
Memory Hierarchy Reconfiguration for Energy and Performance in
General-Purpose Processor Architectures*

Rajeev Balasubramonian*, David Albonesi*, Alper Buyuktosunoglu*, and Sandhya Dwarkadas*
t Department of Computer Science

* Department of Electrical and Computer Engineering
University of Rochester

Abstract

Conventional microarchitectures choose a single mem­
ory hierarchy design point targeted at the average appli­
cation. In this paper, we propose a cache and TLB layout
and design that leverages repeater insertion to provide dy­
namic low-cost configurability trading o ff size and speed
on a per application phase basis. A novel configuration
management algorithm dynamically detects phase changes
and reacts to an application’s hit and miss intolerance in
order to improve memory hierarchy performance while tak­
ing energy consumption into consideration. When applied
to a two-level cache and TLB hierarchy at 0.1 pm technol­
ogy, the result is an average 15% reduction in cycles per
instruction (CPI), corresponding to an average 27% reduc­
tion in memory-CPI, across a broad class o f applications
compared to the best conventional two-level hierarchy o f
comparable size. Projecting to sub-. 1 pm technology design
considerations that call fo r a three-level conventional cache
hierarchy fo r performance reasons, we demonstrate that a
configurable L2/L3 cache hierarchy coupled with a conven­
tional LI results in an average 43% reduction in memory
hierarchy energy in addition to improved performance.

1 Introduction

The performance of general purpose microprocessors
continues to increase at a rapid pace. In the last 15 years,
performance has improved at a rate of roughly 1.6 times per
year with about half of this gain attributed to techniques for
exploiting instruction-level parallelism and memory local­
ity [13]. Despite these advances, several impending bottle­
necks threaten to slow the pace at which future performance

‘ This work was supported in part by NSF grants CDA-9401142, EIA-
9972881, CCR-9702466, CCR-9701915, CCR-9811929, CCR-9988361,
and CCR-9705594; by DARPA/ITO under AFRL contract F29601-00-K-
0182; and by an external research grant from DEC/Compaq.

improvements can be realized. Arguably the single biggest
potential bottleneck for many applications in the future will
be high memory latency and the lack of sufficient mem­
ory bandwidth. Although advances such as non-blocking
caches [10] and hardware and software-based prefetch­
ing [14, 21] can reduce latency in some cases, the under­
lying structure of the memory hierarchy upon which these
approaches are implemented may ultimately limit their ef­
fectiveness. In addition, power dissipation levels have in­
creased to the point where future designs may be funda­
mentally limited by this constraint in terms of the function­
ality that can be included in future microprocessors. A l­
though several well-known organizational techniques can
be used to reduce the power dissipation in on-chip mem­
ory structures, the sheer number of transistors dedicated to
the on-chip memory hierarchy in future processors (for ex­
ample, roughly 92% of the transistors on the Alpha 21364
are dedicated to caches [6]) requires that these structures be
effectively used so as not to needlessly waste chip power.
Thus, new approaches that improve performance in a more
energy-efficient manner than conventional memory hierar­
chies are needed to prevent the memory system from fun­
damentally limiting future performance gains or exceeding
power constraints.

The most commonly implemented memory system or­
ganization is likely the familiar multi-level memory hier­
archy. The rationale behind this approach, which is used
primarily in caches but also in some TLBs (e.g., in the
MIPS R10000 [24]), is that a combination of a small, low-
latency L I memory backed by a higher capacity, yet slower,
L2 memory and finally by main memory provides the best
tradeoff between optimizing hit time and miss time. A l­
though this approach works well for many common desk­
top applications and benchmarks, programs whose work­
ing sets exceed the L I capacity may expend considerable
time and energy transferring data between the various lev­
els of the hierarchy. I f the miss tolerance of the applica­
tion is lower than the effective L I miss penalty, then perfor­

0-7695-0924-X/00 $10.00 © 2000 IEEE 245

mance may degrade significantly due to instructions wait­
ing for operands to arrive. For such applications, a large,
single-level cache (as used in the HP PA-8X00 series of m i­
croprocessors [12, 17, 18]) may perform better and be more
energy-efficient than a two-level hierarchy for the same to­
tal amount of memory. For similar reasons, the PA-8X00
series also implements a large, single-level TLB. Because
the TLB and cache are accessed in parallel, a larger TLB
can be implemented without impacting hit time in this case
due to the large L I caches that are implemented.

The fundamental issue in current approaches is that no
one memory hierarchy organization is best suited for each
application. Across a diverse application mix, there will
inevitably be significant periods of execution during which
performance degrades and energy is needlessly expended
due to a mismatch between the memory system require­
ments of the application and the memory hierarchy imple­
mentation. In this paper, we present a configurable cache
and TLB orchestrated by a configuration algorithm that can
be used to improve the performance and energy-efficiency
of the memory hierarchy. Key to our approach is the ex­
ploitation o f the properties of conventional caches and fu­
ture technology trends in order to provide cache and TLB
configurability in a low-intrusive manner. Our approach
monitors cache and TLB usage by detecting phase changes
using miss rates and branch frequencies, and improves per­
formance by properly balancing hit latency intolerance with
miss latency intolerance dynamically during application ex­
ecution (using CPI as the ultimate performance metric).
Furtherm ore, instead o f changing the clock rate as proposed
in [2], we implement a cache and TLB with a variable la­
tency so that changes in the organization of these structures
only impact memory instruction latency and throughput. Fi­
nally, energy-aware modifications to the configuration algo­
rithm are implemented that trade off a modest amount of
performance for significant energy savings.

Our previous approaches to this problem [2, 3] have
exploited the partitioning of hardware resources to en­
able/disable parts o f the cache under software control, but
in a limited manner. The issues o f how to practically imple­
ment such a design were not addressed in detail, the analysis
only looked at changing configurations on an application-
by-application basis (and not dynamically during the exe­
cution o f a single application), and the simplifying assump­
tion was made that the best configuration was known for
each application. Furthermore, the organization and per­
formance of the TLB was not addressed, and the reduction
of the processor clock frequency with increases in cache
size limited the performance improvement that could be re­
alized.

Recently, Ranganathan, Adve, and Jouppi [22] proposed
a reeonfigurable cache in which a portion of the cache could
be used for another function, such as an instruction reuse

buffer. Although the authors show that such an approach
only modestly increases cache access time, fundamental
changes to the cache may be required so that it may be used
for other functionality as well, and long wire delays may
be incurred in sourcing and sinking data from potentially
several pipeline stages.

This paper significantly expands upon our results in [5]
that addressed only performance in a limited manner for
one technology point (0.1 ̂ m) using a different (more hard­
ware intensive) configuration algorithm. In this paper, we
explore the application of the configurable hierarchy as a
L1/L2 replacement in 0.1/xm technology, and as an L2/L3
replacement for a 0.035/im feature size. For the former, we
demonstrate an average 27% improvement in memory per­
formance, which results in an average 15% improvement in
overall performance as compared to a conventional mem­
ory hierarchy. Furthermore, the energy-aware enhance­
ments that we introduce bring memory energy dissipation in
line with a conventional organization, while still improving
memory performance by 13% relative to the conventional
approach. For 0.035/im geometries, where the prohibitively
high latencies of large on-chip caches [1] call for a three-
level conventional hierarchy for performance reasons, we
demonstrate that a configurable L2/L3 cache hierarchy cou­
pled with a conventional L I reduces overall memory energy
by 43% while even slightly increasing performance. This
latter result demonstrates that because our configurable ap­
proach significantly improves memory hierarchy efficiency,
it can serve as a partial solution to the significant power dis­
sipation challenges facing future processor architects.

The rest of this paper is organized as follows. The cache
and TLB architectures are described in Section 2 includ­
ing the modifications necessary to enable dynamic recon­
figuration. In Section 3, we discuss the dynamic selection
mechanisms, including the counter hardware required and
the configuration management algorithms. In Sections 4
and 5, we describe our simulation methodology and present
a performance and energy dissipation comparison with con­
ventional multi-level cache and TLB hierarchies for the two
technology design points. Finally, we conclude in Sec­
tion 6.

2 Cache and TLB Circuit Structures
In this section, we describe the circuit structures of the

conventional and configurable caches and TLBs that we
consider. We also describe two different approaches for us­
ing configurable caches as replacements for conventional
on-chip cache hierarchies.

2.1 Configurable Cache Organization

The cache and TLB structures (both conventional and
configurable) that we model follow that described by M c-

246

Even Data Bus Odd Data Bus

512KB Array
Structure

Figure 1. The overall organization of the cache data
arrays

Farland in his thesis [19]. McFarland developed a detailed
timing model for both the cache and TLB that balances both
performance and energy considerations in subarray parti­
tioning, and which includes the effects of technology scal­
ing.

We start with a conventional 2M B data cache that is or­
ganized both for fast access time and energy efficiency. As
is shown in Figure 1, the cache is structured as two 1MB
interleaved banks1 in order to provide sufficient memory
bandwidth for the four-way issue dynamic superscalar pro­
cessor that we simulate. In order to reduce access time and
energy consumption, each 1MB bank is further divided into
two 512KB SRAM structures one of which is selected on
each bank access. We make a number of modifications to
this basic structure to provide configurability with little im­
pact on access time, energy dissipation, and functional den­
sity.

The data array section of the configurable structure is
shown in Figure 2 in which only the details of one subarray
are shown for simplicity. (The other subarrays are identi­
cally organized). There are four subarrays, each of which
contains four ways. In both the conventional and config­
urable cache, two address bits (Subarray Select) are used
to select only one of the four subarrays on each access in
order to reduce energy dissipation. The other three subar­
rays have their local wordlines disabled and their precharge,
sense amp, and output driver circuits are not activated. The
TLB virtual to real page number translation and tag check
proceed in parallel and only the output drivers for the way
in which the hit occurred are turned on. Parallel TLB and
tag access can be accomplished i f the operating system can
ensure that index Jbits-page j)jfset Jbits bits o f the virtual and
physical addresses are identical, as is the case for the four­
way set associative 1MB dual-banked L I data cache in the
HP PA-8500 [11],

In order to provide configurability while retaining fast

'The banks are word-interleaved when used as an L1/L2 replacement
and block interleaved when used as an L2/L3 replacement.

access times, we implement several modifications to M c­
Farland’s baseline design as shown in Figure 2:

• McFarland drives the global wordlines to the center of
each subarray and then the local wordlines across half
of the subarray in each direction in order to minimize
the worst-case delay. In the configurable cache, be­
cause we are more concerned with achieving compa­
rable delay with a conventional design for our smallest
cache configurations, we distribute the global word­
lines to the nearest end of each subarray and drive the
local wordlines across the entire subarray.

• McFarland organizes the data bits in each subarray by
bit number. That is, data bit 0 from each way are
grouped together, then data bit 1, etc. In the config­
urable cache, we organize the bits according to ways
as shown in Figure 2 in order to increase the number
of configuration options.

• Repeater switches are used in the global wordlines to
electrically isolate each subarray. That is, subarrays 0
and 1 do not suffer additional global wordline delay
due to the presence of subarrays 2 and 3. Providing
switches as opposed to simple repeaters also prevents
wordline switching in disabled subarrays thereby sav­
ing dynamic power.

• Repeater switches are also used in the local wordlines
to electrically isolate each way in a subarray. The re­
sult is that the presence of additional ways does not
impact the delay of the fastest ways. Dynamic power
dissipation is also reduced by disabling the wordline
drivers of disabled ways.

• Configuration Control signals from the Configuration
Register provide the ability to disable entire subarrays
or ways within an enabled subarray. Local wordline
and data output drivers and precharge and sense amp
circuits are not activated for a disabled subarray or
way.

Using McFarland’s area model, we estimate the addi­
tional area from adding repeater switches to electrically iso­
late wordlines to be 7%. In addition, due to the large capac­
ity (and resulting long wordlines) of each cache structure,
a faster propagation delay is achieved with these buffered
wordlines compared with unbuffered lines. Moreover, be­
cause local wordline drivers are required in a conventional
cache, the extra drivers required to isolate ways within a
subarray do not impact the spacing of the wordlines, and
thus bitline length is unaffected. In terms of energy, the
addition of repeater switches increases the total memory hi­
erarchy energy dissipation by 2-3% in comparison with a
cache with no repeaters for the simulated benchmarks.

247

Subarray2 SubarrayO Subarrayl Subarray3
Precharge

filnhal WnrHlinp

<h---

Way3 Way2

5 Z 5

Wayl

ColumnMUXes
SenseAmps

WayO

H I

Pre*decoder

Row
Decoder

: Data Bus

Subarray/Way Select
Cache Select Logic

Subarray Select -
(from address)

1 . LTag Hit Configuration Control
(from tags) (from Config Register)

Figure 2. The organization of the data array section of one of the 5 12KB cache structures

2.2 Configurable Cache Operation

With these modifications, the cache behaves as a virtual
two-level, physical one-level non-inclusive cache hierarchy,
with the sizes, associativities, and latencies of the two lev­
els dynamically chosen. In other words, we have designed
a single large cache organization to serve as a configurable
two-level non-inclusive cache hierarchy, where the ways
within each subarray that are initially enabled for an L I
access are varied to match application characteristics. The
latency of the two sections is changed on half-cycle incre­
ments according to the timing of each configuration (and
assuming a 1 GHz processor). H a lf cycle increments are
required to provide the granularity to distinguish the differ­
ent configurations in terms of their organization and speed.
Such an approach can be implemented by capturing cache
data using both phases of the clock, similar to the double­
pumped Alpha 21264 data cache [16], and enabling the
appropriate latch according to the configuration. The ad­
vantages of this approach is that the timing of the cache
can change with its configuration while the main processor
clock remains unaffected, and that no clock synchronization
is necessary between the pipeline and cache/TLB.

However, because a constant two-stage cache pipeline
is maintained regardless of the cache configuration, cache
bandwidth degrades for the larger, slower configurations.
Furthermore, the implementation of a cache whose latency
can vary on half-cycle increments requires two pipeline
modifications. First, the dynamic scheduling hardware must

be able to speculatively issue (assuming a data cache hit)
load-dependent instructions at different times depending
on the currently enabled cache configuration. Second, for
some configurations, running the cache on half-cycle incre­
ments requires an extra half-cycle for accesses to be caught
by the processor clock phase.

When used as a replacement for a conventional L1/L2
on-chip cache hierarchy, the possible configurations are
shown in Figure 3. Although multiple subarrays may be en­
abled as L I in an organization, as in a conventional cache,
only one is selected each access according to the Subarray
Select field of the address. When a miss in the L I section is
detected, all tag subarrays and ways are read. This permits
hit detection to data in the remaining portion of the cache
(designated as L2 in Figure 3). When such a hit occurs,
the data in the L I section (which has already been read out
and placed into a buffer) is swapped with the data in the L2
section. In the case of a miss to both sections, the displaced
block from the L I section is placed into the L2 section. This
prevents thrashing in the case of low-associative L I organi­
zations.

The direct-mapped 512KB and two-way set associative
1MB cache organizations are lower energy, and lower per­
formance, alternatives to the 512KB two-way and 1MB
four-way organizations, respectively. These options activate
half the number of ways on each access for the same capac­
ity as their counterparts. For execution periods in which
there are few cache conflicts and hit latency tolerance is
high, the low energy alternatives may result in compara-

248

Subarray/Way Allocation (LI or L2)

LI
Size

LI
Assoc

LI
Acc Time

Subarray 2 Subarray 0 Subarray 1 Subarray 3

W3 W2 W1 WO W3 W2 W1 WO WO W1 W2 W3 W0 W1 W2 W3

256-1 256KB 1 way 2.0 L2 L2 L2 L2 L2 L2 L2 /./ I J L2 L2 L2 L2 L2 L2 L2

512-2 512KB 2 way 2.5 L2 L2 L2 L2 L2 L2 I J L I L I LI L2 L2 L2 L2 L2 L2

768-3 768KB 3 way 2.5 L2 L2 L2 L2 L2 LI LI LI L I LI LI L2 L2 L2 L2 L2

1024-4 1024KB 4 way 3.0 L2 L2 L2 L2 LI LI LI IJ I J U IJ I J L2 L2 L2 L2

512-1 512KB 1 way 3.0 L2 L2 L2 LI L2 L2 L2 HM I J L2 L2 L2 LI l : L2 L2

1024-2 1024KB 2 way 3.5 L2 L2 U L I L2 L2 LI u L I I J L2 L2 LI L I 1.2 L2

1536-3 1536KB 3 way 4.0 L2 I J LI L2 LI IJ LI I J I J LI L2 LI U L I 1.2

2048-4 2048KB 4 way 4.5 L I IJ L I i i LI IJ LI I J L I LI LI I J I J I J I J I J

Figure 3. Possible L I/L 2 cache organizations that can be configured shown by the ways that are allocated to L I and
L2. Only one of the four 512KB SRAM structures is shown. Abbreviations for each organization are listed to the left
of the size and associativity of the L I section, while L I access times in cycles are given on the right. Note that the TLB
access may dominate the overall delay of some configurations. The numbers listed here simply indicate the relative
order of the access times for all configurations and thus the size/access time tradeoffs allowable.

ble performance yet potentially save considerable energy.
These configurations are used in an energy-aware mode of
operation as described in Section 3.

Note that because some of the configurations span only
two subarrays, while others span four, the number of sets
is not always the same. Hence, it is possible that a given
address might map into a certain cache line at one time and
into another at another time (called a mis-map). In cases
where subarrays two and three are disabled, the high-order
Subarray Select signal is used as a tag bit. This extra tag bit
is stored on all accesses in order to detect mis-maps. Mis­
mapped data is handled the same way as a L I miss and L2
hit, i.e., it results in a swap. Our simulations indicate that
such events are infrequent.

In sub-0. technologies, the long access latencies of
a large on-chip L2 cache [1] may be prohibitive for those
applications which make use of only a small fraction of the
L2 cache. Thus, for performance reasons, a three-level hi­
erarchy with a moderate size (e.g., 512KB) L2 cache will
become an attractive alternative to two-level hierarchies at
these feature sizes. However, the cost may be a significant
increase in energy dissipation due to transfers involving the
additional cache level. We demonstrate in Section 5 that the
use of the aforementioned configurable cache structure as a
replacement for conventional L2 and L3 caches can signif­
icantly reduce energy dissipation without any compromise
in performance as feature sizes scale below 0.1 //m.

ppn

Figure 4. The organization of the configurable TLB

2.3 Configurable TLB Organization

Our 512-entry, fully-associative TLB can be similarly
configured as shown in Figure 4. There are eight TLB in­
crements, each of which contains a C A M of 64 virtual page
numbers and an associated R A M of 64 physical page num-

249

bers. Switches are inserted on the input and output buses to
electrically isolate successive increments. Thus, the ability
to configure a larger TLB does not degrade the access time
of the minimal size (64 entry) TLB. Similar to the cache de­
sign, TLB misses result in a second access but to the backup
portion of the TLB.

3 Dynam ic Selection M echanism s

In this section, we first describe selection mechanisms
for the configurable cache and TLB when used as a replace­
ment for a conventional L1/L2 on-chip hierarchy. In the
last subsection, we discuss the mechanisms as applied to a
configurable L2/L3 cache hierarchy coupled with a conven­
tional fixed-organization L I cache.

Our configurable cache and TLB approach makes it pos­
sible to pick appropriate configurations and sizes based
on application requirements. The different configurations
spend different amounts of time and energy accessing the
L I and the lower levels of the memory hierarchy. Our
heuristics improve the efficiency of the memory hierarchy
by trying to minimize idle time due to memory hierarchy
access. The goal is to determine the right balance be­
tween hit latency and miss rate for each application phase
based on the tolerance of the phase for the hit and miss
latencies. Our approach is to design the selection mecha­
nisms to improve performance and then to introduce mod­
ifications to the heuristics that opportunistically trade off a
small amount of performance for significant energy savings.
These heuristics require appropriate metrics for assessing
the cache/TLB performance of a given configuration during
each application phase.

3.1 Search Heuristics

Large L I caches have a high hit rate, but also have higher
access times. To arrive at the cache configuration that is
the optimal trade-off point between the cache hit and miss
times, we use a simple mechanism that uses past history to
pick a size for the future, based on CPI as the performance
metric.

Our initial scheme is tuned to improve performance
and thus explores the following five cache configurations:
direct-mapped 256KB L I, 768KB 3-way L I , 1MB 4-way
L I, 1.5MB 3-way L I , and 2M B 4-way L I . The 512KB 2­
way L I configuration provides no performance advantage
over the 768KB 3-way L I configuration (due to their iden­
tical access times in cycles) and thus this configuration is
not used. For similar reasons, the two low-energy config­
urations (direct-mapped 512KB L I and two-way set asso­
ciative 1MB L I) are only used with modifications to the
heuristics that reduce energy (described shortly).

A t the end of each interval of execution (100K cycles
in our simulations), we examine a set of hardware coun­

ters. These hardware counters tell us the miss rate, the IPC,
and the branch frequency experienced by the application
in that last interval. Based on this information, the selec­
tion mechanism (which could be implemented in software
or hardware) picks one of two states - stable or unstable.
The former suggests that behavior in this interval is not very
different from the last and we do not need to change the
cache configuration, while the latter suggests that there has
recently been a phase change in the program and we need
to explore and pick an appropriate size.

The initial state is unstable and the initial L I cache is
chosen to be the smallest (256KB in this paper). At the end
of an interval, we enter the CPI experienced for that cache
size into a table. I f the miss rate exceeds a certain thresh­
old (1% in our case) during that interval, we switch to the
next largest L I cache configuration for the next interval of
operation in an attempt to contain the working set. This ex­
ploration continues until the maximum L I size is reached
or until the miss rate is sufficiently small. At this point, the
table is examined, the cache configuration with the lowest
CPI is picked, the table is cleared, and we switch to the sta­
ble state. We continue to remain in the stable state while the
number of misses and branches do not significantly differ
from that in the previous interval. When there is a change,
we switch to the unstable state, return to the smallest L I
cache configuration and start exploring again. The pseudo­
code for the mechanism is listed below.

i f (s t a t e == STABLE)
i f ((n u m _ m i s s - l a s t _ n u m _ m i s s) < m _ n o i s e

&& (n u m _ b r - la s t_ n u m _ b r) < b r _ n o i s e)
d e e r m _ n o ise , b r _ n o i s e ;

e l s e
c a c h e _ s i z e = SMALLEST;
s t a t e = UNSTABLE;

i f (s t a t e == UNSTABLE)
r e c o r d C PI;
i f ((m i s s _ r a te > THRESHOLD)

&& (c a c h e _ s iz e != MAX))
c a c h e _ s i z e + + ;

e l s e
c a c h e _ s i z e = t h a t w i th b e s t C P I;
S t a t e = STABLE;
i f (c a c h e _ s iz e == p r e v _ c a c h e _ s i z e)

i n c r b r _ n o i s e , m _ n o ise ;

Different applications see different variations in the
number of misses and branches as they move across appli­
cation phases. Hence, instead of using a single fixed num­
ber as the threshold to detect phase changes, we change this
dynamically. I f an exploration phase results in picking the
same cache size as before, the noise threshold is increased
to discourage such needless explorations. Likewise, every
interval spent in the stable state causes a slight decrement

250

in the noise threshold in case it had been set to too high a
value.

The miss rate threshold ensures that we explore larger
cache sizes only if required. Note that a high miss rate need
not necessarily have a large impact on performance because
of the ability of dynamic superscalar processors to hide L2
latencies.

Clearly, such an interval-based mechanism is best suited
to programs that can sustain uniform behavior for a number
of intervals. While switching to an unstable state, we also
move to the smallest L I cache configuration as a form of
“damage control” for programs that have irregular behav­
ior. This choice ensures that for these programs, more time
is spent at the smaller cache sizes and hence performance
is similar to that using a conventional cache hierarchy. In
addition, we keep track of how many intervals are spent in
stable and unstable states. I f it turns out that we are spend­
ing too much time exploring, we conclude that the program
behavior is not suited to an interval-based scheme and sim­
ply remain fixed at the smallest sized cache.

Our earlier experiments [5] used a novel hardware de­
sign to estimate the hit and miss latency intolerance of an
application’s phase (which our selection mechanism is at­
tempting to minimize). These estimates were then used to
detect phase changes as well as to guide exploration. As
our results show in comparison to those in [5], the addi­
tional complexity of the hardware is not essential to obtain­
ing good performance. Presently, we envision that the selec­
tion mechanism would be implemented in software. Every
100K cycles, a low-overhead software handler will be in­
voked that examines the hardware counters and updates the
state as necessary. This imposes minimal hardware over­
head and allows flexibility in terms o f modifying the selec­
tion mechanism. We estimated the code size of the handler
to be only 120 static assembly instructions, only a fraction
of which is executed during each invocation, resulting in a
net overhead of less than 0.1%. In terms of hardware over­
head, we need roughly 9 20-bit counters for the number of
misses, loads, cycles, instructions, and branches, in addition
to a state register. This amounts to less than 8,000 transis­
tors.

In addition to cache reconfiguration, we also progres­
sively change the TLB configuration on an interval-by-
interval basis. A counter tracks TLB miss handler cycles
and the L I TLB size is increased if this counter exceeds
a threshold (3% in this paper) of the total execution time
counter for an interval. A single bit is added to each TLB
entry that is set to indicate if it has been used in an interval
(and is cleared at start of an interval). The L I TLB size is
decreased i f the TLB usage is less than half.

For the cache reconfiguration, we chose an interval size
of 100K cycles so as to react quickly to changes without
letting the selection mechanism pose a high cycle overhead.

For the TLB reconfiguration, we used a larger one million
cycle interval so that an accurate estimate of TLB usage
could be obtained. A smaller interval size could result in a
spuriously high TLB miss rate over some intervals, and/or
low TLB usage.

3.2 Reconfiguration on a Per-Subroutine Basis

As previously mentioned, the interval-based scheme will
work well only if the program can sustain its execution
phase for a number of intervals. This limitation may be
overcome by collecting statistics and making subsequent
configuration changes on a per-subroutine basis. The finite
state machine that was used for the interval-based scheme is
now employed for each subroutine. This requires maintain­
ing a table with CPI values at different cache sizes and the
next size to be picked for a limited number of subroutines
(100 in this paper). To focus on the most important routines,
we only monitor those subroutines whose invocations ex­
ceed a certain threshold of instructions (1000 in this paper).
When a subroutine is invoked, its table is looked up and a
change in cache configuration is effected depending on the
table entry for that subroutine. When a subroutine exits, it
updates the table based on the statistics collected during that
invocation. A stack is used to checkpoint counters on every
subroutine call so that statistics can be determined for each
subroutine invocation.

We investigated two subroutine-based schemes. In the
non-nested approach, statistics are collected for a subrou­
tine and its callees. Cache size decisions for a subroutine are
based on these statistics collected for the call-graph rooted
at this subroutine. Once the cache configuration is changed
for a subroutine, none of its callees can change the configu­
ration unless the outer subroutine returns. Thus, the callees
inherit the size of their callers because their statistics played
a role in determining the configuration of the caller. In the
nested scheme, each subroutine collects statistics only for
the period when it is the top of the subroutine call stack.
Thus, every single subroutine invocation is looked upon as
a possible change in phase.

Because the simpler non-nested approach generally out­
performed the nested scheme, we only report results for the
former in Section 5.

3.3 Energy-Aware Modifications

There are two energy-aware modifications to the selec­
tion mechanisms that we consider. The first takes advan­
tage of the inherently low-energy configurations (those with
direct-mapped 512KB and two-way set associative 1MB L I
caches). With this approach, the selection mechanism sim­
ply uses these configurations in place of the 768KB 3-way
L I and 1MB 4-way L I configurations.

A second potential approach is to serially access the tag
and data arrays of the L I data cache. Conventional L I

251

Fetch queue entries 8
Branch predictor comb, of bimodal & 2-level gshare;

bimodal/Gshare Level 1/2 entries -
2048, 1024 (hist. 10), 4096 (global), resp.;

Combining pred. entries - 1024;
RAS entries - 32; BTB - 2048 sets, 2-way

Branch mispred. latency 8 cycles
Fetch, decode, issue width 4

RUU and LSQ entries 64 and 32
LI I-cache 2-way; 64KB (0.1/im), 32KB (0.035/im)

Memory latency 80 cycles (0.1/im), 114 cycles (0.035/im)
Integer ALUs/mult-div 4/2

FP ALUs/mult-div 2/1

caches always perform parallel tag and data lookup to re­
duce hit time, thereby reading data out of multiple cache
ways and ultimately discarding data from all but one way.
By performing tag and data lookup in series, only the data
way associated with the matching tag can be accessed,
thereby reducing energy consumption. Hence, our sec­
ond low-energy mode operates just like the interval-based
scheme as before, but accesses the set-associative cache
configurations by serially reading the tag and data arrays.

3.4 L2/L3 Reconfiguration

The selection mechanism for the L2/L3 reconfiguration
is very similar to the simple interval-based mechanism for
the L1/L2. In addition, because we assume that the L2
and L3 caches (both conventional and configurable) already
use serial tag/data access to reduce energy dissipation, the
energy-aware modifications would provide no additional
benefit for L2/L3 reconfiguration. (Recall that performing
the tag lookup first makes it possible to turn on only the
required data way within a subarray, as a result of which,
all configurations consume the same amount of energy for
the data array access.) Finally, we did not simultaneously
examine TLB reconfiguration so as not to vary the access
time of the fixed L I data cache. Much of the motivation
for these simplifications was due to our expectation that dy­
namic L2/L3 cache configuration would yield mostly en­
ergy saving benefits, due to the fact that we were not alter­
ing the L I cache configuration (the organization of which
has the largest memory performance impact for most appli­
cations). To further improve our energy savings at minimal
performance penalty, we also modified the search mecha­
nism to pick a larger sized cache if it performed almost as
well (within 95% in our simulations) as the best performing
cache during the exploration, thus reducing the number of
transfers between the L2 and L3.

4 Evaluation M ethodology

4.1 Simulation Methodology

We used Simplescalar-3.0 [8] for the Alpha AXP instruc­
tion set to simulate an aggressive 4-way superscalar out-of­
order processor. The architectural parameters used in the
simulation are summarized in Table 1.

The data memory hierarchy is modeled in great detail.
For example, contention for all caches and buses in the
memory hierarchy as well as for writeback buffers is mod­
eled. The line size of 128 bytes was chosen because it
yielded a much lower miss rate for our benchmark set than
smaller line sizes.

For both configurable and conventional TLB hierarchies,
a TLB miss at the first level results in a lookup in the second

Table 1. Architectural parameters

level. A miss in the second level results in a call to a TLB
handler that is assumed to complete in 30 cycles. The page
size is 8KB.

4.2 Benchmarks

We have used a variety of benchmarks from SPEC95,
SPEC2000, and the Olden suite [23]. These particular pro­
grams were chosen because they have high miss rates for
the L I caches we considered. For programs with low miss
rates for the smallest cache size, the dynamic scheme af­
fords no advantage and behaves like a conventional cache.
The benchmarks were compiled with the Compaq cc, f77,
and f90 compilers at an optimization level of 03 . Warmup
times were determined for each benchmark, and the simula­
tion was fast-forwarded through these phases. The window
size was chosen to be large enough to accommodate at least
one outermost iteration of the program, where applicable.
A further million instructions were simulated in detail to
prime all structures before starting the performance mea­
surements. Table 2 summarizes the benchmarks and their
memory reference properties (the L I miss rate and load fre­
quency).

4.3 Timing and Energy Estimation

We investigated two future technology feature sizes: 0.1
and 0.035/xm. For the 0.035/xm design point, we use the
cache latency values of Agarwal et al. [1] whose model pa­
rameters are based on projections from the Semiconduc­
tor Industry Association Technology Roadmap [4], For
the 0.1 ̂ m design point, we use the cache and TLB tim­
ing model developed by McFarland [19] to estimate timings
for both the configurable cache and TLB, and the caches
and TLBs of a conventional L1/L2 hierarchy. McFarland’s
model contains several optimizations, including the auto­
matic sizing of gates according to loading characteristics,
and the careful consideration of the effects of technology

252

Benchmark Suite Datasets Simulation window (instrs) 64K-2way LI miss rate % of instrs that are loads
em3d Olden 20,000 nodes, arity 20 1000M-1100M 20% 36%
health Olden 4 levels, 1000 iters 80M-140M 16% 54%

mst Olden 256 nodes entire program 14M 8% 18%
compress SPEC95 INT ref 1900M-2100M 13% 22%
hydro2d SPEC95 FP ref 2000M-2135M 4% 28%

apsi SPEC95FP ref 2200M-2400M 6% 23%
swim SPEC2000 FP ref 2500M-2782M 10% 25%

art SPEC2000 FP ref 300M-1300M 16% 32%

Table 2. Benchmarks

scaling down to 0.1 /zm technology [20]. The model inte­
grates a fully-associative TLB with the cache to account for
cases in which the TLB dominates the L I cache access path.
This occurs, for example, for all of the conventional caches
that were modeled as well as for the minimum size L I cache
(direct mapped 256KB) in the configurable organization.

For the global wordline, local wordline, and output
driver select wires, we recalculate cache and TLB wire de­
lays using RC delay equations for repeater insertion [9]. Re­
peaters are used in the configurable cache as well as in the
conventional L I cache whenever they reduce wire propaga­
tion delay. The energy dissipation of these repeaters was
accounted for as well, and they add only 2-3% to the total
cache energy.

We estimate cache and TLB energy dissipation using a
modified version of the analytical model of Kamble and
Ghose [15]. This model calculates cache energy dissipation
using similar technology and layout parameters as those
used by the timing model (including voltages and all elec­
trical parameters appropriately scaled for 0.1 ̂ m technol­
ogy). The TLB energy model was derived from this model
and included C A M match line precharging and discharging,
C A M wordline and bitline energy dissipation, as well as the
energy of the R A M portion of the TLB. For main memory,
we include only the energy dissipated due to driving the off-
chip capacitive busses.

For all L2 and L3 caches (both configurable and con­
ventional), we assume serial tag and data access and selec­
tion of only one of 16 data banks at each access, similar
to the energy-saving approach used in the Alpha 21164 on-
chip L2 cache [7J. In addition, the conventional L I caches
were divided into two subarrays, only one of which is se­
lected at each access. Thus, the conventional cache hierar­
chy against which we compared our reeonfigurable hierar­
chy was highly optimized for both fast access time and low
energy dissipation.

Detailed event counts were captured during Sim-
pleScalar simulations of each benchmark. These event
counts include all of the operations that occur for the con­
figurable cache as well as all TLB events, and are used to
obtain final energy estimations.

A Base excl. cache with 256KB 1-way LI & 1.75MB 14-way L2
B Base incl. cache with 256KB 1-way LI & 2MB 16-way L2
C Base incl. cache with 64KB 2-way LI & 2MB 16-way L2
D Interval-based dynamic scheme
E Subroutine-based with nested changes
F Interval-based with energy-aware cache configurations
G Interval-based with serial tag and data access

Table 3. Simulated L1/L2 configurations

4.4 Simulated Configurations

Table 3 shows the conventional and dynamic L1/L2
schemes that were simulated. We compare our dynamic
schemes with three conventional configurations which are
identical in all respects, except the data cache hierarchy.
The first uses a two-level non-inclusive cache, with a direct
mapped 256KB L I cache backed by a 14-way 1.75MB L2
cache (configuration A). The L2 associativity results from
the fact that 14 ways remain in each 512KB structure after
two of the ways are allocated to the 256KB L I (only one
of which is selected on each access). Comparison of this
scheme with the configurable approach demonstrates the
advantage of resizing the first level. We also compare with
a two-level inclusive cache which consists of a 256KB di­
rect mapped L 1 backed by a 16-way 2MB L2 (configuration
B). This configuration serves to measure the impact of the
non-inclusive policy of the first base case on performance
(a non-inclusive cache performs worse because every miss
results in a swap or writeback, which causes greater bus and
memory port contention.) We also compare with a 64KB 2­
way inclusive L I and 2MB of 16-way L2 (configuration C),
which represents a typical configuration in a modern pro­
cessor and ensures that the performance gains for our dy­
namically sized cache are not obtained simply by moving
from a direct mapped to a set associative cache. For both the
conventional and configurable L2 caches, the access time is
15 cycles due to serial tag and data access and bus transfer
time, but is pipelined with a new request beginning every
four cycles. The conventional TLB is a two-level inclusive
TLB with 64 entries in the first level and 448 entries in the
second level with a 6 cycle lookup time.

For L2/L3 reconfiguration, we compare our interval-

253

Figure 5. Memory CPI for conventional (A, B, and
C), interval-based (D), and subroutine-based (E) con­
figurable schemes

Figure 6. CPI for conventional (A, B, and C), interval-
based (D), and subroutine-based (E) configurable
schemes

Cache
contribution

TLB
contribution

Cache
explorations

TLB
changes

em3d 73% 27% 10 2
health 33% 67% 27 2

mst 100% 0% 5 3
compress 64% 36% 54 2
hydro2d 100% 0% 19 0

apsi 100% 0% 63 27
swim 49% 51% 5 6

art 100% 0% 11 5

Table 4. Contribution of the cache and the TLB to
speedup or slowdown in the dynamic scheme and the
number of explorations

based configurable cache with a conventional three-level
on-chip hierarchy. In both, the L I cache is 32KB two­
way set associative with a three cycle latency, reflecting the
smaller L I caches and increased latency likely required at
0.035/xm geometries [1], For the conventional hierarchy,
the L2 cache is 512KB two-way set associative with a 21
cycle latency and the L3 cache is 2MB 16-way set associa­
tive with a 60 cycle latency. Serial tag and data access is
used for both L2 and L3 caches to reduce energy dissipa­
tion.

5 Results

We first evaluate the performance and energy dissipation
of the L1/L2 configurable schemes versus the three conven­
tional approaches using delay and energy values for 0.1 /tm
geometries. We then demonstrate how L2/L3 reconfigura­
tion can be used at finer 0.035^m geometries to dramati­
cally improve energy efficiency relative to a conventional
three-level hierarchy but with no compromise of perfor­
mance.

5.1 L1/L2 Performance Results

Figures 5 and 6 show the memory CPI and total CPI,
respectively, achieved by the conventional and config­
urable interval and subroutine-based schemes for the var­
ious benchmarks. The memory CPI is calculated by sub­
tracting the CPI achieved with a simulated system with
a perfect cache (all hits and one cycle latency) from the
CPI with the memory hierarchy. In comparing the arith­
metic mean (A M) of the memory CPI performance, the
interval-based configurable scheme outperforms the best-
performing conventional scheme (B) (measured in terms

of a percentage, reduction in CPI) by 27%, with roughly
equal cache and TLB contributions as is shown in Table 4.
For each application, this table also presents the number
of cache and TLB explorations that resulted in the selec­
tion of different sizes. In terms of overall performance,
the interval-based scheme achieves a 15% reduction in CPI.
The benchmarks with the biggest memory CPI reductions
are health (52%), compress (50%), apsi (31%), and mst
(30%).

The dramatic improvements with health and compress
are due to the fact that particular phases of these applica­
tions perform best with a large L I cache even with the re­
sulting higher hit latencies (for which there is reasonably
high tolerance within these applications). For health, the
configurable scheme settles at the 1.5MB cache size for
most of the simulated execution period, while the 768KB
configuration is chosen for much of compress’s execution
period. Note that TLB reconfiguration also plays a ma­
jor role in the performance improvements achieved. These
two programs best illustrate the mismatch that often occurs
between the memory hierarchy requirements of particular

254

application phases and the organization of a conventional
memory hierarchy, and how an intelligently-managed con­
figurable hierarchy can better match on-chip cache and TLB
resources to these execution phases. Note that while some
applications stay with a single cache and TLB configuration
for most of their execution window, others demonstrate the
need to adapt to the requirements of different phases in each
program (see Table 4). Regardless, the dynamic schemes
are able to determine the best cache and TLB configura­
tions, which span the entire range of possibilities, for each
application during execution.

The results for art and hydro2d demonstrate how the dy­
namic reconfiguration may in some cases degrade perfor­
mance. These applications are very unstable in their be­
havior and do not remain in any one phase for more than a
few intervals. Art also does not fit in 2M B, so there is no
size that causes a sufficiently large drop in CPI to merit the
cost of exploration. However, the dynamic scheme iden­
tifies that the application is spending more time exploring
than in stable state and turns exploration off altogether. Be­
cause this happens early enough in case of art (the simu­
lation window is also much larger), art shows no overall
performance degradation, while hydro2d has a slight 3%
slowdown. This result illustrates that compiler analysis to
identify such “unstable” applications and override the dy­
namic selection mechanism with a statically-chosen cache
configuration may be beneficial.

In comparing the interval and subroutine-based schemes,
we conclude that the simpler interval-based scheme usu­
ally outperforms the subroutine-based approach. The most
notable exception is apsi, which has inconsistent behavior
across intervals (as indicated by the large number of explo­
rations in Table 4), causing it to thrash between a 256KB
L I and a 768KB L I . The subroutine-based scheme signif­
icantly improves performance relative to the interval-based
approach as each subroutine invocation within apsi exhibits
consistent behavior from invocation to invocation. Yet,
due to the overall results and the additional complexity of
the subroutine-based scheme, the interval-based scheme ap­
pears to be the most practical choice and is the only scheme
considered in the rest of our analysis.

In terms of the effect of TLB reconfiguration, health,
swim, and compress benefit the most from using a larger
TLB. Health and compress perform best with 256 and 128
entries, respectively, and the dynamic scheme settles at
these sizes. Swim shows phase change behavior with re­
spect to TLB usage, resulting in five stable phases requiring
either 256 or 512 TLB entries.

These results demonstrate potential performance im­
provement for one technology point and microarchitecture.
In order to determine the sensitivity of our qualitative results
to different technology points and microarchitectural trade­
offs, we varied the processor pipeline speed relative to the

Figure 7. Memory EPI (in nanoJoules) for conven­
tional (A, B, and C), interval-based (D), and energy-
aware (F and G) configurable schemes

Figure 8. Memory CPI for conventional (A, B, and
C), interval-based (D), and energy-aware (F and G)
configurable schemes

memory latencies (keeping the memory hierarchy latency
fixed). The results in terms of performance improvement
were similar for 1 (our base case), 1.5, and 2 GHz proces­
sors.

5.2 Energy-Aware Configuration Results

We focus here on the energy consumption of the on-chip
memory hierarchy (including that to drive the off-chip bus).
The memory energy per instruction (memory EPI, with each
energy unit measured in nanoJoules) results of Figure 7 il­
lustrate how as is usually the case with performance opti­
mizations, the cost of the performance improvement due to
the configurable scheme is a significant increase in energy
dissipation. This is caused by the fact that energy consump­
tion is proportional to the associativity of the cache and our
configurable L I uses larger set-associative caches. For this
reason, we explore how the energy-aware improvements
may be used to provide a more modest performance im-

255

provement yet with a significant reduction in memory EPI
relative to a pure performance approach.

From Figure 7 we observe that merely selecting the
energy-aware cache configurations (scheme F) has only
a nominal impact on energy. In contrast, operating the
L I cache in a serial tag and data access mode (G) re­
duces memory EPI by 38% relative to the baseline interval-
based scheme (D), bringing it in line with the best overall­
performing conventional approach (B). For compress and
swim, this approach even achieves roughly the same en­
ergy, with significantly better performance (see Figure 8),
than conventional configuration C, whose 64KB two-way
L I data cache activates half the amount of cache every
cycle than the smallest L I configuration (256KB) o f the
configurable schemes. In addition, because the selection
scheme automatically adjusts for the higher hit latency of
serial access, this energy-aware configurable approach re­
duces memory CPI by 13% relative to the best-performing
conventional scheme (B). Thus, the energy-aware approach
may be used to provide more modest performance improve­
ments in portable applications where design constraints
such as battery life are of utmost importance. Further­
more, as with the dynamic voltage and frequency scaling
approaches used today, this mode may be switched on un­
der particular environmental conditions (e.g., when remain­
ing battery life drops below a given threshold), thereby pro­
viding on-demand energy-efficient operation.

5.3 L2/L3 Performance and Energy Results
While L I reconfiguration improves performance, it may

consume more energy than conventional approaches if
higher L I associative configurations are enabled. To re­
duce energy, mechanisms such as serial tag and data access
(as described in the previous subsection) have to be used.
Since L2 and L3 caches are often already designed for se­
rial tag and data access to save energy, reconfiguration at
these lower levels of the hierarchy would not increase the
energy consumed. Instead, they stand to decrease it by re­
ducing the number of data transfers that need to be done
between the various levels, i.e., by improving the efficiency
of the memory hierarchy.

Thus, we investigate the energy benefits of providing a
configurable L2/L3 cache hierarchy with a fixed L I cache as
on-chip cache delays significantly increase with sub-0.1/im
geometries. Due to the prohibitively long latencies of large
caches at these geometries, a three-level cache hierarchy be­
comes an attractive design option from a performance per­
spective. We use the parameters from Agarwal et al. [1]
for 0.035/im technology to illustrate how dynamic L2/L3
cache configuration can match the performance of a con­
ventional three-level hierarchy while dramatically reducing
energy dissipation.

Figures 9 and 10 compare the performance and energy,

6---------

■3-level
□dynamic

/ ^ f ^ *

Figure 9. Memory CPI for conventional three-level
and dynamic cache hierarchies

Figure 10. Memory EPI (in nanoJoules) for conven­
tional three-level and dynamic cache hierarchies

respectively, of the conventional three-level cache hierarchy
with the configurable scheme (Recall that TLB configura­
tion was not attempted so the improvements are completely
attributable to the cache.). Since the L I cache organization
has the largest impact on cache hierarchy performance, as
expected, there is little performance difference between the
two, as each uses an identical conventional L I cache. How­
ever, the ability of the dynamic scheme to adapt the L2/L3
configuration to the application results in a 43% reduction in
memory EPI on average. The savings are caused by the abil­
ity of the dynamic scheme to use a larger L2, and thereby
reduce the number of transfers between L2 and L3. Hav­
ing only a two-level cache would, of course, eliminate these
transfers altogether, but would be detrimental to program
performance because of the large 60-cycle L2 access. Thus,
in contrast to this approach of simply opting for a lower en­
ergy, and lower performing, solution (the two-level hierar­
chy), dynamic L2/L3 cache configuration can improve per­
formance while dramatically improving energy efficiency.

256

We have described a novel configurable cache and TLB
as an alternative to conventional cache hierarchies. Re­
peater insertion is leveraged to enable dynamic cache and
TLB configuration, with an organization that allows for
dynamic speed/size tradeoffs while limiting the impact of
speed changes to within the memory hierarchy. Our config­
uration management algorithm is able to dynamically ex­
amine the tradeoff between an application’s hit and miss in­
tolerance using CPI as the ultimate metric to determine ap­
propriate cache size and speed. At 0.1 /im technologies, our
results show an average 15% reduction in CPI in compar­
ison with the best conventional L1-L2 design of compara­
ble total size, with the benefit almost equally attributable on
average to the configurable cache and TLB. Furthermore,
energy-aware enhancements to the algorithm trade off a
more modest performance improvement for a significant re­
duction in energy. Projecting to 0.035/um technologies and
a 3-level cache hierarchy, we show improved performance
with an average 43% reduction in memory hierarchy en­
ergy when compared to a conventional design. This latter
result demonstrates that because our configurable approach
significantly improves memory hierarchy efficiency, it can
serve as a partial solution to the significant power dissipa­
tion challenges facing future processor architects.

Future work includes investigating the use of compiler
support for applications where an interval-based scheme
is unable to capture the phase changes (differing working
sets) in an application. Compiler support would be benefi­
cial both to select appropriate adaptation points as well as
to predict an application’s working set sizes. Finally, im­
provements at the circuit and microarchitectural levels will
be pursued that better balance configuration flexibility with
access time and energy consumption.

References

[1] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger. Clock
rate versus IPC: The end of the road for conventional mi­
croarchitectures. Proceedings o f the 27th International Sym­
posium on Computer Architecture, pages 248-259, June
2 0 0 0 .

[2] D. Albonesi. Dynamic IPC/clock rate optimization. Pro­
ceedings o f the 25th International Symposium on Computer
Architecture, pages 282-292, June 1998.

[3] D. Albonesi. Selective cache ways: On-demand cache re­
source allocation. Proceedings o f the 32nd International
Symposium on Microarchitecture, pages 248-259, Novem­
ber 1999.

[4] S. I. Association. The National Technology Roadmap for
Engineers. Technical report, 1999.

[5] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and
S. Dwarkadas. Dynamic memory hierarchy performance op­

6 Conclusions timization. Workshop on Solving the Memory Wall Problem,
June 2000.

[6] P. Bannon. Alpha 21364: A scalable single-chip SMP. Mi­
croprocessor Forum, October 1998.

[7] W. Bowhill et al. Circuit implementation of a 300-MHz 64-
bit second-generation CMOS Alpha CPU. Digital Technical
Journal, 7(1): 100— 118, Special Issue 1995.

[8] D. Burger and T. Austin. The Simplescalar toolset, version
2.0. Technical Report TR-97-1342, University of Wisconsin-
Madison, June 1997.

[9] W. Dally and J. Poulton. Digital System Engineering. Cam­
bridge University Press, Cambridge, UK, 1998.

[10] K. Farkas and N. Jouppi. Complexity/performance trade­
offs with non-blocking loads. Proceedings o f the 21st Inter­
national Symposium on Computer Architecture, pages 211­
222, April 1994.

[11] J. Fleischman. Private communication. October 1999.
[12] L. Gwennap. PA-8500’s 1.5M cache aids performance. Mi­

croprocessor Report, 11(15), November 17, 1997.
[13] J. Hennessy. Back to the future: Time to return to some

long standing problems in computer systems? Federated
Computer Conference, May 1999.

[14] N. Jouppi. Improving direct-mapped cache performance by
the addition of a small fully-associative cache and prefetch
buffers. Proceedings o f the 17th International Symposium
on Computer Architecture, pages 364—373, May 1990.

[15] M. Kamble and K. Ghose. Analytical energy dissipation
models for low power caches. Proceedings o f the Interna­
tional Symposium on Low Power Electronics and Design,
pages 143-148, August 1997.

[16] R. Kessler. The Alpha 21264 microprocessor. IEEE Micro,
19(2):24-36, March/April 1999.

[17] A. Kumar. The HP PA-8000 RISC CPU. IEEE Computer,
17(2):27-32, March 1997.

[18] G. Lesartre and D. Hunt. PA-8500: The continuing evolution
of the PA-8000 family. Proceedings o f Compcon, 1997.

[19] G. McFarland. CMOS Technology Scaling and Its Impact on
Cache Delay. PhD thesis, Stanford University, June 1997.

[20] G. McFarland and M. Flynn. Limits of scaling MOS-
FETS. Technical Report CSL-TR-95-62, Stanford Univer­
sity, November 1995.

[21] T. Mowry, M. Lam, and A. Gupta. Design and evaluation
of a compiler algorithm for prefetching. Proceedings o f
ASPLOS-V, pages 62-73, October 1992.

[22] P. Ranganathan, S. Adve, and N. Jouppi. Reconfigurable
caches and their application to media processing. Proceed­
ings o f the 27th International Symposium on Computer Ar­
chitecture, pages 214-224, June 2000.

[23] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. Sup­
porting dynamic data structures on distributed memory ma­
chines. ACM Transactions on Programming Languages and
Systems, Mar. 1995.

[24] K. Yeager. The Mips R 10000 superscalar microprocessor.
IEEE Micro, 16(2):28^1, April 1996.

257

