
The ‘Test M odel-checking’ Approach to the Verification of
Formal M emory M odels of M ultiprocessors *

R a ta n N a lu m asu , R a jn ish G hughal, A bdel M okkedem and G anesh G opalak rishnan

UU CS-98-008

D e p a rtm e n t o f C o m p u te r Science, U n iversity o f U ta h ,
S a lt Lake C ity , U T 84112-9205 '

C o n tac t em ail: { ra ta n , ganesh}@ cs.u tah .e d u

This technical report combines work reported in CAV 98 and SPAA 98.

A b strac t

W e offer a so lu tio n to th e p rob lem o f verify ing fo rm al m em ory m odels o f p rocessors by com
b in in g th e s tre n g th s o f m odel-checking an d a fo rm a l te s tin g p rocedure for p ara lle l m achines. W e
ch a rac te rize th e fo rm al basis for a b s tra c tin g th e te s ts in to te s t a u to m a ta an d assoc ia ted m em ory
ru le safe ty p ro p e rtie s w hose v io la tio n s p in p o in t th e o rdering ru le being v io la ted . O ur ex perim en
ta l resu lts on V erilog m odels o f a com m ercia l sp lit tra n sa c tio n bus d em o n s tra te s th e a b ility o f our
m e th o d to effectively debug design m odels d u rin g early stages o f th e ir deve lopm en t.

K e y w o rd s : Formal memory models, shared memory multiprocessors, formal testing, model-checking.

1 Introduction

The fundam entally im portan t problem [AG96] of verifying whether a given memory sys tem model (or
“a memory system ”) provides a, formal memory model (or “memory model”) appears in a num ber of
guises. CPU designers are interested in knowing whether some of the aggressive execution techniques
such as speculative issue of memory operations violate sequential consistency; I /O bus designers are
interested in knowing the exact sem antics of shared accesses provided by split I/O transactions
[Cor97]; even language designers of m ulti-threaded languages such as Java th a t support shared
updates [GJS96] are interested in this problem . Formal verification m ethods are ideally suited for
th is problem because: (i) the sem antics of memory orderings are too subtle to be fathom ed through
informal reasoning alone; (ii) ad hoc testing m ethods cannot provide assurance th a t the desired
memory model has been implemented. U nfortunately, despite the central im portance of this problem
and the large body of formal m ethods research in this area, there is still no single formally based
m ethod th a t the designer of a realistic m ultiprocessor system can use on h is/her detailed design
model to quickly find violations in the design. In th is paper we describe such a m ethod called test
model-checking.

Test model-checking formally adap ts to the realm of model-checking a formally based architectural
testing m ethod called A r c h t e s t . A r c h t e s t has been successfully used on a num ber of commercial
m ultiprocessors [Col] by running a suite of test-program s on them . A r c h t e s t is an incomplete

•Supported in p a rt by ARPA Order #B 990 under SPAWAR C ontract #N0039-95-C-0018 (Avalanche), DARPA
under contract #DABT6396C0094 (UV).

1

testing m ethod in th a t it does not, under all circum stances, detect violations of memory orderings
[Col92]. Nevertheless, its tests have been shown to be incisive in practice [Col]. M ost im portantly,
the formal theory of memory ordering rules developed by Collier in [CoI92] forms the basis for
A r c h t e s t , which means th a t whenever a violation is detected by A r c h t e st , there is a formal line
of reasoning leading back to the precise cause.

Being based on A r c h t e s t , test model-checking is also incomplete. However, none of the (pre
sumed) complete alternatives to date have been shown to be practical for verifying large designs. For
example [PD96] involves the use of manually guided mechanical theorem proving. Even approaches
based on conventional model-checking are impossibly difficult to use in practice. For example, the
assertions pertaining to the sequential consistency of lazy caching [Ger95], a simple memory system ,
expressed in various tem poral logics (by [Gra94] in VCTL” [CES86] and [LLOR97] in TLA [Lam94])
are highly complex. We do not believe th a t descriptions of th is style will scale up. On the o ther
hand, the tes t model-checking m ethod has not only been able to comfortably handle the memory
system defined by the sym m etric multiprocessor (SM P) bus called Runway [BCS96, GGH+97] used
by Hewlett-Packard in their high-end machines, bu t also it discovered many subtle bugs in our early
U tah Runway Model (URM) th a t we created. Our URM includes a number of details such as split
transactions, out of order transaction completions, and even an element of speculative execution.
The errors we m ade in capturing these details could well have been made in an actual industrial
context. We believe th a t with growing system complexity, the role of debugging m ethods th a t are
effective and are formally based will only grow in significance, regardless of whether the m ethods are
complete or not.

Test model-checking has a num ber of o ther desirable features. It involves model-checking a fixed
set of safety properties for each formal memory model, th a t are very nearly independent of the actual
memory system model being tested. This fixed nature greatly facilitates the use of test model-
checking within the design cycle where debugging is m ost effective, design changes are frequent,
and time-consuming alterations to the properties being verified following design changes would be
frowned upon (test model-checking will not need such alterations). Also, the formal adap tation of the
tests of A r c h t e s t m ade in tes t model-checking can be verified once and for all, thanks to the fixed
set of tests used in tes t model-checking (we describe and argue the correctness of these abstractions
later). Finally, in tes t model-checking, a memory model is viewed as a collection of simpler ordering
rules, and for each constituent ordering rule, a specific property is tested on the memory system . We
found th a t this significantly helps com partm entalize errors, as opposed to producing non-intuitive
error traces th a t could result during conventional model-checking, which can be very difficult to
understand for non-trivial memory systems.

Test model-checking is also a more effective debugger for memory models than A r c h t e s t in a
formal sense. The tests of A r c h t e s t are straight-line program s of length k , one per node. Such
program s execute on various nodes of the m ultiprocessor concurrently. The recom m endation accom
panying A r c h t e s t is th a t users run the tests for as large a k th a t is feasible, because then the
chances of being scheduled according to different interleavings (by the underlying operating system,
memory controller arb iter, etc.) increase. In adapting the tests of A r c h t e s t , test model-checking
gives the effect of choosing k = oo. Thus, we cover all possible schedules. The subtle bugs detected
by test model-checking on realistic examples th a t are reported in Section 5 corroborate our intuition
th a t test model-checking is indeed an effective debugging tool for memory models.

To reiterate, our specific contributions in this paper are: (i) the adaptation of a formal testing
m ethod for memory models to model-checking, th a t can be applied during the design of modern mi
croprocessors whose memory system s are very complex; (ii) a formal characterization (accompanied
by proofs) of how the tests of the testing m ethod are abstracted and turned into a fixed set of safety
properties th a t are then model-checked; and (iii) experim ental results on three examples using the
VIS model-checker, the last example being much larger than any previously reported in this context.

2

(C l) V(o, d) € addre s s x da t um Vi € index : ini t = > A G (enabl e(read, (a ,d)) = > avail , (a ,d))

(C2) V(o, d), (a, d') € addre ss X da tum, d ^ d' Vi £ index :
in i t = > A G ((a v a i l , (a , d) A E F (enaW e(read ,(a ,d)))) =£■ A[->auciiJ,(a,<i) W AG(->aua»f,(a,d))])

(C3) V(a,d) £ addres s x d a tu m Vi, k £ index : ini t = > A G [a f t e r (w r i t e k (a , d)) = > AF(at>ai7i(a, d))]

(S I) V(a, d) 6 addres s x da t um Vi £ index :
ini t ==> A G [a /te r (w r ite i(a ,d)) = > A (- ’enabled(read, (a, d)) W avai l i (a , d))]

(54) V(a, d), (a, d') £ addres s x da tum, d ^ d' Vi, k £ index :
ini t = > A ([- <a va i l , (a , d)X V (a v a i l , (a ' , d /) / \ -<ava i l l (a , d))] = > [-<availk(a,d) W at>a^7fc(a, ,d ,)])

Figure 1: P a rt of the specification of Sequential Consistency, from [Gra94]

R elated W ork

In [Gra94], abstract in terpretation [CC77] is employed to reduce infinite-system verification to fi
nite VCTL* model-checking. They apply this technique to verify the sequential consistency of lazy
caching with unbounded queues. They recognize th a t to get an exact characterization of sequential
consistency involving only the observable event names, one needs full second order logic [Gra94]. 'I'o
be able to express sequential consistency in VCTL*, they give a stronger characterization of sequen
tial consistency. For this stronger characterization, the expression of sequential consistency is very
complex, as shown in figure 1 (this figure shows only part of their sequential consistency expression).
A technique very similar to test model-checking was proposed in [McM93] under the section heading
‘Sequential Consistency’. To give a historic perspective, our test model-checking idea originated in
our a ttem p t to answer the following two questions: (i) which memory ordering rule(s) is [McM93]
really verifying? (ii) is this a general technique? i.e. can o ther memory ordering rules be verified
in the same fashion? We still have not found a satisfactory answer to the first question because the
test in [McM93] uses only one location which then couldn’t make it a test for sequential consistency;
it could plausibly be a test for coherence—which again does not correspond to what Collier formally
proves in [Col92]. One of our contributions is th a t we answer these questions by elaborating on the
theoretical as well as practical aspects of test model-checking.

In [PD96], the authors use a m ethod called aggregation on a distributed shared memory coherence
protocol used in an experim ental multiprocessor, to arrive a t a simplified model of system behavior.
Their technique involves m anual theorem proving. The work in [HMTLB95] as well as [DPN93]
are aimed at verifying th a t synchronization routines work correctly under various memory models,
where the memory models themselves are described using fin ite-state operational models. They do
not address the problem of establishing the memory models provided by detailed memory subsystem
designs, which is our contribution. In [GK97, GK94], the au thors analyze the problem of deciding
whether a given set of traces are sequentially consistent. O ur approach differs in two respects. F irst,
we are interested in proving th a t detailed models of memory system s are correct, while they obtain
traces (presumably from actual machines) and analyze them for sequential consistency. Second, our
m ethod is more useful for CPU designers as it can give feedback during early phases of the design
pinpointing which ordering rules are violated (if any).

2 O v e r v i e w o f A r c h t e s t

A r c h t e s t is based on the theory presented in [Col92] th a t formally defines and characterizes archi
tectu ral rules obeyed by memory subsystem s of multiprocessors. Although these rules are elemental ,
in realistic memory system s the rules manifest in compound form. Obeying a compound rule is

3

Initially A = 0
ProcessPi Pi'ocessPi
Li : A := 1; X[\] := A;
L2 : A : = 2; X[2\ := A\
L3 : A : = 3; X[3) := A;

Lk : A ~ k := A;

Figure 2: T e s ip o w O ' A r c h t e s t test for A (C M P , R O , W O)

tan tam oun t to obeying all the constituent elemental rules; violating a compound rule is tan tam ount
to violating any of the constituent elemental rules. Each such elemental rule describes a constrain t
on the order in which various read and write events can occur. For read operations there is one
read event per each read operations. However, for write operations, there is one write event per pro
ccss per write operation which captures the effect of a write operation becoming visible to different
processors a t different times. Some of the elemental ordering rules are:

Rule of Computation (CM P): This is a basic rule defining how the term inal value of each
operand is calculated from the initial values of the operand. Though m ost of the literature
on memory architectures implicitly assumes this rule, we will often keep it explicit in our
discussions.

Rule of Read Order (RO): For any pair of read events a and b in the same process, if a comes
before b in program order then a happens before b.

Rule of W rite Order (WO): For any pair of write events a and b in the sam e process, if a comes
before b in program order then a happens before b.

Rule of Program Order (PO): For any pair of events a and b in the same process, if a comes
before b in program order than a happens before b. Event a or 6 can be either read or write
event. So, both RO and PO are special cases of PO. This is one of the strongest ordering rules
and is essential for sequential consistency.

Rule o f W rite Atom icity (WA): A write operation becomes visible to all processes instan ta
neously. More precisely, one conceptual store 5,- is associated with each processor node Pi.
Then, for each write operation W , one write event W, is defined per store 5,-. Then, W A
guarantees th a t there is no i , j and no event e such th a t e is before Wj and is after Wj.

In order to check memory subsystem s for a compound rule, A r c h t est provides a test for each
compound rule along with a set of conditions to be checked for. If any of the conditions is violated
then a violation to obey the compound rule is detected.

^ R O W O : A r c h t e s t test for A (C M P , R O , W O)

The tes t of A r c h t e s t for the compound rule consisting of the elemental rules C M P , R O , and
W O , denoted A (C M P , R O , W O) , is shown in Figure 2. Process Pi executes a sequence of write
instructions (intended to check for W O), and P2 executes a sequence of read instruction (intended
to check for RO). If the memory system correctly realizes A (C M P , R O , W O) , then Condition 1
produces a positive outcome:

C o n d i t io n 1 (M o n o to n ic) The sequence of A’ values is monotonically increasing, i.e.:
Vi, j : 1 < »' < j < k : „Y[t] < X \ j] or equivalently V* : 1 < i < k — 1 : X[i] < X [i + 1].

If M o n o to n ic condition is violated then a t least one of the C M P , R O and W O rules is violated.

4

Initially.
Pi Pi

L\ : A : = 1; Lax : l/[l] := A;
U : A := 2; Lb, : K[l] := /?;

.. . La3 : l/[2] := A;
Lk '• A := k; LB9 : K[2] := 5;

L „* : := A;
Lb„ : V[k] :=

Figure 3: TesfyvA1 A r c h t e s t

= S = 0
p3 p4

LBl : X[l] := B; L, : .0 := 1;
L„, : Y'[l] := A\ L2 : B := 2;
Lb, : X[2] := B; ...
LAi : y[l] := A; Lk : B := *;

Lb, : X[k] := B;
L/it : Y[k] := A;

test for A (C M P , RO, W O , W A)

Initially A = B = 0
L\\ : A := 1;
L,2 : Y[1] := B;
Li\ : A := 2;
L22 : y[2] :=

Lfci : A := k\
Lfcl : Y[fc] := B\

L,, : B := l;
L,2 : -V[l] := A;
L21 : B := 2;
L22 : X[2] := A;

Lfci : B :=k;
Lfci : X[fc] := A;

Figure 4: T e s fp g : A r c h t e s t test for A (C M P , P 0)

T e s t W A : A r c h t e s t t e s t fo r A { C M P, R O , W O , W A)

T e s t y / A , shown in Figure 3 tests for A (C M P , R O , W O , W A), with the conditions checked being:
(i) the M o n o to n ic condition (suitably modified for arrays U , V , X , Y) , and (ii) A to m ic , which is:

C o n d i t io n 2 (A to m ic) Vi, j : 1 < i , j < k : K[i] > X \ j] V Y \ j \ > U[i\.

The A to m ic condition watches for the possibility th a t a write operation from P\ and a write oper
ation from P4 appear to have finished in different orders to P2 and P3 .

T e s t p 0 : A r c h t e s t t e s t fo r A (C M P , P O)

Testj>Q, shown in Figure 4 tests for A (C M P , P O) , with the conditions checked being: (i) the
M o n o to n ic condition (suitably modified for arrays X , Y) , and (ii) P O .C r o s s , which is:

C o n d i t io n 3 (P O -C ro s s) Vi, j : 1 < i , j < k : (X[i] > j V Y \ j] > i) A (X[i] < j V Y[j] < i).

All A r c h t e s t test program s such as Testy^j^, T e s t p Q etc. are m eant to be run on real machines
and there can’t be any real guarantees th a t the particular interleavings th a t reveal violations (such
as for memory ordering rule WA watched by condition A to m ic in T e s t y j ^) will indeed happen.
To allow for as many interleavings as possible, ARCHTEST recommends th a t its tests be run for
large values of k. W ith test model-checking, we effectively run the tests for k = 0 0 . Test model-
checking achieves this by transform ing each A r c h t e s t test into a test au to m a ta which exploits
non-determ inism to effectively check for k = 0 0 . Also, the model-checking framework guarantees
th a t we explore all possible interleavings than a particular interleaving.

5

3 Test model-checking

Test model-checking converts the tests of A r c h t e s t to corresponding memory rule test automata
(“test au tom ata”) th a t drive model of the memory system being examined. In our experim ents, we
use the Verilog language supported by VIS [Ver] to capture the memory system models as well as
the test au tom ata . The C o n d i t io n s corresponding to each compound memory rule being tested
are turned into corresponding memory rule safety properties that, are checked by the VIS tool. The
reader may take a peek a t Section 4.1 to know which compound rules define sequential consistency
[Lam79]. In the remainder of th is section, we explain the assum ptions under which we formally
derive test automata as well as memory rule safety properties, followed by a description of how test
au tom ata as well as memory rule safety properties are derived for specific cases.

3.1 A ssu m p tion s ab ou t m em ory sy stem s realized in hardware

Memory system s realized in hardw are as well as finite-state models thereof are assumed to be data
independent ; i.e., the control logic of the system moves d a ta around, and does not base its control-
point settings on the d a ta values themselves. We also assum e th a t the system is address semi
dependent [IIB95], i.e. the control logic can a t m ost com pare two addresses for equality or inequality
and base its actions on the outcom e of this test. These assum ptions are s tandard , and form the basis
for defining test au to m ata as well as memory rule safety properties.

3.2 C reation o f te st au tom ata

As illustrated in Figure 5, we obtain test au to m ata for various memory models by finitely abstracting
the d a ta used in test of A r c h t e s t , using non-determ inism to justify the abstraction . For example,
we abstract the specific activities of process T\ of Figure 2 into th a t of (non-deterministically) writing
all possible ascending values over {0,1}, as shown in P\ of Figure 5. Also, since we cannot store infinite
arrays in creating process P 2, we turn P 2 and the corresponding memory rule safety property into an
autom aton th a t checks th a t the array values read are m onotonically increasing. This, in tu rn , can be
performed using ju s t two consecutive array values x l and x 2 th a t are nondeterm inistically recorded
by P2 . Hence, the memory rule safety property we model-check for is: P2 in final state =>• x 2 > x l .

We now provide a justification th a t these abstractions preserve the memory rule safety properties,
i.e., for the same memory system model, i.e. a violation of a condition occurs in a test of A r c h t e s t
for k — 00 iff the same violation will occur in model-checking the corresponding memory rule safety
property when tes t au tom ata are used to drive the memory system model. To keep the presentation
simple, we formally argue how the test au to m ata finds every violation present in the test of A r c h t e s t
with k = 0 0 ; the opposite direction of iff, i.e. how a test of A r c h t e s t with k = 00 finds violations
found by the test au to m ata is easy to see because the test au tom ata ju st appears as a “s tu ttering”
of the test of A r c h t e s t . For example, the actions of P\ in Figure 2 can be viewed as repeating the
initialization and then repeating the instruction a t label Li of P\ of Figure 2. O ur proof sketches
are illustrated on the two tests presented in Section 2 and another test described in this section.

3.3 A b stractin g o

We show th a t if the test program in T e s t ^ Q ^ Q shows th a t M o n o to n ic is violated, then the test
autom aton also reveals the error. Since M o n o to n ic is violated,

3 i : 1 < t < Jt: X[i] > X [i + 1]
<=> 3/, a : 1 < i < k : (X[i] > Of) A (X [i + 1] < ct)
•$=>• 3i, a : 1 < i < k : (A’fi] > or) A ->(X[i + 1] > a)

6

PI P2

A:=0 rd (A);

3i x l : = rd (A);
A: =1 ©

x 2 : = rd (A);
SI) (S2

A : =1 r d (A) ;

Figure 5: T e s t ro \V O au tom ata : Test au to m ata for A (C M P , RO, W O)

Initially A = 0 Initially A = (0 > a) Initially A = 0

ProcessPi Proc es s P i ProcessP\ P roc es s P i

Lt : A := 1; X [l) : = (A > a) ; U : A := (1 > a) ; X [\] := A;
L2 A := 2; X[2) := (A > a) ; U : A := (2 > a) ; X[2] := A;
L3 : A : = 3; X[3] := (A > a) ; U : A := (3 > a) ; X[3] := A;

Lk : A := k X[k] := (A > a); Lk : A := (k > a) X[*] := A;

(a) (b)

Proces sPi Pro ces sP i
Lt : A := 0; X [l) := A\

La : A :=0 X[a] := A
La+i : A := 1 X [a + 1] := A
La+i : A := 1 X [a + 2] := A

Lk :A := 1 X[fc] := A\

(c)

Figure 6 : Abstraction of T e s t ^ Q \ \ rQ

Since, the last form ula com pares X [t \ and X [i + 1] only to o , we can rewrite the test program as
shown in Figure 6 (a) assuming data independence, and rewrite the last formulae as

3 i : 1 < i < k : X[t] = 1 A X [i+ 1] = 0

Note th a t in Figure 6 (a) all reads of A occur in the expression A > a . Hence, we can replace every
A := v with A := (t; > a) and X [i] := (A > a) with A’[i] := .4 w ithout affecting MONOTONIC again,
if data independence holds, to obtain Figure 6 (b). Figure 6 (c) is obtained by simplifying Figure 6 (b):
each v > a evaluates to 0 for v < a and 1 otherwise. This figure is generalized to obtain the test
autom aton in Figure 2(b). Intuitively the autom aton finds the violation as follows. P\ remains
in the initial s ta te for a iterations (executing A :=0) and then switches to second s ta te (executing
A := l) . Also, P2 remains in the initial s ta te for i — 1 iterations and then switches to second s ta te
recording x l and then x2 (dashed edges show when these variables are recorded). T hus the test
au tom aton ’s execution is identical to th a t in Figure 6 (c) except th a t the test autom aton gives the
effect of taking k to 0 0 . Also notice th a t s i and x 2 get the values corresponding to A'[i] and A"[i + 1].
Also, corresponding to X[i \ = 1 A X [i + 1] = 0, we have x l = 1 A x2 = 0. Hence the memory rule
safety property corresponding to condition M o n o to n ic is found violated by the test autom aton
exactly when T’esiftOWO f°r k = oc detects a violation. Note th a t the nondeterminism employed in
constructing test au to m ata enables Pi and P2 to guess the right value of a and i corresponding to
the violation.

3.4 A b stractin g

Test autom aton for T e s t y /a is shown in Figure 7. In this au tom aton Pi and P4 w rite all possible
ascending sequences of {0, 1} in A and B respectively. Each processor independently and non-
deterministically decides to switch from writing 0 to w riting 1. M odifications similar to those in
T e s t ft OWO are a PPl'ed to P2 and P3 also, to (nondeterm inistically) decide which C [̂»],V’[*’] pair and

7

r d (A) ; r d (B) ;
A :=0 r d (B) ; r d (A) ; B : =0

4
f

J g

f1 u : = r d (A) ; !x := rd (B) ;rHII< I v : = rd(B) ; ly : = r d (A) ; B: -

3 3
A: =1 r d (A) ; r d (B) ; B : =1

r d (B) ; r d (A) ;
P I P2 P3 P4

Figure 7: T e s t y / a tes t au tom ata : Test A utom ata for A (C M P , R.O, W O , W A)

X \ j \ y \ j \ pair are recorded in u , v and x , y . The memory rule safety property corresponding to con
dition A to m ic is: P2 and P 3 in their final states =£> 1; > * V y > tt. As was explained in Section 3.2
for T e s t f t o \V O our abstraction avoids having to remember the entire extent of the arrays U, V ,
X , and Y . (In T e s t \ y ^ , one has to check for M o n o to n ic also; this is done similarly to th a t in
T e s t RO\VO-)

To show th a t the abstraction preserves A to m ic , let A to m ic be violated in T e s t y / ^ of A r c h t e s t .
Hence

3 i , j : U[t\ > Y \ j] A X \ j] > V[t\
<£=> 3 , i , j , a , / 3 : Y \ j] = a A U[t\ > a A V[t\ = fi A X [j] > fi

Similar to T pQ^yQ, assuming data-independence, we have an execution of the test autom aton
(Figure 7) in which P\ , P2 , P3 , P4 iterates for a , i — 1 , j — 1 ,/3 times (respectively) in their initial
s ta tes before switching to their final sta tes. This test autom aton execution detects violations of
A to m ic exactly when Testy/j^ for £ = 00 would. A violation of A to m ic happens exactly when
m = 1 A u = 0 A i = 1A !/ = 0.

3.5 A b stractin g T e s t p Q

We now discuss a test for the elemental ordering rule Program O rder (PO), which is somewhat more
complex than the previous two tests. PO requires th a t two events of the same process occur in the
order specified by the program . A r c h t e s t provides the test for the compound rule A (C M P, P O)
shown in Figure 8 . Violation of A (C M P , P O) is detected if Condition 3 fails: We obtain the test
autom aton and the memory rule safety property for T e s t p g of Figure 4 as illustrated in Figure 8 .
Pi executes a pair of instructions: w rite to A followed by read from B, infinitely often. The value
w ritten to A is 0 for some iterations and is nondeterministically changed to 1. P2 runs similarly. Pi
nondeterm inistically selects a pair of w rite followed by read instruction. It assigns the value w ritten
to A to j and the value read from B to y. Similarly, processor 2 updates i and x. The dashed edges
in Figure 8 show when x , y , i , j are updated. The memory rule safety property corresponding to
condition P O -C ro s s is: Pi and P 2 in their final states ^ (x > j V y > i) A (a: < j V y < *).

To show th a t th is abstraction preserves P O .C r o s s , let P O .C r o s s be violated in A r c h t e s t
test T e s t pQ.

3*, j : (X i < j A Yj < i) V (Xj > j A Yj > i)
<=> 3, *, j , a , (3 : ((X i = a) A (j > a) A (Yj = ff) A (i > fi))

V((X i > a) A (j = a) A (Yj > fi) A (* = fi))

Similar to the case of T e s t y / a , if 3 i , j : A’[i] < j A Y \ j] < i, then we can get a case in the test
au to m ata where x = 0 A j = l A y = 0 A i = l . Similarly, if 3 i , j : A”[i] > 0 A Y \ j] > i, then we can

8

A := l ;
r d (B) rd (A)

Figure 8 : T e s t p Q test au tom ata : Test au tom ata for A (C M P , PO)

Event Action or condition
Ri(d. a)
Wi(d, a)

if Mem [a] = d
Mem[a] := d

Figure 9: Serial memory transaction rules

get a case in the test au tom ata where a; = l A j = 0 A y = l A i = 0. Hence, the memory rule safety
property corresponding to P O _ C ro ss will be violated in test au tom ata if and only if P O -C ro s s
will be violated in A r c h t e s t test T e s t p o for k = oo.

4 Case Studies

To dem onstrate the effectiveness of our approach, we verified three different memory system s, namely
serial memory, lazy caching, and a simplified version of the Runway bus, all using VIS [Ver]. These
three memory system s are described in some detail below, along with some of the subtle bugs th a t
we could detect using test model-checking. Details of all our experim ents can be obtained from the
Web [Mok] or by contacting the authors.

4.1 H ow do we check for seq uentia l con sisten cy?

A sequentially consistent memory system [Lam93] requires th a t there be a single self-consistent trace
t of memory operations th a t when projected onto the memory operations of each individual processor
Pi (R i (a , d) and Wi(a, d) for processor i) is according to program order for P ,. As suggested in [Col92],
we can show th a t sequential consistency is A (C M P , P O , W A) .

As [Col92] does not list a single compound test to check for A (C M P , P O , W A) , we can use
the following two tests th a t are available: Test^VA which tests for A (C M P , RO, W O , W A) and
T e s t p Q which tests for A (C M P , P O) . This com bination is exactly equivalent to testing sequential
consistency because P O implies R O and W O (as formally defined in [Col92]). For every memory
system we consider, these two tests are model-checked separately and summ arized in Figure 14.

9

Event Allowed if Action

R,(d, a) C , (a) = d A Out, = {}
A no *-ed entries in In,

W ,(d ,a) Out, ;= append(Out , , (d , a))

MW, (d,a) head(Out ,) = (d ,a) Mem[a\ := d;
Outi := tai l (Out ,) \
(VA: ^ i :: Ink := append(Ink, (d,a)));
Ini := append(In , , (d , a , *))

M R j(d ,a) ,V/em[a] = d Ini := append(Ini , (d , a))

CUi(cf, a) head(Im) is either
(d, a) or (d, a, *) Ini := tail(Ini); Ci updat e(C, ,d , a)

Cl, C\ := restrict(C,)

Initially: Va Mem[a\ — 0
A Vt = 1 . . . n C, C Mem A /n , = {} A Outi = {}

Fairness: no action other than Cl, can be always enabled bu t never taken

W —write MW -mem ory write CU cachc update
R—read MR—memory read Cl—cache invalidate

Figure 10: G erth ’s version of the lazy caching algorithm , from Figure 4 of [Ger95].

4.2 Serial m em ory and L azy caching

The s e r ia l m e m o ry protocol for n processors and a memory is shown in Figure 9. Serial memories
are often used to define SC operationally. The lazy c a ch in g protocol [Ger95], shown in Figure 10,
also implements sequential consistency, and is geared towards a bus based architecture. The memory
interface still consists of reads and writes; however, caches C, are interposed between the shared
memory M e m and the processors P 2. Each cache Ci contains a part of the memory M e m and has
two queues associated with it: an out-queue Outi in which P, write requests are buffered and an
in-queue IN i in which the pending cache updates are stored. These queues model the asynchronous
behavior of write events in a sequentially consistent memory. A write event Wi(a, d) doesn’t have
an im m ediate effect. Instead, a request (d, a) is placed in O uti. W hen the w rite request is taken out
of the queue, by an internal mernory-write event M W i (a , d) , the memory is updated and a cache
update request (d ,a) is placed in every in-queue. This cache update is eventually removed by an
internal cache update event C U j(a , d) as a result of which the cache C j gets updated. Cache evictions
are modeled by internal caches invalidate events: C /, can arbitrarily remove locations from cache
Ci. Caches are filled both as the delayed result of write events and through internal memory-read
events, M R (a , d) . The la tte r events model the effect of a cache-miss: in th a t case the read event
stalls until the location is copied from the memory. A read event R i (a ,d) , predictably, stalls until a
copy of location a is present in C,- bu t also until the copy contains a correct value in the following
sense: SC dem ands th a t a processor P, reads the value a t a location a th a t was recently w ritten
by Pi unless some other processor updated a in the meantime. Hence, a read event R i (a , d) cannot
occur unless all pending writes in Out i are processed as well as the cache updates requests from Ini
th a t corresponds to writes of Pi. For this reason, such cache updates requests are marked (with a
*). Figure 11 shows the s tructu re of the Verilog model we created for the memory model verification
we shall discuss in section 4.5.

10

P1

pu.

P2

3, se

Ouft In1 In2 Out2

ss
-

s
S

Mem

F ig u r e 11: Verilog a rc h itec tu re o f tw o processors Lazy C ach ing p ara lle l m ach ine

4.3 R unw ay-PA 8000 M em ory S ystem

Figure 4.3.1 shows a simplified view of 2 H P PA8000 CPU s and a memory controller (HOST)
interconnected by HP Runway Bus[BCS96, Cam97, Kan96]1. We will describe the Runway-PA8000
system in some detail to facilitate a clear description of some of the subtle bugs in URM unearthed
by the tes t model-checking technique. Runway is a synchronous, split-transaction bus which is
responsible for providing a coherent view of shared memory to the processors (clients) while still
allowing th e clients to maintain private copies of memory lines in their caches. Cache Coherency is
m aintained by a snoopy coherency protocol described below.

4.3.1 Snoopy Coherency Protocol

Each cache line in a client can be in one of the four s ta tes : invalid, shared, private-clean or dirty.
If a client suffers a read miss in cache, it generates a rsp (read shared or private) transaction; if

it suffers a w rite miss, it generates a rp (read private) transaction. The transaction is broadcast
on the Runway when it wins the bust m astership. All clients snoop the transaction into their CCC
(cache coherency check) queues and process the entries in CCC queue a t their own speed. W hen a
transaction gets to the head of CCC of client C ,, it sends a ccr (cache coherency response) to HOST
according to Figure 13, and also changes its s ta te to reflect the transaction; for example, if the
transaction is rp generated by C,-, it would assum e “invalid-private-clean” transien t s ta te . If a client
generates a coh.copyout as ccr, it would later issue a c2cw (cache to cache write) to supply the da ta .
HOST enters the ccr’s into its C C R queue, and after all clients have responded to a transaction, the
HOST determ ines if the d a ta would be supplied by another client. If no client is going to supply
the da ta , the HOST would generate a hdr (host d a ta return) transaction on the Runway to supply
the d a ta to the requester. It would also drive Client_op lines to indicate w hether the d a ta m ust be
shared (i.e., a t least one of the ccrs is coh.shared). W hen a client notices a d a ta return (a hdr or
c2cw) targeted tow ards it, it enters the inform ation into d a ta return (DR) queue. Note th a t a client
might receive a d a ta return before it generates the corresponding ccr. In th is case, the client keeps

1 We have purposefully avoided arbitration lines and other details for the sake of clarity. The actual Runway allows
up to four CPU s and one I /O processor and also many more transactions including coherent, non-coherent and I/O
transactions than we describe here. We provide a simplified view' of its operation which captures the essential complexity
of its behavior.

2 There are also transient states th a t the cache line may assume when it is changing from one of these clean states
to another.

11

Client_.op
^ u n w a ^

CCCl DR1
Client 1
(PA 800C)

CCC2 DR2
Client 2
(PA 8000)

HOST
mem Ctrl and

main mem)

CCR2 CCR1

Cache Coherency Responses _

Figure 12: Simplified View of Runway-PA8000 M emory System

Transaction Generated by S tate ccr
- self - coh.ok
- other invalid coh.ok
rsp other private-clean coh.shared
rsp other shared coh.shared
rp other shared coh.ok
rp other private-clean coh.ok
- other dirty coh.copyout

Figure 13: ccr generated when a transaction gets to the head of CCC queue

the d a ta in d a ta return queue until the ccr is sent out.

4.3.2 Delay in c cr generation

If a client has a c2cw transaction for a line yet to go on Runway, then it delays generating any more
ccr’s for th a t line. To see why this is necessary, consider the following. Suppose a client C l has a
d irty line. Client C2 requests this line by issuing rsp transaction on bus. C l will generate coh.copyout
in response to C 2’s request, invalidate its own line, and create a c2cw transaction for C2. Note th a t
the m ost recent d a ta for this line is with C l and not HOST. Now, a client C3 requests the same
line by issuing rsp. C2 and C3 generates respectively coh.shared and coh.ok ccrs in response to C 3’s
request. C l ’s ccr will be coh.ok in response to C 3’s request. If C l sends coh.ok to HOST before its
c2cw goes on the bus then HOST can provide a stale d a ta to C3 by its hdr transaction. To avoid
this, C l delays generating ccr until the c2cw goes on the bus.

4.3.3 Arbitration

Runway follows a complex pipelined arb itra tion algorithm to determ ine the bus m aster. Here, we
only present an approxim ation of the algorithm . Every bus user (client or HOST) m ust become the
bus m aster before it can drive the bus. Bus m astership a t cycle N +2 is acquired by initiating the
arb itra tion in cycle N by driving the request through dedicated arb itra tion lines (not shown in the
figure). During cycle N + l , every potential bus user evaluates the o thers’ drives and, in conjunction
with round-robin pointers for arb itration priorities, determ ines who wins bus-m astership for cycle
N +2. Those who do not win bus m astership keep-off the bus. Bus arb itration proceeds in a pipelined
m anner concurrently with transaction processing.

12

4 .3 .4 P A 8 0 0 0 R u n w a y in te r fa c e

In addition to the Runway specifics described above, PA8000 Runway interface (PARI) also adheres
to the following constraints in order to ensure Program O rder and W rite Atomicity. PARI allows a
client to initiate Runway transactions for various cache misses; it is possible th a t these transactions
complete out of order. However, all instructions strictly complete in program order. PARI guarantees
th a t the client will stall the coherency response for any cache line which it has an outstanding miss
for (i.e., it has initiated a Runway transaction, has assumed the ownership but is still waiting for the
d a ta). The coherency response will be generated only after the client has received the d a ta and has
used it to make forward progress a t least one instruction. PARI guarantees th a t if a client receives
d a ta for its Runway transaction before it assumed the ownership then it will not modify or use the
d a ta until it processes its own transaction (and thus assumes ownership). PARI guarantees th a t if a
client has c2cw transaction then it gets the highest priority to go to the Runway.

4.4 T he R unw ay-PA 8000 in V IS V erilog

We constructed a Verilog model of the llunway-PA8000 system , Utah Runway Model (URM), and
the two abstractions of T e s t p Q and Tes t™ a to verify th a t its memory model is sequential consistent.
The complexity of the system stem s from a num ber of sources: (a) multiple outstanding transactions
for each processor, (b) out-of-order completion of the Runway transactions, but in-order comple
tion of instructions, (c) eager assum ption of ownership w ithout receiving the corresponding data ,
(d) “equivalent” sta tes introduced by decoupled execution due to coherency queues, (e) speculative
execution features of the processor to ensure performance in spite of in-order completion of the in
structions, (f) an involved d istributed pipelined arb itra tion algorithm . We did not try to model each
of these features in their full glory, bu t we did include a modicum of these aggressive features into
our URM, which in fact occupies more than 2,000 lines of VIS Verilog code (see [Mok]). For instance
all essential features of (a), (b), (c), and (e) are included, (f) is abstracted by using nondeterminism ,
(d) is abstracted as explained below.

A b s t r a c t io n o f Q u e u e s Additional abstraction effort was necessary to make our URM digestible
by VIS. This essentially consists in getting rid of the CCC, CCR, and DR queues which are the main
cause of s ta te explosion, bu t retain HDR queue in the HOST and C2CW queues in the HOST and
clients.

In Runway, most of the conflicts are detected and resolved by the HOST. There is one situation
where a client detects conflict: the client has a pending c2cw transaction . The client resolves this
by delaying its coherency response; the net result of this delay is th a t the HOST would not generate
hdr transactions until the c2cw goes on the Runway. Since we abstracted away the CC R queues,
in our URM the clients send the coherency response for a coherent transaction immediately after
its occurrence on the bus. Hence, in our URM the clients can’t resolves conflicts by delaying the
coherency response; instead the HOST computes if the coherency response needed to be delayed, and
if so, delays the hdrs appropriately. This is achieved as follows. A counter is associated with each
HDR queue entry. If the counter is non-zero, then it is waiting for some c2cw transactions for th a t
line from the clients, hence the hdr needs to be delayed. A fter all the pending c2cw transactions for
th a t line go on the bus, the counter becomes zero, and hence the hdr transaction can go on the bus.
In our URM, we used a tw o-bit counter, which allows up to four processors.

In Runway, all clients save the d a ta returns (hdr and c2cw transactions) in DR queue until
the corresponding request appears a t the head of its CCC queue. This is necessary to enforce in
order completion of instructions. We abstrac t away the CCC queues and the d a ta return queues by
associating a one-bit inform ation with each cache line in each client. This bit is set for an address

13

A (CM P.PO) #states #bdd nodes conditions verified runtim e (mn:sec)
serial memory 7229 7145 Vacuity

PO-COND
00:02
00:09

lazy caching 7.80248e+06 306692 Vacuity
P O -C ond

01:12
36:33

URM 953675 1657308 Vacuity
P O .C ond

14:23
27h28:30

A(CM P,W O,RO,W A) ♦states #bdd nodes conditions verified runtim e (mn:sec)
serial memory 21242 10084 Vacuity

C ondi - Cond3
00:04
00:34

lazy caching 1.90736e+06 513655 Vacuity
C ondi - Cond3

02:02
59:33

URM 985236 1695092 Vacuity
C ondi - Cond3

17:24
40h 17:33

Figure 14: Verification results using VIS on a SPARC ULTRA-1 with 512 MB Memory

a whenever a d a ta return happens for a , bu t a preceding instruction is not yet completed. After all
preceding instructions are completed, the d a ta is used, and the bit is reset indicating the completion
of the instruction.

4 .5 V e r i f ic a t io n r e s u l t s

The tables in figure 14 show execution tim e for model-checking our Serial memory, Lazy caching and
URM models for tes ts of A(C.VII), PO) and A(CMP,RO,YVO,WA) (recall th a t A(CM P, PO, WA)
implies SC). The three models running separately the two tests T e s t y / A an^ T e s t p Q are model-
checked for the following conditions: (Figure 8 does not show some of these sta tes)

TestWA: MONOTON1C: A (P2.inS2) = > (P2U\ < P2.U2)
A (P2.inS2) = > (P2.V1 < P2.V2)
A (P3.inS2) =► (P3 .X1 < P3.X2)
A (P a . i n S a) = ► (/V Y " . < PZ.Y2)

A t o m i c : (P2.inS\ A P3.irtSi) = > (P2.V > P3.X v P3 .Y > P2-U)

Testp0 : P O . C r o s s : (Pi.inS3 A P2.inS3) => (Pi-Y > P2.l V P2.X > P\.J) A (Pi.Y < P2.I V P2.X < P\.J)

As can be seen, all these conditions are safety properties, and independent of the model itself, which
is a distinct advantage over o ther m ethods.

The size of the s ta te space and num ber of nodes in BDDs are also reported. Note th a t lazy caching
has more s ta tes than Runway due to the queues present in the model. However, the complexity of
the Runway protocol is much higher, which results in large BDD size and higher run tim e. However,
in all our experim ents, whenever there was any memory ordering rule violation in our model, test
model-checking detected it quickly (in th e order of minutes). A very desirable feature one can provide
in a tool based on test model-checking is a menu of previously generated test au to m ata for the various
compound rules in [Col92], using which designers can probe their model.

O ur Verilog models captures quite faithfully the cache coherence protocol and the ordering rules
of the three memory systems.

A fter an extensive debugging using test model-checking driven by T e s t p o and T e s t y j ^ , we
have a high confidence th a t the memory model provided by Lazy caching and Runway-PA8000 is
sequentially consistent. The verification of serial memory was straightforw ard.

14

Description o f a Bug found in preliminary model of lazy caching: The following bug in
our model of Lazy Caching was caught by a violation of P O _ C ro ss in T e s t p q . The bug was in the
queues used by Lazy Caching, which were implemented as shift registers. We forgot to shift the *-bit
in Ini when the processor I \ receives a cache-update from /n , queue. W ith this bug it is possible th a t
Irii queue is not *-ed when it should be, and consequently reads in P, may bypass writes. This results
in a violation of PO . This is a difficult bug to catch because its detection involves understanding the
complex feedback from all components of the protocol to each o ther (queues, memory, and caches).
Moreover, this bug is interesting because it violates PO but doesn’t violate WA. This is so because
only w rite-read (W R) order is affected by this bug. Our technique effectively caught this bug:
the P O _ C ro ss condition does not pass when we model-checked the model for T es t p q . However,
T es t y /A (note th a t it doesn’t involve PO) passes! This shows the futility of ad hoc testing methods:
one could apply subjective criteria to consider a test similar to T e s t y j a to be sufficiently incisive,
when in fact it fails to account for a crucial ordering relation such as PO.

Description o f a Bug found in preliminary URM: Similarly, another corner-case bug was
caught by test model-checking in our URM by a violation of P O -C ro s s condition using Testj>Q.
This bug generated a long counter-example trace, due to the depth of the sequential logic of the
model. The trace revealed the following situation:

(1) client i has removed its own read transaction from the bus, then

(2) client i sends coh.ok in response to a subsequent coherent transaction for the sam e line before
getting the d a ta for its transaction (by hdr or c2cw).

This problem was fixed using the counter in the IIO ST ’s HDR entries to record the pending c2cas
and the one-bit, information in the client’s cache lines to record whether the d a ta is supplied, as
explained in paragraph 4.4. After fixing the bug the PO condition passed.

5 Conclusion and Future Plans

We presented a new approach to verify m ulti-processors for formal memory models, which combines
two existing powerful techniques: model-checking, and the testing m ethod of A r c h t e s t . From our
results, we conclude th a t tes t model-checking can be of great value in detecting bugs during early
stages of the design cycle of modern microprocessors whose memory subsystem s are complex. Our
results on our URM of the HP PA /R unw ay bus a tte s t to this.

So far we have identified the rules and corresponding tests for sequential consistency. We are cur
rently working on identifying similar rules and tests for o ther well-known formal memory models such
as TSO, PSO, and RMO [AG96] th a t are described in the SPARC V9 architecture manual [WG94].
This work may involve defining new rules as well as new tests corresponding to them .

We are currently working to form ulate some reasonable assum ptions abou t the memory system
model under which the tests adm inistered by our test au tom ata can be rendered complete. Also,
for a limited class of models, model-checking the test for some small value of k m ight actually be
sufficient. O ur initial a ttem p ts in this direction are encouraging.

Acknowledgments We would like to thank Dr. Collier for his help in explaining his work, his
very inform ative emails and providing A r c h t e s t . We would like to thank Dr. N arendran for many
fruitful discussions. We would like to thank Dr. Al Davis and his Avalanche team foro offering us
the unique opportunity to work on sta te-of-the-art processors and busses.

15

R e fe r e n c e s

[AG 96]

[BCS96]

[Cam97]

[CC77]

[CES86]

[Col]

[Col92]

[Cor97]

[DPN93]

[Ger95]

[GGH+97]

[GJS96]

[GI<94]

[GK97]

[Gra94]

S arita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A
tu to ria l. Computer , 29(12):66-76, December 1996.

William R. Bryg, Kenneth K. Chan, and Nicholas S.Fiduccia. A high-performance,
low-cost multiprocessor bus for w orkstations and midrange servers. Hewlet t-Packard
Journal , pages 18-24, February 1996.

A lbert Camilleri. A hybrid approach to verifying liveness in a sym m etric multi
processor. In Theorem Proving in Higher Order Logics, 10th International Conference,
T P H O L s ’97, Murray Hill, N J , pages 49-67, A ugust 1997. Springer-Verlag LNCS 1275.

P. Cousot and R. Cousot. A bstract intepretation: a unified lattice model for sta tic
analysis of program s by construction or approxim ation of fixpoints. In Proceedings of
4th POP L, pages 238-252, Los Angeles, CA, ACM Press, 1977.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. A utom atic verification of finite-state
concurrent system s using tem poral logic specifications. A C M T O P L A S , 8(2):244-263,
1986.

W. W . Collier. M ultiprocessor diagnostics, h ttp ://w w w .infom all.o rg /d iagnostics/arch test.h tm l.

W. W . Collier. Reasoning About Parallel Architectures. Prentice-Hall, Englewood Cliffs,
NJ, 1992.

Francisco Corella, April 1997. Invited talk a t Com puter Hardware Description Lan
guages 1997, Toledo, Spain, on Verifying I /O Systems.

David L. Dill, Seungjoon Park, and A ndreas Nowatzyk. Formal specification of abstract
memory models. In G aetano Borriello and Carl Ebeling, editors, Research on Integrated
Syst ems , pages 38-52. M IT Press, 1993.

Rob G erth . Introduction to sequential consistency and the lazy caching
algorithm . Distributed Computing, 1995. Also can be found in
h ttp ://w w w .research .d ig ita l.eom /S R C /tla /papers.h tm l#L azy .

G. G opalakrishnan, R. Ghughal, R. H osabettu , A. Mokkedem, and R. Nalumasu. For
mal modeling and validation applied to a commercial coherent bus: A case study. In
Hon F. Li and David K. P robst, editors, C H A R M E , M ontreal, Canada, 1997.

Jam es Gosling, Bill Joy, and Guy Steele. The Java™ Language Specification. Sun
M icrosystems, 1.0 edition, August 1996. appeared also as book with sam e title in
Addison-Wesleys 'The Java Series’.

Phillip B. Gibbons and Ephraim Korach. On testing cache-coherent shared memories.
In Proceedings of the 6th Annual Symposium on Parallel Algorithms and Architectures ,
pages 177-188, New York, NY, USA, June 1994. ACM Press.

Phillip B. Gibbons and Ephraim Korach. Testing shared memories. S I A M Journal on
Computing, 26(4):1208-1244, August 1997.

S. Graf. Verification of a distributed cache memory by using abstractions. Lecture
Notes in Computer Science, 818:207-??, 1994.

16

http://www.infomall.org/diagnostics/archtest.html
http://www.research.digital.eom/SRC/tla/papers.html%23Lazy

[HMTLB95]

[Kan96]

[Lam79]

[Lam93]

[Lam94]

[LLOR97]

[McM93]

[Mok]

[PD96]

[Ver]

[WG94]

[HB95] It. Hojati and R. Brayton. A utom atic d a tap a th abstraction of hardware system s. In
Conference on Computer-Aided Verification, 1995.

R. Hojati, R. M ueller-Thuns, P. Loewenstein, and R. Brayton. A utom atic verification
of memory system s which service their requests ou t of order. In CHDL , pages 623-639,
1995.

Gerry Kane. P A - R I S C 2.0 Architecture. Prentice Hall, 1996. ISBN 0-13-182734-0.

Leslie Lam port. How to make a m ultiprocessor com puter th a t correctly executes mul
tiprocess program s. IEEE Transactions on Computers , 9(29):690-691, 1979.

Leslie Lam port. How to make a correct multiprocess program execute correctly on a
multiprocessor. Technical report, Digital Equipm ent Corporation, Systems Research
Center, February 1993.

Leslie Lam port. The tem poral logic of actions. A C M Transactions on Programming
Languages and Sys tems , 16(3):872-923, May 1994. Also appeared as SRC Research
Report 79.

P. Ladkin, L. L am port, B. Olivier, and D. Roegel. Lazy caching in tla . Distributed
Computing , 1997.

Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Press, 1993.

A. Mokkedem. Verification of three memory system s using test model-checking.
h ttp ://w w w .cs.u tah .edu /-m okkedem /v is/v is .h tm l.

Seungjoon Park and David L. Dill. Verification of FLASH cache coherence protocol by
aggregation of d istributed transactions. In SPAA, pages 288-296, Padua, Italy, June
24-26, 1996.

Vis-1.2 release. h ttp ://w w w -cad.eecs.berkeley.edu/R espep/R esearch/vis/index.htm l.

David L. Weaver and Tom Germond. The S P A R C Architecture Manual - Version 9. P
T R Prentice-Hall, Englewood Cliffs, NJ 07632, USA, 1994.

17

http://www.cs.utah.edu/-mokkedem/vis/vis.html
http://www-cad.eecs.berkeley.edu/Respep/Research/vis/index.html

