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ABSTRACT

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a powerful
tool to detect cardiac diseases and tumors, and both spatial resolution and temporal
resolution are important for disease detection. Sampling less in each time frame and
applying sophisticated reconstruction methods to overcome image degradations is a
common strategy in the literature.

In this thesis, temporal TV constrained reconstruction that was successfully applied
to DCE myocardial perfusion imaging by our group was extended to three-dimensional
(3D) DCE breast and 3D myocardial perfusion imaging, and the extension includes
different forms of constraint terms and various sampling patterns. We also explored some
other popular reconstruction algorithms from a theoretical level and showed that they can
be included in a unified framework.

Current 3D Cartesian DCE breast tumor imaging is limited in spatiotemporal
resolution as high temporal resolution is desired to track the contrast enhancement
curves, and high spatial resolution is desired to discern tumor morphology. Here temporal
TV constrained reconstruction was extended and different forms of temporal TV
constraints were compared on 3D Cartesian DCE breast tumor data with simulated

undersampling. Kinetic parameters analysis was used to validate the methods.



2D imaging with serial acquisition of different slices is regularly used for myocardial
perfusion imaging. 3D imaging has potential advantages including robustness to through
plane motion, and accuracy of sizing ischemia. Here 3D stack-of-stars sampling with
spatiotemporal TV constrained reconstruction is developed and is shown to be a
promising alternative for myocardial perfusion imaging.

Other groups proposed a number of reconstruction algorithms for undersampled MRI
recently, including HYPR-LR, PR-FOCUSS, k-t BLAST/k-t SENSE, k-t FOCUSS and
regularized iterative SENSE. The work here reveals the relationships among these
methods by incorporating these algorithms into a generalized reference image
framework. Reconstruction of simulated data, as well as undersampled myocardial cine
datasets and perfusion datasets, showed that the superiority of x-t and x-f reference image
IS sensitive to the data characteristics and baseline images.

All of the above efforts will lead to improvements in the diagnosis of diseases like
myocardial ischemia and breast tumors, through improving image quality and better

quantifying kinetic parameters.
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CHAPTER 1

INTRODUCTION

Magnetic resonance imaging (MRI) is widely used in the field of healthcare due to
its ability to detect cancer and accurately diagnose several other diseases noninvasively.
Compared to Computed Tomography (CT), it does not have the risk of radioactive harm
to people and provides much more flexibility in image contrast by using different
imaging sequences and scanning protocols. MRI can be designed to show T;, T, and
proton density contrast in images and to measure other physical parameters, such as
velocity, temperature, or diffusion coefficients. Several imaging techniques have been
proposed for individual diseases by introducing contrast agents. Among them dynamic
contrast enhanced MRI (DCE-MRI) is a well-known MRI technique that monitors the
enhancement of a tissue or organ continuously by acquiring a series of MRI images after
injecting contrast agent. This helps to show tissue perfusion to identify tumors or to make
movies of the heart to obtain anatomical and functional information of cardiac disease so
as to diagnose these diseases.

Unlike optical imaging in which a whole image is acquired at the same time, MRI
collects raw data in frequency domain in a pixel-by-pixel scheme which limits its
acquisition speed. Since the invention of MRI over 30 years ago, image acquisition speed
and quality have greatly improved as the result of endeavors of investigators worldwide.

These advances in image speed and quality have been achieved through a) hardware



improvements, b) innovative pulse sequence designs and ¢) more efficient sampling
techniques. Examples of these types of improvements include: a) multiple RF receiver
coils, high performance gradient coil design and high static magnetic field. b) echo planar
imaging (EPI) (1), fast spin-echo (2) and GRASE (3). c) partial k-Space, radial sampling,
propeller sampling and spiral sampling. The efficient sampling methods often require
specific reconstruction techniques. Typically fast techniques take advantage of several of
the above methods to speed up acquisition and keep good image quality. One example is
multiplexed EPI (4), which acquires multiple images in one EPI echo train by
interleaving signal from several slices using simultaneous echo refocusing (SER)
technique (5) and exciting several slices simultaneously using multiband technique (6). It
requires high performance hardware, such as multiple RF receiver coil and high static
magnetic field, and often applies partial Fourier methods.

All these types of techniques have been applied to speed up DCE-MRI. Since DCE-
MRI captures each image in a short acquisition window, it assumes that the image
remains unchanged during the readout. This assumption may not hold well, especially for
3D acquisitions, which typically take longer, and in the presence of normal physiological
body motions, such as respiratory and cardiac movement.

For 3D DCE breast tumor imaging, the image contrast changes especially during the
contrast agent uptake and washout. Better temporal resolution may reduce the violation
of the above assumption of static image for each time frame. At the same time high
spatial resolution is desirable for discerning the tumor morphology. Although there is still
controversy as to what spatial and temporal resolution should be and which has a high

priority, undersampled Cartesian sampling with sophisticated reconstruction is a good



way to better balance the tradeoff between spatial and temporal resolution so as to
accurately track the tissue enhancement to tell the difference between malignant and
benign tumors.

One of the reconstruction methods that have been successfully applied to dynamic
MRI is spatiotemporal total variation (TV) constrained reconstruction proposed by our
group and applied to some 2D applications, such as myocardial perfusion imaging (7),
and temperature imaging (8). Since MRI images are complex-valued, the TV constraint
can be of different forms, such as complex form, separate real and imaginary form, and
separate magnitude and phase term. One contribution of this thesis is to compare different
forms of temporal TV constraints on3D DCE breast tumor datasets and verify the
resulting images with pharmacokinetic parameter analysis.

For DCE myocardial perfusion imaging, currently multislice 2D imaging can provide
only 4 slices with about 3mm in-plane resolution even with parallel imaging technique in
clinical setting (9). 2D radial sampling has been proposed to be superior to 2D Cartesian
sampling for its robustness to motion and undersampling (7,10). 3D myocardial perfusion
imaging has several potential advantages to 2D imaging, such as contiguous coverage of
the left ventricle and high SNR (11,12), although it is limited by its longer acquisition
window. Thus for 3D myocardial perfusion, undersampled k-space data is especially
desirable to shorten the long acquisition window and reduce the effect of heart motion. A
3D form of radial sampling, ‘3D hybrid radial’ (also known as ‘stack-0f-stars”) is applied
to 3D myocardial perfusion imaging with spatiotemporal TV constrained reconstruction

to verify its feasibility, and this is the second contribution.



A third contribution of this thesis is to generalize the generalized series (GS) model
and create a framework to include several recent algorithms. Many sophisticated
reconstruction algorithms with different names have been proposed by the MRI image
reconstruction community. The GS model and compressed sensing are two well-known
reconstruction algorithm families from which many algorithms can be derived. In this
thesis, some of these algorithms are shown to be derived from the extension of the GS
model. This helps to better understand these algorithms and the relationship between the

GS model and compressed sensing.

1.1 Organization of Thesis

This thesis is organized as follows: Chapter 2 gives a basic overview of the
principles of MRI. Chapter 3 gives a background of MRI reconstruction that introduces
three important topics in MRI image reconstruction field so as to provide a background to
understand much of the research described in the subsequent chapters. Chapters 4-5 apply
the spatiotemporal TV constrained reconstruction method to two 3D applications.
Chapter 4 compares different forms of TV for 3D DCE breast tumor imaging with
undersampled Cartesian SPGR sequence. Chapter 5 applies the complex form of
spatiotemporal TV constrained reconstruction to 3D stack-of-stars myocardial perfusion
imaging technique with an ECG gated saturated recovery turboFLASH sequence.
Chapter 6 investigates several other groups’ reconstruction methods mainly from
theoretical level and presents a general framework that can include them, such as HYPR-
LR, PR-FOCUSS, k-t FOCUSS, and regularized iterative SENSE. Chapter 7 summarizes

the main achievements of the thesis.



CHAPTER 2

MAGNETIC RESONANCE IMAGING BACKGROUND

This chapter introduces the principle of magnetic resonance imaging. The basic
physical principle of magnetic resonance imaging lies in the nuclear magnetic resonance

effect.

2.1 Nuclear Magnetic Resonance Effect

In 1946, Purcell and Bloch discovered the nuclear magnetic resonance effect
independently (13,14). Both were awarded the Nobel Prize for physics for this discovery.
In this section, the NMR effect will be explained by going through quantum mechanics

explanation of nucleus, RF excitation and relaxation mechanisms.

2.1.1 The Underlying Quantum Mechanics Explanation of Nucleus

Atoms that have an odd number of protons and/or neutrons have angular spin
momentum (called a spin), and they act as small magnetic dipoles. These dipoles are
randomly aligned, so the net magnetization of an object is zero. When exposed to static
magnetic field, the spin will align with the magnetic field and precess at frequency of

w, =B, where y is gyromagnetic ratio. Different elements have different gyromagentic

ratio, for H', r=42.58MHz/T. For simplicity, here we only focus on hydrogen, H, which

is commonly used for MRI due to its abundance in the body. When placed under external



magnetic field, some spins are aligned parallel to the magnetic field while others are
antiparallel. The antiparallel state has a higher energy than the parallel state, and the spins

at the lower energy state can transition to the higher energy state by absorbing energy

E= ZL hw, where h is Planck’s constant (h=6.62x10"**Js). Due to the preference for the
T

lower energy state, based on the Boltzmann distribution, the ratio of the number of

protons in the lower energy state to those in the higher energy state is given by

Ag

No_ew , Where n_ is the number of spins in the lower energy state, n_is the number of
n

+

spins in the higher energy state, As = ziha)0 Is the energy difference, k is the
T

Boltzmann constant (k=1.38x1023J/k), and T is the temperature. The total effect is that

the object under static magnetic field will have nonzero net

(n, —n ).

magnetization M, = 4i
T

2.1.2 RF Excitation
The spins precess at the frequency of @, =3B, (for H' at 3T, @, =123.2MHz), which
belongs to the spectrum of radio transmission. Resonance happens if an electromagnetic
wave of the same frequency (@, =B,) is applied, which is called “Radio Frequency
excitation.” In practice, the electromagnetic wave is generated by adjusting the electric
current of the RF coils, which is analogous to applying time varying field B;+ in the
plane orthogonal to static magnetic field. The governing equation for the RF excitation is

_ dM M, B, cos(a,t
givenas: ——=Mx)Bwhere M= M |andB =| B;sin(a,t) |. Due to the RF
dt M

0



excitation, the net magnetization Mo will tilt to transverse plane. The magnetization
precessing in transverse plane sends out a signal that can be received with a receiver coil

that has the same frequency.

2.1.3 Relaxation Mechanism

The spins tend to recover to equilibrium state after RF excitation. Two different
relaxation mechanisms, one is called spin-lattice or longitudinal relaxation, the other is
called spin-spin or transverse relaxation, were found to affect the magnetization. To

account for these two relaxations, Bloch extended the above equation by adding another

relaxation term: dd—l\t/l =Mx)B+|-—= , Where T is the longitudinal relaxation time,

and T is the transverse relaxation time, as illustrated in Figure 2.1. Effective field
inhomogeneity, which originates from static magnetic field inhomogeneity and
susceptibility difference, causes the protons to dephase more quickly. In this case, T,* is

used, which is the combination effect of T, relaxation and effective field inhomogeneity.

2.2 Signal Localization

The signal can be detected due to the NMR effect. However, it cannot indicate the

resonating protons in specific regions, which is important for imaging.
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Figure 2.1 lllustration of T; and T, relaxation. The governing equation for
longitudinal relaxation is M,(t)=My(1-exp(-t/T)); for transverse relaxation it is
Mxy(t):Mxy(O)eXp(‘t/Tz).

2.2.1 Slice Excitation

An RF pulse at the resonance frequency can be applied to excite the protons. In
general, it is possible to excite the whole volume with @, = yB, without applying any
gradient, which is named as “nonselective excitation.” A certain bandwidth of radio
frequency (@(z) = w, + ¥G,Z ) can be specified to excite a certain portion (slab or slice,
for 3D imaging, called slab; for 2D imaging, called slice) in the slice direction by
applying a gradient in the slice direction at the same time. Theoretically, a sinc function
has a rectangle shaped spectrum which gives the desired rectangular slice profile. In

practice, there are time limitations for the RF pulse which create an imperfect rectangle

frequency box that results in an imperfect slice profile.

2.2.2 Spatial Encoding

Without a spatial encoding gradient, the signal equation can be described as
M, (r,t) = p(r)e" " where p(r) is the excited object in the position of r and w, = }B,.

By applying additional magnetic gradient fields, the magnetic fields varies spatially in x,



X
y, z directions. B, (r,t) =B, (r,t)+G, (Ox+G, ()y+G, (t)zwherer = | y |is the position
z

with respect to the isocenter of the magnet, G, ,G, and G, are the gradients of magnetic

field in x, y, and z directions, respectively. The signal equation in the position of r

t
4(w0t+jo;e(r)rd 7)

becomes M, (r,t) = p(r)e . The term @, can be demodulated, so the signal

—i.[;yG(r)rd

detected can be simplified as S(t) = Ip(r)e “dr . This can be further described as

S(t) = Ip(r)e*‘Z““)rdrwhere k(t)= %E}G(T)dr . For a given time course of gradient

fields applied after RF excitation, a series of sampled data, which is known as “k-space,”
can be generated based on the above equation. The excited object turns out to be an
inverse Fourier transformation of k-space. Typical pulse sequences are shown in Figure

2.2.

2.2.3 Sampling Pattern

In the conventional case, the k-space is acquired line-by-line, referred to as a
Cartesian sampling scheme, which is the most popular pattern. It can be reconstructed
simply by performing an inverse discrete Fourier transform. Non-Cartesian sampling
patterns, like radial (15) or spiral patterned (16), have also been proposed. Radial
acquisition is robust to motion and undersampling. Spiral sampling efficiently uses the
gradient, and samples very fast. However, non-Cartesian sampling requires more
complicated reconstruction algorithms, such as gridding, which will be discussed more in

Chapter 3. Some 2D and 3D sampling patterns are shown in Figure 2.3.
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Slice Excitation Spatial Encoding Spoiling
RF VAV
Gs < S
Gy S ~_ 7
Gx ~ < R ,

(a)

Slice Excitation  Spatial Encoding Spoiling

RF VAS

Gs — S

Gy S 7/

Gx < >

(b)

Figure 2.2 Typical pulse sequence diagrams. (a) is the 2D Spoiled Gradient Recalled
(SPGR) sequence. (b) is 3D SPGR sequence. Both sequences are composed of slice
excitation, spatial slice/phase encoding using variable gradient amplitudes (hatched
pulses on Gy axis) and readout, spoiling part. The slice excitation is to excite a
portion of object in slice direction. The spatial slice/phase encoding is to encode
object in slice/phase encoding direction so as to recovery the object. The difference
between 2D SPGR and 3D SPGR is that 3D SPGR has slice phase encoding (hatched
pulse on Gs axis) while 2D SPGR has only a slice refocusing gradient. The readout
gradient is to encode the excited object in readout direction. The spoiling part is to
get rid of in plane magnetization by dephasing, and this is specific for SPGR
sequence.



11

* @

0> =

E - >
>

Figure 2.3 Some common sampling patterns. Top row, left to right: Cartesian 2D,
radial, spiral. Bottom row, left to right, Cartesian 3D, stack-of-star (or 3D hybrid
radial), stack-of-spiral.

2.2.4 FOV and Resolution

In k-space acquisition, the continuous Fourier transform of an object is sampled at
discrete points. For simplification, only Cartesian sampling is considered here. The
discrete sampling can be thought as multiplying k-space with a comb function with
interval width Ak ; which means the convolution of excited object with the inverse Fourier

transform of a comb function, which is another comb function with reciprocal interval

width i. This discrete sampling brings periodic duplicated object with adjacent distance
of i which is described as field of view (FOV). The number of samples is denoted as
base resolution n, the k-space ranges from —%Ak (denoted as k., ) to (g—l)Ak , and the

spatial resolution is given byi.
nAk
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2.3 MRI Scanner Hardware Architecture

Figure 2.4 illustrates the system architecture of MRI scanner. The scanner tunnel
contains built-in RF coil, gradient coil, and magnet, which are the basic components of a
scanner. Custom RF coil and gradient coil can be used. A pulse sequence that runs on the
host computer will control the operation of the switching of gradient coil and RF coil.

The signal detected will be recorded and reconstructed into images.

Figure 2.4 The system architecture of MRI scanner. The scanner is composed of
magnet, gradient coil, and RF coil. The gradient coil and RF coil operation is
controlled by pulse sequence. The detected RF signal can be reconstructed and
shown on the host computer monitor.
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2.4 Contrast Mechanisms

Although many physical factors, such as velocity, diffusion coefficient, and
temperature, play a role in image contrast and signal intensity, most MRI images can be
categorized into three types, proton density weighted images, Tiweighted images and
T,(*) weighted images, for which the image contrast are dominated by three parameters:
proton density (PD), T, relaxation and T, relaxation, respectively. Many diseases cause
changes to at least one of these three parameters, which makes MRI very useful to
diagnose disease.

PD weighted images are acquired with long TR and short TE. The regions with more
protons will have high magnitude, while regions with fewer protons will have low signal.
In practice, a short TR with a very small flip angle can be used to acquire PD images
more rapidly.

T1 weighted images are acquired with short TR and short TE, and shorter T; has
larger signal. For dynamic contrast enhanced T;weighted MR imaging, the contrast agent
is injected into a vein and the gadolinium contrast decreases the T; value of its local
environment. These Ty changes can be tracked by T; weighted MRI signal intensity
changes, so as to track the contrast agent concentration changes.

T,(*) weighted images are acquired with long TR and long TE, and objects with
longer T,(*) have larger signal. For functional MR, the blood oxygen level dependent
(BOLD) effect contributes to the signal changes, which can be used to track the neuron

activity of functional area.
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2.5 DCE MR Imaging and Cine Imaging

Dynamic MRI, such as cine imaging and DCE applications in oncology,
angiography, and perfusion of the heart and other organs, is an important and rapidly
growing area in medical imaging. The dynamic MRI applications considered in the thesis
include DCE breast tumor imaging, DCE myocardial perfusion imaging, and cine cardiac
imaging. The strengths and limitations of these three applications will be discussed

below.

2.5.1 DCE Breast Tumor Imaging

X-ray mammography is the current standard method for the detection of breast
tumors. It performs well in postmenopausal women and less well in perimenopausal
women (17). It is not very sensitive for many cases and also exposure to X-ray is
hazardous.

DCE-MRI is an important routinely used MRI technique for detecting breast tumors.
DCE breast tumor imaging is capable of acquiring contrast uptake patterns, which are
used to distinguish malignant and benign tumors. DCE-MRI has been reported to have
sensitivity (the fraction of patients with disease who test abnormal) approaching 100%
and no radiation exposure is involved (18).The main limitation of DCE-MRI in the
investigation of breast lesions lies in its low specificity(the fraction of patients without
disease who test normal) (19). It was reported that multivariate models combining tumor
morphology and contrast uptake dynamics have a superior diagnostic accuracy than that
based on tumor architecture or contrast uptake pattern alone (20). This requires both high
spatial resolution and temporal resolution; although there is still controversy on how

much to prioritize spatial versus temporal resolution (19). The proposed image
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reconstruction methods in this thesis with more extensive undersampling are expected to
obtain higher spatial-temporal resolution, and to do this without SNR reduction. This

should lead to better diagnostic accuracy of breast tumors.

2.5.2 DCE Myocardial Perfusion Imaging

Myocardial perfusion imaging is important in evaluation of patients with coronary
disease by providing functional and prognostic information. SPECT is a very widely used
test to evaluate the myocardial perfusion. PET and stress echocardiography are also
performed in clinical myocardial perfusion practices. However, all of the above methods
have limitations. For SPECT, there are always tradeoffs between and specificity. PET
offers better image quality than SPECT and it provides high sensitivity and specificity
(21) but PET is still not widely available for cardiac perfusion imaging due to costly
scanner and cyclotron operation and expensive radionuclide (22) and it also lacks the
spatial resolution obtainable with MRI. Stress echocardiography with contrast agents can
to some degree reflect myocardial perfusion but it requires adequate skill of the operator.

MRI has the potential to become a widely used tool for myocardial perfusion
measurement. Compared to SPECT and PET, it is more realizable for MRI to get high
spatial-resolution, temporal resolution and volumetric coverage. The spatial resolution of
MRI makes it possible to differentiate between subendocardial and subepicardial regions
(23) which is not possible with clinical SPECT and PET. Subendocardial perfusion
defects can be a more sensitive indicator of ischemia (23). The study of perfusion and
MPR (myocardial perfusion reserve, the ratio of stress to rest perfusion) distribution
which is a research focus requires high temporal resolution to get signal intensity-curves

especially under stress condition (24).
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Current DCE imaging methods with MRI cannot provide full spatial coverage of the
heart while at the same time provide images with high spatial and temporal resolution and
the necessary SNR. Only a few 2D slices can be acquired per heartbeat, especially in
stress condition when the heart rate is high. It was reported that four slices/beat with
~3mm in-plane resolution was possible in a general clinical application with multicoil
methods (9,25). Approximately 10 short axis slices (6mm thick) and 1-3 long axis slices
are desired to give full spatial coverage of the left ventricle. The proposed image
reconstruction methods in this thesis are expected to improve spatial coverage and
spatial-temporal resolution without compromised SNR and significant artifact, for
myocardial perfusion imaging. This development could lead to improved diagnostic
accuracy of coronary artery disease. As well, accurate sizing of ischemic regions could
improve predictions of how the patient will do in the future and enable optimal treatment

selection.

2.5.3 Cardiac Cine Imaging

Cardiac cine MRI imaging is a basic technique to assess the contractile cardiac
function. FLASH and SSFP sequences are typically used for cardiac cine imaging, and
SSFP is reported to be superior to FLASH in terms of SNR and CNR in both 1.5 and 3.T
although it contains some artifact (26). For this technique, one or several slices are
imaged at each stage or “phase” of the cardiac cycle, and the images acquired at different
stages can be viewed as a movie, so termed as “cine.” Due to the short acquisition
window of each stage, typically a portion of k-space lines of each image are acquired in
each heartbeat and the lines from multiple heartbeats can be combined as full k-space to

recover the image at each stage. The number of the k-space lines acquired in each
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heartbeat is termed as lines per segment. Given the spatial resolution, the temporal
resolution is proportional to the lines per segments, and the acquisition time is inverse
proportional to the lines per segments. Furthermore, the image quality is dependent on
heart rate regularity and motion consistency. To gain better spatiotemporal resolution
while keep good image quality, several algorithms have been applied to cardiac cine
imaging with undersampling dataset gaining an acceleration factor of about 4 to 6
without much image degradation (27,28). Current cardiac cine imaging can provide one
or two slice with both high spatial and temporal resolution in a reasonable breath-hold
time. The main limitation is that multiple breath-holds are needed to acquire stacks of
cardiac slices which result in long acquisition time and inaccurate cardiac volume due to
inconsistent respiratory motion (29). The k-space undersampling combined with
sophisticated reconstruction techniques make is possible to acquire more slices so as to
mitigate or overcome this limitation. In this thesis, the SSFP cardiac cine imaging
datasets are used to test the superiority of some algorithms that can be derived from the

extension of the Generalized Series (GS) model in Chapter 6.



CHAPTER 3

RECONSTRUCTION BACKGROUND

As stated in Chapter 2, the MRI data acquired by scanner give values in k-space. The
frequency domain k-space data need to be transformed to get an image, and this process
is termed as “reconstruction.” In this chapter, an overview of reconstruction algorithms
will be presented. Three topics will be covered: non-Cartesian reconstruction, parallel
imaging, and constrained reconstruction. These three topics are only enough to cover the
main aspects of reconstruction techniques, but will suffice to provide a background to
understand much of the research described in the subsequent chapters. For many
applications, other specific reconstruction procedures are required to get good images,
such as off resonance correction and motion correction. These topics will not be covered

here.

3.1 Non-Cartesian Reconstruction

Radial sampling, spiral sampling, and other more arbitrary sampling patterns have
been proposed in literature and have gained great popularity due to robustness to motion,
undersampling and efficiency, although Cartesian sampling is the most widely used in
clinical practice. In this thesis, the 3D form of radial sampling, 3D stack-of-stars
sampling pattern is applied to myocardial perfusion imaging. It has several potential

advantages to 2D imaging, such as contiguous coverage of left ventricle, through-plane
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motion and high SNR (11,12). Noteworthy, the robustness to through-plane motion is
due to the fact that the slab thickness of 3D imaging is much larger than the slice
thickness of 2D imaging. Thus motion out of plane for 3D imaging will be more
negligible than 2D imaging.

For conventional Cartesian sampling, the reconstruction can be easily and efficiently
implemented by simple inverse Fourier transform. However, for non-Cartesian sampling,
inverse Fourier transform is no longer applicable. There are several options for non-
Cartesian reconstruction, such as projection reconstruction (30), conjugate phase
reconstruction (31,32) and resampling (33-35). Projection reconstruction, which does
filtered back projection of 1D inverse Fourier transform of each line, can be applied only
to radial sampling. Conjugate phase reconstruction, which calculates an integral for each
pixel separately, is extremely computationally expensive. One feasible and efficient
solution is to sample the non-Cartesian data to Cartesian data, then do inverse Fourier
transform. One of the most commonly used resampling methods is called gridding (also
regridding) (35). There are many variations of gridding. The mathematical description of

one typical of gridding algorithm is given here:

ko K
Ak, " AK,

M (K, k,) = [(M (K, K, )S (K, .k, Jw(k, K, ) ®C (K, k,)IxTI( )

where w(k,,k, ) is density compensation function, and C(k,,k, ) is convolution kernel,

k, .. . . .
K, ,j) is the Cartesian grid sampling. One

S(k,.k, ) is the measured data sampling, H(Ak
X y

simple and efficient resampling algorithm used by our group is to sample data from non-
Cartesian point to the nearest integer point using triangle based interpolation (7). In the

undersampled case, the gridded data cannot be inverse Fourier transformed to get the
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final image due to aliasing artifact. Instead it is incorporated into a constrained
reconstruction framework as the fidelity term &m) = WFm — d||§where m is the image

estimate, F is Fourier transform, W is a sampling mask (W is a diagonal matrix, and it is

the identity matrix if there is no undersampling), which will be covered in Chapter 4.

3.2 Parallel Imaging

Parallel imaging is a method that acquires the data from multiple receiver coils that
have different spatial sensitivities in order to increase the speed of MRI acquisition. For
the past few decades, many different parallel imaging reconstruction technigques have
been proposed. They can be categorized into two types, image based reconstruction, such
as PILS (36) or SENSE (37) and k-space based reconstruction, such as SMASH (38) or
GRAPPA (39). Various algorithms have been extended from both types, such as image
based TSENSE (40), kSPA(41), and PARS (42); k-space based TGRAPPA (43),
IGRAPPA(44), and SPIRIT(45). In this chapter, only the most basic and widely used
methods, SENSE and SMASH/GRAPPA will be explained.

SENSE reconstruction represents the signal of each pixel of each coil image as

R
I, =>_p-Sy» Where k is the coil index, S, is the sensitivity profile of the kth coil at
1=1

location |, p, is the signal value at location |, | ranges from 1 to R and specifies the pixel
location and its aliased pixel location, and R is the acceleration factor. This can be

written as matrix form 1 = Sp, and can be solved asp = (S™S)*S"I.

SMASH is based on the assumption that the missing k-space steps eimAkyy can be

modeled as linear combination of coil sensitivities, and it represents the k-space data of
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NC
composite image as S*™ (k, + mAk, ) = ZnL“Sk (k,) where K is the coil index, m is the
k=1

skipped k-space lines, N_ is the coil number. n," is calculated by fitting coil sensitivity

profile to eimAkyy. GRAPPA extends SMASH, by representing the k-space of each coil,
NC

rather than the composite, as S, (k, + mAk, ) ~ z ne'S, (k,). ng is fitted by acquiring extra
k=1

autocalibration lines. Image from multiple coils are reconstructed separately, and

combined using sum of square method.

3.3 Constrained Reconstruction

Constrained reconstruction was proposed several decades ago in MRI reconstruction.
There are so many different kinds of constraints, including implicit and explicit, in the
literature that a thorough discussion of constrained reconstruction is out of the scope of
this work. Here we discuss several seminal and review papers which help to sketch the

roadmap.

3.3.1 The Generalized Series (GS) Model

Early constrained reconstruction work has been reviewed by Liang Z-P (46), and the
constraint was defined as a priori information, bounds, or parametric models. Partial
Fourier reconstructions that incorporate phase information, extrapolation algorithm based
on the assumption of finite image support were reviewed there. In addition, several
parametric models, including autoregressive moving average model, localized

polynomial approximation, and the generalized series (GS) model, were reviewed there.
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Here only the generalized series model is explained. The GS model is a general

mathematical framework to handle prior constraints, and image was represented

as py,(x) = Za, ¢, (0, x)where ¢, is parameterized basis function and a, is the series
I

coefficients for which the number is much smaller than image pixel number. Tsao et al.

Nmrms

(47) extended generalized series model as  p(X) = Ry (X) + Ryynamic(X) - Zc,(p, (x) where
1=1

p(X) is the reconstructed image, R (X) and R (x) are static and dynamic

static dynamic

reference images, c are the unknown basis coefficients, N is the number of basis

coefficients, and ¢, (X) is the basis function. This model is reported to be able to

incorporate at least 14 algorithms.

3.3.2 Compressed Sensing

Compressed sensing is hot topic in the signal processing area and it is a technique
that recover signal from underdetermined linear systems by minimizing L1 norm of the
sparse signal and/or its transformation (48). MRI reconstruction is one of many
applications that compressed sensing has gained much popularity in recent years.
Compressed sensing is a great improvement over classic sampling requirements enforced
by Shannon sampling theorem. Shannon sampling theorem states that the sufficient

condition to recover a band limited function G(f) with band limit of B is to sample data at
a rate higher than % , which is illustrated in Figure 3.1. In the scenario of MRI, MRI
images can be inverse Fourier transformed from k-Space data as noted in Chapter 2. To

avoid overlapping (aliasing), the k-space interval Ak should be less than - . Here Ak
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Figure 3.1 lllustration of Shannon sampling theorem. (a) is the band limited signal
or function G(f) with band limit of B. (b) is the signal recovered with sampling rate
of . (c) is the signal recovered with sampling rate higher than . (d) is the signal
recovered with sampling rate lower than %With aliasing showing up.
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is the sampling rate and Fov is the field-of-view of the image which corresponds to 2B
in Figure 3.1. Using compressed sensing, the MRI images can be recovered from
measurements that are drastically fewer than those required by Shannon sampling theory
by constraining the L; norm of images and/or transformed images. Seve