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ABSTRACT 

ABSTRACT 

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a powerful 

tool to detect cardiac diseases and tumors, and both spatial resolution and temporal 

resolution are important for disease detection. Sampling less in each time frame and 

applying sophisticated reconstruction methods to overcome image degradations is a 

common strategy in the literature.  

In this thesis, temporal TV constrained reconstruction that was successfully applied 

to DCE myocardial perfusion imaging by our group was extended to three-dimensional 

(3D) DCE breast and 3D myocardial perfusion imaging, and the extension includes 

different forms of constraint terms and various sampling patterns. We also explored some 

other popular reconstruction algorithms from a theoretical level and showed that they can 

be included in a unified framework. 

Current 3D Cartesian DCE breast tumor imaging is limited in spatiotemporal 

resolution as high temporal resolution is desired to track the contrast enhancement 

curves, and high spatial resolution is desired to discern tumor morphology. Here temporal 

TV constrained reconstruction was extended and different forms of temporal TV 

constraints were compared on 3D Cartesian DCE breast tumor data with simulated 

undersampling. Kinetic parameters analysis was used to validate the methods.   
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2D imaging with serial acquisition of different slices is regularly used for myocardial 

perfusion imaging. 3D imaging has potential advantages including robustness to through 

plane motion, and accuracy of sizing ischemia. Here 3D stack-of-stars sampling with 

spatiotemporal TV constrained reconstruction is developed and is shown to be a 

promising alternative for myocardial perfusion imaging.  

Other groups proposed a number of reconstruction algorithms for undersampled MRI 

recently, including HYPR-LR, PR-FOCUSS, k-t BLAST/k-t SENSE, k-t FOCUSS and 

regularized iterative SENSE. The work here reveals the relationships among these 

methods by incorporating these algorithms into a generalized reference image 

framework. Reconstruction of simulated data, as well as undersampled myocardial cine 

datasets and perfusion datasets, showed that the superiority of x-t and x-f reference image 

is sensitive to the data characteristics and baseline images. 

All of the above efforts will lead to improvements in the diagnosis of diseases like 

myocardial ischemia and breast tumors, through improving image quality and better 

quantifying kinetic parameters. 
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CHAPTER 1 

INTRODUCTION 

1. INTRODUC TION  

Magnetic resonance imaging (MRI) is widely used in the field of healthcare due to 

its ability to detect cancer and accurately diagnose several other diseases noninvasively. 

Compared to Computed Tomography (CT), it does not have the risk of radioactive harm 

to people and provides much more flexibility in image contrast by using different 

imaging sequences and scanning protocols. MRI can be designed to show T1, T2 and 

proton density contrast in images and to measure other physical parameters, such as 

velocity, temperature, or diffusion coefficients. Several imaging techniques have been 

proposed for individual diseases by introducing contrast agents. Among them dynamic 

contrast enhanced MRI (DCE-MRI) is a well-known MRI technique that monitors the 

enhancement of a tissue or organ continuously by acquiring a series of MRI images after 

injecting contrast agent. This helps to show tissue perfusion to identify tumors or to make 

movies of the heart to obtain anatomical and functional information of cardiac disease so 

as to diagnose these diseases. 

Unlike optical imaging in which a whole image is acquired at the same time, MRI 

collects raw data in frequency domain in a pixel-by-pixel scheme which limits its 

acquisition speed. Since the invention of MRI over 30 years ago, image acquisition speed 

and quality have greatly improved as the result of endeavors of investigators worldwide. 

These advances in image speed and quality have been achieved through a) hardware 
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improvements, b) innovative pulse sequence designs and c) more efficient sampling 

techniques. Examples of these types of improvements include: a) multiple RF receiver 

coils, high performance gradient coil design and high static magnetic field. b) echo planar 

imaging (EPI) (1), fast spin-echo (2) and GRASE (3). c) partial k-Space, radial sampling, 

propeller sampling and spiral sampling. The efficient sampling methods often require 

specific reconstruction techniques. Typically fast techniques take advantage of several of 

the above methods to speed up acquisition and keep good image quality. One example is 

multiplexed EPI (4), which acquires multiple images in one EPI echo train by 

interleaving signal from several slices using simultaneous echo refocusing (SER) 

technique (5) and exciting several slices simultaneously using multiband technique (6). It 

requires high performance hardware, such as multiple RF receiver coil and high static 

magnetic field, and often applies partial Fourier methods. 

All these types of techniques have been applied to speed up DCE-MRI. Since DCE-

MRI captures each image in a short acquisition window, it assumes that the image 

remains unchanged during the readout. This assumption may not hold well, especially for 

3D acquisitions, which typically take longer, and in the presence of normal physiological 

body motions, such as respiratory and cardiac movement.  

For 3D DCE breast tumor imaging, the image contrast changes especially during the 

contrast agent uptake and washout. Better temporal resolution may reduce the violation 

of the above assumption of static image for each time frame. At the same time high 

spatial resolution is desirable for discerning the tumor morphology. Although there is still 

controversy as to what spatial and temporal resolution should be and which has a high 

priority, undersampled Cartesian sampling with sophisticated reconstruction is a good 
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way to better balance the tradeoff between spatial and temporal resolution so as to 

accurately track the tissue enhancement to tell the difference between malignant and 

benign tumors. 

One of the reconstruction methods that have been successfully applied to dynamic 

MRI is spatiotemporal total variation (TV) constrained reconstruction proposed by our 

group and applied to some 2D applications, such as myocardial perfusion imaging (7), 

and temperature imaging (8). Since MRI images are complex-valued, the TV constraint 

can be of different forms, such as complex form, separate real and imaginary form, and 

separate magnitude and phase term. One contribution of this thesis is to compare different 

forms of temporal TV constraints on3D DCE breast tumor datasets and verify the 

resulting images with pharmacokinetic parameter analysis. 

For DCE myocardial perfusion imaging, currently multislice 2D imaging can provide 

only 4 slices with about 3mm in-plane resolution even with parallel imaging technique in 

clinical setting (9). 2D radial sampling has been proposed to be superior to 2D Cartesian 

sampling for its robustness to motion and undersampling (7,10). 3D myocardial perfusion 

imaging has several potential advantages to 2D imaging, such as contiguous coverage of 

the left ventricle and high SNR (11,12), although it is limited by its longer acquisition 

window. Thus for 3D myocardial perfusion, undersampled k-space data is especially 

desirable to shorten the long acquisition window and reduce the effect of heart motion.  A 

3D form of radial sampling, ‘3D hybrid radial’ (also known as ‘stack-of-stars’) is applied 

to 3D myocardial perfusion imaging with spatiotemporal TV constrained reconstruction 

to verify its feasibility, and this is the second contribution. 
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A third contribution of this thesis is to generalize the generalized series (GS) model 

and create a framework to include several recent algorithms. Many sophisticated 

reconstruction algorithms with different names have been proposed by the MRI image 

reconstruction community. The GS model and compressed sensing are two well-known 

reconstruction algorithm families from which many algorithms can be derived. In this 

thesis, some of these algorithms are shown to be derived from the extension of the GS 

model. This helps to better understand these algorithms and the relationship between the 

GS model and compressed sensing. 

1.1 Organization of Thesis 

This thesis is organized as follows: Chapter 2 gives a basic overview of the 

principles of MRI. Chapter 3 gives a background of MRI reconstruction that introduces 

three important topics in MRI image reconstruction field so as to provide a background to 

understand much of the research described in the subsequent chapters. Chapters 4-5 apply 

the spatiotemporal TV constrained reconstruction method to two 3D applications. 

Chapter 4 compares different forms of TV for 3D DCE breast tumor imaging with 

undersampled Cartesian SPGR sequence. Chapter 5 applies the complex form of 

spatiotemporal TV constrained reconstruction to 3D stack-of-stars myocardial perfusion 

imaging technique with an ECG gated saturated recovery turboFLASH sequence. 

Chapter 6 investigates several other groups’ reconstruction methods mainly from 

theoretical level and presents a general framework that can include them, such as HYPR-

LR, PR-FOCUSS, k-t FOCUSS, and regularized iterative SENSE. Chapter 7 summarizes 

the main achievements of the thesis. 



  

 

I 

CHAPTER 2 

MAGNETIC RESONANCE IMAGING BACKGROUND  

2. MAGNETIC RESONANCE IMAGING BACKGROUND 

This chapter introduces the principle of magnetic resonance imaging. The basic 

physical principle of magnetic resonance imaging lies in the nuclear magnetic resonance 

effect. 

2.1 Nuclear Magnetic Resonance Effect 

In 1946, Purcell and Bloch discovered the nuclear magnetic resonance effect 

independently (13,14). Both were awarded the Nobel Prize for physics for this discovery. 

In this section, the NMR effect will be explained by going through quantum mechanics 

explanation of nucleus, RF excitation and relaxation mechanisms. 

2.1.1 The Underlying Quantum Mechanics Explanation of Nucleus 

Atoms that have an odd number of protons and/or neutrons have angular spin 

momentum (called a spin), and they act as small magnetic dipoles. These dipoles are 

randomly aligned, so the net magnetization of an object is zero. When exposed to static 

magnetic field, the spin will align with the magnetic field and precess at frequency of 

00 B   where  is gyromagnetic ratio. Different elements have different gyromagentic 

ratio, for H
1
, r=42.58MHz/T. For simplicity, here we only focus on hydrogen, H

1
, which 

is commonly used for MRI due to its abundance in the body. When placed under external 
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magnetic field, some spins are aligned parallel to the magnetic field while others are 

antiparallel. The antiparallel state has a higher energy than the parallel state, and the spins 

at the lower energy state can transition to the higher energy state by absorbing energy 

0
2

1



hE   where h is Planck’s constant (h=6.62x10

-34
Js). Due to the preference for the 

lower energy state, based on the Boltzmann distribution, the ratio of the number of 

protons in the lower energy state to those in the higher energy state is given by 

kTe
n

n






  , where 
n  is the number of spins in the lower energy state, 

n is the number of 

spins in the higher energy state, 0
2

1



 h  Is the energy difference, k is the 

Boltzmann constant (k=1.38x10
-23

J/k), and T is the temperature. The total effect is that 

the object under static magnetic field will have nonzero net 

magnetization hnnM 


)(
4

1
0   .  

2.1.2 RF Excitation 

The spins precess at the frequency of 00 B   (for H
1
 at 3T, 0 =123.2MHz), which 

belongs to the spectrum of radio transmission. Resonance happens if an electromagnetic 

wave of the same frequency ( 00 B  ) is applied, which is called “Radio Frequency 

excitation.” In practice, the electromagnetic wave is generated by adjusting the electric 

current of the RF coils, which is analogous to applying time varying field B1+ in the 

plane orthogonal to static magnetic field. The governing equation for the RF excitation is 

given as: BM
M


dt

d
where 
















z

y

x

M

M
M

M and















0

01

01

)sin(
)cos(

B
tB
tB




B . Due to the RF 
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excitation, the net magnetization M0 will tilt to transverse plane. The magnetization 

precessing in transverse plane sends out a signal that can be received with a receiver coil 

that has the same frequency.  

2.1.3 Relaxation Mechanism 

The spins tend to recover to equilibrium state after RF excitation. Two different 

relaxation mechanisms, one is called spin-lattice or longitudinal relaxation, the other is 

called spin-spin or transverse relaxation, were found to affect the magnetization. To 

account for these two relaxations, Bloch extended the above equation by adding another 

relaxation term:



































1

0

2

2

T

MM

T

M

T

M

dt

d

z

y

x

BM
M

 , where T1 is the longitudinal relaxation time, 

and T2 is the transverse relaxation time, as illustrated in Figure 2.1. Effective field 

inhomogeneity, which originates from static magnetic field inhomogeneity and 

susceptibility difference, causes the protons to dephase more quickly. In this case, T2* is 

used, which is the combination effect of T2 relaxation and effective field inhomogeneity.  

2.2 Signal Localization 

The signal can be detected due to the NMR effect. However, it cannot indicate the 

resonating protons in specific regions, which is important for imaging.  
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Figure 2.1 Illustration of T1 and T2 relaxation. The governing equation for 

longitudinal relaxation is Mz(t)=M0(1-exp(-t/T1)); for transverse relaxation it is 

Mxy(t)=Mxy(0)exp(-t/T2). 

2.2.1 Slice Excitation 

An RF pulse at the resonance frequency can be applied to excite the protons. In 

general, it is possible to excite the whole volume with 00 B  without applying any 

gradient, which is named as “nonselective excitation.” A certain bandwidth of radio 

frequency ( ZGz z  0)( ) can be specified to excite a certain portion (slab or slice, 

for 3D imaging, called slab; for 2D imaging, called slice) in the slice direction by 

applying a gradient in the slice direction at the same time.  Theoretically, a sinc function 

has a rectangle shaped spectrum which gives the desired rectangular slice profile. In 

practice, there are time limitations for the RF pulse which create an imperfect rectangle 

frequency box that results in an imperfect slice profile.  

2.2.2 Spatial Encoding 

Without a spatial encoding gradient, the signal equation can be described as 

ti

xy etM 0)(),(
 

 rr  where )(r is the excited object in the position of r and 00 B  . 

By applying additional magnetic gradient fields, the magnetic fields varies spatially in x, 
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y, z directions. ztGytGxtGtBtB zyx )()()(),(),( 0

'

0  rr where



















z

y

x

r is the position 

with respect to the isocenter of the magnet, xG , yG and 
zG are the gradients of magnetic 

field in x, y, and z directions, respectively. The signal equation in the position of r 

becomes
))((

0
0

)(),(





t

dti

xy etM



rτG

rr .  The term 0  can be demodulated, so the signal 

detected can be simplified as 





rr
rτG

detS

t

di
0

)(

)()(


 . This can be further described as 


 rr

rk detS ti )(2)()(  where 
t

dt
02

1
)()( 


τGk . For a given time course of gradient 

fields applied after RF excitation, a series of sampled data, which is known as “k-space,” 

can be generated based on the above equation. The excited object turns out to be an 

inverse Fourier transformation of k-space. Typical pulse sequences are shown in Figure 

2.2. 

2.2.3 Sampling Pattern 

In the conventional case, the k-space is acquired line-by-line, referred to as a 

Cartesian sampling scheme, which is the most popular pattern. It can be reconstructed 

simply by performing an inverse discrete Fourier transform. Non-Cartesian sampling 

patterns, like radial (15) or spiral patterned (16), have also been proposed. Radial 

acquisition is robust to motion and undersampling. Spiral sampling efficiently uses the 

gradient, and samples very fast. However, non-Cartesian sampling requires more 

complicated reconstruction algorithms, such as gridding, which will be discussed more in 

Chapter 3. Some 2D and 3D sampling patterns are shown in Figure 2.3. 
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Figure 2.2 Typical pulse sequence diagrams. (a) is the 2D Spoiled Gradient Recalled 

(SPGR) sequence. (b) is 3D SPGR sequence. Both sequences are composed of slice 

excitation, spatial slice/phase encoding using variable gradient amplitudes (hatched 

pulses on Gy axis) and readout, spoiling part. The slice excitation is to excite a 

portion of object in slice direction. The spatial slice/phase encoding is to encode 

object in slice/phase encoding direction so as to recovery the object. The difference 

between 2D SPGR and 3D SPGR is that 3D SPGR has slice phase encoding (hatched 

pulse on Gs axis) while 2D SPGR has only a slice refocusing gradient. The readout 

gradient is to encode the excited object in readout direction. The spoiling part is to 

get rid of in plane magnetization by dephasing, and this is specific for SPGR 

sequence. 
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Figure 2.3 Some common sampling patterns. Top row, left to right: Cartesian 2D, 

radial, spiral. Bottom row, left to right, Cartesian 3D, stack-of-star (or 3D hybrid 

radial), stack-of-spiral. 

2.2.4 FOV and Resolution 

In k-space acquisition, the continuous Fourier transform of an object is sampled at 

discrete points. For simplification, only Cartesian sampling is considered here. The 

discrete sampling can be thought as multiplying k-space with a comb function with 

interval width k ; which means the convolution of excited object with the inverse Fourier 

transform of a comb function, which is another comb function with reciprocal interval 

width
k

1
. This discrete sampling brings periodic duplicated object with adjacent distance 

of 
k

1
, which is described as field of view (FOV). The number of samples is denoted as 

base resolution n, the k-space ranges from k
n


2
 (denoted as maxk ) to k

n
 )1

2
( , and the 

spatial resolution is given by
kn

1
. 
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2.3 MRI Scanner Hardware Architecture 

Figure 2.4 illustrates the system architecture of MRI scanner. The scanner tunnel 

contains built-in RF coil, gradient coil, and magnet, which are the basic components of a 

scanner. Custom RF coil and gradient coil can be used. A pulse sequence that runs on the 

host computer will control the operation of the switching of gradient coil and RF coil. 

The signal detected will be recorded and reconstructed into images.  

 

Figure 2.4  The system architecture of MRI scanner. The scanner is composed of 

magnet, gradient coil, and RF coil. The gradient coil and RF coil operation is 

controlled by pulse sequence. The detected RF signal can be reconstructed and 

shown on the host computer monitor. 
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2.4 Contrast Mechanisms 

Although many physical factors, such as velocity, diffusion coefficient, and 

temperature, play a role in image contrast and signal intensity, most MRI images can be 

categorized into three types, proton density weighted images, T1weighted images and 

T2(*) weighted images, for which the image contrast are dominated by three parameters: 

proton density (PD), T1 relaxation and T2 relaxation, respectively. Many diseases cause 

changes to at least one of these three parameters, which makes MRI very useful to 

diagnose disease. 

PD weighted images are acquired with long TR and short TE. The regions with more 

protons will have high magnitude, while regions with fewer protons will have low signal. 

In practice, a short TR with a very small flip angle can be used to acquire PD images 

more rapidly.  

T1 weighted images are acquired with short TR and short TE, and shorter T1 has 

larger signal. For dynamic contrast enhanced T1weighted MR imaging, the contrast agent 

is injected into a vein and the gadolinium contrast decreases the T1 value of its local 

environment. These T1 changes can be tracked by T1 weighted MRI signal intensity 

changes, so as to track the contrast agent concentration changes. 

T2(*) weighted images are acquired with long TR and long TE, and objects with 

longer T2(*) have larger signal. For functional MRI, the blood oxygen level dependent 

(BOLD) effect contributes to the signal changes, which can be used to track the neuron 

activity of functional area.  
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2.5 DCE MR Imaging and Cine Imaging 

Dynamic MRI, such as cine imaging and DCE applications in oncology, 

angiography, and perfusion of the heart and other organs, is an important and rapidly 

growing area in medical imaging. The dynamic MRI applications considered in the thesis 

include DCE breast tumor imaging, DCE myocardial perfusion imaging, and cine cardiac 

imaging. The strengths and limitations of these three applications will be discussed 

below. 

2.5.1 DCE Breast Tumor Imaging 

X-ray mammography is the current standard method for the detection of breast 

tumors. It performs well in postmenopausal women and less well in perimenopausal 

women (17). It is not very sensitive for many cases and also exposure to X-ray is 

hazardous.  

DCE-MRI is an important routinely used MRI technique for detecting breast tumors. 

DCE breast tumor imaging is capable of acquiring contrast uptake patterns, which are 

used to distinguish malignant and benign tumors. DCE-MRI has been reported to have 

sensitivity (the fraction of patients with disease who test abnormal) approaching 100% 

and no radiation exposure is involved (18).The main limitation of DCE-MRI in the 

investigation of breast lesions lies in its low specificity(the fraction of patients without 

disease who test normal) (19). It was reported that multivariate models combining tumor 

morphology and contrast uptake dynamics have a superior diagnostic accuracy than that 

based on tumor architecture or contrast uptake pattern alone (20). This requires both high 

spatial resolution and temporal resolution; although there is still controversy on how 

much to prioritize spatial versus temporal resolution (19). The proposed image 
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reconstruction methods in this thesis with more extensive undersampling are expected to 

obtain higher spatial-temporal resolution, and to do this without SNR reduction. This 

should lead to better diagnostic accuracy of breast tumors.  

2.5.2 DCE Myocardial Perfusion Imaging 

Myocardial perfusion imaging is important in evaluation of patients with coronary 

disease by providing functional and prognostic information. SPECT is a very widely used 

test to evaluate the myocardial perfusion. PET and stress echocardiography are also 

performed in clinical myocardial perfusion practices. However, all of the above methods 

have limitations. For SPECT, there are always tradeoffs between and specificity. PET 

offers better image quality than SPECT and it provides high sensitivity and specificity 

(21) but PET is still not widely available for cardiac perfusion imaging due to costly 

scanner and cyclotron operation and expensive radionuclide (22) and it also lacks the 

spatial resolution obtainable with MRI. Stress echocardiography with contrast agents can 

to some degree reflect myocardial perfusion but it requires adequate skill of the operator. 

MRI has the potential to become a widely used tool for myocardial perfusion 

measurement. Compared to SPECT and PET, it is more realizable for MRI to get high 

spatial-resolution, temporal resolution and volumetric coverage. The spatial resolution of 

MRI makes it possible to differentiate between subendocardial and subepicardial regions 

(23) which is not possible with clinical SPECT and PET. Subendocardial perfusion 

defects can be a  more sensitive indicator of ischemia (23). The study of perfusion and 

MPR (myocardial perfusion reserve, the ratio of stress to rest perfusion) distribution 

which is a research focus requires high temporal resolution to get signal intensity-curves 

especially under stress condition (24).  
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Current DCE imaging methods with MRI cannot provide full spatial coverage of the 

heart while at the same time provide images with high spatial and temporal resolution and 

the necessary SNR. Only a few 2D slices can be acquired per heartbeat, especially in 

stress condition when the heart rate is high. It was reported that four slices/beat with 

~3mm in-plane resolution was possible in a general clinical application with multicoil 

methods (9,25). Approximately 10 short axis slices (6mm thick) and 1-3 long axis slices 

are desired to give full spatial coverage of the left ventricle. The proposed image 

reconstruction methods in this thesis are expected to improve spatial coverage and 

spatial-temporal resolution without compromised SNR and significant artifact, for 

myocardial perfusion imaging. This development could lead to improved diagnostic 

accuracy of coronary artery disease. As well, accurate sizing of ischemic regions could 

improve predictions of how the patient will do in the future and enable optimal treatment 

selection. 

2.5.3 Cardiac Cine Imaging 

Cardiac cine MRI imaging is a basic technique to assess the contractile cardiac 

function. FLASH and SSFP sequences are typically used for cardiac cine imaging, and 

SSFP is reported to be superior to FLASH in terms of SNR and CNR in both 1.5 and 3.T 

although it contains some artifact (26). For this technique, one or several slices are 

imaged at each stage or “phase” of the cardiac cycle, and the images acquired at different 

stages can be viewed as a movie, so termed as “cine.” Due to the short acquisition 

window of each stage, typically a portion of k-space lines of each image are acquired in 

each heartbeat and the lines from multiple heartbeats can be combined as full k-space to 

recover the image at each stage. The number of the k-space lines acquired in each 
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heartbeat is termed as lines per segment. Given the spatial resolution, the temporal 

resolution is proportional to the lines per segments, and the acquisition time is inverse 

proportional to the lines per segments. Furthermore, the image quality is dependent on 

heart rate regularity and motion consistency. To gain better spatiotemporal resolution 

while keep good image quality, several algorithms have been applied to cardiac cine 

imaging with undersampling dataset gaining an acceleration factor of about 4 to 6 

without much image degradation (27,28). Current cardiac cine imaging can provide one 

or two slice with both high spatial and temporal resolution in a reasonable breath-hold 

time. The main limitation is that multiple breath-holds are needed to acquire stacks of 

cardiac slices which result in long acquisition time and inaccurate cardiac volume due to 

inconsistent respiratory motion (29). The k-space undersampling combined with 

sophisticated reconstruction techniques make is possible to acquire more slices so as to 

mitigate or overcome this limitation. In this thesis, the SSFP cardiac cine imaging 

datasets are used to test the superiority of some algorithms that can be derived from the 

extension of the Generalized Series (GS) model in Chapter 6.  

 



  

 

I 

CHAPTER 3 

RECONSTRUCTION BACKGROUND 

3. RECON STRUC TION BACKGROUND  

As stated in Chapter 2, the MRI data acquired by scanner give values in k-space. The 

frequency domain k-space data need to be transformed to get an image, and this process 

is termed as “reconstruction.” In this chapter, an overview of reconstruction algorithms 

will be presented. Three topics will be covered: non-Cartesian reconstruction, parallel 

imaging, and constrained reconstruction. These three topics are only enough to cover the 

main aspects of reconstruction techniques, but will suffice to provide a background to 

understand much of the research described in the subsequent chapters. For many 

applications, other specific reconstruction procedures are required to get good images, 

such as off resonance correction and motion correction. These topics will not be covered 

here.  

3.1 Non-Cartesian Reconstruction 

Radial sampling, spiral sampling, and other more arbitrary sampling patterns have 

been proposed in literature and have gained great popularity due to robustness to motion, 

undersampling and efficiency, although Cartesian sampling is the most widely used in 

clinical practice. In this thesis, the 3D form of radial sampling, 3D stack-of-stars 

sampling pattern is applied to myocardial perfusion imaging. It has several potential 

advantages to 2D imaging, such as contiguous coverage of left ventricle, through-plane 
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motion and high SNR (11,12).  Noteworthy, the robustness to through-plane motion is 

due to the fact that the slab thickness of 3D imaging is much larger than the slice 

thickness of 2D imaging. Thus motion out of plane for 3D imaging will be more 

negligible than 2D imaging. 

For conventional Cartesian sampling, the reconstruction can be easily and efficiently 

implemented by simple inverse Fourier transform. However, for non-Cartesian sampling, 

inverse Fourier transform is no longer applicable. There are several options for non-

Cartesian reconstruction, such as projection reconstruction (30), conjugate phase 

reconstruction (31,32) and resampling (33-35). Projection reconstruction, which does 

filtered back projection of 1D inverse Fourier transform of each line, can be applied only 

to radial sampling. Conjugate phase reconstruction, which calculates an integral for each 

pixel separately, is extremely computationally expensive. One feasible and efficient 

solution is to sample the non-Cartesian data to Cartesian data, then do inverse Fourier 

transform. One of the most commonly used resampling methods is called gridding (also 

regridding) (35). There are many variations of gridding. The mathematical description of 

one typical of gridding algorithm is given here:  
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where ),( yx kkw is density compensation function, and ),( yx kkC is convolution kernel, 

),( yx kkS is the measured data sampling, ),(
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k


 is the Cartesian grid sampling. One 

simple and efficient resampling algorithm used by our group is to sample data from non-

Cartesian point to the nearest integer point using triangle based interpolation (7). In the 

undersampled case, the gridded data cannot be inverse Fourier transformed to get the 
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final image due to aliasing artifact. Instead it is incorporated into a constrained 

reconstruction framework as the fidelity term 
2

2

~~ dmWF)m(  where m~ is the image 

estimate, F is Fourier transform, W is a sampling mask (W is a diagonal matrix, and it is 

the identity matrix if there is no undersampling), which will be covered in Chapter 4. 

3.2 Parallel Imaging 

Parallel imaging is a method that acquires the data from multiple receiver coils that 

have different spatial sensitivities in order to increase the speed of MRI acquisition. For 

the past few decades, many different parallel imaging reconstruction techniques have 

been proposed. They can be categorized into two types, image based reconstruction, such 

as PILS (36) or SENSE (37) and k-space based reconstruction, such as SMASH (38) or 

GRAPPA (39). Various algorithms have been extended from both types, such as image 

based TSENSE (40), kSPA(41), and PARS (42); k-space based TGRAPPA (43), 

iGRAPPA(44), and SPIRiT(45). In this chapter, only the most basic and widely used 

methods, SENSE and SMASH/GRAPPA will be explained. 

SENSE reconstruction represents the signal of each pixel of each coil image as 





R

l

kllk SI
1

 , where k is the coil index, klS is the sensitivity profile of the kth coil at 

location l, l is the signal value at location l , l ranges from 1 to R and specifies the pixel 

location and its aliased pixel location,  and R is the acceleration factor. This can be 

written as matrix form SρI  , and can be solved as ISSSρ
HH 1)(  . 

SMASH is based on the assumption that the missing k-space steps
y

y
kim

e


can be 

modeled as linear combination of coil sensitivities, and it represents the k-space data of 
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composite image as 

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)()( where k is the coil index, m is the 

skipped k-space lines, cN is the coil number. 
m

kn is calculated by fitting coil sensitivity 

profile to
y

y
kim

e


. GRAPPA extends SMASH, by representing the k-space of each coil, 

rather than the composite, as 

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k
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m

kyyl kSnkmkS
1

)()( . 
m

kn is fitted by acquiring extra 

autocalibration lines. Image from multiple coils are reconstructed separately, and 

combined using sum of square method. 

3.3 Constrained Reconstruction 

Constrained reconstruction was proposed several decades ago in MRI reconstruction. 

There are so many different kinds of constraints, including implicit and explicit, in the 

literature that a thorough discussion of constrained reconstruction is out of the scope of 

this work. Here we discuss several seminal and review papers which help to sketch the 

roadmap. 

3.3.1 The Generalized Series (GS) Model 

Early constrained reconstruction work has been reviewed by Liang Z-P (46), and the 

constraint was defined as a priori information, bounds, or parametric models. Partial 

Fourier reconstructions that incorporate phase information, extrapolation algorithm based 

on the assumption of finite image support were reviewed there. In addition, several 

parametric models, including autoregressive moving average model, localized 

polynomial approximation, and the generalized series (GS) model, were reviewed there.  
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Here only the generalized series model is explained. The GS model is a general 

mathematical framework to handle prior constraints, and image was represented 

as 
l

llgs a ),()( xθx  where l is parameterized basis function and la is the series 

coefficients for which the number is much smaller than image pixel number. Tsao et al. 

(47) extended generalized series model as  



termsN

l

lldynamicstatic cRR
1

)()()()( xxxx  where 

)(x  is the reconstructed image, )(xstaticR  and )(xdynamicR  are static and dynamic 

reference images,  lc are the unknown basis coefficients, terms
N is the number of basis 

coefficients, and )(xl  is the basis function. This model is reported to be able to 

incorporate at least 14 algorithms. 

3.3.2 Compressed Sensing 

Compressed sensing is hot topic in the signal processing area and it is a technique 

that recover signal from underdetermined linear systems by minimizing L1 norm of the 

sparse signal and/or its transformation (48). MRI reconstruction is one of many 

applications that compressed sensing has gained much popularity in recent years. 

Compressed sensing is a great improvement over classic sampling requirements enforced 

by Shannon sampling theorem. Shannon sampling theorem states that the sufficient 

condition to recover a band limited function G(f) with band limit of B is to sample data at 

a rate higher than 
B2

1
, which is illustrated in Figure 3.1. In the scenario of MRI, MRI 

images can be inverse Fourier transformed from k-Space data as noted in Chapter 2. To 

avoid overlapping (aliasing), the k-space interval k should be less than 
FOV

1
 . Here k   
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Figure 3.1 Illustration of Shannon sampling theorem. (a) is the band limited signal 

or function G(f) with band limit of B. (b) is the signal recovered with sampling rate 

of 
B2

1 . (c) is the signal recovered with sampling rate higher than 
B2

1 . (d) is the signal 

recovered with sampling rate lower than 
B2

1 with aliasing showing up. 
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is the sampling rate and FOV  is the field-of-view of the image which corresponds to B2  

in Figure 3.1. Using compressed sensing, the MRI images can be recovered from 

measurements that are drastically fewer than those required by Shannon sampling theory 

by constraining the L1 norm of images and/or transformed images. Several different 

forms of optimization schemes and many algorithms have been proposed to solve this 

problem, and a list of software can be found in (49). Here we introduce the constrained 

optimization scheme that can be formulated as )min(
1

1
m ..ts 

2
dmFu

where  is 

the image transformation, m is the image estimate, d is the k-space measurement, 
uF  is 

the undersampled Fourier transform and is the noise level.   can be identity matrix if 

MRI images are sparse , and many different kinds of transformations have been proposed 

to enforce sparsity, such as wavelet transform (50), finite difference operation (the 

constraint term in this case is “total variation”) (7,51) and curvelet transform (52).  

3.3.3 Total Variation 

One of the most used constraint terms in this thesis is total variation (TV), which can 

be used as the sparsity for compressed sensing. Generally the total variation of a real 

valued or complex valued function f , defined on an interval   ba, , 

is 



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1

0

1 )()(sup)(
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i

ii
P

a

b xfxffTV , where the supremum runs over the set of all 

partitions },...,{ 0 pnxxp  , p is a partition of  ba,  (53). For a function of n dimensional 

real variables defined on  which is an open subset of 
n , the TV norm of the function 

is },1),;(:sup{)( 1 
 xwCwwdxffTV n

c
where )(1 cC is the set of 
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smooth functions on   that vanish on the boundary of   and )(xf  can be real or 

complex(54). Correspondingly, )(xw can be real or complex functions. This definition is 

applicable to nondifferentiable )(xf . This definition helps to formulate the primal-dual 

algorithm for TV minimization(55). 

To make the total variation more intuitive and understandable, here the total 

variation of the differential function of one variable is considered specifically, and the 

definition gives 
b

a

b

a dxxffTV )()( ' .The discrete form of total variation is 


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nfnffTV with its complex form 

as 
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IIRR nfnfinfnffTV , where )(nf R
and )(nf I

are the 

real part and imaginary part of function, respectively.  

In this thesis, gradient descent (or time marching) method is used to minimize the 

total variation(56). To avoid singularities in the derivative of the functional as shown by 

Acar et al (57),  is a small positive constant is added  

2

)(
dx

df
fTV . The gradient 

descent method gives 
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 with its discrete implementation, denoted 

here as S , as 
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S . The gradient update 

term can be written as nnnn Sff 1 , where n  is the step size of nth iteration. Other 
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algorithms have been proposed to solved TV minimization problems, such as fixed points 

(58) and primal-dual method (55).   

3.3.4 The Extensions of Total Variation 

There are several extensions of TV minimization problems. One extension is to 

extend L1 norm to homotopic L0 norm. In the scenario of dynamic MR imaging, the total 

variation is the sum of the absolute value (L1 norm) of signal intensity difference of 

adjacent image pixels in spatial or temporal dimension. The homotopic L0 norm of the 

constraints become ))()1(()(
1

0







x

x

xfxfhfH , here h is the homotopic L0 norm 

function, such as 
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exh


 , 

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||

||
)(

x

x
xh (59). Interestingly, anisotropic diffusion 

and robust statistics that have been reported to be closely related to each other (60) are 

related to compressed sensing (including L1 norm and homotopic L0 norm of transformed 

image with finite difference operation) (59). Investigating total variation from anisotropic 

diffusion perspective, the flux function (which is influence function in robust statistic) is 




2

||
)(')(

x

x
xhxg .The incorporation of into TV term is making it analogous to 

Huber function, L2 norm in the low difference value area, L1 norm in the high difference 

value area; which is desirable for denoising in noisy areas while keeping the sharp edges. 

In the scenario of DCE-MRI applications, for signal intensity change curve of each pixel, 

the use of the total variation will keep its sharp enhancement while smooth it when the 

signal intensity change is not sharp (61) which is illustrated in Figure 3.2. This is a 

valuable property so that the data do not get smoothed in sharp transitions as with L2  



27 

 

 

Figure 3.2 The illustration of signal intensity change curve of one typical pixel. The 

dashed line with square is the simulated tissue enhancement curve. The stair-wise 

area of the thick line indicates the area that needs to keep sharp edges. The smooth 

area of the thick line indicates the area that needs to be smooth.  

norm. The same principle applies to the total variation in spatial domain, and this has 

been widely used for images and natural scenes (51,56). There are other good models 

such as wavelets (50) but the extensive discussions are beyond the scope of this work. 

Another extension is to iteratively refine the TV constraint term, such as Bregman 

iteration algorithm (62,63) and reweighted L1 algorithm (64). Here we introduce only the 

Bregman iteration algorithm. The Bregman iteration algorithm is reported to better 

preserve fine structures than the TV regularization method by adaptively refining the 

regularization term, and the minimization problem becomes: 

1)),((minarg )1

2

2
  kffDdEff k

f
k  where ),( )1kffD is the Bregman 

distance between f and 1kf , defined 
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by
TVkkTVkTVk fffffffD 111)1 ,),(   , where , is inner product 

operation, 
TVkf 1  is the subgradient of the TV norm at point 1kf , and dEf   is the 

encoding equation. 

A simplified implementation is as below: 
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The TV minimization in each Bregman iteration can be solved with various 

algorithms as indicated before, such as gradient descent (or time marching)(56), fixed 

points (58) and primal-dual method (55).   

3.4 Summary 

Non-Cartesian reconstruction, parallel imaging and constrained reconstruction are 

independent of each other. Many algorithms have been proposed to incorporate several of 

them to gain additive benefits. For example, k-t SENSE (65) incorporates both parallel 

imaging and constrained reconstruction; when k-t SENSE is applied to non-Cartesian 

sampling, it incorporates all of the above three topics. Radial GRAPPA (66,67) 

incorporates non-Cartesian sampling and parallel imaging.   

In the following chapters, different constrained reconstruction algorithms with 

Cartesian/non-Cartesian sampling will be investigated and applied to clinical data. In 

Chapter 4, different types of temporal TV constraints are included into the POCS 

framework, and implemented for 3D Cartesian DCE breast tumor application. In Chapter 

5, a 3D stack-of-stars pattern was applied to myocardial perfusion imaging. Here only 

complex TV was tried based on the results in Chapter 4 that complex TV performs best. 
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In Chapter 6, the generalized series model constrained reconstruction methods were 

extended to include several recent algorithms from the literature, and were applied to 

cardiac cine imaging and DCE myocardial perfusion imaging. 



  

 

 

CHAPTER 4 

3D DCEBREAST TUMOR IMAGING WITH TCR 

4. 3D DCE BREA ST TUMOR IMAGING WITH TCR  

In this chapter, it is demonstrated that application of TCR to DCE breast tumor 

imaging may help to achieve better image quality. Different forms of temporal 

constraints are presented and projection onto convex set (POCS) framework is introduced 

to include these constraints into reconstruction. DCE breast tumor data are tested using 

these algorithms, and the resulting images are analyzed with kinetic parameter models for 

verification.  The results are published in Magnetic Resonance Imaging, Vol. 28, Page 

637-645, 2010 (68), and reproduced here with permission. 

4.1 Introduction 

Dynamic MRI plays an important role in a number of clinical MRI applications, such 

as in dynamic contrast enhanced MRI and functional MRI. For such applications, a 

common strategy used to balance tradeoffs between spatial resolution and temporal 

resolution is to reduce sampling of k-space data at each time frame.  A variety of reduced 

k-space data acquisition and reconstruction techniques have been proposed to do this. 

Examples include sliding window, UNFOLD (69), keyhole (70), RIGR (71), k-t 

BLAST/k-t SENSE (27), k-t FOCUSS (28), compressed sensing (72,73), and HYPR (74). 

Most of these methods use constraints (also known as “prior information”) to compensate 
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for the information loss from reduced sampling. Sophisticated methods are typically 

needed to reconstruct the images with the constraints. For dynamic MRI applications, the 

images of adjacent time frames are often assumed to be similar, especially when motion 

is minimal, in which case temporal TV is a reasonable regularization term (7,75). In this 

paper, two tools were applied to the implementation of constrained reconstruction. One 

powerful tool is the Projection onto Convex Sets (POCS) formalism, which can include 

prior information flexibly and has been extensively used in MRI reconstruction 

applications (46,76-78). Another tool is the gradient descent method, which is regularly 

used for the minimization of an objective function, and can be considered as a type of 

projection to be included in the POCS framework.  

For constrained MRI image reconstruction, the regularization term is typically used 

in its complex form (27,28,79). However, separate real and imaginary TV regularization, 

and separate magnitude and phase regularization terms, have also been investigated by 

several investigators. Fessler et al. (80) reported that the L2 norm of the spatial derivative 

in separate magnitude and phase form worked better than that in complex form on 

simulated phantom data. He et al. (81) reported that separate real and imaginary 

constraints produced results similar to the use of the complex form of regularization on 

phantom data. In this paper, different forms of temporal TV terms are compared for 

reconstruction of undersampled DCE-MRI data acquired in breast cancer patients. 

The paper is organized as follows: in the first section, we present the form of the 

fidelity term and of various temporal TV terms, including complex TV, real and 

imaginary TV, and magnitude TV. Next, specific implementation details for the serial 
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and parallel POCS methods are presented. Finally, we present and discuss results of 

undersampled breast DCE-MRI reconstructed using the different POCS methods. 

4.2 Image Reconstruction 

Two types of POCS, serial POCS (also known as sequential POCS) and parallel 

POCS, as summarized in (78), are used in this paper. For serial POCS, different 

projections are sequentially applied to update the data term at each iteration, while for 

parallel POCS different projections are weighted to update the data term each iteration. 

Both the L2 norm of the fidelity term and the temporal TV term are convex functions.  

The gradient descent forms of both can be viewed as projections. 

The fidelity term is defined as the L2 norm: 
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where ),(~ tm r is the image estimate including all time frames, t is from 1 to time frame 

number fN , F is the (2D) spatial Fourier transform applied on each time frame in the 

dynamic sequence, )(tW is a binary undersampling pattern of time frame t (W is diagonal 

matrix, and it is identity if no undersampling), that changes each time frame and matches 

the undersampling pattern of the acquired k-space, and )(td is the undersampled data in k-

space of one image slice of time frame t (see acquisition section). The projection 
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where H is the Hermitian transpose operator and HF  is the 2D inverse Fourier transform 

applied on each time frame. 

Besides the mandatory data fidelity convex set described above, any other convex 

sets can be used to regularize the solution. Three forms of the temporal TV constraint are 

considered here. The first and most widely used form is the complex temporal TV term:  
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where ε is a small positive constant to avoid singularities in the derivative of the 

functional as shown by Acar et al (57). The gradient descent method gives 
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The projection corresponding to the complex temporal TV term can be written as 

nnnn Smm 
~~

1 , where n  can be set to a constant step size. 

The second form of TV constraint is to use separate real and imaginary temporal TV 

terms, defined as:  
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The gradient descent projection gives 
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that make it unnecessary to fit the step size or can be useful to provide a reference for 

step size selection.  

The third form of temporal TV constraint is to use separate magnitude and phase 

terms. It was found that use of temporal magnitude and phase TV terms gave only 

slightly better reconstructions than temporal magnitude temporal TV alone (see the 

Discussion section), and so magnitude alone was used in this work:  
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where )~(mM  is the magnitude part of m~ .     

The gradient descent projection gives 
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4.3 Data Acquisition and Kinetic Parameter Fitting 

4.3.1 Data Acquisition and Simulation 

Breast DCE-MRI data were acquired using a 3D spoiled gradient echo pulse 

sequence with the following imaging parameters: TR=2.35-3.16 msec, TE=0.99-1.24 

msec, flip angle=10-15º using a seven channel dedicated breast coil. Temporal resolution 

per frame was 12-15 seconds with data acquired with 6/8 reduced Fourier space in the 
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phase and slice directions and elliptical acquisition in the kx-ky plane. The acquisition 

matrix for the breast data varied between 256 x (80-104) x 80 of 42-60 time frames. The 

acquisition was bilateral, with the read direction left to right. The fast inverse Fourier 

transform (IFT) was performed in the read (kx) direction, and the ky-kz datasets were 

extracted from each slice in the x dimension. Four datasets from three study participants 

with histopathologically confirmed breast cancer were obtained under an IRB approved 

protocol.  One subject was imaged on two separate occasions. 

Undersampled k-space data were simulated by deleting a portion of the acquired 

phase encodes in the ky and kz directions.  In the outer areas in the ky direction, one in 

every two points was sampled; while in the kz direction, one in every three points was 

sampled. An example of the sampling pattern over a series of time frames is shown on 

Figure 4.1(a). In the k-space center, a 6x6 window of ky-kz phase encodes were fully 

sampled for every time frame, as shown in Figure 4.1(b). The net acceleration was R=6 

(17% of the k-space data were used). The elliptical partial Fourier acquisition of the 

original data further increased the undersampling to an acceleration factor of R=10, 

though note that the “true” data used to compare with the constrained reconstruction 

methods had only six times as many samples as the undersampled version, so our results 

are reported as using an acceleration of R=6. 

4.3.2 Implementations 

Four reconstruction methods were implemented: parallel POCS with complex 

temporal TV term, serial POCS with complex temporal TV term, serial POCS with 

separate real/imaginary temporal TV term, and serial POCS with magnitude TV alone. 

These were denoted as parallel+complex, serial+complex, serial+real/imaginary, and  
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Figure 4.1 Undersampling pattern for breast DCE data. The gray circles were not 

sampled, and the black circles were sampled. (a) The outer k-space sampling of 

eight adjacent time frames. (b) A typical k-space sampling pattern of one time 

frame. 

serial+magnitude, respectively. Reconstruction using a simple “sliding window” method 

was presented for comparison and for algorithm initialization. Sliding window was 

implemented by inverse Fourier transformation of k-space data after filling missing 

measurements in k-space using the corresponding measurement from the most recent 

time frame in which it was acquired.  This is not technically a “sliding window,” but this 

method gave better results than interpolating based on all of the data within a window.  
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Parallel POCS requires weighting factors to be chosen, and serial POCS 

accomplishes similar weighting by the number of iterations each convex set is performed 

before going on to the next convex set. For parallel POCS, 150 iterations were used and 

the fidelity weighting was set to be 1, and temporal TV weighting was set by trying a 

range of different parameters from 0.01 to 1.2 on the data set of each coil, and the 

weighting factor of 0.1 was selected based on minimizing the root mean squared error 

(RMSE) in a test dataset. This weighting was then used for all of the coils and all of the 

datasets. The RMSE value was calculated by square root of the mean square difference 

between the reconstructed images and the true images that were reconstructed by inverse 

Fourier transform of the elliptical partial k-space data. 

For serial POCS, the weighting of different terms are affected by both the step size 

of the projection term and the iteration number ratios among different convex set 

projections. For simplicity, the iteration ratio of 1:1:1 or 1:1 was applied for all serial 

POCS methods. For the fidelity term, the step size was set to be 1, and could be viewed 

as replacing the measured k-space data in the corresponding k-space points of the current 

estimate. For the temporal TV term, Polyak’s step size (Equation [4.6]) was used for the 

initial estimation of the constant step size. There were two reasons for not using Polyak’s 

step size to adapt the step size at each iteration: one was that from our tests, the constant 

step size converges faster; the other is that computation of Polyak’s step size takes some 

time during each iteration.  

The POCS methods were applied independently to sparse data obtained from each of 

the seven coils. The reconstructions from each coil were then combined using the square 

root of the sum of squares. 
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4.3.3 Kinetic Parameters from Breast Data 

After dynamic images were reconstructed and the baseline precontrast signal 

subtracted, the signal intensity difference curve of every pixel was fitted to the extended 

Tofts-Kety two compartment model for tissue contrast agent (CA) concentration: 
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where K
trans 

and kep are the transfer constant and rate constant respectively,  is the 

convolution operator, vp is the blood plasma volume fraction, and Cp(t) is the 

concentration of CA in the blood plasma (83). The linearized regression method 

described in (84) was used to perform curve fitting, and a population averaged arterial 

input function (AIF) was used for Cp(t) (85).  

To quantify the linear relationship between the kinetic parameters generated from 

constrained methods and that generated from the true data, L1 regression, where the sum 

of absolute difference is minimized, was used. This type of analysis was used due to its 

robustness to outliers, rather than least square regression that minimizes the sum of 

squares difference.  

4.4 Experimental Result 

4.4.1 Comparison of Different Methods 

The images reconstructed from undersampled data of one subject using the 

undersampling pattern described in Figure 4.1 are shown in Figure 4.2. Figure 4.2(a) 

shows a time frame in a typical DCE sequence obtained from full k-space data using IFT. 

Figure 4.2(b) shows the corresponding time frame reconstructed using IFT on the 

undersampled data. Figure 4.2(c-f) shows the corresponding time frame reconstructed  
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Figure 4.2 Comparison of reconstructions from full data and R=6 (using pattern 

shown in Figure 4.1) data using different methods with all coils. (a) The 22nd time 

frame reconstructed from full k-space data using IFT. The corresponding time 

frame reconstructed from undersampled data using IFT method is shown in panel 

(b), the parallel+complex in (c), serial+complex in (d), serial+magnitude in (e), and 

the sliding window method in (f). 

using the sliding window (SW) method, serial+complex, parallel+complex, and 

serial+magnitude, respectively. The RMSE plots of images reconstructed from this 

subject with the simulated undersampling using the different POCS methods are shown in 

Figure 4.3. The separate real and imaginary TV does not work as well as complex TV 

and magnitude TV in terms of RMSE. Figure 4.3 shows that for all time frames, 

serial+complex, parallel+complex, and serial+magnitude constrained reconstructions had 

reduced RMSE as compared to the SW method. The serial+magnitude method 

consistently had the lowest RMSE. 
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Figure 4.3 RMSE plot for each time frame computed for different methods with one 

data set of all coils. The black line with dots is parallel+complex, the blue line is 

sliding window method, the green dash line with plus is serial+complex, the red line 

with circles is serial+magnitude, the cyan line with circles is serial+real/imaginary, 

and the blue dash line with circle is serial+magnitude/phase. 

Figure 4.4 compares the mean signal intensity time curves from one breast lesion 

region using different methods. Figure 4.4(a) shows the region of interest (ROI) in the 

breast. Figure 4.4(b-c) compares the mean signal intensity curves for the region. The time 

curves obtained from POCS methods matched with the full data reconstructions closely. 

POCS methods were applied independently to the sparse R=6 data obtained from 

each of the seven coils. The reconstructions from each coil were then combined using the 

square root of the sum of squares and the results are shown in Figure 4.5. Figure 4.5(a) 

shows the images reconstructed from full k-space data using IFT. Figure 4.5(b-e) shows 

the images reconstructed from parallel+complex, serial+complex, serial+magnitude, SW,  
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Figure 4.4 Comparison of dynamics of reconstructions from undersampled data 

(R=6) in two different breast lesion regions using different methods. (a) Images 

showing the one ROI in the breast lesion, indicated by the small black rectangle. (b) 

Comparison of mean signal intensity time curves for the lesion region shown in (a), 

and (c) is the magnified images of (b). The magnified image shows the signal 

intensity curve of SW methods have a larger deviation from that of the true images.  

The red line is the full sampled reference, the blue line is parallel+complex, the cyan 

line is serial+complex, the black isserial+magnitude, and the dash green is sliding 

window method 
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Figure 4.4 continued. 
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Figure 4.5 Reconstructions results from all coils. a–e (left column): the 12th time 

frame of reconstructed images (from top to bottom, the left column is full sampled 

image, parallel+complex, serial+complex, serial+magnitude, sliding window). f–i 

(right column): the difference image between the corresponding left image and (a). 

Larger residual errors of the images reconstructed with the serial+magnitude and 

SW methods are evident in the bottom two rows of the right column. The left 

column images are scaled to [0,30]; and the right column images are scaled to [0,2]. 
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respectively. Figure 4.5(g-i) shows the difference images with fully sampled image (a) of 

corresponding time frame. The residual error of image reconstructed using the complex 

constraint was smaller than that of the other methods. 

The relationship of kinetic parameters from the reconstruction of the R=6 data and 

that from fully sampled data are shown in Figure 4.6 for parallel POCS with complex 

temporal TV, the reconstruction method that correlated with full data best in the tumor 

area. Pharmacokinetic parameters determined from the images reconstructed using this 

method showed strong linear correlation with those determined from the fully sampled 

data. The results are summarized in Table 4.1, with the exception of pv . The values of 

pv  determined from all methods are close to zero ( pv =0.027±0.051 for fully sampled 

data, pv =0.014±0.033forparallel+complex).   

4.5 Discussion 

Three types of temporal TV terms were used for reconstruction of undersampled 

breast data. A POCS method with gradient descent method was used for implementation. 

From signal intensity curves (Figure 4.4), difference images (Figure 4.5) and kinetic 

parameters (Figure 4.6), it can be seen that parallel+Complex, serial+Complex, and 

serial+magnitude are capable of accurately reproducing the measured signal intensity 

curves and pharmacokinetic parameters. 

In Fessler’s work (80), it was demonstrated that the L2 norm of the spatial derivative 

of separate magnitude and phase performed better than that of the complex form in one 

set of simulated data. It is known that most MRI data have relatively smooth phase in 

spatial dimension, and that the spatial phase L2 is a strong constraint. In the breast DCE  
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Figure 4.6 The correlation plots between kinetic parameters (K
trans

, kep) generated 

from images using parallel+complex and that using IFT of fully sampled k-space 

data, with K
trans

 plot shown in (a), kep plot shown in (b). The kinetic parameters data 

sets came from all four datasets' lesion areas. 
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Table 4.1 The linear relationship between pharmacokinetic parameters determined 

from the images reconstructed using different methods and those determined from 

the fully sampled data. The data in the bracket are the correlation coefficients. 

 K
trans

 kep 

parallel+complex Y=0.97X+0.00 (0.98) Y=0.95X+0.00 (0.85) 

serial+complex Y=0.97X+0.00 (0.98) Y=0.96X+0.00 (0.84) 

serial+magnitude Y=0.93X+0.00 (0.98) Y=0.90X+0.00 (0.92) 

sliding window Y=0.97X+0.00 (0.97) Y=0.94X+0.00 (0.80) 

 

MRI data used here, serial+magnitude/phase worked approximately the same as 

serial+magnitude without the temporal phase TV term. The phase TV term did not help  

significantly to get better images (see Figure 4.3), possibly due to the good initialization 

of the phase images.  

Keyhole techniques have been used for quantitative dynamic contrast enhanced 

breast MRI (86) and it was reported that the minimum keyhole size should be restricted 

by the approximate minimum size of the expected lesions. Parallel imaging and 

generalized series model have been combined to accelerate dynamic contrast enhanced 

breast cancer imaging with an acceleration factor of 3-4 for the 2D case (87). The 

techniques used here enabled an acceleration factor of 6 for 3D acquisitions while 

maintaining good correlation with the kinetic parameters in the tumor.  

Polyak’s step size is useful to adjust the step size range, which is necessary for L1 

norm minimization. However, it was found that the optimal step size, in terms of 

efficiently reaching images that gave minimum RMS errors compared to the full data 

reconstruction, was not close to Polyak’s step size. However, all of the POCS methods 

performed robustly to perturbations (0.5α) in the optimal step size of α (75), which 
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implies relatively few trial step sizes are needed to get the optimal step size. As well, the 

same step size performed well for different datasets, indicating that it is likely not a 

parameter that needs to be found for each dataset.  

The parallel POCS methods used here can also be termed temporally constrained 

reconstruction (TCR) (75). TCR was performed by iteratively minimizing a cost function 

of a data fidelity term and constraint terms. The cost function was defined 

as )}~()~(min{arg mmC   . The gradient descent method gives 

nnnnn SmWFWdmmCmm   )~(~)~('~~
1 . Interestingly, this gradient descent 

implementation of TCR is the same as parallel POCS with complex temporal TV 

constraints used here. A spatial TV term can also be added to the parallel (or serial) 

POCS methods (7).  

Compared to parallel POCS, serial POCS makes it easier to add other constraints. In 

(78), several convex sets and associated projection operators pertinent to MRI data 

reconstruction were defined, such as fixed phase and limited object support. Other types 

of convex functionals can also be included in the POCS framework, such as a prior image 

constraint (88).  

For the kinetic parameter analysis, the signal intensity curves were not converted to 

the contrast agent concentration, as is sometimes done (89). Most of the signal intensity 

difference curves were expected to remain linear with the contrast agent concentration, 

and since the truth was computed in the same manner, it was not essential to perform this 

extra step. The extra step of conversion to concentration would have made the 

comparison less direct. 
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The sliding window method also worked reasonably well. This can be explained in 

part through Figure 4.7: although the sliding window method is often biased more than 

the temporally constrained method when the intensity increases sharply, the fitted line is 

not so sensitive to this area because of sharp onset of the population AIF. Thus similar 

kinetic parameters similar to truth can be found even when the curves from the 

undersampled reconstructions have a slower onset. 

 

Figure 4.7 The delta signal intensity values and model fits for images reconstructed 

from parallel+complex, sliding window and fully sampled data (denoted as “TCR,” 

“SW,” “True,” respectively). The delta signal intensity value is the intensity value 

with the mean value of the first 10 time frames subtracted off. The plot 

demonstrates that in particular for the sliding window curve, the fit is much closer 

to the fully sampled data when the tissue curves increases sharply. This is because 

the sharp onset of the AIF used does not permit an exact fit to the curve. 
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Another limitation of this study is that the signal intensity curves of two of the data 

sets show relatively slow and steady uptake in the lesions, and this is particularly 

amenable to undersampling. Also, vp can be difficult to analyze with voxel wise curves in 

general, and did not correlate well here (r=0.55 for parallel POCS with complex TV). 

The results here were based on simulated undersampling, in order to have a measure 

of truth. The simulated undersampling may not have as high temporal resolution as actual 

undersampled acquisitions. Actual undersampled data will likely be more robust since 

temporal and/or spatial resolution can be increased, and the effective rate of change of the 

contrast will be slower and easier to reconstruct. It is also possible that the current 

acquisitions were undersampled temporally and that the time curve will vary more 

rapidly when temporal resolution is improved. In this case, there may be greater 

differences between the reconstruction methods. 

Spatial and temporal resolution are crucial for MRI breast cancer detection and 

characterization (90). The proposed method can be used to increase temporal resolution 

without compromising spatial resolution and SNR loss. High spatial resolution is required 

for detection of small lesions and for assessment of lesion morphology. Thus, this 

approach may increase the detectability of small lesions. It is also possible that the high 

temporal resolution can make it possible to track the tissue enhancement curve more 

accurately and thus increase specificity for diagnosing malignancy (91). 

The computation time is demanding, especially when the dataset size is large. In a 

Matlab (The Mathworks, Natick, MA, USA) implementation on a desktop PC, it takes 

approximately 40s to reconstruct one slice. Considering that 20–40 slices of 5–12 coils 

will have to be reconstructed in a clinically acceptable time span of 30–60 seconds, the 
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computation time will have to be improved by a factor of between 60 and 640. An 

efficient C++ implementation on a more powerful computer will provide improvement in 

computation time. Recently published papers have shown that computationally intensive 

medical imaging tasks can be processed on a graphics processing unit to increase 

computation speed by a factor of 85–100 (92,93). Taking advantage of these techniques, 

clinical implementation would be feasible. 

4.6 Conclusion 

We have demonstrated that temporal TV could be successfully employed for 

dynamic MRI breast perfusion applications. Complex TV or magnitude TV constraints 

could be used to give good results at an acceleration factor R of 6, which can translate 

into improved spatial and temporal resolution for DCE breast scans without a cost to 

image quality. In the tumor area, the best method, parallel POCS with complex temporal 

TV, gave kinetic parameter 6, RtransK =0.97 1, RtransK +0.00 with correlation coefficient 

r=0.98, 6, Repk =0.95 1, Repk +0.00 (r=0.85). These promising methods warrant further study 

to determine how increasing spatial or temporal resolution affects clinical assessment and 

management of breast cancer and other cancers.



  

 

 

CHAPTER 5 

3D STACK-OF-STARS MYOCARDIAL 

PERFUSION IMAGING 

5. 3D STAC K-OF- STAR S MYOCARD IAL P ERFU SION IMAGING 

In this chapter, the 3D stack-of-stars sequence with spatiotemporal TV constrained 

reconstruction is demonstrated to be feasible for 3D myocardial perfusion MRI. The 

stack-of-stars sampling pattern is presented and simulations are undertaken to select the 

optimal saturation recovery time (SRT) and flip angle value. Then, the acquired 3D 

myocardial perfusion data are reconstructed and compared with 2D myocardial perfusion 

data. The results have been composed in a paper entitled “Myocardial perfusion MRI 

with an undersampled 3D stack-of-stars sequence,” which is being prepared for 

submission. 

5.1 Introduction 

MR myocardial perfusion imaging is an effective method to evaluate perfusion 

defects and detect cardiac ischemia. Current methods typically provide three to four 2D 

slices per heartbeat at stress with parallel imaging (94-96). An echo planar readout can 

provide more than 10 slice spatial coverage with in-plane spatial resolution as high as 

1.5mm (97). However, echo-planar is sensitive to chemical shift and susceptibility 

effects, which thus far have prevented its use in clinical practice. Large spatial coverage 
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of the heart with high spatial and temporal resolution and good SNR is important to 

improve the utility of cardiac MRI perfusion. Greater spatial coverage makes it less likely 

to miss ischemic areas and allows for better sizing of ischemia. High spatial resolution 

can reduce the dark rim artifact (98-100) which can mimic subendocardial defects (23). 

High temporal resolution can also be important to reduce dark rim effects and to 

accurately track signal intensity changes. 

Besides parallel imaging techniques, undersampling with sophisticated 

reconstructions have been proposed to obtain more spatial coverage and higher spatial 

and temporal resolution for 2D perfusion scans. k-t SENSE methods using Cartesian 

undersampling have been reported to give good results for three to four slices with  a net 

acceleration factor of 3 to 4 by acquiring 23-33 phase encoding lines (101,102). 

Compressed sensing combined with parallel imaging was reported to gain an acceleration 

factor of 8 by acquiring 16-24 lines (103).  Radial undersampling patterns have been 

explored due to their robustness to motion and undersampling. A constrained 

reconstruction method with temporal and spatial total variation constraints was reported 

to acquire 10 slices at rest using 24 rays per slice and five slices were acquired after each 

saturation pulse and gave image quality comparable to 68 phase encodes with Cartesian 

data (7) . SW-CG-HYPR was proposed using 16 rays per slice and six to eight slices 

were acquired per beat (10,104).   Some of these accelerated methods are sensitive to 

motion, or focus on high spatial resolution and do not achieve high coverage. 

3D perfusion MRI might be advantageous compared to 2D in terms of volume 

coverage and a consistent contrast for all slices. 3D also may be more robust to inter-

frame motion and may permit greater undersampling, although the longer 3D readout 
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could be sensitive to cardiac motion. Undersampled 3D Cartesian myocardial perfusion 

imaging with SENSE reconstruction was reported to provide whole left ventricle (LV) 

coverage with 10 slices and relatively poor spatial resolution of 3x(4.3-4.5)x10 mm
3
with 

an acceleration factor of 6, acquiring 110-115 phase encoding lines (11). This 3D method 

was shown to perform better than 2D multislice imaging in terms of the accuracy of 

estimating the size of perfusion defects in a phantom (11). However, the limited spatial 

resolution may make it hard to detect subendocardial ischemia as well as making the 

acquisition more prone to dark rim artifact. Recently, an undersampled 3D acquisition 

was reconstructed with the k-t PCA method and was reported to obtain an acceleration 

factor of 7, acquiring 125 phase encoding lines and providing 10 slices with spatial 

resolution of 2.3x2.3x10 mm
3 

(12) and matrix size of 168x133x10 with partial Fourier 

and elliptical sampling in ky-kz plane. A similar approach but using k-t SENSE was 

reported to give an acceleration factor of 6.3 and shown to be useful for detection of 

ischemia in patients (105).      

In this paper, a 3D sampling pattern with radial sampling in the kx-ky plane and 

Cartesian encoding in the kz direction is used. This sampling pattern has been termed 3D 

hybrid radial sampling or 3D stack-of-stars (3D-SOS) sampling. Due to the relatively 

long acquisition, 3D imaging can have more signal variations for different readouts than 

2D, which may result in image artifacts. In this paper, simulations were performed to 

show the dependence of the signal transients on flip angle and saturation recovery time. 

Phantom studies were used to analyze the effect of flip angle on image quality.  Human 

studies were performed to further assess the approach.  
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5.2 k-Space Acquisition 

5.2.1 3D Stack-of-stars Acquisition 

An ECG-triggered, 3D turboFLASH sequence with SOS k-space sampling and 

saturation recovery preparation as shown in Figure 5.1(a-c) was used. Figure 5.1(a) 

shows an example of the sampling pattern. The 3D-SOS pattern was chosen instead of 

3D radial to obtain a cylindrical field of view that better matched the heart. For stack-of-

stars myocardial perfusion imaging, inconsistent projections can cause severe streaking 

artifacts in-plane (7) and, as with 3D Cartesian imaging, there can be crosstalk artifacts in 

the slice direction. To reduce the effect of inconsistent projections in-plane, the k-space 

data were acquired by sampling all in-plane radial lines of one partition (one kz encode) 

with an interleaved pattern, then sampling other partitions as illustrated in Figure 5.1(b). 

Centric ordering was applied in the slice (kz) direction. The radial sampling was rotated 

in the temporal dimension and the slice encoding direction so that data sharing can make 

an evenly distributed fully-sampled 3D-SOS sampling. Such a change in sampling pattern 

over time is essential for the reconstruction method to be effective. An example of the 

sampling pattern over a series of time frames is shown in Figure 5.1(c).  

5.2.2 Numerical Simulation 

In order to minimize the signal inconsistencies for 3D-SOS imaging, simulation 

studies were done to determine the optimal acquisition parameters. The signal of the n-th 

readout of saturation recovery turboFLASH is (106) 
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Figure 5.1 Illustration of pulse sequence. (a) Illustration of stack-of-stars. (b) 

Schematic diagram for the 3D stack-of-stars acquisition with ECG gating. The 

centric reordering in slice direction is applied. (c) The sampling pattern of adjacent 

3 time frames that interleaving both slice encoding and temporal direction with an 

interleave factor of 3, and the partial Fourier sampling is on in slice direction. The 

black circle is the sampled, and the gray circle is not sampled. 
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between the saturation pulse and the first readout radio-frequency (RF) pulse. 
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Mxy(n) is independent of n and the transverse magnetization Mxy immediately reaches 

its steady-state value. This is an important insight reported in (107) – the readout of a 

saturation recovery prepared signal can be obtained immediately at steady-state, if SRT 

and TR and T1 are known and α is selected by equation [5.2]. This expression has been 

given for the case of 2D spiral-based sequences (107)and similar work has been done in 

another context - to use saturation pulses to bring spoiled gradient echo sequences to 

steady-state more rapidly(108). Since T1 is not known a priori, we evaluated the effect of 

varying T1 on the flip angle given by equation [5.2]. 

Simulations with physiologically relevant parameters were used to study the effect of 

non-steady-state readouts in more detail. TR was fixed to 2.5msec to keep the acquisition 

time short. For each set of T1(ranging from 100 ms to 2000 ms with interval steps of 100 

ms), SRT(from 50 ms to 300 ms with interval steps of 1 ms), and flip angle (from 2º to 

30º with interval steps of 0.1º), a signal intensity-readout index curve was determined by 

equation [5.1]. The coefficient of variation (CV), the standard deviation divided by the 

mean value, was then calculated to evaluate how much the signal varied over the 

readouts. CV is a measure of the consistency of the signal intensity relative to the readout 

index, so a perfectly steady-state set of readouts would have CV=0. 
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5.2.3 Phantom Study 

For comparison to the simulation results, a phantom was imaged on a 3T Trio 

scanner with a 3D saturation recovery turboFLASH sequence with slice encoding turned 

off. The DC term (the sum of signal intensity over the excited volume) of an 8cm slab 

covering the center portion of the cylinder phantom was recorded for 160 readouts after 

the saturation pulse with saturation recovery time (SRT)=150ms, TR=2.5ms,TE=1.39 ms, 

flip angle α=8º, 10º, 12º, 14º, and 25º, FOV=220x220mm
2
. The 160 readouts were 

composed of 8 sets of 20 readouts which are each composed of 4 sets of interleaved rays 

(flip angles [0 36º 72º 108º 144º], [18º 54º 90º 126º 162º], [9º 45º 81º 117º 153º], [27º 63º 

99º 135º 171º]).  

To analyze the effect of the transient approach to steady-state on the image quality, 

the same phantom was also imaged with slice encoding turned on. Image acquisition 

parameters were: SRT=150ms, TR=2.5ms, TE=1.39 ms, flip angle α=10º and25º, 

FOV=220x220mm
2
, number of rays per slice=20 in an interleaved fashion with an 

interleave factor of 5, 8 slices with partial Fourier factor in slice direction=6/8, slice 

oversampling factor=25%, spatial resolution=1.7x1.7x10mm
3
, total readout time≈300ms 

for one time frame. Imaging was performed twice to evaluate the random spoiling effect 

that has been reported to show better spoiling in 2D radial imaging (109). The first time 

was with random RF spoiling. The second was with the standard built-in RF spoiling that 

uses a phase increment between RF pulses of 50⁰. Since there were no concentration 

changes between time frames in the phantom, a sliding window reconstruction method 

was used to reconstruct the images to compare the effect of flip angles and different 

spoiling patterns. 
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5.2.4 Human Study 

To determine the feasibility of stack-of-star sampling in-vivo, experiments were 

performed using a 3T Trio or Verio Siemens scanner under an IRB-approved protocol 

with an ECG-gated, SOS saturation recovery turbo-FLASH sequence and a 12-element 

coil array in three subjects. A dose of 0.015-0.05 mmol/kg of contrast agent (Gd-BOPTA 

or gadofovesettrisodium), was injected at a rate of 5 ml/s followed by a 25 ml saline flush 

at the same rate. Based on the simulation results, SRT was set to 140-160ms, and flip 

angle was specified to be 10-14º to compensate for the B1+ inhomogeneity to obtain an 

actual flip angle of ~8-12º (110). Other image acquisition parameters were as follows: 

TR=2.1-2.9ms, TE=1.1-1.4ms, FOV=(260-360)x(260-360)mm
2
, number of rays per 

slice=20-24 in an interleaved fashion, 8-10 slices with partial Fourier factor in slice 

direction=6/8, spatial resolution=(1.8-2.8)x(1.8-2.8)x(6-10)mm
3
, total readout 

time≈300ms for one time frame.  

5.2.5 Comparison of 3D SOS and 2D Radial 

To compare the SNR, both 3D SOS and 2D radial imaging were performed on a 

cylindrical phantom. The following parameters were used: SRT=140ms, TR=2.6ms, 

TE=1.43ms, flip angle=14º, FOV 220x220mm
2
, the number of projections 20, interleave 

factor=5, slice thickness=10mm. For 3D, the slice number was 8, and 25% oversampling 

was performed. For 2D, one slice was acquired. A sliding window reconstruction method 

was used. 

A 2D multislice myocardial perfusion imaging dataset with radial sampling was also 

acquired in one subject with the same dose of 0.015mmol/kg of gadofovesettrisodium as 

with the 3D-SOS imaging for comparison. Image acquisition parameters for the 2D 
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sequence were: SRT=20ms, TR=2.3ms, TE=1.4ms, flip angle=14º, FOV=360x360mm
2
, 

matrix size=144x144, slice thickness=10mm, the number of projections=30, 10 slices 

were acquired in one heartbeat with five slices after each saturation pulse (the SRTs are 

20, 89, 158, 227, 296 ms for each of the five slices in a set). The slices with SRT=158ms 

were used for the SNR/CNR comparison.    

5.3 Reconstruction and Analysis 

5.3.1 Image Reconstruction 

After acquiring the 3D data, the images were reconstructed using spatiotemporal 

total variation (TV) constrained reconstruction (7,68), with the cost function:  
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where m(t) represents complex image estimate of time frame t, t ranges from 1 to the total 

time frame number Nf, G is a nonuniform FFT applied to all slices (34) that transforms 

images from the x-y-z domain to the kx-ky-z domain, Fz is a Fourier transform in the 

slice encoding direction that transforms data from the kx-ky-z domain to the kx-ky-kz 

domain, W(t) is the undersampled binary pattern of time frame t as shown in Figure 

5.1(b),d(t) is the measured k-space data of time frame t and α, β are the weighting factor 

of the temporal and spatial TV constraint term. The gradient descent method was used to 

minimize the cost function. Different weighting factors for TV constraints were tried on 

one dataset, and α=0.7 and β=0~0.2 were empirically determined after setting the k-space 

center (the mean image value) to be ~10
2
.  These weights were used to reconstruct other 

datasets based on the assumption that the reconstruction method was robust to small 

changes of the weights (75). The image was initialized with an inverse nonuniform FFT 
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of the undersampled radial data, which is similar to doing filtered backprojection of the 

undersampled projections. The number of iterations was empirically chosen to be 50 

because the reconstructed images changed little after 50 iterations based on visual 

assessment. The reconstruction was applied independently to the data obtained from each 

coil and the reconstructions from each coil were then combined using the square root of 

the sum of squares. 

5.3.2 Image Analysis (Perfusion data: SNR/CNR) 

For the phantom experiments, SNRs were calculated by the ratio of the mean value 

of a 3x3 block from the center area of signal in the images with the standard deviation of 

the signal intensities from a background area. 

For the in-vivo experiments, the reconstructed images were evaluated using SNR and 

CNR. SNR was calculated by the ratio of the mean and standard deviation of the signal 

intensities from a uniform region in the myocardium of a postcontrast time frame. CNR 

was computed by (Myopost-Myopre)/σ, where Myopost is the mean of the signal intensities 

from a uniform region in the myocardium in a postcontrast time frame, Myopre and σ are 

the mean and standard deviation of the signal intensities from a similar region in the 

myocardium in a precontrast timeframe.  

5.4 Experiment Results 

5.4.1 Numerical Simulations 

Figure 5.2 shows the flip angle-SRT plot calculated using equation [5.2] for three 

different T1 values. This plot shows that for a given saturation recovery time, the flip 

angle depends only weakly on T1.   
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Figure 5.2 The flip angle-SRT plot calculated using equation [5.2] for three different 

T1 values. The flip angle that gives steady state readouts is relatively insensitive to 

T1 changes. 

Figure 5.3 shows the results of CV values obtained from simulations with different 

SRT and flip angle values using T1=700ms. The sets composed of SRT and flip angle, 

such as (110ms, 12º), (150ms, 10º), and (220ms, 8º), provide the smallest CV values – 

meaning those readouts were closest to steady-state. Similar results were found for 

T1=300ms and 1200ms (not shown here).  

5.4.2 Phantom Studies 

Figure 5.4 shows the measured signal intensity (DC term) plotted against the readout 

number. The signal intensity-readout curves are obtained with SRT=150ms, TR=2.5ms 

using a 3D saturation recovery turboFLASH sequence with slice encoding turned off and 

the flip angles α specified as 8º, 12º, and 25º. The periodic fluctuations are consistent 
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Figure 5.3 The coefficients of variation with different SRT and different flip angle 

when T1=700ms and TR=2.5ms. The sets composed of SRT and flip angle, such as 

(110ms, 12º), (150ms, 10º), and (220ms, 8º), provide the smallest CV values. 

 

Figure 5.4 The signal intensity changes with readout index acquired with TR=2.5, 

SRT=150ms and the specified α of 8º, 12º, and 25º are shown by the solid lines, and 

the signal intensity is calculated by doing linear interpolation to obtain the k-space 

center for each ray. The dashed lines are calculated from equation [5.1] and 

manually fitted to the solid line. Lower flip angles: 6º, 9º, 18º were used to give 

better fits. These flip angles are closer to the actual flip angles (112). 
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with in-plane radial angle (period=5) described in the methods where sets of five rays 

over 180 degrees are repeated with different angular offsets. The periodic signal 

fluctuations that are consistent with the flip angle changes are due to the gradient delay 

effect (111). The effect of the signal fluctuations is negligible as described in the 

discussion section.  

5.4.3 Effect of the Approach to Steady State on the Image Quality 

Figure 5.5 shows the comparison of phantom images acquired with SRT=150ms and 

flip angles of 8º, 14º and 25º with random (109)and the standard built-in RF spoiling with 

a phase increment between RF pulses of 50º. The five center slices are shown here. The 

images acquired with flip angle of 25º show more crosstalk and smearing artifact as 

indicated by the red and blue arrows, respectively. Images with random RF spoiling have 

less smearing artifact than that with the standard 50º increment RF spoiling.  

5.4.4 3D Stack-of-Stars Images in Human Subjects 

Figure 5.6 shows three time frames of 3D-SOS images acquired from one typical 

subject, at precontrast, RV enhancement and LV enhancement phases after reconstruction 

with spatiotemporal TV constraints. The different slices show the similar contrast and the 

edge slices show some crosstalk artifact.   
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Figure 5.5 A set of phantom image acquired with SRT=150ms and different flip 

angles with different RF spoiling pattern. The reconstruction is without gradient 

delay correction. The top 3 rows are images with Siemens built-in RF spoiling with 

flip angle of 8º, 14º,25º (from top to bottom) and the bottom 3 rows are images with 

random RF spoiling with flip angle of 8º, 14º and 25º. The arrows indicate the 

artifact, including crosstalk artifact (red arrows) and smearing artifact (blue 

arrows). The center five slices are shown here. The nonuniform images are due to 

coil effect that the coil closer to the phantom gives more signals. 
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Figure 5.6 One set of 8 slices (left to right) and three time frames at precontrast, RV 

enhancement and LV enhancement phases, of the representative 3D myocardial 

perfusion images from another subject, each in a different row.  A total of 8 slice 

encodings were acquired.  Partial Fourier factor=6/8 in slice direction was used so 

10 slices were acquired. The two edge slices with the most aliasing artifacts were not 

used. 

5.4.5 Comparison of 3D SOS and 2D Radial 

The SNR of cylindrical phantom using 3D-SOS and 2D radial imaging of the same 

slice are 64.7±1.42 and 46.8±1.8, respectively. 

Figure 5.7 shows the comparison of myocardial perfusion images using 3D-SOS and 

2D multislice imaging with contrast agent injection using spatiotemporal TV constrained 

reconstruction. In this case, 3D-SOS provides an SNR of 21.5±3.0 and a CNR of 7.7±1.0 

compared with an SNR of 19.8±2.5 and a CNR of 7.0±0.8 for the slice with SRT=158ms 

of 2D multislice imaging.   
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Figure 5.7 Image comparison of the myocardial perfusion imaging using 3D stack-

of-stars (left) and multislice 2D imaging (right) reconstructed with spatiotemporal 

TV constraints. Both of the images have high SNR. 

5.5 Discussion 

This paper demonstrated the feasibility of 3D myocardial perfusion imaging using 

3D-SOS sampling reconstructed with spatiotemporal TV constrained reconstruction to 

achieve large coverage with high spatial resolution.  Simulation and phantom studies 

were performed to show that the magnetization transient is a function of flip angle and 

saturation recovery time, and incorrect selection of flip angle and poor spoiling may 

degrade images. The use of a small flip angle and random spoiling is helpful to reduce 

image artifacts. 

Compared to 2D multislice myocardial perfusion imaging, 3D myocardial perfusion 

imaging requires a longer temporal acquisition window. However, it provides volume 

excitation which is more robust to through-plane motion and offers contiguous volume 

coverage, which is reported to be advantageous for sizing perfusion defects (11). The 3D 

readout is also advantageous because a single, relatively long saturation recovery time 

can be used for high SNR. For 2D imaging it is not practical to have a long saturation 

recovery time unless multiple slices are acquired after a single saturation pulse, in which 
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case the saturation recovery time and image contrast is variable. This issue may be 

manageable (9) but having the same contrast for all of the slices may be an advantage of 

3D imaging. SNR measured in-vivo is only a relative indicator in this work, because 

spatiotemporal TV reconstruction may change the noise characteristics of the images. 

The phantom studies use fully sampled data with a noniterative reconstruction method 

and thus reflect the standard SNR measurement. .  

Compared to a 3D Cartesian acquisition, 3D-SOS inherits the robustness to 

undersampling and motion of 2D radial acquisition. However, 3D-SOS is more restricted 

in terms of requiring in-plane isotropic resolution with evenly distributed undersampled 

projections. For myocardial perfusion imaging, in-plane spatial resolution (maximum kx 

and ky) is desired to be similar while the resolution in the slice direction (kz) is much 

coarser, which makes it reasonable to apply a 3D-SOS sampling pattern. 

The dependence of signal intensity on readout number is determined by flip angle, 

T1, SRT, and TR. For a saturation recovery spoiled gradient echo pulse sequence with 

any given set of these parameters, there exists a null point in flip angle where steady-state 

magnetization is reached immediately (at the first readout).  Thus, the degradation of the 

point spread function (PSF) that arises from readouts that are not at steady state vanishes 

at the null point, providing the potential for substantially improved image quality. While 

this is a larger effect with radial imaging due to the repeated sampling of the k-space 

center, the different weighting of phase encodes in Cartesian readouts also degrades PSF 

(113,114). Spatial variation in T1 and flip angle makes it impossible to image at the exact 

null point for all voxels, but the sensitivity to T1 is weak near the null point (Figure 5.2), 

making it possible to obtain nearly optimal consistency across readouts by flip angle 
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optimization. The existence of this optimal flip angle was tested using measured data, 

assuming that the T1 and spatial flip angle variation can be ignored (Figure 5.4).  

Several artifacts arise in the phantom study. The images of 8º and 25º (Figure 5.5) 

show more crosstalk than that of 14º. The larger flip angle shows more smearing artifact. 

The greater crosstalk in the slice direction is due to the greater signal variation in the 

approach to steady state as simulated in Figure 5.3. The smearing artifact seen in Figure 

5.5 may result from imperfect spoiling that has more effect on large flip angle images. 

This is supported by the experiment that random RF spoiling helps to attenuate the 

artifact(115) as is also shown in Figure 5.5. Gradient delays may bring streaking artifacts 

to radial sampling, which can be compensated through calibration (Figure 5.8), although 

this artifact is not obvious in the myocardial datasets.  

For 3D myocardial perfusion imaging, the slice encoding number is small due to the 

short acquisition window, resulting in crosstalk or Fourier leakage (116). Also, the slab-

excitation profile (especially when a fast RF pulse is applied with a small time-bandwidth  

 

 

Figure 5.8 One slice of phantom image with and without k-space center offset, and 

the difference image of them. The offset of about .25 is measured using method 

described in (117), and corrected by adjusting this offset in k-space sampling of 

NUFFT reconstruction.  
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product) is not perfect which will also degrade edge slices. From our results when 

reconstructing 6 or 8 kz encodes that were offset (partial Fourier), into 8 or 10 slices, the 

outermost slice at each edge of the slab showed significant aliasing. Discarding two slices 

at each edge left approximately six central slices that appeared to be free of aliasing. It is 

also possible to shorten the acquisition time by reducing the number of readout lines in 

the higher slice encoding planes.  This could enable more oversampling in the slice 

direction for no net cost in acquisition time.  

The reconstruction time is demanding, especially when the dataset size is large. In a 

Matlab (The Mathworks, Natick, MA) implementation on a desktop PC, it takes 

approximately 10 minutes to reconstruct one slab of 50-60 time frames for one coil. 

Recently published papers have shown that computationally intensive medical imaging 

tasks can be processed on a graphics processing unit (GPU) to increase computation 

speed by a factor of 85 to 100 (92). Taking the advantage of these techniques, clinical 

implementation could be feasible. 

5.6 Conclusion 

The contributions of this paper include showing the dependence of the transients on 

flip angle and saturation recovery time, and analyzing the effect of the flip angle on 

image qualities for 3D SOS perfusion imaging. The initial evaluations show that 3D 

stack-of-stars myocardial perfusion imaging with spatiotemporal TV constrained 

reconstruction is a promising alternative to provide images with consistent contrast and 

contiguous volume coverage of the heart.  



  

 

 

CHAPTER6 

GENERALIZED REFERENCE IMAGE FRAMEWORK 

6. GENERALIZEDREF ERENC EIMAGEFRAM EWORK 

In this chapter, it is demonstrated that a generalized series framework proposed 

decades ago can be extended to include several recent reconstruction algorithms, like 

HYPR-LR, PR-FOCUSS, k-t FOCUSS and regularized iterative SENSE. First, the 

mathematical derivations of the generalized series model are given. Then, the 

relationships of GS model with different algorithms are clarified. Finally, different 

algorithms are tested on cine imaging dataset and myocardial perfusion dataset. The 

results are composed in a paper entitled “A generalized framework for reference image 

reconstruction methods including HYPR-LR, PR-FOCUSS, and k-t FOCUSS,” and are 

accepted and in press by the Journal of Magnetic Resonance Imaging, and reproduced 

here with permission. 

6.1 Introduction 

A Generalized Series model (GS) was proposed to improve image quality by 

including prior or reference images for dynamic MRI applications (118). Various related 

methods have been proposed since then, and it has been shown that many of them, such 

as the keyhole method (70) and the Reduced encoding Imaging by Generalized-series 
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Reconstruction (RIGR) (119), can be considered as special cases of a formulation similar 

to the GS method (47).  

Recently, Highly Constrained Back Projection (HYPR) and related methods such as 

HYPR-LR and I-HYPR were proposed for dynamic reconstruction of undersampled 

radial k-space magnetic resonance imaging (74,120-122). Note that two types of HYPR 

have been proposed. The first type of HYPR is similar to the first iteration of the 

maximum likelihood method (122) and weights the composite image by the 

backprojection of the ratio of the 1D inverse Fourier transform of each ray of k-space 

data, and the projections of the reference image: )
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dF is the 1D inverse Fourier transform along 

the radial direction that transform the k-space measurements d into a sinogram. 

The second type of HYPR weights the composite image by the ratio of the 

backprojection of the 1D inverse Fourier transform of each ray of k-space data and the 

backprojection of the composite or reference image’s projection
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In this paper, only the second type HYPR is investigated and this type of HYPR is a 

specific case of HYPR-LR (121) (refer to next section).  

Another type of approach for radial k-space reconstruction is the Projection 

Reconstruction FOCal Underdetermined System Solver (PR-FOCUSS) (123), which was 

designed to minimize the L1 image norm to constrain the image sparsity. This is a 

compressed sensing type of method.  
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HYPR-LR and PR-FOCUSS deal with each time frame separately (here denoted as 

“x-t methods”), and use a composite image (or images) reconstructed from multiple time 

frames as a reference image.  Methods such as k-t BLAST/k-t SENSE (27) include 

spatiotemporal correlations in a different way, by working in the x-f domain (denoted as 

“x-f method”). k-t FOCUSS (28,124), which is the reweighted L2 norm implementation 

of compressed sensing, has been shown to be an extension of k-t BLAST/k-t SENSE for 

general sampling patterns.  k-t FOCUSS constrains the image sparsity in the x-f domain.   

In this work, it is shown that HYPR-LR, PR-FOCUSS, k-t BLAST/k-t SENSE and 

k-t FOCUSS can be included in a unified multiplicative correction framework.  As a 

consequence, they are all susceptible to errors in the reference image caused by signal 

zeroing.  Previously, k-t SENSE and k-t FOCUSS have been presented in a unified 

framework (124), but HYPR-LR and PR-FOCUSS have not previously been shown to 

have specific relationships to each other. The theory is presented first. Demonstrations of 

the differences of these methods are then presented as well as similarities. Real data 

examples are also used to show the tradeoffs of different methods, in particular, if the 

reconstruction operates in the x-t or x-f domain.  

6.2 The Extended GS Model  

6.2.1 Generalized Reference Framework 

The MRI signal equation relates acquired k-space samples )(kd to image domain 

object )(x


 as follows:  

xdexkd xkj  


  2)()(                                                                                    [6.1] 

In matrix form, this can be written as 
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Eρd                                                                                                                 [6.2] 

where E is the encoding matrix, and d, ρ are column vectors of k-space data and image 

pixel values, respectively.  The elements of the encoding matrix are given by: 
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The generalized series (GS) approach suggests that the image may be obtained by 

multiplicative correction of the reference or composite image )xr(


. The following model 

for image reconstruction was proposed (47,118,119,125): 
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where the reference image )xr(


is typically a magnitude only image (119), multiplication 

 is a pixel-by-pixel operation here, and ci is the ith GS basis coefficient.  The basis 

functions can be general (118), but a Fourier basis is typically used (119). Nterms is the 

number of basis coefficients and typically matches the number of k-space samples (125). 

Note that this formulation (with an additional additive reference image term) can 

represent at least 14 different reconstruction methods such as feature-recognizing MRI 

(126) and RIGR, as shown in (125).  

Written in matrix form, equation [6.3] becomes: 

cRERmρ
H                                                                                               [6.4] 

where R is the diagonal matrix with r on the main diagonal; and superscript H is the 

Hermitian transpose operator.  

In the original GS method and other methods listed in (125), r is limited to the image 

domain (x-t space).  Here r is generalized to other domains, such as the x-f domain; 

correspondingly, the encoding matrix E is generalized to encode in the appropriate 
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domain.  This new more general framework is referred to here as “generalized reference 

framework.”  

For Cartesian acquisitions undersampled in the phase encode direction, 

WFE  where W is a binary diagonal matrix choosing which k-space points that are 

sampled, andFis the forward Fourier transformation matrix. To adapt the formulation for 

non-Cartesian sampling, interpolation should be included, E=TF, HHH
TFE  , where T 

is the interpolation and resampling matrix. To include coil sensitivity profiles, the 

encoding matrix may be extended to include coil sensitivity profiles as 

follows:
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 , where iS are the diagonal matrix with values of ith coil sensitivity 

on the main diagonal ( cNi ,...,1 ). For x-f domain methods, the encoding matrix is 

tkFEE  , where Ft is used to Fourier transform images from the x-f domain to the x-t 

domain, and Ek is used to transform images from the x-t domain to the k-t domain. 

Substituting equation [6.4] into [6.2], we have dcERE H
.  If a regularization term 

is added to provide more resistance to noise (127), dI)c(ERE  H
, or equivalently  

dI)(EREc
 H

                [6.5] 

In the original GS paper, no regularization term was added, and c was found using a 

Toeplitz solver (118). Other methods have been used for calculating c, such as a singular 

value decomposition (SVD) method (128). Here we include a regularization term and 

solve for c using conjugate gradient methods. 

Substituting back into equation [6.4] gives  
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dI)(EREREρ
1~  HH

                                                                                  [6.6]              

This has a related mathematical form as noted in (129) 

dE)RE(Eρ
HH 11~                                                                                       [6.7] 

The next sections will show how these equations [6.5-6.7] relate to more recent 

reconstruction techniques.  

6.2.2 Relation to PR-FOCUSS, k-t FOCUSS, and k-t BLAST/k-t SENSE 

PR-FOCUSS is a specific case of equation [6.6] when the reference image r is in x-t 

space and is updated at each iteration.  PR-FOCUSS uses radial sampling and the inverse 

Fourier transform (IFT) and projection operations for encoding.  

Also very similar to equation [6.6] is k-t FOCUSS, although for this reconstruction 

method, r is in the  x-f domain and is updated at each iteration. k-t FOCUSS has been 

shown to generalize k-t BLAST/k-t SENSE (124), and thus only k-t FOCUSS is referred 

to in this section.  

From equation [6.6], when a baseline term is added, we get   

)Eρ(dI)(EREREρρ 00  HH~                                                              [6.8] 

Equation [6.8] is the same as the k-t FOCUSS equation [17] of (124), when p in 

(124) is set to be ½ to provide minimization of the L1 norm of x-f space and the pseudo 

inverse is solved using the conjugate gradient method.  
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6.2.3 Relation to HYPR-LR 

In order to express HYPR-LR in the generalized reference framework, we multiply 

both sides of equation [6.2] by 
H

E with a density compensation function D and substitute 

equation [6.3], which gives ))xm()xDE(r(EDEρEDdE


 HHH
,here the 

multiplication operator is a pixel-by-pixel operation. DEE
H can be denoted as a kernel h 

))xm()x(r(hDdE


H
                                                                                 [6.9] 

When h is a good approximation to the Dirac delta function (upon proper choice of 

density compensation function D) or m is a constant:  

mr)(hm)(rh   

If m does not change significantly over the effective spatial support of h, this 

relationship forms a good approximation, as has been exploited for homodyne detection 

(130) and fast RIGR(131). That is, 

mr)(hm)(rh                                                                                   [6.10] 

From this approximation and equation [6.7], 

)xm())xDEr((E)xm())xr((hDdE


 HH

 

Substituting into equation [6.3],
DErE

DdE
)xr()xm()xr(ρ

H

H


~

                 [6.11] 

where the multiplication and division operators are pixel-by-pixel operations.   

From equation [6.11], when r is set to be the composite image(s) which has high 

resolution, and d is the undersampled radial data, the equation is similar to the HYPR-LR 

method. The only difference is that equation [6.11] is written with gridding or inverse 

gridding with a density compensation function, rather than the notation in HYPR-LR 

where a projection or filtered backprojection image convolved with a low pass filter 



77 

 

(121) is used. Compared to the fast RIGR method (131), h is slightly different: HYPR-

LR uses the filtered backprojection of projection convolved with a lowpass filter; while 

fast RIGR uses the inverse Fourier transform of the low resolution (truncated in k-space) 

data. These are essentially the same, but fast RIGR was originally created for keyhole-

type undersamplings, while HYPR-LR was designed for an undersampling pattern spread 

throughout k-space. 

In order for results from the multiplicative correction method of equation [6.6] and 

HYPR-LR to be most similar, equation [6.10] should be a good approximation. In order 

to obtain a locally smooth m over the effective spatial support of h, the terms DdE
H

and 

DErE
H should be locally smooth. This is consistent with the fact that HYPR-LR uses a 

filtered backprojection with a low frequency filter; in order to reduce the effective spatial 

support of h, a Gaussian filter was applied in (121). Note that the phase of m is usually 

locally smooth and can be included in m, and r is typically set to be the magnitude image 

without a phase term for HYPR-LR. When
|r|

1
h  , HYPR-LR is the same as the second 

type of HYPR as mentioned above. 

6.2.4 Sparsity in x-f and x-t Domains 

From compressed sensing theory, the image or its transformation should be sparse. It 

was reported that a sparse image is necessary for HYPR-LR and k-t FOCUSS to be 

effective (124,132). Strategies can be applied to make the images sparser. Current 

literature has applied a DC baseline image to enhance the sparsity, such as in (27,124). 

Other methods have also been proposed to get the baseline, such as RIGR (133), and a 

motion estimation/compensation scheme (28). 
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k-t FOCUSS essentially minimizes the L1 norm of the image in the x-f domain by 

minimizing the reweighted L2 norm iteratively, which assumes image sparsity in the x-f 

domain. The question arises as to how well this works when the image in the x-t domain 

is constrained instead. Here we compare the x-f method and the x-t method (the x-f 

method is denoted as “k-t FOCUSS,” and the x-t method is denoted as “x-t FOCUSS,” 

which is the same as PR-FOCUSS when the sampling pattern is radial) from the 

generalized reference framework perspective. 

For k-t FOCUSS, equation [6.3] can be written as 

)( tkktfxfx cEFrρ  
HH

      [6.12] 

where
H

tF is the Fourier transform in time dimension, which will change x-t domain to x-f 

domain, and 
kE is the transformation operator that changes the x-t domain to the k-t 

domain.  This equation sets up the minimization problem for the first iteration of k-t 

FOCUSS. 

Taking the inverse Fourier transform in the time dimension, we get an alternate 

expression for k-t FOCUSS: 

)c(Erρ tkktxtx  
H

                                                                                       [6.13] 

On the other hand, for x-t FOCUSS, )c(Erρ tkktxtx  
H

                             [6.14] 

The difference between equation [6.13] and equation [6.14] is that equation [6.13] is 

a convolution operation, while equation [6.14] is a multiplication operation. For equation 

[6.13], 
tkk cE 

H
acts as the weighting term of txr  in the time dimension and sums up 

contributions from different time frames to get txρ  . Equation [6.14] deals with each time 
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frame separately, and txr  can be used to effectively bring temporal correlations into the 

reconstruction.  

When there are more local changes in the images over many time frames, then 

equation [6.12] might not be the optimal weighting since the term 
tkk cE 

H
is not tailored 

for each time frame. In such cases, using x-t FOCUSS with txr  reconstructed using 

sliding windows (SW) or similar methods may be a better strategy. The tradeoffs are 

difficult to gauge, however, and are further complicated by the updates of txr  and 
fxr 
at 

each iteration. Comparisons of the two reconstruction strategies are given in the Methods. 

6.2.5 Inclusion of Coil Sensitivity Profiles 

For parallel imaging, the locality of receive coil sensitivity profiles can make the 

images of each coil have fewer locations with signal even though the original image has 

large finite support. The encoding matrices E can include sensitivity profiles in the 

reconstruction in all of the previous derivations. Recently, an regularized iterative 

SENSE method was applied in MRA(134). Essentially, the AR-SENSE is the same as the 

method (equation [6.7]) in this paper if image prewhitening was applied to remove noise 

correlation between coils (79).  

The different methods that can be fit in the generalized reference framework are 

compared in Table 6.1 in terms of their sampling pattern and reconstruction details. 
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Table 6.1 Comparison of different GS modelderived methods 

 HYPR-LR PR-FOCUSS k-t BLAST/SENSE k-t FOCUSS 

Radial sampling Yes Yes No No 

Iterative implementation No Yes No Yes 

x-f or x-t domain x-t x-t x-f x-f 

 

6.3 Experiment Results 

6.3.1 HYPR-LR Simulation 

PR-FOCUSS was shown to be a specific case of the multiplicative correction 

formulation (equation [6.6]), which also covers GS and HYPR-LR.  PR-FOCUSS was 

compared to HYPR-LR using a dynamic computer simulation with motion and contrast 

changes over 40 time frames, with a matrix size of 256x256; the simulated object is 

composed of several elliptical or circular structures that imitate the heart or vessel motion 

and contrast enhancement. Twenty-four rays k-space data were simulated for each time 

frame in an interleaved fashion with four adjacent time frames composing an evenly 

distributed 96 rays. The reference images were reconstructed using SW methods that 

combined four adjacent time frames. HYPR-LR was implemented with complex filtered 

backprojection with a Ram-Lak filter and a Gaussian kernel with σ=3 (kernel size =19). 

PR-FOCUSS used the same SW images as the reference images, and the conjugate 

gradient (CG) method was implemented to solve for the generalized coefficients, using 

20 CG iterations. For comparison, one iteration without updating the reference image was 

done for PR-FOCUSS (note: for PR-FOCUSS, initializing reference image with SW 

image, one iteration is enough to get good images; the iteration after 1st iteration does not 
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help to improve the images much), and projection and backprojection were used in the 

implementation.  

6.3.2 k-t FOCUSS and x-t FOCUSS Comparison 

To compare k-t FOCUSS and x-t FOCUSS, both simulation and in-vivo studies were 

done. The datasets, including simulation data and fully acquired in-vivo k-space data, 

were simulated with an undersampling of R=4. The undersampling was random with a 

Gaussian distribution that had more frequent sampling at low frequency regions (124). 

The reconstruction was performed by k-t FOCUSS and x-t FOCUSS with the temporal 

average image used as the baseline image. For k-t FOCUSS, the reference image was 

initialized to a constant value of one; for x-t FOCUSS, the reference image was 

initialized to be the SW image; for both methods, the reference image was updated five 

times by the previous results; for each iteration, the conjugate gradient (CG) method was 

implemented to solve equation [6.6], and the CG iteration number was set to be 20. 

The simulation used a disc without motion but with contrast changes in the disc over 

40 time frames, with matrix size of 256x256. Different temporal contrast patterns were 

used to investigate the characteristics of the two different reconstruction methods.   

For in-vivo studies, cine imaging and myocardial perfusion imaging datasets were 

acquired under an IRB approved protocol on a 3T Siemens Trio. For cine imaging, a 

SSFP sequence with TR=42.45-45.92 ms, TE=1.22-1.64 ms, flip angle=40-44º, and slice 

thickness= 6-8 mm was used, and five datasets were acquired with FOV varied as (256-

385) x (165-256) with 14-26 cardiac phases. To study the effect of different baseline 

images (ρ0 in equation [6.8]) on the k-t and x-t FOCUSS methods, the fully sampled 



82 

 

image at the first time frame was used as the baseline image, and compared to the 

reconstruction using the temporal average image as the baseline image. 

For myocardial perfusion imaging, Gd doses ranged from 0.015 to 0.04 mmol/kg, 

and a saturation recovery turboFLASH sequence with TR≈2.2 ms, TE=0.98-1.36 ms, and 

slice thickness=7-8 mm was used. Six datasets with acquisition matrix varied from (192-

256) x (90-168) with 70-80 time frames were acquired.  

HYPR-LR, and PR-FOCUSS results for the dynamic simulation are compared in 

Figure 6.1 using a phantom. PR-FOCUSS and HYPR-LR are comparable in terms of 

normalized RMSE (nRMSE), and the differences in the nRMSE between PR-FOCUSS 

and HYPR-LR are on the order of 0.4%, which is a very small difference. Both methods 

have more error near edges. 

Figure 6.2 shows the k-t FOCUSS and x-t FOCUSS simulation results. Different 

contrast change patterns show the different performance of the two reconstruction 

methods. For the linear curve (curve 2), x-t FOCUSS has lower MSE than k-t FOCUSS; 

for the periodic curve with a period of 2, k-t FOCUSS has slightly lower MSE than x-t 

FOCUSS.  

Five cine imaging datasets were used for comparison of k-t FOCUSS and x-t 

FOCUSS, and the performance of the two methods differed corresponding to different 

datasets and different baseline images. Typical results are shown in Figures 6.3-6.5. 

Figure 6.3 shows the superiority of x-t FOCUSS over k-t FOCUSS when using the fully 

sampled image of the first time frame as the baseline image. Figure 6.4 shows the 
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Figure 6.1 Comparison of images reconstructed from different methods. Top: upper 

row from left to right, filtered backprojection, HYPR-LR (σ= 3), PR-FOCUSS; 

bottom row is the difference images from the true image. The scales of upper row 

and bottom row are [0,35] and [0,10], respectively. Bottom: normalized RMSE plot 

for the different methods. The circle in the top right image indicates the region of 

interest for the normalized RMSE calculation. 
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Figure 6.2 Comparison of images reconstructed from simulated dataset using k-t 

FOCUSS and x-t FOCUSS. a: Image of one of the 40 time frames. b: Contrast 

change curves for two different cases: red is a periodic curve and blue is a linear 

curve with a slight slope. c: RMSE plot of the images of the red periodic contrast 

change curve reconstructed from k-t FOCUSS and x-t FOCUSS. d: RMSE plot of 

the reconstruction of the blue linear curve. This shows that the reconstruction 

performance of k-t FOCUSS and x-t FOCUSS is content dependent. 

results when using the same dataset as Figure 6.3 and setting the baseline image to be the 

temporal average image. The two methods show comparable results in this case, and both 

methods show aliasing artifacts. Figure 6.5 shows a different dataset that k-t FOCUSS 

has less error than x-t FOCUSS when using the temporal average image as the baseline 

image.  

Six myocardial perfusion imaging datasets were used for comparison of k-t FOCUSS 

and x-t FOCUSS. k-t FOCUSS had lower RMSE in all cases, and the RMSE values are 

listed in Table 6.2. One result is shown in Figure 6.6.  
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Figure 6.3 Comparison of images reconstructed from one cine imaging dataset of 

multiple coils using k-t FOCUSS and x-t FOCUSS with the SW image at the 

diastolic period as the baseline image. a: The 20th image reconstructed from fully 

sampled data of all coils. b,c: Images reconstructed using k-t FOCUSS and x-t 

FOCUSS with R = 4, respectively. d,e: Difference images of (b,c) from the fully 

sampled image in (a). f: RMSE plot of the images reconstructed from k-t FOCUSS 

and x-t FOCUSS. d,e: Brightened two times for visibility. 
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Figure 6.4 Comparison of images reconstructed from the same cine imaging dataset 

of multiple coils as Figure 6.3 using k-t FOCUSS and x-t FOCUSS but now with the 

temporal average image as the baseline image. a: The 20th image reconstructed 

from fully sampled data of all coils. b,c: Images reconstructed using k-t FOCUSS 

and x-t FOCUSS with R = 4, respectively. d,e: Difference images of (b,c) from the 

fully sampled image in (a). f: RMSE plot of the images reconstructed from k-t 

FOCUSS and x-t FOCUSS. d,e: Brightened two times for visibility. 
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Figure 6.5 Comparison of images reconstructed from another cine imaging dataset 

of all coils using k-t FOCUSS and x-t FOCUSS with the temporal average image as 

the baseline image. a: The 10th image reconstructed from full sampled data of all 

coils. b,c: Images reconstructed using k-t FOCUSS and x-t FOCUSS with R = 4, 

respectively. d,e: Difference images of (b,c) from the fully sampled image in (a). f: 

RMSE plot of the images reconstructed from k-t FOCUSS and x-t FOCUSS. d,e: 

Brightened four times for visibility. 
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Figure 6.6 Comparison of images reconstructed from a myocardial perfusion 

imaging dataset using k-t FOCUSS and x-t FOCUSS using five coils with the 

temporal average image as reference image. a: The 25th image reconstructed from 

fully sampled data of all coils. b,c: Images reconstructed using k-t FOCUSS and x-t 

FOCUSS with R = 4, respectively. d,e: Difference images of (b,c) from the fully 

sampled image in (a). f: RMSE plot of the images reconstructed from k-t FOCUSS 

and x-t FOCUSS. d,e: Brightened four times for visibility. 
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6.4 Discussion 

The multiplicative correction framework can include HYPR-LR, PR-FOCUSS, k-t 

BLAST/SENSE, k-t FOCUSS. Among these reconstruction methods, PR-FOCUSS and 

k-t FOCUSS were based on compressed sensing methods that minimize an L1 norm of 

the image through a reweighted L2 norm minimization method. The equivalence implies 

that the multiplicative correction framework implicitly constrains images sparsity. This is 

consistent with the fact that HYPR-LR requires image to be sparse. All these methods are 

prone to signal zeroing problems that stems from using multiplicative corrections.  

Both HYPR-LR and PR-FOCUSS work with radial sampling and in the x-t domain, 

and both equation [6.7] and equation [6.11] can be derived from multiplicative correction 

framework, demonstrating HYPR-LR is closely related to PR-FOCUSS, which is based 

on compressed sensing. PR-FOCUSS and HYPR-LR are comparable in terms of nRMSE 

(Figure 6.1(bottom)). Both methods have some errors near edges. PR-FOCUSS includes 

a matrix inversion operation which was solved by a conjugate gradient method, while 

HYPR-LR only included element-by-element division and multiplication operation which 

were much more computationally efficient. PR-FOCUSS initialized with SW images 

helps to obtain good images faster than when initialized with a constant value of one. 

From Figure 6.2, k-t FOCUSS and x-t FOCUSS show different performances for 

different datasets, and it demonstrates that x-t FOCUSS works better than k-t FOCUSS in 

some cases. Intuitively, a smooth signal works well for both x-t FOCUSS and k-t 

FOCUSS. However, the linearly changing curve 2 in Figure 6.2(b), although “smooth,” 

seemingly has enough temporal frequency components that x-t FOCUSS gives lower 

error. On the other hand, curve 1 is periodic which is relatively sparse in k-space. From  
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Table 6.2 RMSE of six myocardial perfusion imaging dataset using k-t FOCUSS 

and x-t FOCUSS with the temporal average image as baseline image 

 k-t FOCUSS x-t FOCUSS 

Dataset 1 13.05 16.59 

Dataset 2 12.93 14.34 

Dataset 3 13.11 14.78 

Dataset 4 15.67 17.45 

Dataset 5 15.74 19.01 

Dataset 6 12.35 14.92 

 

compressed sensing theory, sparse x-f domain image is beneficial to k-t FOCUSS, so k-t 

FOCUSS gives lower error for curve 1 in Figure 6.2(b).  

While the performance of the two methods may be determined by the features of the 

dataset as demonstrated in Figure 6.2, the baseline image also plays an important role. In 

Figure 6.4, a temporal average image with some temporal blurring was used as the 

baseline image; in this case, k-t FOCUSS and x-t FOCUSS were comparable. When 

using a fully sampled image of the first time frame as the baseline image, x-t FOCUSS 

had less error than k-t FOCUSS. The baseline image of a fully sampled image of the first 

time frame helps to make the x-t image sparser, and the SW reference image helps to 

bring in the correlations of the adjacent time frames. While not practical, this test using 

the fully sampled first time frame helps to show the importance of the baseline image. 

For myocardial perfusion imaging, the contrast in the heart changes nonlinearly and 

there is often respiration motion present. In this case, neither method was expected to 

work well. The use of a temporal average image as the baseline image likely made the x-f 

image sparse, which could explain the result that k-t FOCUSS has lower error than x-t 
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FOCUSS (Figure 6.6). One limitation of k-t FOCUSS is that it computes all the image 

series together, which demands for large memory, especially when image time frames are 

large.  

Parallel MRI makes the images of each coil has fewer locations with signal which 

benefits the multiplicative correction methods. The inclusion of sensitivity encoding 

makes it possible to select only one regularization parameter λ in equation [6.6]. In 

contrast, if no sensitivity encoded, each coil has to be reconstructed separately, and the 

parameter λ should in theory be selected differently according to coil characteristics.  

6.5 Conclusion 

The generalized reference framework encompasses a rich variety of reconstruction 

methods.  Derivations were given to include k-t BLAST/SENSE, HYPR-LR, PR-

FOCUSS and k-t FOCUSS. These relationships are useful to better understand 

differences between the methods — for example, this work clarifies that HYPR-LR is 

related to PR-FOCUSS. The methods unified by the multiplicative correction framework 

can be divided into x-t or x-f domain methods. Experiments with simulated and real data 

showed that while sometimes it was clear which method would be better for a certain 

kind of data, the flexibility of the implementation makes comparisons complex. For 

example, the choice of the baseline image was important to the performance of k-t 

FOCUSS and x-t FOCUSS as demonstrated by cine imaging results. The perfusion 

reconstructions used a temporal average image as the baseline image, and had a lower 

RMSE compared to x-t FOCUSS in the six perfusion datasets studied.  



  

 

 

CHAPTER 7 

SUMMARY AND CONCLUSIONS 

7. SUMMARYAND CONC LUSION S 

DCE-MRI is an important and routinely used MRI technique for detecting breast 

tumors and myocardial ischemia. High spatialtemporal resolution with high SNR is 

required to track contrast uptake patterns to distinguish malignant from benign tumors. 

For myocardial perfusion imaging, current DCE imaging methods with MRI cannot 

provide full spatial coverage of the heart while at the same time providing images with 

high temporal and spatial resolution and the necessary SNR.  

In this thesis, different image reconstruction methods with various sampling patterns 

have been investigated as an alternative to conventional reconstruction methods in order 

to overcome the limitations mentioned in the above paragraph. The key contributions of 

the thesis are: 

1. Inclusion of temporal TV constraint reconstruction (TCR) into POCS framework, 

and comparison of different forms of temporal constraints for breast tumor imaging. The 

complex temporal TV constraints give the best results gaining an acceleration factor of 6 

with improved spatial and/or temporal resolution without minimal loss of image quality. 

Studies suggest that to accurately estimate transK and epk , the sampling intervals should be 

less than 10s and 6s, respectively (135-137). The current full-sampled acquisition takes 

12-15s to acquire each image with 1.5mm isotropic resolution. This work can gain an 



93 

 

acceleration factor of 6 that will fulfill this goal without SNR loss while at the same time 

keep high spatial resolution. This makes it possible to accurately track the tissue 

enhancement curves and discern the tumor morphology, resulting in improved diagnostic 

accuracy.  

2. Application of the 3D stack-of-stars sampling pattern with spatiotemporal TV 

constrained reconstruction to myocardial perfusion imaging.3D myocardial perfusion 

imaging has several potential advantages over 2D imaging, such as contiguous coverage 

of left ventricle, through-plane motion and high SNR (see page 20 in Chapter 2). 

Currently only two research groups have reported the possibility of undersampled 

Cartesian sampling for 3D myocardial perfusion imaging. The work here shows the 

importance of the dependence of flip angle and saturation recovery time on the approach 

to steady state (the transient magnetization signal), analyzes the effect of the transients on 

image qualities, and demonstrates the feasibility of 3D stack-of-stars sampling. The 

stack-of-stars may be more efficient and robust to higher undersampling factors than 

Cartesian sampling and this may improve the diagnostic accuracy (refer to page 71 in 

Chapter 5). 

3. Extension of the generalized series model to include HYPR-LR, PR-FOCUSS, k-t 

FOCUSS and regularized iterative SENSE. This work lead to the findings: HYPR-LR is 

an approximation implementation of PR-FOCUSS; the superiority of reference image in 

the x-t or x-f domain is sensitive to data characteristics and to the baseline image. 

Although all above work presented have been applied to in-vivo studies, it is still 

basic research contribution rather than real clinical practice.  More clinical validations are 

needed to make it workable in clinical scenarios. 
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There are several directions that I find interesting for future work: 

For DCE breast tumor imaging, simulated undersampled data is used in this thesis. 

Further work is needed to perform actual undersampling and to determine if the methods 

truly improve accuracy. This could be done by comparison to biopsy results for telling 

malignant from benign tumors. Biopsy method is the reference standard, although it is 

not perfect in that it can miss tumor areas. Another interesting aspect of the DCE breast 

tumor imaging is the image reconstruction. Spatiotemporal TV constrained reconstruction 

is applied to each coil separately, and then combined using square of sum of square 

method. This reconstruction method does not incorporate parallel imaging technique 

explicitly, although the constraint term may take the advantage of parallel imaging 

implicitly (the low sensitivity profile part has small constraint value). It would be 

interesting to include a parallel imaging prior, such as sensitivity profiles (37) and locally 

linearly dependent k-space (45,138), in the reconstruction.    

For DCE myocardial perfusion imaging, this work only demonstrated the initial 

feasibility of 3D stack-of-stars myocardial perfusion imaging. One future work is a direct 

comparison between 3D stack-of-stars and a 3D undersampled Cartesian method that has 

been proposed by another group (11,12,105). Task-specific evaluation should also be 

performed on patients with ischemia. To get more spatial coverage in the slice direction, 

3D imaging techniques are used in this thesis. Another direction is 2D multislice 

techniques. Recently, multiband excitation with CAIPIRINHA technique was proposed 

to gain several times more slices than conventional 2D multislice imaging without much 

SNR loss (139-142). Myocardial perfusion imaging, which is restricted by a short 

acquisition window, is a promising test bed for this technique. 
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The present work advances the field by clarifying the theoretical bases of different 

reconstruction algorithms and demonstrating the feasibility of some of these algorithms 

for DCE myocardial perfusion and DCE breast tumor imaging.  



  

 

 

REFERENCES 

REFER ENCES 

1. Mansfield P. Multi-planar image formation using NMR spin echoes. Jphys C: 

Solid State Phys 1977;10:L55-L58. 

2. Hennig J, Nauerth A, Friedburg H. RARE imaging: a fast imaging method for 

clinical MR. MagnReson Med 1986;3(6):823-833. 

3. Feinberg DA, Oshio K. GRASE (gradient- and spin-echo) MR imaging: a new 

fast clinical imaging technique. Radiology 1991;181(2):597-602. 

4. Feinberg DA, Moeller S, Smith SM, Auerbach E, Ramanna S, Glasser MF, Miller 

KL, Ugurbil K, Yacoub E. Multiplexed echo planar imaging for sub-second 

whole brain FMRI and fast diffusion imaging. PLoS One 2011;5(12):e15710. 

5. Feinberg DA, Reese TG, Wedeen VJ. Simultaneous echo refocusing in 

EPI.MagnReson Med 2002;48(1):1-5. 

6. Larkman DJ, Hajnal JV, Herlihy AH, Coutts GA, Young IR, Ehnholm G. Use of 

multicoil arrays for separation of signal from multiple slices simultaneously 

excited. J MagnReson Imaging 2001;13(2):313-317. 

7. Adluru G, McGann C, Speier P, Kholmovski EG, Shaaban A, Dibella EV. 

Acquisition and reconstruction of undersampled radial data for myocardial 

perfusion magnetic resonance imaging. J MagnReson Imaging 2009;29(2):466-

473. 

8. Todd N, Adluru G, Payne A, DiBella EV, Parker D. Temporally constrained 

reconstruction applied to MRI temperature data. MagnReson Med 

2009;62(2):406-419. 

9. Plein S, Radjenovic A, Ridgway JP, Barmby D, Greenwood JP, Ball SG, 

Sivananthan MU. Coronary artery disease: myocardial perfusion MR imaging 

with sensitivity encoding versus conventional angiography. Radiology 

2005;235(2):423-430. 

10. Ge L, Kino A, Griswold M, Mistretta C, Carr JC, Li D. Myocardial perfusion 

MRI with sliding-window conjugate-gradient HYPR. MagnReson Med 

2009;62(4):835-839. 



97 

 

11. Shin T, Hu HH, Pohost GM, Nayak KS. Three dimensional first-pass myocardial 

perfusion imaging at 3T: feasibility study. J CardiovascMagnReson 

2008;10(1):57. 

12. Vitanis V, Manka R, Giese D, Pedersen H, Plein S, Boesiger P, Kozerke S. High 

resolution three-dimensional cardiac perfusion imaging using compartment-based 

k-t principal component analysis. MagnReson Med 2011;65(2):575-587. 

13. Purcell EM, Torrey HC, Pound RV. Resonance absorption by nuclear magnetic 

moments in a solid. Physical Reviews 1946;69:37-38. 

14. Bloch F, Hansen WW, Packard M. Nuclear induction. Physical Reviews 

1946;69:127. 

15. Lauterbur PC. Image formation by induced local interactions.Examples 

employing nuclear magnetic resonance. 1973. ClinOrthopRelat Res 1989(244):3-

6. 

16. Ahn CB, Kim JH, Cho ZH. High-Speed Spiral-Scan Echo Planar NMR Imaging-

I. Medical Imaging, IEEE Transactions on 1986;5(1):2-7. 

17. Kriege M, Brekelmans CT, Boetes C, Besnard PE, Zonderland HM, Obdeijn IM, 

Manoliu RA, Kok T, Peterse H, Tilanus-Linthorst MM, Muller SH, Meijer S, 

Oosterwijk JC, Beex LV, Tollenaar RA, de Koning HJ, Rutgers EJ, Klijn JG. 

Efficacy of MRI and mammography for breast-cancer screening in women with a 

familial or genetic predisposition. N Engl J Med 2004;351(5):427-437. 

18. Wright H, Listinsky J, Rim A, Chellman-Jeffers M, Patrick R, Rybicki L, Kim J, 

Crowe J. Magnetic resonance imaging as a diagnostic tool for breast cancer in 

premenopausal women. Am J Surg 2005;190(4):572-575. 

19. Sinha S, Sinha U. Recent advances in breast MRI and MRS. NMR Biomed 

2009;22(1):3-16. 

20. Schnall MD, Blume J, Bluemke DA, DeAngelis GA, DeBruhl N, Harms S, 

Heywang-Kobrunner SH, Hylton N, Kuhl CK, Pisano ED, Causer P, Schnitt SJ, 

Thickman D, Stelling CB, Weatherall PT, Lehman C, Gatsonis CA. Diagnostic 

architectural and dynamic features at breast MR imaging: multicenter study. 

Radiology 2006;238(1):42-53. 

21. Holohan KM, Tsai WK, Williams KA. Myocardial Perfusion Imaging from 

Echocardiography to SPECT, PET, CT, and MRI—Recent Advances and 

Applications. US Cardiology 2010;7(1):12-16. 

22. Berger M, Gould MK, Barnett PG. The cost of positron emission tomography in 

six United States Veterans Affairs hospitals and two academic medical centers. 

AJR Am J Roentgenol 2003;181(2):359-365. 



98 

 

23. Wilke NM, Jerosch-Herold M, Zenovich A, Stillman AE. Magnetic resonance 

first-pass myocardial perfusion imaging: clinical validation and future 

applications. J MagnReson Imaging 1999;10(5):676-685. 

24. Sakuma H. Magnetic resonance imaging for ischemic heart disease. J MagnReson 

Imaging 2007;26(1):3-13. 

25. Kellman P, Arai AE. Imaging sequences for first pass perfusion --a review. J 

CardiovascMagnReson 2007;9(3):525-537. 

26. Tyler DJ, Hudsmith LE, Petersen SE, Francis JM, Weale P, Neubauer S, Clarke 

K, Robson MD. Cardiac cine MR-imaging at 3T: FLASH vs SSFP. J 

CardiovascMagnReson 2006;8(5):709-715. 

27. Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI 

with high frame rate exploiting spatiotemporal correlations. MagnReson Med 

2003;50(5):1031-1042. 

28. Jung H, Sung K, Nayak KS, Kim EY, Ye JC. k-t FOCUSS: a general compressed 

sensing framework for high resolution dynamic MRI. MagnReson Med 

2009;61(1):103-116. 

29. Wintersperger BJ, Reeder SB, Nikolaou K, Dietrich O, Huber A, Greiser A, Lanz 

T, Reiser MF, Schoenberg SO. Cardiac CINE MR imaging with a 32-channel 

cardiac coil and parallel imaging: impact of acceleration factors on image quality 

and volumetric accuracy. J MagnReson Imaging 2006;23(2):222-227. 

30. Lauterbur PC. Image formation by induced local interactions: examples 

employing nuclear magnetic resonance. Nature 1973;242:190-191. 

31. Noll DC, Meyer CH, Pauly JM, Nishimura DG, Macovski A. A homogeneity 

correction method for magnetic resonance imaging with time-varying gradients. 

IEEE Trans Med Imaging 1991;10(4):629-637. 

32. Noll DC, Pauly JM, Meyer CH, Nishimura DG, Macovski A. Deblurring for non-

2D Fourier transform magnetic resonance imaging. MagnReson Med 

1992;25(2):319-333. 

33. O'Sullivan JD. A fast sinc function gridding algorithm for fourier inversion in 

computer tomography. IEEE Trans Med Imaging 1985;4(4):200-207. 

34. Fessler JA, Sutton BP. Nonuniform fast Fourier transforms using min-max 

interpolation. Signal Processing, IEEE Transactions on 2003;51(2):560-574. 

35. Jackson JI, Meyer CH, Nishimura DG, Macovski A. Selection of a convolution 

function for Fourier inversion using gridding [computerised tomography 

application]. IEEE Trans Med Imaging 1991;10(3):473-478. 



99 

 

36. Griswold MA, Jakob PM, Nittka M, Goldfarb JW, Haase A. Partially parallel 

imaging with localized sensitivities (PILS). MagnReson Med 2000;44(4):602-

609. 

37. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity 

encoding for fast MRI. MagnReson Med 1999;42(5):952-962. 

38. Sodickson DK, Griswold MA, Jakob PM. SMASH imaging.MagnReson Imaging 

Clin N Am 1999;7(2):237-254, vii-viii. 

39. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, 

Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). 

MagnReson Med 2002;47(6):1202-1210. 

40. Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding 

incorporating temporal filtering (TSENSE).MagnReson Med 2001;45(5):846-852. 

41. Liu C, Bammer R, Moseley ME. Parallel imaging reconstruction for arbitrary 

trajectories using k-space sparse matrices (kSPA).MagnReson Med 

2007;58(6):1171-1181. 

42. Yeh EN, McKenzie CA, Ohliger MA, Sodickson DK. Parallel magnetic 

resonance imaging with adaptive radius in k-space (PARS): constrained image 

reconstruction using k-space locality in radiofrequency coil encoded data. 

MagnReson Med 2005;53(6):1383-1392. 

43. Breuer FA, Kellman P, Griswold MA, Jakob PM. Dynamic autocalibrated parallel 

imaging using temporal GRAPPA (TGRAPPA). MagnReson Med 

2005;53(4):981-985. 

44. Zhao T, Hu X. Iterative GRAPPA (iGRAPPA) for improved parallel imaging 

reconstruction. MagnReson Med 2008;59(4):903-907. 

45. Lustig M, Pauly JM. SPIRiT: Iterative self-consistent parallel imaging 

reconstruction from arbitrary k-space. MagnReson Med 2010;64(2):457-471. 

46. Liang ZP, Boada FE, Constable RT, Haacke EM, Lauterbur PC, Smith MR. 

Constrained reconstruction methods in MR imaging. Rev MagnReson Med 

1992;4(10):67-185. 

47. Tsao J, Behnia B, Webb AG. Unifying linear prior-information-driven methods 

for accelerated image acquisition.MagnReson Med 2001;46(4):652-660. 

48. Candes EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal 

reconstruction from highly incomplete frequency information. Information 

Theory, IEEE Transactions on 2006;52(2):489-509. 

49. http://dsp.rice.edu/cs. 

http://dsp.rice.edu/cs


100 

 

50. Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed 

sensing for rapid MR imaging. MagnReson Med 2007;58(6):1182-1195. 

51. Block KT, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. 

Iterative image reconstruction using a total variation constraint.MagnReson Med 

2007;57(6):1086-1098. 

52. Hyder SA, Sukanesh R. An efficient algorithm for denoising MR and CT images 

using digital curvelet transform. AdvExp Med Biol 2011;696:471-480. 

53. Golubov B, Vitushkin A. Variation of a function. Encyclopaedia of Mathematics 

2001;Springer. 

54. Giusti E. Minimal Surfaces and Functions of Bounded Variation. 

1984;BirkhauserVerlag:Basel. 

55. Zhu MQ, Chan T. An Efficient Primal-Dual Hybrid Gradient Algorithm For Total 

Variation Image Restoration. UCLA CAM Reports 2008(1):1-29. 

56. Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal 

algorithms. Physica D 1992;60(1-4):259-268. 

57. Acer R, Vogel C. Analysis of bounded variation penalty methods for ill-posed 

problems. Inverse Problems 1994;10(6):1217-1229. 

58. Vogel C. Computational Methods for Inverse Problems. 2002. 

59. Trzasko J, Manduca A. Highly undersampled magnetic resonance image 

reconstruction via homotopicl(0) -minimization. IEEE Trans Med Imaging 

2009;28(1):106-121. 

60. Black MJ, Sapiro G, Marimont DH, Heeger D. Robust anisotropic diffusion. 

Image Processing, IEEE Transactions on 1998;7(3):421-432. 

61. Adluru G, DiBella EV. A comparison of L1 and L2 norms as temporal constraints 

for reconstruction of undersampled dynamic contrast enhanced cardiac scans with 

respiratory motion. Proc ISMRM 2008:340. 

62. Bregman LM. The relaxation method for finding the common point of convex sets 

and its application to the solution of problems in convex programming: USSR 

Comp Math MathPhys; 1967. 200-217 p. 

63. Liu B, King K, Steckner M, Xie J, Sheng J, Ying L. Regularized sensitivity 

encoding (SENSE) reconstruction using Bregman iterations. MagnReson Med 

2009;61(1):145-152. 

64. Candes EJ, Wakin MB, Boyd S. Enhancing Sparsity by Reweighted l1 

Minimization. Journal of Fourier Analysis and Applications 2008;14(5):877-905. 



101 

 

65. Tsao J, Kozerke S, Boesiger P, Pruessmann KP. Optimizing spatiotemporal 

sampling for k-t BLAST and k-t SENSE: application to high-resolution real-time 

cardiac steady-state free precession.MagnReson Med 2005;53(6):1372-1382. 

66. Huang F, Vijayakumar S, Li Y, Hertel S, Reza S, Duensing GR. Self-calibration 

method for radial GRAPPA/k-t GRAPPA. MagnReson Med 2007;57(6):1075-

1085. 

67. Arunachalam A, Samsonov A, Block WF. Self-calibrated GRAPPA method for 

2D and 3D radial data.MagnReson Med 2007;57(5):931-938. 

68. Chen L, Schabel MC, DiBella EV. Reconstruction of dynamic contrast enhanced 

magnetic resonance imaging of the breast with temporal constraints. MagnReson 

Imaging 2010;28(5):637-645. 

69. Madore B, Glover GH, Pelc NJ. Unaliasing by fourier-encoding the overlaps 

using the temporal dimension (UNFOLD), applied to cardiac imaging and 

fMRI.MagnReson Med 1999;42(5):813-828. 

70. van Vaals JJ, Brummer ME, Dixon WT, Tuithof HH, Engels H, Nelson RC, 

Gerety BM, Chezmar JL, den Boer JA. "Keyhole" method for accelerating 

imaging of contrast agent uptake. J MagnReson Imaging 1993;3(4):671-675. 

71. Webb AG, Liang ZP, Magin RL, Lauterbur PC. Applications of reduced-encoding 

MR imaging with generalized-series reconstruction (RIGR). J MagnReson 

Imaging 1993;3(6):925-928. 

72. Gamper U, Boesiger P, Kozerke S. Compressed sensing in dynamic MRI. 

MagnReson Med 2008;59(2):365-373. 

73. Lustig M, Santos JM, Donoho DL, Pauly JM. k-t SPARSE: high frame rate 

dynamic MRI exploiting spatio-temporal sparsity. Proc ISMRM, Seattle, WA 

2006:2420. 

74. Mistretta CA, Wieben O, Velikina J, Block W, Perry J, Wu Y, Johnson K. Highly 

constrained backprojection for time-resolved MRI. MagnReson Med 

2006;55(1):30-40. 

75. Adluru G, Awate SP, Tasdizen T, Whitaker RT, DiBella EV. Temporally 

constrained reconstruction of dynamic cardiac perfusion MRI.MagnReson Med 

2007;57(6):1027-1036. 

76. McGibney G, Smith MR, Nichols ST, Crawley A. Quantitative evaluation of 

several partial Fourier reconstruction algorithms used in MRI. MagnReson Med 

1993;30(1):51-59. 



102 

 

77. Medley M, Yan H, Rosenfeld D. An improved algorithm for 2-D translational 

motion artifact correction. Medical Imaging, IEEE Transactions on 

1991;10(4):548-553. 

78. Samsonov AA, Kholmovski EG, Parker DL, Johnson CR. POCSENSE: POCS-

based reconstruction for sensitivity encoded magnetic resonance imaging. 

MagnReson Med 2004;52(6):1397-1406. 

79. Lin FH, Kwong KK, Belliveau JW, Wald LL. Parallel imaging reconstruction 

using automatic regularization. MagnReson Med 2004;51(3):559-567. 

80. Fessler JA, Noll DC. Iterative image reconstruction in MRI with separate 

magnitude and phase regularization.Proc IEEE IntSymp Biomed Imag 2004:209-

212. 

81. He L, Chang T, Osher S, Fang T, Speier P. MRI image reconstruction by using 

the iterative refinement method and nonlinear inverse scale space methods. 

UCLA CAM Reports 2006:06-35. 

82. Polyak B. Introduction to optimization. New York: Optimization Software, Inc 

1987. 

83. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson 

HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM. Estimating 

kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a 

diffusable tracer: standardized quantities and symbols. J MagnReson Imaging 

1999;10(3):223-232. 

84. Murase K. Efficient method for calculating kinetic parameters using T1-weighted 

dynamic contrast-enhanced magnetic resonance imaging.MagnReson Med 

2004;51(4):858-862. 

85. Parker GJ, Roberts C, Macdonald A, Buonaccorsi GA, Cheung S, Buckley DL, 

Jackson A, Watson Y, Davies K, Jayson GC. Experimentally-derived functional 

form for a population-averaged high-temporal-resolution arterial input function 

for dynamic contrast-enhanced MRI. MagnReson Med 2006;56(5):993-1000. 

86. Bishop JE, Santyr GE, Kelcz F, Plewes DB. Limitations of the keyhole technique 

for quantitative dynamic contrast-enhanced breast MRI. J MagnReson Imaging 

1997;7(4):716-723. 

87. Dan X, Wiener E, Aref M, Ying L, Ji J, Zhi-Pei L. Integrating Parallel Imaging 

with Generalized Series for Accelerated Dynamic Imaging. Engineering in 

Medicine and Biology Society, 2005 IEEE-EMBS 2005 27th Annual International 

Conference of the 2005:1434-1437. 



103 

 

88. Chen GH, Tang J, Leng S. Prior image constrained compressed sensing (PICCS): 

a method to accurately reconstruct dynamic CT images from highly undersampled 

projection data sets. Med Phys 2008;35(2):660-663. 

89. Hoffmann U, Brix G, Knopp MV, Hess T, Lorenz WJ. Pharmacokinetic mapping 

of the breast: a new method for dynamic MR mammography. MagnReson Med 

1995;33(4):506-514. 

90. Moon M, Cornfeld D, Weinreb J. Dynamic contrast-enhanced breast MR 

imaging. MagnReson Imaging Clin N Am 2009;17(2):351-362. 

91. Boetes C, Barentsz JO, Mus RD, van der Sluis RF, van Erning LJ, Hendriks JH, 

Holland R, Ruys SH. MR characterization of suspicious breast lesions with a 

gadolinium-enhanced TurboFLASH subtraction technique. Radiology 

1994;193(3):777-781. 

92. Hansen MS, Atkinson D, Sorensen TS. Cartesian SENSE and k-t SENSE 

reconstruction using commodity graphics hardware.MagnReson Med 

2008;59(3):463-468. 

93. Sorensen TS, Schaeffter T, Noe KO, Hansen MS. Accelerating the 

Nonequispaced Fast Fourier Transform on Commodity Graphics Hardware. 

Medical Imaging, IEEE Transactions on 2008;27(4):538-547. 

94. Irwan R, Lubbers DD, van der Vleuten PA, Kappert P, Gotte MJ, Sijens PE. 

Parallel imaging for first-pass myocardial perfusion. Magnetic resonance imaging 

2007;25(5):678-683. 

95. Ruan C, Yang SH, Cusi K, Gao F, Clarke GD. Contrast-enhanced first-pass 

myocardial perfusion magnetic resonance imaging with parallel acquisition at 3.0 

Tesla. Investigative radiology 2007;42(6):352-360. 

96. Theisen D, Wintersperger BJ, Huber A, Dietrich O, Reiser MF, Schonberg SO. 

Myocardial first pass perfusion imaging with gadobutrol: impact of parallel 

imaging algorithms on image quality and signal behavior. Investigative radiology 

2007;42(7):522-528. 

97. Debatin JF, McKinnon GC, von Schulthess GK. Technical note--approach to 

myocardial perfusion with echo planar imaging. Magma (New York, NY 

1996;4(1):7-11. 

98. Di Bella EV, Parker DL, Sinusas AJ. On the dark rim artifact in dynamic contrast-

enhanced MRI myocardial perfusion studies.MagnReson Med 2005;54(5):1295-

1299. 

99. Maredia N, Radjenovic A, Kozerke S, Larghat A, Greenwood JP, Plein S. Effect 

of improving spatial or temporal resolution on image quality and quantitative 



104 

 

perfusion assessment with k-t SENSE acceleration in first-pass CMR myocardial 

perfusion imaging. MagnReson Med 2010;64(6):1616-1624. 

100. Meloni A, Al-Saadi N, Torheim G, Hoebel N, Reynolds HG, De Marchi D, 

Positano V, Burchielli S, Lombardi M. Myocardial first-pass perfusion: influence 

of spatial resolution and heart rate on the dark rim artifact. MagnReson Med 

2011;66(6):1731-1738. 

101. Jung B, Honal M, Hennig J, Markl M. k-t-Space accelerated myocardial 

perfusion. J MagnReson Imaging 2008;28(5):1080-1085. 

102. Plein S, Ryf S, Schwitter J, Radjenovic A, Boesiger P, Kozerke S. Dynamic 

contrast-enhanced myocardial perfusion MRI accelerated with k-t sense. 

MagnReson Med 2007;58(4):777-785. 

103. Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and 

parallel imaging for highly accelerated first-pass cardiac perfusion MRI. 

MagnReson Med 2010;64(3):767-776. 

104. Ge L, Kino A, Griswold M, Carr JC, Li D. Free-breathing myocardial perfusion 

MRI using SW-CG-HYPR and motion correction. MagnReson Med 

2010;64(4):1148-1154. 

105. Manka R, Jahnke C, Kozerke S, Vitanis V, Crelier G, Gebker R, Schnackenburg 

B, Boesiger P, Fleck E, Paetsch I. Dynamic 3-dimensional stress cardiac magnetic 

resonance perfusion imaging: detection of coronary artery disease and volumetry 

of myocardial hypoenhancement before and after coronary stenting. J Am 

CollCardiol 2011;57(4):437-444. 

106. Kholmovski EG, DiBella EV. Perfusion MRI with radial acquisition for arterial 

input function assessment.MagnReson Med 2007;57(5):821-827. 

107. Salerno M, Sica CT, Kramer CM, Meyer CH. Optimization of spiral-based pulse 

sequences for first-pass myocardial perfusion imaging. MagnReson Med 

2011;65(6):1602-1610. 

108. Busse RF, Riederer SJ. Steady-state preparation for spoiled gradient echo 

imaging.MagnReson Med 2001;45(4):653-661. 

109. Lin W, Song HK. Improved signal spoiling in fast radial gradient-echo imaging: 

Applied to accurate T(1) mapping and flip angle correction. MagnReson Med 

2009;62(5):1185-1194. 

110. Cunningham CH, Pauly JM, Nayak KS. Saturated double-angle method for rapid 

B1+ mapping.MagnReson Med 2006;55(6):1326-1333. 



105 

 

111. Brodsky EK, Samsonov AA, Block WF. Characterizing and correcting gradient 

errors in non-cartesian imaging: Are gradient errors linear time-invariant (LTI)? 

MagnReson Med 2009;62(6):1466-1476. 

112. Sung K, Nayak KS. B1+ compensation in 3T cardiac imaging using short 2DRF 

pulses.MagnReson Med 2008;59(3):441-446. 

113. Parker GJ, Baustert I, Tanner SF, Leach MO. Improving image quality and T(1) 

measurements using saturation recovery turboFLASH with an approximate K-

space normalisation filter. MagnReson Imaging 2000;18(2):157-167. 

114. Kim D. Influence of the k-space trajectory on the dynamic T1-weighted signal in 

quantitative first-pass cardiac perfusion MRI at 3T. MagnReson Med 

2008;59(1):202-208. 

115. Lin W, Guo J, Rosen MA, Song HK. Respiratory motion-compensated radial 

dynamic contrast-enhanced (DCE)-MRI of chest and abdominal 

lesions.MagnReson Med 2008;60(5):1135-1146. 

116. Bracewell RN. The Fourier Transform and its Applications. 1978;New York: 

McGraw-Hill. 

117. Block KT, Uecker M. Simple Method for Adaptive Gradient-Delay 

Compensation in Radial MRI. Proc ISMRM 2011:2816. 

118. Liang ZP, Lauterbur PC. A generalized series approach to MR spectroscopic 

imaging. IEEE Trans Med Imaging 1991;10(2):132-137. 

119. Liang ZP, Lauterbur PC. An efficient method for dynamic magnetic resonance 

imaging. IEEE Trans Med Imaging 1994;13(4):677-686. 

120. Huang Y, Wright GA. Time-resolved MR angiography with limited projections. 

MagnReson Med 2007;58(2):316-325. 

121. Johnson KM, Velikina J, Wu Y, Kecskemeti S, Wieben O, Mistretta CA. 

Improved waveform fidelity using local HYPR reconstruction (HYPR LR). 

MagnReson Med 2008;59(3):456-462. 

122. O'Halloran RL, Wen Z, Holmes JH, Fain SB. Iterative projection reconstruction 

of time-resolved images using highly-constrained back-projection (HYPR). 

MagnReson Med 2008;59(1):132-139. 

123. Ye JC, Tak S, Han Y, Park HW. Projection reconstruction MR imaging using 

FOCUSS.MagnReson Med 2007;57(4):764-775. 

124. Jung H, Ye JC, Kim EY. Improved k-t BLAST and k-t SENSE using FOCUSS. 

Phys Med Biol 2007;52(11):3201-3226. 



106 

 

125. Tsao J. Extension of finite-support extrapolation using the generalized series 

model for MR spectroscopic imaging. IEEE Trans Med Imaging 

2001;20(11):1178-1183. 

126. Cao Y, Levin DN. Feature-recognizing MRI. MagnReson Med 1993;30(3):305-

317. 

127. Liang Z, Lauterbur PC. Principles of Magnetic Resonance Imaging. 2000;IEEE 

press. 

128. Zientara GP, Panych LP, Jolesz FA. Dynamically adaptive MRI with encoding by 

singular value decomposition.MagnReson Med 1994;32(2):268-274. 

129. Tsao J, Pruessmann KP, Boesiger P. Feedback regularized SENSE reconstruction. 

Proc ISMRM 2002:739. 

130. Noll DC, Nishimura DG, Macovski A. Homodyne detection in magnetic 

resonance imaging. IEEE Trans Med Imaging 1991;10(2):154-163. 

131. Liang ZP, Madore B, Glover GH, Pelc NJ. Fast algorithms for GS-model-based 

image reconstruction in data-sharing Fourier imaging. IEEE Trans Med Imaging 

2003;22(8):1026-1030. 

132. Keith L, Kecskemeti S, Velikina J, Mistretta C. Simulation of relative temporal 

resolution of time-resolved MRA sequences. MagnReson Med 2008;60(2):398-

404. 

133. Xu D, King KF, Liang ZP. Improving k-t SENSE by adaptive 

regularization.MagnReson Med 2007;57(5):918-930. 

134. Prieto C, Uribe S, Razavi R, Atkinson D, Schaeffter T. 3D undersampled golden-

radial phase encoding for DCE-MRA using inherently regularized iterative 

SENSE. MagnReson Med 2010;64(2):514-526. 

135. Lopata RG, Backes WH, van den Bosch PP, van Riel NA. On the identifiability of 

pharmacokinetic parameters in dynamic contrast-enhanced imaging.MagnReson 

Med 2007;58(2):425-429. 

136. Di Giovanni P, Azlan CA, Ahearn TS, Semple SI, Gilbert FJ, Redpath TW. The 

accuracy of pharmacokinetic parameter measurement in DCE-MRI of the breast 

at 3 T. Phys Med Biol 2010;55(1):121-132. 

137. Henderson E, Rutt BK, Lee TY. Temporal sampling requirements for the tracer 

kinetics modeling of breast disease.MagnReson Imaging 1998;16(9):1057-1073. 

138. Zhang J, Liu C, Moseley ME. Parallel reconstruction using null 

operations.MagnReson Med 2011;66(5):1241-1253. 



107 

 

139. Yutzy SR, Seiberlich N, Duerk JL, Griswold MA. Improvements in multislice 

parallel imaging using radial CAIPIRINHA. MagnReson Med 2011;65(6):1630-

1637. 

140. Breuer FA, Blaimer M, Heidemann RM, Mueller MF, Griswold MA, Jakob PM. 

Controlled aliasing in parallel imaging results in higher acceleration 

(CAIPIRINHA) for multi-slice imaging. MagnReson Med 2005;53(3):684-691. 

141. Breuer FA, Blaimer M, Mueller MF, Seiberlich N, Heidemann RM, Griswold 

MA, Jakob PM. Controlled aliasing in volumetric parallel imaging (2D 

CAIPIRINHA). MagnReson Med 2006;55(3):549-556. 

142. Stab D, Ritter CO, Breuer FA, Weng AM, Hahn D, Kostler H. CAIPIRINHA 

accelerated SSFP imaging. MagnReson Med 2011;65(1):157-164. 

 

 


