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s e c t i o n  I 

Summary o f  Program f o r

R e p o r t i n g  P e r i o d  

Program O b j e c t i v e s

To d e v e l o p  p r a c t i c a l ,  low c o s t ,  r e a l  t ime  methods f o r  

s u p p r e s s in g  n o i s e  which has been a c o u s t i c a l l y  added to  

s p e e c h . '

To d em on s t r a t e  t h a t  through the  i n c o r p o r a t i o n  o f  the  

n o i s e  s u p p r e s s i o n  methods ,  speech can be e f f e c t i v e l y  

an a l ys ed  f o r  nar row band d i g i t a l  t r a n s m i s s i o n  in  p r a c t i c a l  

o p e r a t i n g  en v i r o n m e n t s .

Summary o f  Tasks and R e s u l t s  

I n t r o d u c t i o n

Th i s  Semi-Annual  t e c h n i c a l  r e p o r t  d e s c r i b e s  the  s t a t u s  

a t  the end o f  September 1978 as the  r e s u l t  o f  work p e r f o rm e d  

du r ing  the  p e r i o d  1 A p r i l  1978 through 30 September  1978. 

T h i s  i s  the  l a s t  t e c h n i c a l  r e p o r t  t o  be i s su ed  under
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c o n t r a c t  N00173-77 -C-0041. Con t i n u in g  r e s e a r c h  i s  s t i l l  

b e i n g  pursued under ARPA o rd e r  3301 and w i l l  be r e p o r t e d  

s e m i - a n n u a l l y  under c o n t r a c t  w i th  Nava l  Res ea r ch  

L a b o r a t o r i e s .  The nex t  r e p o r t  i s  p lanned f o r  the  p e r i o d  1 

Octobe r  78 through 31 March 79 under suc ces o r  c o n t r a c t  

N00173-79-C-0045.
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S u p p r e s s i o n  of A c o u s t i c  N o i s e  in

Speech Using  S p e c t r a l  S u b t r a c t i o n  

S t even  F. B o l l

... _ A b s t r a c t  .... _ _ .

A s tand a l o n e  n o i s e  s u p p r e s s i o n  a l g o r i t h m  i s  p r e s e n t e d  

f o r  r e d u c i n g  the  s p e c t r a l  e f f e c t s  o f  a c o u s t i c a l l y  added 

n o i s e  in spee ch .  E f f e c t i v e  pe r f o rm an ce  o f  d i g i t a l  speech  

p r o c e s s o r s  o p e r a t i n g  in  p r a c t i c a l  en v i r on me nt s  may r e q u i r e  

s u p p r e s s i o n  o f  n o i s e  f rom the  d i g i t a l  wave f orm.  S p e c t r a l  

s u b t r a c t i o n  o f f e r s  a c o m p u t a t i o n a l l y  e f f i c i e n t ,  p r o c e s s o r  

in d e p e n d e n t ,  approach t o  e f f e c t i v e  d i g i t a l  speech a n a l y s i s .  

The method,  r e q u i r i n g  about  the  same compu ta t i on  as 

h i g h - s p e e d  c o n v o l u t i o n ,  s u p p re ss es  s t a t i o n a r y  n o i s e  f o r  

speech  by s u b t r a c t i n g  the  s p e c t r a l  n o i s e  b i a s  c a l c u l a t e d  

d u r i n g  non-speech  a c t i v i t y .  Secondary  p r o c e d u r e s  and then 

a p p l i e d  t o  a t t e n u a t e  the  r e s i d u a l  n o i s e  l e f t  a f t e r  

s u b t r a c t i o n .  S in c e  the  a l g o r i t h m  r e s y n t h e s i z e s  a speech  

wave f o rm,  i t  can be used as a p r e p r o c e s s o r  t o  narrow band 

v o i c e  communica t i ons  sys t ems ,  speech  r e c o g n i t i o n  sys t ems or  

speake r  a u t h e n t i c a t i o n  sys t ems .
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A p p l i c a t i o n  of A d a p t i v e  N o i s e  C a n c e l l a t i o n

To N o i s e  Re duc t i on  in Aud io  S i g n a l s  

Dennis  C. P u l s i p h e r

.. . A b s t r a c t  . . . .  . .

The LMS A d a p t i v e  N o i s e  C a n c e l l a t i o n  a l g o r i t h m  has been 

a p p l i e d  t o  the  r emova l  o f  h i g h - l e v e l  w h i t e  n o i s e  f rom aud io  

s i g n a l s .  S i m u l a t i o n s  and a c t u a l  a c o u s t i c a l l y  r e c o r d e d  

s i g n a l s  have been p r o c e s s e d  s u c c e s s f u l l y ,  w i t h  e x c e l l e n t  

agr eement  be tween the  r e s u l t s  o b t a i n e d  f rom s im u la t i o n s -  and 

the  r e s u l t s  o b t a in e d  w i t h  a c o u s t i c a l l y  produced d a t a .  A 

s tu d y  o f  the f i l t e r  l e n g t h  r e q u i r e d  in  o r d e r  t o  a c h i e v e  a 

d e s i r e d  n o i s e  r e d u c t i o n  l e v e l  i n  a h a r d - w a l l e d  room i s  

p r e s e n t e d .  The pe r f o rmance  o f  the  a l g o r i t h m  in  t h i s  

a p p l i c a t i o n  i s  d e s c r i b e d  and r e q u i r e d  m o d i f i c a t i o n s  a r e  

s u g g e s t e d .

A m u l t i - c h a n n e l  p r o c e s s i n g  scheme i s  p r e s e n t e d  which 

a l l o w s  the  a d a p t i v e  f i l t e r  t o  c o n v e r g e  a t  i ndependen t  r a t e s  

in  d i f f e r e n t  f r e q u e n c y  bands.  T h i s  i s  shown t o  be o f  

p a r t i c u l a r  use when the  i n t e r f e r i n g  n o i s e  i s  no t  w h i t e .  

C a r e f u l  i m p l e m e n ta t i o n  o f  the  scheme a l l o w s  the  p rob l em t o  

be broken i n t o  s e v e r a l  s m a l l e r  ones which can be handled by 

independen t  p r o c e s s o r s ,  thus a l l o w i n g  l o n g e r  f i l t e r  l e n g t h s
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t o  be p r o c e s s e d  in r e a l  t ime .

T h i s  a b s t r a c t  i s  t aken  f rom the  Ph.D d i s s e r t a t i o n  o f  

Dennis P u l s i p h e r .  T h i s  d i s s e r t a t i o n  w i l l  be p u b l i s h e d  as a 

s t a n d - a l o n e  t e c h n i c a l  r e p o r t .



E s t i m a t i o n  o f  the Pa ramete r s  o f  an A u t o r e g r e s s i v e  

P r o c e s s  in the  P re senc e  o f  A d d i t i v e  Whi te  N o i s e

W i l l i a m  Done 

A b s t r a c t

A p p l i c a t i o n s  o f  l i n e a r  p r e d i c t i o n  (LP)  a l g o r i t h m s  have 

been s u c c e s s f u l  i n  mode l ing  v a r i o u s  p h y s i c a l  p r o c e s s e s .  In 

the  area  o f  speech a n a l y s i s  t h i s  has r e s u l t e d  in  the  

de ve l opm ent  o f  LP v o c o d e r s ,  d e v i c e s  and used in d i g i t a l  

speech  communicat ion sys t ems .  The LP a l g o r i t h m s  used in  

speech  and o t h e r  a r e a s  a r e  based on a l l - p o l e  mode ls  f o r  the  

s i g n a l  be in g  c o n s i d e r e d .  Wi th w h i t e  n o i s e  e x c i t a t i o n  t o  the  

mode l ,  the  a l l - p o l e  LP model  i s  e q u i v a l e n t  t o  the  

a u t o r e g r e s s i v e  (AR) mode l .

Wi th the  suc c e ss  o f  t h i s  model  f o r  speech w e l l  

e s t a b l i s h e d ,  the  a p p l i c a t i o n  o f  LP a l g o r i t h m s  in n o i s y  

en v i r on me nt s  i s  b e i n g  c o n s i d e r e d .  E x i s t i n g  LP a l g o r i t h m s  

p e r f o r m  p o o r l y  in  t h e s e  c o n d i t i o n s .  A d d i t i v e  w h i t e  n o i s e  

s e v e r e l y  e f f e c t s  the  i n t e l l i g i b i l i t y  and q u a l i t y  o f  speech  

a f t e r  a n a l y s i s  by an LP v o c o d e r .
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I t  i s  known t h a t  the  a d d i t i o n  o f  w h i t e  n o i s e  t o  an AR 

p r o c e s s  p roduces  da ta  t h a t  can be d e s c r i b e d  by an 

a u t o r e g r e s s i v e  m o v i n g - a v e r a g e  (ARMA) mode l .  The AR 

c o e f f i c i e n t s  o f  the  ARMA model  a r e  i d e n t i c a l  t o  the  AR 

c o e f f i c i e n t s  o f  the  o r i g i n a l  AR p r o c e s s .  T h i s  d i s s e r t a t i o n  

i n v e s t i g a t e s  th e  p r a c t i c a l i t y  o f  t h i s  model  f o r  e s t i m a t i n g  

the  c o e f f i c i e n t s  o f  the  o r i g i n a l  AR p r o c e s s .  The 

m a th em at i c a l  d e t a i l s  f o r  t h i s  model  a r e  r e v i e w e d .  Those  f o r  

the  a u t o c o r r e l a t i o n  methods LP a l g o r i t h m  a r e  a l s o  d i s c u s s e d .

E x p e r im e n ta l  r e s u l t s  o b t a i n e d  f rom s e v e r a l  pa ram ete r  

e s t i m a t i o n  t e c h n i q u e s  a r e  p r e s e n t e d .  These  methods i n c l u d e  

the  a u t o c o r r e l a t i o n  method f o r  LP and a Newton-Raphson 

a l g o r i t h m  which e s t i m a t e s  the  ARMA pa ram e te r s  f rom the  n o i s y  

d a t a .  These  e s t i m a t i o n  methods a r e  a p p l i e d  t o  s e v e r a l  AR 

p r o c e s s e s  de g r aded  by a d d i t i v e  w h i t e  n o i s e .  R e s u l t s  show 

t h a t  us ing  an a l g o r i t h m  used on the  ARMA model  f o r  the  da ta  

improves  the e s t i m a t e s  f o r  the  o r i g i n a l  AR c o e f f i c i e n t s .  '

T h i s  a b s t r a c t  i s  taken f rom the  Ph.D d i s s e r t a t i o n  o f  

W i l l i a m  Done. T h i s  d i s s e r t a t i o n  w i l l  be p u b l i s h e d  as a 

s t a n d - a l o n e  t e c h n i c a l  r e p o r t .
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N o n p a ra m e t r i c  Rank-Order  S t a t i s t i c s  A p p l i e d  t o  Robust  

V o i c e d - U n v o i c e d - S i l e n c e  C l a s s i f i c a t i o n

B.V.  Cox and L .K.  T imothy 

A b s t r a c t

Th i s  paper  d e s c r i b e s  a t h e o r e t i c a l  and e x p e r i m e n t a l  

i n v e s t i g a t i o n  f o r  d e t e c t i n g  the p r e s e n c e  o f  speech in  

w ide -band  n o i s e .  A r o b u s t  a l g o r i t h m  f o rm in g  the  

v o i c e d - u n v o i c e d - s i l e n c e  d e c i s i o n  i s  d e s c r i b e d .  T h i s  

a l g o r i t h m  i s  based on a n o n p a ra m e t r i c  s t a t i s t i c a l  

s i g n a l - d e t e c t i o n  scheme t h a t  does  n o t  r e q u i r e  a t r a i n i n g  s e t  

o f  data  and m a i n t a i n s  a c o n s t a n t  f a l s e  a l a rm r a t e  f o r  a 

b road c l a s s  o f  n o i s e  i n p u t s .  Two no n p a ra m et r i c  d e c i s i o n  

p r o c e d u r e s  a r e  i n v e s t i g a t e d ,  the K r u s k a l - W a l l i s  and the  

m u l t i p l e  use o f  the  two -sample  Savage  s t a t i s t i c .  The 

p e r f o rm a n c e s  o f  t h e s e  d e t e c t o r s  a r e  e v a l u a t e d  and compared 

t o  t h a t  o b t a i n e d  f rom manua l l y  c l a s s i f y i n g  tw en ty  r e c o r d e d  

u t t e r a n c e s .  In l i m i t e d  t e s t i n g ,  the  a v e r a g e  p r o b a b i l i t y  o f  

m i s c l a s s i f i c a t i o n  o f  v o i c e d  speech f o r  the  Savage  case  was 

l e s s  than 6 , 13, 28, and 55 p e r c e n t ,  c o r r e s p o n d i n g  t o  

s i g n a l - t o - n o i s e  r a t i o s  o f  30, 20, 10, and 0 dB,  

r e s p e c t i v e l y .
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SUPPRESSION OF ACOUSTIC NOISE 

.IN SPEECH USING SPECTRAL SUBTRACTION

Steven F. Boll
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Abstract

A stand alone noise suppression algorithm is presented for reducing 

the spectral effects of acoustically added noise in speech. Effective 

performance of digital speech processors operating in practical environments 

may require suppression of noise from the digital waveform. Spectral 

subtraction offers a computationally efficient, processor independent, 

approach to effective digital speech analysis. The method, requiring 

about the same computation as high-speed convolution, suppresses stationary 

noise for speech by subtracting the spectral noise bias calculated during 

non-speech activity. Secondary procedures and then applied to attenuate 

the residual noise left after subtraction. Since the algorithm resynthesizes 

a speech waveform, it can be used as a preprocessor to narrowband voice 

communications systems, speech recognition systems or speaker authentication 

systems.
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I. Introduction

Background noise acoustically added to speech can degrade the 

performance of digital voice processors used for applications such.as 

speech compression, recognition, and authentication [1] [2]. Digital 

voice systems will be used in a variety of environments and their performance 

must be maintained at a level near that measured using noise-free input 

speech. To insure continued reliability, the effects of background noise 

can be reduced by using noise cancelling microphones, internal modification 

of the voice processor algorithms to explicitly compensate for signal 

contamination, or preprocessor noise reduction.

Noise cancelling microphones although essential for extremely high 

noise environments such as the helicopter cockpit, offer little or no 

noise reduction above 1kHz [3] (See Figures IV.2). Techniques available 

for voice processor modification to account for noise contamination 

are being developed [4], [5]. But due to the time, effort, and money 

spent on the design and implementation of these voice processors [6],

[7], [8], there is a reluctance to internally modify these systems.

Preprocessor noise reduction [l 2], [21] offers the advantage that noise 

stripping is done on the waveform itself with the output being either digital 

or analog speech. Thus existing voice processors tuned to clean speech 

can continue to be used unmodified. Also since the output is speech, 

the noise stripping becomes independent of any specific subsequent speech 

processor implementation, (it could be connected to a CCD channel vocoder 

or a digital LPC vocoder).
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The objectives of this effort were to develop a noise suppression 

technique, implement a computationally efficient algorithm, and test 

its performance in actual noise environments. The approach used was to 

estimate the magnitude frequency spectrum of the underlying clean speech 

by subtracting the noise magnitude spectrum from the noisy speech 

spectrum. This estimator requires an estimate of the current noise 

spectrum. Rather than obtain this noise estimate from a second 

microphone source [9], [10], it is approximated using the average noise 

magnitude measured during non-speech activity. Using this approach, 

the spectral approximation error is then defined and secondary methods 

for reducing it are described.

The noise suppressor is implemented using about the same amount 

of computation as required in a high-speech convolution. It is tested on 

speech recorded in a helicopter environment. Its performance is measured 

using the Diagnostic Rhyme Test (DRT), [11], and is demonstrated using 

isometric plots of short-time spectra.

The paper is divided into sections which develop the spectral 

estimator, describe the algorithm implementation, and demonstrate the 

algorithm performance.
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II. Subtractive Noise Suppression Analysis

A. Introduction

This section describes the noise suppressed spectral estimator.

The estimator is obtained by subtracting an estimate of the noise 

spectrum from the noisy speech spectrum. Spectral information 

required to describe the noise spectrum is obtained from the signal 

measured during non-speech activity. After developing the spectral 

estimator, the spectral error is computer and four methods for reducing 

it are presented.

The following assumptions were used in developing the analysis.

The background noise is acoustically or digitally added to the speech.

The background noise environment remains locally stationary to the 

degree that its spectral magnitude expected value just prior to speech 

activity equals its expected value during speech activity. If the 

environment changes to a new stationary state, there exists enough 

time (about 300 ms) to estimate a new background noise spectral magnitude 

expected value before speech activity commences. For the slowly varying 

nonstationary noise environment, the algorithm requires a speech activity 

detector to signal the program that speech has ceased and a new noise 

bias can be estimated. Finally it is assumed that significant noise 

reduction is possible by removing the effect of noise from the magnitude 

spectrum only.

- 13 -



Speech, suitably lowpass filtered and digitized, is analyzed by 

windowing data from half-overlapped input data buffers. The magnitude 

spectra of the windowed data is calculated and the spectral noise bias 

calculated during non-speech activity is subtracted off. Resulting 

negative amplitudes are then zeroed out. Secondary residual noise 

suppression is then applied. A time waveform is recalculated from the 

modified magnitude. This waveform is then overlap added to the previous 

data to generate the output speech.

B. Additive Noise Model

Assume that a windowed noise signal n(k) has been added to a windowed 

speech signal s(k), with their sum denoted by x(k). Then

x(k) = s(k) + n(k)

Taking the Fourier transform gives

X(eJW) = S(eJW) + N(eJW)

where x (k) <— > X(eJW )

k=0

X(eja))eJa)kdo)
-7T

C. Spectral Subtraction Estimator

The spectral subtraction filter H(ejw) is calculated by replacing the 

noise spectrum N(eJa)) with spectra which can be readily measured. The

14 -



magnitude | N(eJ0J) | of N(eJa>) is replaced by its average value, y(eJa>) 

taken during non-speech activity, and the phase 0N (eJa>) of N(eJa>) is

replaced by the phase 0 (eJ ) of X(e ). These substitutions result inA
r\-F

the spectral subtraction estimator, S(eJa>):

S(eja)) = [|X(eja,)| - y(ej u )] ej0x (e ^

or

S(e'Sa>) = H(eJ'u )X(eJ’u )

with

H(eJ“ ) = 1 - ^ eJ“ )
|X(eJ“)|

y(eJ’u ) = E{ | N(eJaJ) |}

D- Spectral Error

The spectral error e(eJa>) resulting from this estimator is given

e(eja)) = S(e^)-S(e^) = N(eja,)-y (eja))ej°x

A number of simple modifications are available to reduce the auditory 

effects of this spectral error. These include: (1) magnitude averaging;

(2) half-wavk rectification; (3) residual noise reduction; and (4) additional 

signal attenuation during non-speech activity.

E. Magnitude Averaging

Since the spectral error equals the difference between the noise 

spectrum N and its mean y, local averaging of spectral magnitudes can

- 15 -



be used to reduce the error. Replacing |X(eJa))| with |X(eJ W )| where:

|X(ej “ )| = l Y  |Xi te3“ )| 
n i =0 1

X.(eJW) = i—  time-windowed transform of x(k)

gi ves

X(eJ W )| - y(eJ“) 3J0x ( eJW)

The rational behind averaging is that the spectral error becomes approximately:

where |N(eJ“ )| = 1  I  |Nj (eJt0) 
n i =0 1

M-l

Thus the sample mean of |N(eJ W )| will converge to y(eJ W ), as a longer 

average is taken.

The obvious problem with this modification is that the speech is 

nonstationary and therefore only limited time averaging is allowed.

DRT results show that averaging over more than three half-overlapped 

windows with a total time duration of 38.4 ms will decrease intelligibility. 

Spectral examples and DRT scores with and without averaging are given 

in the results section. Based upon these results, it appears that averaging 

coupled with half rectification offers some improvement. The major 

disadvantages of averaging is the risk of some temporal smearing of short 

transitory sounds.

- 16 -



For each frequency to where the noisy signal spectrum magnitude 

|X(eJW)| is less than the average noise spectrum magnitude y(eJW ), the 

output is set to zero. This modification can be simply implemented 

by half-wave rectifying H(eJW). The estimator then becomes

S(ejw ) = HR(eJ'w )X(ej w )

where

„ (f> )  = H(eJ“ ) + |H(ejM)|

R 2

• A  •

The input-output relationship between X(ej w ) and S (ejw) at each frequency 

to is shown in Figure II. 1.

Thus the effect of half-wave rectification is to bias down the 

magnitude spectrum at each frequency to by the noise bias determined at 

that frequency. The bias value can of course change from frequency 

to frequency as well as from analysis time window to time window. The 

advantage of half rectification is that the noise floor is reduced by 

y(eJW). Also any low variance coherent noise tones are essentially 

eliminated. The disadvantage of half rectification can exhibit itself

F. Half-Wave Rectification



in the situation where the sum of the noise plus speech at a frequency 

co is less than y(eJW). Then the speech information at that frequency 

is incorrectly removed implying a possible decrease in intelligibility.

As discussed in the section on results for the helicopter speech data 

base this processing did not reduce intelligibility as measured using 

the DRT.

G. Residual Noise Reduction -

After half-wave rectification speech plus noise lying above y remains.

In the absence of speech activity the difference Np = N - yeJ®n , which 

shall be called the noise residual , will for uncorrelated noise 

exhibit itself in the spectrum as randomly spaced narrow bands of magnitude 

spikes. See Figure (IV.4)- This noise residual will have a magnitude between 

zero and a maximum value measured during non-speech activity. Transformed 

back to the time domain, the noise residual will sound like the sum of 

tone generators with random fundamental frequencies which are turned on 

and off at a rate of about 20 ms. During speech activity the noise 

residual will also be perceived at those frequencies which are not masked 

by the speech.

The audible effects of the noise residual can be reduced by taking 

advantage of its frame to frame randomness. Specifically at a given frequency 

bin, since the noise residual will randomly fluctuate in amplitude at 

each analysis frame, it can be suppressed by replacing its current value 

with its minimum value chosen from the adjacent analysis frames. Taking

' A *
the minimum value is used only when the magnitude of S (e ) is less 

than the maximum noise residual calculated during non-speech activity.

The motivation behind this replacement scheme is threefold: first, if
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the amplitude of S (eJW) lies below the maximum noise residual and it 

varies radically from analysis frame to frame, then there is a high 

probability that the spectrum at that frequency is due to noise, therefore, 

suppress it by taking the minimum; second, if S (eJW) iies below the 

maximum but has a nearly constant value, there is a high probability 

that the spectrum at that frequency is due to low energy speech, therefore,
/S *

taking the minimum will retain the information; and third, if S (eJW) 

is greater than the maximum, there is speech present at that frequency, 

therefore, removing the bias is sufficient. The amount of noise reduction 

using this replacement scheme was judged equivalent to that obtained 

by averaging over three frames. However, with this approach high energy 

frequency bins are not averaged together. The disadvantage to the scheme 

is that more storage is required to save the maximum noise residuals 

and the magnitude values for three adjacent frames.

The residual noise reduction scheme is implemented as

1

where

S,(eJ“) = HR (eJ“)X,(eJ“)

MAX |NR (eJa))| = maximum value of

noise residual measured during 

non-speech activity
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H. Additional Signal Attenuation During Non-Speech Activity
/\ ■ •

The energy content of S(eJ W ) relative to y(e ) provides an accurate

indicator of the presence of speech activity within a given analysis frame.

which remains after half-wave rectification and minimum value selection. 

Empirically, it was determined that the average (before versus after) power 

ratio was down at least 12 dB. This implied a measure for detecting 

the absence of speech given by:

If T was less than -12dB the frame was classified as having no speech 

activity. During the absence of speech activity there are at least three 

options prior to resynthesis: do nothing, attenuate the output by a 

fixed factor, or set the output to zero. Having some signal present 

during non-speech activity was judged to give the higher quality result.

A possible reason for this is that noise present during speech activity 

is partially masked by the speech. Its perceived magnitude should be 

balanced by the presence of the same amount of noise during non-speech 

activity. Setting the buffer to zero had the effect of amplifying the 

noise during speech activity. Likewise, doing nothing had the effect of 

amplifying the noise during non-speech activity. A reasonable though 

by no means optimum amount of attenuation was found to be -30 dB. Thus 

the output spectral estimate including output attenuation during non-speech 

activity is given by

If speech activity is absence then S(eJ W ) will consist of the noise residual
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III. Algorithm Implementation

A. Introduction

Based on the development of the last section, a complete analysis- 

synthesis algorithm can be constructed. This section presents the specifica­

tions required to implement a spectral subtraction noise suppression system.

B. Input-Output Data Buffering and Windowing

Speech from the A-D converter is segmented and windowed such that 

in the absence of spectral modifications if the synthesis speech segments 

are added together, the resulting overall system reduces to an identity.

The data is segmented and windowed using on the result [12] that if a 

sequence is separated into half-overlapped data buffers, and each buffer 

is multiplied by a Hanning window, then the sum of these windowed sequences 

add back up to the original sequences. The window length is chosen to 

be approximately twice as large as the maximum expected pitch period 

for adequate frequency resolution [13]. For the sampling rate of 8.00 

kHz a window length of 256 points shifted in steps of 128 points was 

used. Figure III.l shows the data segmentation and advance.
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C. Frequency Analysis

The DFT of each data window is taken and the magnitude is computed.

Since real data is being transformed, two data windows can be transformed 

using one FFT [14]. The FFT size is set equal to the window size of 256. 

Augmentation with zeros was not incorporated. As correctly noted by 

J. Allen [15]> spectral modification followed by inverse transforming 

can distort the time waveform due to temporal aliasing caused by circular 

convolution with the time response of the modification. Augmenting the 

input time waveform with zeros before spectral modification will minimize 

this aliasing. Experiments with and without augmentation using the 

helicopter speech resulted in negligible differences and therefore augmenta­

tion was not incorporated. Finally, since real data is analyzed transform 

symmetries were taken advantage of to reduce storage requirements essentially 

in half [14]-

D. Magnitude Averaging

As was described in the previous section, the variance of the noise 

spectral estimate is reduced by averaging over as many spectral magnitude 

sets as possible. However, the nonstationarity of the speech limits 

the total time interval available for local averaging. The number of 

averages is limited by the number of analysis windows which can be fit 

into the stationary speech time interval. The choice of window length 

and averaging interval must compromise between conflicting requirements.

For acceptable spectral resolution a window length greater than twice 

the expected largest pitch period is required with a 256 point window 

being used. For minimum noise variance a large number of windows are



required for averaging. Finally, for acceptable time resolution a narrow 

analysis interval is required. A reasonable compromise between variance 

reduction and time resolution appears to be three averages. This results

The spectral subtraction method requires an estimate at each frequency 

bin of the expected value of noise magnitude spectrum,

This estimate is obtained by averaging the signal magnitude spectrum 

|X| during non-speech activity. Estimating in this manner places 

certain constraints when implementing the method. If the noise remains 

stationary during the subsequent speech activity, then an initial startup 

or calibration period of noise-only signal is required. During this period 

(on the order of a third of a second) an estimate of can be computed.

If the noise environment is nonstationary then a new estimate of 

must be calculated prior to bias removal each time the noise spectrum 

changes. Since the estimate is computed using the noise-only signal 

during non-speech activity, a voice switch is required. When the voice 

switch is off an average noise spectrum can be recomputed. If the noise 

magnitude spectrum is changing faster than an estimate of it can be computed, 

then time averaging to estimate y^ cannot be used. Likewise if the 

expected value of the noise spectrum changes after an estimate of it 

has been computed, then noise reduction through bias removal will be less 

effective or even harmful, ie removing speech where little noise is present.



F. Bias Removal and Half-Wave Rectification
A

The spectral subtraction spectral estimate S is obtained by subtracting 

the expected noise magnitude spectrum p from the magnitude signal 

spectrum |X|

Thus:

. | S(k) | = |X(k)| - u(k) k = 0, 1, ..., L-1

S(k) = H(k)• X(k), H(k) = 1 - |y ^ j | k = 0, 1, L-1

where L = DFT buffer length.

After subtracting, the differenced values having negative magnitudes 

are set to zero (half-wave rectification). These negative differences 

represent frequencies where the sum of speech plus local noise is less 

than the expected noise.

G. Residual Noise Reduction

As discussed in the previous section, the noise that remains after 

the mean is removed can be suppressed or even removed by selecting the 

minimum magnitude value from the three adjacent analysis frames in each 

frequency bin where the current amplitude is less than the maximum noise 

residual measured during non-speech activity. This replacement procedure 

follows bias removal and half-wave rectification. Since the minimum 

is chosen from values on each side of the current time frame, the modifica­

tion induces a one frame delay. The improvement in performance was 

judged superior to three frame averaging in that an equivalent amount 

of noise suppression resulted without the adverse effect of high-energy
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spectral smoothing. The following section presents examples of spectra 

with and without residual noise reduction.

H. Additional Noise Suppression During Non-Speech Activity

The final improvement in noise reduction is signal suppression during 

non-speech activity. As was discussed, a balance must be maintained 

between the magnitude and characteristics of the noise that is perceived 

during speech activity and the noise that is perceived during speech 

absence.

An effective speech activity detector was defined using spectra 

generated by the spectral subtraction algorithm. This detector required 

the determination of a threshold signaling absence of speech activity.

This threshold (T = -12dB) was empirically determined to insure that 

only signals definitely consisting of background noise would be attenuated

I. Synthesis

After bias removal, rectification, residual noise removal, and 

non-speech signal suppression, a time waveform is reconstructed from 

the modified magnitude corresponding to the center window. Again since 

only real data is generated, two time windows are computed simultaneously 

using one inverse FFT. The data windows are then overlap added to form 

the output speech sequence. The overall system block diagram is given 

in Figure 111.2.
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VI. Results

A. Introduction

Examples of the performance of spectral subtraction will be presented 

in two forms: isometric plots of time versus frequency magnitude spectra; 

with and without noise cancellation, and intelligibility and quality 

measurement obtained from the Diagnostic Rhyme Test (DRT) [11]. The 

DRT is a well established method for evaluating speech processing devices. 

Testing and scoring of the DRT data base was provided by Dynastat Inc.

[12]. A limited single speaker DRT test was used. The DRT data base 

consisted of 192 words using speaker RH recorded in a helicopter environ­

ment. A crew of 8 listeners were used.

The results are presented as follows: (1) short time amplitude 

spectra of helicopter speech; (2) DRT intelligibility and quality scores 

on LPC vocoded speech using as input the data given in (2); and (4) 

short time spectra showing additional improvements in noise rejection 

through residual noise suppression and nonspeech signal attenuation.

B. Short Time Spectra of Helicopter Speech

Isometric plots of time versus frequency magnitude spectra were 

constructed from the data by computing and displaying magnitude spectra 

from sixty-four overlapped Hanning windows. Each line represents a 

128 point frequency analysis. Time increases from bottom to top and 

frequency from left to right.

A 920 ms section of speech recorded with a noise cancelling microphone 

in a helicopter environment is presented. The phrase "Save your" was 

filtered at 3.2 kHz and sampled at 6.67 kHz. Since the noise was
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acoustically added, no underlying clean speech signal is available.

Figure IV.1 shows the digitized time signal. Figure IV.2 shows the 

average noise magnitude spectrum computed by averaging over the first 

300 ms of non-speech activity. The short time spectrum of the noisy 

signal x is shown in Figure IV. 3. Note the high amplitude, narrow 

band ridges corresponding to the fundamental (1550 Hz) and first harmonic 

(3100 Hz) of the helicopter engine, as well as the ramped noise floor 

above 1800 Hz. Figure IV.4 shows the result from bias removal and 

rectification. Figures IV.5., and IV . 6 show the noisy spectrum and the 

spectral subtraction estimate using three frame averaging.

These figures indicate that considerable noise rejection has been 

achieved although some noise residual remains. The next step was to 

quantitatively measure the effect of spectral subtraction on intelligibility 

and quality. For this task a limited single speaker DRT was invoked to 

establish an anchor point for credibility.

C. Intelligibility and Quality Results using the DRT

The DRT data base consisted of 192 words recorded in a helicopter

environment. The data base was filtered at 4 kHz and sampled at 8 kHz.

During the pause between each word, the noise bias was updated. Six

output speech files were generated: (1) Digitized original; (2) speech

resulting from bias removal and rectification without averaging; (3)

speech resulting from bias removal and rectification using three averages; 

(4) an LPC vocoded version of original speech; (5) an LPC vocoded version

of (2); and (6 ) an LPC vocoded version of (3). The last three experiments



were conducted to measure intelligibility and quality improvements resulting 

from the use of spectral subtraction as a preprocessor to a LPC analysis- 

synthesis device. The LPC vocoder used was a non-real time floating 

point implementation [17]. A 10 pole autocorrelation implementation 

was used with a SIFT pitch tracker [18]. The channel parameters used 

for synthesis were not quantized. Thus any degradation would not be 

attributed to parameter quantization but rather to the all-pole approxima­

tion to the spectrum and to the buzz-hiss approximation to the error 

signal. In addition, a frame rate of 40 frames/sec. was used which is 

typical of 2400 bps implementations. The vocoder on 3.2 kHz filtered ' 

clean speech achieved a DRT score of 88.

In addition to intelligibility, a course measure of quality [19] 

was conducted using the same DRT data base. These quality scores are 

neither quantitatively nor qualitatively equivalent to the more rigorous 

quality tests such as PARM or DAM [20]. However, they do indicate on 

a relative scale improvements between data sets. Modern 2.4Kbps systems 

are expected to range from 45 to 50 on composite acceptability; unprocessed 

speech, 88-92.

The results of the tests are summarized in Tables IV.1 through

IV.4. Tables IV.1 and IV.2 indicate that spectral subtraction alone 

does not decrease intelligibility but does increase quality especially 

in the areas of increased pleasantness and inconspicuousness of noise 

background. Tables IV.3 and IV.4 clearly indicate spectral subtraction 

can be used to improve the intelligibility and quality of speech processed 

through an LPC bandwidth compression device.
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D. Short Time Spectra Using Residual Noise Reduction and Non-Speech 

Signal Attenuation 

Based on the promising results of these preliminary DRT experiments 

the algorithm was modified to incorporate residual noise reduction and 

non-speech signal attenuation. Figure 15 shows the short time spectra 

using the helicopter speech data with both modifications added. Note 

that now noise between words has been reduced below the resolution of the 

graph and noise within the words significantly attenuated (compare with 

Figure IV.4.



A preprocessing noise suppression algorithm using spectral subtraction 

has been developed, implemented, and tested. Spectral estimates for the 

background noise were obtained from the input signal during non-speech 

activity. The algorithm can be implemented using a single microphone 

source and requires about the same computation as a high-speech convolution. 

Its performance was demonstrated using short-time spectra with and with­

out noise suppression, and quantitatively tested improvements in 

intelligibility and quality using the Diagnostic Rhyme test conducted 

by Dynastat Inc.

Results indicate overall significant improvements in quality and 

intelligibility when used as a preprocessor to a LPC speech analysis- 

synthesis vocoder.

V. Summary and Conclusions
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Table IV.1 

Diagnostic Rhyme Test Scores

A  A

Original S (No Average) S (Three Average)

Voicing 95 92 91

Nasality 82 78 77

Sustention 92 87 86

Sibilation 75 83 84

Graveness 68 70 66

Compactness 88 87 88

Total 84 83 82
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Table IV.2 

Quality Ratings

Naturalness of 
Signal

Inconspicuousness 
of Background

Intel 1igibil ity

Pleasantness

Overall
Acceptability

Composite
Acceptability

Original

63

36

30

20

27

26

S (No Average)

60

38

32

31

33

32

S (Three Averages)

61

42

33

25

29

29
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Diagnostic Rhyme Test Scores

LPC on  ̂ LPC on  ̂ LPC on
Original S without averaging S with averaging

Table IV.3

Voicing 84 90 86

Nasality 56 63 52

Sustention 49 52 56

Sibilation 61 70 88

Graveness 61 62 59

Compactness 83 83 93

Total 66 70 72
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Figure II

u(eJ“ )

• A •
1 Input-Output Relation between|X(e )| and|S (e )| .
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Figure III.l Data Segmentation and Advance.
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Figure III.2 System Block Diagram.
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Figure IV.4 Short Time Spectrum using Bias Removal and Half-wave 

Rectification.
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Figure IV.5 Short Time Spectrum of Helicopter Speeching using Three

Frame Averaging.
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Figure IV,6 Short Time Spectrum using Bias Removal and Half-wave

Rectification after Three Frame Averaging.
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Figure Iv.7 Short Time Spectrum using Bias Removal, Half-wave 

Rectification, Residual Noise Reduction, and Non­

speech Signal Attenuation, (Helicopter speech).
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ABSTRACT

This paper describes a theoretical and experimental investiga­

tion for detecting the presence of speech in wide-band noise. A robust 

algorithm for making the voiced-unvoiced-silence decision is described. 

This algorithm is based on a nonparametric statistical signal-detection 

scheme that does not require a training set of data and maintains a 

constant false alarm rate for a broad class of noise inputs. Two non­

parametric decision procedures are investigated, the Kruskal-Wallis and 

the multiple use of the two-sample Savage statistic. The performances 

of these detectors are evaluated and compared to that obtained from 

manually classifying twenty recorded utterances. In limited testing, 

the average probability of misclassification of voiced speech for the 

Savage case was less than 6, 13, 28, and 55 percent, corresponding to 

signal-to-noise ratios of 30, 20, 10, and 0 dB, respectively.



I. INTRODUCTION

The problem of classifying speech in noise as voiced, unvoiced, 

or silence (noise alone) is one of the most fundamental, important, and 

difficult problems encountered in speech processing [1, 2, 3, 4]. The 

voiced, unvoiced, or silence decision is required in most computer- 

oriented speech communications, understanding, or recognition systems. 

Various approaches for making this decision have been reported in the 

speech literature. In most of these papers, the detection of speech 

in background noise was conducted in a relatively noise-free environment 

under ideal laboratory acoustic recording conditions. However, such 

ideal acoustic environments are not realizable for practical usage of 

speech processing systems.

Practical application of the speech processing systems requires 

the development of robust speech algorithms so that speech quality 

does not degrade to an unacceptable level in the presence of acoustically 

coupled background and channel noise, including telephone and radio 

communication applications with speaker variations and nonstationary 

aspects, tandoming and conferencing configurations, and in the presence 

of communications jamming [2, 5],

The voice-unvoiced-silence decision is a difficult problem in 

these real environments. This paper reports the investigation of a 

nonparametric, rank-order statistical decision procedure that shows 

promise. It is theoretically robust in the communication sense, main­

taining a constant false alarm rate (type I error) independent of noise 

power for a large class of distributions. Although this detection
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approach is new to speech processing, it is a mature statistical 

discipline. The nonparametric detection review paper by Thomas [6] 

indicates that a bibliography published in 1962 gives more than 3000 

references. The application and analysis of nonparametric detections 

historically has been confined to nonengineering problems, an engineer­

ing text has only recently been published [7], Nonparametric decision 

procedures have been recently applied to radar systems that must - - 

operate in an environment of intense external interference [7].

The principal feature of nonparametric detection for this engi­

neering application is its ability to maintain a constant false-alarm 

rate for large classes of noise distributions (equipment noise, weather, 

clutter, interference)o Some specific advantages applied to the speech 

voiced-unvoiced-silence detection are:

1. It maintains a constant false-alarm rate with a fixed 

threshold for large classes of noise distributions.

2. It is robust (insensitive to changes not under test) and 

powerful (sensitive to specific factors under test) in a 

statistical sense.

3. It does not require statistical information about either 

the signal or the background noise (does not require a 

training set of data) to set a decision threshold.

4. Performance for signals in non-Gaussian noise may often 

surpass that of detection optimized against Gaussian noise.

5. It will operate where the noise statistics are nonstationary 

or change from one application to another.
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6. It is simple to implement digitally.

7. For large sample sizes, it can be as efficient as the Nymann- 

Pearson detection for a wide class of noise distribution.

The technique developed in this paper is designed to discriminate 

against wide-band noise, but is expected to do poorly against narrow­

band noise. However, with some reasonable modifications, the narrow­

band noise problem could be moderated. - . . - _ - 

Although the voiced-unvoiced-silence decision has wide speech 

system application, a considerable part of this research was motivated 

by the requirements of digital communications systems. The past 

several years have seen notable advances in the linear predictive cod­

ing (LPC) vocoder, research, development, implementation, including 

hardware and software realization. This effort to develop and imple­

ment an all-digital communications system has resulted in hardware 

implementation of the LPC vocoder alogrithm. The LPC algorithm was 

designed in a relatively noise-free environment; its quality and per­

formance degrade in the presence of background noise. Practical usage 

of the LPC vocoder in acoustically adverse environments has identified 

a need for more robust speech-processing algorithms. The principal 

objective of this research was to address the robust speech detection 

issue in the presence of wide-band noise.
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II. BACKGROUND

The problem of detecting voice signals in the presence of noise 

has only been addressed by a small number of investigations. In these 

investigations, the traditional approach to distinguish between voice 

and noise was to level detect waveform energy [1, 8, 9]. The threshold 

normally was experimentally determined by a limited training set of 

data [9, 10], by the maximum noise power recommended by CCITT for 

telephone channels [4, 9, 11], or by a threshold adjustment process 

updated on a fixed schedule (every half second) [12],

Recently, Atal and Rabiner [13] suggested a pattern recognition 

approach to voiced-unvoiced-silence classification in five measurements 

or features —  energy, zero-crossing rate, autocorrelation coefficient 

at unit sample delay, first predictor coefficient, and energy of the 

predictor errors were combined using a non-Euclidian distance metric 

to give a reliable decision. This method was optimized for telephone 

line inputs by Rabiner, et al. [14], and used for digit recognition by 

Rabiner, et al. [15, 16], The algorithm was modified to do an average 

signal spectrum template match using an LPC distance measure [17].

Siegel and Steiglitz [18] proposed a modification to the Atal 

[13] algorithm in which a relatively small set of samples was used to 

train the classifier using three features —  LPC normalized minimum 

error, RMS value, and ratio of high-to-low frequency energy.

Lin [19] and Adoul [20, 21] modified Atal and Rabiner's pattern 

recognition approach for their proposed detectors.
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Sarma and Venugopal [22] suggested a classification technique 

requiring less computational effort based on the concept of variable 

decision space, using only three features and by avoiding linear pre­

dictive analysis.

The pattern recognition approach to the voiced-unvoiced-silence 

classification has usefulness for many speech processing systems ap­

plications. However, it does not address the robustness issue in'a ~ 

communications sense since the scheme requires a training set of data 

and will operate without degradation in performance only for that 

particular recording condition. The nonstationary speaking environ­

ment limitation mentioned by Atal and Rabiner still exists [13]. ' 

An optimum classification detector, suggested by McAuley [23], 

in which a matched digital Wiener filter was designed for each signal 

class, parallel processed the signal by each of these filters. A 

statistical maximum likelihood decision criterion was used to make this 

final classification. Rabiner [15] indicated that this approach shows 

promise, but that it requires a large amount of signal processing, and 

has not as yet been extensively tested. .

McAuley [24] modified his method to include an adaptive noise 

cancellation algorithm. The training requirement for this algorithm, 

though not as stringent as the Atal-Rabiner algorithm, requires a 300 

ms speech-free interval to determine noise detection thresholds. 

Jankowski [12] developed an adaptive threshold method that operated on 

a fixed schedule every half second to train the detector.
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III. RATIONALE

The following rationale presents a nonparametric approach to 

speech detection which requires no training sets or adaptive techniques. 

A nonparametric rank-ordered statistical detection technique is used 

to classify a sequence of small intervals of data as voiced, unvoiced, 

or silence. The strategy of nonparametric detection used in this 

paper is to compare the rank-order of samples from two or more experi­

ments. The primary problems are to select an efficient statistic and 

test procedure which are sensitive to voiced-unvoiced-silence param­

eters but are insensitive to other variables such as signal-to-noise 

ratio. Theoretical discussions of the following issues are presented 

in Woinsky [25], ‘

First consider the traditional hypothesis test involving samples 

from two experiments; more than two samples are considered later.

The sets X = <(x , x , x 1 and Y = ly. , y„, ..., y 1 denote the( ^ 1 2  mj 1 z nj
samples obtained in each experiment where the elements x^ and y^

represent amplitude values of random, independent samples of size m and

n, respectively. The sets X and Y are assumed to be from populations

with unknown continuous cumulative distribution functions F and F ,x y»
respectively. The detection problem is to make the decision F^ = F^

or F £ F . The statement H :F = F is the null hypothesis. The x y o x y J

alternate hypothesis is H^: F^ £ F .

The null hypothesis Hq :Fx  = can be tested without any knowledge

of Fx and F^ using nonparametric rank-ordered statistical methods as

follows. Since it is assumed that F = F , all data from X and Y arex y ’
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pooled to form the set Z = X + Y = < z . , z ,  z ? . The elementsI I  z m+nj
in Z are assigned ranks according to relative values (larger or

smaller) and reordered according to rank such that

where N = n+m. The basic assumption of rank-ordered statistics is 

that any element in X or Y is equally likely to appear as any given 

rank in R(z). Let the elements in R(z) belonging to X be r^x.^. The 

probability of occurrence of any specified rank-ordered subset X is 

equally likely with the probability of occurrence 1 / ^ ^  where the 

binomial coefficient is all possible arrangements (combinations) of 

the subset X in Z. All probabilities of rank-ordered statistics can 

be determined by counting possible outcomes and, consequently, all 

probability calculations are independent of amplitude information 

(signal-to-noise ratio). ■

The hypothesis test is completed by selecting a test statistic

T and a decision threshold T , i.e., if P(T > T \ < a, then H :F = Fa V - a) — o x  y
is rejected. For the purposes of this paper, a single tail decision 

is made using a threshold T^ corresponding to the probability a of re­

jecting Hq when Hq is true (a type I error).

Two nonoptimal test procedures are considered which deal with 

experiments involving multiple samples, the Kruskel-Wallis and simultane­

ous [25, 27, 28, 29, 30]. Two basic test statistics are introduced, the 

Mann-Whitney-Wilcoxon [ 7 ] and the Savage [25, 31, 32], which are modified
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for use in the multiple test procedures. The modifications involve a 

chi-squared and mixed statistic [33]. The Mann-Whitney [7] and Savage 

[31] tests, which are two sample tests, are discussed first to intro-

metric statistics before the multiple sample tests are considered. 

The Mann-Whitney-Wilcoxon
Statistic and Mann-Whitney Test - • - - - -

The Mann-Whitney-Wilcoxon statistic S is simply the sum of the 

ranks of the elements belonging to X; i.e.,

duce basic concepts of the Mann-Whitney-Wilcoxon and Savage nonpara-

m
S = I (1)

i=l

which can be modified such that

(m + 1) (2)

which gives

E T,'MW
1
2 11111 (3)

Var T. 1 nm (n + m + 1) (4 )MW 12

where E [•] is the expected value and Var [•] is the variance operator 

As an example, consider the Mann-Whitney test based

on the samples



with a decision threshold P^S > = a = 0.05. We find that

Z = {3, 5, 8, 10, 14, 16, 32} 

and the rank sequence is

R(Z) - jr(y2), r(y3), r ^ 2), r(yJ , r ^ , r ^ , r ^ 3)}

= {1, 2, 3, 4, 5, 6, 7}

The S statistic for this case is

S = 3 + 6 + 7 = 16

As a matter of counting we note that the largest possible value of S 

could have been 18 which could have occurred once, S = 17 could have 

occurred once, and S = 16 could have occurred twice (S = 3 + 6 + 7 and 

S = 4 + 5 + 7 ) ,  etc. The total number of possible outcomes is 

7!/(31) (4!) = 35. Consequently, the corresponding probabilities of



which gives P(S > 16) = 4/35 = 0.114 > a = 0.05. Consequently, Hq :

Fx = Fy is accepted. The hypothesis would have been rejected if S =

18.

For large values of m, the central limit theorem applies and 

the T ^  statistic approaches normality. Tables for the T ^  statistic 

can be found for n and m ranging up to 20 [7 ]. For larger values, 

normal distribution tables can be used. The Mann-Whitney test remains 

unbiased and consistent if F^ and differ only in location of their 

means [7], Consequently, the Mann-Whitney test is used primarily to 

test the difference in mean values; i.e., H0:E[X] = E[Y] or H^:E[X] ^ 

E[Y]. Other tests such as the Savage are more sensitive to differences 

in variance.

The Savage Statistic and Test

The Savage statistic is the optimal nonparametric rank-ordered

statistic for random variables exponentially distributed in amplitude

considering the hypothesis H :o = a [3]1 where a and a represent ' o x y  x y
the standard deviations of X and Y. To a good approximation voiced 

speech is exponentially distributed. Figure 1 presents an amplitude 

probability density function experimentally determined from speech 

[34] which is composed of two components, voiced and unvoiced. The 

unvoiced accounts for the high peak near zero which tends to be nor­

mally distributed, whereas the diffuse tails near ±2a unlike the normal 

density function are caused by voiced speech. Two exponential density 

functions, Gamma and Laplace, are superimposed in Fig. 1 which better
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x/o

FIGURE 1. REAL SPEECH AND THEORETICAL GAMMA AND LAPLACE PROBABILITY DENSITIES.
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represent voiced speech in the neighborhood of ±2c.

Since the voiced-unvoiced-silence decision thresholds are usually 

around the 2c diffuse tail, better decisions can be made if voiced 

speech is modeled as being exponentially distributed. In nonparametric 

decision theory, the optimal Savage statistic for exponentially dis­

tributed speech is [32]

U, (5)

where

1 if z. eX k

0 if z eY k

(6)

N
I

j=N-k+l
(7)

N = m + n

The term weights the rank elements in Z belonging to X with in­

creasing value as k -*■ N. Consequently, the Tg statistic gives more 

emphasis to the statistical data near the decision thresholds than the

T,„, statistic. The mean and variance of the Savage statistic are MW

E T, = m (8)
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Associated probabilities for decision purposes can be found in [32]

Table 10 for n and m less than 20. For larger values, Tg approaches 

normality. Consequently the normal distribution can be used in con- 

iunction with Eqs. 8 and 9 to establish the decision threshold T .j -i a

Kruskal-Wallis Multiple Decision Procedure

The voiced-unvoiced-silence decision as described in the follow­

ing section involves independent samples from four frequency bands.

The Kruskal-Wallis test is considered since it was specifically designed 

to test the multiple sample problem.

assigned ranks rfx_„^ . The samples are assumed to be distributed F^,

In general consider K samples

K
with the total number of observations N = £ n_̂  which are pooled and

i=l



F2 • • •» F and K multiple decisions are made based upon the nullK “ "
hypotheses Hq :F_̂  = = ... = Fi_i = Fi+i = ••• = Fk)’ T^e multiple 
sample problem differs from the two sample problems since two or more 

distributions may not be equal to the remaining. Consequently the 

pooled sample may be biased (upward in the case of speech). Reference 

[25] indicates that no optimal test statistics have been found. How­

ever, a decision procedure can be formulated using the statistic ' - ~

which is asymptotically chi-squared distributed with K - 1 degrees of 

freedom and, consequently, allows use of existing probability tables 

to set T . The ('N - n,]/N term asymptotically removes the bias from

(10)

the pooled sample. The T term is the Savage statistic for the ithD 1
sample with

(11)

and

(12)

The Savage test statistic T was selected since it is sensitive toD 1
voiced speech and a variance alternative.
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The Mann-Whitney-Wilcoxon and Savage test statistics are biased 

when applied to the multiple sample case as discussed in the previous 

paragraph. For small a << 1 the correction factor

a' = 2a/K(k - 1) (13)

may be applied to remove the bias [29, p. 179]. Tests using this cor­

rection factor are referred to as a "Simultaneous Decision Procedure".

Mixed Statistics

2Feustal [33] demonstrated that on the order of N operations are

required to perform the ranking operation. Feustal proposed a mixed

statistical test that requires on the order of pN operations for the

case where n = n. = n .  The n observations from each of the K samples
i J

are divided into p groups of q observations. The amplitude values of 

each group are summed forming pK values which are then ranked and 

incorporated into any of the above rank-ordered tests. Feustal 

demonstrated that negligible loss in efficiency is experienced for 

q > 15.

Simultaneous Decision Procedure
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IV. SYSTEM DESCRIPTION

The operation of the voiced-unvoiced-silence decision system 

investigated in this paper is presented in Fig. 2. The system was 

designed to discriminate against wide-band noise with a uniform power 

spectrum across the audio range. A bank of four pass-band filters was 

used to partition the frequency spectrum into four contiguous intervals 

as presented in Fig. 3. The gains of each filter were normalized such 

that the average power out of each filter were equal for the white 

noise case. With voiced speech present, the probability distributions 

of the signal frcm the first two filters should have larger variances 

than the last two filters as indicated by the typical spectrums 

represented in Fig. 4. With unvoiced speech present, the probability 

distributions of the signal from the last two filters should have 

larger variances than the first two filters as indicated in Fig. 5.

Under this strategy a few voiced-unvoiced decisions are likely to fail 

with front vowels similar to [i] which have strong second and third 

formants between 3 and 4 kHz. The partitioning of the audio spectrum 

by the filter bank was based upon equal contribution to the Articulation 

Index and Perceptual Criteria discussed by [35]. Variations in male, 

female, and children's speech were considered.

The speech signal was low-pass filtered to 3.2 kHz, sampled at 

6.67 kHz, and high-pass filtered at approximately 200 Hz to remove any 

dc or low-frequency hum. The output from the high-pass filter was 

formatted into blocks of 100 samples (15 ms of data). Each block of
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FREQUENCY IN kHz

PARTITIONING OF THE SPEECH SPECTRUM INTO 
FOUR CONTIGUOUS BANDS THAT CONTRIBUTE 
EQUALLY TO ARTICULATION INDEX. THE FRE­
QUENCY RANGE IS 200 TO 3200 Hz.

SUB-BAND FREQUENCY RANGE
NUMBER (Hz)

1 200 - 700
2 700 - 1310
3 1310-2020
4 2020 - 3200

4
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5. Typical spectrum of unvoiced speech, dB versus kHz.
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V. NONPARAMETRIC DETECTOR TRADE STUDY

As indicated in Section III, two test procedures were selected 

for evaluation: Kruskal-Wallis and simultaneous which included the 

Mann-Whitney-Wilcoxon and Savage statistics in conjunction with chi- 

squared and mixed statistics. The evaluation was based upon correct 

decisions (recognition rate) for each category— voiced, unvoiced, and 

silence (noise only). The data base was 20 words taken from a rhyme 

file provided by Dyna Stat, Inc. [36], The words were: gob, sue, 

taunt, nil, boast, jab, cheat, said, gnaw, weed, deck, chew, thong, 

keep, got, dank, shoes, shag, pool, and dip. Wide-band noise was 

added to a clean speech recording to produce signal to noise ratios 

(SNR) of 30, 20, 10, and 0 dB. Reference voiced, unvoiced, and silence 

classifications for the data base were established by close visual 

inspection of the waveforms and by listening tests of the clean speech. 

The data were divided into 15 ms blocks.

Decision Procedure

For each 15 ms data block, 100 samples from each of the four 

filters were pooled and ranked. Each sample set was represented as 

X^, X^, X^, and X^ with cumulative distribution functions F^, F^, F^, 

and F^ corresponding to the contiguous filter banks starting with the 

lowest frequency filter as indicated in Fig. 3. A test statistic T 

for each filter was formed according to Eq. 2, 5, or 10, depending on 

which test procedure was being evaluated. A critical value T^ cor­

responding to a 5 percent false-alarm rate (type I error) was selected.
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The null hypothesis H :Fn = F„ = F0 = F, was tested. If T < T for all 
J o 1 2 3 4 a

four filters, the hypothesis was accepted and the decision made that 

noise only (silence) was present. If T > T^ for any filter, then Hq 

was rejected, and it was concluded that the signal was either voiced 

or unvoiced. If the test statistics from more than one filter were 

greater than T , then only the largest T was considered. The voiced 

decision was made if the largest T > T^ was from the first or second - 

filter. The unvoiced decision was made if the largest T > T^ was from 

the third or fourth filter.
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VI. TEST RESULTS

Preliminary tests were conducted to establish a testing 

strategy. The Mann-Whitney simultaneous test was conducted on three 

words and a 4.5-second noise file to determine if a significant non­

zero mean value existed in the amplitude data. The hypothesis that 

the mean value is zero could not be rejected at the 95 percent level 

(a = 0.05). It was concluded that short-term 15 ms data blocks at 100 

samples per filter output would not produce any significant nonzero 

mean value (all data were high-pass filtered with a stop band 0 to 

200 Hz). The Mann-Whitney-Wilcoxon statistic was discontinued at this 

point in favor of the Savage statistic which theoretically is more 

sensitive to voiced speech. , •

The Savage statistic was tested on the 4.5-second noise only 

file using the mixed procedure. The amplitudes of 100 samples from 

each filter were grouped into n = 20 sets of 5 each. The average of 

each group was ranked and used to form a Savage statistic. The cal­

culated mean was 19.97 compared to the theoretical mean of 20, Eq. 11.

The calculated variance was 5.97 (with a standard deviation of 0.56) 

compared to a theoretical variance of 3.77, Eq. 12, which was promising.

The preliminary tests continued by comparing the mixed Savage 

to the full rank (100 ranked samples per filter) Savage simultaneous 

decision procedure on three words. No significant differences were ob­

served in making the voiced-unvoiced-silence decision. Values of 

= 3.30 and 2.39 corresponding to a’ = 0.0083 (Eq. 13, K = 4) were used for
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the decision threshold for the mixed and full rank cases, respectively. 

This test was repeated using a mixed versus a full rank Kruskal-Wallis 

test procedure. Likewise no significant differences were observed. 

Values of T^ = 18.1 and 9.48 corresponding to a = 0.05 were used for 

the decision threshold for the mixed and full rank cases, respectively. 

Since fewer calculations are required with the mixed statistic, the 

full rank method was discarded.

Continuing, the decision was made to complete the tests by 

comparing the recognition rates of the mixed Savage simultaneous test 

to the mixed Kruskal-Wallis multiple test on the 20 words from the 

rhyme file. Tables I and II present the recognition rates. Data re­

ported as indicate that either no unvoiced sounds occurred in the 

corresponding word or a computer failure occurred. Only recognition 

rates are reported which are the complements of type I and II errors. 

The complement of the silence recognition rate is a type I error, and 

the average complement of the voiced and unvoiced recognition rate is 

the type II error.
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Table I. Recognition rates for the mixed Savage simultaneous
decision procedure, Tq = 3.30.

Percent
Recognition

Silence Voiced Unvoiced

Word SNR dB 30 20 10 0 30 20 10 0 30 20 10 0

Gob - - - - 95 79 51 28 - - - -

Sue - 100 100 100 - 100 100 100 - 92 58 25

Taunt 95 95 95 91 95 95 82 36 100 100 0 0

Nil 85 100 100 100 100 89 78 49 - - - -

Boast 82 96 89 89 100 95 84 58 100 67 0 0

Jab 90 90 90 90 84 70 38 24 100 75 50 25

Cheat 91 95 91 91 100 91 91 76 86 86 71 57

Said 71 86 100 100 100 93 52 44 - - - -

Gnaw 75 100 100 100 100 94 86 17 - - - -

Weed 100 100 100 100 95 93 79 45 - - - -

Deck 100 100 100 100 82 77 59 41 43 29 0 0

Chew 100 100 100 100 96 90 90 45 86 86 71 43

Thong 100 100 100 100 95 86 84 22 - - - -

Keep 100 100 100 100 94 88 71 71 100 67 33 0

Got 90 95 86 86 83 70 61 30 100 100 0 0

Dank 100 100 100 100 89 78 50 28 - - - -

Shoes 100 - 100 100 100 - 100 77 100 - 83 50

Shag 67 100 100 100 97 87 61 42 100 91 64 27

Pool 88 100 100 100 97 95 86 51 - - - -

Dip 91 95 100 100 87 83 48 26 - - - -

Average % 90 97 97 97 94 87 72 45 92 81 44 20
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procedure, T = 18.1. a
Table II. Recognition rates for the mixed Kruskal-Wallis decision

Percent
Recognition

Silence Voiced Unvoiced

Word SNR dB 30 20 10 0 30 20 10 0 30 20 10 0

Gob - - - - 93 77 46 18 - - - -

Sue - 100 100 100 - 100 100 91 - 17 1 1

Taunt 100 100 100 100 95 95 78 45 100 0 0 0

Nil 100 100 100 100 100 89 46 41 - - - -

Boast 100 100 100 100 100 94 72 56 100 33 0 0

Jab 100 100 100 100 78 57 38 14 100 75 50 25

Cheat 100 100 100 100 88 88 82 82 77 71 71 29

Said 100 100 100 100 100 89 52 30 - . - - -

Gnaw 100 100 100 100 100 92 67 22 - - - ■ -

Weed 100 100 100 100 95 93 69 45 - - - -

Deck 91 91 91 91 86 73 55 27 43 14 0 0

Chew 100 100 100 100 97 93 86 31 86 86 71 29

Thong 100 100 100 100 92 86 84 30 - - - -

Keep 100 100 100 100 94 82 71 65 100 67 33 0

Got 100 100 100 100 87 74 57 17 0 0 0 0

Dank 100 100 100 100 75 72 39 10 - - - -

Shoes 100 - 100 100 100 - 100 67 100 0 83 50

Shag 100 100 100 100 90 81 50 16 100 91 50 27

Pool 100 100 100 100 97 92 86 30 - - - -

Dip 100 100 100 100 87 74 30 26 - - - -

Average % 99 100 100 100 92 84 65 37 80 45 32 14
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VII. CONCLUSIONS

Test results presented in Tables I and II demonstrate a level 

of robustness based upon the following observations. At 30 dB SNR 

speech classification can be sustained at a high recognition rate 

with a single threshold T^ set by a theoretical value obtained from a 

probability table. Measurements of noise power (training set) were

not used to set T . False-alarm rates for silence classificationa
(type I error) remained relatively constant as the SNR was varied as 

expected, although the rate was less than the predicted 5 percent in 

most cases. The bias problem associated with multiple sample testing 

accounts for this reduction. False-alarm rates for voiced and unvoiced 

classifications (type II error) increased as the SNR decreased as ex­

pected since T^ was set in terms of a constant type I error.

The primary problem that caused a 10 percent false-alarm rate 

for silence classification at 30 dB SNR in the Savage simultaneous 

test was traced to a nonuniform power spectrum in the background noise 

of the original speech recordings. The decline in recognition rates 

of voiced and unvoiced classifications as the SNR was reduced was 

primarily caused by masking of the transitions between speech segments. 

Misclassification of voiced as unvoiced was rare, only occurring in 

the words "weed" and "keep". No misclassification of unvoiced as 

voiced occurred.

As indicated in Tables I and II, the Savage simultaneous test 

was more effective in classifying voiced and unvoiced speech, whereas
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