x16 pixels on each face of our

dictionary elements. To create a padded light map we copy these 16x16 face records to

another texture in a new location. This new texture has a single pixel border around each
16x 16 face record.

When we create our block to level mapping (§4.3.2), we also create a new set of edge

(16x1) and corner (1x1) records. These records copy data from the edges and corners of

other face records into the single texture border around the 16x16 lighting values. Once we

offset our texture coordinates by half of a pixel, it ensures that the texel values used on the

edges of each face match exactly. This is shown in Figure 4.12.

4.7 Results
We ran this algorithm for block mazes of different sizes and connectivity graphs. A graph

of these results can be found in in Figure 4.13.

Figure 4.12: Indirect lighting on our example map without light map padding. When we
do not use light map padding, we end up with discontinuities between our blocks.

Ti
m

e
in

m
s

49

1 6 11 16 21 26 31 36 41 46 51 56

Number of Blocks

Figure 4.13: Timings for different parts of the MRT runtime. Times are shown in
milliseconds for block mazes with different numbers of randomly connected blocks.

CHAPTER 5

DELTA RADIANCE TRANSFER1

5.1 Introduction
Interactive graphics applications have started integrating approximate global illumination,

often to satisfy art-driven requirements. Precomputation based approaches (e.g., direct-to-

indirect transport) are capable of satisfying these requirements; however, long preprocessing

times limit their wider-scale adoption.
In Chapter 3 we introduced Modular Radiance Transfer (MRT), a coarse-scale direct-to-

indirect transport approach leveraging scene-independent precomputation. MRT aggregates

indirect transport inside and between simple shapes, modeling how light is transported when

shapes are warped and attached to each other. Level designers can transform and connect

shapes to author new scenes or form lighting volumes inside existing scenes. This new style
of light transport authoring eliminates time-consuming scene-wide precomputation.

While MRT models coarse-scale light transport within and between shapes, it ignores

the effects of finer-scale “clutter geometry” (e.g., a pillar or desk in a room). Specifically,

objects inside the simple shapes do not affect light transport at all: they do not cast indirect

shadows, nor do they reflect indirect light onto the shape and its neighbors (see Figure
5.1). MRT’s generality precludes efficient incorporation of these effects; introducing sharp

shadows/interreflections breaks many of MRT’s assumptions about the nature of the light
transport's dimensionality.

We introduce Delta Radiance Transfer (DRT) to carefully remove these constraints

while maintaining the important benefits of MRT:
• High perform ance: maintaining the extremely high-performance of MRT is necessary

to promote its applicability to content-generation pipelines;
• Low-dimensional rendering: in adding finer-scale occlusion and interreflection to

MRT, we need to extend its low-dimensional rendering formulation to

1This chapter was originally published by B.Loos, D. Nowrouzezahrai, W. Jarosz, and P.-P. Sloan as
Delta Radiance Transfer in ACM Symp. on Interactive 3D Graph. and Games, Costa Mesa CA., 2012
[Online] Available: http://doi.acm.org/10.1145/2159616.2159648 [78]

http://doi.acm.org/10.1145/2159616.2159648

51

Figure 5.1: Modular Radiance Transfer (a) takes 1.7 ms and does not accurately model
light scattered onto “clutter objects” (e.g., the two boxes) (b) or indirect shadows (c) and
interreflections (d) from clutter onto the scene. We improve accuracy by adding these effects,
at little cost to performance (1.25 ms total). The bottom image shows the sum of all four
operators (a + b + c + d).

52

support this added complexity without incurring a substantial performance overhead;
• Rendering extensions: supporting dynamic vector irradiance and volume light

probes in the presence of occlusion and (potentially near-field) interreflection enables

compatibility with other common high-fidelity real-time rendering techniques.

While MRT models indirect light between large scene blocks, we introduce three new

compact light transport operators to model the following transport paths missing from MRT

(see Figure 5.2):
• indirect shadows from clutter onto the scene (Section 5.3.1),
• interreflections from clutter onto the scene (Section 5.3.2), and
• interreflections from the scene back onto clutter (Section 5.3.3).

In MRT and DRT, indirect light is computed as a weighted sum of dynamically generated
lightmap textures. These textures are specially constructed to represent basis-space light

transport. Each of our new operators are computed by ray tracing against the lightmaps

parameterized over the scene geometry, or the clutter, depending on the transport path

being modeled.

5.2 Background — Modular Radiance Transport
Given direct light in a scene, e.g., generated with shadow mapping, MRT computes

coarse-scale dynamic indirect light as well as dynamic vector and volumetric radiance to
support high-frequency normal variation (e.g., normal maps) and limited shading of clutter.

MRT computes these effects with high-performance on a range of hardware platforms

using the key ideas of modularity and low-rank computation: indirect light transport is

Figure 5.2: The three additional transfer operators we compute for clutter. From left
to right: occlusions onto scene (antiradiance), diffuse reflections onto scene, and diffuse
reflections onto clutter.

53

decomposed into the effects within and between shapes, and these transport paths are

computed and coupled entirely in optimized low-dimensional subspaces.

After giving a brief introduction to light transport using matrix operators, we will discuss
the modularity and low-rank nature of MRT and then build on top of these concepts in
Section 5.3.

5.2.1 M a tr ix Light T ran sport and N aive S V D

Indirect light Lind can be computed by applying a continuous linear operator to the

direct light Ld in a scene as

Lind(x) = / Ld(x', -w) f (x ,w)(nx ■ w) dw = F {L d}(x) (5.1)
j nn

where x is a point in the scene, nx is the normal at x, Qn is the set of all unit direction

vectors in the upper hemisphere about nx, x' = ray(x + tw) is the nearest surface point
from x in direction w given by the ray-tracing operator ray, f is the BRDF at x, and F is

the continuous one-bounce direct-to-indirect transport operator.

We assume diffuse relighting, where F can be discretized to yield the (discrete) direct-to-

indirect transport equation: lind = F ld, where indirect light lind is computed by applying

the (discrete) one-bounce operator F to the direct light ld. Each element of lind and ld
represents outgoing radiance at a different surface location.

Evaluating this discrete equation is expensive and limits the performance of direct-

to-indirect transport since F grows proportionally with O(d2), where d is the spatial
discretization of the scene.

A common acceleration strategy is to take the singular value decomposition (SVD) of F

and approximate the matrix-vector product using a rank-reduced F = U / X/ VJ, where U /

and V j contain the left and right singular vectors of F, and X / is a matrix with the singular

values oi of F along its diagonal. The discrete transport equation can be approximated by
keeping the r largest oi.

Unfortunately, as discussed in [75], the singular values of F fall-off too slowly to yield

high-performance using this approximation technique. We will discuss how MRT accelerates

evaluation of the (discrete) direct-to-indirect transport equation while inducing a more

controlled degradation of accuracy.

5.2.2 L ighting P rior and Im plicit Lights

MRT takes a unique approach to accelerating the (approximate) computation of lind,

computing light transport entirely in low-dimensional spaces, by exploiting key observations

54

1. plausible direct lighting in a scene lies in a low-dimensional, highly correlated subspace

of all input signals, and
2. applying F to these highly correlated direct lighting signals yields highly correlated

indirect illumination patterns.

Using the SVD of F to accelerate the matrix-vector product does not account for possible
correlations in the input (direct) light patterns, ld. This SVD is optimal if the lds are drawn
from an arbitrary distribution; however, in reality, they are drawn from the more restrictive

set of possible direct lighting signals. This set has many correlations, leading to correlations

in the resulting indirect light.

5.2 .2 .1 L ighting P rior

MRT precomputes direct illumination from a set of lights placed uniformly in the volume

of a scene shape. By treating each direct light output as a column in a matrix and taking

its SVD, the first n left singular vector columns P yield a low-dimensional basis for direct

illumination, called the lighting prior.

Correlations in direct lighting cause the effective dimension n to be much lower than

the explicit dimension (number of surface locations). To exploit this correlation when
computing indirect lighting, MRT first defines M = F P S , where S is the diagonal singular

value matrix associated with P. Taking the SVD of M = U S V T, MRT’s low-dimensional

direct-to-indirect transport equation is

lind ~ U b T d^b ld = U b b (5.2)

where U b = U S and T d^ b = V T S-1 P T projects2 direct light ld to the correlated

low-rank indirect light space (with corresponding coefficients b). Despite the derivations

outlined above, MRT simply precomputes U b and T d^ b (in a few seconds), and all runtime

computations are performed in the low-dimensional spaces.

5 .2 .2 .2 Im plicit L ighting

The columns of U b are indirect basis light patterns. Once ld is reduced to b with T d^ b,

(5.2) scales these patterns by the elements of b to yield dynamic indirect light.

MRT exploits an alternative approach for generating the columns of Ub. Namely, basis

lighting patterns result from the application of the one-bounce operator to a set of implicit
lighting patterns, U b = F L imp, where Limp = P S V.

2We use rank-reduced matrices where necessary, e.g., V T.

55

DRT also uses Limp to construct operators that model indirect shadows from clutter

and interreflections from the scene onto clutter (Sections 5.3.1 and 5.3.3). DRT computes

higher order radiance representations (e.g., for normal mapping) and radiance volumes with
Limp, incorporating the occlusion/interreflection effects of clutter.

5.2.3 Inter and Intrashape T ran sport

MRT allows artists to map simple geometric primitives (e.g., cubes with a number of
faces removed) to existing scenes or to build new scenes with them. Given a set of these

(potentially warped) connected shapes, resulting from the content creation process, MRT

dynamically updates indirect lighting in a modular fashion.

First, direct-to-indirect transport is computed within each shape as described in Sec

tion 5.2.2. Next, direct-to-indirect transport is propagated from each shape to all others.

To do so, at level creation time MRT quickly computes a shape connectivity graph and,

for each shape, concatenates light-transport operators, which progressively propagate the

lighting to all affected shapes. A handful of low-dimensional operators, precomputed for
each interface of a shape, map b coefficients for a shape to a low-dimensional lightfield at

the interface. Additional precomputed operators map basis-radiance at the lightfields back

onto the surfaces of adjacent shapes.

DRT additionally models the effects of finer-scale occlusions and interreflections (Sec

tion 5.3), introducing delta occlusion operators, delta reflection operators, and clutter gather

operators (Sections 5.3.1, 5.3.2, and 5.3.3) to update block and clutter lightmaps. The later

stages of our approach either output lightmaps over the clutter objects lc or directly update

the scene lightmap lind.

5.3 Indirect Occlusions and Interreflections
Given an empty scene composed of blocks with implicit lighting environments Limp

(computed with MRT), as well as the clutter geometry for the scene, we define new low

dimensional operators to capture the indirect shadows and interreflections from the additional

clutter objects. We also need new operators to bounce light from the scene back onto the
clutter. MRT uses volume samples for this last scene-to-clutter lighting, whereas we will more

accurately and explicitly model this transport with clutter gather operators (Section 5.3.3).

Our scene-dependent computation also increases performance (see Section 5.4).

A brute-force solution is to recompute direct light in the scene (including clutter) several

times, regenerate an updated lighting prior P, and finally regenerate the scene’s U b operator.

56

This approach is unnecessarily complex, expensive, and ineffective: direct light on a scene

with clutter has high-frequency shadows from the clutter, requiring more bases (a higher

n) in the lighting prior P, for accurate results. This would reduce MRT’s performance and
generality (“scene-independent” shapes would have to include clutter). However, the resulting

low-frequency indirect occlusions and interreflections motivate an alternative approach.

The operators we define below are applied to clutter at each block; however, the resulting

transport is propagated beyond the current block to all blocks within a predescribed

neighborhood.

5.3.1 Scene O cclusions w ith D elta O cclu sion O perators

We first consider indirect shadows from the clutter onto the scene.

After indirect lighting is computed on the scene surfaces using MRT (ignoring the effects

of clutter), we subtract occlusion from this unshadowed shading similarly to antiradiance [63],

while operating entirely in the existing low-dimensional subspace. To do so, we rely on the

existing implicit lighting to construct the necessary light transport operator, as discussed
below.

Recall that applying the direct-to-indirect operator F to the implicit lighting Limp yields

the U b operator. We require an operator, A U b, to capture (negative) basis light due to

clutter occlusions on the scene surfaces.

We compute A U b directly using Limp, meaning we do not explicitly recompute direct-

to-indirect transport: at each A U b texel in the scene, we shoot many uniformly distributed

shadow rays. Each ray that intersects the clutter corresponds to a direction that will occlude

light. We trace the intersected ray beyond the clutter until it hits a surface in the scene,
where it is weighted by the Limp basis function value associated with the texel at the surface

location. Rays that do not hit the clutter clearly do not contribute to indirect occlusion and

are ignored. The average of all ray values yields the A U b entry for the currently processed

texel (Figure 5.2, left).

Conceptually, the columns of A U b are indirect shadowed basis light patterns, and we

compute shading including indirect clutter shadows using Ub = U b + A U b instead of U b.

This amounts to adding the negative light necessary to account for the indirect shadows
from the clutter.

In practice, we need to address spatial sampling issues arising from resolution mismatches

and misalignments between clutter and scene lightmaps. We discuss this issue in Section 5.4,

as well as our proposed in painting solution (Figure 5.3).

57

Figure 5.3: We inpaint regions inside clutter, ensuring smooth shading around objects
that do not align with the scene lightmap texels. This figure shows the Cornell Box without
(left) and with (right column) inpainting with two types of sampling: nearest neighbor (first
and second row) and bilinear sampling (bottom).

58

5.3.2 In terreflections w ith D elta R eflection O perators

Next, we consider interreflections from the clutter onto the scene.
We note that all the operators we have introduced so far (e.g., Ub) are not parameterized

over the clutter geometry: b-coefficients are only computed from ld defined over the scene’s
surfaces. For example, in the case of indirect shadows from clutter (Section 5.3.1), this

shadowing only depends on the presence of the clutter geometry, not on the value of lighting

over its surface. As such, the indirect shadows are dependent (in a parametric sense, as

opposed to a geometric one) on the b-coefficients.
This is not the case when computing direct-to-indirect (basis-space) transport from the

clutter onto the scene since we must derive new operators to map direct illumination over

the surfaces of the clutter to interreflected light onto the scene. Here, the mere presence of

clutter is not sufficient to parameterize this lighting effect.
As with direct lighting on the scene, direct light on the clutter is computed in a lightmap

and projected into a low-rank basis. We found that using a simple orthonormal basis

(constant radiance over each clutter mesh face) was sufficient for our examples, but for more
complex clutter we could construct a lighting prior to obtain an optimal basis (as in MRT).

In this simplified case, T d^ c is our m x f transformation matrix that projects direct light

into this basis (c-coefficients), where m is the lightmap resolution and f is the number of
clutter mesh faces.

Given this basis over the clutter, we precompute indirect lighting responses on the scene

to any signal represented in the basis (e.g., direct light) over the clutter: at each texel in the
scene lightmap, we shoot many gather rays and intersect against the nearby clutter. These

intersected rays correspond to directions that will bounce light from the clutter onto that

surface location on the scene.
Each gather ray that intersects a clutter object samples the clutter lighting basis and

accumulates diffuse (or vector valued) basis-lighting into our A U c operator (see Figure 5.2,
center). This transport accumulation approach is similar to multibounce PRT transfer

computation [18].
At runtime we compute direct light ld in the clutter lightmap and project it into the

reduced basis. The resulting c-coefficients are used to scale interreflection response textures

(columns of A U c) to yield bounced light from the clutter onto the scene.

5.3.3 In terreflections w ith C lu tter G ath er O pera tor
Lastly, we model interreflections from the scene onto the clutter. Our solution replaces

the volume samples from standard MRT and also supports clutter shadowing and higher

59

sampling densities.
Similarly to delta occlusion maps, we define a C b operator that maps b to indirect

light (in a lightmap) over the clutter. The bounced light clearly depends on the scene’s

b-coefficients, but the output space is defined over the surface of the clutter.
For each row (texel) of Cb, we gather light by tracing rays in all directions from the

current clutter surface point, averaging the rows of Limp associated with each ray hit

locations on the scene surface (Figure 5.2, right). As in Section 5.3.1, rays that do not
intersect the scene do not contribute bounced light.

5.4 Implementation Details
Our simple runtime requires only a handful of small matrix-vector multiplies. Our

additions to the standard MRT runtime are
• Add indirect shadows to the scene’s due to clutter, using the delta occlusion

operator A U b b,
• Compute clutter ld and project to c with T d^ c,
• Add interreflections to the scene’s lind from clutter A U c c,
• Compute interreflections from the scene onto the clutter geometry lc = Cb b.
New response textures, computed using our operators, model changes due to occlusions

/ interreflections to the base shading (computed with standard MRT). We simply blend

these intermediate textures into either the scene (lind) or clutter lightmaps (lc). We outline

the end-to-end algorithm below, as well as details that need to be considered during data
generation.

5.4.1 E n d -to -en d A lg or ith m
Direct illumination is first computed using any standard approach; we use shadow

mapping. Notably, direct illumination must be explicitly computed or mapped to the

spatially subsampled surface locations that are used to parameterize the ld input vector.

Subsampled direct illumination is mapped to low-dimensional indirect lighting coefficients b,
which will drive the remainder of the MRT components of the algorithm, as well as DRT’s

indirect shadows from clutter onto the scene and interreflections from the scene onto clutter.
For each block, indirect lighting is computed, ignoring clutter geometry, using (5.2). Light

between each block (still ignoring clutter) is propagated using low-dimensional light field

propagation operators [75]. MRT also pays careful attention to compute padding regions in

the output lightmaps to avoid visible seems when blocks are connected together.
At this point, DRT computes the A U b, A U c, and C b transport operators, as well as

the T d^ c basis projection matrix.

60

Indirect shadows from the clutter onto the scene are computed as A U b b, after which

we compute (spatially subsampled) direct illumination on the clutter and project it onto the

direct light subspace using T d—c, yielding c-coefficients.
Indirect bounced light between the scene and clutter are computed in the last stages of

DRT. First, interreflections from the clutter onto the scene are computed as A U c c, and

then interreflections from the scene onto the clutter are computed as Cb b.

5.4.2 T ran sport Inpainting

A U b texels corresponding to scene locations inside clutter will have all their rays

intersecting a clutter object, and the resulting transport will be incorrect.3 In order to

populate these texels with meaningful transport entries, we average transport from all valid
(e.g., not inside clutter) neighboring texels. Note that, when inpainting from valid neighbor

entries, we average Ub entries and then subtract the unshadowed U b of the destination texel,

instead of averaging A U b entries. Other inpainting methods, e.g., gradient interpolation

schemes, are also suitable; however, our simpler approach yields pleasing results (Figure 5.3).
It is possible that inpainting can fail if there are no samples with valid A U b entries nearby

(e.g., with high frequency geometry), but we did not encounter this limitation in our test

scenes.

5.4 .3 V ector and V olu m e R esp on se

We also compute vector-valued A U b, A U c, and Cb operators (A U —, A U —, and

C —) to support high-frequency surface details with normal maps. We do so by projecting

basis-space radiance into spherical harmonics (SH) and mapping the SH coefficients into

MRT’s hemispherical basis.

Moreover, we compute a new operator U dyn to map b and c vectors to volumetric SH

radiance probes. We do so by combining the clutter and scene gathers in Section 5.3 and
outputting into a volume texture. These dynamic light probes are applied to animated

objects (e.g., characters) in the scene, capturing shadows and interreflection from the clutter

and scene at minimal performance cost (Figure 5.4).

MRT uses volume probes to shade clutter, but this only captures a subset of the transport

(light bounced from the scene onto clutter) and introduces error (Figure 5.1a). Our clutter

gather operator computes this transport path more accurately (Figure 5.1b) and with higher

performance since radiance is computed directly in the lightmap as opposed to using an SH

3Consider Figure 5.2 (left) if the orange sampling point were inside the grey region.

61

Figure 5.4: MRT (1.5 ms) vs. DRT (2.1 ms): note that the dynamic soldier object is also
shadowed/lit by the clutter/scene, using volume probes. Timings exclude direct lighting,
which took 8.3 ms.

volume probe. For example, Figure 5.1a uses MRT volume probes and Figures 5.1b-d do

not: DRT outperforms MRT in this case as volume texture sampling and SH shading are

avoided.

5.4.4 Settings

Our results use the following settings: 1024 rays per texel to construct our operators,

and 16 x 16 lightmaps on each shape or clutter face. Our runtime data requirements are

similar to MRT: delta occlusion operators (Section 5.3.1), and delta reflection operators
(Section 5.3.2) use 32 x 162 values per face (32 modes for 256 texels). Clutter gather operators

(Section 5.3.3) use fewer modes, requiring 5 x 162 values per clutter face. We illustrate DRT

on simple clutter geometry (five-faced pillars), but we can handle arbitrary clutter objects
as the position and normal samples required for the ray tracing are generated by rasterizing

clutter into UV atlases.

Even in a complex scene with four pillars (partially visualized in Figure 5.4), all of
our new operators require only 0.52MB total additional storage and the application of our

new operators has a negligible cost on the overall shading, especially when direct lighting
computation (using shadow mapping) is included. Updating the operators requires roughly

5 seconds on a 12-core Intel Xeon X5670. We also naively ray trace the same scene shapes

again to account for distant light transport, leading to redundant ray tracing. Optimized

62

ray tracing is left to future work as the additional latency is negligible for, e.g., level design

use cases.

5.5 Discussion
5.5.1 A dvantages

With DRT, we simulate important light transport paths ignored in MRT, allowing clutter

geometry to contribute to indirect illumination in the scene. This increases the accuracy

of the approach, but maintains the high-performance behavior of the overall algorithm.

We avoid brute-force computation of full light transport by exploiting low-dimensional

basis-space lighting parameterized over the scene and clutter, which we use to efficiently

construct our low-rank operators. Once clutter geometry is placed or moved in the scene,
DRT can compute the additional transport operators in just a few seconds (using unoptimized

CPU ray tracing), allowing for fast scene design and shading response. At any time, the

direct lighting can be changed with the indirect illumination updated immediately. As with

MRT, DRT can easily scale to low-end graphics platforms such as the iPad and iPhone.

5.5.2 D isadvantages

DRT introduces scene-dependent computation and data to the original MRT framework,

which can be viewed as a disadvantage; however, this added flexibility allows clutter geometry

to be added to a scene at runtime with light transport updated in only a few seconds. As

discussed in [75], adding more items to the library of precomputed shapes (e.g., to model

clutter geometry) would increase the entropy of the various transport operators, precluding
accurate low-rank approximations.

Given that we use the implicit lighting environment generated without the clutter present

in the scene, indirect light reflected onto the clutter from the scene can suffer from artifacts.

The closest box in Figure 5.1 exhibits this subtle artifact with incorrect shadow colors.

Given the scene-independent precomputed lightmap bases from MRT, DRT’s approach still

computes the most suitable approximation to these basis-space operators. A fundamentally

different approach would be necessary to completely eliminate these artifacts; however, it is
unclear if such an approach would still fit into the scene-independent framework of MRT.

CHAPTER 6

VOLUMETRIC OBSCURANCE1

6.1 Introduction
Generating realistic images is difficult, doing so in real time even more so. There

are methods that attempt to simulate a more complex model for ambient light such as
Obscurance [15] and Ambient Occlusion (AO) [16]. These techniques give a softer and

more realistic look while providing important contact cues. While it is straightforward

to implement these techniques for off-line rendering or static objects and scenes, doing

so for dynamic objects has proven to be difficult. Recent games [28, 29] use screen-space

techniques, but they suffer from performance and undersampling problems. This chapter

builds on those techniques, presenting a method that uses line samples that suffer less from
undersampling than point samples along with an area sampling technique that can generate

plausible results without undersampling issues (see Figure 6.1).

Volumetric Obscurance (VO) at a point P is defined as the integral of an occupancy

Figure 6.1: Demonstration of the similarities between Screen Space Ambient Occlusion
and Volumetric Obscurance. The left image uses 33 point samples and runs at 156 fps. The
middle image uses nine line samples and runs at 210 fps. The rightmost image uses a single
line sample and runs at 240 fps.

1 This chapter was originally published by B. Loos and P.-P. Sloan as Volumetric Obscurance in
ACM Symp. on Interactive 3D Graph. and Games, Washington, DC., 2010 [Online] Available:
http://doi.acm.org/10.1145/1730804.1730829 [79]

http://doi.acm.org/10.1145/1730804.1730829

64

function around P times a compact kernel. The occupancy function is zero for points inside

an object and one otherwise. While this does not correspond to any physical process, or
special case of global illumination like AO, it generates related imagery. Previous work

is effectively computing this integral by point sampling the volume [28, 29]. VO can be

computed more efficiently by using line samples or by querying a simple statistical model of

the scene’s depth buffer. This effectively samples areas of the screen and integrates them

against a volumetric piece of the integral instead of using point samples to estimate the
integral.

6.2 Obscurance and Ambient Occlusion
Obscurance is defined as

A (P) = — I p(d(P,u))cos9du
n J n

where Q is the hemisphere, p is a fall-off function, d is the distance to the first intersection,

9 is the angle between the normal at P and the direction u. The fall-off function should

start at zero and become one at some fixed distance, which enables rays to be traced with a

limited extent. Ambient Occlusion is a special case of obscurance where the fall-off function

is zero for any value besides to (See Figure 6.2). Both these techniques model ambient

illumination. AO is the transfer coefficient that maps direct lighting to outgoing radiance

for a diffuse surface [18]. Sometimes the surface normal is not included, which makes AO

Figure 6.2: An illustration of the three ambient shadowing models. Ambient Occlusion (on
the left) is defined as the ratio of rays emanating from a point on the surface that are able
to escape the scene. Volumetric Obscurance, originally computed using point samples (in
the middle), attempts to replicate this by generating a number of samples around a point on
the surface and using a ratio of points that fall behind the depth buffer. We compute this
volume integral using line samples (on the right), the visible portions of each line (shown in
green) are used to compute the integral.

65

simply the discrete cosine (DC) projection of the visibility function, which can be used with

a triple product to light the surface.2

The primary difficulty in mapping these techniques to the GPU is that the queries are
over ray directions, which does not interact well with the traditional rasterization framework.
These techniques also have the property that they are not separable, which makes combining

the AO from multiple objects more difficult.

where X is a 3D neighborhood around P , and O is an occupancy function, zero if there

is matter at x and one otherwise. The fall-off function p will be defined to be one at P
and possibly falling off to zero at a fixed distance. We have experimented with a constant

function and a quadratic function that falls off to zero at a finite distance, but the differences

are fairly subtle and did not seem to warrant the extra cost. For the remainder of this

chapter we assume p is a constant function.

VO is a volumetric generalization of obscurance and will have the same results when any

ray originating from P intersects a single solid surface. The attenuation function used in

obscurance can be thought of as the integral of the function p used here from t to the extent

of the kernel. There are two primary benefits to this formulation: the contribution of solid
noninterpenetrating objects is separable, which makes it easier to combine dynamic parts of

the scene with static parts that could precompute VO, and computing this integral is more

amenable to GPUs. Both the Crytek [28] and Blizzard [29] techniques effectively use this
formulation.

Instead of using point sampling to numerically compute the integral [28], we use analytic
computations in depth and numeric in the other two dimensions. Given a sphere of constant

size in object space centered at P we compute the analytic integral of the occupancy function

times the depth extent of the sphere at each sample point on a disk.

Given the depth d at a 2D point the occupancy function f (z) is

2The triple product is extremely simple if one of the terms is constant since that term can be factored
out of the integral.

6.3 Volumetric Obscurance
Volumetric Obscurance (VO) is a related quantity defined as

6.3.1 Line Sam pling

66

i , (1 : z < d
f (z > ^ 0 : z > d

f (z) is integrated against the function p, which is defined to be constant over the unit sphere

centered at point P . Because p is constant, this integral is simply

/
zs

f (z)dz = max(min(zs, dr) + zs, 0)

where zs = \A — x2 — y2, dr is the depth of pixel (x, y) mapped into the unit sphere’s
coordinate system, and x and y are carefully sampled points on a unit disk. This is visually

depicted in Figure 6.3, where the integral of the step-function against the z interval is shown.
The samples on the disk allow an estimation of the full volumetric obscurance integral. Line

sampling is more efficient due to the fact that all 2D samples will project to distinct points

in the z-buffer, whereas two point samples may project to the same location (see the two

points a and b along the same line in middle image of Figure 6.2).

A differential change of the camera will cause a differential change of the VO as long

as the depth function is continuous in the neighborhood of the sample. This is not true

when using point sampling techniques.3 This is particularly evident even when blurring the

results using a small number of point samples. While line samples perform better than point

samples, unless the radius is fairly small it still needs an edge aware blur pass.

6.3.2 A rea Sam pling
Instead of point or line sampling the depth buffer, a statistical representation over the

area associated with each sample can be built. This method generates adequate images

using a single sample if darkening creases and corners is all that is desired. Unfortunately,

our area sampling method is not competitive performance wise when using multiple samples.

Figure 6.3: Depth from P is along the horizontal axis. Sphere extents (zs) are in black
and occupancy function is in red. For line sampling (left) the occupancy function is a step
function (see Section 6.3.1) but falls off smoothly for area sampling (right). The statistical
depth model is shown in blue.

3Filion [29] uses a fall off function that is only used when a sample is occluded; this is closer in spirit to
our thickness model.

67

The simplest statistical model is the mean and variance of the depth values over a given

area. As in Variance Shadow Maps [36] this can be computed from the first two moments of

the depth buffer. The average depth, M 1 = E[z], and average squared depth, M2 = E[z2],
can be filtered because the expectation operator E is linear. The mean j is simply Mi, and

the variance o 2 is E[z2] — E[z]2, where o is the standard deviation.
If a large radius or small number of area samples are going to be chosen, reconstruction

artifacts from trilinear interpolation can occur. This can be alleviated by computing

a Gaussian blur on the top level of the mip-map and carefully placing the taps when

downsampling to compensate.
The depth buffer is sampled at each pixel to determine the screen space extent, but all

quantities are mapped to a unit sphere centered at the origin before the integral is computed.

When computing with multiple samples only a single log2 has to be computed; the logs

for the fractional area covered by a sample are precomputed and added to the log for the

entire sphere to determine the level of detail (LOD) each time the depth model needs to be
sampled.

This mip-map is sampled based on the area of a given sample to generate a distribution
of depths over that area. Given this distribution, we compute a simple integral using the

x ,y coordinates of the disk at the center of the area sample. In Figure 6.3 the depth

distribution is modeled as a box function,4 so the visibility function now has two regions
that can contribute to the integral, the leading constant part and linear part. Below are the

equations for computing the integral with a constant attenuation function. zmin and zmax

are the entry and exit points of the sphere at a given point, zo and z1 are the extents of the

linear part of the visibility function intersected with the sphere extents, and a = and
b = —a (j + o) are the coefficients of the line from the integrated visibility function

Vc(zmin, zmax) = zmax zmin

Vc(zo, zi,a, b) = a(z2 — z0)/2 + b(zi — zo)

6.3 .3 T h ickness M o d e l
One of the limitations of all screen space algorithms is that there is no information

about what happens behind the depth buffer. One simple approximation is to assume that
all surfaces have a fixed depth. This can be done by replacing the step function in the

convolution above with some model of occlusion behind the front most surface. Figure 6.4

4The convolution of the distribution with the visibility function results in the complimentary error
function for a Gaussian, which has no closed form solution. We approximate the Gaussian with a box function
with a half-width of one standard deviation

68

Figure 6.4: On the left thickness is not used (177 fps), on the right it is (163 fps). Notice
how the silhouette edges are no longer shadowed when the thickness model is used.

shows a comparison with and without the thickness model. To compute VO using the

thickness model all that is required is to compute the integral twice, once with the usual

visibility function and again with 1 — visibility function shifted back by the fixed thickness.

The results are simply summed.

6 .3.4 In corp ora tin g the Surface N orm al

If a surface normal is available it can be used to restrict the sampling to a hemisphere
instead of a sphere. For point samples [29] this has been done by reflecting the points that

are underneath the hemisphere defined by the surface normal. Line and area sampling can

be modified to compute the depth of the plane defined by the surface normal5 at the x, y
coordinates for the given sample; simply clamp the evaluation of the integral with this

depth. Figure 6.5 shows a comparison between using and not using the normal. Using the

normal allows the capture of finer scale details, even with a moderately large radius. An

intriguing alternative was concurrently proposed in [31], where the sphere sampled is the

largest sphere contained by the hemisphere centered at the point. This also incorporates the

cosine weighted fall-off commonly used in AO techniques.

5Since all the computations are done in the space o f the unit sphere, the plane equation is just the
eye-space surface normal

69

Figure 6.5: Comparison between using and not using the normal in our volumetric
obscurance method. Left: using the normal. Right: no normal is used.

6 .3.5 Sam ple G en eration

Considerable time and effort was spent on generating good sample patterns for line, area,

and point sampling. Initially, we tried using Lloyd relaxation techniques [80], Quasi Monte

Carlo methods, and generating Poisson distributions using dart throwing. The technique

outlined below performed significantly better, particularly at low sample counts.
Solving an electrostatics problem generates good results over the surface of the sphere

[81], we extend this technique to samples inside a sphere and a disk. Since we are computing
integrals, the goal is to have the integral over the Voronoi region of every sample to be equal.

While the electrostatics solution works well on a surface, in a disk or sphere the particles
need to be coerced to stay inside the boundary. Simply adding a charge to the boundary

does not work. Gauss’s law implies that the net force from that charge will always be zero.
Instead we use a ^ repulsion force and optimize the boundary charge to push points toward

the weighted centroid of their Voronoi regions periodically. This process is initialized with

tens of starting point sets generated using Poisson sampling. The net force is reduced until

the error decreases (not applying the force until there is a reduction) and increased otherwise.
The Voronoi regions are computed using a discrete Voronoi diagram with 1283 cells for the

volume and 5122 for the disk. Each disk sample has a weight proportional to the Z extent

on the sphere.6

6The disk is an orthographic projection of a sphere, the integral being computed. Each sample will scale
its line integral by the integral of all the discrete samples in its Voronoi region.

70

As in [28] we randomize our sample sets at every pixel using a random texture. Ex

periments with various sizes of random textures seem to imply that the algorithm is not

sensitive to the size of the texture nor does random texture size seem to have an impact

on performance. For line samples we compute a reflection about a random direction in 2D

instead of 3D; otherwise randomization of point samples and line samples is treated in the
same manner.

It is interesting to note that certain generated sample sets produce much less noise than

those around them (see Figure 6.6). In 3D 6, 12, and 33 samples have extremely low error

compared to sets generated with other numbers of samples. In 2D 5, 7, 9, 13, and 16 samples

have low error when the center is one of the samples, whereas 12, 13, and 15 samples seem

to work optimally if the center is not included. We imagine that these sample sets work

better due to symmetries. For example, 6 and 12 samples in 3D closely match the vertices

of platonic solids.

6.4 Results
6.4.1 P erform a n ce

In Table 6.1 we compare the performance of Crytek’s point sampling method, our line

sampling method, and the Horizon Split Ambient Occlusion (HSAO) technique [30]. These

tests were run on a desktop with an NVIDIA QuadroFX 4800 GPU at a resolution of
1024x1024 using full resolution AO buffers.

The difference in visual quality between Crytek’s point sampling using 12 samples and

line sampling using 5 samples is negligible (see Figure 6.7). In animation tests, small numbers

of samples caused the Crytek method to exhibit temporal aliasing, whereas even with as few
as 5 line samples the temporal aliasing was much less pronounced. Table 6.1 shows similar

visual quality much quicker using line samples with dual-radii results shown in Figure 6.8.

Figure 6.6: Some sample selections turn out to be much better than others. On the left,
you can see that nine line samples create much less noise than ten line samples. On the right
you can see 12 point samples create much less noise than 13 point samples.

71

Table 6.1: Timing Breakdown per pass in milliseconds. The bilateral blur used for each
scene required a median time of 2.23 ms. * Using double radii (see Figure 6.8), not included
in the average

Geometry
Ambient Occlusion

Lines Points
5 9 12 33

HSAO

Dragon 3.39 0.71 1.01 1.18 3.11 51.52
Dragon* 3.39 1.06 1.85 2.44 7.36 N/A
Cornell 0.45 0.71 1.03 1.31 3.55 60.55
Soldiers 2.37 0.54 0.77 1.14 2.32 17.04
Knight 0.27 0.59 0.82 0.97 2.52 29.13

Average 0.64 0.91 1.15 2.87 39.56

Figure 6.7: Line samples produce better quality results in less time. The left image shows
four point samples (0.84 ms), the middle image shows five line samples (0.87 ms), and the
right image shows twelve point samples (1.77 ms).

Figure 6.8: When small radii are used, fine features can be captured, but contact shadows
and other large scale features are lost. By using dual radii both sets of features can be
captured for more pleasing results. The left image uses a small radius (127 fps), the middle
image uses a large radius (112 fps), and the right image uses both (95 fps)

CHAPTER 7

FUTURE WORK

There are a few main directions that we could take this research in the future. One, we

could create a set of modeling tools to put this technique in the hands of artists. Two, we

could study the availability of creating new tools to allow more direction of the bases created

for the dictionary pieces. Third, we could study the integration of MRT and other AO

methods used in game production (such as [82]). Lastly, we could do additional mathematical

work to create a method that would allow us to recreate more high-frequency signals along
with the low-frequency lighting.

7.1 Modeling Tools
We implemented a prototype of this technology into the pipeline at Black Rock Studios.

We added the ability to add MRT geometry to an existing scene using their Tomcat tool,
which allowed a real-time visualization of the indirect lighting using our dictionary pieces.

Our experience there and at other video game studios have shown us that artists already

generate multiple sets of geometry for things such as physics, AI, and other subsystems.
Tools to create the required block maps for MRT should be easy to create.

The portions of this work that would generate new research are automated methods

to map block maps to already existing world geometry. Due to the limited options with
our simple block dictionary this automation might actually be possible. However, if more

complicated shapes were used, it might be possible to integrate the physics and AI geometry
as well, unifying the systems and making it more likely to use the MRT method in actual

game play.

7.2 Directability
Another avenue for future work is the ability to artistically modify the basis functions to

achieve a desired look. Most lighting tools used for entertainment require changes that look

good, which may not be physically plausible. Currently, our technique only attempts to

73

reproduce the lighting as defined by the geometry. However, this is not a requirement. As is
shown with our basis enrichment (see Appendix A) other signals can be incorporated into

the bases. It would be an interesting series of future experiments to find tools that would
allow artists to modify the bases to generate a specific look, or feature at a high level. This

would most likely require good artist tools first (see Section 7.1).

7.3 Real-time AO and Global Illumination
Some current methods for generating large scale, low frequency, world space ambient

occlusion for video games store data per vertex, sometimes requiring large sets of data. If
there were a way to integrate AO with the DRT calculations, we might be able to generate

pleasing results and save some per-vertex data as is done in [82] and [83]

7.4 High Frequency Indirect Lighting
Our current MRT and DRT methods are for generating fairly low-frequency data that

would not be appropriate for specular lighting (a high-frequency signal not covered by our
new SSAO technique). Lighting models in video games are getting much of their inspiration

from physically based systems. Beginning with Burley [84] many other games (such as

Assassin’s Creed Unity, The Order: 1886, and others) are starting to use physically based

shading, of which specularity is a very important part. Other methods, such as Crassin et

al. [55], allow high frequency indirect lighting. Either modifications to our MRT algorithm
or an additional algorithm to calculate high frequency indirect lighting would make this

solution more tenable in future video games.

CHAPTER 8

CONCLUSION

In this dissertation we have introduced a novel method of reproducing an approximation

to low-frequency global illumination in real time. We believe this work has shown that

global illumination can be decomposed, calculated on simple shapes, and then reconstructed.

Our method has been split into three parts to transmit indirect illumination (Chapter

3) and block indirect illumination (Chapter 5), as well as improve the signal with higher

frequency visibility calculations (Chapter 6). These three methods calculate a new set of

basis functions that allow us to map a simplified, approximate, indirect lighting solution
onto a dense geometric level in real time.

Modular Radiance Transfer creates a small, level-independent set of preprocessed data

that is used to generate indirect lighting, which is then remapped onto actual geometry as a
light map. While the result is only an approximation to the real indirect lighting that would

occur on the actual geometry, the lighting it generates is a plausible, real time signal, which

could be used in video games in the near future.

Delta Radiance Transfer is a method that uses a similar set of bases defined to block

indirect lighting in the spirit of Antiradiance [63]. This method integrates well with Modular

Radiance Transfer by using the same set of basis coefficients, allowing us to tightly integrate
the two methods to generate even more plausible, but still approximate, real-time indirect
lighting.

To aid in ameliorating the visual signal, we also present Volumetric Obscurance. This

method allows us to add additional higher frequency visibility calculations to calculate

screen space ambient occlusion (SSAO). Our method uses fewer samples but gives us

smoother results than traditional point sampled volumes. These results, when added to our
low-frequency MRT and DRT signals, gives a pleasing, real-time indirect illumination signal

that can aid in the realism of video game scenes, where a more robust physics simulation
requires too much time and memory.

Our methods of generating a better basis function for complex phenomena has also

75

been applied in areas other than rendering. They have been used to simplify fluid dynamic

calculations [68] as well as attempting to improve sound propagation [67].

Real-time Global Illumination is the next frontier in real-time gaming. We are starting
to see commercial games engines (Unreal Engine 4, Fox Engine, Snowdrop Engine, RAD

Engine 4.0, AnvilNext) move towards physically based rendering, following in the footsteps

of the film industry. Even in current engines with deferred rendering, we see large overdraw

counts as artists attempt to simulate indirect illumination bounces using many lights. In film,

lighting rigs began to get so complex that when a new artist was assigned to a given shot,

all previous lighting work was discarded due to the complexity of the lighting setup. While
games have not yet reached that level of lighting complexity, other performance metrics may

soon dictate a new way of lighting, a method that integrates a more holistic approach to
indirect lighting.

APPENDIX A

BASIS ENRICHMENT

When constructing the direct light (P) or interface (Hrif) priors, some functions are

not well represented in the reduced space: e.g., direct light with shadows cast by objects

not present during the computation of { ld0, . . . , ldm} indirect light U b vectors for multiple

bounces, and blocks of almost a single color (see Figure A.1). To model targeted effects, we

can enrich our basis.

Given bases stored in columns of matrices, we first rescale the matrices to have a
prescribed Frobenius norm, then concatenate the matrices into a larger matrix with the

same number of rows and compute the SVD, retaining the left singular vectors and singular
values (optionally). This new prior better spans all subspaces.

To generate a new prior for blocks, we equally weight the scaled prior P S from Section

3.3, fall back basis functions that are constant on one face and zero on others to approximate

changes from shadows/albedo and indirect lighting represented by Ub.

For interfaces, lightfield-to-lightfield operators {R^, R|, R^} can generate output outside

of Hrif’ s space. In this case, we compute the reduced basis response through these operators,

yielding a temporary basis Ltemp and balance with Hrlf generating a new basis Hrlf. The

new basis better captures functions from both spaces; repeated enrichment is used to handle
multiple propagation steps (or bounces.)

77

Figure A.1: A box has five red and one white face. Without enrichment, red faces bounce
all colors onto the white face, which is incorrect.

APPENDIX B

QUADRATIC SH TO HEMISPHERICAL
LINEAR SH

We present an alternative to vector irradiance: a closed-form solution for the optimal

hemispherical projection of quadratic irradiance back into a linear (vector) model. This

effectively models the higher frequency energy that “bleeds” into the linear band after

clamping reflectance response to the upper hemisphere. We solve for linear-SH coefficients

that minimize the difference, over the hemisphere, between quadratic (L2) and linear (Li)
expansions of radiance,

E = [[L2(w) — Li(w)]2dw
Jh

- 2

dw (B.1)
'H

9 4
yj (w) — Y 1 ai yi(w)

j=i i=i

where H is the hemispherical domain, ai (unknowns) and bj (knowns) are order-2 and order-3
SH coefficients, and we single index the SH basis functions, yk(w). Setting the derivative of

error with respect to the unknowns to zero and solving yields

dE [dLi(w)
^ = 2 I [L2 (w) — Li(w)] dL0 Wl dw = 0
dak Jh2 dak

9 4
0 = 2 V bj yj (w)yk (w)dw — 2 V] ai yi(w)yk (w)dw (B.2)

Jn “ T jh
bj y j(w)yk(w)dw — 2 ai

j=i Jh i=i JH

which we express in matrix form: H i a = H 2 b, where the 4 x 4 matrix [Hi]^ =

J^y-i(w)yk(w)dw and the 4 x 9 matrix [H2]jk = yj(w)yk(w)dw. The top 4 x 4 block of
H 2 is H i , and an analytic expression for a is

a = H i- i H 2 b = {bi — cibz, b2 + C2be, b3 + C3bz, b4 + C2 bg} (B.3)

where ci = 3^5/4, c2 = 3^5/8, c3 = a/ 15/2. The H4 basis [85] and OHLSH span the same

space.

REFERENCES

[1] H. W. Jensen, Realistic Image Synthesis Using Photon Mapping. Natick, MA: A. K.
Peters, Ltd., 2001.

[2] F. E. Nicodemus et al., Geometrical Considerations and Nomenclature for Reflectance.
Washington, DC: National Bureau of Standards, 1977.

[3] A. S. Glassner, Principles of Digital Image Synthesis. San Francisco, CA: Morgan
Kaufmann Publishers Inc., 1994.

[4] J. T. Kajiya, “The rendering equation,” in Proc. 13th Ann. Conf. Computer Graphics
and Interactive Techniques, ser. SIGGRAPH ’86. New York, NY: ACM, 1986, pp.
143-150. [Online]. Available: http://doi.acm.org/10.1145/15922.15902

[5] G. W. Romney, “Computer assisted assembly and rendering of solids,” Ph.D. disserta
tion, The Uni. Utah, Salt Lake City, UT, 1969, aAI7003776.

[6] J. E. Warnock, “A hidden surface algorithm for computer generated halftone pictures,”
Ph.D. dissertation, Univ. Utah, Salt Lake City, UT, 1969, aAI6919002.

[7] M. E. Newell, R. G. Newell, and T. L. Sancha, “A solution to the hidden surface problem,”
in Proc. of the ACM Ann. Conf. - Volume 1, ser. ACM ’72. New York, NY: ACM,
1972, pp. 443-450. [Online]. Available: http://doi.acm.org/10.1145/800193.569954

[8] T. Whitted, “An improved illumination model for shaded display,” in Proc. 6th ann.
conf. Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’79. New York,
NY: ACM, 1979. [Online]. Available: http://doi.acm.org/10.1145/800249.807419

[9] R. L. Cook, T. Porter, and L. Carpenter, “Distributed ray tracing,” in
Proc. 11th Ann. Conf. Computer Graphics and Interactive Techniques, ser.
SIGGRAPH ’84. New York, NY: ACM, 1984, pp. 137-145. [Online]. Available:
http://doi.acm.org/10.1145/800031.808590

[10] E. Lafortune, “Mathematical models and Monte Carlo algorithms for physically based
rendering,” Katholieke Universiteit Leuven, Leuven, Belgium, Tech. Rep., 1996.

[11] E. Veach and L. J. Guibas, “Metropolis light transport,” in Proc. 24th Ann. Conf.
Computer Graphics and Interactive Techniques, ser. SIGGRAPH ’97. New York, NY:
ACM Press/Addison-Wesley Publishing Co., 1997, pp. 65-76. [Online]. Available:
http://dx.doi.org/10.1145/258734.258775

[12] C. M. Goral, K. E. Torrance, D. P. Greenberg, and B. Battaile, “Modeling the
interaction of light between diffuse surfaces,” in Proc. 11th Ann. Conf. Computer
Graphics and Interactive Techniques, ser. SIGGRAPH '84. New York, NY: ACM,
1984, pp. 213-222. [Online]. Available: http://doi.acm.org/10.1145/800031.808601

http://doi.acm.org/10.1145/15922.15902
http://doi.acm.org/10.1145/800193.569954
http://doi.acm.org/10.1145/800249.807419
http://doi.acm.org/10.1145/800031.808590
http://dx.doi.org/10.1145/258734.258775
http://doi.acm.org/10.1145/800031.808601

80

[13] H. E. Rushmeier and K. E. Torrance, “Extending the radiosity method to include
specularly reflecting and translucent materials,” ACM Trans. Graphics, vol. 9, pp. 1-27,
1990.

[14] I. Georgiev, J. Krivanek, T. Davidovic, and P. Slusallek, “Light transport simulation with
vertex connection and merging,” ACM Trans. Graph., vol. 31, no. 6, pp. 192:1-192:10,
Nov. 2012. [Online]. Available: http://doi.acm.org/10.1145/2366145.2366211

[15] S. Zhukov, A. Inoes, and G. Kronin, “An ambient light illumination model,” in Rendering
Techniques. Vienna, Austria: Springer-Verlag, 1998.

[16] H. Landis, “Global illumination in production,” ACM SIGGRAPH 2002 Course #16
Notes, July.

[17] G. Miller, “Efficient algorithms for local and global accessibility shading,” in Proc.
SIGGRAPH 1994, ser. Computer Graphics Proceedings, Ann. Conference Series,
A. Glassner, Ed., ACM SIGGRAPH. ACM Press, Jul. 1994, pp. 319-326.

[18] P.-P. Sloan, J. Kautz, and J. Snyder, “Precomputed radiance transfer for real-time
rendering in dynamic, low-frequency lighting environments,” ACM Trans. Graph.,
vol. 21, no. 3, 2002.

[19] J. Lehtinen, “A framework for precomputed and captured light transport,” ACM Trans.
Graph., vol. 26, no. 4, 2007.

[20] Z. Ren, R. Wang, J. Snyder, K. Zhou, X. Liu, B. Sun, P.-P. Sloan, H. Bao, Q. Peng,
and B. Guo, “Real-time soft shadows in dynamic scenes using spherical harmonic
exponentiation,” ACM Trans. Graph., vol. 25, no. 3, pp. 977-986, Jul. 2006.

[21] P.-P. Sloan, N. K. Govindaraju, D. Nowrouzezahrai, and J. Snyder, “Image-based
proxy accumulation for real-time soft global illumination,” in Proc. Pac. Conf. Comput.
Graph. Appl. Washington, DC, USA: IEEE Computer Society, 2007, pp. 97-105.
[Online]. Available: http://dx.doi.org/10.1109/PG.2007.35

[22] M. Bunnell, “Dynamic ambient occlusion and indirect lighting,” in GPU Gems
2: Programming Techniques for High-Performance Graphics and General-Purpose
Computation, M. Pharr, Ed. Boston, MA: Addison-Wesley Professional, 2005.

[23] J. Kontkanen and S. Laine, “Ambient occlusion fields,” in ACM Symp. Interactive 3D
Graphics and Games. New York, NY: ACM, 2005, pp. 41-48.

[24] P. Shanmugam and O. Arikan, “Hardware accelerated ambient occlusion techniques on
gpus,” in ACM Symp. Interactive 3D Graphics and Games. New York, NY: ACM,
2007, pp. 73-80.

[25] M. McGuire, “Ambient occlusion volumes,” Williams College, Williamstown, MA, Tech.
Rep., 2009.

[26] J. Kontkanen and T. Aila, “Ambient occlusion for animated characters,” in Rendering
Techniques 2006 (Eurographics Symp. Rendering), T. A.-M. Wolfgang Heidrich, Ed.
Eurographics, Jun. 2006. [Online]. Available: http://www.tml.hut.fi/ janne/aoc

[27] A. G. Kirk and O. Arikan, “Real-time ambient occlusion for dynamic character skins,”
in ACM Symp. Interactive 3D Graphics and Games, Seattle, WA, April 2007.

http://doi.acm.org/10.1145/2366145.2366211
http://dx.doi.org/10.1109/PG.2007.35
http://www.tml.hut.fi/

81

[28] M. Mittring, “Finding next gen: Cryengine 2,” in SIGGRAPH Courses, San Diego, CA,
2007, pp. 97-121.

[29] D. Filion and R. McNaughton, “Effects & techniques,” in SIGGRAPH Classes, Los
Angeles, CA, 2008, pp. 133-164.

[30] L. Bavoil et al., “Image-space horizon-based ambient occlusion,” in SIGGRAPH Talks,
Los Angeles, CA, 2008.

[31] L. Szirmay-Kalos et al., “Volumetric ambient occlusion,” IEEE Comput. Graph. Appl.,
vol. 30, no. 1, pp. 70-79, Feb. 2010.

[32] N. Smedberg and D. Wright, “Rendering techniques in Gears of War 2,” in Game
Developers Conf., San Francisco, CA, 2009.

[33] D. Nehab et al., “Accelerating real-time shading with reverse reprojection caching,” in
Graph. Hardware, San Diego, CA, 2007.

[34] T. Luft et al., “Image enhancement by unsharp masking the depth buffer,” in ACM
SIGGRAPH Papers, Boston, MA, 2006, pp. 1206-1213.

[35] B. Gooch et al., “Interactive technical illustration,” in ACM Symp. Interactive 3D
Graph., Atlanta, GA, 1999, pp. 31-38.

[36] W. Donnelly and A. Lauritzen, “Variance shadow maps,” in Proc. Symp. Interactive
3D Graph. and Games, Redwood City, CA, 2006, pp. 161-165.

[37] A. Lauritzen and M. McCool, “Layered variance shadow maps,” in Proc. Graph.
Interface, Toronto, ON, 2008, pp. 139-146.

[38] A. Pesce, Variance methods for Screen-Space Ambient Occlusion in ShaderX7, 2009, ch.
6.7.

[39] T. Ritschel et al., “Approximating dynamic global illumination in image space,” in
Proc. ACM Symp. Interactive 3D Graph. and Games, Boston, MA, 2009, pp. 75-82.

[40] S. Parker et al., “Interactive ray tracing,” in ACM Symp. Interactive 3D Graph., Atlanta,
GA, 1999, pp. 119-126.

[41] I. Wald et al., “Interactive rendering with coherent ray tracing,” in Comput. Graph.
Forum Proc. EUROGRAPHICS, vol. 20, no. 3, 2001, pp. 153-164.

[42] T. J. Purcell et al., “Ray tracing on programmable graphics hardware,” ACM Trans.
Graph., vol. 21, no. 3, pp. 703-712, July 2002.

[43] R. Wang et al., “An efficient gpu-based approach for interactive global illumination,”
ACM Trans. Graph., vol. 28, no. 3, 2009.

[44] D. Kopta et al., “Fast, effective bvh updates for animated scenes,” in Proc. ACM
SIGGRAPH Symp. Interactive 3D Graph. and Games, Costa Mesa, CA, 2012, pp.
197-204.

[45] A. Keller, “Instant radiosity,” in Proc. Conf. Comput. Graph. and Interactive Techs.,
Los Angeles, CA, 1997, pp. 49-56.

82

[46] C. Dachsbacher and M. Stamminger, “Reflective shadow maps,” in Proc. Symp.
Interactive Graph. and Games, 2005, pp. 203-231.

[47] C. Dachsbacher and M. Staminger, “Splatting indirect illumination,” in Proc. Symp.
Interactive 3D Graph. and Games, Redwood City, California, 2006, pp. 93-100.

[48] T. Ritschel et al., “Imperfect shadow maps for efficient computation of indirect
illumination,” ACM Trans. Graph., vol. 27, no. 5, pp. 129:1-129:8, Dec. 2008.

[49] P. Guerrero et al., “Real-time indirect illumination and soft shadows in dynamic scenes
using spherical lights,” in Comput. Graph. Forum, vol. 27, no. 8, 2008, pp. 2154-2168.

[50] R. Ramamoorthi, “Precomputation-based rendering,” Foundations Trends Comput.
Graph. Vision, vol. 3, no. 4, 2009.

[51] A. W. Kristensen et al., “Precomputed local radiance transfer for real-time lighting
design,” ACM Trans. Graph., vol. 24, no. 3, 2005.

[52] A. Kaplanyan and C. Dachsbacher, “Cascaded light propagation volumes for real-time
indirect illumination,” in Proc. ACM SIGGRAPH Symp. Interactive 3D Graph. and
Games, Washington, DC, 2010, pp. 99-107.

[53] M. Hasan et al., “Direct-to-indirect transfer for cinematic relighting,” ACM Trans.
Graph., vol. 25, no. 3, 2006.

[54] S. Martin and P. Einarsson, “A real-time radiosity architecture for video games,”
SIGGRAPH Courses: Advances in Real-Time Rendering in 3D Graphics and Games,
Vancouver, BC, 2010.

[55] C. Crassin et al., “Interactive indirect illumination using voxel cone tracing,” Comput.
Graph. Forum, vol. 30, no. 7, sep 2011.

[56] G. McTaggart, “Half-Life 2 source shading,” in Game Developers Conf., San Francisco,
CA, 2004.

[57] H. Chen, “Lighting and Materials of Halo 3,” in Game Developers Conf., San Francisco,
CA, 2008.

[58] M. Meyer and J. Anderson, “Statistical acceleration for animated global illumination,”
ACM Trans. Graph., vol. 25, no. 3, 2006.

[59] I. Ashdown, “Eigenvector radiosity,” Master’s thesis, Dept. Comp. Sci., Univ. British
Columbia, April 2001.

[60] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. Conf. Computer Graph.
and Interactive Techniques, New Orleans, LA, 1996, pp. 31-42.

[61] S. J. Gortler et al., “The lumigraph,” in Proc. Conf. Comput. Graph. and Interactive
Techniques, New Orleans, LA, 1996, pp. 43-54.

[62] G. Greger et al., “The irradiance volume,” IEEE Comput. Graph. Appl., vol. 18, no. 2,
pp. 32-43, Mar. 1998.

[63] C. Dachsbacher et al., “Implicit visibility and antiradiance for interactive global
illumination,” ACM Trans. Graph., vol. 26, no. 3, 2007.

83

[64] Z. Dong et al., “Interactive global illumination using implicit visibility,” in Pacific Conf.
Comput. Graph. and Appl. Maui, HI: IEEE Computer Society, 2007, pp. 77-86.

[65] M. Stanton et al., “Non-polynomial galerkin projection on deforming meshes,” ACM
Trans. Graph., vol. 32, no. 4, pp. 86:1-86:14, Jul. 2013.

[66] D. A. Calian et al., “The shading probe: Fast appearance acquisition for mobile ar,”
SIGGRAPH Asia Tech. Briefs, pp. 20:1-20:4, 2013.

[67] L. Antani and D. Manocha, “Aural proxies and directionally-varying reverberation for
interactive sound propagation in virtual environments,” IEEE TVCG, vol. 19, no. 4,
Apr. 2013.

[68] D. Gerszewski et al., “Enhancements to model-reduced fluid simulation,” Proc. Motion
in Games, pp. 201:223-201:228, Nov. 2013.

[69] R. R. Lewis and A. Fournier, “Light-driven global illumination with a wavelet
representation of light transport,” Univ. British Columbia, Vancouver, BC, Canada,
Tech. Rep. FTR-95-28, 1995.

[70] M. Wicke, M. Stanton, and A. Treuille, “Modular bases for fluid dynamics,” ACM
Trans. Graph., vol. 28, no. 3, 2009.

[71] H. Xu, Q.-S. Peng, and Y.-D. Liang, “Accelerated radiosity method for complex
environments,” in Eurographics, 1989, pp. 51-61.

[72] G. Nichols and C. Wyman, “Multiresolution splatting for indirect illumination,” in
Proc. Symp. Interactive 3D Graph. and Games, Boston, MA, 2009, pp. 83-90.

[73] G. Nichols et al., “Hierarchical image-space radiosity for interactive global illumination,”
Comput. Graph. Forum, vol. 28, no. 4, 2009.

[74] D. Larsson and H. Halen, “The unique lighting of Mirror’s Edge,” in Game Developers
Conf., San Francisco, CA, 2009.

[75] B. J. Loos et al., “Modular radiance transfer,” in Proc. SIGGRAPH
Asia Conf., Hong Kong, China, 2011, pp. 178:1-178:10. [Online]. Available:
http://doi.acm.org/10.1145/2024156.2024212

[76] B. Loos et al., “Runtime implementation of modular radiance transfer,” in
ACM SIGGRAPH Talks, Vancouver, BC, 2011, pp. 59:1-59:1. [Online]. Available:
http://doi.acm.org/10.1145/2037826.2037905

[77] P. Shirley and K. Chiu, “A low distortion map between disk and square,” J. Graph.
Tools, vol. 2, no. 3, pp. 45-52, Dec. 1997.

[78] B. J. Loos et al., “Delta radiance transfer,” in Proc. ACM SIGGRAPH Symp.
Interactive 3D Graph. and Games, Costa Mesa, CA, 2012, pp. 191-196. [Online].
Available: http://doi.acm.org/10.1145/2159616.2159648

[79] B. J. Loos and P.-P. Sloan, “Volumetric obscurance,” in Proc. ACM SIGGRAPH Symp.
Interactive 3D Graph. and Games, Washington, DC, 2010, pp. 151-156. [Online].
Available: http://doi.acm.org/10.1145/1730804.1730829

[80] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory, vol. IT-28,
no. 2, pp. 129-137, Mar. 1982.

http://doi.acm.org/10.1145/2024156.2024212
http://doi.acm.org/10.1145/2037826.2037905
http://doi.acm.org/10.1145/2159616.2159648
http://doi.acm.org/10.1145/1730804.1730829

84

81] V. Bulatov, “Point repulsion newsgroup posting,” 1996. [Online]. Available:
http://www.math.niu.edu/ rusin/known-math/96/repulsion

82] P.-P. Sloan et al., “Ambient obscurance baking on the GPU,” in SIGGRAPH Asia
Tech. Briefs, Hong Kong, China, 2013, pp. 32:1-32:4.

83] L. Kavan et al., in Proc. Eurographics Conf. Rendering, Prague, Czech Republic, 2011,
p p .1319-1326.

84] B. Burley, “Physically-based shading at disney,” in ACM SIGGRAPH Courses, Los
Angeles, CA, 2012.

85] R. Habel and M. Wimmer, “Efficient irradiance normal mapping,” in Proc. ACM
SIGGRAPH Symp. Interactive 3D Graph. and Games, Washington, DC, 2010, pp.
189-195.

http://www.math.niu.edu/

