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ABSTRACT

We analyze different models of several chemical reactions. We find that, for some

reactions, the steady state behavior of the chemical master equation, which describes

the continuous time, discrete state Markov process, is poorly approximated by the

deterministic model derived from the law of mass action or a mean field model derived

in a similar way.

We show that certain simple enzymatic reactions have bimodal stationary distri-

butions in appropriate parameter ranges, though the deterministic and mean field

models for these reactions do not have the capacity to admit multiple equilibrium

points no matter the choice of rate constants. We provide power series expansions for

these bimodal distributions.

We also consider several variants of an autocatalytic reaction. This reaction’s

deterministic model predicts a unique positive stable equilibrium, but the only sta-

tionary distribution of its chemical master equation predicts extinction of the auto-

catalytic chemical species with probability 1. We show that the transient distribution

of this chemical master equation is centered near the deterministic equilibrium and

that the stationary distribution is only reached on a much longer time scale.

Finally, we consider a model for the rotational direction switching of the bacterial

rotary motor and propose two possible reductions for the state space of the corre-

sponding Markov chain. One reduction, a mean field approximation, is unable to

produce physically realistic phenomena. The other reduction retains the properties

of interest in the system while significantly decreasing the computation required for

analysis. We use this second reduction to fit parameters for the full stochastic system

and suggest a mechanism for the sensitivity of the switch.
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CHAPTER 1

INTRODUCTION
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An important and long-standing question in the theory of chemical reaction net-

works has been whether, for a given chemical reaction network, there exists a set

of rate constants corresponding to the reactions for which the corresponding set of

nonlinear ordinary differential equations derived from the law of mass action has

more than one equilibrium point. A host of advances on this topic was made over

the course of many years [16, 10, 11, 12, 13, 14]. Major results from the work cited

here include the Deficiency Zero Theorem and the Deficiency One Theorem. These

theorems seek to classify reaction networks that admit multiple species concentration

equilibria and those that do not. However, these theorems are inconclusive for many

reaction networks.

Schlosser and Feinberg [27, 28] sought to fill in these gaps using a different tool,

which they called the species-complex-linkage graph. But the species-complex-linkage

graph still cannot provide the answer for many reaction networks. More recently,

Craciun and Feinberg [3, 5, 6, 4] have developed even sharper tools for determining

conditions under which the deterministic ordinary differential equations derived from

the law of mass action can or cannot admit multiple equilibrium points. These more

recent theorems, just like the older theorems, rely wholly on the topological structure

of the reaction network. Craciun and Feinberg, however, defined two novel important

objects associated with a chemical reaction network: the injectivity property and

the species-reaction graph. They proved powerful theorems relating easily-checked

properties of the species reaction graph to the injectivity of the network. These

theorems eclipse the results from the species-complex-linkage graph approach in that

any reaction that can be classified by the former can also be classified by the latter.

But there are reaction networks for which the species-complex-linkage graph is incon-

clusive and the species-reaction graph provides a definitive result about injectivity.

None of the results from this branch of investigation, which may be called chemical

reaction network theory, deal with possible inhomogeneities. By their very nature,

the deterministic ODEs derived from the law of mass action can only exist under

the assumptions that (1) concentrations of reactants and products in the system

are continuous variables that can assume any nonnegative finite value and (2) these

concentrations are homogeneous throughout the volume of the system. Under certain
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conditions, these assumptions may be good approximations of reality. If a reaction

system occurs in a large enough volume, however, or if the number of particles

participating in the reaction is small enough, these assumptions may not give an

accurate, or even useful, picture of reality. One possible adjustment to this type

of model is to allow the concentrations to be spatially inhomogeneous and add a

diffusion term to the ODEs, turning them into PDEs. This type of model is useful

in many circumstances, but it is still deterministic and still assumes that chemical

concentrations as well as spatial gradients of them are continuous.

But, matter is discrete. Important chemical reactions in biology include transcrip-

tion and translation of genes, or, as we discuss in Chapter 4, the rotation of individual

molecular motors. Such motors, and genes, either DNA or RNA, often occur with

extremely low copy numbers in individual cells [7, 24]. Thus, they are clearly not

spatially homogeneous, nor does it make sense to think of them even as spatially

varying concentrations at all. A different type of model is required, one which can

account for stochastically fluctuating numbers of molecules.

There are several different ways to model chemical reactions in a nondeterministic

fashion. Érdi and Tóth and, much more recently, Érdi and Lente have written expo-

sitions on the subject [9, 8]. The reader is encouraged to refer to these texts for a

thorough introduction to the modeling of stochastic chemical reactions. The type of

stochastic model that we use extensively in this work is the continuous time, discrete

state model, which, if the process is Markovian, is called a continuous time Markov

chain. This gives rise to the primary tool used throughout this text, the chemical

master equation.

In this type of modeling, each state in the state space represents a particular

configuration (nA1 , nA2 , . . . , nAk
) within which there are nAi

molecules of each of the

k species participating in the reaction Ai, i = 1, . . . , k. For most reactions, this state

space is very large. Often there are countably infinite states, and the connections

between them may be highly reticulate. The chemical master equation is a system

of first-order linear homogeneous ordinary differential equations that describes the

continuous time evolution of probabilities assigned to each state in the state space.

Hence, this system may have countably many equations, a fact that implies it may
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not be possible to find exact time-dependent solutions.

In the 1970s Kurtz [18, 19, 20] provided the classical result that the continuous

time, discrete state model converges to the deterministic model in the infinite volume

limit. A classification of reactions that can be accurately modeled by deterministic

models when occurring in a finite volume would be very useful. We are not the

first to construct examples of reactions whose deterministic model predictions are

qualitatively different than the continuous state stochastic process obtained by in-

troducing noise (usually called the Langevin equation) [26, 15, 22] or the chemical

master equation [17, 29, 23, 1, 25]. As yet, there is no unifying theory to catalog these

reactions. In this dissertation, we illustrate a few certain reactions whose chemical

master equation predicts different behavior than the deterministic model. We also

consider mean-field models for some of these processes, and show that in certain cases,

this model is equivalent to the deterministic mass action model.

In Chapter 2 we consider a classic enzymatic reaction [21] coupled with different

types of inhibition of the enzyme acting in the reaction. We find that the stationary

distributions of the chemical master equations for these reactions are attained on

a time scale that is easily simulated. However, under certain conditions, these

stationary distributions have the capacity to be multimodal, though the corresponding

deterministic models do not have the capacity for multiple equilibrium points no

matter the rate constants assigned to the reactions.

In Chapter 3 we explore several variants of an autocatalytic reaction proposed

by Keizer [17] as a cautionary tale against accepting the stationary distribution of

the chemical master equation without further investigation of the time-dependent

solution. We find that expected times for the processes to reach their absorbing

states are exponentially large in certain parameters intrinsic to the reaction system.

Finally, in Chapter 4, we discuss a mathematical model of the rotary motor found

in many different bacterial species. This motor is able to switch its direction of

rotation with remarkable speed and sensitivity to a certain intracellular chemical

signal [2]. Though this is a different type of chemical reaction than the others studied

here, it is a reaction nonetheless, and has an associated chemical master equation.

The law of mass action is not applicable to this reaction since not all of the species
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involved are freely diffusing, however we discuss a mean field approach to this model

and illustrate why it does not produce a reliable prediction of the behavior of the

motor.

A crucial tool used in Chapters 3 and 4 is the reduction of the size of the state

space. The methods for doing this are ad hoc. There is no general method for

reducing the size or dimension of a stochastic state space without first considering

the structure of the space itself. We find peculiar features of these systems which

we exploit to appropriately cluster or eliminate states while retaining the important

properties we wish to analyze. In Chapter 2, we effectively split the state space into

appropriate pieces that communicate with one another. It is not a reduction, but, in

a similar way, it simplifies the necessary calculations.
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INHIBITED ENZYME REACTIONS
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An enzyme is a molecule that catalyzes, or lowers the energy required, for a

chemical reaction to take place without itself being changed or consumed in the

reaction. The reactants in such a reaction are called substrates, and, in the reaction,

they are converted to products. Countless examples of enzymatic reactions occur

in nature. They are crucial for the existence of life. Therefore, understanding

their properties and general behavior is important for understanding many biological

processes.

For over 100 years, people have been striving to understand the kinetics of en-

zymatic chemical reactions. It was 1913 when Michaelis and Menten published

their classic result about the invertase-catalyzed conversion of sucrose to its cleavage

products fructose and glucose [6]. Tens of thousands of experiments have been

performed and papers published on the topic of enzyme kinetics. Another classic

mathematical result on the subject is that found by Goldbeter and Koshland [5].

They showed, using a deterministic model, the existence of an ultrasensitive switch

between the unmodified and modified form of a protein when its interconversion is

catalyzed by two different enzymes. Much more recently, it has been shown that

including external noise in the Goldbeter-Koshland reactions can induce bistability

in the expected output of the system [8, 7]. All the results just mentioned and the

vast majority of similar studies treat the concentrations of chemical species in the

volume within which the reactions take place as continuous variables.

In this chapter we consider three different simplified variations of an enzymatic

reaction in which the enzyme can be inhibited from acting in the reaction. The first of

these is a very simple competitive inhibition. The second and third reactions are cases

where the product of the reaction acts as the inhibitor, and, hence, downregulates

its own production. The difference between the second and third reactions is that

the second has a reverse reaction which gives rise to a conservation law. In the

third reaction, we eliminate the reverse reaction to allow for slightly more general

conditions.
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2.1 Initial Reaction Network

We begin by considering the following chemical reaction network.

E + S � ES → E + P

E + I � EI
(2.1)

This reaction is our “example zero,” in that we do not analyze it in the same depth as

we do the others. This particular reaction is relevant to our discussion because this

reaction network, along with several other similar networks, has been shown to not

have the possibility of multiple equilibria for any set of positive rate constants when

modeled using mass-action kinetics[1, 2, 3]. However, numerical experiments using

Gillespie simulations indicate that for certain parameter regimes and certain initial

concentrations there are multiple basins of attraction. Figure 2.1 shows a scatterplot

of the fraction of time the system had a given number of product molecules over the

course of a simulation, and Table 2.1 lists the parameters required to generate this

simulation. This plot clearly shows a bimodal distribution. In order to gain a better

understanding of this type of steady state behavior, we consider a similar, but simpler

network.

2.2 Initial Modified Reaction Network

We begin by assuming that our reactions occur in a closed environment; there is

no feed stream and no outflow. The reactions we consider here are the following:

E + S → E + P

E + I � EI

P → S

(2.2)

This system arises by making two modifications of (2.1). The first modification

is to remove the intermediate step of forming a complex. Instead, we allow S to be

converted to P by E in one step. This modification may not be a realistic assumption

for any particular biological or chemical process. However, it allows for analytical

results which would, otherwise, be relatively intractable. The second modification,

the addition of the last reaction in (2.2), mimics removal, or outflow, of the species P

and inflow of the species S, but does so in a way that the total number of molecules
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Figure 2.1. Simulation results for original inhibited enzyme reaction. Results of a
Gillespie simulation of reaction network (2.1). The plots show the distribution of the
fraction of time spent in each state over 300 time units. The parameters are taken
from the section of the appendix of [3] for Table 1, Entry 4 with some exceptions.
First, we do not include every reaction from this entry. The reactions not listed here
have effective rate constant 0. Secondly, bimolecular rates and supply rates must be
scaled by Volume−1 or Volume respectively. (here Volume = 1). Third, in order to
get this bimodal distribution, we have scaled the original rates thus: kE+S→ES by a
factor of 1/20, kE+I→EI by a factor of 1000, and kEI→E+I by a factor of 1/1000. All
the parameters used for this figure are listed in Table 2.1

of P and S are conserved. These modifications constrain the system, but Gillespie

simulations indicate two attractor basins similar to those for (2.1).

It is especially interesting, again, to observe bimodality in the simulations, be-

cause, if we make the further assumption that I is in abundance compared to the

total amount of enzyme, either freely active or inhibited, then it can be easily shown

that under the law of mass-action the deterministic model only has one nonnegative

steady state regardless of the reaction rate constants. We show this claim as follows.

2.2.1 Deterministic Model

If we let cX be the concentration of species X, then the deterministic equations

for 2.2 are as follows:
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Table 2.1. Parameters used for Figure 2.1.

kE+S→ES 25979.537/20
kES→E+S 3.3722455
kES→E+P 5844.999
kE+I→EI 5.3341555× 1000
kEI→E+I 16623.325/1000
k∅→S 1734.2661
k∅→ I 1
kS→∅ 1
kI→∅ 1
kP →∅ 1

ċS = −kE+S→E+P cE cS + kP →S cP ,

ċP = kE+S→E+P cE cS − kP →S cP ,

ċE = −kE+I→EI cE + kEI→E+I cEI ,

ċEI = kE+I→EI cE − kEI→E+I cEI .

(2.3)

We do not track the change in the concentration cI because of the assumption that it

is much greater than cE+cEI . Instead, it is absorbed into the rate constant kE+I→EI .

Now, notice that ċS + ċP = ċE + ċEI = 0. This gives the two conservation equations

cS + cP = cST
and cE + cEI = cET

. Hence, (2.3) reduces to the two-variable system

ċP = − (kE+S→E+P cE + kP →S) cP + kE+S→E+P cST
cE,

ċE = −(kE+I→EI + kEI→E+I) cE + kEI→E+I cET
,

(2.4)

which has the unique steady state

c∗E =
kEI→E+I cET

kE+I→EI + kEI→E+I

,

c∗P =
kE+S→E+P c

∗
E cST

kE+S→E+P c∗E + kP →S

.

(2.5)

We contrast this result with the steady state distributions obtained from the

chemical master equation. To do so, we consider the simplest possible case, i.e. when

there is only one enzyme molecule in the volume within which the reactions are

occurring. It may be argued (and rightly so) that to treat the enzyme population as

a concentration in this case is not reasonable, and, therefore, we should not expect
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similar results as are given by the stochastic model with only one enzyme molecule.

To answer this concern we first analyze what may be viewed as a more appropriate

model.

2.2.2 Mean Field Model

The mean field model is similar to the deterministic mass-action model above.

The substrate and product are still thought of as concentrations. Since there is only

one enzyme molecule, though, we introduce the variable pA(t) which represents the

probability that the enzyme is active (or uninhibited) at time t. The mean field

equations are

ċP = kE+S→E+P pA (cST
− cP )− kP →S cP ,

ṗA = −kE+I→EI pA + kEI→E+I (1− pA).
(2.6)

We observe that the open interval (0, 1) is invariant for pA (as, indeed it must be)

since pA = 0 =⇒ ṗA > 0 and pA = 1 =⇒ ṗA < 0. These equations are no

different than (2.3), and, hence, this method of modeling the reaction can likewise

only produce a unique steady state.

2.2.3 Stochastic Model

Now let us consider a fully stochastic and discrete description of reaction (2.2).

As stated already, we consider the case with only one enzyme molecule in the volume

within which the reactions are occurring. In this case it can either be in its free and

active state or its inhibited state. We define nX to be the number of molecules of

species X and let nS + nP = N . Furthermore, we define

pj =




p0,j

p1,j
...

pN,j


 , (2.7)

where pi,j = P (nP = i, nE = j). Then the chemical master equation is

d

dτ

(
p1

p0

)
=

(
αA + B− βI γI

βI αA− γI

)(
p1

p0

)
, (2.8)

where
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A =




0 1
−1 2

−2
. . .
. . . N
−N



, B =




−N
N −(N − 1)

N − 1
. . .
. . . −1

1 0



,

and I is the (N + 1) × (N + 1) identity. We have nondimensionalized this equation

by scaling both sides by k̃−1
E+S→E+P . The tilde above this parameter indicates that it

has been scaled by volume to correct units. This is of no consequence in comparing

models, however, as volume can be set to any constant without changing any of

the results herein. The nondimensional parameters in (2.8) are τ = k̃E+S→E+P t,

α = kP →S/k̃E+S→E+P , β = kE+I→EI/k̃E+S→E+P , and γ = kEI→E+I/k̃E+S→E+P .

This system (2.8) is not difficult to solve analytically in steady state. We see that

setting the left-hand side (LHS) to 0 yields

p1 = β−1 (γI− αA) p0 (2.9)

with

(
β−1(αA + B− βI)(γI− αA) + γI

)
p0 = 0. (2.10)

However, this does not give us much intuition into how this distribution is affected by

the parameters in the system. To gain this intuition we make several approximations.

2.2.3.1 Expansion in β

We first consider the case where β is a “small” parameter. What is meant by the

word “small” here is made precise further on in this section. This assumption means

the inhibition of enzyme occurs at a much slower rate than the conversion of substrate

to product by enzyme. We can now approximate the steady state distribution as a

power series in β. In steady state

(
p1

p0

)
=

(
q0

r0

)
+ β

(
q1

r1

)
+O(β2). (2.11)

We impose the condition 1Tqk + 1Trk = δ0,k to ensure that the expansion is a

probability distribution.
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Then at O(β0) we have

(αA− γI)r0 = 0. (2.12)

For any α, γ > 0, the matrix αA − γI is upper triangular with strictly negative

diagonal entries, hence it is invertible. Therefore r0 = 0. Also at O(β0) we have

(αA + B)q0 + γr0 = (αA + B)q0 = 0. (2.13)

It is straightforward to show that the elements of q0 are binomial with parameter

1
1+α

. They are expressed simply as

q0,i =

(
N

i

)
αN−i (1 + α)−N , i = 0, . . . , N. (2.14)

At O(β) we have

(αA− γI)r1 + q0 = 0, (2.15)

hence

r1 = (γI− αA)−1q0. (2.16)

We also have

(αA + B)q1 = q0 − γr1, (2.17)

which, by the Fredholm Alternative Theorem, has a solution if and only if the right-

hand side (RHS) is orthogonal to the vector 1 since the operator on the left hand

side is a W-matrix of deficiency one. This is immediately obvious since we know from

(2.15) that 1T ((αA− γI)r1 + q0) = 0. Recognizing that 1TA = 0T since A is itself

a W-matrix gives the needed result.

We also see, by the same operation, that 1Tr1 = 1
γ
, so we must impose 1Tq1 = − 1

γ
.

This condition combined with (2.17) uniquely defines r1.

We note, here, that this power series expansion is only valid in an appropriate

range of parameters. To determine that range, we perform the following investigation.

The system is of the form

(M1 + εM2)

(
∞∑

i=0

εi xi

)
= 0. (2.18)

The matrix M1 + εM2 is a W-matrix and is irreducible for all ε > 0, evidenced by

the fact that it has a unique stationary distribution, (2.9) and (2.10). Hence, for all
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ε > 0, the rank deficiency of M1 + εM2 is 1. The xi’s are uniquely determined as

follows.

M1 x0 = 0, (2.19)

however, the rank of M1 is not specified, so this equation alone does not determine

x0. To do so, we must consider matching at the next order in ε. The equation is

M1 x1 = −M2 x0. (2.20)

By the Fredholm Alternative Theorem, for there to be an x1 that satisfies this

equation, the RHS must satisfy 〈M2 x0,y〉 = 0 for all y such that MT
1 y = 0. If

M1 and M2 are n × n and we define k ≤ n to be the rank of M1, then there are

exactly n − k linearly independent vectors y1, . . . ,yn−k which span the nullspace of

MT
1 . One of these, say yn−k, is 1T. We know that 1T is a left null vector for M2

because M1 + εM2 is a W-matrix for all ε ≥ 0. In particular, it is a W-matrix when

ε = 0. Hence, M1 is a W-matrix. So, then

0 = 1T (M1 + εM2) = ε1T M2 ∀ ε > 0. (2.21)

Now, define the (n−k−1)×n matrix Y to have as its jth row yT
j , i = 1, . . . , n−k−1

and the k × n matrix M̂1 to have as its rows the k pivot rows of M1.

We now construct the n× n matrix

M =




M̂1

Y M2

1T


 (2.22)

and note that M x0 =




0
0
1


 of necessity.

We claim, without proof, that M is an invertible matrix. This is certainly not

true in general, even for M1 + εM2 invertible. A counterexample is given by

M1 =

(
1 1
0 0

)
, M2 =

(
1 2
1 1

)
. (2.23)

Although, we believe it is true for irreducible W-matrices, this remains to be proven.

If this conjecture is true, however, it uniquely specifies x0.
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Each of the xi’s for i > 0, then, satisfy

M1 xi = −M2 xi−1, (2.24)

and, hence, must also satisfy

Y M2 xi = 0. (2.25)

Furthermore, to ensure that
∑
εi xi is a probability distribution for all ε, we must

also enforce 1T xi = δ0,i. All of these conditions can be written succinctly as

M xi = N xi−1, i = 1, 2, . . . , (2.26)

where

N =



−Î M2

0
0


 . (2.27)

In other words,

xi = M−1 N xi−1 =
(
M−1 N

)i
x0. (2.28)

Thus, in order for the power series to converge, we must choose ε small enough that

1

ε
> max

{
|λk|

∣∣λk ∈ σ
(
M−1 N

)}
. (2.29)

In the case of this first expansion, in the parameter β, the matrix N cannot have

rank higher than the rank of

(
−βI 0
βI 0

)
, which clearly has 0 as an eigenvalue with

multiplicity N + 1. Computing the remaining eigenvalues of M−1 N can be done

without explicitly computing M−1, but does require the expansion of a determinant.

If we choose N ≤ 4, these eigenvalues can be computed by any symbolic math

software. For large N , this computation becomes unwieldy. For small enough N ,

the nonzero eigenvalues are

λ0 = −1

γ
, λn = − α

(α + 1)(γ + nα)
, n = 1, . . . , N. (2.30)

We suspect this holds for any positive integer N , but it remains to be proven. This

gives us a tight bound for the convergence of our power series (2.11). With the

stipulation that all parameters are positive, the series converges for all β < γ.

This distribution has the capacity to be bimodal, but appears to be so only for

γ sufficiently less than α, though this range is difficult to quantify exactly. Figure
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2.2 shows comparisons of truncations of the power series expansion (2.11) with data

from Gillespie simulations. We see that for the parameter values chosen, we must

plot several terms of the series in order for the truncation to be reasonably close to

its limiting distribution. Also shown in the figure are the mean of the final truncation

plotted and the equilibrium value predicted by the mean field model.

We observe that the probability of the process residing at states near the expected

value or near the deterministic mean is relatively low in comparison with the peaks

of the distribution. This is a case where modeling the reaction using the traditional

mass-action kinetics may not be able to explain experimental results if such were to
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Figure 2.2. Expansion in β for simple enzymatic inhibition. The distribution of the
number of product molecules in the system (2.2). Shown in the figure are: (1) the
fraction of time spent in each state visited with a given number of product molecules
during the course of a stochastic simulation using Gillespie’s method (black data
points). States without data points were not visited in the simulation, though there
was a positive probability of doing so. (2) truncations of the power series expansion
(2.11) which are shaded as curves that become increasingly more red as more terms
are included. The first term q0 is plotted in black. For purposes of plotting only the
distribution of product molecules, these curves are the sum of p1 and p0. They are
discrete distributions, but are plotted as continuous curves here for visual contrast. (3)
the mean of the final truncation plotted (vertical red dashed line). (4) the equilibrium
value predicted by the deterministic and mean field models (vertical black dashed
line). Parameter values are α = 1, β = 0.4, γ = 0.6, N = 100, and V = 1.
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give a high level of variability.

2.2.3.2 Expansion in γ

On the other hand, if instead we assume γ � 1 in (2.8) we can approximate the

steady state as the power series in γ,
(

p1

p0

)
=

(
u0

v0

)
+ γ

(
u1

v1

)
+O(γ2). (2.31)

Then, at O(γ0) we have the system,

(αA + B− βI)u0 = 0

βu0 + αAv0 = 0.
(2.32)

Since (αA + B − βI)T is strictly diagonally dominant it is invertible, hence u0 = 0.

Therefore v0 = e0. This makes sense as a first-order approximation, since if γ is small

the enzyme spends most of its time in the inhibited state and all available P would

convert to S and become depleted.

To get the O(γ) correction we have the system

(αA + B− βI)u1 + v0 = 0

βu1 + αAv1 − v0 = 0.
(2.33)

Hence,

u1 = −(αA + B− βI)−1v0, (2.34)

and

αAv1 = v0 − βu1. (2.35)

Again, this expansion is only valid for a particular range of γ. We notice that

the nonzero eigenvalues of the relevant operator for this expansion are related to the

eigenvalues in (2.30). It is easily shown that setting β = λ−1
n and solving for γ gives

the multiplicative inverses of the eigenvalues for this expansion’s operator. So, the

eigenvalues of interest here are

µ0 = − 1

β
, µn = − α + 1

α(β + n(α + 1))
, n = 1, . . . , N. (2.36)

The remaining eigenvalues are, again, all 0. Therefore, with positive parameters, the

series converges for γ < min
{
β, α(β+α+1)

α+1

}
.
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Again, this distribution is bimodal for certain ranges of parameters. An example

of such is shown in Figure 2.3. The bulk of this distribution remains in the first term of

the power series expansion. One can clearly see the stationary probability of state 0 is

much higher than any other state. However, there is a significant portion of the total

probability mass over a range of other states. We observe that, again, the stationary

probabilities near the expected value of this distribution are low. An expected value

cannot adequately describe the important features of a bimodal distribution.

2.2.3.3 Expansion for large β, γ

Let ε be a small parameter such that 1
ε

= β + γ, and let β̃ = εβ and γ̃ = εγ.

Furthermore, we let the steady state solution be a power series in ε. Then we can

rewrite (2.8) in steady state as

0 =

(
1

ε

(
−β̃I γ̃I

β̃I −γ̃I

)
+

(
αA + B

αA

))((
x0

y0

)
+ ε

(
x1

y1

)
+O(ε2)

)
.

(2.37)

Then, the leading order equation tells us β̃x0 = γ̃y0.

Already, we suspect this distribution cannot be bimodal. The bimodality we have
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Figure 2.3. Expansion in γ for simple enzymatic inhibition. Objects plotted are the
same as in Figure 2.2, but with respect to the expansion (2.31). Parameter values
are α = 5, β = 0.1, γ = 0.08, N = 100, and V = 1.
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seen in the other distributions has come from a separation between the peaks of the

p1 and p0 vectors. Here, since the leading order term of each is a multiple of the

other, the peaks cannot be separated, and it is unlikely that one will be bimodal on

its own, given the structure of the other matrices in the equation.

We must go to the next order in ε to learn more about the leading order term in

(2.37). The next matching equations are

−β̃x1 + γ̃y1 + (αA + B)x0 = 0,

β̃x1 − γ̃y1 + αAy0 = 0,
(2.38)

which, when added together and β̃
γ̃
x0 is substituted for y0, gives

(
α

γ̃
A + B

)
x0 = 0. (2.39)

Hence, x0, and, by extension, y0 are scaled binomial distributions with parameter

γ̃
γ̃+α

. This parameter range does not yield a bimodal stationary distribution. For

completeness we still include its radius of convergence. The nonzero eigenvalues of

the operator as defined above are

νn = −nα(α + 1)

α + γ̃
, n = 1, . . . , N. (2.40)

These eigenvalues increase in magnitude, rather than decrease, as a function of n, so

the bound for convergence of this series is dependent on the relationship between γ,

which we assume is large, and the system size: ε < α
N α(α+1)−γ if N α(α + 1) > γ.

Otherwise, the series converges for all ε.

In this parameter regime the distributions (simulated and numerically computed)

are unimodal and the prediction from the deterministic model lies almost exactly

at the mean. This is a case where traditional deterministic modeling gives a good

prediction of the behavior we expect from the stochastic system.

2.2.3.4 Some comments regarding the above expansions

The series in this section have been computed to lend some intuition about the

shape of the stationary distribution of (2.8). This is not meant to be an exhaustive

list of all possible parameter regimes. Rather, we choose the few examples given here

to demonstrate that there are parameter ranges for which the process has a bimodal
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stationary distribution and ranges for which its stationary distribution is unimodal.

Another expansion that is clearly bimodal is the one obtained by assuming ε = β+ γ

is small. Its leading order term is the concatenation of the leading order terms we

obtain in sections 2.2.3.1 and 2.2.3.2. These terms (and perhaps the leading order

terms in all the expansions above) are not particularly surprising. They are merely

the stationary distributions for when the enzyme is always, or, respectively, never

active. The parameters we choose as small are the switching rates of the enzyme

from active to inactive or vice versa, so, naturally, we expect the leading order terms

to be as they are.

What is interesting about this model is that it stands in stark contrast to the

deterministic and mean field models, neither of which has the capacity to predict

bistable or bimodal behavior. Both of these models have a unique stable equilibrium

point. In fact, they are equivalent models; only the variables have slightly different

meanings. This contrast argues that for certain types of reactions the standard

methods of modeling do not produce a full picture of the behavior of the system.

Other modeling methods, such as the chemical master equation used here, are needed

in order to help understand variability in reaction networks.

We now modify the chemical reaction system to have a negative feedback. Nega-

tive feedbacks often cause a system to have more stable behavior. We are interested to

learn whether the negative feedback in the following examples removes the possibility

of bimodality in the stochastic system.

2.3 Conserved Autoinhibition

The following is a different type of inhibition of the enzyme in the reaction, but

retains a conservation property relating the amount of substrate and product in the

system.

S + E → E + P � EI

P → S.
(2.41)

For consistency, we stay with the notation that EI is inhibited enzyme, though, in this

reaction, we take it to denote the complex formed by enzyme binding to product. We

consider this case to determine whether this different type of inhibition of the enzyme
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affects the property seen in reaction (2.2), which is that the deterministic and mean

field models cannot have multiple equilibria, but the stochastic master equation does

have the possibility of a bimodal stationary distribution. It may be that inhibition

of this form does allow for the deterministic model to exhibit multiple equilibria. Or

it may be that autoinhibition of this form modifies the stationary distributions so as

to eliminate the possibility of multimodality. As before, the deterministic and mean

field models are equivalent. Hence, we need only consider one or the other here.

2.3.1 Mean Field Model

The equations for the mean field model describing reaction (2.41) are

ċS = −kE+S→E+P pA cS + kP →S cP ,

ṗA = −kE+P →EI pA cP + kEI→E+P (1− pA),
(2.42)

with

ċP = −ċS + ṗA. (2.43)

This gives the conservation law cST
= cP + cS − pA. Here, cST

is not actually a

concentration, but, since it is a constant in this system, we use the same notation as

above. In equilibrium

pA =
kEI→E+P

kE+P →EI cP + kEI→E+P

. (2.44)

Substituting this and our conservation law into the equilibrium equation for cP yields

the cubic polynomial equation

0 = k3 c
3
p + k2 c

2
p + k1 cp + k0, (2.45)

where

k3 = −k2
E+P →EI kP →S,

k2 = −kE+P →EI kEI→E+P (kE+S→E+P + 2 kP →S) ,

k1 = kE+S→E+P kE+P →EI kEI→E+P cST
− k2

EI→E+P (kP →S + kE+S→E+P ) ,

k0 = kE+S→E+P k
2
EI→E+P (cST

+ 1) .

(2.46)

We notice that k3, k2 < 0 for any set of positive rate constants. We also observe that

k0 > 0 since cST
> −1. The sign of k1 may be positive or negative depending on the

reaction rates, but either way there is exactly one change of sign of coefficients in the



24

polynomial (2.45), that between k2 and k1 or between k1 and k0. So, by Descartes’

rule of signs, (2.45) has exactly one positive root c∗p.

This model, and, by extension, the deterministic model from the law of mass

action, can only admit one positive equilibrium for any set of positive rate constants.

Since we have already shown the existence of a positive finitely bounded invariant

region, and since the system is only two-dimensional, this equilibrium must be stable.

As with the first reaction system, we contrast this model’s results with possible

equilibria derived from the discrete stochastic model.

2.3.2 Stochastic Model

Due to the similarities between this reaction network and (2.2) we write the

nondimensionalized master equation using similar notation.

d

dτ

(
p1

p0

)
=


 αAN + BN − βCN

(
0 · · · 0
γIN−1

)

βC̃N αAN−1 − γIN−1



(

p1

p0

)
(2.47)

where subscripts, j on matrices denote that they are square, (j + 1) × (j + 1) with

indices 0, . . . , j, and the tilde above denotes the deletion of the first row. Thus, C̃N

is, in fact, N × (N + 1), once we define

C =




0
1

. . .

N


 . (2.48)

The matrix in (2.47) is pieced together in such a conglomerated fashion because the

number of possible P molecules depends on whether one molecule is bound to, and

inhibiting, the enzyme molecule in the system. As a consequence, p1 remains as

defined in (2.7), but p0 =
(
p0,0 . . . pN−1,0

)T
.

We now approximate the stationary distribution for this process by using power

series in certain parameter ranges as above. Here we only choose parameter ranges

that give “interesting” or bimodal behavior in the first reaction scheme.

2.3.2.1 Expansion in β

Using our redefined notation we write the first power series approximation(
p1

p0

)
=

(
q0

r0

)
+ β

(
q1

r1

)
+O(β2). (2.49)
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Matching terms in β gives the first matching condition

(αAN−1 − γIN−1) r0 = 0. (2.50)

Since this matrix is invertible for all nonzero γ we see r0 = 0. So, then,

(αAN + BN) q0 = 0. (2.51)

Once again, q0 is binomially distributed with parameter 1
1+α

. It makes sense that this

distribution would be the same as (2.14), because it is the leading order approximation

for the distribution when the enzyme is active. However, the first order correction

term is slightly different. It is

r1 = (γIN−1 − αAN−1)−1 C̃N q0. (2.52)

Comparing this to the correction term in (2.16) shows their obvious similarity. The

vector q1 is obtained by, once again, enforcing the condition 1T

(
q1

r1

)
= 0. In

this way all further terms in the series can be computed. An example of a bimodal

distribution given by this expansion is seen in Figure 2.4. Again, this expansion is

only valid for a certain range of β, however the eigenvalues of this matrix are not

so easily guessed. We rely on the numerical solutions to indicate whether the series

converges or diverges. The bound on β appears to be much tighter than that for

(2.11).

2.3.2.2 Expansion in γ

As we see above, the other parameter regime that yields a possible bimodal

distribution is when γ is sufficiently small. Here, we use the same series expansion,

(
p1

p0

)
=

(
u0

v0

)
+ γ

(
u1

v1

)
+O(γ2). (2.53)

Then, at leading order

(αAN + BN − βCN) u0 = 0. (2.54)

The matrix on the LHS of this equation is invertible. The proof of this, due to

Earnshaw and Keener [4], is as follows. We make use of the fact that αAN + BN is

an irreducible W-matrix and that βCN is a nonzero, nonnegative, diagonal matrix.
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Figure 2.4. Expansion in β for conserved enzymatic autoinhibition. Similar to
previous figures. Corresponds to (2.49). Mean field equilibrium point is not shown.
Parameter values are α = 2, β = 0.01, γ = 0.5, N = 100, and V = 1.

Hence, there exists a ζ > 0 large enough that G = αAN + BN − βCN + ζIN is a

nonnegative irreducible matrix. Then, by the Perron-Frobenius Theorem, G has a

unique positive eigenvector w whose corresponding eigenvalue r is real and is the

spectral radius of G. So, then,

rw = Gw = (αAN + BN − βCN + ζIN) w, (2.55)

which, with a little manipulation, yields the inequality

r − ζ =
−β 1TCNw

1Tw
< 0. (2.56)

Since all eigenvalues of G are contained in a disc of radius r centered at the origin,

eigenvalues of αAN + BN − βCN are contained in a disc of the same radius centered

at −ζ. Since r < ζ, we see that 0 is not an eigenvalue of this matrix.

It follows that u0 = 0, and, hence,

αAN−1v0 = 0 =⇒ v0 = e0. (2.57)

We get the first order correction from the equation

(αAN + BN − βCN) u1 +

(
0 · · · 0
IN−1

)
v0 = 0, (2.58)
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whence comes

u1 = − (αAN + BN − βCN)−1

(
0
v0

)
. (2.59)

This distribution only looks slightly different than the distribution in Figure 2.3.

There exist parameters for which it is bimodal.

2.4 Nonconserved Autoinhibition

Now we modify the autoinhibition reaction further. This reaction system does not

have the same type of conservation law as we see in the others, but we can investigate

it in a similar fashion.

E → E + P � EI

P → ∅.
(2.60)

This reaction can be thought of in a few different ways. One of these ways is that

the “enzyme,” E can be thought of as a catalyst acting on a reservoir of substrate

so large that its change is negligible. Hence, the “substrate” concentration (if there

is such) can be absorbed into the rate constant representing production of product.

Alternatively, the reaction can be thought of as a gene, either on DNA or RNA, that

transcribes some product, P . P may be a protein or RNA itself. Either way, P can

then bind to the gene and inhibit its own production. Clearly the reaction (2.60) is

a very simplified version of either of these interpretations, but it serves to illustrate

the features we wish to observe.

Again, we make a brief investigation of the mean field (and, by extension, the

deterministic) model to analyze its long-term or steady state behavior.

2.4.1 Mean Field Model

As is our pattern, let pA be the probability that the enzyme is in its active state

and cP be the concentration of product molecules, P . We obtain the mean field model

ṗA = −kE+P →EI cP pA + kEI→E+P (1− pA)

ċP = kE→E+P pA − kP →∅ cP + ṗA.
(2.61)

In steady state, this model yields the quadratic equation

q(cP ) = −kE+P →EI kP →∅ c
2
P − kEI→E+P kP →∅ cP + kE→E+P kEI→E+P = 0. (2.62)
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Since q(0) > 0 and q′′(0) < 0 this equation has exactly one positive root c∗P . And, in

steady state, p∗A =
kP →∅ c∗P
kE→E+P

. This equilibrium is clearly stable since the trace of the

Jacobian is negative and the determinant is positive for all positive values of pA and

cP . This holds for all positive rate constants. Hence, there is no way this model can

produce multiple nonnegative equilibria.

2.4.2 Stochastic Model

For ease of notation, we nondimensionalize so that α = kE→E+P/kP →∅, β =

kE+P →EI/kP →∅, and γ = kEI→E+P/kP →∅. We have scaled by the rate of degradation

of P rather than its rate of production simply to make the calculations less messy-

looking. We can still relate the following results to our results above because none of

our expansions are in the parameter α. The nondimensionalized master equation for

this reaction, then, is

d

dτ

(
p1

p0

)
=


 αA + B− βC

(
0 · · ·
γI

)

βC̃ B− γI



(

p1

p0

)
, (2.63)

where p1 is the “vector” of probabilities that the number of product molecules P

in solution is nP = 0, 1, 2, . . . and the enzyme is active, or unbound, to a product

molecule. Similarly, p0 is the “vector” of probabilities for nP while the enzyme is

inhibited by a product molecule. The product molecule bound to the enzyme is

not included in the count nP . The reason for the quotation marks around the word

“vector” is that these are really sequences in `1. The operators A, B, C, C̃, and I

are not matrices, but are operators on `1. Their structure is as follows:

A =




−1
1 −1

1 −1
. . . . . .


 , (2.64)

B =




0 1
−1 2

−2 3
. . . . . .


 , (2.65)
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C =




0
1

2
. . .


 , (2.66)

C̃ is merely C with the first row deleted, and I is the identity operator.

We consider this master equation in steady state. Since solving it analytically

doesn’t seem to give much intuition about the shape of the distribution we try a few

power expansions in various parameter regimes.

2.4.2.1 Expansion in β

If β is a small enough parameter that we can expand the solution as a series in β,

then the governing equation in steady state is

0 =




 αA + B

(
0 · · ·
γI

)

0 B− γI


+ β

(
C 0

C̃ 0

)

((

x0

y0

)
+ β

(
x1

y1

)
+O(β2)

)
.

(2.67)

The leading order equation,

(B− γI) y0 = 0, (2.68)

tells us that y0 = 0. The operator B− γI does, in fact, have a nontrivial null vector,

but it is not in `1. It has the character that y0,n+1 = γ+n
1+n

y0,n. The ratio test is

inconclusive for this series, but its lack of convergence can be shown using Raabe’s

test. This test asserts that if

lim
n→∞

∣∣∣∣
yn
yn+1

∣∣∣∣ = 1, (2.69)

and

lim
n→∞

n

(∣∣∣∣
yn
yn+1

∣∣∣∣− 1

)
= ρ, (2.70)

then the series is absolutely convergent if ρ > 1 and divergent if ρ < 1. In this case

ρ = 1− γ < 1. We make use of this nullspace later in this calculation.

The other leading order equation, then, becomes

(αA + B) x0 = 0. (2.71)

Hence, x0 is Poisson with parameter α: x0,n =
αn

eαn!
.
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The equation for the first order correction to this steady state approximation is

(B− γI) y1 = −C̃ x0. (2.72)

Using substitution, it is straightforward to show that a particular solution to this

equation is

yn =
−1

e−αn!

(
n∑

i=0

αi
n−1∏

j=i

(γ + j)

)
, (2.73)

where empty products are 1. However, this solution is not in `1 nor are any of its

entries positive. All terms in the power series must be `1, and this particular term

must have all positive entries since it is the first nonzero term for p0. To find a solution

that is `1 we add the appropriate multiple of the null vector zn = 1
n!

∏n−1
j=0 (γ + j). In

order to have any hope of this approach yielding a useful result, at bare minimum we

must choose z so that

lim
n→∞

yn = lim
n→∞

z

n!

n−1∏

j=0

(γ + j)− 1

eα n!

(
n∑

i=0

αi
n−1∏

j=i

(γ + j)

)
= 0. (2.74)

Rewriting in a simpler form,

yn =
1

n!

n−1∏

j=0

(γ + j)

(
z − e−α

n∑

i=0

αi
i−1∏

j=0

1

γ + j

)
. (2.75)

The term with the series in parentheses converges to a finite limit as n→∞. We let

z be this limit and now define

y1,n =
1

eα n!

n−1∏

j=0

(γ + j)

(
∞∑

i=n+1

αi
i−1∏

j=0

1

γ + j

)

=
Γ(γ + n)

eα n!

(
∞∑

i=n+1

αi

Γ(γ + i)

)
.

(2.76)

Each entry of this vector is positive, as we hoped. Now we must show that
∑

n y1,n <

∞. To this end we apply the ratio test.
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lim
n→∞

∣∣∣∣
y1,n−1

y1,n

∣∣∣∣ = lim
n→∞

(
n

n+ γ − 1

)( αn

Γ(γ+n)
+
∑∞

i=n+1
αi

Γ(γ+i)∑∞
i=n+1

αi

Γ(γ+i)

)
(2.77)

= lim
n→∞

(
n

n+ γ − 1

)(
1

∑∞
i=n+1 α

i−n Γ(γ+n)
Γ(γ+i)

+ 1

)
(2.78)

= lim
n→∞

(
n

n+ γ − 1

)(
1

∑∞
j=1 α

j Γ(γ+n)
Γ(γ+n+j)

+ 1

)
(2.79)

= lim
n→∞

(
n

n+ γ − 1

)(
1∑∞

j=1 α
j
∏j−1

k=0
1

γ+n+k

+ 1

)
(2.80)

≥ lim
n→∞

(
n

n+ γ − 1

)(
1∑∞

j=1 α
j 1

(γ+n)j

+ 1

)
(2.81)

= lim
n→∞

(
n

n+ γ − 1

)(
n+ γ

α

)
(2.82)

=∞. (2.83)

To show convergence we merely need limn→∞

∣∣∣y1,n−1

y1,n

∣∣∣ > 1. However, since this limit

is, in fact, ∞, this series appears to converge quite rapidly. It is not a long-tailed

distribution. The remaining piece of this vector, x1 satisfies the equation

(αA + B) x1 = −
(

0 · · ·
γI

)
y1 −Cx0 (2.84)

whose terms are not easily guessed. Further terms in this series may be impossible

to compute analytically, but these first two, at least, indicate that the bulk of the

distribution lies within some finite range. This is useful for plotting, since we can’t

very well ask a computer to solve an infinite matrix equation. We can, however,

truncate the state space, and, hence, the W-matrix, by choosing N large enough that

the total probability mass for all n > N is within machine precision.

From numerical experiments, the bound on β for which this series converges

appears to be even more restricted than the aforementioned examples. For instance,

Figure 2.5 shows bimodal distributions for the parameters α = 30, β = 0.01, and

γ = 0.5. With this set of parameters we do see convergence. However, increasing α

to 40 produces a power series that appears to diverge. The stochastic simulations still

produce bimodal time distributions for these parameters, though it is unclear what,

if any, expansion might give intuition about the reaction.
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Figure 2.5. Expansion in β for nonconserved enzymatic autoinhibition. Similar
to previous figures. Corresponds to the expansion in (2.67). Parameter values are
α = 30, β = 0.01, γ = 0.5, and V = 1. The system has been truncated to N = 60
without losing any visible fidelity.

2.4.2.2 Expansion in γ

For completeness, we now treat γ as the small parameter in the system and

represent the solution as the power series
(

p1

p0

)
=

(
x0

y0

)
+ γ

(
x1

y1

)
+O(γ2). (2.85)

Then, the first leading order equation is

(αA + B− βC) x0 = 0. (2.86)

We claim that this equation implies that x0 = 0. The operator αA + B − βC does

appear to have a nontrivial null vector, but its form is not evident. In order for it to

make sense in our solution expansion (2.85) it must be nonnegative. From the 0th

row of (2.86), we get the condition

x0,1 = αx0,0. (2.87)

All other rows can be written

αx0,n − (α + (n+ 1)(1 + β))x0,n+1 + (n+ 2)x0,n+2 = 0. (2.88)
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We now define the generating function G(z) =
∑∞

n=0 x0,n z
n. Multiplying each row

(2.88) by zn and summing yields

0 = α
∞∑

n=0

x0,n z
n − αz−1

∞∑

n=0

x0,n+1 z
n+1 − (1 + β)

∞∑

n=0

x0,n+1 (n+ 1) zn

+
∞∑

n=0

x0,n+2 (n+ 1) zn +
∞∑

n=0

x0,n+2 z
n

(2.89)

= αG(z)− α z−1 (G(z)− x0,0)− (1 + β)
∞∑

n=0

x0,n+1
d

dz
zn+1

+
∞∑

n=0

x0,n+2
d

dz
zn+1 + z−2

∞∑

n=0

x0,n+2 z
n+2

(2.90)

= α
(
1− z−1

)
G(z) + α z−1 x0,0 − (1 + β)

d

dz

(
∞∑

n=0

x0,n z
n − x0,0

)

+
d

dz

(
z−1

∞∑

n=0

x0,n+2 z
n+2

)
+ z−2

(
∞∑

n=0

x0,n z
n − x0,1 z − x0,0

) (2.91)

= α
(
1− z−1

)
G(z) + α z−1 x0,0 − (1 + β)

dG

dz

+
d

dz

(
z−1 (G(z)− x0,1z − x0,0)

)
+ z−2 (G(z)− x0,1 z − x0,0)

(2.92)

= α
(
1− z−1

)
G(z) + α z−1 x0,0 − (1 + β)

dG

dz
+ z−1

(
dG

dz
− x0,1

)
. (2.93)

Applying condition (2.87) and multiplying by z yields a homogeneous, linear, first-

order ODE for G(z),

0 = (1− (1 + β) z)
dG

dz
+ α (z − 1) G(z). (2.94)

It is clear from (2.94) that dG
dz

∣∣
z=1

= 0. Additionally, we know that G(1) =
∑∞

n=0 x0,n.

If x0,n ≥ 0 for all n, as must be the case for our series expansion, then it follows that

G(1) ≥ 0 and G(z) ≤ G(1) for all 0 ≤ z < 1. However, differentiating (2.94) yields

0 = −(1 + β)
dG

dz
+ (1− (1 + β) z)

d2G

dz2
+ αG(z) + α (z − 1)

dG

dz
, (2.95)

which, when evaluated at z = 1 gives

d2G

dz2

∣∣∣∣
z=1

=
α

β
G(1). (2.96)

If G(1) = 0, then x0,n = 0 for all n. If, instead, G(1) > 0, then (2.96) tells us there is a

0 < z∗ < 1 for which G(z∗) > G(1). This is not possible and provides a contradiction.

Therefore, it must be that x0 = 0.
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The leading-order term in our expansion, then, must satisfy

B y0 = 0. (2.97)

Resultantly, y0 = e0, the distribution with no product molecules, since the unbinding

of the inhibited enzyme is slow compared to the degradation of P .

The first-order correction equations are

(αA + B− βC) x1 +

(
0 · · ·
γI

)
y0 = 0,

C̃ x1 + B y1 − I y0 = 0.

(2.98)

Analytical solutions for these are not readily found, nor do these equations provide

much insight into how further terms in the expansion modify its shape.

2.5 Discussion

The chemical reactions discussed in this chapter are all very similar. Indeed, a

glance at Figures 2.2, 2.4, and 2.5 may lead one to believe that they are the exact same

reaction. However, we have included each of these examples in a sequence that leads

from a toy model toward a more realistic reaction that may be found in a biological

or chemical system. The purpose of the toy model, reaction (2.2), is to gain intuition

about the underlying probability distributions. We can see that these distributions

remain consistent in character, even as we add complexity to the reaction and the

resulting chemical master equation.

The main purpose of this analysis is to demonstrate that great caution is needed

when mathematically modeling even the simplest of chemical reactions. Analytical

results abound for deterministic ordinary differential equation systems obtained by

the law of mass action, though there remain many unanswered questions about such

systems. We show, in this chapter, that for certain reactions those analytical results

do not predict even the most fundamental characteristics of the distributions we might

expect to see in laboratory experiments.
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Abstract. Keizer’s paradox refers to the observation that deterministic and
stochastic descriptions of chemical reactions can predict vastly different long

term outcomes. In this paper, we use slow manifold analysis to help resolve this
paradox for four variants of a simple autocatalytic reaction. We also provide

rigorous estimates of the spectral gap of important linear operators, which

establishes parameter ranges in which the slow manifold analysis is appropriate.

1. Introduction. In 1987, Joel Keizer proposed a simple autocatalytic chemical
reaction for which the deterministic ordinary differential equation model based on
the law of mass action and the stochastic formulation, given by the chemical master
equation, predict qualitatively different long term outcomes [6]. Such autocatalytic
reactions occur, for example, in the misfolding of prion protein (PrP) in Creutzfeldt–
Jakob disease [2] or the phosphorylation activation of certain enzymes [10]. Keizer’s
chemical reaction and several variations of it are also mentioned by Gardiner [3] and
Van Kampen [11].

The reactions that form the basis for this observation, called Keizer’s paradox,
are

S +X
k1

GGGGGGBFGGGGGG

k−1

2X, (1a)

X
k2

GGGGGGA C, (1b)

Reaction (1b) can be thought of as degradation. According to the law of mass
action,

dx

dt
= k1sx− k−1x

2 − k2x, (2)

where x = [X], and s = [S] are continuous state space variables. Assuming s is a
constant, there are two steady states, an unstable solution with x = 0 and a stable
positive solution (given k1s > k2) x = k1s−k2

k−1
. However, when this reaction is
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modeled as a discrete stochastic birth-death process, the extinct state x = 0 is the
unique absorbing state, and consequently the stochastic model predicts the species
X will go extinct with probability 1.

Such contradictions between deterministic models and stochastic birth-death pro-
cesses often appear partly because, in order to use a deterministic model, a large,
but discrete, state space is treated as continuous. Indeed, almost any continuous
population-tracking model can be thought of as an approximation to an underlying
discrete stochastic process, as observed by N̊asell [9]. Such approximations are usu-
ally useful for some range of time or when the population in question is sufficiently
large. However, if the population is small, a continuous state space cannot be easily
justified, and, indeed, different behaviors are often observed. Similarly, in the long
time limit, stochastic fluctuations can play an important role, even in large systems,
and deterministic equilibria may be perturbed in significant ways. Indeed, for the
above example, the typical behavior of the stochastic process is to rapidly approach
a quasistationary distribution whose mean is close to the deterministic steady state,
but then to go extinct on a much slower time scale because of random fluctuations.
Consequently although extinction is sure probabilistically, the expected extinction
time is quite large, becoming exponentially large as a function of system size, thus
resolving the paradox.

Though at first glance it may seem so, our results do not conflict with the classic
work done by Kurtz [7, 8] in comparing stochastic and deterministic models of
chemical reactions. He proved that the ODE model is the infinite volume limit of
the Markov process model. In this paper the volume in which the reactions occur
is arbitrary but must remain finite for our results to hold.

The reaction (1) with S held constant was studied by Vellela and Qian [12]. They
used numerical computations to estimate the expected extinction time as well as
the time to reach the mean of the quasistationary distribution. Being numerical,
their computations could only be performed for a truncated system, even though
the state space is infinite. Vellela and Qian chose to truncate the state space at
N = 300 because it was “sufficiently larger” than the deterministic steady state
with their choice of parameter values.

In this paper we exploit the fact that in certain parameter ranges there is a
separation of time scales, a fast time scale on which the stochastic process quickly
approaches a quasistationary distribution very near the steady state concentration
predicted by the deterministic model, and a slow time scale on which extinction
occurs. With our analysis, using adiabatic elimination, or slow manifold dynamics,
we calculate the time to extinction, showing that it grows exponentially with the
size of the system.

Our analysis is applied to four variants of Keizer’s paradox. First, we examine
the reaction (1) with the substrate S held constant, and find analytical formulas for
the mean extinction time. Second, we examine the reaction (1a) with the variation
on the degradation reaction

X
k2

GGGGGGA S, (3)

and without the assumption that substrate S is held constant. This reaction scheme
has the property that the total number of molecules, nS + nX , is constant, but ex-
hibits the same paradoxical behavior as (1). Similar results for the mean extinction
time are obtained as with the non-closed system.
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Third, we consider the finite system obtained by the reactions in (1) without
assuming the number of S molecules is held fixed. For this reaction, there is no
conservation of total molecules, but instead the reaction occurs in a closed envi-
ronment and is allowed to ‘run down’. With this assumption, there is no paradox;
both the stochastic model and the deterministic model predict extinction of the
autocatalytic molecule X. However, the state of the system when X goes extinct is
quantitatively different for the two models in terms of the number of S molecules
which remain at extinction. Using our analysis, we are able to quantify these dif-
ferences.

Fourth, we assume that the back-reaction rate in (1a) is proportional to S. With
this modification S remains constant, so the analysis of this reaction is identical to
that of the first case. However, when this autocatalytic reaction is coupled with
the degradation reaction (3), the deterministic model has no positive steady state
but predicts that S grows without bound, while the stochastic model once again
predicts certain extinction. For this model, we calculate the extinction time for the
stochastic process as well as the distribution for the substrate species S when X
goes extinct.

Finally, by bounding the spectral gaps of the necessary matrices and operators,
we provide rigorous estimates for parameter ranges within which the time scale
separation is sufficient to permit a quasistationary - slow manifold analysis.

2. Keizer’s paradox.

2.1. Problem formulation. First, we consider the original problem proposed by
Keizer [6]. In this problem, S is held fixed at, say, nS molecules. (The mechanism
by which this is accomplished is not stated, although this is necessarily an open
system.) Consequently, since nS does not change, the only species we need to track
is X.

As noted in the introduction, modeling this reaction using ordinary differential
equations and the law of mass action predicts that the concentration of X tends to
a positive steady state.

For the stochastic description of this process, the state of the system is deter-
mined by the number n of X molecules, n = 0, 1, 2, · · · . A state transition diagram

is shown in Figure 1. The transition rate parameters k̂1, k̂−1, and k̂2 are related to
the chemical reaction rates in (1) by

k̂1 =
k1

V
, (4a)

k̂−1 =
k−1

V
, (4b)

k̂2 = k2, (4c)

where V is the volume of the system.
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n n+ 1

k̂1nSn

k̂−1(n+ 1)n

k̂2(n+ 1)

Figure 1. State diagram for the stochastic system with a semi-
infinite state space.

The chemical master equations for this process are the infinite system of ordinary
differential equations





dp0

dt
= k̂2p1,

dp1

dt
= (2k̂−1 + 2k̂2)p2 − (k̂2 + k̂1nS)p1,

...

dpn
dt

= k̂1nS(n− 1)pn−1 + (k̂−1(n+ 1)n+ k̂2(n+ 1))pn+1

− (k̂−1n(n− 1) + k̂1nSn+ k̂2n)pn,

...

(5)

where pn(t) is the probability that the system is in state n, i.e. has n molecules of
species X, at time t. We nondimensionalize this system with the rescaling of time

t̂ = k̂1nSt. We can now write this system as the “matrix” equation

dp

dt̂
= (A+ εB)p, (6)

where ε = k̂2/(k̂1nS). The word matrix above is in quotes because A and B
are not matrices in the usual sense, but rather are linear operators on `1, and

p =
[
p0, p1, p2, . . .

]T ∈ `1 is a probability distribution over the natural
numbers. That said, A is the tridiagonal operator

A =




0 0 0 . . . . . .
0 −1 2γ−1

0 1 −2− 2γ−1 6γ−1

...
. . .

. . .
. . .

(n− 1) −n− n(n− 1)γ−1 n(n+ 1)γ−1

...
. . .

. . .
. . .




(7)
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with γ = k̂1nS/k̂−1, and

B =




0 1 0 . . . . . .
0 −1 2
0 0 −2 3
...

. . .
. . .

−n (n+ 1)
...

. . .
. . .




(8)

is upper triangular. Because our state space includes the state n = 0, indices for
all elements of and operators on `1 herein begin at 0.

2.2. Slow manifold reduction. The purpose of writing these two operators sepa-
rately is to motivate a slow manifold reduction treating ε as a small parameter. This
has been called adiabatic elimination of fast variables [3]. In fact, if the amount of
substrate, S, is sufficiently large, then ε is small, and the nullspace of A is a slow
manifold. Our first step, then, is to find the null vectors for the matrix A. One

can easily see that φ =
[

1, 0, 0, . . .
]T

is a null vector since the first column
of A is all zeros. However, A has another null vector, which we call π. Forcing
the distribution π to be mutually exclusive to φ gives π0 = 0. In other words,
the distribution π corresponds to having zero probability of being in the extinct
state. The remaining entries are found using a simple inductive argument (see Van
Kampen [11]) to be

πn =
1

n!
γn−1π1, n = 2, 3, . . . (9)

with the condition
∑
j πj = 1. So,

πn =
γn

n!
(eγ − 1)

−1
, n = 1, 2, . . . . (10)

This is a zero-truncated Poisson distribution with parameter γ. It has mean

µ = γ
eγ

eγ − 1
≈ γ =

k̂1nS

k̂−1

, (11)

which, in units of concentration, is k1s
k−1

, and is greater than the deterministic steady

state k1s−k2
k−1

, but agrees exactly with the deterministic steady state if we were only

to consider reaction (1a).
We examine the non-zero eigenvalues of the matrix A in section 4. In fact, the

reduction of this system to the nullspace of A must be justified by a more rigorous
separation of time scales. This requires a better understanding of the spectra of
A and B. We show, in section 4, that the remaining eigenvalues of A are greater
than 1/3 in magnitude. So, other modes are damped out exponentially. This means
that, given some initial condition p(0), there is an initial layer before the solution
settles onto the two-dimensional slow manifold spanned by φ and π. So, after a
short, O(1), initial time, the solution to (6) will be of the form

p(t̂) = c0φ+ c1π +O(ε), (12)

where c0,1 are slowly varying scalar-valued functions of t̂ and the O(ε) contribution

is not in the range of φ and π. Here, c0 = p0(t̂). Projecting onto the nullspace of A
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by multiplying both sides of (6) on the left by 1T, the row-vector with a 1 in every
component, gives, to leading order in ε,

dc0

dt̂
+
dc1

dt̂
= 0. (13)

Thus, c0 + c1 is conserved, and in fact, since
∑
pj = 1,

c1 = 1− c0. (14)

The projection of (6) given by multiplying both sides on the left by φT is

dc0

dt̂
= c1ε

∞∑

j=0

B0,jπj

= εγ (eγ − 1)
−1
c1.

(15)

Substituting (14) into (15) and solving the resulting equation gives

c0(t̂) = 1− (1− c0(t̂∗)) exp

(
− εγ

eγ − 1
t̂

)
. (16)

Hence, p0 → 1 exponentially in time once the solution is on this slow manifold.
However, the rate at which this occurs is extremely slow, because the denominator
in the exponent of (16) is exponentially large. The use of t̂∗ indicates the short time
it takes to get to this manifold, and c0(t̂∗) is the location on manifold the initial
conditions determine the solution will approach in that short time. This means
that the species X goes extinct with probability 1. The relevant question, though,
is how long it takes before this occurs.

If we make the further approximation that c0(t̂∗) = 0, that is, that the system
starts out in quasistationary state, we can find that the expected nondimensional
time to extinction τ̂ is given by

τ̂ =

∫ ∞

0

t̂c′0(t̂) dt̂. (17)

Expressed in dimensional time, the time to extinction is

τ =
k̂−1

k̂2k̂1nS

(
exp

(
k̂1nS

k̂−1

)
− 1

)
. (18)

This compares favorably to the numerical study done by Vellela and Qian[12], and
provides an analytical estimate for the extinction time. Using the same parameters
they used, namely k1 = k−1 = k2 = .55, and nS = 100 we find

τ ≈ 4.89× 1041. (19)

Having made the reduction in (12) it is difficult to get a handle on τ1, the
expected time to extinction given the initial condition pn(0) = δ1,n. However,
using these same parameters, we can calculate τµ,1, the expected time to reach µ,
the mean of the distribution π. First, we calculate the splitting probability θµ,1.
This is the probability that, starting at state 1, the reaction reaches state µ (or
nearest integer) before reaching state 0. Van Kampen calculates this for a general
birth-death process on pp. 298-300 [11]. For our parameter values, µ = 100 and

θµ,1 ≈ 0.9899. (20)

This means that, with very high probability, the process will reach the mean of the
quasistationary distribution before going extinct, another hint at justification for
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our reduction to the aforementioned manifold. We use this, and the other splitting
probabilities, to compute

τµ,1 =

∑µ−1
m=1

∑m
k=1

θµ,k
gk

∏m
j=k+1

rj
gj

θµ,1
∑µ−1
m=0

∏m
i=1

ri
gi

, (21)

where empty products are equal to 1, and

gj = k̂1nSj, (22a)

rj = k̂−1j(j − 1) + k̂2j (22b)

are the birth and death rates, respectively. With the parameter values above,
numerically we obtain

τµ,1 ≈ .1492. (23)

Hence, not only does the process tend toward the mean of π, it does so many orders
of magnitude more quickly than the expected waiting time for an extinction event.

3. Variations on the original reaction.

3.1. Closed and conserved. We now turn our attention to the variation on the
reaction scheme given by reactions (1a) and (3). We suppose that the reactions
occur in a closed environment. It is clear, then, that N = nX + nS is a conserved
quantity, so nS is no longer a constant. The total concentration s∗ = x + s is
similarly conserved. Then, the deterministic ODE model for these reactions is

dx

dt
= k1x(s∗ − x)− k−1x

2 − k2x, (24)

which has the unique positive stable steady state (provided k1s
∗ > k2)

x∗ =
k1s
∗ − k2

k1 + k−1
. (25)

However, consideration of the chemical master equation gives the same paradox
as with the infinite-dimensional system. Letting p̃ denote the probability density
vector, we write

dp̃

dt̃
= (Ã+ ε̃B̃)p̃, (26)

where

Ã =
1

N




0 0
0 −(N − 1) 2γ̃−1

(N − 1) −2(N − 2)− 2γ̃−1 6γ̃−1

. . .
. . .

. . .

−N(N − 1)γ̃−1

(N − 1) N(N − 1)γ̃−1



, (27)

and

B̃ =




0 1
0 −1 2

−2 3
. . .

. . .

−(N − 1) N
−N



, (28)
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with γ̃ = k̂1/k̂−1 and ε̃ = k̂2/(k̂1N). Here, we have nondimensionalized time in (26)

by the scaling t̃ = k̂1Nt.
Once again, the only stationary probability distribution for (26) is the vector

ψ which is simply φ truncated to be length N + 1. Indeed, the species X goes
extinct almost surely. However, we can apply the same technique here to determine
the time scale on which extinction occurs. We perform a slow manifold reduction
treating ε̃ as a small parameter. As above, we leave the formal comparison of the
spectra of Ã and ε̃B̃ to section 4. Besides ψ, the only other probability vector in
the nullspace of Ã is ρ, given by

ρn = γ̃n
(
N

n

)(
(1 + γ̃)

N − 1
)−1

n = 1, 2, . . . , N, (29)

with ρ0 = 0. Interestingly, if we make the assumption that k̂1 is inversely pro-
portional to N and take the limit as N → ∞, then ρ limits to a zero-truncated
Poisson distribution similar, but not identical to (10). However, there is no physi-
cally natural limit in which the systems compare directly. The distribution in (29)
has mean

µ̃ = Nγ̃
(1 + γ̃)

N−1

(1 + γ̃)
N − 1

. (30)

As before, we assume that after an initial layer, solutions of (26) take the form

p̃(t̃) = d0ψ + d1ρ+O(ε̃). (31)

This is justified in section 4. Then, applying the same technique, multiplying (26)
on the left by 1T and then, separately by ψT, we arrive at

d0(t̃) = 1− (1− d0(t̃∗)) exp

(
− εγN

(1 + γ̃)
N − 1

t̃

)
. (32)

Since d0(t) is the probability that the species X has gone extinct by time t, we see
that, if d0(t̃∗) = 0, the expected extinction time (in original units of time) for this
finite-dimensional problem is

τ̃ =
k̂−1

k̂2k̂1

(
1 + k̂1

k̂−1

)N
− 1

N
. (33)

Choosing the same rates as above, k1 = k−1 = k2 = .55, and letting N = 100, we
find

τ̃ ≈ 2.305× 1028. (34)

For comparison, since this system is finite, we can compute τ̃1, the expected
time to extinction from state 1, exactly. Using a theorem stated by Allen [1] pp.
240–241,we find

τ̃1 ≈ 4.6572× 1026. (35)

It should not be a surprise that this is smaller than our estimate from the slow
manifold reduction, since the initial condition is far closer to extinction. Also for
comparison, with these parameter values, µ̃ ≈ 50, the probability of reaching the
integer state nearest µ̃ given the initial condition of state 1 is

θ̃µ̃,1 ≈ 0.9898, (36)

and the expected time to arrive at that state is

τ̃µ̃,1 ≈ .1355. (37)
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Again, we see the near certainty of arriving at µ̃ before extinction and the expec-
tation of doing so many orders of magnitude faster than an extinction event can
occur.

3.2. Closed with degradation. Now we consider both reactions in (1) occurring
in a closed environment. The initial number of molecules in the system is N =
nS + nX , but when an S molecule is converted, it does not get replaced, and when
an X molecule degrades it is gone for good. We now must track two variables, the
concentrations of S and X. The deterministic system is

dx

dt
= k1sx− k−1x

2 − k2x,

ds

dt
= −k1sx+ k−1x

2.

(38)

With these conditions, the deterministic and stochastic models agree in that they
both predict extinction for the autocatalytic molecule X. This is easy to see with
the deterministic system since

d

dt
(x+ s) = −k2x ≤ 0, (39)

and it is certainly not surprising with the stochastic system. The interesting ques-
tion here is how many molecules of S remain when X does go extinct.

The deterministic model for this system has, as nullclines, two parallel lines with
slope k−1/k1: one which passes through the origin and one which passes through
the s axis at s = k2/k1. The entire s axis is the only set of fixed points. This
corresponds to the termination of the reaction if species X goes extinct. There is
also an invariant manifold between the two parallel nullclines. It is

{
(x, s) ≥ 0 | s =

k−1

k1

(
x+

k2

k1 + k−1

)}
. (40)

To get a clearer sense of how this system behaves, we make the 2 × 2 change of
variables

m = x+ s,

u = k1s− k−1

(
x+

k2

k1 + k−1

)
,

(41)

which gives us equations for ṁ and u̇. Conveniently, we can solve for u as a function
of m by taking the ratio

u̇

ṁ
=

du

dm
=
k1 + k−1

k2
u. (42)

Then

u = u0 e
k1+k−1
k2

(m−m0). (43)

From (39) we know that m approaches 0 from above in forward time, so (43) implies

that u approaches the exponentially small quantity u0 e
k1+k−1
k2

(−m0). The axis given
by u = 0 corresponds with the manifold specified in (40). Hence, we see that from
any initial condition trajectories move exponentially close to this manifold before
the species X can go extinct. Therefore, the deterministic system predicts that
when there are no more molecules of X left to drive the reaction, there will remain
in solution a concentration of S which is approximately

s∞ =
k−1k2

k1(k1 + k−1)
. (44)
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The stochastic model for the process is represented by the diagram in Figure 2.
Along each diagonal in the figure the transition rates are the same as in the matrix Ã.

0, 0 1, 0 2, 0 N − 2, 0 N − 1, 0 N, 0

0, 1 1, 1 N − 2, 1 N − 1, 1

0, 2 N − 3, 2 N − 2, 2

0, N − 2 1, N − 2 2, N − 2

0, N − 1 1, N − 1

Figure 2. State diagram for the stochastic system with finite state
space. Coordinates in the diagram are (nX , nS).

The horizontal arrows from each state to the state on its left represent degradation
of X. It is clear that each state (0, n) for n = 0, 1, . . . , N − 1 is absorbing. In order
to understand how the state probabilities for this system evolve, we notice that if
we add the equations corresponding to a given diagonal we get





dPN
dt

=
N∑

j=1

−k̂2jpj,N−j ,

...

dPQ
dt

=

Q+1∑

j=1

k̂2jpj,(Q+1)−j −
Q∑

j=1

k̂2jpj,Q−j ,

...

dP0

dt
= k̂2p1,0,

(45)
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where

PQ =

Q∑

j=0

pj,Q−j (46)

is the probability of being in any state on the diagonal nS + nX = Q.
We now use the quasistationary approximation from (29) conditioned on the

event that the system is in some state on diagonal Q. The validity of this approx-
imation is discussed below. So then, applying Bayes’ Theorem and reordering the
equations, the system decouples to the 2N -dimensional system





dP1′

dt
= (ω2 − α2)P2′ − ω1P1′ ,

...

dPQ′

dt
= (ωQ+1 − αQ+1)P(Q+1)′ − ωQPQ′ ,

...

dPN ′

dt
= −ωNPN ′ ,

(47a)





dp0,0

dt
= α1P1′ ,

...

dp0,Q

dt
= αQ+1P(Q+1)′ ,

...

dp0,N−1

dt
= αNPN ′ ,

(47b)

where
PQ′ = PQ − p0,Q (48)

is the probability of being on diagonal Q but not in state (0, Q), denoted by the
prime. The binomial theorem gives us expressions for the αQ’s and ωQ’s:

αQ =
k̂2k̂1

k̂−1

Q



(

1 +
k̂1

k̂−1

)Q
− 1



−1

, (49a)

ωQ = αQ

(
1 +

k̂1

k̂−1

)Q−1

. (49b)

If we let P =
[
P1′ , . . . , PN ′

]T
, and q =

[
p0,0, . . . , p0,N−1

]T
, then we can

rewrite (47) as

Ṗ = ΩP, (50a)

q̇ = ΛP. (50b)

The matrix Λ is simply the diagonal matrix of αQ’s, and Ω is upper triangular with
diagonal entries −ω1, . . . ,−ωN , hence, it is invertible and has negative eigenvalues.
This is crucial, because solving (50) yields

q(t) = ΛΩ−1
(
etΩ − I

)
P (0). (51)
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Then, we define

q∞ = lim
t→∞

q(t) = −ΛΩ−1P (0). (52)

This is the approximate distribution of how many S molecules remain once the
speciesX goes extinct. If we assume that the reaction begins withN molecules, then

the initial condition is P (0) =
[

0, 0, . . . , 1
]T

, and the terminal probability
distribution for the species S simplifies drastically to

q∞n =

(
1 +

k̂1

k̂−1

)−n N∏

j=n+2


1−

(
1 +

k̂1

k̂−1

)1−j
 , n = 0, 1, . . . , N − 1, (53)

where, again, empty products are unity. Note that this distribution is independent
of k2, due to the reduction.

The use of this approximation is not well justified on every diagonal because it
relies on having a large enough system. When Q is small, the system is not always
likely to reach a quasistationary distribution. However, we see, upon inspecting the
distribution (53), the range of Q for which the quasistationary reduction might be
considered accurate. On each diagonal which affects the exit distribution signifi-
cantly, we need ε̃ relatively small in order to have a separation of time scales. De-

creasing k̂2 or increasing k̂1 achieves this effect. In a word, we need k̂2/(k̂1Q)� 1/3
for all Q in the bulk of the distribution (53).

In Figure 3, we compare this predicted distribution to the results of several
thousand Gillespie simulations for a range of parameter values. Without loss of

generality, we can fix k̂1 = 1 for all simulations, because only ratios of parameters
affect the results. The results of simulations shown in Figures 3(a), 3(c), and 3(e)
agree closely with the predicted distribution. Figures 3(b), 3(d), and 3(f) show

results where k̂2 is increased enough to cause discrepancy between the simulated and
predicted distributions. The only case in which the deterministic model prediction

is close to the mean of any of these distributions is if k̂−1 is small. In Figure 4, we
show how the means of these distributions depend on combinations of parameters.
As stated, there is good agreement between the predicted mean and the simulated

mean when k̂2 is sufficiently small or when k̂−1, and, hence, any relevant values of

Q, are sufficiently large. Increasing k̂2 invalidates the quasistationary assumption.
We also see in both figures, 3 and 4, that the deterministic model fails to capture
the behavior of this distribution.

3.3. Trimolecular reaction. The final variation on our reaction scheme is the
autocatalytic reaction

S +X
k1

GGGGGGBFGGGGGG

k′−1

S + 2X, (54)

which can also be written as

S +X
k1

GGGGGGBFGGGGGG

k′−1S
2X, (55)

When this reaction is coupled with the degradation reaction (1b), the master equa-
tions are identical to those for (1) with S held constant provided k−1 is replaced by

k′−1S, or equivalently k̂−1 is replaced by k̂′−1nS , where k̂′−1 =
k′−1

V 2 .
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(a) k̂−1 = 2, k̂2 = 1
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(b) k̂−1 = 2, k̂2 = 10
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(c) k̂−1 = 30, k̂2 = 1
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(d) k̂−1 = 30, k̂2 = 10
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(e) k̂−1 = 70, k̂2 = 1
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(f) k̂−1 = 70, k̂2 = 10

Figure 3. Comparisons of Gillespie simulations with predicted
distributions. Each circle represents the fraction out of 100,000
trials for which nS molecules remained at extinction. Each vertical
dotted line is at the value V s∞ from (44). For each figure, k̂1 = 1.
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k̂2 = 1

k̂2 = 10

k̂2 = 100

k̂2 = 1000

k̂−1/k̂1
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Deterministic

Figure 4. The fine dotted line is V s∞ from (44) with k̂2 = 10.
The thick dashed line is 〈q∞〉 from (53), which is independent of

k̂2. Solid lines are the average remaining S molecules from Gillespie

simulations for a range of k̂2. Initial conditions for these simula-
tions are chosen uniformly on nS + nX = 300. Since we are only

concerned with ratios of parameters, k̂1 = 1 for each curve.

We observe a more interesting phenomenon when reaction (54) is coupled with
the degradation reaction (3). With these two reactions, the deterministic model is

dx

dt
= k1sx− k′−1sx

2 − k2x,

ds

dt
= k2x.

(56)

With sufficiently large initial conditions (for example, s > k2
k1

, x > 0), the solution

to these equations predicts that [S] grows without bound, while [X] tends to k1
k′−1

.

The chemical master equation is doubly infinite, and, again, predicts certain
extinction for X. We ask the same question here as in the previous section: given
an initial number of molecules in solution, how many S molecules remain when X
is depleted?
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The Kolmogorov equations needed to answer this question tell us how PS=n, the
probability that S is in state n, evolves. We write them as




dPS=0

dt
= −k̂2

∞∑

j=1

jPX=j|S=0PS=0,

dPS=n

dt
= k̂2

∞∑

j=1

jPX=j|S=n−1PS=n−1 − k̂2

∞∑

j=1

jPX=j|S=nPS=n, n = 1, 2, . . .

(57)
Bayes’ Theorem allows us to rewrite these as





dPS=0

dt
= −k̂2

∞∑

j=1

jPX=j|X 6=0,S=0PX 6=0|S=0PS=0,

dPS=n

dt
= k̂2

∞∑

j=1

j
(
PX=j|X 6=0,S=n−1PX 6=0|S=n−1PS=n−1

−PX=j|X 6=0,S=nPX 6=0|S=nPS=n

)
.

(58)

Using the same argument we make in the previous section, we make the quasista-
tionary reduction

PX 6=0|S=n = 1− c0 (59)

from (16) and

PX=j|X 6=0,S=n = πj (60)

from (10), each of which have γ replaced by γ′ = k̂1
k̂′−1

. Hence, πj is independent of

ns, and
∞∑

j=1

jPX=j|X 6=0 = µ′ = γ′
eγ
′

eγ′ − 1
, (61)

as in (11). Then (58) simplifies to




dPS=0

dt
= − k̂2γ

′eγ
′

eγ′ − 1
exp

(
−k̂2γ

′t
eγ′ − 1

)
PS=0,

dPS=n

dt
=
k̂2γ
′eγ
′

eγ′ − 1
exp

(
−k̂2γ

′t
eγ′ − 1

)
(PS=n−1 − PS=n) .

(62)

We simplify even further by letting

df

dt
=
k̂2γ
′eγ
′

eγ′ − 1
exp

(
−k̂2γ

′t
eγ′ − 1

)
. (63)

Then 



dPS=0

df
= −PS=0,

dPS=n

df
= PS=n−1 − PS=n.

(64)

This is now a standard description of a Poisson process with parameter 1. Solutions
of (64) are

PS=n(f) =

{
0 n < m,
fn−me−f

(n−m)! n ≥ m, (65)
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where

f =

∫ t

0

k̂2γ
′eγ
′

eγ′ − 1
exp

(
−k̂2γ

′s
eγ′ − 1

)
ds = eγ

′

(
exp

(
−k̂2γ

′t
eγ′ − 1

)
− 1

)
, (66)

and m is the initial number of S molecules. So then, letting t → ∞, we find the
predicted probability density for the number of S molecules remaining when all X
is depleted. It is the shifted Poisson distribution

P∞S=n =





0 n < m

eγ
′(n−m)e

(
−eγ
′)

(n−m)! n ≥ m,
(67)

which has mean eγ
′
+m. It is nigh impossible to compare this distribution with the

results of simulations because the time to extinction of X is so long for this process.

4. Spectral gap analysis. Our final objective is to justify the claims made in the
previous sections. That is, we want to show that an initial distribution will move
sufficiently quickly onto the slow manifold to consider the slow manifold reductions
valid. This is done by examining the spectrum of the operator A. In particular,
we wish to show that the non-zero eigenvalue with least magnitude is bounded
some sufficient distance from the origin to consider ε and ε̃ comparatively small
parameters. First, we consider the spectrum of the matrix Ã.

To this end we take advantage of the work by Granovsky and Zeifman [4, 5] in
bounding the spectral gap β of birth-death processes, which is the minimum of all
moduli of the non-zero eigenvalues of the matrix. In particular, they defined C to be
the set of all real matrices C = {cij , i, j = 1, . . . , N} with non-negative off-diagonal
entries,

cij ≥ 0, i 6= j, i, j = 1, . . . , N (68)

and non-positive column sums

cj =
N∑

i=1

cij ≤ 0, j = 1, . . . , N. (69)

Then, they proved that for any matrix C ∈ C , the magnitude of the smallest
eigenvalue

|z0| = min{|zi|, zi ∈ σ(C)} (70)

satisfies

− c̄ ≤ |z0| ≤ −c (71)

where
c = min{cj , j = 1, . . . , N}
c̄ = max{cj , j = 1, . . . , N}. (72)

4.1. Spectral gap in the finite case. The matrix Ã in (26) is a W-matrix as
defined by Van Kampen [11], so every column sum is 0. Hence, the bounds given in

(71) are not immediately useful for bounding the spectral gap of Ã. However, the

entire first column and first row of Ã are zeros. Considering the matrix Ā obtained
by deleting this row and column, Ā is an irreducible W-matrix and it has the null

vector
[
ρ1, . . . , ρN

]T
. We only consider matrices and operators truncated

thus for the remainder of this text.
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Granovsky and Zeifman noticed that the differential equation

dp

dt
= Āp (73)

can be transformed via

p1(t) = 1−
N∑

i=2

pi(t) (74)

into the equivalent equation

dy

dt
= B̄y(t) + f, (75)

where
B̄ = {āij − āi1, i, j = 2, . . . , N},

y(t) =
[
p2(t), . . . , pN (t)

]T

f =
[
ā21 . . . , āN1

]T
.

(76)

This is useful for determining β because σ(B̄) = σ(Ā)/{0}. Hence, the smallest

eigenvalue in σ(B̄) is the spectral gap for our original matrix Ã. We apply their
technique by using the similarity transformation C̄ = TB̄T−1 where

T =




d1 d1 . . . d1

0 d2 . . . d2

...
. . .

. . .
...

0 . . . 0 dN−1


 , (77)

di > 0, i = 1, . . . , N − 1, and

T−1 =




d−1
1 −d−1

2 0 . . . 0

0 d−1
2 −d−1

3 . . .
...

...
. . .

. . .
. . . 0

...
. . .

. . . −d−1
N−1

0 . . . . . . 0 d−1
N−1



. (78)

Granovsky and Zeifman proved a stronger result, but we note here that it is always
possible to pick a sequence d1, . . . , dN−1 so that C̄ ∈ C . Column sums of C̄ take
the form

cj = −aj − bj+1 + δjaj+1 + δ−1
j−1bj (79)

where

aj =
1

N
(N − j)j,

bj =
1

N
j(j − 1)γ̃−1,

δj =
dj+1

dj
, j = 1 . . . N − 1.

(80)

Clearly, aN = b1 = 0. Picking

δj =
j

j + 2
(81)
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yields

c1 = −N + 1

3N
− 2

γ̃N

cj = − (N + 1)j

N(j + 2)
, j = 2, . . . , N − 2

cN−1 = −N − 1

N
.

(82)

The combination of (71) and (82) gives us a lower bound for the spectral gap βÃ.
That is,

βÃ ≥ min

{
N + 1

3N
+

2

γ̃N
,
N + 1

2N
,
N − 1

N

}
>

1

3
, for N > 1. (83)

Since ε̃ = O(1/N), we see that βÃ � ε̃ if N is reasonably large. Since -1 is the

nonzero eigenvalue of B̃ which is smallest in magnitude, this separates the time
scales on which Ã and ε̃B̃ affect the evolving probability distribution p̃ in (26), as
desired.

4.2. Spectral gap of an operator on `1. To obtain a lower bound for the spectral
gap of A in (6), we begin by deleting the first row and column as before. Next, we
truncate A to be size N ×N . Then, we rewrite the system as in (75). Applying the
same similarity transformation to this now-finite and transformed version of A, we
get column sums of the form

cj,N = −j − (j + 1)jγ−1 + δj(j + 1) + δ−1
j−1j(j − 1)γ−1. (84)

Again, picking δj as in (81) and applying (71), we obtain a lower bound on the
spectral gap for our modified version of A, call it β′A. Indeed,

β′A ≥ min

{
1

3
+ 2γ−1,

1

2
, N − 1

}
. (85)

Finally, we let N →∞ to obtain

βA ≥ min

{
1

3
+ 2γ−1,

1

2

}
. (86)

We now see that the magnitude of the smallest eigenvalue for the operator A is
O(1), whereas since we can read the eigenvalues of B off its diagonal, its spectral
gap is exactly 1. Hence, if nS is large enough ε is small, and it is appropriate to
treat A and εB as acting on different time scales as we have done in section 2.2.

5. Discussion. Keizer’s paradox is that, for the simple autocatalytic reaction (1),
the deterministic model based on the law of mass action has a nontrivial stable
steady state to which all solutions with nonzero initial conditions tend, while the
stochastic model of the same reaction predicts that extinction occurs with proba-
bility 1. This paradox is similar to a relatively simple example of a more general
principle of a Markov process on a finite discrete state space, namely, that the sys-
tem evolves to its absorbing states with probability 1. In the case of population
dynamics, the only absorbing states are those for which the reproducing species
is extinct. Thus, even though many deterministic models of reproducing popula-
tions predict long term persistence, stochastic models of these dynamical processes
predict certain extinction.
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The question of interest is, then, how long it takes before we can expect the
stochasticity of the dynamics to bump the system to a state sufficiently far from
the deterministic equilibrium that extinction occurs.

In this paper we find analytical estimates of the expected extinction times for
two variations of an autocatalytic reaction. The first is an open system in which
the substrate molecule S is held constant by some feedback mechanism, and the
autocatalytic molecule X degrades at a constant rate. This stochastic model has
an infinite state space, which makes numerical analysis of its (infinite) W-matrix
impossible. Through analysis of the relative spectral gaps of the operators formed
by the transition rates from each of (1a) and (1b), we are able to justify the pro-
jection onto the nullspace of the operator A as an accurate approximation to the
solution. This is because this nullspace is a slow manifold, provided ε � 1/3, and
movement on this slow manifold gives an exponential waiting time for extinction.
This nullspace is the span of the extinct distribution and a truncated Poisson dis-
tribution or quasistationary distribution. We find that the expected time to reach
the mean of the quasistationary distribution from state 1 is very small compared to
the massive waiting time to extinction.

The second variation is a closed system in which X does not degrade, but can
convert back to S spontaneously. The absence of a feedback means the number of
total molecules is conserved rather than the number of S molecules. Because this
system is finite, we are able to compare the expected extinction time from state
1 with the exponentially large estimate from the reduction to a quasistationary
distribution. From state 1, there is also a very high probability and a relatively
small expected time to reach the mean of this distribution.

Thirdly, we are able to use the projection onto the nullspace of A to analyze
the reaction with degradation in a closed environment. The disagreement between
deterministic and stochastic models in this case is not whether the chemical species
X goes extinct, but how much of the substrate S remains when extinction does
occur. We find that our approximation from the nullspace projection above agrees
well with distributions from Gillespie simulations, whereas the deterministic model
does not predict even the mean of said distributions.

Finally, we consider a different, trimolecular reaction which exhibits the same
paradox as the first two. Extinction time is more unwieldy to compute for this
reaction, but we are able to obtain a similar prediction for the exit distribution of
substrate molecules.

The resolution of Keizer’s paradox, at least for the systems studied here, is that
while extinction is certain, the expected time to extinction is exponentially large in
the size of the system. We conjecture that the stochastic model for any system with
similar paradoxical behavior, especially those biological systems which are observed
to persist over long periods of time, has an extinction time which is exponentially
large as a function of its characteristic population size.
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Many bacterial species such as E. coli and Salmonella locomote by rotating helical

flagella. Each bacterial cell has between three and eight flagella. When all the flagella

rotate counterclockwise (CCW) they form a bundle behind the cell that propels the

cell forward through its environment. If one or more of the flagella switches direction

and rotates clockwise (CW), it causes the bundle to flay apart and the cell to rotate

to a different orientation until all the flagella are once again simultaneously rotating

CCW. This type of movement is commonly called a run-and-tumble process, and the

frequency of tumbling is modified by the cell in response to environmental conditions

such as nutrient or toxin gradients.

The flagellar rotation is driven by a complex transmembrane molecular machine

appropriately called the flagellar rotary motor [2, 14]. Two major components con-

stitute this motor: the rotor [10] and the stator. The rotor is the part of the complex

that actually rotates and is directly attached to a hook from which the flagellum

protrudes. It is comprised of several different rings, and each ring is made of many

copies of different proteins. The stator is the portion of the motor that remains

more or less stationary in the cell membrane. It is able to remain stationary by

being embedded in the rigid peptidoglycan layer. The stator interacts with the high

concentration of hydrogen ions in the periplasm to propel the rotor.

The exact mechanism of how the hydrogen ions cause motor rotation is not known.

What is known is that they interact with the stator protein complex formed by MotA

and MotB. This complex appears to interact with the protein FliG in the M ring which

is part of the rotor. It also appears that the conformation of FliG determines whether

the motor rotates CW or CCW at each of these interactions. How the conformation

of FliG is decided is what we seek to understand in what follows.

FliG and the M ring is connected to the C ring, which is comprised of the proteins

FliM and FliN, seen in Figure 4.1. The M ring and C ring make up what is called the

switch complex. The chemotactic signaling molecule CheY can bind to FliN when

it is in its phosphorylated form, CheY-P [12]. When the whole complex composed

of FliN, FliM, and FliG has CheY-P bound it is biased toward its CW conformation

[8, 9]. There is a 26-fold rotational symmetry in the M ring and an apparent 34-fold

rotational symmetry in the C ring. It is not known whether this stoichiometric
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in cellular CheYP concentration and thereby increase the sensi-
tivity of the chemotactic response.
The present study addresses the question of whether CheYP

interacts with the rotor protein FliN and whether such an in-
teraction has a role in flagellar direction switching. Using pull-
down assays, we show thatCheYP can bind toFliN, but this binding
occurs only when CheYP is occupied by theN-terminal segment of
FliM. Thus, in the normal setting, CheYP is expected to interact
with FliN after first being captured by FliM. The binding deter-
minants on both sides of the CheY–FliN interaction were mapped
using mutations. FliN mutations that weakened the binding of
CheYP were the same as those found previously to cause CCW
motor bias (28), indicating that the CheYP–FliN interaction is
important for motor direction reversal. The relative movement of
FliN and FliMC that accompanies switching (15) is predicted to
make the CheY-binding site on FliN more accessible in the CW
than in the CCW state, providing a simple structural basis for
coupling the binding of CheYP to a conformational change in the
switch complex.

Results
CheY Interaction with FliN. The switch fromCCW toCW rotation is
triggered by binding of the signaling protein CheYP to the motor.
Although theFliMprotein of the rotor has usually been considered
the main player in switching, a mutational analysis gave evidence
that FliN might also play a role, and identified a conserved hy-
drophobic patch as a probable target of action of CheYP (28). We
looked for a CheY–FliN interaction using pull-down assays with
a GST–CheY fusion construct but saw no evidence of binding ei-
ther in the absence or presence of acetyl phosphate, a CheY-
phosphorylating agent. In our current working model of the switch
complex, the N-terminal segment of FliM that is known to bind
CheYP lies near FliN. Accordingly, we hypothesized that CheYP

might bind first to this FliM segment and thereby gain binding
determinants needed for interaction with FliN. This proposal was
tested using a hybrid construct containing 34 residues from the N
terminus ofFliM fused to theN terminusofCheY(termedM34-Y).
This construct contains the conserved CheY-binding segment of
FliM as well as a less-conserved segment of about 15 residues that
is predicted to have nonregular secondary structure and to func-
tion as a linker (Fig. 2A). Upon phosphorylation, the CheY part of
this construct should be able to capture the FliM segment and so
acquire binding determinants resembling those of FliM-bound
CheYP. The binding of this fusion construct to FliN was tested
using pull-down assays. Cells expressing the M34-Y fusion protein
were mixed with cells expressing GST–FliN, lysed, and mixed
with glutathione-Sepharose beads. Beads were washed and trea-
ted with glutathione to release GST–FliN and associated pro-
teins, and samples were analyzed on immunoblots using a poly-
clonal anti-FliM antiserum that showed high sensitivity toward the
FliM sequences present in the fusion protein. A binding inter-
action between theM34-Y construct andFliNwas readily observed
in the pull-down experiment, in the presence but not in absence
of acetyl phosphate (Fig. 2B Left). Acetyl phosphate is believed to
transfer its phosphoryl group to the physiologically relevant resi-
due Asp-57 of CheY in a reaction facilitated by a nearby protein-
bound Mg2+ ion, and is in this sense specific (32). Conceivably,
however, acetyl phosphate might react with other positions in the
M34-Y construct to induce FliN binding by a mechanism that does
not involve Asp-57. To substantiate the role of Asp-57, we carried
out the same experiment but using a mutant protein with Asp-57

Fig. 1. Electron microscopic images of the flagellar basal body, from studies
in Salmonella (10). (A) Single-particle reconstruction of the full basal body,
including the LP-ring and a short segment of the rod. The structure is viewed
from the side and has been axially averaged. The MS-ring is at the level of
the cytoplasmic membrane; the C-ring is in the cytosol. The diameter of the
C-ring is about 50 nm. A current working hypothesis for the locations of FliG,
FliM, and FliN (12–17) is shown at the right of the C-ring. The two lobes of
density at the top of the C-ring are both assigned to FliG, with the outer one
corresponding to the C-terminal domain. [In a more fully detailed model,
some of the FliM subunits are hypothesized to tilt inward to interact with
the inner domain of FliG (13), but this feature is not important in the present
context.] The inward-pointing extension on FliM represents the N-terminal
segment that is known to interact with CheYP. (B) Detail from a higher-
resolution reconstruction (11), showing rings of density at the bottom of the
C-ring. [Reproduced with permission from Thomas D, DeRosier DJ (2001)
(Copyright 2010, American Society for Microbiology).] (C) The appearance
of the bottom of the C-ring as determined in the high-resolution re-
construction and the organization of FliN tetramers and FliMC domains at
the bottom of the C-ring as deduced from cross-linking and mutational
studies (15).

Fig. 2. (A) Schematic of the FliM1–34–CheY fusion construct. The part of the
FliM sequence shown explicitly is well conserved across species and is known
tobindtoCheYP inhelical conformation (23). (BLeft) Pull-downassaywithGST–
FliN and the FliM1–34–CheY construct, in presence or absence of the phos-
phorylating agent acetyl phosphate. (B Right) Effect of the CheY mutation
D57A. (C) Binding of the FliM1–34–CheY construct to FliN proteins with muta-
tions in various surface positions. Acetyl phosphate was present in all samples.
(D) Comparison of the CheYP-binding region on FliN with positions of pre-
viously characterized CCW-biased mutations. (Left) Results of the binding ex-
periment (C)mappedonto the FliN structure (PDB ID code 1yab). Red, positions
where mutations eliminated the binding; blue, positions where mutations
did not affect binding. (Right) Positions of mutations in FliN that gave CCW
motor bias, colored green (data from ref. 27; image made in PyMol).
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Figure 4.1. The flagellar rotor. An electron microscopic image of the flagellar rotor
in Salmonella. (Adapted from [12].)

mismatch is important for motor control. For our purposes, we do not consider the

26-fold symmetry created by FliG explicitly.

In short, our aim is to develop a tractable model of the overall conformation of the

switch complex based on simple assumptions about the interaction of the individual

components involved.

4.1 Model of the Flagellar Motor Switch

The initial framework of the stochastic model of this motor, described in the

following, is the same as the model that was proposed by Bai et al. [1]. We consider

a ring of subunits, each of which can exist in one of four states. A subunit can

have CheY-P bound or unbound, and it can be in one of two conformations which

we will call CCW and CW. As mentioned above, the CCW and CW conformations

for individual subunits at this point are only conformations. The actual direction of

rotation of the motor is presumed to be a result of the aggregate of conformations of

all subunits.

These states and the transitions between them are represented in Figure 4.2.
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Figure 4.2. State diagram for a single subunit with four states. Transition diagram
for a single subunit in the ring of proteins that constitute the flagellar switch. The
rates in this diagram are state-dependent. Specifically, we use the switching rates
α, β, γ, and δ to mean the unbiased switching rate of a subunit, or the switching
rate of a subunit whose two nearest neighbors are in opposite conformations. We
make the assumption for the sake of simplicity that the conformations of neighboring
subunits influence the switching rates of a subunit symmetrically and equally in both
directions. That is, for some ω > 1, if both nearest neighbors of a subunit are CW,
then, in our model, the rates for that subunit to switch from CCW to CW are ωα and
ωβ, and the rates for it to switch from CW to CCW are 1

ω
γ and 1

ω
δ depending on if it

has CheY-P bound or not. Likewise, if its nearest neighbors are both CCW, then the
CW switching rates are 1

ω
α and 1

ω
β, and the CCW switching rates are ωγ and ωδ.

We call ω the coupling strength since it indicates how strongly the conformations of
neighboring subunits are coupled.

4.1.1 An Early Attempt at Model Reduction

Since there are 34 subunits in this ring, this stochastic process is a Markov process

on a state space with 434 states. To attempt to compute the stationary distribution

on this state space would require an immense matrix calculation. However, we don’t

need the stationary distribution on the full state space. We are only interested in the

expected proportion of subunits that are CW for a given concentration of cytoplasmic

CheY-P. Therefore, we can think of this as a stochastic process on a state space with

only 35 states, as shown in Figure 4.3. In order to do anything with this model,

we must relate the gi’s and ri’s in Figure 4.3 to the parameters in the full 434-state
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Figure 4.3. State space diagram with 35 states. Diagram representing the number
of CW subunits.

system.

One idea is to use the proportion of CCW and CW subunits as weighting factors for

the CW, CCW switching rates in Figure 4.2. Additionally, since the CheY-P binding

and unbinding rates are independent of nearest neighbor relationships, we can treat

the probability that a subunit has CheY-P bound independently and in equilibrium,

conditional only upon whether it is, itself, in the CW or CCW conformation. Thus,

we define

pu|CW =
k3

[CheY-P]k1 + k3

, (4.1)

pb|CW = 1− pu|CW, (4.2)

pu|CCW =
k4

[CheY-P]k2 + k4

, and (4.3)

pb|CCW = 1− pu|CCW. (4.4)

This produces the following hypothesis for effective transition rates:

gn = (N − n)
(
pu|CCW α + pb|CCW β

)
φn, n = 0, 1, . . . , N − 1 (4.5)

rn = n
(
pu|CW γ + pb|CW δ

)
ψn, n = 1, 2, . . . , N (4.6)

where

φn =
1

ω

(N − 1− n)(N − 2− n)

(N − 1)(N − 2)
+ 2

(N − 1− n)n

(N − 1)(N − 2)
+ ω

n (n− 1)

(N − 1)(N − 2)
(4.7)

and

ψn =
1

ω

(N − n)(N − n− 1)

(N − 1)(N − 2)
+ 2

(N − n)(n− 1)

(N − 1)(N − 2)
+ ω

(n− 1)(n− 2)

(N − 1)(N − 2)
(4.8)

are the average biases for conformation switching, weighted by the proportions of

possible neighbors.

With this hypothesis for appropriate gi’s and ri’s, we can look at the steady

state distribution for the process shown in Figure 4.3. This equilibrium distribution
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depends, of course, on all the rates shown and described in Figure 4.2, and two of

those rates depend linearly on [CheY-P]. For a first pass glance at this distribution, we

simply choose the rates found by Bai et al. as shown in Figure 4.4 and allow [CheY-P]

(called c/c0.5 in their work) to vary over the same range as they did [1]. We compare

distributions of time spent in states with a given number of CW subunits over the

course of several stochastic simulations, shown in Figure 4.5, to these distributions

from our reduction, shown in Figure 4.6.

A glance at Figure 4.6 is enough to see that these sets of distributions look nothing

like Figure 4.5. Our hypothesis for state transition rates given by (4.5) and (4.6) must

not have been an appropriate guess. What went wrong? What rates shall we choose

in order to reduce the number of states in our prodigious system?

The answer to the question of why this reduction does not give similar results

to stochastic simulations lies in the way we have probabilistically chosen nearest

neighbor interactions. By using the frequencies of appearance of CW versus CCW

subunits we have, in essence, homogenized the ring so that each subunit’s two nearest

CW

Unbound Bound

CCW

10.00c/c0.5

10.00c/c0.5

5.17

19.35

7189.24 13909.68 13909.68 7189.24

Figure 4.4. Parameters from Bai et al. Diagram representing parameters from [1].
Arrow widths have been scaled like the log of each rate for quick visual reference.
The other parameter not pictured in the diagram is the neighbor coupling strength,
ω = 62.18, which scales the vertical arrows in this diagram depending on the states
of the two nearest neighboring subunits.
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Figure 4.5. Simulated distributions as a function of c/c0.5. The fraction of time
spent in each state with a given number of CW subunits (0, . . . , 34) over the course
of stochastic simulations for c/c0.5 ranging between [0, 2]. Parameters are chosen as
shown in Figure 4.4.
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Figure 4.6. Stationary distribution on 35 states with homogenized transition rates.
Stationary distributions of the reduction to the process shown in Figure 4.3 with rates
as described by (4.5),(4.6). Parameters are chosen as shown in Figure 4.4.
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neighbors can be in either conformation as if the system is well-mixed. This is like

dumping several blue balls into an urn, then dumping several red balls into the same

urn, and, without any shaking or mixing, picking one off the top. The probability

that the chosen ball is red is not simply a function of the number of each color of

ball in the urn. The homogenized model we have guessed at here is similar in some

ways to a mean field model. It accounts for bias in conformational switching, but

in a smoothed-out way that partially ignores the very important energetic neighbor-

neighbor interactions. We try a different reduction in what follows.

4.1.2 Better Model Reduction

Because the conformational switching rates of subunits is strongly biased by the

conformation of its two nearest neighbors, as has been observed in simulations [5, 1, 7],

conformational spread is the primary mode for the entire ring to switch from all

subunits in one conformation to all subunits in the opposite conformation, either all

CCW to all CW or vice versa. That is, most often this complete switching occurs

by a connected domain of subunits growing to neighboring subunits until the domain

has spread around the entire ring.

We approximate the full Markov process by making the, as yet, unjustified,

assumption that the ring of subunits can only have at most two domains: one set of

contiguous subunits that are all CCW and that the rest of the subunits (a necessarily

connected set) are in the CW conformation. Hence, if there are two domains present

at a given time, only four subunits are able to switch conformation, those four in the

ring whose two nearest neighbors are in opposite conformations. If all subunits are

in the same conformation, however, any one of the 34 may switch conformation.

This restriction on the full process reduces the size of the state space a great deal.

We essentially ignore all states with more than one domain of CW subunits while

still hoping to capture the dynamics that invoke the entire ring of subunits to switch

conformation. A schematic of the types of transitions we are eliminating is shown in

Figure 4.7

With this in mind, we retain the quasistationary state approximation for CheY-P

binding to subunits as in (4.1)-(4.4). That is, we take the probability that each subunit
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Figure 4.7. Eliminated states and transitions. A schematic of one allowed and
one disallowed transition and state from the state space after reducing using the
2-domain assumption described. Unshaded circles represent CCW subunits, and
shaded represent CW. The small black circles on the edge of some of the bigger circles
represent bound CheY-P. We do not explicitly track which subunits have CheY-P
bound and which do not.

has CheY-P bound to be in steady state given its particular conformation. Such an

approximation here may seem to imply that the binding reaction is fast compared to

the conformational switching. If the binding reaction is, indeed, much faster, then the

approximation is certainly justifiable. However, in this case, as one edge of a domain

of CW subunits moves around the ring, it encounters several subunits, each of which

may have CheY-P bound or not. The fraction of subunits that have CheY-P bound is

the average we aim to capture with this quasistationary state approximation. Using

this fraction allows us to compute the average rate at which the edge of the domain

moves around the ring.

With this quasi-equilibrium and the restriction to one domain of subunits of each

conformation we have, once again, reduced the full process to a process on 35 effective

states as shown in Figure 4.3. Each state still represents the number of subunits in

the CW conformation. We must now select the appropriate gi’s and ri’s.

First, we consider g0. It is the rate at which any one of the subunits in a ring of

all CCW subunits switches conformation to CW. Taking into account the equilibrium

distribution regarding binding, we find that

g0 =
N

ω

(
α pu |CCW + β pb |CCW

)
. (4.9)
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The factor of N in this rate comes from the fact that any one of the subunits can

switch when all are in the same conformation, and the 1
ω

comes from the fact that if

all subunits are CCW, then the two nearest neighbors of any subunit are, necessarily,

both CCW. However, once a single subunit is in the CW conformation, in order to

get two CW subunits, we only consider the rate at which one of the neighbors of the

first subunit switches. Since its two nearest neighbors are in opposite conformations,

g1 = 2
(
α pu |CCW + β pb |CCW

)
. (4.10)

In fact, gi = g1 for i = 2, . . . , N − 2. We call this rate gn. To compute gN−1 we note

that if every subunit but one is CW, then both neighbors of the only remaining CCW

subunit are CW. Therefore,

gN−1 = ω
(
α pu |CCW + β pb |CCW

)
. (4.11)

Similarly,

r1 = ω
(
γ pu |CW + δ pb |CW

)
, (4.12)

rn = ri = 2
(
γ pu |CW + δ pb |CW

)
, i = 2, . . . , N − 1, (4.13)

and

rN =
N

ω

(
γ pu |CW + δ pb |CW

)
. (4.14)

With this new, and hopefully improved, set of gi’s and ri’s, we look, again, at

the steady state distribution for the process shown in Figure 4.3. Using the same

range for c/c0.5, these distributions are shown in Figure 4.8. We have imposed data

points for the end states, 0 and N , from the simulations in Figure 4.5 onto the

distributions predicted by our improved, reduced model. It is worth noting here

that the distributions in Figure 4.5 include time spent in all states visited during

the simulations, regardless of the number of CW and CCW domains in the ring of

subunits. The remarkable agreement between Figures 4.8 and 4.5 suggests that the

reduction to 35 states simply by neglecting the contributions of states with more than

two domains captures the major features of the dynamics of the whole process.
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Figure 4.8. Stationary distributions on 35 states as a function of c/c0.5 with
simulated data imposed. Stationary distributions on the number of CW subunits
with the reduction to rates shown in Figure 4.3 given by (4.9)-(4.14). Data from
the end states in Figure 4.5 is imposed here for comparison. Parameters are, again,
chosen as shown in Figure 4.4.

4.2 Further Model Reduction

Our key observation about both of these distributions is that they are heavily

weighted on the ends. That is, the process spends almost all of its time with either

none or all of the subunits in the CW state. In fact, by taking the − log of the

distributions in Figure 4.8, we plot what can be interpreted as an energy potential in

Figure 4.9. We see in this plot that the two end states, 0 and 34, are like low energy

potential wells compared to the relatively high energy interior states. We also see the

bias toward one end state or the other as a continuously varying function of c/c0.5.

This observation seems to indicate that, once again, we can reduce the number of

states we need to consider in order to answer questions about the overall dynamics

of this process. This same observation holds for every set of rate parameters we have

used to create such plots as long as ω � 1. In other words, the coupling strength

between nearest neighbors must be relatively strong, lowering the energy threshold

for conformation switching by a few kBT . With this stipulation we can now reduce
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Figure 4.9. Energy potentials from stationary distributions. Energy potentials for
the process with stationary distributions as in Figure 4.8.

the number of effective states from 35 to just 2 as in Figure 4.10. The rates g and

r must be appropriate effective rates of moving from one end state to the other in

Figure 4.3. In other words, they should be the respective inverses of the mean first

passage times TN,0 and T0,N , where Tj,i is the expected first time for the process to

arrive at state j having started at state i.

There is a convenient method to compute splitting probabilities as well as first

passage times for continuous time, discrete state Markov chains. At this point, we

don’t need any splitting probabilities, so we focus on the mean first passage times.

Define q to be the vector of probabilities for all absorbing states. In our case, to obtain

Tj,i, we first treat only the boundary state j to be absorbing because we are interested

in the first time to arrive at state j. Define p to be the vector of probabilities of all

0 Ng

r

Figure 4.10. State space diagram for the entire switch reduced to two states.
Reduction of the diagram in Figure 4.3.
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nonabsorbing states. Then,

dp

dt
= Ap

dq

dt
= Bp,

(4.15)

where A is the matrix describing transitions between and out of all states represented

by the probabilities in p and B is the (strictly nonnegative) matrix of rates into states

represented by the probabilities in q. A is necessarily invertible since any nonzero

entries in the solution of Ap = 0 would correspond to absorbing states and should

be included in q. Since entries of q(t) are probabilities for any t ≥ 0, entries of
dq

dt
are probability densities. Hence, the vector of expected times to arrive at a state in

q from an initial distribution p(0) is

T =

∫ ∞

0

t
dq

dt
dt

=

∫ ∞

0

tBp dt

= B

∫ ∞

0

tA−1dp

dt
dt

= BA−1

(
[tp]∞0 −

∫ ∞

0

p dt

)

= −BA−2

∫ ∞

0

dp

dt
dt

= −BA−2 (p(∞)− p(0))

= BA−2 p(0).

(4.16)

In our case, to compute TN,0, we let q = (pN). Thus, p is the vector containing the

probabilities of all the other states,

p =




p0

p1
...

pN−1


 . (4.17)

The corresponding matrices are the tridiagonal
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A =




−g0 r1

g0 −(r1 + gn) rn
gn −(rn + gn) rn

. . . . . . . . .

gn −(rn + gn) rn
gn −(rn + gN−1)




(4.18)

and the 1×N
B =

(
0 · · · 0 gN−1

)
. (4.19)

The rate rN does not appear in either A or B because we are not considering escape

from state N . TN,0 is simply the first exit time to the right boundary with the left

boundary reflecting.

A−1 is cumbersome to compute analytically, however, we do not need it to obtain

TN,0. We compute TN,0 by noticing that

TN,0 = By (4.20)

where

Ay = x (4.21)

and

Ax = p(0). (4.22)

Since the initial condition is the simple p(0) =




1
0
...
0


, we can backsolve both of

these equations analytically. Keeping with the convention that the indices of entries

of x and y range from 0 to N − 1, we see that for j = 2, . . . , N − 2,

gn xj−1 − (rn + gn)xj + rn xj+1 = 0. (4.23)

Guessing a solution of the form xj = µj for j = 1, . . . N − 1 yields the quadratic

equation

gn − (rn + gn)µ+ rn µ
2 = 0 (4.24)
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which has two solutions, µ = 1, gn
rn

. For convenience, we define λ = gn
rn

. The linearity

of this equation allows the general solution xj = Aλj + B. The remaining three

equations to satisfy are

−g0 x0 + r1 (Aλ+B) = 1, (4.25)

g0 x0 − (r1 + gn) (Aλ+B) + rn
(
Aλ2 +B

)
= 0, (4.26)

gn
(
AλN−2 +B

)
− (rn + gN−1)

(
AλN−1 +B

)
= 0. (4.27)

From (4.25) we get g0 x0 = r1 (Aλ+B)− 1, so

(
0 −gn + rn

−gN−1λ
N−1 gn − rn − gN−1

)(
A
B

)
=

(
1
0

)
. (4.28)

Hence by inverting the matrix on the LHS of this equation, we get

(
A
B

)
=

1

(rn − gn)gN−1λN−1

(
gn − rn − gN−1

gN−1λ
N−1

)
, (4.29)

and

g0 x0 =
r1(gn − rn − gN−1)λ+ (rn − gn − r1)gN−1λ

N−1

(rn − gn)gN−1λN−1
. (4.30)

Now that we know the RHS of (4.21) we can solve for y. Again, for j = 1, . . . , N − 1,

we guess a solution. Since Cλj +D spans the nullspace of the second-order difference

equation (4.23), we try a particular solution of the form yj = Cλj +D+ j(Eλj +F ).

This guess is a solution if

−gnEλj−1 + rnEλ
j+1 = Aλj (4.31)

=⇒ E =
Aλ

gn(λ− 1)
, (4.32)

and

−gnF + rnF = B (4.33)

=⇒ F =
Bλ

gn(1− λ)
. (4.34)
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Once again, y0, C and D are obtained by satisfying the remaining three equations,

−g0 y0 + r1 (Cλ+D + Eλ+ F ) =
1

g0

(r1(Aλ+B)− 1) (4.35)

g0 y0 − (r1 + gn) (Cλ+D + Eλ+ F ) + rn
(
Cλ2 +D + 2Eλ2 + 2F

)
= Aλ+B

(4.36)

gn
(
CλN−2 +D + (N − 2)EλN−2 + (N − 2)F

)

− (rn + gN−1)
(
CλN−1 +D + (N − 1)EλN−1 + (N − 1)F

)
= AλN−1 +B.

(4.37)

Solving for g0 y0 in (4.35) and substituting into (4.36), we obtain the matrix equation

(
0 −gn + rn

−gN−1λ
N−1 gn − rn − gN−1

)(
C
D

)
=

(
G
H

)
. (4.38)

which is the same as (4.28), but with a different RHS.

G =
1

g0

(r1(Aλ+B)− 1) + gn(Eλ+ F )− 2rn(Eλ2 + F ) + Aλ+B (4.39)

and

H = −gn(N−2)(EλN−2 +F )+(rn+gN−1)(N−1)(EλN−1 +F )+AλN−1 +B. (4.40)

We solve for C and D by, again, multiplying by the appropriate inverse matrix to get

(
C
D

)
=

1

(rn − gn)gN−1λN−1

(
gn − rn − gN−1 gn − rn
gN−1λ

N−1 0

)(
G
H

)
. (4.41)

Putting this all together gives

TN,0 = gN−1yN−1

= gN−1

(
CλN−1 +D + (N − 1)(EλN−1 + F )

)

=
1

g0gngN−1(λ− 1)3

[
gn
(
r1λ

2−N(λ− 1)3 + g0(λ− λ2−N)(λ− 1)2
)

+ gN−1

(
gn(λ− 1)3 +

(
r1(1− λ2−N) + g0(N − 1)

)
λ(λ− 1)2

−g0(λ− 1)(λ2 − λ3−N)
)]
.

(4.42)

We can compute T0,N the same way by letting state 0 be absorbing and state N

be reflecting with initial condition pi(0) = δiN , or we can simply make appropriate
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substitutions in the above expression, namely gN−1 ↔ r1, g0 → rN , gn ↔ rn and

λ→ λ−1. We get

T0,N =
1

r1gnrn(1− λ)3

[
gn
(
gN−1λ

N−2(1− λ)3 + rn(λ− λN)(1− λ)2
)

r1

(
gn(1− λ)3 +

(
gN−1(1− λN−2) + rN(N − 1)

)
λ(1− λ)2

−rN(1− λ)(λ− λN)
)]
.

(4.43)

In steady state, the process shown in Figure 4.10 with g = 1/TN,0 and r = 1/T0,N

has the distribution

p0 =
TN,0

TN,0 + T0,N

, pN =
T0,N

TN,0 + T0,N

. (4.44)

This formula may look big and messy once the appropriate substitutions are made,

but it is analytic, and it is derived directly from assumptions about the mechanism

responsible for motor direction switching. Hence, without resorting to a Hill function,

which is entirely phenomenological, we have a possible explanation for the high degree

of cooperativity seen in the CW bias curve. Without altering parameters from those

in Figure 4.4, we compare this steady state distribution with the distribution shown

in Figure 4.8 as a function of c/c0.5. This comparison is shown in Figure 4.11.

We would not expect the green and red curves in Figure 4.11 to match exactly

unless the total steady state probability of being at any interior state in the 35-state

model were exactly zero. However, qualitatively it is a good match, and, scaled

appropriately, it is almost exact. It is also worth mentioning that the actual observed

rotational behavior of the motor is unknown when the process is at any one of the

interior states. Most models assume the velocity of the motor is a linear function

of the number of CW units. Thus, the reduction to two states may, in fact, be

quantitatively accurate depending on the motor behavior on the interior of the state

space from Figure 4.3 [15].

Before proceeding any further, we can use this two-state reduction to point out

an important feature of this motor. It is that the relatively large number of subunits

in the ring of the switching mechanism is one of the primary factors in determining

the degree of cooperativity in the CW bias curve. Plotted in Figure 4.12 are the CW

bias curves predicted by the stationary distribution (4.44) for N ranging from 2 to 34
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Figure 4.11. Stationary distribution on two states compared to end states of 35.
The green curve is the same as the curve over state 34 in Figure 4.8. The red curve is
pN using the expressions (4.42) and (4.43). The blue curve is simply the green curve
scaled by the sum of both end state probabilities in Figure 4.8. The cyan curve is the
sum of the probabilities of all interior states in Figure 4.8. Since the cyan curve is
not exactly zero for all values of c/c0.5 there is a discrepancy between the green and
blue curves.

with the same parameters used for all figures up to this point. We see that for smaller

subunit numbers the CW bias curve becomes less and less cooperative (black to red).

There is evidence that this motor has the capacity for dynamic subunit exchange

from the cytosol [4, 16, 6]. It is unknown how this exchange is regulated or whether

this is a mechanism to help the cell adapt its locomotion.

4.2.1 Parameter Estimation

We are particularly interested to see whether this model is capable of reproducing

all the phenomena known about motor switching, and, if so, whether it can provide

insight into the underlying parameters governing the behavior of each subunit. To

this end we have obtained data from various sources. Cluzel et al. measured the CW

bias, or, in other words, the percentage of time the motor spends rotating clockwise,

as a function of the cytosolic CheY-P concentration [3]. They found the CW bias

curve to be highly cooperative. They fit a Hill function to their data, yielding a Hill
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Figure 4.12. Stationary distribution on two states for a range of N . CW bias curves
as predicted by the stationary distribution (4.44) for N ranging from 2 to 34 (red
to black solid curves). Dashed lines are the asymptotic values for the CW bias as
c/c0.5 →∞.

coefficient of 10.3± 1.1.

They also measured the average motor switching frequency using the same record-

ings. It is perhaps not surprising that for values of CheY-P that correspond to CW

bias values very near 0 or 1, the switching frequency is essentially zero. For the

small range of CheY-P values that yield intermediate CW bias values the switching

frequency lies somewhere between 0 and 1.5 s−1.

The other data we compare our model results with comes from Sourjik et al.

[13]. They measured the fractional CheY-P occupancy. That is, given a cytoplasmic

CheY-P concentration they were able to measure the fraction of FliM subunits that

had a CheY-P molecule bound. They found that fitting a Hill function to this data

gave a Hill coefficient of 1.7±0.3. Hence, the binding of CheY-P to FliM appears to be

much less cooperative than the conformation switching. More specifically, the binding

and unbinding rates appear to be unaffected by the binding state of neighboring

subunits or the CW/CCW conformation of the subunit.

One caveat about their data is that they were unable to distinguish between FliM
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incorporated in fully formed motors and FliM in solution in the cell. The fractional

CheY-P occupancy may feasibly be different between these two populations. However,

we are still interested to see if the model can produce a lack of cooperativity in binding

while retaining the high degree of cooperativity in the CW bias. Further support for

this idea comes from Sagi et al. [11] They simultaneously and independently found

a lack of cooperativity in the binding curve, though they used different experimental

methods and their data has different units.

4.2.2 Fitting Method

We use the built-in Matlab tool lsqcurvefit. We use the equilibrium value of

pN from the 2-state reduction above to fit the CW bias data. To fit the switching

frequency data we use the inverse of the average of the two expected switching

times; explicitly, 2/(TN,0 + T0,N). The fractional occupancy data requires a little

bit more computation. Using the stationary distribution on the 35-state model, we

take into account the probability that each subunit has CheY-P bound in each of the

35 states and sum appropriately to get an expected number of bound CheY-P at each

concentration.

There is one other interesting issue to note before we begin fitting the data.

Though the CW bias data and fractional occupancy have similar units, that is,

they are each proportions ranging between 0 and 1 and are thus unitless, they

were measured using different methods and describe qualitatively different objects.

Thus, there may be more noise in one or the other. Whether the noise comes from

experimental methods or is inherent in the processes measured or something else, we

cannot compare them directly and cannot automatically assume that a data point

from one set is equally valuable or important as a data point from the other set.

Furthermore, the switching frequency data has different units entirely, and also cannot

be directly compared with the other two. Nevertheless, we wish to use all available

data to fit our model.

For this reason, a residual function for model fitting is somewhat ad hoc. The

scale for each data set is arbitrary, so we try several options for weighting each set

more or less heavily to see what gives us the “best” fit. As a first pass we try fitting
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the raw data sets without any artificial weighting. The results of this parameter fit

are represented in Figure 4.13. The first thing to notice about this parameter fit is

that it seems to indicate that conformation switching is much slower when CheY-P is

bound to the subunit. It is possible that, in addition to biasing a subunit toward the

CW conformation, the binding of CheY-P does, in fact, slow down the conformation

change rate as part of the mechanism for motor direction switching. However, this

parameter fit is not unique. Parameter fitting sets vary quite widely, depending on the

nucleation set, without much variation in the norm of the residual function. Figure

4.13 is one particular instance of the output from the fitting algorithm.

Because the CW bias data and the CheY-P occupancy data appear to be much

less noisy than the switching frequency data, we try a fit giving both of these data

sets more weight by a factor of 100. The results of this fit are shown in Figure 4.14.

Visually, the fitted curves are hardly distinguishable from the previous fit. In order

to tease out what the “correct” fit is, more data are needed.

In summary, we have taken a Markov jump process on a state space with 434

states and approximated it by a Markov jump process on only two states. This

drastic reduction has allowed us to fit experimental data very quickly compared to

running full Gillespie simulations for every feasible set of parameters at each data

point. This model is able to fit the available data very well. More experiments are

needed to further verify or invalidate it.
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(a) Diagram representing parameter fit for the three afore-
mentioned data sets without weighting them. Here, ω =
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Figure 4.13. Model results for parameter fit to unweighted data.
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Figure 4.14. Model results for parameter fit to weighted data.
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CONCLUDING REMARKS
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The chemical reactions and stochastic processes focused on in this work are

only a few of the myriad possible processes that demonstrate contradictory behavior

when modeled deterministically or with a mean field approximation. The chemical

reaction network theory developed in recent years [1, 3, 2] is useful for gaining an

initial understanding of the equilibrium structure of the reaction under consideration.

However, we argue that, at the very least, the continuous time, discrete state model

of the same process must be considered before monostability can be accepted as the

only possible type of behavior the reaction can exhibit.

Even in cases where a state space reduction is not immediately evident, stochastic

simulations can yield insight into a possible discrepancy between models. Indeed, in

the case of the enzymatic reactions examined in Chapter 2, Gillespie simulations of the

reaction produced anomalous distributions which provided the impetus to investigate

further. We see that in the case of these enzyme reactions, the deterministic and

mean field models predict an equilibrium that is near the mean of the stationary

distribution, but that the stationary distribution can be bimodal. The mean of

a bimodal distribution is often far from states that occur with any appreciable

probability. Thus, the deterministic prediction may not be useful for understanding

observed concentrations in laboratory experiments.

In the case of the autocatalytic reactions in Chapter 3, Gillespie simulations do,

in fact, appear to coincide with the predicted steady states from the deterministic

model, because the stationary distributions of these chemical master equations require

very long times to reach, as long as the initial condition of the simulation is not the

stationary distribution itself.

Finally, in considering the rotation direction switching of the bacterial flagellar

motor in Chapter 4, we see that a mean field approach to modeling the number of CW

versus CCW subunits does not account for important neighbor-neighbor interactions.

In effect, the proportion of CW subunits cannot be treated like a homogeneous

concentration of the total. We also see that the number of subunits plays an important

role in determining the sensitivity of the switch.
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5.1 Future Directions

The reduction of the state space of the motor is the tool that allows us to quickly

and efficiently sample a large portion of parameter space to find the best fit. With

the data currently available, this best fit is not unique. More experiments will need

to be performed in order to narrow the range of acceptable rate constants, though, at

the current time, we do not know what experiments may be useful in this endeavor.

Another observation from our work is that there is much yet to be done to gener-

alize the state space reduction approach to analyzing the chemical master equation.

The solution of the chemical master equation may be the most accurate description

of chemical reactions. We believe that the reduction of large or infinite state spaces

will prove to be a key step toward increasing the usefulness of the chemical master

equation.

Ultimately, the goal in developing these tools, in this particular context, is to be

able to use them to increase our understanding of reaction network behavior. The

species-reaction graph is a powerful tool for determining properties of the resultant

deterministic system, but, as of yet, it can say nothing about the stochastic process

a chemical reaction really is.
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