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In a ballistic two-dimensional electron gas, the Landau damping does not lead to plasmon attenuation in a 
broad interval of wave vectors q & k p . Similarly, it does not contribute to the optical conductivity <r(&>, q ) in 
a wide domain of its arguments, EF q F , where EF , kF , and F are, respectively, the Fermi energy, 
wave vector, and velocity of the electrons. We identify processes that result in the plasmon attenuation in the 
absence of Landau damping. These processes are: the excitation of two electron-hole pairs, phonon-assisted 
excitation of one pair, and a direct plasmon-phonon conversion. We evaluate the corresponding contributions 
to the plasmon linewidth and to the optical conductivity.
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I. INTRODUCTION

Because of the long-range nature of the Coulomb interac
tion, the energy of a plasmon propagating in an electron gas 
exceeds greatly the energy of an electron-hole excitation at 
the same wave vector q , provided that q  is smaller than the 
Fermi wave vector kp . This remains true in any dimension
ality, including the case of a two-dimensional electron gas 
2DEG , for which the plasmon spectrum is gapless,

(X)q-Vp (D

here p  is the Fermi velocity, 2m e 2/ * is the inverse 
screening radius, m is the effective electron mass, and * is 
the dielectric constant of the host material. Hereinafter, we 
use the units with 1. High plasmon velocity, d  q / d q

p  , prevents plasmon from decaying into an electron-hole 
pair and makes the Landau damping exponentially small at 
low temperatures. Therefore, the leading contribution to the 
plasmon attenuation of a purely electronic nature comes 
from the plasmon decay into two electron-hole pairs.1 Two 
such pairs propagating in opposite directions can carry large 
energy while having a negligible total momentum.

In 2DEG formed in semiconductor heterostructures, there 
are additional channels for plasmon attenuation. The energy- 
and momentum-conservation conditions can also be satisfied 
for processes in which a plasmon creates an electron-hole 
pair and a phonon, rather than two electron-hole pairs. We 
will call an attenuation due to such processes a phonon-  
ass is ted  Landau damping  since it involves a single electron- 
hole pair. The effectiveness of this process is increased by a 
large phase space for the emission of phonons in the bulk of 
a semiconductor.

Yet another possibility of the plasmon attenuation in a 
heterostructure arises from a conversion of the plasmon into 
an acoustic phonon via a virtual electron-hole pair. Such a 
process is feasible due to the absence of momentum conser
vation in the direction perpendicular to the 2DEG plane ( z 
direction. This makes it possible to satisfy energy and in

plane momentum-conservation conditions for a process in 
which a plasmon is converted into a phonon with appropriate 
value q z of the momentum along z  axis: (aq =  s ^ q 2 + q 2z , 
where s is the sound velocity. Note that processes involving 
optical phonons can be safely neglected as they have large 
energy thresholds (typically 35-50 meV).

In the present paper, we analyze the above mentioned 
inelastic processes leading to plasmon attenuation, and do 
not consider the effect of impurities, assuming 2DEG suffi
ciently clean. In Sec. II the plasmon broadening due to 
plasmon-phonon conversion is discussed. The conversion is 
mediated by a virtual electron-hole pair with a rate indepen
dent of temperature. In subsequent sections we discuss scat
tering processes leading to the creation of real electron-hole 
pairs in the final state: in Sec. III the probability for plasmon 
scattering into a phonon and an electron-hole pair is derived. 
In Sec. IV we evaluate the rate of plasmon decay into two 
electron-hole pairs. In Sec. V we compare the considered 
mechanisms with each other.

II. PLASMON-PHONON CONVERSION

The Hamiltonian of the 2DEG interacting with phonons 
has the form,

2

2m i> j £* Ix,- — x j
■ 2i

d 3 k

( 2 ^ )3

X x (k ) - k
x  , --(cxke !"xk klxi+c.c.),

2
2

k

where the second quantization representation for phonon 
variables and coordinate representation for electron variables 
are used. The second term in Eq. 2 stands for the electron- 
electron interaction and the last term describes interaction of 
two-dimensional electrons with three-dimensional phonons: 
M k( k) is the coupling function for the Xth phonon branch,

2e
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FIG. 1. The Dyson equation for the propagator of the scalar 
potential (shown by the bold wavy line) in the lowest order in the 
electron phonon interaction. The thin wavy line stands for the 
propagator evaluated in the conventional RPA approximation, 
U(ft),q ) = Vq/[1 — Vqx (« ,q )], the zigzag line represents the pho- 
non Green function, the loop stands for the electron polarization 
operator ^(w, q ).

c kk are the phonon annihilation operators, k|| denotes the 
in-plane component of the phonon wave vector k, and p is 
the density of the crystal. For simplicity, we assume an iso
tropic phonon spectrum wxk= s kk .

The electron-phonon interaction in semiconductor hetero
structures is mainly due to the deformation potential both 
Si- and GaAs-based structures and piezoelectric coupling 
(GaAs structures). The deformation potential,2-4

M 2 (  k )  =  3 2( k 2 +  k2), (3)

e ( i o , q ) / e *  =  l - V qx ( ( - o , q ) - V qx 1((-o,q)'2l J 
M \ (  q , q z)

(6)

The plasmon spectrum &>= coq — i y q is determined by a zero 
of the dielectric function 6 . The imaginary part q origi
nates from the poles of the phonon propagator at those val
ues of momentum q z which satisfy the energy-conservation 
condition, ioq= s k ^Jq2 +  q 2z. After simple calculation, with 
the use of the condition qz q / s  q , we obtain

q

2 2  m q  v F
(7)

The deformation potential interaction yields the contribution 
to the plasmon linewidth,

2 2 2 
TTVd q Vf

(8)

couples electrons to the longitudinal (l) acoustic phonons 
only, being the deformation potential constant.

Piezoelectric interaction present in GaAs heterostruc
tures couples electrons both to longitudinal and transverse 
(0 phonons,5-7

Here tos = k Fsi is the characteristic phonon frequency, and

, nk \ , 
M i ( k )  =  2 ( e h l4)2- l6 \  

k

f 9 
4v k2k2 , k = i

4
k4+ g  k 4 , A.=

Here we utilized the conventional notation for the coupling 
constant h 14. In contrast to the deformation potential inter
action Eq. 3 , piezoelectric coupling does not vanish in the 
long-wavelength limit k 0.

The plasmon dispersion is determined by the solution of 
the equation s(&>, q  ) /s * = 1  — Vq ̂ (&>, q  ) = 0. Here V q 
=  h r e 2/ ( q s *) stands for the Fourier transform of the Cou
lomb interaction. The electron polarization operator in the 
random phase approximation (RPA) is given by

,q p— q
( 2 V ) 2 w + £p-q-£p  + i v  ’

(5)

where n p is the Fermi-Dirac distribution function. In the 
plasmon frequency range ( q F) the polarization operator 
can be approximated by ( ,q ) m q 2 2F/(2  2), leading 
to the plasmon spectrum, Eq. 1 .

To find the lowest order in electron-phonon interaction 
correction to the dielectric function, one needs to solve the 
equation for the longitudinal electric field propagator, see 
Fig. 1. The resulting dielectric function is

2d
mkF

2 tt2P s i
9

is the dimensionless coupling constant for the deformation 
potential interaction.

The piezoelectric coupling, contrary to the deformation 
potential, remains finite in the long-wavelength limit. There
fore, when present, the former often leads to much stronger 
effects than the latter. However, the piezoelectric contribu
tion into the width 7 is strongly reduced due to the fact that 
the plasmons emit phonons almost perpendicular to the 
2DEG plane, q s / q 1. According to Eq. 4 , the piezo
electric coupling is stronger for the transverse phonons. 
However, the corresponding contribution to the width Eq. 7 
is still small compared to the deformation potential contribu
tion Eq. 8 , by a factor of ( s / F)4 1.

Rate of the direct via a virtual electron-hole pair 
plasmon-phonon conversion given by Eq. 7 , describes the 
temperature-independent plasmon broadening. To analyze 
the temperature-dependent attenuation one has to account for 
the inelastic processes resulting in creation of electron-hole 
pairs in the final state. To do this we relate the plasmon 
attenuation to the optical conductivity.

III. PHONON-ASSISTED LANDAU DAMPING

The propagation of a plasmon in 2DEG is accompanied 
by an oscillating electric field, whose scalar potential is a 
plane wave in the in-plane direction x and satisfies the equa
tion 2 0 outside 2DEG,

(/>(x, z , t) = ( <f>0e - i,0,+i qx+ <f>$ e i<ot~ iqx) e - q z . (10)

The energy per unit area of the electric field 10 is given 
by

q s

2

t .

n p
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FIG. 2. Graphic representation of the transition amplitude L. 
Wavy lines stand for the amplitude of the electric field <f>0, zigzag 
lines denote phonons.

We — J dz ^ ^ 2= ^ m 2 = e2V-q l \ ^ \ \  (11)

where the bar denotes the in-plane average. The kinetic en
ergy of electrons is equal to the energy of electric field (the 
virial theorem . The total energy of a plasmon is therefore, 
W= 2 W e . The plasmon attenuation y q is related to the en
ergy dissipation rate,

d W / d t =  - 2 y qW =  - 4 y qW e . (12)

On the other hand dissipation is related to the real part of the 
longitudinal optical conductivity ( ,q ),

(13)

Here the matrix element

e f o e *  M x( k)

e(tu,fe|)V2P«u- \ £p+q+w  £p' - £ p'
(16)

accounts for the intermediate state in the process, and the 
signs correspond to the creation annihilation of a pho- 
non, which accompanies the excitation of the electron-hole 
pair. The dielectric function in the denominator of the matrix 
element Eq. 16 accounts for the screening of the electron- 
phonon interaction by two-dimensional electrons. The pres
ence of two terms in Eq. 16 corresponds to the two differ
ent possibilities for the virtual state depending on whether 
the electron interacts first with the plasmon or with the pho- 
non, see Fig. 2. Each internal line contributes to the matrix 
element a propagator of the virtual state, (E - E „ ) _1, with E  
being the total energy of particles, and E„ the energy of the 
virtual state.

The resulting probability of the field absorption is given 
by the appropriate sum over the initial and final states of the 
electron-phonon system,

The right-hand side in this expression is the Joule heating. 
Note, that Eq. 13 can be applied to attenuation of plasma 
eigenmodes as well as the dissipation of the external electric 
field. In the latter case q  0 should be understood as the 
amplitude of the electric field at the 2DEG plane. Using Eqs.
12 and 13 we can relate the plasmon attenuation to the 

optical conductivity at q ,

q
q  2Vq

‘ 2 e2
a ' ( a ) q ,q ) .

Equation 14 may be viewed as the Ward identity relating 
( ,q ) and ( ,q ), i.e., the polarization operators with 

scalar and vector vertices.
To evaluate yq , we find first d W / d t  with the help of the 

perturbation theory in the interaction of electrons with 
phonons and with electric field <f>0, see Eqs. (2) and (10- We 
then obtain y q from d W / d t  with the help of Eqs. (13  and 
14 . We are interested in the dissipation of the high- 

frequency electric field cd> q v F . At such frequencies, the 
field absorption due to an excitation of a single electron-hole 
pair (Landau damping is forbidden by the energy- and 
momentum-conservation conditions. The lowest-order ab
sorption process, therefore, includes also a creation or anni
hilation of a phonon, see Fig. 2.

The probability of the field absorption process is given by 
the Fermi Golden rule,8

2 d 2 p

2
M 1 -  n p >)[ (1 +  N xk) d w + + N xkd w _ ],2" P

(17)

where N  k is the Bose-Einstein phonon distribution, and fac
tor 2 takes into account the electron-spin degeneracy. The 
probability for the field emission I e can be found from the

(14  detailed balance principle,9 I e =  I ae -calf

The energy dissipation rate is then determined by the two 
probabilities,

d W
Ie 1 e / f

)Ia . (18)

In the high-frequency domain cd> q v F , the relevant momen
tum of an electron-hole pair p —p ' and that of a phonon k are 
large compared to the plasmon momentum q, which allows 
us to simplify the matrix element L  ,

e<f>oe*Mx{ k) ( p - p ') - q

s(w , kji) y j2p w  Kk
(19)

ma)

p q p k
d 2 p ' d 3 k

( 2 ^ ) 3 '
(15)

In the last expression we also have used the momentum- 
conservation condition Eq. 15 . Combining Eqs. 13 , 15 , 
and (17)-(19), we obtain the phonon-assisted Landau damp
ing in the form

1 1
L

q

I a

L
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,q

e 2e* 2sinh
IO

2 T

8 p  m  2« 3 

1

d 3 k k k) 

2 3 k ,k

x-
sinh

/ ( % "  (•>,k

2 T

* " ( « «  + &>,k

sinh

)

k
2 T

)

sinh
k

2 T

20

Here is the structure factor of 2DEG, i.e., the imaginary 
part of the polarization operator Eq. 5 . We are interested in 
the optical conductivity at « , T < E P , where E p = k p/2m is 
the Fermi energy. It allows us to use the low-frequency limit 
of ,

,k
m n

k p h
2k~p

2

This limiting form is valid across the entire particle-hole 
domain of excitations, except narrow regions near its ends, 

/ p k 2k p  / p .
The electron-phonon interaction is effectively screened at 

a small momentum transfer between the two subsystems, 
which results in a strong frequency dependence of the con
ductivity. Indeed, since only the particle-hole domain is rel
evant in the integral 20 , it suffices to approximate the di
electric function by its static limit, e (0 ,k |)/e* = 1  + *-2/k  
The characteristic momenta in the integral of Eq. 20 are 
kj~max(to,7)/s. Therefore, at « ,T^ « K the screening of the 
electron-phonon interaction is strong here we introduced the 
characteristic frequency s , and is the inverse
screening radius . We consider below the plasmon attenua
tion in the limits of weak and strong screening.

i In the limit of low frequency and temperature, , T  
, corresponding to the strong screening, a straightfor

ward evaluation of the integral in Eq. 20 yields for the 
electron-phonon interaction via deformation potential,

m e h 14 2 

2 2 s l2k p

63
256

87s6
t6 256

23

Clearly, in the limit of low temperature and plasmon fre
quency, the piezoelectric part, Eq. 22 , prevails over the 
deformation potential contribution Eq. 21 .

ii We turn now to the case of a weak screening. In typi
cal heterostructures the inverse screening radius is of the 
order of k p , and therefore « s . We concentrate on rela
tively large frequencies or high temperatures, i.e., assume 
that or T  exceed and s , but are still small compared 
to the Fermi energy E p = k p/2m.

The leading deformation potential contribution in Eq. 20 
comes from phonon states with k j~ k p and kz ~ max(w,T)/s 
> k p , i.e., from the phonons propagating almost normally to 
the 2DEG plane. In the limit of high temperature or fre
quency we find

7q=C  — [ W2 + (2 tt T) 2].(Os ^ (24)

Here the numerical coefficient C  depends on the screening 
parameter «-/2kp ,

1 sin40

c = d
sin

2kp

25

and varies from C  /12 0.26 to C  0.06 when the screen
ing parameter increases from «72kp= 0 to «72kp= 1.

Unlike the interaction via deformation potential, the pi
ezoelectric mechanism of the electron-phonon interaction is 
ineffective for phonons with k k . As the result, the piezo
electric mechanism yields a contribution to q , which is 
smaller than the one given by Eq. 24 . In particular, at low 
temperatures and high frequencies, T s , this contribu
tion to the plasmon linewidth saturates at a value

Tq~ TTp “ s , (26)

while in the case of high temperature T s we find

q
2

T, 27

^  3 ^ r j d U q  , W q> 2 ttT  

j q  7 X 2 9 [A(27tT)7, (O q < 2 ,irT ,
1

where A = 1.47. Similarly, for the piezoelectric coupling,

independent of the parameter / s . Strictly speaking, the 
piezoelectric constants in Eqs. 26 and 27 differ from the 
definition Eq. 23 by the numerical coefficients in the brack
ets, since the angle integrals are different in each regime. 
However, for rough estimates, one can use Eq. 23 .

q 1^X2^ o»2« 2 I # ( 27tT)

« q>  2 v  Tq
q 2 T ,q

22

with the coefficient 5  = 0.76. Here characteristic frequencies 
s l and s kp s l depend on the material parameters. 

The deformation potential coupling strength d is given in 
Eq. 9 , and the dimensionless constant for the piezoelectric 
coupling is

IV. TWO-PAIR ABSORPTION

Another mechanism effective for the absorption of plas- 
mons with energies ( q E p ) is associated with creation of 
two electron-hole excitations.1 The probability of absorption 
or excitation of two electron-hole pairs by an electric field 
Eq. 10 can be found with the help of the Golden rule by 
treating the field strength and the electron-electron interac
tion V q perturbatively,

2

1

2

5
q

5
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FIG. 3. Graphic representation for the two-pair absorption am
plitude , see Eqs. 29 and 30 . The insertion of the wavy line 
external wave or plasmon into the two-electron-scattering process 

is possible is shown here in four different ways, corresponding to 
four fractions in Eqs. 29 and 30 . In addition, an interchange 
p'<->k' in the final state is possible, bringing two terms in each of 
the numerators in Eqs. (29) and (30). The relative signs of these 
terms depend on the spin state of the two electrons.

d w -  2 n \ C \ 2 8{ £ p + £ k -£ p '-£ k ' + w)

d  2 p ' d 2k'
X <5(p+ k — p ' — k ' + q)- 2 2 28

Here p, k and p ' , k ' are, respectively, the initial and final 
momenta of two electrons. The matrix element depends of 
the initial spin state of the two electrons. For a singlet state 
the transition matrix element is

-Co,o~ e ‘Pol
k k Vp k Vk k Vp k

£p £p+q+w £ p '- £ p '-q “

V V  p p p—k' V  / + V  / .V p/ _ p  I V pf  _  Jj

^k £k+ q + w £k '^£k '-q~

and for a triplet state it is

29

A.0-  e<Po\
V,k k Vp k V k k Vp k

£p £p+q+w £p '^£p '-q~

Vp p Vp k Vp p Vp '-k
£k_ £k+q + k k

30

The first subscript of the matrix element denotes the value of 
the total spin of two electrons, while the second subscript 
stands for its projection onto the z direction. The matrix el
ement in the triplet channel is the same for all three spin 
states, £ ^ 0= ^  + ^ since the electron-electron interaction is 
spin independent. The structure of the matrix elements Eqs.
29 and 30 is clear from the graphic representation shown 

in Fig. 3. Again, as in Fig. 2, the internal lines correspond to 
the virtual states whose propagators are given by (E  
— E v) _1, with E  being the total energy of the particles and

E  is the energy of a virtual state. The total probability of the 
field absorption is given by the sum over the initial and final 
states according to

1 f  d 2p d 2k
I „ = -  I --------r [d.WQ Q+ 3d w i,0]npnk( 1 -  np-)(1 -  nk-).4 2 4

31

Here the coefficient 1/4 prevents from double counting of the 
initial and final states.

The above formulas are valid for any values of and q . 
We now make use of the fact that q v F in the region of 
interest, and obtain

£ 0,0"
e 0
m

( A  +  A ex),

e 0
C ^ ^ i A - A e x ) . 32

m

33

Here we introduced the following notations:

■ 4=q-[(Q +q) V Q+q -Q V Q ,

ex q p k Vp k k p Vp k ,

and accounted for the momentum conservation evident from 
Eq. 28 . The momentum transferred in a collision is denoted 
by Q p p . The term ex is obtained from by inter
changing the momenta p k , and originates from the in- 
distinguishability of colliding particles.

The transition rates given by Eq. 28 with the matrix 
elements Eq. 32 determine the total probability of absorp
tion Eq. (31). As usual, the total probability of emission I e is 
related to the probability of absorption by the detailed bal
ance principle, I e =  I ae~  ",l T. The energy dissipation rate 
d W / d t  can be expressed in terms of the probability I a ac
cording to Eq. 18 . The optical conductivity is then obtained 
from its relation to d W / d t ,  represented by Eq. (13),

e 2( l - e -"” i ) {  d 2p d 2k d 2p ' d 2k'
,q 2 3 2 m2 3q 2 (2 7r)5

X A ( A - A J t y S i  £p+ £p/ -  ^  + (o ) npn k 

X ( 1 -  np <) ( 1 -  n k, ) S  ( p + k - p ' - k '  + q ) .

34

The optical conductivity Eq. 34 vanishes as ( ,q ) 
q 2 in the long-wavelength limit q  0. This is clear from 

the small-q properties of the amplitudes ^  and «4ex. Indeed, 
the relation q 2 at q  0 follows directly from the first line 
of Eq. 33 , and the relation ex q 2 can be obtained from 
the second line of Eq. 33 and the momentum conservation 
condition. The absence of absorption in the long-wavelength 
limit, cr'(to ,q  =  0) = 0, is a manifestation of a more general 
principle:10 a translationally invariant electron liquid does 
not absorb energy from an applied uniform ac field. From a 
technical standpoint, the zero value of ( , q  0) comes as

q
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the result of a cancellation of the four matrix elements, Fig. 
3, of which any element is not small by the external wave 
vector q. Recently, Gornyi and Mirlin11 demonstrated a simi
lar cancellation in the diagrammatic calculation of the homo
geneous conductivity, while Pustilnik et al. encountered q 2 
behavior in the calculation of the far tails of the density- 
density correlation function in the case of spinless one
dimensional fermions.12 This cancellation was overlooked by 
Reizer and Vinokur in their calculation of the attenuation of 
two-dimensional plasmons.13 It led to a result large by a 
factor k 2Fl q 2, in contradiction with the above-mentioned gen
eral principle.

The contribution of the exchange term ex to the conduc
tivity Eq. 34 can be estimated from Eq. 33 . This contri
bution involves large transferred momenta |p '—k |~  kF , 
whereas the small-momentum domain of Q = p —p ' is impor
tant for the contribution of A .  Typical values of Q in Eq. 
(34) can be estimated from the conservation of energy, Q 
~max(«,T)luF . From Eq. (33) we then obtain A exl A  
~ V Ql Vk . The amplitude A x can thus be neglected in Eq.Q F

34 , if the interaction potential is long ranged, V Q Vk .Q F

This condition is met for Coulomb interaction at o>,T < E F . 
In this case the scattering amplitudes are the same for singlet 
and triplet states.

Neglecting the exchange contribution one can conve
niently represent the optical conductivity in terms of the 
structure factors for free electrons,

e 2 sinh
CO

2 T d 2 Q
a ' ( w , q ) = - -----— ^ [ q - ( Q + q )  VQ+q

277m2w3g2J ( 2 t t ) 2

d
,Q ,Q q

sinh 2 T
sinh

SI + O)
2 T

(35)

F / accuracy, we can neglect the difference between VQ q 
and V Q , and simplify Eq. 35 to

e q 2sinh
,q

2 T
2 3irm co

VQ e * 2 x ”( t l + , Q )* " (n _ , Q)

Q d Q

0 277 .
d

X
s 2(0,Q) cosh

\S l ' CO
— cosh 2 TT

(36)

where /2. In the long-wavelength limit, Q k F ,
the structure factor has the form

,Q
m

Q
2 2 2

8 ( Q v F - \ n  I). (37)

To evaluate the conductivity Eq. 36 , it is technically more 
convenient to change the order of integrations and evaluate 
first the integral over the momentum. With the logarithmic 
accuracy, the integral is cut at the upper limit Q , leading 
to the following integral over frequency,

e 2 q  2 sinh

,q

CO

2 T

772kF
d

2

2 ) - *
CO SI

cosh 2 T cosh —

T

In
F

,/flo)
(38)

Utilizing the fact that the logarithm is a slow function of its 
argument, one can evaluate the integral in Eq. 38 with the 
logarithm assigned its value at the characteristic frequency 
A = max(o>,27TT ). The two-pair contribution to the optical 
conductivity takes the form

The formula (35) describes energy dissipation due to the de
cay into two electron-hole pairs with energies and momenta 

, Q q, and , Q, respectively. The densities of 
the electron-hole pairs are determined by the structure factors

.
In the case of Coulomb interaction, [q- (Q + q) VQ+q_  q 

•Q V Q2^ q 4l Q 2. The momentum integral in Eq. (35) is, 
therefore, singular at small values of Q . If the smallest value 
of Q  /2 F , allowed by the energy-conservation condi
tion, becomes smaller than the inverse screening radius , 
then the screening of Coulomb interaction must be accounted 
for. This is achieved by the replacement of the interaction 
potential V Q in Eq. 35 by its screened value. As in the case 
of the phonon-assisted conductivity, it is sufficient here to 
account for the dielectric function by using its static limit, 
V q —̂ s*Vq l s ( 0 , Q ). An emphasis on the small-Q  domain 
comes also from the structure of the density of states of the 
electron-hole pairs. Indeed, integration over frequencies in 
Eq. 35 results in an additional factor Q  2. Therefore, if 
the calculation is to be performed with the logarithmic in

,q
2 2e2q2

12772k 2fu> 2
[a)2 + (277r)2]ln

KVp

\/o)A
(39)

Finally, the plasmon attenuation is found from its relation 
Eq. 14 to the optical conductivity,

y = -------—n— [ w 2 +  ( 2 7 7 r ) 2]ln
q lA-nkpEp q

F

\/w^A9J
40

where q max( q,2 T ). The expression 40 weakly de
pends on the strength of the electron-electron interaction. 
This is due to the fact that the principal contribution to the 
conductivity comes, with logarithmic accuracy, from the mo
mentum range Q , where interaction is screened. Our cal
culation is, therefore, correct as long as the Fermi momen
tum exceeds the inverse screening radius, k F>  a .  In a 
realistic 2DEG, however, the two quantities are of the same 
order of magnitude. In this general case it is no longer a good 
approximation to disregard the scattering with large mo
menta Q kF and to neglect the exchange effects represented

0
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by the amplitude ex in Eq. 34 . One should expect the 
numerical coefficient in Eqs. 39 and 40 to change and 
become interaction-dependent for k p .

V. NUMERICAL ESTIMATES FOR A GaAs 
HETEROSTRUCTURE

In this section we compare the effectiveness of different 
mechanisms contributing to the attenuation of plasmons. We 
concentrate on the case of low temperature, and consider 
attenuation q as a function of the plasmon energy q .

In the important case of a GaAs heterostructure, the ma
terial parameters are:3,6,14 deformation potential coupling 
constant E  = 2.2X 10"18 J, piezoelectric constant h 14= 1.38 
x109 V m _1, longitudinal sound velocity s t =  5.2 
X103 m s_1, transverse sound velocity s t =  3.0 
X 103 m s_1, crystal density p  =  5.3x 103 kgm -3 , and the 
dielectric constant * 12.8. For estimates, we take a typical 
Fermi momentum, k p  1 108 m 1, which corresponds to 
the Fermi energy E p ^  5.6 meV.

Using Eqs. 9 and 23 we find the dimensionless 
electron-phonon coupling strengths: d 0.03 for the defor
mation potential, and p 0.09 for the piezoelectric cou
pling. The characteristic frequencies s and , introduced 
after Eqs. 8 and 22 , respectively, are of the same order, 
h(jDK^ 0 . 7  meV, and ft( o ^ 0.3 meV.

Comparison of Eqs. s8 , 21 , 22 , and 40 with each 
other shows that the plasmon-phonon conversion mechanism 
yielding q 4q , see Eq. 8 , dominates the attenuation only 
at very low plasmon energies, q 0.02 meV. At higher 
energies, the phonon-assisted Landau damping via piezoelec
tric coupling prevails, and q q5 as long as q 2 s 
^0 .7  meV. At higher energies, the piezoelectric contribution 
saturates, see Eq. 26 , while the contribution coming from 
the deformation potential interaction, Eq. 24 , monotoni- 
cally increases, q 2q . It becomes the dominant one at

q 1 meV, and exceeds the two-pair mechanism, Eq.
(40), by a factor ~ ( E p /&>q)4 in the entire range ftcoq^ E p . 
We are not considering higher plasmon energies, where the 
conventional Landau damping significantly contributes to the 
plasmon linewidth.

VI. CONCLUSIONS

We presented a theory for the real part of the optical con
ductivity ( , q ) of a ballistic 2DEG at finite wave vectors 
and utilized it for calculation of a plasmon width. Collision- 
less energy dissipation Landau damping in a degenerate 
plasma is exponentially small ~ exp[—m(j?J2q2 T] in the 
low-temperature and long-wavelength limit. That prompted 
us to consider a number of mechanisms which would be 
subleading, should conservation laws allow for the Landau 
damping. These mechanisms are the plasmon-phonon con
version, see Sec. II, phonon-assisted creation of an electron- 
hole pair, see Sec. III, and two-pair absorption, see Sec. IV. 
In the domain of low plasmon energies and low tempera
tures, ft u>q, T ^ E p , all the found contributions have power- 
law (in a)q and T ) asymptotes, see Eqs. (8 , (21), (22), (26, 
27 , and 40 . The smallest exponent belongs to the conver-

FIG. 4. Transition amplitude for the direct conversion of the 
electric field (wavy line to a phonon (zigzag line). The loop stands 
for the electron polarization operator ;^(m, q ).

sion mechanism, which therefore dominates the plasmon 
linewidth at the lowest temperatures. (We do not discuss here 
a competing contribution from the impurity scattering.) The 
relative importance of the other considered mechanisms at 
higher temperatures depends on the material parameters. In 
the important case of a GaAs heterostructure, apparently the 
two-pair mechanism does not become the leading one, see 
Sec. V. This mechanism, however, results in a ‘‘universal’’ 
contribution, see Eq. 40 , which is only weakly logarithmi
cally dependent on the parameters of the host material.
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APPENDIX PLASMON-PHONON CONVERSION RATE IN 
THE GOLDEN RULE APPROXIMATION

The plasmon-phonon conversion rate, Eq. 7 , can also be 
derived from the Golden rule formalism similar to the 
phonon-assisted Landau damping and the two-pair attenua
tion rate. The probability of electric field absorption accom
panied by the phonon emission, Fig. 4, is given by the ex
pression,

d w  k 2 e 2 0 2 2 ,q

d 3k

M j (  k) 

2 p «  u k

A1

After summation over phonon states, the total probability of 
the field absorption becomes

( 1+ N kk)d w x k • A2

The total probability of the field emission accompanied by 
the phonon annihilation , I e , is obtained from Eq. A2 by 
changing 1 N  k N  k . As always, the two probabilities 
are related by the detailed balance condition, Ie I ae /T. 
The corresponding contribution to the optical conductivity is 
found from Eqs. 18 and 13 ,

I a
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a ’ (co,q )=  e X q )  ' Z  s i . (A 3 2  ^ ^ ( q > « q /^ ) , (A4)2 q2 4

Finally, the plasmon attenuation is determined by Eq. 14 , which is equivalent to Eq. 7 .
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