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1 Abstract 

This paper presents a lattice structure for adaptive Volterra sys­
tems. The stucture is applicable to arbitrary planes of support of the 
Volterra kernels. A fast least squares lattice and a fast QR-lattice 
adaptive nonlinear filtering algorithms based on the lattice structure 
are also presented. These algorithms share the fast convergence prop­
erty of fast least squares transversal Volterra filters; however, unlike 
the transversal filters they do not suffer from numerical instability. 

1 Introduction 

In this paper we present computationally efficient and numeri­
cally stable algorithms for recursive least squares adaptive nonlinear 
filters. The nonlinearity is modeled using a second order Volterra 
series expansion [I1J of the input signal. (There is no loss of gener­
ality in the choice of a second order nonlinearity; it merely simplifies 
the presentation.) Adaptive nonlinear filters where the nonlinearity 
is modeled using low order Volterra systems have several applica­
tions, including channel equalization and noise cancellation in high 
speed communication systems, modeling biological phenomenon, im­
age processing, and several others. 

In the Volterra series representation of systems , which is an 
extension of linear system theory, the output y[nJ of any causal, 
discrete-time, time-invariant nonlinear system can be represented as 
a function ofthe input sequence x[n) using the Volterra series expan­
sion 

00 

y(n) ho+ 2: h1(mr)x(n-ml)+ 
ml::::;Q, 

00 00 

2: 2: h2(mI, m2)x(n- ml)x(n- m2)+ 
ml=Om2=O 

... + 
00 

2: ... 2: hp(ml,m2,···,mp)x(n- ml)···x(n-mp) 
ml=O mp=O 

+ ... , (1) 

where hp(mI,m2,···,mp) is the p - th order Volterra kernel [ll) 
of the system. One can think of the Volterra series expansion as a 
Taylor series expansion with memory. A nonlinear system that can 
be represented by a Volterra series is completely represented by its 
Volterra kernels. Without loss of generality, we will assume that 
the Volterra kernels are symmetric, i.e., hp(ml,m2,···,mp) is left 
unchanged by any of the possible p! interchanges of the arguments 
ml, m2, ... , mp. 

Possibly because of the extremely complex nature of the nonlin­
ear filters, very little work has been done in adaptively tracking the 
time varying coefficients of such filters. Most of the work in adaptive 
Volterra filters is very recent and many ofthem [3, 5) employ the LMS 
algorithm or its variations. Unfortunately, such filters have conver­
gence rates that are too slow to be useful in many applications. More 
recently, Mathews and Lee (8) presented a fast algorithm for recursive 
least-squares (RLS) adaptive Volterra filters. Their work translated 
the nonlinear filtering problem into a multichannel filtering problem 
and then used ideas employed for developing fast multichannel RLS 
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adaptive filters for their derivation. While this algorithm provides 
good convergence and tracking properties, it, like most other fast 
transversal adaptive filters, suffers from problems with numerical in­
stability. 

In this paper, we will present two algorithms for fast adaptive 

least squares lattice second order Volterra filters. The structures 
presented here can be easily extended to higher order nonlinearities. 
The first algorithm extends the notion of traditional least squares 
lattice linear filters to the nonlinear case. The second algorithm is 
implemented solely using Given's rotations and is therefore expected 
to exhibit better numerical stability than the first algorithm. This al­
gorithm is similar in its development to the QRD-based fast adaptive 
RLS linear filters that have been recently developed [2, 9, 10). We 
believe that both algorithms for lattice Volterra filtering are novel. 

The lattice structure presented in this paper is based on the ear­
lier work by Ling and Proakis [7] on multichannel lattice filters and 
is different from nonlinear lattice structures available in the litera­
ture [5, 6] in the sense that the structure can be applied to Volterra 
systems with arbitrary input signals and arbitrary shapes for the 
Volterra kernels. The lattice filter structures in [6] are applicable 
only to systems with very special shapes for the Volterra kernel and 
the structure presented in (5) required that the system be Gaussian. 
The predictor structure in out filter is similar to that in [12]. 

The rest of the paper is organized as follows: The lattice fil­
ter structure for Volterra systems and the first least squares lattice 
adaptive Volterra filtering algorithm are presented in section 2. The 
QRD-based adaptive filter is presented in section 3. Finally, the 
concluding remarks are made in section 4. 

2 The Fast RLS Lattice Adaptive Volterra 
Filter 

Consider the problem of recursively estimating the desired signal 
d( n) as a truncated second order Volterra series expansion in the 
primary input signal x( n) such ~hat the exponentially weighted sum 
of squared errors 

n N 

~N(n) == 2: ,\n-k(d(k) - 2: am, (n)x(k - ml)-
k=l m,=O 

N N 
2: 2: bm"m,(n)x(k - ml)x(k - m2)? (2) 

ml=om2==ml 

is minimized. In equation 2 am, (n) and bm , ,m, (n) are the linear 
and quadratic coefficients, respectively, of the second order Volterra 
filter. Also, a < ,\ ~ 1 is the parameter of the exponential window 
that controls the rate at which the adaptive filter tracks time varying 
parameters. 

Let us define the input vector Xn (of size N(N + 3)/2) at time 
n as 

Xn == [x(n), x2(n), x(n-l), x2(n-l), x(n)x(n-l),··., x(n)x(n-N +1)jT, 
(3) 

where (-)T denotes matrix transpose of (.). Let us also define the 
coefficient vector as 
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Using the above matrix definitions in equations 3 and 4 we can 
rewrite equation 2 more compactly as 

n 

~N(n) = I: >.n-k(d(k) - W~Xk)2 . (5) 
k=O 

The optimal solution to the problem is given by 

W n,opt = n;;-l Pn , (6) 

where n 

nn = I: >.n-k xkxl , (7) 
k=O 

and n 

Pn = I: >.n-k Xkd(k) , (8) 
k=O 

From the above problem formulation it is relatively easy to see that 
we can treat the nonlinear least squares estimation problem as a 
multichannel linear LS estimation problem with N + 1 channels. The 
adaptive filter inputs at time n from the N + 1 channels are x(n), 
x2(n), x(n)x(n -1),·· .,x(n)x(n - N + 1). The adaptive filter uses 
N coefficients for the first two channels that correspond to x(n) and 
x2 (n), N - 1 coefficients for the third channel which corresponds to 
:l'(n)x(n - 1), N - 2 coefficients for the next channel and so on till it 
uses a single coefficient for the last channel. 

The lattice implementation of a second order Volterra filter with 
N - 1 delays has N - 1 stages in the predictor section. The way 
in which our lattice structure differs from usual multichannel filters 
is that the different predictor sections have different number of co­
efficients. Each predictor stage is a lattice of one dimension greater 
than the preceding stage. The first stage is a 2-channellattice stage. 

A basic description may be made as follows: The problem that 
we are interested in is that of estimating the desired signal d( n) as a 
linear combination of the following samples: 

x= 

x(n) 
x2(n) 

x(n -1) 
x2(n - 1) 

x(n)x(n - 1) 

x(n- N + 1) 
x2(n - N + 1) 

x(n - N + 2)x(n - IN + 1) 
x(n - N + 3)x(n - N + 1) 

x(n)x(n - N + 1) 
(9) 

The lattice structure first creates a set of N orthogonal vectors 
ll;( n) , i = 0,1,2, .. ·, N - 1. These vectors span the linear space 
spanned by the elements of the input matrix X. bien) is a vector of 
i. + 2 elements and is obtained as the optimal least squares backward 
prediction error when the vector 

[x(n - i), x 2(n - i), x(n - i + 1)x(n - i), .. ·, x(n)x(n - ilf (10) 

is estimated using the elements of columns 0 through i-I of X. 
(bo(n) is defined as [x(n),x 2(n)]T) In order to compute bien) effi­
ciently we also need ~o compute a set of N forward prediction error 

vectors fie n) , i = 0, 1, 2, ... , N -1 defined as the i + 2 element vector 
obtained as the least squares forward prediction error in estimating 
the vector 

[x(n),x 2(n),x(n)x(n -1),x(n)x(n - 2), .. ·,x(n)x(n- ilf (11) 

using the elements of the matrix 

x(n -1) 
x2(n -1) 

x(n- 2) 
x2(n- 2) 

x(n - l)x(n - 2) ... 

x(n-i) 
x 2(n-i) 

x(n - i + l)x(n - i) 
x(n- i +2)x(n- i) 

x(n - l)x(n - i) 

(12) 

Note that at each stage one additional forward prediction error and 
a backward prediction error, both corresponding to x( n )x( n - i) for 
the i - th stage, have to be computed since the dimension of each 
stage is greater than the preceding stage by one. These additional 

computations have to performed outside the basic lattice predictor. 
Once the computations of the backward error vectors are performed, 
the elements of these vectors can be linearly combined to get the best 
estimate of the desired signal d( n). The complete algorithm is given 
in Table 1. 

Table 1: THE FAST RLS LATTICE ADAPTIVE VOLTERRA 
FILTER . 

INITIALIZATION 
ao(-I)=I,r~(O)=rb(0)=812,8 > 0 
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aj(O) = 1, j = 0,1,2, .. ·,N + 1 

born) = fo(n) = yen) = [x(n) , x2(n)f 

eo(n) = den) 

den) = r8(n) = >.d(n -1) + Y(n)yT(n) 

faj)(n) = x(n)x(n-j +2); j = 3,4, .. ·,N + 1 

DO 1 TO 18 FOR n = 1 ONWARDS 
DO 1 TO 16 FOR i = 2,3, ... , N 

ki_l(n) = >'ki_l(n -1) + bi_2(n -1)ff_2(n)/ai-2(n - 1) 

fi_l(n) = f i _ 2(n) - ki_l(nlri!2(n - l)b i _ 2(n - 1) 

bi_l(n) = bi_2 (n -1) - ki_l (n)r;!2(n)t4_2(n) 

ai_len) = ai_2(n) - bL(n)r;-!2(n)bi_2(n) 

rL(n) = ).rL(n - 1) +fi_l(n)ff_l(n)/ai-l(n -1) 

rL(n) = ).rL(n -1) + bi_l(n)bL(n)/ai-l(n) 

ki_l(n) = ).ki_l(n -1) + ei_2(n)bi_2(n)/ai-2(n) 

ei_l(n) = eH(n) - ki~1(n)ri!2(n)bi_2(n) 

DO 9 TO 10 FOR j = i + t, .. ·, N + 1 

kYLI(n) = >.kY:_l(n -1) + bi_2(n -1)ft)2(n)/ai-2(n -1) 

(j) (j» _(j)T ) -b () ) f i- l (n) = f i_2(n - k, i_len ri_2 n - 1 bi_2(n - 1 

k;i;~l(n) = ).k;i;~l(n -1) +fi_2(n)ft~I)(n)/ai_2(n -1) 

b~~~l)(n) = t;C~1l>Cn) - k;i;_lt (nK!2(n)t4_2(n) 

fi_l(n) = [ff_l(n) ft~l)(n)f 

bi_l(n) = [bL(n) bl~"il)(n)f 

rL(n) == ).LL(n - 1) +fi_l(n)ff_l(n)/ai-l(n -1) 

rL(n) == >.rL(n -1) + bi_l(n)bL(n)/ai-l(n) 

kN(n) == ).kN(n -1) + eN_I(n)h_l(n)/aN-l(n) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

3 QR-Decomposition Based Adaptive Lat­
tice Volterra Filter 

In the previous section we presented an adaptive lattice second order 
Volterra filter. The filter consisted of a cascade of lattice sections 
with increasing dimension and the first section being a 2-channel 
lattice stage. 

Cioffi [2J recently introduced a fast QR-Decomposition (QRD) 
based algorithms for RLS linear adaptive filtering. The key idea 
is that every operation in these algorithms is implemented 'using nu­
merically stable Given's rotations and therefore the adaptive filtering 
algorithms are guaranteed to be numerically stable. Furthermore, 
the algorithms are amenable to implementation using array archi­
tectures. Following up on Cioffi's work, Regalia and Bellanger [lOJ 
and Proudler et al. [9J have introduced QRD-based adaptive lattice 
linear filtering algorithms. 

We have developed a QRD-based multichannel lattice algorithm 
for RLS adaptive filtering. We can use this algorithm to implement 
the lattice sections of the adaptive Volterra lattice filter we developed 



in the previous section, instead of the conventional multichannellat­
tice algorithm. The algorithms are fundamentally similar. There ex­
ists a duality between the two algorithms [10] which arises because 
both algorithms are based on identical geometrical principles. Upon 
solving the Nth order estimation problem, both methods provide so­
lutions to all lower order problems. Also, both methods exploit the 
forward and backward linear prediction to reduce computation. Both 
methods carry out a QR-decomposition of the associated matrix; the 
conventional lattice algorithms apply Gram-Schmidt orthogonaliza­
tion procedures to the data to generate an orthogonal basis set, viz., 
the backward prediction errors. On the otherhand, QRD-based al­
gorithms use Given's rotations to triangularize the data matrix. 

We will now present a brief description of the ideas used for de­
riving fast, RLS, QRD-based second order lattice Volterra filter. For 
simplicity of notation, we will use the following notations: 

~l(n) '" [x(n), >.1f2x(n - 1),.", >.(n-l)/2x(1W (13) 

~q,i(n) = [x(n)x(n - i), .. ·, >.(n-1)/2x(l)x(1 - i)f (14) 

and X(i,n)=[~l(n-i),~q,o(n-i)'''',~q,;(n)]. (15) 

Note that X( i, n) is a matrix of i + 2 columns. Let W n be the 
coefficient vector as before and let 

(16) 

be the desired response vector at time n. The problem can then be 
reformulated so that the squared norm of the error vector defined as 

~(n) = den) - [X(O,n),X(I,n), .. ·,X(N -l,n)]Wn (17) 

is minimized. In the QR-RLS algorithm [2], an orthonormal matrix 
Q N,n triangularizes the data matrix such that 

QN,n[X(O,n), .. ·,X(N -l,n)] = [/ ], (18) 
N,n 

where SN,,, is an N(N + 1)/2 x N(N + 1)/2 upper triangular matrix 
in the sense that small 

where P == N(N + 1)/2. Let 

[ 
den) ] 

QN,nd(n) = den) 

SJJ,~(P - 1) 

o 

o 
o 

(19) 

(20) 

where den) has P elements. It is straightforward to show [4] that the 
least squares solution we are seeking is given by 

(21) 

Since, SN,,, is a traingular matrix, Wn can be solved using back 
substitution. Also, the squared norm of the error vector is the same 
as the squared norm of den). 

The basic problem then is that of recursively obtaining Q N,n from 
QN,n-1 in an efficient manner. It is easy to show [4] that 

, [ 1 0 ] 
QN,,, = QN,n 0 QN,n-1 (22) 

where QN,n-l is a series of P, 2 x 2 rotations that are applied in suc­
cession to rotate the top row of the data matrix [X(O, n), ... , X(N -
1,n)] into >.1/2SN,n_1. 

The QRD-based lattice filter obtains QN,n in an order recursive 
manner by first triangularizing X(O,n). The rotations that triangu­
larize X(O, n) are then applied to X(l, n). Complete triangularization 
of the matrix [X(O, n) , X(I, n)] requires additional rotations. These 
additional rotations are computed in an efficient manner in our al­
gorithm. As in all fast RLS algorithms, our algorithm also uses for-
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ward and backward (nonlinear) predictors to update the rotations. 
The derivations ar~ done by extending the ideas used for developing 
the single channel, linear QRD-based fast lattice filters [9]. Details 
are omitted because of page limitations. The idea is to triangular­
ize [X(O, n), .. ·, Xci - 1, n)] at the ith stage of the lattice, augment 
the data matrix with XCi, n), and then compute the additional rota­
tions that are required to triangularize the augmented matrix for the 
(i + l)th stage of the lattice. Note that, similar to the situation in 
section 2, the number of additional column vectors added to the data 
matrix after each stage increases by one with every stage. Special 
care, again similar to what was done in section 2, must be taken to 
handle this situation. The complete algorithm is presented in Table 
2. 

TABLE 2: QR-DECOMPOSITION BASED SECOND ORDER 
VOLTERRA LATTICE FILTER 

IN IT I ALIZAT ION 

e;;'_2,_1(k, k) = e~_2,0(k,k) = S; m '" 2" .. ,N , k == 1", ',m 

DO 1 TO 42 FOR n = 1 ONWARDS 

rd,n == [x(n), x2(n)], ~,n == [x(n - 1), x2(n - 1)], 10,n == 1 (1) 

ab,~m) == x(n)x(n - m + 2); m == 3, .. ·,N + 1 

I~,n == 1 , ab,~) (3) = x(n)x(n - 1) 

DO 3 TO 42 FORm == 2 .. ·,N 
DO 3 TO 7 FOR k == 1···m 

e;;'_2,n_1 (k, k) == J(>,1/2 e;;'_2,n_2(k, k»)2 + (a~-2,n-1 (k»)2 

cos(}~_2,nCk) == >.1/2e~_2,n_2(k,k)/e;;'_2,n_l(k,k) 

sjn(}~_2,n(k) == a;;'_2,n_1(k)/e;;'_2,n_1(k,k) 

DO 6 TO 7 FOR 1 == k + 1"·m 

e;;'_2,n_1(k, l) == >.1/2e;;'_2,n_2(k, /) cos(}~_2,n(k) 

+a;;'_2,n_1 (/) sin (}~-2,n (k) 

a;;'-2,n_1 (/) cos (}~-2,n (k) 

->.1/2e;;'_2,n_2( k, I) sin (}~-2,n( k) 

DO 9 TO 15 FOR k == 1"'m 
DO 9 TO 10 FORI == l···,m 

f1~_2,n(k,/) == >.1/2f1~_2,n_1(k,l)cos(}~_2,n(k) 

+a~_2,,, (/) sin (}~-2,n (k) 

a~_2,n (/) cos (}~-2,n (k) 

_>.1/2 f1~-2,n-l (k, I) sin O~-2,n (k) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

f1~-2,n(k) == >.1/2f1~_2,n_1 (k) cos(}~_2,n(k) + a;"'_2,n sin (}~_2,n(k) 
(11) 

a~_1,n == a~_2,n cos(}~_2,n(k) - >.1/2f1~_2,n_l(k)sin(}~_2,n(k) 
(12) 

Im-l,n == Im-l,n cos (}~-2,n (k) (13) 

f1;,,~~,~m+l)(k) == >.1/2f1~~1,~"'--+/>Ck)cos(}~_2,n(k) 

+a~~~,~m+l) sin(}~_2,n(k) (14) 

clm~t,~m+l) cosO~_2,n(k) 

_>.1/2f1~~~,~"'--il)(k) sin(}~_2,n(k) (15) 

E~_1,n == ')'m-l,n~_1,nForward Prediction Error (16) 



DO 17 TO 21 FOR k = 1"'m 

e~t_2,n(k, k) = J(>\1/2e~_2,n_1 (k, k))2 + (Q~_2,n(k))2 

cos(J~_2,n(k) = ),,1/2e~_2,n_l(k,k)/e~_2,n(k,k) 

sin(J~_2,n(k) = Q~_2,n(k)/e~_2,n(k,k) 
DO 20 TO 21 FOR l = k + 1"'m 

e~_2,n(k,l) = ),,1/2e~_2,n_l(k,l)cos(J~_2,n(k) 

+Q~-2,n (I) sin 1i~_2,n (k) 

.Q~-2,n(l) cos (J~_2,n(k) 
-),,1/2e~_2,n_1 (k, I) sin(J~_2,n(k) 

Im-l,n+l = Im-2,n 

DO 23 TO 25 FOR k = 1, .. ·,m 
DO 23 TO 24 FOR l = 1,···, m 

J1~-2,n-1 (k, l) = ),,1/2J1~_2,n_2(k, I) cos(J~_2,n(k) 

+Q~-2,n-l (I) sin(J~_2,n (k) 

Q~-2,n-l (I) cos (J~_2,n( k) 

_),,1/2J1~_2,n_2(k, l) sin(J~_2,n(k) 

Im-l,n+! = Im-l,n+! cos(J~_2,n(k) 

E~n-l,n = Jm-l,n+IQ~-I,n Backward Prediction Error 

DO 27 TO 30 FOR k = 1,···,m 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

</>~'_2,n(k) = ),,1/2q)m_2,n_1 (k) cos (J~_2,n(k) + Q!n-2,n sin(J~_2,n(k) 
(27) 

o,;"_I,n = Q!n-2,n cos (J~_2,n(k) - ),,1/2q)m_2,n_l (k) sin(J~_2,n(k) 
(28) 

</>;,,~1~+!)(k) = ),,1/2</>!n~1,<;'~I)(k)cos(J~_2,n(k) 

+Q!n~1,~m+!) sin (J~_2,n(k) 

-i (b) (m+l) 
am-l,n Q!n~1,~m+!) cos (J~_2,n( k) 

_),,1/2</>!n~1,~,:~I)(k) sin(J~_2,n(k) 

_(b),(m+!) _ - -i (b) (m+!) 
em-l,n - Im-l,nam_l,n 

DO 33 TO 41 FOR k = m + 1, .. ·, N + 1 

I~~I,n = I~~2,n 
DO 34 TO 36 FOR I = 1, .. ',m 

(29) 

(30) 

(31 ) 

(32) 

(33) 

Il!n~1 nell = ),,1/2J1;,,~1.n_1 (l) cos (J~-2,n-l (l) + Q!n~1.n sin (J~-2,n-l (l) 
, (34) 

();,,~l n = Q;,,~1 n cos (J~-2,n-l (I) - ),,1/2J1;,,~1.n_1 (I) sin(J~_2,n_l (l) 
, , (35) 

I~~I,n = I~~I,n cos (J~-2,n-1 (l) (36) 

(k) _ (k) 
Im-l,n+l - Im-2,n (37) 

DO 38 TO 40 FOR l == 1,· ",m 

</>~n~1.n( l) == )" 1/2</>!n~1.n_l (I) cos (J~-2,n-l (I) + Q!n~1.n sin (J~-2,n-l (I) 
(38) 

o,;n~l n = ()!n~1 n cos (J~-2,n-l (I) - ),,1/2</>~~~,n_l (l) sin(J~_2,n_1 (l) 
, , (39) 

I~~l,n+l = I~~l,n+l cos (J~-2,n-1 (l) (40) 
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_(k) _ (k) -(k) _ -(k) _(k) 
1m-l ,n - Im-l,n+l , em-l,n - Im-l,nO'm-l,n (41) 

COMMENT: Now set-up the inputs for the next stage 

~-l,n = [~-l,n o,!n~:,;)] , ~-l,n = [~-l,n Q!n~~~m+I)] (42) 

4 CONCLUSION 

In this paper we presented a lattice structure for second order Volterra 
systems. The structure is different from most previously published 
lattice Volterra structures in that it is applicable to arbitrary planes 
of support of the Volterra kernels. A fast least squares lattice and 
a fast QR-lattice adaptive filtering algorithms based on the above 
structure were also presented. The predictor section of the nonlin­
ear filter structure employed in our work is similar to that derived 
by Zarzycki [12]. The adaptive filtering algorithms are based on the 
multichannel lattice filters developed by Ling and Proakis [7]. These 
algorithms share the fast convergence property of fast least squares 
transversal Volterra filters [8] without suffering from problems with 
numerical instability. The QRD-based algorithm is expected to have 
particularly good numerical properties since every operation for its 
implementation is done using numerically stable Given's rotation. 
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